
ETH Library

Precise Size Determination of
Supported Catalyst Nanoparticles
via Generative AI and Scanning
Transmission Electron Microscopy

Journal Article

Author(s):
Eliasson, Henrik; Lothian, Angus; Surin, Ivan; Mitchell, Sharon; Pérez-Ramírez, Javier; Erni, Rolf 

Publication date:
2024

Permanent link:
https://doi.org/10.3929/ethz-b-000698670

Rights / license:
Creative Commons Attribution-NonCommercial 4.0 International

Originally published in:
Small Methods, https://doi.org/10.1002/smtd.202401108

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0003-2391-5943
https://doi.org/10.3929/ethz-b-000698670
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1002/smtd.202401108
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


RESEARCH ARTICLE
www.small-methods.com

Precise Size Determination of Supported Catalyst
Nanoparticles via Generative AI and Scanning Transmission
Electron Microscopy

Henrik Eliasson,* Angus Lothian, Ivan Surin, Sharon Mitchell, Javier Pérez-Ramírez,
and Rolf Erni

Transmission electron microscopy (TEM) plays a crucial role in heterogeneous
catalysis for assessing the size distribution of supported metal nanoparticles.
Typically, nanoparticle size is quantified by measuring the diameter under the
assumption of spherical geometry, a simplification that limits the precision
needed for advancing synthesis-structure-performance relationships.
Currently, there is a lack of techniques that can reliably extract more
meaningful information from atomically resolved TEM images, like nuclearity
or geometry. Here, cycle-consistent generative adversarial networks
(CycleGANs) are explored to bridge experimental and simulated images,
directly linking experimental observations with information from their
underlying atomic structure. Using the versatile Pt/CeO2 (Pt particles
centered ≈2 nm) catalyst synthesized by impregnation, large datasets of
experimental scanning transmission electron micrographs and physical image
simulations are created to train a CycleGAN. A subsequent size-estimation
network is developed to determine the nuclearity of imaged nanoparticles,
providing plausible estimates for ≈70% of experimentally observed particles.
This automatic approach enables precise size determination of supported
nanoparticle-based catalysts overcoming crystal orientation limitations of
conventional techniques, promising high accuracy with sufficient training
data. Tools like this are envisioned to be of great use in designing and
characterizing catalytic materials with improved atomic precision.

1. Introduction

The performance of nanoparticle-based heterogeneous catalysts
can be significantly influenced by the size, shape, and corre-
sponding support-interface geometry of the dispersed species.[1]
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This structure sensitivity necessitates
the ability to precisely characterize such
properties on the atomic scale in a sta-
tistically robust manner to understand
and optimize catalytic materials. Trans-
mission electron microscopy (TEM) has
become indispensable for directly observ-
ing and analyzing the structural features
of small supported nanoparticles. How-
ever, the conventional method of man-
ually or automatically measuring parti-
cle diameters fails to capture the true
complexity of nanoparticle structures, in-
cluding their nuclearity and geometry.
This is unsatisfactory because nanopar-
ticles of different shapes can have the
same diameter when projected in a trans-
mission electron micrograph but exhibit
vastly different reactivity due to varia-
tions in exposed facets, atomic coordi-
nation, and support interactions which
determine the geometric and electronic
properties of the active phase.[2]

Pt/CeO2 catalysts, which are wid-
ely explored for diverse applications
such as thermo- and electrocatalytic
selective oxidations,[2–4] selective

hydrogenation,[5,6] the water-gas shift reaction,[7] the oxygen re-
duction reaction,[8] alcohol reforming,[9] and hydrogenolysis,[10]

and have been identified among the most promising practical
systems for automotive treatment solutions, are a well-known ex-
ample catalytic material where the dispersed Pt phase can adopt
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various 2D and 3D shapes depending on factors like the ceria sup-
port facet, Pt content, presence of other promoters, and the syn-
thetic approach.[11,12] Structure sensitivity to the Pt size, geome-
try, and the related interface with the support, has been demon-
strated in most of these applications,[13,14] highlighting the inade-
quacy of diameter-based categorization in predicting catalytic per-
formance accurately.

To address this challenge, advanced image analysis techniques
are required to extract deeper structural information from TEM
images of supported nanoparticles. For most quantitative TEM
applications, the high-angle annular dark-field scanning trans-
mission electron microscopy (HAADF-STEM) image modality
is used. The HAADF-STEM signal carries chemical informa-
tion by a mass-thickness contrast and is particularly appreciated
due to the incoherent nature of the signal and ease of inter-
pretation of the resulting images.[15–17] One quantitative appli-
cation of HAADF-STEM is atom counting, where the number
of atoms of an imaged nanostructure can be estimated by an-
alyzing the pixel intensities of the atomic columns.[18–20] Atom
counting has been explored by both statistical approaches and
machine learning and can generally yield a size estimate with
high precision.[19,21] However, it relies on the atomic columns
of the region of interest being in a zone axis, which greatly
limits the applicability of the technique to nanoparticles im-
aged under specific conditions. This emphasizes the need for
a technique that can handle nanoparticles imaged from any
orientation.

Recent advances have demonstrated the utility of multislice
image simulations in directly comparing them with HAADF im-
ages to infer detailed atomic structures.[20,22–24] A multislice im-
age is generated by simulating the propagation of the incident
electron wave through an atomic model and integrating the scat-
tered intensity over a virtual detector. The atomic model and cor-
responding multislice image simulation are thus paired, and it is
possible to use supervised learning techniques like a U-Net,[25]

to infer information about the atomic model (e.g., nuclearity,
support-interface, and crystal structure) from the simulated im-
ages regardless of particle orientation. By establishing a consis-
tent mapping between experimental images and simulated im-
ages, it should by extension also be possible to infer informa-
tion about the underlying atomic structure of an experimental
image.

The cycle-consistent generative adversarial network (Cycle-
GAN) is a type of machine learning model developed to learn a
mapping between two unpaired image domains.[26] While initial
applications included mapping horses to zebras and photographs
to paintings, the CycleGAN, and inspired networks have become
more commonly adopted in scientific imaging in the last few
years.[27–29] A CycleGAN has previously been applied to HAADF-
STEM data to generate realistic STEM images of 2D materials.[30]

These images were then used to train a defect detection network,
which generalized very well to real experimental data. However,
the CycleGAN remains unproven on HAADF-STEM images of
more common 3D objects like nanoparticles, where a larger vari-
ety in the training data is needed and regularization techniques
are necessary to stabilize model training due to the larger struc-
tural variation and effects of dynamical diffraction in the images.

In this work, we train a CycleGAN to map between multislice
images of platinum nanoparticles supported on cerium dioxide

and experimental high-resolution HAADF-STEM images of the
same system. We use the learned mapping to generate synthetic
experimental data with a known atomic model ground truth.
These paired datasets are then utilized to train a size-estimator
network in a supervised manner to predict the number of plat-
inum atoms in experimentally observed platinum nanoparticles
(Figure 1).

2. Results and Discussion

2.1. Generating Training Data

It is essential that both the simulated dataset and the experimen-
tal dataset are well balanced, meaning that they cover largely the
same type of structures and are generated with similar imaging
parameters for the sought mapping between them to retain phys-
ical relevance. The major imaging parameters like acceleration
voltage, beam convergence angle, detector collection range, and
effective source size were therefore kept similar. The acceleration
voltage was 300 kV, the beam convergence angle 18.5 mrad, and
the effective source size 50 pm for both the simulated and exper-
imental data. The HAADF collection range was 66–140 mrad for
the simulated data and 72–200 mrad for the experimental data.
The reason for the discrepancy is explained in the section on sim-
ulated data.

While conventional STEM images typically depict the object of
interest in a ʻtop-downʼ perspective,[31] for this project, we have
chosen to image particles ʻedge-onʼ or ʻin profileʼ (as common
in atom counting[32]). This approach was selected for several rea-
sons. First, imaging the particles at the edge of the support ma-
terial ensures minimal obstruction and little to no addition to
the signal intensity, providing more information about the par-
ticle’s shape by visualizing the wetting angle. Second, it allows
us to maintain a small supercell as we are imaging thin edge re-
gions. The heavy computational load of multislice simulations
limits the size of the supercell. In this work, the typical super-
cell was 7 × 7 × 7 nm or smaller, which is sufficient to cover a
large variety of structures featuring nanoparticles at the edge of a
support structure, but not in thicker support regions where many
particles imaged top-down would be situated, potentially overlap-
ping and suffering from an unknown top-bottom effect. An ob-
vious drawback to this way of imaging is that data acquisition of
a statistically significant number of particles is slower than when
recording larger overview images, as many particles are not sit-
uated at a projected support edge. Although slower, we don’t be-
lieve this is a significant limitation and also envision this method
to be extendable to automatic data acquisition. One can imagine
tracing the outline of agglomerates and recording images of par-
ticles along the border of the support as a feasible approach for
automation.

2.1.1. Simulated Data

An algorithm to generate random particle structures on supports
was developed to build a large simulated dataset of atomic mod-
els. A detailed explanation of the algorithm is available in the Sup-
porting Information. In general, the workflow can be summa-
rized in seven steps as visualized in Figure 2. First, the outline
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Figure 1. Overview of the approach: orange arrows indicate the data used to train the models and black arrows show the workflow. Atomic models
are generated using the algorithm presented herein and are used to simulate a dataset of multislice images of Pt nanoparticles supported on ceria. An
experimental high-resolution STEM dataset of nanoparticles in a Pt/CeO2 catalyst is recorded with a Titan Themis microscope operated at 300 kV and
used as training data for the CycleGAN together with the simulated dataset. The simulated dataset is mapped to the experimental domain using the
trained CycleGAN, forming a synthetic dataset of “experimental-looking” images with corresponding atomic model ground truths. The synthetic dataset
and the atomic models are used to train a subsequent size-estimator network. Once trained, the experimentally observed nanoparticles can be sent
through the size-estimator, automatically outputting a particle size distribution in terms of the nuclearity (number of atoms present). The CycleGAN
can also be used to denoise experimental data by sending experimental images through it in the opposite direction, yielding a denoised version of the
image in the style of the multislice image simulations (see Figure 3). Each scale bar corresponds to 1 nm.

of the structure is generated, which is essentially a set of con-
vex hulls stacked on top of each other, some of which house the
nanoparticle while the others house the support material. A step
edge can be added to the finalized structure, and the desired bulk
lattices are then filtered within the outline of the particle and sup-
port regions, yielding an atomic model. Since the generation of
the structure outline does not depend on a specific lattice, the al-
gorithm could be used for any combination of elements and crys-
tal structures. A subsection of the atomic model is then cropped
and used as input for the image simulation.

Image calculations were carried out in Dr. Probe[24] and a script
was created to automate the process such that no human input
was needed to load the next structure. Each structure loaded into
Dr. Probe included a buffer region of typically 1.5 nm around the
actual object of interest to avoid periodicity artifacts in the gener-
ated images. All calculations used a slice thickness of 0.1 nm, a
maximum spatial frequency kmax of 70 nm−1, and 10 frozen lat-
tice configurations per slice.[24,33] This kmax was chosen to keep
computation time reasonably low while maintaining calculation
accuracy. Increasing kmax further increased computation time sig-
nificantly while yielding nearly identical images. However, as a
consequence of the relatively low kmax, the collection range of the

virtual HAADF detector is smaller than the one in the experimen-
tal setup.

In total, 5000 images were simulated, all with an image size of
128 × 128, a pixel size in the range of 5–35 pm, and featuring one
Pt nanoparticle per image with a size in the range of 1–765 atoms.
The mean computation time for an image was ≈10 min (with
GPU acceleration) which is inconvenient and future work should
work to establish a framework for large-scale parallel image sim-
ulations on supercomputers, perhaps utilizing newer image sim-
ulation algorithms like PRISM.[34,35] A corresponding noisy im-
age was generated for each simulated image by adding Gaus-
sian noise followed by Poisson noise, yielding a second “noisy”
dataset. This noisy dataset was used along with the clean set to
pretrain the CycleGAN. The manually added noise is simplified
compared to real experimental noise but sufficient for pretrain-
ing where the goal is only to teach the CycleGAN general noising
and denoising traits to ease model training with real experimen-
tal data. The reason why training with simulated images and the
corresponding manually noised images is easier than training
with simulated images and real experimental data is because the
datasets are perfectly balanced in terms of the atomic structures
behind the images.

Small Methods 2024, 2401108 © 2024 The Author(s). Small Methods published by Wiley-VCH GmbH2401108 (3 of 10)
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Figure 2. Key stages from the simulated data generation workflow illustrated for Pt/CeO2. a) The metal nanoparticle structure outline. b) The nanoparticle
footprint expanded by Perlin noise forming the outline of the support structure. c) The final structure outline with an added step-edge (black). d) The Pt
nanoparticle and CeO2 support crystal structures filtered within the structure outline. e) Cropped structure ready for input to the multislice simulation.
f) Multislice HAADF image of the framed region in (e). g) The multislice image with Gaussian noise added and Poisson noise applied. Each scale bar
corresponds to 1 nm.

2.1.2. Experimental Data

To efficiently record a significant number of experimental im-
ages while maintaining a manageable manual workload, we
recorded time-series of each particle, leveraging natural noise
variation and image drift to our advantage to increase va-
riety in the experimental image set. Opting for time-series
rather than longer exposure images also has the benefit of
reducing electron beam-induced restructuring which is criti-
cal when imaging small supported nanoparticles since they of-
ten exhibit dynamic behavior. To maintain a consistent noise
profile through all recorded images, the imaging parameters
were kept constant with the exception of pixel size resulting
from the use of different magnifications (see Experimental
Section).

In total, 205 different nanoparticles from a Pt/CeO2 catalyst
were imaged, with some particles recorded at multiple magnifi-
cations, resulting in 360 time-series and a total of 11219 images.
All imaged nanoparticles had a diameter in the range of 0–4 nm
and were imaged with a pixel size in the range of 18–51 pm with
the majority ≈25 pm like in the simulated dataset (Figure S1, Sup-
porting Information).

2.2. Training the CycleGAN

The CycleGAN comprises four networks trained together in an
adversarial manner: two generators and two discriminators. The
generators are trained to learn the mapping functions G: X→Y
and F: Y→X, with X being the domain of the multislice image
simulations, and Y being the experimental (or noisy) domain.
Simultaneously, the discriminators are trained to discriminate
between images generated by the generators and real images,
forcing the generators to generate increasingly realistic images.
However, the CycleGAN is notoriously difficult to train, often
suffering from instabilities and mode collapse. Much effort has
been dedicated to stabilizing model training through architec-
tural modifications. One common issue is that the discrimina-
tors tend to overpower the generators. To counter this, techniques
such as gradient penalty,[36] spectral normalization,[37] and the
addition of an image buffer[38] to feed the discriminators with
historically generated images have been found helpful. Addition-
ally, for the generator architecture, replacing batch normalization
layers with instance normalization has been shown to improve
the quality of generated images in style transfer tasks such as
mapping between two noise profiles.[39]

Small Methods 2024, 2401108 © 2024 The Author(s). Small Methods published by Wiley-VCH GmbH2401108 (4 of 10)
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Our generators use a 4-layer deep U-Net architecture with in-
stance normalization, while the discriminators employ the stan-
dard PatchGAN architecture with spectral normalization.[26,40]

We experimented with smaller U-Net generators and ResNet[41]

generators but found a 4-layer deep U-Net to be a good trade-off
in model complexity, memory allocation, training time, and out-
put quality. The models are available on GitHub: (https://github.
com/benke97/PtCeriaGAN).

The generator loss function follows a standard form, incorpo-
rating three terms: a binary cross-entropy adversarial loss term
(adv,G), a cycle-consistency loss term (cyc), and an identity loss
term (id). The overall loss function is expressed as:

G = adv,G + 𝜆cyccyc + 𝜆idid (1)

where 𝜆cyc and 𝜆id are tunable scaling parameters. The adversarial
loss for the generator,adv,G, encourages the generator to produce
images that the discriminator cannot distinguish from real im-
ages. The cycle-consistency term ensures that the learned map-
pings are reversible, i.e., F(G(x)) ≈ x and G(F(y)) ≈ y, x ∈ X, y ∈ Y.
The identity loss ensures that images from one domain remain
unchanged when sent through the generator that maps to their
domain, meaning F(x) ≈ x and G(y) ≈ y.

For comparisons between images in the simulated domain, we
use an L1 loss for cyc and id, while a perceptual loss calculated
with LPIPS[42] using SqueezeNet[43] is employed for image com-
parisons within the experimental and noisy domains. The rea-
soning behind the use of perceptual loss for the noisy domain
is that the noise in the input image is inherently random, mak-
ing it counterproductive to recreate the exact pixel values as long
as the overall noise profile remains consistent. For a mathemat-
ical formulation of the loss function, see other works.[26] For a
visual description of the losses, see Figures S2–S4 (Supporting
Information).

The adversarial loss for the discriminator, adv,D, is a binary
cross-entropy loss that encourages the discriminator to classify
generated images as fake and real images as real, thus oppos-
ing the generator’s objective. To stabilize training, we also exper-
imented with a gradient penalty term (GP) which was added to
the discriminator loss, resulting in the full expression of the dis-
criminator loss:

D = adv,D

(
+ 𝜆GPGP

)
(2)

where 𝜆GP is another scale factor. In the end, we found that spec-
tral normalization (with the default parameters of the PyTorch
implementation) along with an image buffer resulted in percep-
tually higher quality images compared to when gradient penalty
was used along with the image buffer. Using gradient penalty to-
gether with spectral normalization inhibited the creativity of the
generators too much in our case but could be worth exploring for
applications with more limited datasets.

The CycleGAN was pretrained using the clean and noisy sim-
ulated datasets. The sets were min-max normalized within their
domain and split into training and validation sets (4:1), 4000
training images, and 1000 validation images. The optimal pre-
trained weights were determined by evaluating the reconstruc-
tion quality. This quality was measured using the mean squared
error between the simulated images and the denoised versions of

their paired noisy images, along with the perceptual loss between
the original noisy images and the noised version of their paired
simulated images. We pretrained the model for 100 epochs with
the Adam optimizer ((𝛽1, 𝛽2) = (0.5, 0.999)) and constant learn-
ing rates of: lrG = 5e-5 and lrD = 7.5e-5. Furthermore, 𝜆cyc = 5, 𝜆id
= 0.5𝜆cyc, 𝜆GP = 0.0001, a batch size of 1, and an image buffer of
20 images for each discriminator was used. Both generators were
trained with the same optimizer for simplicity.

The pretrained generators were used as a starting point for
the main task of learning the mapping functions F and G be-
tween the dataset of multislice simulations and the experimental
dataset. A subset of 5000 experimental images was selected as the
experimental dataset, sampling images from all 360 time series.
This experimental set was split into training and validation sets
(4:1), ensuring that none of the 205 nanoparticles appear in both
training and validation sets. Also here, the simulated and experi-
mental sets were min-max normalized within their own domain.

We train the CycleGAN for 200 epochs, again with the Adam
optimizer ((𝛽1, 𝛽2) = (0.5, 0.999)) using a constant learning rate
of 1e-5 for all networks and with the three bottom layers of the
generator encoders frozen. From quick tests, it is likely that freez-
ing these layers had little effect on the outcome. Other hyper-
paramters used were: 𝜆cyc = 300, 𝜆id = 0.25𝜆cyc, and 𝜆GP = 0, batch
size= 4, and an image buffer of 20 images for each discriminator.
The generators were trained with the same optimizer for simplic-
ity. The need for the high 𝜆cyc stems from the normalization of the
datasets. Due to the large variation in pixel intensities between
some images in the simulated set and the different intensity dis-
tributions in the experimental and simulated sets, a large 𝜆cyc
was needed to bring the cycle-consistency loss term to the same
scale as the adversarial loss term. Using a smaller 𝜆cyc caused
the generators to introduce more noise into the generated exper-
imental images to fit the distribution of the real experimental set.
This made the images overly noisy and less realistic with respect
to the underlying structure, despite appearing realistic. Con-
sequently, the denoising process began to discard some struc-
tural features such as noise, which is undesirable for physical
denoising.

The best model weights were determined by tracking the
Fréchet Inception Distance (FID), a commonly used metric to
determine the quality of images generated by a GAN, between
the generated image sets and their respective real set during
training.[44] The epoch with the lowest sum of the FID scores for
the two domains was selected. A selection of generated images
from the best model is displayed in Figure 3. For the experimen-
tal domain, we achieve a FID score of 59.7 and for the simulated
domain we achieve a FID score of 94.3. These values are fairly
high and by using a lower 𝜆cyc we could achieve a FID score below
30 for the experimental domain, but at the unacceptable trade-
off in physical realism described previously. This hints rather at
the FID score punishing the difference in the underlying imaged
objects which is reasonable as our atomic models are too sterile
and rigid to cover the complexity of the experimentally observed
structures and their dynamics during STEM acquisition.

By manual inspection, the G mapping generates realistic ex-
perimental images with a noise profile that closely resembles that
of the experimental data. There are however some fail cases like
for images with a pixel size smaller than ≈10 pm where the gen-
erated images do not look convincing. In certain cases, mainly

Small Methods 2024, 2401108 © 2024 The Author(s). Small Methods published by Wiley-VCH GmbH2401108 (5 of 10)
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Figure 3. A selection of Pt/CeO2 images from a) the simulated dataset, b) the synthetic experimental dataset, c) the experimental HAADF-STEM dataset,
and d) the denoised experimental dataset. Each scale bar corresponds to 1 nm.

images with low pixel intensities, the speckle noise in the vac-
uum background can also seem overly pronounced and there are
instances of black cavities generated in the middle of the support
structure.

The denoising mapping F works well despite the high FID
score, maintaining the intensity distribution of the input image
while removing noise and not introducing any apparent artifacts.
Lattice features visible in the experimental images are, by visual
inspection of a subset of images, always retained in the denoised
image. Of course, the true denoised state of an experimental im-
age is subject to discussion, and the experimental noise likely
makes certain information unrecoverable.

Although the denoising generator is specialized on a specific
noise profile, it is apparent that it is somewhat robust and gen-
eralizes decently to atomically resolved time-series of particles
recorded under different imaging conditions (Video S1, Sup-
porting Information). One of the investigated time-series was
recorded in situ with a gas-cell holder in 10% H2/90% N2 at
1000 mbar and 300 °C. Currently, atomically resolved data from
gas-cell holders suffers from significantly reduced temporal res-
olution due to the encapsulating SiN windows and the gas atmo-
sphere, making it difficult to study the dynamics and fluxional be-
havior of supported nanoparticles under reaction conditions.[45]

This in situ series, recorded at 5 frames s−1, was denoised by our

Small Methods 2024, 2401108 © 2024 The Author(s). Small Methods published by Wiley-VCH GmbH2401108 (6 of 10)
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Figure 4. a) The nanoparticle size predictions subtracted by ground truth size for the 1000 Pt particles in the validation images, evaluated both in the
simulated domain and as synthetic experimental data. b) The typical size estimation error in percentage reveals a Gaussian distribution of the errors
where the standard error in the simulated domain is 6.90% and 11.34% in the experimental domain.

generator after fine-tuning for 1 iteration on a small dataset of Pt
particles recorded in situ. Although not perfect, this highlights
a potential for the CycleGAN to aid in improving the temporal
resolution of in situ gas-cell data.

2.3. Particle Size Estimation

With the learned mappings G and F, we now have two options for
training a size-estimator network to generalize to the experimen-
tal data. One option is to train the size-estimator directly on the
multislice simulations and use the denoised experimental data
as test data. Alternatively, we can train the network on synthetic
experimental data and use the raw experimental data as test data.
To compare the two approaches, we trained two size-estimators:
one on synthetic experimental data and the other directly on the
simulated images. We then evaluated their performance in pre-
dicting the size of nanoparticles in terms of number of atoms.

We use a U-Net with 4 down-sampling steps, dropout, and
batch normalization for the size-estimator network. Global aver-
age pooling followed by a linear layer was added to the end of the
decoder to output a single value. The U-Net architecture was cho-
sen for its effectiveness in handling tasks that require multilevel
feature extraction. Estimating a particle size from a STEM image
requires multiple levels of understanding, the network needs to
identify the particle within the image and differentiate it from the
support and vacuum regions, detect subtle lattice features to infer
pixel size (magnification), and evaluate shape and pixel intensi-
ties to estimate the actual size. The U-Net’s ability to combine
detailed high-resolution features with abstract, high-level infor-
mation via skip connections makes it suitable for this task.

The 5000 simulated images were split into training and val-
idation sets (4:1), and synthetic experimental data was gener-
ated for the experimental domain size-estimator by sending them
through the G generator. Both size-estimators were trained for
250 epochs using an L1 loss function, a batch size of 32, and the
Adam optimizer with a cosine annealing learning rate scheduler
with an initial learning rate of 0.0008. We also explored using

MAPE loss, MSLE loss, and MSE loss but the L1 loss was chosen
as it yielded a slightly higher fraction of predictions within a sat-
isfactory error margin (15%) of the ground truth size. The predic-
tions of the 1000 particles in the validation set and their errors are
presented in Figure 4. Of the predictions outputted by the size-
estimator trained on the simulated set, 72.6% are found within
10% of the ground truth size. For the experimental domain size
estimator, the predictions have a larger mean error and 70.1% of
predictions are within 15% of the target. Fitting a normal distri-
bution to the histogram of the errors reveals a standard error of
≈6.9% for the simulated domain and 11.3% for the experimental
domain.

The performance on simulated data is within our expectations
considering the relatively complex task the size-estimator is faced
with and the still relatively small dataset of 5000 images. While
5000 simulated STEM images could be considered large in the
TEM community, to put the dataset size into perspective, the
KITTI dataset contains over 90 000 images for the task of depth
evaluation in autonomous driving scenarios.[46] It is possible that
more modern architectures like the vision transformer would
make for a better size-estimator architecture when more data is
available.[47]

The trained size-estimators were applied to 205 experimentally
observed nanoparticles. To verify the generalization of the model,
all predictions were manually inspected and compared to the con-
ventional hemisphere estimate technique where the particle di-
ameter is manually measured and the particle is assumed to have
a hemispherical shape and a Pt atom density of an ideal Pt fcc lat-
tice. A prediction was deemed plausible based on visual inspec-
tion, keeping in mind that the hemisphere estimate is typically
an underestimate for larger particles. This process is of course
subject to human bias, but because there is no ground truth
available for the current experimental data, human evaluation is
unavoidable.

For each nanoparticle, predictions were averaged across all
frames within the recorded time-series. We thus assume the par-
ticle maintains its size throughout the series which was deemed
reasonable by visual inspection. When multiple time-series were
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Figure 5. a) Particle size distribution of 205 Pt nanoparticles in the Pt/CeO2 catalyst. b) A selection of experimental particles with size estimates by our
model and by manual diameter assuming a hemispherical particle shape and an ideal Pt fcc crystal. The image showing a small cluster predicted to be
4–5 atoms is displayed with higher contrast in Figure S9 (Supporting Information). The model handles particles of widely varying atom counts in the
range 1–1000. Each scale bar corresponds to 1 nm. A collage of all the 205 predictions can be found in the Supporting Information.

available for a single particle, only the longest series with a pixel
size closest to 25 pm was used for the final estimation. The error
of a prediction in number of atoms was calculated by:

𝜖 =
√

(𝜇t𝜎model )2 + (𝜎t)
2 (3)

where 𝜎t and 𝜇t are the standard deviation and mean of all pre-
dictions within a time-series in the number of atoms, and 𝜎model
is the standard error of the size-estimator in percent. We used
𝜎model = 6.90% for the simulated domain and 𝜎model = 11.34%
for the experimental domain.

We found that the size-estimator trained on synthetic experi-
mental data and applied directly to the raw experimental data out-
putted a plausible estimate for 70.7% of the particles (see the Sup-
porting Information for a collage of all 205 predictions). This was
slightly higher than for the size-estimator trained on simulated
data and applied to denoised experimental data where 69.8% of
the predictions were deemed plausible. This small difference in-
dicates that the choice of working domain is not that signifi-
cant. Some plausible estimates by the experimental domain size-
estimator are displayed in Figure 5 and some fail-cases are pre-
sented in Figure S5 (Supporting Information). There is no clear
trend related to measured diameter or pixel size explaining for
what type of images the network fails (Figure S6, Supporting In-
formation). We believe the model’s performance is mainly lim-
ited by data shortages and the complexity of including a range
of pixel sizes in the datasets. Other reasons may include poor
experimental image quality (incl. instrument instabilities), large
changes in the image and particle structure during a time-series,
e.g. introduction of channeling contrast when a particle rotates in

and out of a zone axis, and unrepresentative particle structures
in the simulated set.

Looking at the particle size distribution, we see that our model
yields a particle size distribution similar to that of the manual
hemisphere estimation technique, but with a slightly larger mean
particle size (Figure 5) and a smaller standard deviation (Figure
S8, Supporting Information) after pruning the unrealistic predic-
tions. The size-estimator trained directly on simulated data yields
a particle size distribution with a slightly higher mean and stan-
dard deviation than its counterpart trained on synthetic experi-
mental data, both before and after pruning the unrealistic pre-
dictions (Figures S7 and S8, Supporting Information).

3. Practical Considerations

The models presented herein are trained specifically for Pt/CeO2
and the specific noise profile of our Titan Themis microscope
with a fixed set of imaging parameters. To apply the methods to
other metals or supports, both a new simulated dataset and an ex-
perimental dataset would have to be generated, and the models
retrained. The structure generator could still be reused to gen-
erate new atomic structures, as it is agnostic to the element and
crystal structures used. No matter the system, our trained Cycle-
GAN weights could likely be used as a starting point for fine-
tuning the model to other systems with new datasets.

To study Pt/CeO2 with another microscope but with similar
imaging parameters and particle size range, as we have, only a
new experimental dataset would have to be recorded as our sim-
ulated dataset could be reused. Although we are only concerned
with HAADF-STEM images in this work, bright field (0–10 mrad)
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and annular dark field (10–24 mrad) STEM images are also avail-
able for each of the 5000 simulated structures.

Given the image size of 128 × 128 pixels, the pixel size will de-
termine how large a particle can fit within the frame, effectively
limiting the applicable size range of the technique, e.g. up to
≈4 nm for a pixel size of 25 pm. The networks could be retrained
for larger image sizes but that would require larger supercells for
the image simulation, which is computationally expensive.

The technique is extendable to operando measurements with
gas-cell holders, with the main difference being the new noise
profile stemming from the encapsulating SiN windows and the
gas environment. However, the acquisition of experimental data
in a gas cell is significantly more demanding than correspond-
ing measurements in a vacuum, suffering from a reduced spatial
and temporal resolution, limited holder tilt range, and gas flow-
related instabilities, which will make recording a large enough
dataset more time-consuming. Since the properties of supported
nanoparticles may vary fluxionally during operation depending
on the conditions,[48,49] integrating these methods into in situ mi-
croscopy pipelines will be crucial.

Furthermore, the workflow can be adapted to other tasks than
size estimation. As long as labels are available for the simulated
atomic models, virtually any descriptor could be predicted. Our
simulated dataset however, does not contain any labels for de-
scriptors such as geometry, crystallinity, or particle-support inter-
face, nor does our structure generator allow such control of the
generated structures in its current state.

The limiting factor of this methodology is currently the slow
process of generating simulated and experimental data. To ad-
dress this, a framework for large-scale STEM image simulations
on supercomputers alongside automated experimental image ac-
quisition schemes should be implemented. With more data avail-
able, an improved descriptor-estimator architecture could be de-
veloped to explore the information limit of STEM images, poten-
tially utilizing modern vision transformers. This would enhance
our ability to characterize catalytic materials with unprecedented
precision, driving advances in heterogeneous catalyst design.

4. Conclusion

We have presented a method that utilizes the CycleGAN model to
effectively map between high-resolution HAADF-STEM images
and physical multislice image simulations, enabling inference of
atomic structural information from experimentally observed 3D
configurations. We have shown this by training a size estimator
that could output reasonable size predictions for 70.7% of 205 ob-
served nanoparticles in a Pt/CeO2 catalyst. With more data and by
focusing on a single STEM magnification, significant further im-
provements in accuracy are foreseeable. Additionally, we found
no significant difference in the generalization ability of the size-
estimator network whether trained on clean simulated data and
applied to denoised experimental data, or trained on synthetic
CycleGAN-generated experimental data and applied directly to
raw experimental data.

What sets this technique apart from conventional atom count-
ing is that it is fully automatic and independent from zone axis
constraints during imaging, making it more broadly applicable,
especially for statistical analyses. Additionally, compared to man-
ual size estimates and shape assumptions, this technique has the

potential to extract as much information as is physically possible
from STEM images when sufficient data is available.

The networks can be readily retrained for other supported
nanoparticle-based catalysts beyond Pt/CeO2 and for other imag-
ing conditions including operando measurements, or to predict
other atomic-scale descriptors beyond nuclearity by generating
new data. Tools to extract atomic level descriptors will become
increasingly valuable as researchers focus more on the atomic
structure of materials, particularly in the precision design of
emerging low-nuclearity heterogeneous catalysts or more com-
plex ternary systems. The insights gained from our model train-
ing will significantly accelerate the application of CycleGANs for
these purposes.

5. Experimental Section
Machine Learning and Data Analysis: All data analysis as well as devel-

opment and training of the neural networks was done on a workstation
equipped with an Intel Core i9-13900K Processor, an RTX4090 GPU, and
64 GB of RAM, using python and pyTorch. One training iteration for the
CycleGAN took ≈1 min.

Scanning Transmission Electron Microscopy: Experimental STEM data
was recorded on a probe-corrected Titan Themis S/TEM microscope op-
erated at 300 kV. Samples were prepared by dispersing the Pt/CeO2 pow-
der in methanol and sonicating the solution for a few seconds followed
by drop casting onto a standard Cu TEM grid covered by a lacey carbon
film. All data was recorded in 512 × 512 time-series with a beam current of
35–40 pA, a beam dwell time of 1 μs, a convergence angle of 18.5 mrad, a
HAADF collection angle from 72 to 200 mrad, a Gain of 43.16 dB, an Off-
set of −1.8, and a pixel size in the range 18–51 pm. For all recorded time-
series, a 128 × 128 window around the particle of interest was cropped
out, forming the training data. In some cases the time-series were rigidly
aligned before cropping out the particle, in other cases, the drift was left
in to increase the variability of the training data. In situ, gas-cell data was
recorded using the DENSsolutions Climate GVB system.

Catalyst Synthesis: Pt/CeO2 catalyst was prepared by adapting the pro-
cedure described elsewhere.[50] Namely, 21 mg of H2PtCl6⋅6H2O (abcr,
99% purity metal basis) and 32 mg of NaOH (VWR chemicals, reagent
grade) were each dissolved in 2 cm3 of ethylene glycol (Acros Organ-
ics, 99.9%) to yield 0.04 and 0.4 m solutions, respectively. The solutions
were combined in a glass vial and heated for 3 min at 413 K in a mi-
crowave reactor (CEM discovery, CEM Corporation, USA) applying a power
of 100 W. Subsequently, 30 cm3 of 1 m HCl (VWR chemicals, reagent
grade) was added to the particle suspension, and the mixture was cen-
trifuged at 6000 rpm (4400 rcf) for 5 min. The liquid was decanted and
the washing/centrifugation procedure was repeated 3 times. The particles
were then suspended in acetone (Sigma–Aldrich, 99.5%), 800 mg of CeO2
powder (Sigma–Aldrich, nanopowder < 25 nm) was added and the mix-
ture was sonicated in an ultrasonic bath for 1 h until acetone completely
evaporated. The solid was dried overnight under a vacuum at 343 K.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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