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ABSTRACT

The Internet is a decentralized and constantly growing control system
that has become an integral part of the lives of over 5.3 billion people.
With this scale comes a vast array of applications. Performant and robust
control of applications like video streaming requires modeling network
traffic, such as estimating whether the network is congested or how long
it will take to transmit data. The complexity of this modeling problem
has steadily increased over time: the model space is ever-growing with
each new network algorithm and application, while observable signals have
remained largely unchanged. It has become extremely difficult, and perhaps
intractable, to model network traffic from first principles, and research has
increasingly turned to machine learning (ML) to learn models from data.

This dissertation explores the opportunities and challenges of using ML
for network traffic modeling and additionally investigates how advances in
programmable networking may provide better signals.

First, we study learning over time. We present Memento, a sample selection
system for updating ML models with a focus on tail performance while
avoiding unnecessary retraining. The key insight behind Memento is that a
smart data selection is crucial to maintain representative training data and
to decide when retraining models with the selected data is beneficial.

Second, we investigate learning over space, the generalization of models
to other network environments and tasks, and present a Network Traffic
Transformer (NTT). NTT is a pre-trained Transformer-based model that can
be efficiently fine-tuned to different networks and prediction tasks.

Third, we study the underlying problem of learning latent network state
common to many prediction tasks. Through in-depth analysis and compari-
son of several ML-based models for video streaming, we gain important
insights into modeling strategies and model generalizability.

Finally, we explore the potential of programmable networks to enhance ob-
servable signals by programmatically processing all packets in the network,
albeit with limited computational resources. We present FitNets, which
makes the most of constrained programmability with hardware-software
co-design: FitNets learns accurate distributions of network traffic features
in the control plane, enabled by efficient model scoring in the data plane.
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ZUSAMMENFASSUNG

Das Internet ist ein dezentralisiertes und standig wachsendes System, das
zu einem integralen Bestandteil im Leben von tiber 5,3 Milliarden Menschen
geworden ist. Mit diesem Umfang geht eine grofle Vielfalt an Anwendun-
gen einher. Fiir eine effiziente und robuste Regelung von Anwendungen
wie Video-Streaming muss der Netzwerkverkehr modelliert werden, etwa
ob das Netzwerk {iberlastet ist oder wie schnell Daten tibertragen werden
konnen. Die Modellierungskomplexitdt nimmt stetig zu: Der Modellraum
wachst mit jedem neuen Netzwerkalgorithmus und jeder neuen Anwen-
dung, wahrend die beobachtbaren Signale weitgehend unverdndert bleiben.
Es ist duSerst schwierig, vielleicht sogar unmoglich, den Netzwerkverkehr
von Grund auf zu modellieren, und die Forschung wendet sich zunehmend
dem maschinellen Lernen (ML) zu, um Modelle aus Daten zu lernen.

Diese Dissertation untersucht die Chancen und Herausforderungen der
Modellierung von Netzwerkverkehr mit Hilfe von ML und zusitzlich, wie
programmierbare Netzwerke bessere Signale liefern konnen.

Zundchst untersuchen wir das Lernen iiber die Zeit. Wir prasentieren
Memento, ein System zur Aktualisierung von ML-Modellen mit Fokus auf
Tail-Performance und Vermeidung unnétigen Trainings. Memento zeigt,
dass eine intelligente Datenselektion entscheidend ist, um reprasentative
Daten zu erhalten und zu entscheiden, wann erneutes Training hilfreich ist.

Zweitens untersuchen wir das Lernen iiber den Raum, die Generalisierung
von ML-basierten Modellen, und prasentieren einen Network Traffic Trans-
former (NTT). NTT ist ein vortrainiertes Transformer-Modell, das effizient
auf verschiedene Netzwerke und Aufgaben feinabgestimmt werden kann.

Drittens untersuchen wir das fundamentale Problem des Lernens latenter
Netzwerkzustiinde, das vielen Vorhersageaufgaben zugrunde liegt. Durch den
Vergleich mehrerer ML-basierter Modelle fiir Video-Streaming préasentieren
wir wichtige Erkenntnisse fiir Modellierung und Generalisierbarkeit.

Schliefslich erforschen wir das Potenzial programmierbarer Netzwerke, bes-
sere Signale zu liefern. Dies wird durch die programmatische Verarbeitung
aller Pakete im Netzwerk ermoglicht, wenngleich die Rechenressourcen be-
grenzt sind. Wir présentieren FitNets, ein System, das dieses Potential nutzt,
um akkurate Verteilungen von Netzwerkverkehrsmerkmalen zu lernen.
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INTRODUCTION

The Internet is a decentralized and constantly growing control system. Since
its beginnings as ARPANET connecting just four computers in 1969 [8], it
has become an integral part of the lives of over 5.3 billion people [9]. With
this scale comes a vast array of applications. Performant and robust control
of these applications requires modeling network traffic, such as estimating
whether the network is congested or how long it will take to transmit data.
One application has grown particularly dominant over time: video streaming,
which accounted for two-thirds of all Internet traffic in 2024 [10].
Applications like video streaming demand high performance. Controllers
require accurate models to meet such demands, but the complexity of
modeling network traffic has steadily increased over time: the modeling
space is ever-growing, while observable signals remain largely unchanged.
Good models must consider other applications. Application traffic is gov-
erned by transport protocols like TCP that decide when to send how many
packets of data, based on observations from past traffic, like throughput,
loss, and latency. Early transport protocols followed a simple control loop
to ensure reliable delivery. Oblivious of other applications, they would
retransmit lost packets without further adjustments. This resulted in one of
the Internet’s first major challenges in the 1980s when an increasing number
of applications began to send more traffic than networks could deliver. Net-
work devices had to drop packets, causing retransmissions and thus even
more traffic, resulting in a series of congestion collapses [11]. Nowadays,
transport protocols model the expected behavior of other applications to
adjust their sending rate to a fair share of the network without overloading
it. Since the time of congestion collapses, a plethora of congestion control
algorithms have emerged and it has become progressively difficult to model
every possible application behavior in order to select an optimal rate [12].
Good models must also consider the network itself. Early networks aimed
to minimally interfere with applications. To prevent packet loss during
burst of traffic, networks features increasingly large buffers to keep up with
growing bandwidths. Unfortunately, the road to hell is paved with good
intentions: to maximize average throughput, congestion control algorithms
tend to fill all buffers to capacity. The resulting ‘Bufferbloat’, always-full
large buffers [13], led to drastic increases in latency, e.g., delays of seconds
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INTRODUCTION

or more for packets that could have been delivered in milliseconds. In
response, networks had to diversify. Some networks could revert to smaller
buffers, while others began to employ active queue management algorithms
that intervene before the buffer fills, e.g., by dropping packets early [14]. If
not modeled correctly, such different network behaviors cause applications
to misinterpret observed signals, resulting in suboptimal performance [15].

Finally, good models must consider the interplay of these factors and
more: applications like video streaming further complicate modeling by
using additional control loops on top of transport protocols. The space of
possible interactions has grown exponentially, yet we largely observe the
same signals as in the 1980s. It has become extremely difficult, and perhaps
intractable, to model network traffic from first principles.

Opportunities The development of numerous new application- and net-
work algorithms has made modeling network traffic increasingly difficult,
but the advance of technology also provides an opportunity: over the last
decades, machine learning (ML) has become an indispensable tool to learn so-
phisticated models from data; models that can predict patterns too complex
to specify manually. Today, both client and server hardware has grown pow-
erful enough to enable applications like ML-based video streaming. At the
same time, advances in network hardware led to programmable networking,
empowering networks to share a wider range of information, expanding
the space of observable signals and facilitating more accurate modeling.
This dissertation explores these opportunities, investigating how machine
learning and programmable networks can aid network traffic modeling.

Adaptive network traffic modeling How can ML help to model network
traffic? A fundamental challenge arises from the stagnating signal- and
expanding modeling space: there are many latent (hidden) variables. The
interplay of algorithms impacts throughput, loss, and latency, but the
true causes are almost never directly observable. For example, a video
streaming application may observe a rise in latency, which may be caused
by other applications, large buffers, or queue management algorithms.
While difficult to interpret, networks offer an abundance of data, enabling
ML-based models to learn these hidden interactions. However, ML models
face their own challenges that thus far have prevented widespread adoption.

A key factor in ML performance is how well the training data represents
the network in which the model is deployed. Even the brief examples above
illustrate how the network is constantly evolving, and models that are
effective today may not be effective tomorrow. There is a need to keep
models up-to-date, i.e., adapt over time, also known as continual learning.
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We address this first challenge with Memento, a sample selection system for
updating the training data. We show that smart data selection is crucial to
both maintaining representative training data and deciding when to retrain.
Furthermore, increasing use cases for ML-based network traffic models
present the opportunity to transfer knowledge between them. Yet presently,
ML-based models are mostly developed in isolation, resulting in models
that are difficult to reuse for different networks or tasks. In other words,
there is an opportunity to adapt over space. We demonstrate that pre-trained
Transformer models can be effectively fine-tuned for various networks
and prediction tasks. We introduce a proof-of-concept Network Traffic
Transformer (NTT) that illustrates the potential of our approach.
Subsequently, we examine the crux of the matter: learning latent network
state. Regardless of the final prediction task, the underlying challenge is to
predict the latent network state from a history of observed traffic. Despite its
importance, this problem has not yet been studied extensively. For example:
which observations reveal the most about latent variables? At which point
do past observations cease to have an impact on the present? Through an
in-depth analysis and comparison of several ML-based models for video
streaming, we answer key questions about learning latent network state.
Finally, we explore programmable networks to bridge the gap of limited
observability. Programmable network devices can flexibly process all pack-
ets in the network, yet are constrained in computational resources, limiting
the operations per packet. We present FitNets, which makes the most of
constrained programmability with hardware-software co-design: FitNets
learns accurate distributions of network traffic features in the control plane,
enabled by feedback through efficient model scoring in the data plane.

Dissertation outline Chapter 2 discusses learning over time. We outline
challenges of continual learning in network traffic modeling and present
Memento, a sample selection system to effectively keep models up-to-date.
Chapter 3 discusses learning over space. We present a vision for shared pre-
trained models that can be fine-tuned to different networks and prediction
tasks at comparatively low cost, and present NTT as a proof-of-concept.
Chapter 4 zooms in on the fundamental task of predicting the latent network
state from observed traffic. We contrast different models to formulate and
answer key questions about latent network state estimation.

Chapter 5 explores how network programmability can support learning
distributions of network traffic features. We propose a hardware-software
codesign for improved tail performance and fast adaptation.

Finally, Chapter 6 summarizes this dissertation and outlines future research.



LEARNING OVER TIME:
A VIDEO STREAMING CASE STUDY ON
SAMPLE SELECTION FOR CONTINUAL LEARNING

In this chapter, we discuss adaptive traffic modeling from the perspective of
continual learning, that is, adapting models over time. Network algorithms
and thus patterns change over time, and thus the model training data
may not be representative anymore, potentially leading to performance
degradation. Yet, to date, there is no established methodology to answer
the key questions: With which samples to retrain? When should we retrain?

We address these questions with the sample selection system Memento,
which maintains a training set with the “most useful” samples to maximize
sample space coverage. Memento particularly benefits rare patterns—the
notoriously long “tail” in networking—and allows assessing rationally when
retraining may help, i.e., when the coverage changes.

We deployed Memento on Puffer, the live-TV streaming project, and
achieved a 14 % reduction of stall time, a 3.5 higher reduction compared
to retraining with randomly selected samples. While we primarily evaluate
Memento in the context of video streaming, its algorithm does not depend
on a specific model architecture, and it likely may yield benefits in other
ML-based networking applications as well.

This chapter is organized as follows: Section 2.1 motivates why continual
learning is particularly important for tail performance and why a smarter
sample selection is more helpful than using more data or larger models.
Section 2.2 proposes a sample-space-aware continual learning algorithm
based on estimating sample space density to identify rare samples.
Section 2.3 presents Memento, a prototype implementation fo this algorithm.
Section 2.4 validates the effectiveness of our algorithm by applying Memento
on an extensive video streaming case study. We deployed Memento on Puffer
and collected 10 stream-years of real-world data over 9 months to confirm
that we improve tail performance and avoid unnecessary retraining.
Section 2.5 presents microbenchmarks using data center workloads to show
that our algorithm is not limited to models for video streaming.

Section 2.6 closes this chapter by putting Memento into context with related
work and discussing the limitations and future directions of our work.
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2.1 WHY SAMPLE SELECTION MATTERS

Adaptive bitrate (ABR) algorithms increasingly leverage ML to optimize
their performance. Current ML-based ABR algorithms already achieve
good average performance; i.e., high image quality while largely avoiding
stalls [16, 17]. But even if rare, stalls matter: they impact user experience far
more than image quality [18, 19]. Moreover, as networks evolve, maintaining
performance over time is a concern that hinders the deployment of ML-
based solutions. This challenge is known as continual learning [20-23].

To meet this challenge, we must improve tail performance over time
while maintaining the (already good) average. For ABR algorithms, this
goal translates to reducing stalls while maintaining quality.

The most common approach to improve ML performance is using more:
more data, more training, more complex models. However, this does not
guarantee (tail) improvements. More training does not help if done using
the wrong samples. Similarly, naively using more data does not improve
tail performance if it does not address the imbalance between average and
tail samples. Finally, more models can help to address this if they cover
different parts of the data distribution. Otherwise, the individual models
fail to complement each other and provide no benefit. Besides its uncertain
effectiveness, using more increases training and inference time. For large
networking applications, this can be significant. If YouTube were to use
ML-based ABR, it would require inference for ~30 billion video chunks per
day [24]: slower inference means higher costs in delay, energy, and money.

Instead of using more, we propose to improve performance with a smarter
selection of samples, motivated by the Puffer study.

Case study Puffer is perhaps the best study of continual learning in
networking. It monitors ABR performance of users streaming live TV with
randomly assigned algorithms. Puffer’s authors proposed their own ML-
based ABR, retrained daily using random samples from the past two weeks.

To the author’s surprise [16], retraining every day brought essentially
no benefits: Over almost 900 days, it improved image quality by only
0.17 % over a static—never retrained—version (Figure 2.1, top). On the tail,
daily retraining reduced the fraction of stream time spent stalled by 4.17 %
on average, with large fluctuations over time (Figure 2.1, bottom). This
illustrates the more training approach falling short.

But why? Why is the daily-retrained model not consistently outperform-
ing the static one? Why does it stall only half the time in some months but
twice as much in others (Figure 2.1, bottom)?
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Figure 2.1: On Puffer [25], retraining daily with random samples did not out-
perform a never-retrained model consistently. On average, image quality and
stream-time spent stalled differ by less than 0.2 % and 4.2 %.

Mean and 90% CI over a one-month sliding window. Data source: [25]

I

%)

— Random samples
More samples (2x)
----- More models (QBC)

99th Percentile Loss

3 6 9 12 15 18 21 24
Weeks of Puffer data replayed

Figure 2.2: “Using more” does not guarantee better tail performance. More random
samples have no effect. More models (QBC) initially help but degrade over time.
Mean and 90% CI over a two-week sliding window (see Section 2.4 for details).

We argue retraining did not help because training samples were selected
randomly. Most streaming sessions perform similarly, leading to an imbal-
anced training set with many similar samples and few tail ones. Doubling
the number of training samples—more data—does not help (Figure 2.2):
we must address this imbalance to improve a model’s tail performance.

Query-By-Committee (QBC) [26] is a classic approach to address such
imbalance by selecting samples where a committee of models disagrees
and prediction entropy is high. When applying QBC to the Puffer data,
we observe initial improvements that vanish over time. The models fail to
identify rare samples reliably and eventually overfit on noise (Figure 2.2).
Using more models is not enough to improve tail performance.
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Problem Figure 2.1 and Figure 2.2 suggest that retraining can improve tail

performance, but we observe common approaches like random sampling

or QBC to be ineffective or unreliable over time. If the selection got lucky,

retraining improved the tail; other times, it was useless or even detrimental.

We argue that we can do better with a smarter selection strategy that reliably

picks up important tail samples. In summary, this leads to two questions:
1. From a stream of new samples, with which samples should we retrain to

improve performance over time?

2. From an updated set of training samples in memory, when should we
retrain the model? That is, can we avoid retraining “for nothing”?
Fundamentally, an algorithm addressing these questions requires: (i) a
signal to select important samples, able to identify the tail; (ii) a signal to
quantify changes to decide when to retrain; (iii) a mechanism to forget noise
and outdated samples to avoid degradation over time (QBC in Figure 2.2).
Finally, resource usage should be small compared to using more.

Solution We propose a sample-space-aware continual learning algorithm
based on coverage maximization, i.e., prioritizing samples from low-density ar-
eas of the sample space, and present Memento, a prototype implementation
of this idea. Figure 2.3 shows how Memento integrates with an ML-based
ABR, where a sample encompasses telemetry data for a video chunk.
Memento estimates the sample-space density from both new and in-
memory samples, prioritizing rare low-density samples to address dataset
imbalance and improve tail performance. Memento uses the difference in
coverage to assess whether there is something new to learn. If so, it retrains.

ML-based ABR —————*  Video Server

online Store telemetry data

Store training data

Used for
Memory  |5st training

S o
Memory -~
@
rare 4
Current h
Select samples

" A New data
increasing coverage

Memento
Data storage

Figure 2.3: Memento selects samples to maximize sample space coverage, improv-
ing the tail performance while rationalizing when to retrain.
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2.2 A CASE FOR DENSITY

We propose a continual learning algorithm based on estimating sample
space density. Estimating density allows the algorithm to prioritize rare
low-density samples, ultimately maximizing the sample space coverage.
This section provides intuition as to why we propose this selection metric
instead of per-sample metrics like sample loss or QBC’s entropy.

Density for sample selection “The tail” is not a single pattern that rare
traffic follows, but rather many patterns with only a few samples each. A
random sample selection mirrors imbalances in the underlying distribution,
e.g., over-represented common traffic patterns. This leads to diminishing
returns as we sample more and more from common patterns and little from
the tail. As illustrated by Figure 2.1, this yields good average performance
but is unreliable at the tail. We need to improve the training data.

To correct dataset imbalance, we need a sample-space-aware selection.
Traditional approaches use the model performance (e.g., entropy, loss,
reward) to select samples [21, 22]. We found that this does not work well
over the long timespan of the Puffer because it fails to avoid catastrophic
forgetting. By considering each sample independently, they fail to preserve
samples with good performance representing ‘normal’ traffic.

Instead, we propose to select samples based on the density of their
neighborhood, which considers the whole sample space: a sample-space-
aware selection that aims to maximize coverage of the sample space. The key
insight to maximize coverage is to retain samples if only few similar samples
exist. We achieve this by removing samples from high-density areas with
the most similar samples. This decreases the density and we naturally stop
removing further samples, leaving us with a diverse set of samples.

Figure 2.4 illustrates the benefits of samples-space-aware density versus
sample-aware loss as a selection metric. In this experiment, we use the static
model from Puffer’s authors and 5M samples collected by Puffer over a
few days. We create batches of 256 samples and compute their loss and
density (as detailed in Section 2.3). The top row of Figure 2.4 shows the
mean loss and density per batch. Using each metric, we select 1 M samples
and retrain the model. The bottom row compares the effect of each metric
over the 5 M samples by showing the mean loss improvement per batch.

The left column shows that loss-based selection focuses too much on the
tail, i.e., high-loss batches. It yields good improvements there but fails to
preserve common samples, degrading performance on most other batches.
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Loss Density
6 0.15
Metric
Values
0 0
Selection [ |
+6 +6
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Improvement

L

6 . 6

Figure 2.4: Loss improvement obtained by retaining with a selection of 1 M samples
over a dataset of 5M. The same batches of 256 samples are used for the loss- (left)
and density-based selection (right).

To improve tail performance, we need many low-density batches because they are
all different. To maintain average performance, we need only a few high-density

batches, as they are similar. Selecting based on density (right) achieves both.

Conversely, loss-based selection (left) is too specific. It suffers from diminishing
returns as it selects only high-loss batches and catastrophically forgets the average.

Conversely, the right column illustrates that density-based selection is

more holistic, focusing on the tail while covering the entire sample space.

Performance is improved at the tail, i.e., on low-density batches, without
much degradation on the high-density ones. One may object that the loss
selection could be tuned to maintain more “low-loss samples.” We tried
this and our evaluation shows that it does not perform as well as density
and can easily get much worse (Section 2.4.4 and Figure 2.8).

These results also shed some light on why we observed QBC degrade
over time (Section 2.1, Figure 2.2). Overall, QBC has some inertia, as models
are gradually replaced (more details in Section 2.4.4), but we ultimately
observe a similar effect as loss-based selection. Noisy samples are, by
definition, random and have high entropy. Consequently, they are preferred
by QBC. Over time, QBC accumulates noise and forgets the average and
more common tail samples. As a result, it is unable to maintain the initial
performance improvements on the tail.
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2.2 A CASE FOR DENSITY

Density for shift detection Continual learning aims to adapt when the
data distribution changes. Data distribution changes can be broadly cate-
gorized into two categories: (i) covariate shift [27], i.e., previously unseen
traffic patterns emerge or the prevalence of patterns changes; and (ii) con-
cept drift [28], i.e., the underlying network dynamics change. Density-based
sample selection is an effective tool to capture both kinds of changes.

When new traffic patterns appear, e.g., users starting to stream over
satellite networks, they populate a previously-empty area of the sample
space, resulting in a low density and, thus, a high probability of being
selected for retraining. Similarly, patterns becoming less prevalent results
in low density, and a high probability of remaining selected.

When the underlying network dynamics change, e.g., a new congestion
control gets deployed, we should forget old samples that are no longer
relevant. However, detecting those changes is difficult, and being wrong
risks forgetting useful information such as hard-to-gather tail samples.

Using density for sample selection correlates the probability of forgetting sam-
ples with how important it is to remember them. Samples from dense regions are
discarded readily, as we will likely get more of those samples. Conversely,
low-density batches are less likely discarded as we only encounter these
samples infrequently. This makes the selection more conservative at the tail,
allowing to remember tail patterns; the model will perform well on similar
traffic if it recurs. If it does not, i.e., it was essentially noise, then it will
eventually be forgotten. We provide some empirical evidence of recurring
patterns in the tail of the Puffer traffic in Appendix A.1.

10
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Algorithm 2.1: Memento Coverage Maximization

1
2
3
4

10
11
12
13
14

15
16

17

Parameters: Capacity C, threshold 7,
batch size b, bandwidth /, temperature T
Input: In-memory Sy and incoming Syey samples
Output: Selected samples S*, decision retrain
begin
S* ¢+ Snew U Smem
B« {}; // or last train batches
retrain < False

// Section 2.3.2: Distance measurement

B < BatchSamples(S*,b)

B« BBDR(B) ; 1/ Gy) = (,)
(Dpred, Do) « DistributionDistances(B)

// Section 2.3.3: Density estimation
p* < KDE(D*,h) Vk € {pred,out}
p\ — min(ﬁpred’ﬁout)
// Section 2.3.4: Sample selection
while |S*| > C do
priscard « softmax(p / T)
i + WeightedRandomChoice(p?iscard )
S*, B < DiscardBatch(S*, B, i)
0, D < UpdateDensities(p, D, i)

// Section 2.3.5: Retraining decision
if RCI(B,B’) > 7 then
retrain <— True
L B «+ B; // remember train batches

11
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2.3 COVERAGE MAXIMIZATION WITH MEMENTO

The core of Memento is Algorithm 2.1 which aims to maximizes sample-
space coverage. Memento achieves this by estimating the sample space
density: the higher the density of sample (i.e., the more other samples
are close) the better the memory covers this part of space. Memento ap-
proximates optimal coverage by iteratively discarding samples, assigning a
higher discard probability to high-density regions. It proceeds in four steps:

1. It computes pairwise distances between sample distributions, using
batching and black-box dimensionality reduction to scale (Section 2.3.2);

2. It estimates density using kernel density estimation (Section 2.3.3).

3. It discards surplus batches probabilistically, mapping density to discard
probability to balance tail-focus and noise rejection (Section 2.3.4).

4. It approximates how much the memory coverage has changed to
decide whether retraining might be beneficial (Section 2.3.5).

Memento’s sample selection relies on three internal parameters: the batch
size b, the KDE bandwidth /1, and the probability mapping temperature T.
We provide default choices for these parameters in Section 2.4.2 and analyze
the impact of each parameter on Memento’s performance in Section 2.4.4.

2.3.1 Definitions

Process We consider a process y = f(x) that maps inputs x € X = R" to
outputs y € ), where Y = R in regression or {1,2,...,k} in classification
problems. In the context of ABR, f models the network dynamics mapping
traffic features x (e.g., video chunk size, TCP statistics, transmission times
of past packets) to a prediction for the next chunk y (e.g., the current
bandwidth or expected chunk transmission time).

Predictions We consider a model f that is trained to predict § = f(x)
from a set of samples S = {(x1,¥1),..., (xn,yN)}, L.e., a supervised setting.

Replay memory To account for concept drift or covariate shift, we retrain
f with an updated set of samples S*, stored in a replay memory with capacity
C. A sample selection strategy decides how to update this memory.

Sample selection strategy Given a set Sy, of new samples available and
a set Syem of samples currently stored in memory, with |Syew| + |Spem| > C,
a selection strategy must select S* C (Spew U Spem ), such that |S*| < C.

12
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4.5 — Random Euclidean == JSD

99th Percentile Loss

3 6 9 12 15 18 21 24
Weeks of Puffer data replayed

Figure 2.5: Selecting samples based on the Euclidean distance between batch
averages does not improve tail performance. Computing the Jensen-Shanning
distance between batch distributions is a better choice.

Mean and 90% CI over a two-week sliding window (see Section 2.4 for details).

2.3.2 Distance measurement

Batching Before discussing the distance computation, we need to consider
scalability. Algorithm 2.1 has two main bottlenecks: (i) computing pairwise
distances (O(n?)); and (ii) updating density estimates after discarding a
sample (O(n)). Puffer [25] currently collects over 1 M samples daily, and
processing each sample individually would consume a prohibitive amount
of resources for Memento to be practical. Memento scales by aggregating
samples in batches, computing distances between aggregates, as well as
discarding samples and updating densities for an entire batch at once.
Batching improves scalability but reduces the flexibility of sample selec-
tion. For example, if a common and a rare sample are aggregated in the
same batch, they can only be kept or discarded together. To avoid subopti-
mal aggregation, samples are first grouped by outputs, then by predictions,
and finally split into batches; this pools samples spatially to create homoge-
neous aggregates. We found this approach to work best, but Memento also
supports batching based on sampling time or application-specific criteria.

Distribution distances A natural first choice for batch aggregation is
to average sample vectors and compute the Euclidean distance between
the averages. However, we find that this approach is flawed: averaging
“dilutes” rare values in a batch and the resulting distance is not sensitive to
tail differences. Figure 2.5 shows that selecting samples based on the Eu-
clidean distance between batch averages does not improve tail performance
compared to a random sample selection.

13
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Instead, we aggregate batches by computing an empirical sample distribu-
tion.” This preserves rare values, but we still need to reduce the dimension
to gain any computational benefit from batching. We address this prob-
lem using black-box dimensionality reduction (BBDR), an approach inspired
by research on dataset shift detection [29] that has been found to out-
perform alternatives like PCA [30]. The idea is simple: Use the existing
model—trained to identify important feature combinations—to predict
7 (the predicted transmission time), then compute distances in the low-
dimensional prediction space. In essence, BBDR leverages prediction as
dimensionality reduction tailored to the task at hand.

Finally, we compute the distance between batch distributions using the
Jensen-Shannon Distance (JSD) [31] which is closely related to the Kullback-
Leibler Divergence (KL) [32]. The KL is an attractive choice to improve tail
performance as it puts a large weight on rare values, i.e., values with high
probability in one distribution but not in the other. However, the KL has
two drawbacks. It is: (i) asymmetric, only sensitive to rare values in one
distribution; and (ii) only a divergence, while common density estimation
methods require a distance (see below). Thus, we choose the closely related
JSD, which is both symmetrical and a distance metric [31]:

Definition 2.1 (Jensen-Shannon Distance). Let P and Q be probability dis-
tributions, and let M = %(P + Q). The Jensen-Shannon Distance between the
distributions P and Q is defined by:

JSD(P,Q) = \/} (KL(P, M) +KL(Q, M))

where  KL(P,M) = Y_ P(x)log, (]{)/I((J;)))

xeX

if P and Q are discrete distributions in the space X’; or

KL(P,M) = /jop(x) log, (%) dx

if P and Q are continuous probability distributions with probability density func-
tions p and q, and m = 1 (p +q).

This may also be interpreted as replacing distances between observations (samples) with
distances between the underlying processes (distributions).



2.3 COVERAGE MAXIMIZATION WITH MEMENTO

Inputs and Outputs It is not clear a priori whether distances in the pre-
diction or output space are more important for tail performance. Thus,
in supervised classification or regression problems—where outputs are
available—Memento considers both equally and computes separate dis-
tances for both spaces, which are combined below (Section 2.3.3).

Probabilistic predictions During batching, Memento is able to leverage
probabilistic predictions; e.g., the transition time predictor in Puffer [16]
outputs a probability distribution over 21 transition time bins. This proba-
bility distribution captures whether predictions are somewhat uncertain—
indicating a need for training using more such samples—or certain. How-
ever, we must handle probabilistic estimates differently than point estimates:
(i) When batching, Memento groups probabilistic predictions first by the
distribution mode, then by their probability; (ii) The batch distribution is
computed as a mixture distribution: let P; be the probabilistic prediction
of sample j in batch i, and |b;| the number of samples in batch i. Then, the
distribution for batch b; is is P;(x) = (1/[b;]) - X Pj(x).

2.3.3 Density estimation

From the sample distances, we can compute the prediction- and output-
space densities. Since we do not know the topology of the sample space,
we cannot use simple approximations, such as the fraction of samples per
cluster. A common general approach is kernel density estimation (KDE) [33].

Definition 2.2 (KDE). Let b be a sample batch and B a set of batches, and let
dk(b, b') = JSD(P¥, Pk/) with k € {pred,out} be the prediction or output dis-
tance between batches b and b’ with distributions P, pr, Then, using a Gaussian
kernel with bandwidth h, the kernel density estimate at the location of batch b is:

1 ¥ (b, b')
~k ,

b) = —— exp | — —575— 2.1
pB( ) m|B|b§B p< 242 ( )
Intuitively, the kernel density estimate of b is inversely proportional to the
distances to other batches, with diminishing weights for larger distances.
The bandwidth parameter h, also called “smoothing factor”, determines
how quickly this weight drop-off occurs.

15
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Density aggregation Memento considers the prediction and output space
as equally important. Thus, we aggregate densities using the minimum: we
regard the batch as rare if its density is low in either space:

pa(b) = min (p}"(b), p (b)) (2.2)

If necessary, this approach can be generalized to fewer or more densities: for
unsupervised learning without ground truth, Memento can only consider
pPred. For models with multiple outputs and thus multiple predictions, we
can compute the minimum in Eq. (2.2) across all respective densities.

Alternative distances We leverage an information-based distance metric
to focus on the tail. However, the density estimation is not tied to this
method. Memento can work with any alternative provided distance metric.

2.3.4 Sample selection

Memento optimizes the sample-space coverage by iteratively discarding
high-density batches. It computes the densities for all samples in §* =
Siew U Smem, discards with a density-dependent probability (Algorithm 2.1,
Line 10-14) until |S*| < C, and updates densities after each discard.

Intuitively, Memento assigns a high discard probability to batches with
high density—batches for which many similar samples exist—thereby pro-
tecting rare low-density samples. However, because noisy samples also
seem “rare,” we must retain some probability of discarding rare samples.
Memento achieves this by mapping densities to probabilities using softmax
with temperature scaling [34]:

discard __

p = softmax (pp/T) (2.3)
where pp is a vector of densities for all batches b € B, and p#*c? is
corresponding vector of discard probabilities.

The temperature T allows balancing tail-focus with noise rejection. A
low temperature assigns a higher discard probability to the highest-density
batch(es). Conversely, a high temperature assigns more uniform discard
probabilities, increasing the probability of discarding low-density batches.
At the extreme, the discard probability with T — 0 is a point mass; if
Memento is configured with T=o, we thus deterministically discard the
highest-density batch. With T — oo, the probability becomes uniform.

a
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2.3.5 Retraining decision

Intuitively, retraining is beneficial if we collect new information, i.e., samples
in areas of the sample space that were previously not covered. That is, we
should retrain only when the coverage of sample space increases. Memento’s
density estimation allows estimating this increase in information to guide
the retraining decision.

Definition 2.3 (Coverage increase). Let B be a set of batches with density
estimates pg. We can approximate the region of the sample space covered by B:

Coverage(B) = Y _ pp(b) (2.4)
beB

Let B’ be a second set of sample batches. We can approximate the coverage increase
(CI) of B with respect to B', i.e., the region of space covered by B but not by B’:

CI(B, B') = ) min (p5(b) — pp (D), 0) (2.5)
beB

The relative coverage increase RCI from B to B is then
RCI(B, B") = CI(B, B")/Coverage(B) (2.6)

where RCI(B, B') € [0,1]; 0 means that the same area of sample space is covered,
while 1 indicates that B covers an entirely different region of the space than B’.

Hence, with B the current memory batches and B’ those used for the last
model training, RCI(B, B’) estimates the coverage increase since the last
training. If it exceeds the user-defined threshold 7, Memento triggers retrain-
ing. This approach presents a rational trade-off: the larger 7, the longer we
wait for changes to accumulate before retraining. With a small 7, the model
compensates for changes quicker at the cost of more retraining. Memento’s
training decision is sample-space-aware, it gives a rational argument that
retraining is likely to be beneficial (even if there is no guarantee).

17
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2.4 EVALUATION: REAL-WORLD BENEFITS

We continue to use Puffer to evaluate Memento’s real-world benefits. This
experiment aims to show that Memento improves the tail performance of
existing models reliably without significantly impacting the average. Puffer
provides both data collected daily over several years and a publicly available

model that we can retrain with Memento and compare against the original.

This makes Puffer a perfect case study to investigate the following questions:

Q1 Does Memento improve the tail predictions? Yes
Over years of live and replay data, Memento significantly improves
the 1st percentile prediction score.

Q2 Does it improve the application performance? Yes
On live Puffer, over 10 stream-years of data, Memento achieves a
14 % smaller fraction of stream-time spent stalled with only 0.14 %
degradation in image quality.

Q3 Does Memento avoid unnecessary retraining? Yes
Memento retrains 4 times in the first 8 days, and only 3 times in the
following 9 months (7 times in total).

Q4 Are our improvements replicable? Most likely
Memento benefits appear replicable over different time periods of
Puffer data. Its design parameters are intuitive and easy to tune.

Q5 Can Memento benefit existing solutions? Yes
Memento further improves tail predictions achieved by more advanced
training or prediction strategies.

2.4.1  The Puffer project

The Puffer project is an ongoing experiment comparing ABR algorithms for
video streaming [25]. Puffer streams live TV with a random assignment of
ABR algorithms and collects Quality-of-Experience (QoE) metrics: the mean

image quality measured in SSIM [35] and the time spent with stalled video.

Fugu is the ABR algorithm proposed by Puffer’s authors using a classical
control loop built around a Transmission Time Predictor (TTP), a neural
network predicting the probabilities for a set of discretized transmission
times. The TTP was retrained daily with 1 M samples drawn from the past 2

weeks: ~130k samples from the latest day and ~10 % fewer for day before.

Fugugep is a static variant, trained in February 2019 and never retrained.

18
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Fugu was discontinued only 17 days after Memento’s current deployment.
Hence, we can only compare Memento’s long-term performance to Fuguge,.

As discussed in Section 2.1, Fugu and Fugugep, perform similarly: over almost
three years, Fugu showed an SSIM improvement of 0.17 % and a reduction
in the time spent stalled of 4.17 %. Thus, improvements over Fuguge, likely
translate to similar—yet slightly lesser—improvements over Fugu.

2.4.2  Retraining with Memento

Every day, we use Memento to select training samples and decide whether
to retrain Fugu’s TTP. We assess Memento’s benefits in two experiments:

deployment We deploy on Puffer two Memento variants, i.e., two variants
of Fugu using Memento for retraining the TTP. One uses Memento’s
default parameters (see below), and the other deterministic sample
selection (i.e., using temperature T = 0, Section 2.3.4). We collected
data over 292 days (Oct. 2022 to Jul. 2023), about 10.8 stream-years of
video data per variant. This allows answering Q1, Q2, and Q3.

replay To confirm the deployment observations, evaluate design choices,
and benchmark the impact of Memento’s parameters, we replay Puffer
data collected since 2021. To reduce the bias from a particular starting
day, we replay 3 instances with 6 months of data each, a total of 90
stream-years of video data. This allows answering Q4 and Qs.

Metrics We access Memento along three dimensions:

e Prediction quality is measured with logscore(y) = log p(y) [36]; y is the
video chunk transmission time and p(y) the TTP-predicted probability.
Score improvement equals TTP loss decrease.?

* Application performance is measured with user QoE; Only available for

the deployment experiment, where real user streams are impacted by
the predictions and the resulting QoE can be measured.

¢ Training resource usage is measured by the number of retraining events.
Parameters We set Memento’s memory capacity C to 1 M samples (same as
the original Fugu model). Default parameters are a retraining threshold 7 of

0.1, batching size b of 256, kernel bandwidth / of 0.1, and temperature T of
0.01. We evaluate the impact of different parameter values in Section 2.4.4.

The logarithmic score is a commonly used metric for probabilistic predictions [36] like those
produced by the Puffer TTP model. It is closely related to the cross entropy loss used to train
the TTP: this is also known as the logarithmic loss and is the negative logarithmic score.
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Figure 2.6: Memento achieves its goal:

= Memento
=== Memento (T=0)

0.3 .
® % Retraining

0.2

Retraining Threshold

Relative Coverage Increase

6 12 18 24 30 36 42
Weeks in Deployment

(b) Memento avoids unnecessary retrain-
ing. Its deterministic variant (T = 0) is
less efficient and does not converge.

f’

1.0 ’
— Memento

0.8 — Memento (T=0)

w 0.6
(@)

(@]

0.4

0.2

0900 —50 0 50 100

Stall Improvement [%]

(d) Memento reduces the fraction of
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it improves the tail prediction quality

with minimal impact on the average (Figure 2.6a). This requires little retraining
(Figure 2.6b) and leads to notable QoE improvements (Figures 2.6c and 2.6d).
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2.4.3 Deployment results

In this section, we show that Memento improves the tail prediction quality
with little retraining and that this leads to QoE improvements over Fugugep.
In Appendix A.1, we provide additional plots with the evolution of QoE
and predictions over time, as well as aggregate plots like those published
on the Puffer paper and website [16, 25].3

Prediction quality Figure 2.6a shows the score difference ECFD between
Memento and Fuguge, in median and 1st-percentile scores (higher is bet-
ter). We observe that Memento improves tail predicition performance as
intended, with a slight—yet expected—degradation on average: as mem-
ory is finite and Memento purposefully prioritizes “rare” samples, it must
remove samples for the most common cases. The deterministic version of
Memento prioritizes the tail more aggressively, which leads to slightly better
tail improvements and worse median degradation.

Retraining count Figure 2.6b shows the relative coverage increase RCI
between the current memory and the one last used to retrain the model, as
well as the retraining threshold T = 0.1. We observe about eight “warm-up”
days where Memento retrains four times. Afterward, RCI remains low and
retraining due to changes in the data (RCI peaks) happens three times.
This shows that there are fewer “new patterns” to learn from over time;
retraining daily is unnecessary, but still beneficial at critical times.

Conversely, the deterministic variant of Memento keeps accumulating
samples, exhibiting a different RCI pattern. After training five times during
“warm-up,” it trained 9 more times. Where RCI for default Memento sta-
bilizes, the RCI of the deterministic variant slowly but steadily increases
over time while it accumulates rarer and rarer samples, as it does not reject
noise. Essentially, this variant “never forgets.”

Application performance Figures 2.6c and 2.6d show the relative QoE
improvements over Fuguge, for SSIM and time stalled (higher is better).#
First, we observe that Memento only marginally affects the SSIM; the
average SSIM is 17.12 and 17.14 for Memento and Fugugep, resp. (not shown).
Memento’s deterministic variant affects the SSIM more; its average is 16.39
(not shown) and the SSIM is consistently worse than Fuguge, (Figure 2.6¢).

Our results per algorithm differ from official Puffer plots, as Puffer excludes some sessions in
an attempt to exclude effects such as “client decoder too slow,” while we consider all data
points. As the filtering is ABR-independent, it does not impact relative results between ABRs.
To avoid bias towards either Memento or Fugu, we show the symmetric percent difference
using the maximum: 100 - (x — y) /max(x, y).
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Second, Figure 2.6d shows that stall improvements compared to Fuguge,
are almost equal for both variants of Memento, even though there are large
day-to-day variations: some days, Fugugep stalls much less than Memento,
and vice versa. Over the entire 292 days of deployment, Memento spent
a fraction of 0.2 % of stream-time stalled, compared to 0.24 % for Fugugep:
Memento spent a 14 % smaller fraction of stream time stalled than Fugugep.

In the results above, we already see that Memento performs slightly worse
without noise rejection (i.e., with T = 0). In a previous deployment, we ob-
served that never forgetting ultimately prevented enough average samples
from remaining in memory, which destroyed the average performance (Ap-
pendix A.1). The latest version of Memento made the deterministic variant
more robust but we can still observe the signs of noise accumulation (worse
predictive performance, more frequent retraining, steadily rising RCI). By
contrast, the probabilistic default Memento naturally forgets noise and
stabilizes, as can be seen in the RCI in Figure 2.6b.

Finally, we observe that Memento reduces stalls by 3.5 times as much as
retraining daily with random samples. In Appendix A.1, Figure A.4 we
show Figure 2.6a overlaid with the score improvements of Fugu in the past.>
We observe that random retraining improved the tail prediction scores
significantly less and even worsened them on 20 % of days.

From predictions to QoE One may wonder why the average prediction
degradation (Figure 2.6a) does not seem to strongly impact image qual-
ity (Figure 2.6¢), and, conversely, why significant tail improvements yield
only a modest reduction in stalls (Figure 2.6d). Our results illustrate the
complex relationship between predictions and QoE, including the closed-
loop control logic, which uses the predictions and aims to keep the video
buffer at the receiver sufficiently full to avoid stalling.

Taking a closer look at the experiment results, we noticed that the trans-
mission time of most chunks is very small, and most prediction errors are
also small time-wise. Hence, slightly worse predictions have little effect
on the buffer fill level; the controller has time to compensate and main-
tain image quality. Moreover, since most prediction errors overestimate
the transmission time (not shown), it makes the closed-loop control more
conservative. Thus, it manages to keep stalls low but struggles to maintain
high image quality (compare Figures 2.6c and 2.6d).

Appendix A.1, Figure A.4 must be considered with caution, as the underlying data comes
from different time periods and may not be comparable.
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Figure 2.7: Each marker shows the median prediction improvement of Memento
over Fugu (random selection) over a 6-month replay, measured as median and 1st
perc. improvement each day. Results are consistent across replays.
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2.4.4 Replay results

In this section, we confirm that Memento’s benefits are replicable and not
just an artifact from deploying at an “easy time,” its design decisions are
justified, and it complements existing techniques. To do this, we replay 3
non-overlapping instances of 6 months with 25, 39 and 26 stream-years of
video-data respectively and 3 M samples on average per day.

To monitor the memory quality over time, we disable threshold-based
retraining and retrain every 7 days; one must retrain and test the model
to assess whether the right samples were selected. We evaluate each day
in terms of prediction improvement over retraining with random samples
(Fugu) and report the mean over each 6-month period. We show the entire
time series for each experiment in Appendix A.1.

Replicability All plots in Figure 2.7 show three data points per setting,
which are average performance numbers over the entire 6 month period. We
observe that all results are fairly stable, which gives reasonable confidence
about the replicability of Memento’s benefits on this use case.

Batch size Figure 2.7a shows Memento’s prediction performance over
the batch size; larger sizes improve scalability but make sample selection
coarser, which can hurt performance (Section 2.3.2). We observe a slight tail
performance drop for large batch sizes but little change on average.

Regarding scalability, differences are more pronounced: using a single
CPU core to process 4M samples takes on average 200s with a batch
size of 128, 48 s with 256 (the default), and 7s with 1024. Benefits flatten
out for larger batch sizes. Overall, computation is dominated by distance
computation; batching the samples takes only about 2.5s.

Bandwidth Memento estimates how close nearby batches are; the kernel
bandwidth h determines what “nearby” means (Section 2.3.3). As the
computed distances JSD(P, Q) € [0,1], bandwidths > 1 over-smooth (all
batches are always “nearby”), and bandwidths < 1 under-smooth (no other
batches are ever “nearby”). Both cases nullify the idea of estimating density,
effectively making the sample selection random. Figure 2.7b confirms this
intuition: at the extremes, Memento performs like a random selection. We
obtain the best tail improvement with a bandwidth around 1 x 10~

Temperature Figure 2.7¢c shows Memento’s prediction performance over
the temperature T; a low temperature strongly prioritizes rare samples at
the risk of accumulating noise, while a high temperature rejects noise by
making the sample selection more random (Section 2.3.4). As expected, a
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Figure 2.8: Loss-based selection is worse and less robust.

lower temperature yields better tail performance but degrades the average.
The trade-off is not linear, though; we can select a temperature that provides
tail benefits with minimal impact on the average. The best trade-off is a
temperature around 1 X 1072,

Alternative selection metrics Figure 2.8 shows the performance of using
loss as an alternative selection metric: we still use temperature-based proba-
bilistic selection but discard samples with a low loss instead of high density.
At best, it gives half the tail improvements of Memento, and it is much
harder to tune: the benefits vanish for a slightly higher temperature. With a
lower temperature, i.e., selecting more strongly based on loss, performance
decreases drastically, which mirrors our observations in Section 2.2.

We evaluate additional metrics in Appendix A.1: prediction confidence,
label counts, and whether a sample belongs to a stalled session or not. In
summary, these perform worse or equal to loss-based selection in the best
case, and most of them are as sensitive to tune. Probabilistic selection based
on density performs better and is less sensitive (see Figure 2.7¢c). We also
show detailed results for Euclidean distances (Section 2.3.2).

Alternative training decision We compare Memento’s retraining decision
based on the relative coverage increase RCI with a loss-based decision (not
shown). We observe that for samples selected by Memento, either decision
is effective. Overall, a coverage-based decision provides greater control
over retraining frequency but struggles with low thresholds (e.g., 5 %). As
Memento is probabilistic, the estimated RCI fluctuates at each iteration,
which can be observed in Figure 2.6b, and the retraining threshold should
be set above these fluctuations. It may be possible to further improve
Memento by smoothing the RCI or by filtering the random fluctuations.
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Figure 2.9: Memento complements training and prediction improvements from
orthogonal algorithms such as JTT and Matchmaker.

Memento + Matchmaker + JTT MatchMaker [37] improves predictions
by using an ensemble of models (the default ensemble size is 7) combined
with an online algorithm to select the best model to make a prediction for
each sample. However, this is limited by the performance of the individual
models. Using an ensemble of models trained with a random selection,
even with an oracle choosing the best model, we can only improve tail
performance by half as much as a single model trained with Memento.
However, we can get the best of both worlds by using MatchMaker with
an ensemble of Memento-trained models, which yields double the tail
performance with less decrease in median performance compared to a
single Memento-trained model (‘no upsampling’ in Figure 2.9).

Just train twice (JTT) [38] improves performance by, as the name implies,
training twice: after the first training, misclassified samples are upsampled
in the second and final training. Figure 2.9 shows the same performance
tradeoffs for JTT and Memento: both improve the tail and degrade the me-
dian: JTT with an upsampling factor of 3 is roughly equivalent to Memento’s
sample selection with ‘normal’ training. Yet this comes at different resource
costs: JTT requires up to double the training time and resources, depending
on how long the first training step is. Training models like Puffer takes
time in the range of hours [16] and often requires expensive hardware (e.g.,
GPUs). Memento is more resource efficient: even on a single CPU core, it
can process millions of samples in a few minutes (see above). However,
JTT and Memento are not in competition, but complementary. We observe
the best performance by combining Memento-selected samples with JTT’s
training and observe even further improvements when the resulting models
are used in a MatchMaker ensemble for predictions (Figure 2.9).
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Figure 2.10: Over time, Memento outperforms QBC.

Query-by-Committee A Memento-trained ensemble not only outperforms
an ensemble trained with random samples but also an ensemble trained
with the Query-by-Committee (QBC) algorithm [26] (Figure 2.10). QBC
selects samples with the highest prediction entropy between all members
of the ensemble. In theory, these samples contain the most information
for learning. We repeat the MatchMaker-Oracle experiment, again using
an ensemble of 7 models, and compare an ensemble of Memento-trained
models with an ensemble of QBC-trained models.

Figure 2.10 shows that the tail improvements of QBC initially exceed
Memento, and are comparable to Memento with JTT (Figure 2.9). However,
the QBC ensemble degrades over time and ultimately settles on less than a
third of Memento’s improvement. We suspect this comes from QBC accumu-
lating noise. Both Memento and QBC initially pick up noise (low density;
high entropy). Memento’s probabilistic approach prevents noise from ac-
cumulating (Section 2.3.4) while QBC degrades: selecting noise biases the
model toward random predictions, increasing the prediction entropy of any
sample, thus decreasing QBC’s ability to identify informative samples.
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2.5 EVALUATION: SYNTHETIC SHIFTS

In the previous section, we showed that Memento provides significant
benefits in a real-world use case. In this section, we use ns-3 [39] simulations
of data center workloads to show that sample selection with Memento
applies to other settings as well. Specifically, we show that Memento:
1. ensures good tail performance by reliably prioritizing samples from
infrequent traffic patterns (Section 2.5.2);

2. picks up new patterns quickly (Section 2.5.3);

3. is applicable to classification and regression (Section 2.5.4).

2.5.1  Experimental setup

Sample selection strategies We compare Memento with two baselines:
Random (random sampling) and FIFO (keep recent samples). In addition,
we compare it to the state-of-the-art LARS (Loss-Aware Reservoir Sam-
pling, [21]). LARS improves random sampling for classification, and has
two stages: first, it randomly chooses to keep or discard a new sample, with
probability exponentially decreasing over time; second, it considers both
label counts and loss to decide which in-memory sample to replace.

Parameters For Memento, we use the same default parameters as before: a
batching size of 256, kernel bandwidth / of 0.1, and temperature T of 0.01.
We reduce the memory capacity C to 20k samples (i.e., 1/50 compared to
Section 2.4) for two reasons: (i) We aim to show the limitations of different
sample selection strategies, which is easier with small memories; (ii) LARS
scales poorly, making comparing performance on larger memory sizes
impractical—we had to optimize it to scale to even 20k samples.

Workloads The simulation setup (Appendix A.2, Figure A.14) consists of
two nodes and applications sending messages with sizes drawn from three
empirical traffic distributions from the Homa project (Figure A.15, [40]):
Facebook web server (W1), DC-TCP (W2), and Facebook Hadoop (W3). W1
and W3 are similar, while W2 messages are about an order of magnitude
smaller. For each workload, we generate 20 traffic traces of 1min each.
During this time several senders transmit a combined 20 Mbps, resulting in
an average network utilization of 66 %. We repeat this process by injecting
additional cross traffic to reach an average utilization of 100 % and 133 %,
respectively. We use different random initializations to generate a total of
180 distinct runs that we use in the following experiments.
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Figure 2.11: Memento can handle various traffic patterns and prediction types.
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Models We compare the selection strategies for two neural networks; one
for classification and one for regression. The classification model predicts
the application workload: Each input is a trace of the past 128 application
packet sizes, and the model predicts the probabilities for each workload.
The regression model predicts the next transmission time from past packets:
Each input contains a trace of the past 127 packet sizes and transmission
times, the current packet size, and the model predicts the transmission time.
See Appendix A.2 for architecture and hyperparameter details.

Metrics For classification tasks, we measure the balanced accuracy;, i.e.,
the accuracy obtained over an equal number of evaluation samples per
workload, ensuring equal importance of each workload. In other words,
performance is evaluated over an equal distribution of overall workloads,
regardless of whether they are present at the current iteration. Good per-
formance requires both picking up new patterns quickly and avoiding
catastrophic forgetting by retaining previous patterns.

For regression, we investigate changes in traffic distribution and measure
the ggth percentile absolute prediction error over the data in the latest
iteration. Good performance requires picking up new patterns quickly.

2.5.2  Classification: Rare patterns

In the first experiment, we show that Memento successfully picks up sam-
ples from infrequent traffic patterns. To do so, we use highly imbalanced
traffic: W1 and W3 only constitute <2 % of overall traffic. Good tail perfor-
mance implies high accuracy not only for W2 but also for W1 & W3.

Setup We use the classification model and iterate over samples from 20
runs. We use W2 at every iteration, representing a large part of traffic that
remains relatively unchanged. On top of that, we include W1 once every
five iterations, and W3 once every ten iterations; they represent sporadic
traffic patterns that make up for 1.3 and 0.5 % of traffic respectively.

Results Memento and LARS retain sufficient samples from each workload
and show the best accuracy over all iterations (Figure 2.11a). On the other
hand, FIFO shows good accuracy only while all workloads are present, as
the large number of samples of W2 quickly overwrites W1 & W3 otherwise.
While Random achieves better results than FIFQ, it ultimately retains too few
samples of W1 & W3, as they make of less than 2 % of samples in memory.
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2.5.3 Classification: Incremental learning

Next, we show that Memento picks up new patterns and avoids catastrophic
forgetting in ‘Incremental Learning”: a setting known to be challenging [41].

Setup As in Section 2.5.2, but iterate over samples from each workload
sequentially; first W1, then W2, and finally W3, for 10 iterations each.

Results We find that overall, Memento exhibits the best performance. Both
Random and LARS struggle because of their sample selection rate (Fig-
ure 2.11b); these two flavors of random memory avoid forgetting by de-
creasing the probability of selecting new samples over time. When W3
is introduced, they are slow to incorporate new samples (Appendix A.2,
Table A.2). While both LARS and Random are slow to react, the fact that
the balanced accuracy of LARS is worse than Random’s is mostly an arti-
fact of the similarity of W1 and W3: LARS has (desirably) retained more
samples of W1, yet this causes its model to mistake W3 for W1 more often
than Random, which has forgotten most of W1 and is consequently less
biased. By manually tuning the sampling rate of LARS to be much more
aggressive, we were able to achieve the same performance as Memento (not
shown). This highlights the benefit of the self-adapting nature of Memento’s
sample-space-aware approach: If a new label appears, Memento discov-
ers that this part of the sample space is not well covered yet. It quickly
prioritizes discarding common in-memory samples over rare new ones.

2.5.4 Regression

In this experiment, we show that Memento is applicable to regression
and handles complex traffic changes. We iterate from 66 to 133 % network
utilization, which presents more complex gradual changes in traffic patterns
than the abrupt changes in workload distributions (Sections 2.5.2 and 2.5.3).

Setup We iterate over traffic from all workloads using runs with increasing
congestion. For the first 10 iterations, we use runs with 66 % network
utilization, followed by 10 iterations of 100 %, and finally 10 iterations of
133 %. We report the ggth percentile error for the current utilization.

Results Memento generally shows the lowest ggth percentile prediction
error (Figure 2.11c). Random is slow to react to the new patterns and
requires several iterations to adjust to the new traffic conditions. Perhaps
surprisingly, FIFO performs well up to 100 % utilization but shows very
unstable performance for 133 %. LARS is not applicable to regression.
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Limitations Let us address the elephant in the room: Memento cannot do
anything with a bad model or dataset. It helps identify the most useful
samples for training, but those samples must be present in the dataset in
the first place, and the model must be capable of learning from them.

We find that density-based selection performs well but is probably not
optimal. It addresses the problem of dataset imbalance well, but it is less ef-
fective to differentiate “hard-to-learn” from “easy-to-learn” samples, which
is better captured by the model loss. Finding a way to effectively combin-
ing both metrics would likely be beneficial. Finally, density computations
limit Memento’s scalability. Batching helps (Figure 2.5), but it would not be
enough to process data streams with billions of samples per day.

Continual learning Continual learning and dataset imbalance correction
are well-studied problems. Fundamentally, continual learning suffers from
the stability-plasticity dilemma [42]: a stable memory consolidates existing
information yet fails to adapt to changes, while a plastic memory read-
ily integrates new information at the cost of forgetting old information.
Forgetting old-yet-still-useful information is known as catastrophic forget-
ting [43]. Continual learning approaches aim to be as plastic as possible
while minimizing catastrophic forgetting. They can be broadly categorized
as either prior-based or rehearsal-based [21]. Prior-based methods aim to
prevent catastrophic forgetting by protecting model parameters from later
updates [20, 44, 45]. Rehearsal-based methods collect samples over time
in a replay memory and aim to prevent forgetting by learning from both
new and replayed old data [21, 22, 46]. Hybrid methods combine both, e.g.,
training with a replay memory and a loss term penalizing performance
degradation on old samples to protect model parameters [23].

Memento builds on previous rehearsal-based approaches, incorporating
ideas such as coverage maximization [47]. It extends existing ideas by con-
sidering both prediction and output spaces, leveraging temperature scaling
to control the tail-focus and introducing a novel coverage increase criterion
to reason about when to retrain. Similar to Memento, Arzani et al. [48] also
suggest using the “right samples” to retrain AutoML systems [49]: They
use the disagreement among a set of models to identify “the tail” and
guide the user to collect more tail samples and add them to the training set.
However, this does not apply to all networking applications; e.g., we cannot
“force” streaming sessions to come from rare network paths or experience
particular congestion patterns; we must do with the available samples.
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Distribution shift detection Continual learning closely relates to a branch
of research aiming to keep models up-to-date upon changes in the data-
generating process—known as distribution shifts. State-of-the-art methods
rely on statistical hypothesis testing [50] or changes in empirical loss [51],
plus a time-based window (or multiple parallel windows) [42]. When
change is detected, these algorithms advance the window(s), discard out-
dated samples whose timestamp falls outside of the window(s), and retrain.
Shift detection algorithms make sample-space-aware retraining decisions
but lack a comparable selection strategy. Once a change is detected, they
discard all old samples. This approach is too coarse-grained for networking:
Network traffic is composed of many patterns (Appendix A.1, Figure A.1)
and not all patterns get outdated at once and do not all need to be discarded.
Matchmaker [37] proposes a more incremental approach to shifts in
networking data. It uses an ensemble of models and “matches” each sample
to the model trained with the most similar data. However, it does not
address the sample selection problem: If no model in the ensemble is good
at the tail, matching will not help. By contrast, Memento builds upon ideas
originating from shift detection (BBDR [29]) and extends the sample-space-
aware strategy to the sample selection to train better models. Our evaluation
shows that a single Memento-trained can outperform Matchmaker at the
tail, even if using an oracle to match the optimal model (Section 2.4.4).

Experience replay for reinforcement learning While we evaluate Memento
in the context of supervised learning, it may also be used for reinforcement
learning (RL), a popular approach to ML-based ABR [52, 53]. In fact, RL
commonly uses a replay memory [54, 55], for better performance [23, 56].

Transformers and other large models In recent years, large models with
billions of parameters have become popular in natural language process-
ing [57-59] and computer vision [60, 61], usually based on Transformer
architectures [62]; there are also first trials in networking [63-65].

We have evaluated Memento on small models to investigate a smarter sam-
ple selection instead of using more resources such as more complex models
and cannot confidently claim that we would see comparable improvements.
Yet, there is mounting evidence that even large transformer models suffer
from data bias [66-68], which Memento may help to address.

Furthermore, an important part of these models is an encoder that trans-
lates text, images, or other data into a latent space. Latent space represen-
tations have seen use in clustering [69], and Memento may benefit from
computing sample distances in latent space, similar to how it uses BBDR.
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Data processing Data validation and augmentation are important steps
of any ML pipeline. Especially in ML systems that are evolving over time,
new bugs may be introduced any time the model or data collecting system
are updated. These bugs may lead to erroneous data, and data validation
is necessary to prevent such data from becoming part of the training
data [70]. Furthermore, collected data is often augmented to address dataset
imbalance by generating additional synthetic samples or upscaling existing
ones, which can improve performance and reduce overfitting [71]. One
example is Just Train Twice (JTT) [38], which trains a model, uses it to
identify misclassified samples, upsamples those, and trains again.

As a replay memory, Memento operates between the validation and aug-
mentation steps, and complements them. For example, we showed in Sec-
tion 2.4.4 that JTT’s upsampling is more effective with tail samples identified
by Memento. That being said, when combining methods, only validated data
should be considered by the sample selection, and selected samples may be
augmented. In particular, the memory should only store non-augmented
samples, as augmenting the data before passing it to the memory can result
in the sample selection to overfit to the augmentation [21].

Generalization While this dissertation focuses on video streaming, Me-
mento could be applied to other ML-based networking applications, includ-
ing congestion control [72-75], traffic optimization [76], routing [77], flow
size prediction [78, 79], MAC protocol optimization [8o, 81], traffic classifi-
cation [7, 82], network simulation [83], or DDoS detection [82]. Networking
has proven to be a challenging environment for ML, and many proposed
systems have only delivered modest or inconsistent improvements in real
networks [16, 84-86]. In response, research has focused on providing better
model architectures [16, 72, 73] and training algorithms [52], model en-
sembles for predictions and active learning [37, 49], real-world evaluation
platforms [16, 86], uncertainty estimation [87] and model verification [88].

A better sample selection is beneficial to all these advances. Memento is
orthogonal to and complements these works, opening an exciting potential.
We show in Section 2.4.4 that combining Memento with JTT or Matchmaker
improves performance further: once Memento decides to retrain, we train
better with JTT, and MatchMaker benefits from an ensemble of Memento-
trained models. However, optimizing training or model architectures is
beyond the scope of this work, which focuses on identifying the most valuable
samples for retraining and deciding when to retrain.
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LEARNING OVER SPACE: A VISION
FOR NETWORK MODEL GENERALIZATION

In Chapter 2, we evaluated how ML-based ABR algorithms can adapt over
time by using a smarter sample selection. We constantly updated the training
data, prioritizing rare patterns for tail performance. Fundamentally, this
approach assumes that even rare patterns are worth remembering.

But what if this assumption does not hold, as in the following two
examples: (i) what if we face a completely new environment, e.g., a different
network topology with an entirely different tail? or (ii) what if we face a
new prediction task that makes existing samples obsolete, e.g., predicting
network path delay instead of video chunk download times?

This chapter explores these questions to promote a new vision for learning
over space, i.e., generalizing models to new environments and prediction
tasks. Until now, generalizing ML models for network traffic dynamics
tended to be considered a lost cause. For every new task, we design new
models and train them from scratch on specifically collected datasets.

At the same time, an ML architecture called Transformer has enabled
previously unimaginable generalization in natural language processing and
computer vision. Nowadays, models pre-trained on massive datasets are
fine-tuned to other tasks and environments with comparatively little time
and data, delivering state-of-the-art performance for many benchmarks.

We believe this progress could translate to networking and propose a
Network Traffic Transformer (NTT), a transformer adapted to learn network
dynamics from packet traces. Our initial results are promising: NTT seems
able to generalize to new prediction tasks and environments.

This chapter is organized as follows: Section 3.1 motivates the problems
and opportunities of model generalization in networking.
Section 3.2 provides a brief background on transformers.
Section 3.3 presents NTT: our proof-of-concept Network Traffic Transformer.
Section 3.4 provides first evidence from simulations that NTT can learn
network traffic dynamics and generalize to new tasks and environments.
Finally, Section 3.5 outlines open questions and future research directions
to realize the vision of network model generalization.
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3.1 TOWARDS MODEL GENERALIZATION

Problem Today’s network traffic models do not generalize well; i.e., they
often fail to deliver outside of their original training environments [16,
84-86, 89]; generalizing to different tasks is not even considered. The Puffer
paper argues that, rather than hoping for generalization, one obtains better
results by training in-situ, i.e., using data collected in the deployment
environment [16]. Thus, today we tend to design and train models from
scratch using model-specific datasets (Figure 3.1, top). This process is
repetitive, expensive, and time-consuming and hinders collective progress.

Vision We argue there is still hope for generalization in networking. Even
if the networking contexts (topology, network configuration, traffic, etc.) are
very diverse, the underlying dynamics remain similar; e.g., when buffers
fill up, queuing disciplines delay or drop packets. These dynamics can be

learned with ML, and there is no need to relearn everything every time.

We envision a generic network model trained to capture the shared dynamics
underpinning any network. Such a model could be fine-tuned for many
different networking tasks and contexts with only a small task-specific
dataset for fine-tuning (Figure 3.1, bottom).

Existing approaches—while not performing optimally outside of their
training environments—provide evidence for generalization. The congestion
control algorithm Aurora [73] performs adequately in environments with

bandwidth more than an order of magnitude higher than during training.

Models trained with Genet [90] on simulation data perform well in several
real-world settings. But truly “generic” models—able to perform well on a
wide range of tasks and networks—remain unavailable, as mixing different
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contexts is unpredictable. In some cases, more diverse training data has
been shown to provide benefits without consequences, e.g., training over a
range of propagation delays in [91]. Yet in other cases, mixing contexts can
decrease performance,e.g., varying numbers of senders in [91] or wired and
wireless traces in [85], if the model is not able to tell these contexts apart.

Game-changer A few years ago, a new architecture for sequence modeling
was proposed: the Transformer [62]. This architecture is designed to train
efficiently," enabling learning from massive datasets and unprecedented
generalization across multiple contexts. In a pre-training phase, the trans-
former learns contextual sequential “structures,” e.g., the structure of a
language from a large corpus of texts. Then, in a much quicker fine-tuning
phase, the final stages of the model are adapted to a specific prediction
task. Today, transformers are among the state-of-the-art in natural language
processing (NLP [92]) and computer vision (CV [60, 61]).

Transformers generalize well because they can learn to distinguish dif-
ferent contexts during pre-training; they learn rich contextual represen-
tations [57] where the representation of the same element, e.g., a word,
depends on its context, inferred from the sequence. Consider two input
sequences: Stick to it! and Can you hand me this stick? The transformer output
for each stick is different as it encodes the word’s context. This contextual
output is an efficient starting point for fine-tuning the model to diverse
downstream tasks, e.g., question answering, text comprehension, or sen-
tence completion [92]. We can draw parallels between networking and NLP:
individual packet metadata (headers, delay, etc.) provides limited insights;
we also need the sequence context, i.e., the history of past packets. For
example, increasing latency over multiple packets indicates congestion.

Challenges Naively transposing NLP or CV transformers to networking

fails, unsurprisingly. We must adapt them to the peculiarity of networks.

In particular, “sequences” must be carefully defined: While text snippets

and images are relatively self-contained, any packet trace only gives a

partial view of the network. Moreover, generalizing the diversity of protocol

interactions is not trivial. Ultimately, we identify three main open questions.
1. How to adapt transformers for networking?

2. Which pre-training task would allow the model to generalize, and
how far can we push generalization?

3. How to assemble a dataset diverse enough to allow generalization?

Transformers scale better than recurrent neural networks, another popular architecture for
sequence modeling that Transformers effectively succeeded.
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3.2 BACKGROUND ON TRANSFORMERS

In this section, we introduce attention, the mechanism behind Transformers;
detail the idea of pre-training and fine-tuning; and present insights from
adapting Transformers from NLP to CV.

Sequence modeling with attention Transformers are built around the
attention mechanism, which maps an input sequence to an output sequence
of the same length. Every output encodes its own information and its
context, i.e., information inferred from related elements in the sequence. For
a detailed explanation, we refer to [62] and online guides [93, 94].

While attention originated as an improvement to recurrent neural net-
works (RNNSs), Vaswani et al. [62] realized that it could replace them entirely.
They propose the following architecture for translation tasks: an embedding
layer maps words to vectors; a transformer encoder encodes the input se-
quence; and a transformer decoder generates an output sequence based on the
encoded input (Figure 3.2a). Transformer blocks alternate between attention
and linear layers, i.e., between encoding context and refining features.

Pre-training and fine-tuning Transformers are used for a wide range of
NLP tasks, and the prevailing strategy is to use pre-training and fine-tuning.
We explain this approach on the example of BERT [57], one of the most
widely used transformer models. BERT uses only the transformer encoder,
followed by a small and replaceable decoder.? BERT is pre-trained with a
task that requires learning language structure. Concretely, a fraction of
words in the input sequence is masked out, and the decoder is tasked to
predict the original words from the encoded input sequence (Figure 3.2b).
Conceptually, this is only possible if the encoding includes sufficient context
to infer the missing word. Afterward, the unique pre-trained model can
be fine-tuned to many different tasks by replacing the small decoder with
task-specific ones, e.g., language understanding, question answering, or text
generation [57, 95, 96]. The model has already learned to encode language
context and only needs to learn to extract the task-relevant information
from this context. This requires far less data compared to starting from
scratch: BERT is pre-trained from text corpora with several billion words
and fine-tuned with ~100 thousand examples per task. Furthermore, BERTs
pre-training task is unsupervised, i.e., it requires only “cheap” unlabeled
data for masking and reconstruction. “Expensive” labeled data, e.g., for text
classification, is only needed for fine-tuning.

Usually, a multilayer perceptron (MLP) with a few linear layers; this decoder is often called
the ‘MLP head’.
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Vision transformers Following their success in NLP, Transformers gained
traction in CV as well, with two notable distinctions: (i) input aggregation;
and (ii) a domain-specific pre-training task. While attention is efficient to
parallelize, it needs to compare each element in the sequence with each
other element to encode context. Consequently, the required computation
scales quadratically with the input sequence length, and using sequences of
individual pixels does not scale to images of high resolution. As a solution,
the Vision Transformer (ViT, [97, 98]) aggregates pixels into 16 x 16 patches
and applies the embedding and transformer layers to the resulting sequence
of patches, using an architecture similar to BERT (Figure 3.2c). However,
using a classification task to pre-train ViT delivered better results than
a reconstruction task. This shows the importance of domain-appropriate
pre-training: it may be possible to reconstruct a patch by only consider-
ing neighboring ones, but classification requires understanding the whole

image, i.e., the context of the entire sequence.
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Figure 3.2:

Transformer variants.
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Figure 3.3: NTT combines embedding, aggregation, and a transformer encoder. It
outputs a context-rich encoded sequence that is fed into a task-specific decoder.

3.3 A NETWORK TRAFFIC TRANSFORMER

Given the success of Transformers in NLP and CV and the similarities
between the underlying sequence modeling problems, we argue that trans-
formers could also generalize network traffic dynamics. This section presents
our proof-of-concept: the Network Traffic Transformer (NTT, Figure 3.3).
1. Packets are more complex than words or pixels. Which packet features
are helpful and which are necessary to learn network dynamics?

2. The fate of a packet may depend on much older ones. As the sequence
length is practically limited (Section 3.2), how can we capture both
short- and long-term network dynamics in the input sequence?

3. Which pre-training task enables the model to learn general network
patterns effectively?

Learning feature extraction Packets carry a lot of information that could
be used as model features, e.g., header fields. Today, we typically use
domain knowledge to manually extract and aggregate features and feed
these into off-the-shelf ML architectures. We argue this is sub-optimal
for two reasons: (i) we select features for a specific task, which limits
generalization; (ii) the features may not even be the ‘right ones’ for the task.
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Instead, we propose to let the model learn useful features from raw data.
To learn traffic dynamics from a sequence of packets, we must provide
the model with information about the packets as well as their fate in
the network. Since we do not want to define a priori how important the
individual pieces of information are, we feed them all into a first embedding
layer (Figure 3.3). It is applied to every packet separately.

In our proof-of-concept, we use minimal information: timestamp, packet
size, receiver ID,3 and end-to-end delay. These enable learning temporal (delays
over time) and spatial (impact of packet size on delay) patterns. We discuss
the challenge of embedding more information in Section 3.5.

Learning packet aggregation Packet sequences must be long enough to
capture more than short-term dynamics. But Transformer training time
scales quadratically with the sequence length, posing practical limitations.

We address this with a hierarchical aggregation layer (Figure 3.3). We
aggregate a long packet sequence into a shorter one while letting the model
learn how to aggregate the relevant historical information, similar to the
pixel patch aggregation in ViT [97]. However, we aim to both aggregate and
retain recent packet-level details. To achieve this, we keep the most recent
packets without aggregation and the longer traffic is in the past, the more
we aggregate, as details become less relevant to predict current dynamics.

In our proof-of-concept, we set the input sequence length to 1024 packets,
enough to cover the number of in-flight packets in our experiments. We
aggregate this sequence into 48 elements in two stages (Figure 3.3). We show
in Section 3.4 that is beneficial, but it is unclear which sequence length and
levels of aggregation generalize best; we discuss this further in Section 3.5.

Learning network patterns Finally, we need a training task that allows
NTT to learn network dynamics: in our proof-of-concept, we use end-to-end
delay prediction. We aim to pre-train NTT to generalize to a large set of
fine-tuning tasks. Consequently, we need a pre-training task that is generic
enough to be affected by many network effects. As almost everything in
a network affects packet delays (e.g., path length, buffer sizes), a delay
prediction task seems a rational choice to achieve this goal.

To pre-train NTT, we mask the delay of the most recent packet in the
sequence and use a decoder with linear layers to predict the actual delay.
During training, the NTT must learn which features are useful (embedding
layer), how to aggregate them over time (aggregation layer), and to infer
context from the whole sequence (transformer encoder layers).

3 An IP addresses proxy, as we do not want to learn IP address parsing (yet).
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During fine-tuning, one can update or replace the decoder (Figure 3.3) to
adapt NTT to a new environment (e.g., same decoder in a different network)
or to new tasks (e.g., predicting message completion times). This is efficient
as the knowledge accumulated by NTT during pre-training generalizes well
to the new task, as we demonstrate in the next section.

3.4 PRELIMINARY EVALUATION

Our preliminary evaluation of NTT in simulation shows that:
1. NTT is able to learn some network dynamics;

2. Pre-training helps to generalize;
3. Networking-specific design helps generalization.

Importantly, we do not aim to show that NTT outperforms existing special-
ized models (yet*). We focus on assessing the potential of our approach.

Datasets We use ns-3 [39] to generate datasets: one for pre-training, and
several for fine-tuning (Figure 3.4). We reserve a fraction of each for testing.
In the pre-training dataset, 60 senders generate 1Mbps of messages each,

following real-world traffic distributions [40]. They send messages over a
bottleneck link with 30Mbps bandwidth and a queue size of 1000 packets.
We run 10 simulations for 1 minute each with randomized application start
times. This dataset contains about 1.2 million packets. For the fine-tuning
datasets, we add cross-traffic (case 1) and additionally extend the network
topology (case 2). Cross-traffic is modeled as 20Mbps of TCP flows. Note
that the datasets do not contain the cross-traffic packets. For each case, we
generate a dataset containing roughly as many packets as the pre-training
dataset and a “smaller” dataset containing about 10% of the packets.
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Figure 3.4: Dataset generation setup.

4 The research on Transformers in CV showed that large datasets are required for transformers
to outperform the state-of-the-art.
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Models We compare several versions of NTT. The pre-trained models first
learn from the pre-training and then one fine-tuning dataset, while the from
scratch versions only learn from one fine-tuning dataset. We also pre-train
ablated versions of NTT: we compare our multi-timescale aggregation of
1024 packets into 48 aggregates (see Section 3.3) with no aggregation (using
only 48 individual packets) and fixed aggregation (using 48 aggregates of
21 packets each, i.e., 1008-packet sequences). In addition, we pre-train one
model without delay and one without packet size information in the input
sequences. Finally, we consider two naive baselines: one always returns the
last observed output value; another returns an EWMA.>

Tasks We evaluate our models on two prediction tasks. The first is to
predict the delay of the most recent packet; this task is also used for pre-
training. The second task is to predict the message completion times (MCTs),
i.e., the time until the final packet of a message is delivered. This flow-level
task uses a decoder with two inputs: the NTT-encoded sequence and the
message size. We report the mean-squared error (MSE) for both tasks and
process MCTs on a logarithmic scale to limit the impact of outliers.®

Case #1 — Generalization on the same topology We first consider the
fine-tuning case 1, where we add unseen cross-traffic on the same topol-
ogy (Figure 3.4, Tabs. 3.1 and 3.2). The pre-trained NTT beats all basic
baselines (Table 3.1). While this is no breakthrough, it suggests that NTT
learns sensible values. Next, we observe that pre-training is beneficial: the
pre-trained NTT outperforms the from scratch version (Table 3.1); it general-
izes to a new context (unseen cross-traffic) and a new task (MCT prediction).

5 Exponentially Weighted Moving Average; we used « = 0.01.
6 MCT mean: 0.2s ; 99.9th percentile: 235



all values x10~23 Pre-training  Fine-tuning (10%) Layers trained MSE(Delay) Training time

Delay Delay log MCT  Pre-trained %1073
NTT Fine-tuning (full) Decoder only 0.033 8h4s
. . 0,
Pre-trained 0.072 0.097 65 Fine-tuning (10%) Decoder only 0.037 3h45
From scratch - 0.313 117 From scratch
Fine-tuning (full) ~ Full NTT 0.036 26h
Baselines ) )
Fine-tuning (10%) Full NTT 0.118 8hgo
Last observed 0.142 0.121 2189
EWMA 0.259 0.211 1147 Table 3.2: Pre-training saves resources: we achieve better per-
NTT (Ablated) formance with less fine-tuning data and computing power.
No aggregation 0.258 0.430 61
Fixed aggregation 0.055 0.134 115 MSE(Delay)  Training time
Without packet size 0.001 8.688 94 Pre-trained x1073
Without delay 15.797 10.898 802 Fine-tuning (full)  0.004 10h

Fine-tuning (10%)  0.035 8h
Table 3.1: Mean Squared Error for all models and tasks. The

pre-trained NTT outperforms the from-scratch version and ) ]
thanks to our design choices (Section 3.3). Fine-tuning (full) 5.2 20h

Fine-tuning (10%) 8.2 11h

From scratch

Table 3.3: Pretraining can be essential: on a larger topology,
training from scratch fails even with a large dataset.
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We also observe the benefits of hierarchical aggregation and the mix
of network and traffic information in the raw data (Table 3.1). With no
aggregation, the model has little history available; we observe that, per-
haps surprisingly, this affects the delay predictions but not the MCT ones.
Conversely, with a fixed agqregation, the model loses packet-level details
but has access to a longer history; this seems sufficient to predict delays
but not MCT. More generally, this initial result suggests that both recent
packet-level information and an aggregated history are useful to generalize
to a large set of tasks. Considering the NTT versions without packet size
and without delay information, we observe that neither generalize. Without
packet size, the model overfits the pre-training dataset and performs poorly
on predicting delay for fine-tuning. Without delay information, the model
can logically not produce any sensible prediction for packet delays or MCTs.

Finally, one can argue that the pre-trained NTT has an unfair advantage
as it trained on about ten times more data than the from scratch version. To
put things into perspective, Table 3.2 compares the delay MSE and training
time for NTT versions fine-tuned on different datasets. We observe that
fine-tuning on a full dataset from scratch yields about the same performance
as the on the 10% dataset after pre-training.” However, fine-tuning on the
full dataset also requires almost seven times as much training time (26h
vs. 3h45). In practice, collecting fine-tuning data is often expensive; it is
thus beneficial to require less. Finally, fine-tuning from scratch may just not
work in more complex settings, as shown next.

Case #2 — Generalization on a larger topology We now consider the fine-
tuning case 2, with several cross-traffic sources on a larger topology (Fig-
ure 3.4). In this setting, packets toward different receivers experience differ-
ent path delays and different levels of congestion from cross-traffic.

As evident from Table 3.3, pre-training is essential for NTT to learn basic
congestion dynamics first, then generalize later on to the topology’s specifics
during fine-tuning.® When fine-tuning from scratch, even the full dataset
is not enough to learn; performance is worse than the baselines (MSE of
11.2 and 4.0-not shown). Without addressing information, NTT cannot
differentiate between the receivers and thus cannot predict the packet delay
accurately (MSE of 2.8-not shown).

7 Tabs. 3.1 and 3.2 were obtained with different “10% fine-tuning datasets”. The data allows
comparison within each table but not across the two tables.

8 The importance of learning increasingly complex tasks is a problem known as curriculum
learning [99] and was recently considered in networking [90].
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3.5 DISCUSSION & FUTURE RESEARCH

Our initial results are promising: they show that NTT effectively learns,
that the pre-training knowledge generalizes to new tasks and contexts and
that its specific design benefits overall performance. Nevertheless, it merely
validates that NTT may work in practice. We discuss key questions below.

Does the premise hold? We showed some potential for pre-training and
fine-tuning with small-scale simulations. However, real networks are unde-
niably more complex than this environment. Real topologies include many
paths where many different applications, transport protocols, queuing dis-
ciplines, etc.coexist. There are also many more fine-tuning tasks to consider,
e.g., flow classification for security or anomaly detection. Testing our NTT
prototype in real, diverse environments and with multiple fine-tuning tasks
would provide invaluable insights into the strengths and weaknesses of
our architecture and the ‘learnability” of network dynamics in general. In
Chapter 4, we begin to investigate this question by analyzing an NTT-like
model on preliminary real-world video streaming data.

Advancing NTT Our prototype architecture [100] needs enhancements
to be helpful in more diverse environments. We see three directions for
improvement: (i) packet headers; (ii) network telemetry; and (iii) sequence
aggregation. Considering packet headers may be essential to learning the
behavioral differences of transport protocols or network prioritization of
different traffic classes. However, raw headers are challenging inputs for
an ML model, as they may appear in many combinations and contain
values that are difficult to learn, like IP addresses [83]. Research from
the network verification community on header space analysis [101] may
provide valuable insights on header representations and potential first steps
in this direction. In addition, we may collect telemetry data like packet
drops or buffer occupancy. This may help to learn, but not every trace will
contain all telemetry, and future research will need to address this potential
mismatch. Finally, we base our prototype aggregation levels on the number
of in-flight packets, i.e., whether packets in the sequence may share some
fate, usually determined by buffer sizes. The further packets are apart,
the less likely they do, and the more we aggregate. We believe matching
individual aggregation levels to typical buffer sizes (e.g., flow and switch
buffers) may be beneficial. Still, future research needs to put this hypothesis
to the test and determine the best sequence sizes and aggregation levels
across multiple networks.
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Message-based NTT Our current NTT prototype is focused exclusively
on packet sequences. However, for applications, it may be easier to collect
telemetry on sequences of messages like HTTP requests or video chunks
instead of the underlying packets. Messages typically contain data that
is sent over many packets and may be leveraged as a “natural” way of
aggregating sequences. For example, we observe video chunks for a Puffer
video stream to average about 200 packets, up to about 1000 packets.?
Instead of purely focusing on advancing the packet-based NTT, it may
also be beneficial to investigate a message-based NTT. However, we must
keep in mind that be focusing only on messages, we may lose valuable fine-
grained information that we may only infer from packet-level timescales.
Chapter 4 investigates both a packet- and message-only NTT variants as
well as combining packet and message sequences into a hybrid model.

Continual learning A cat remains a cat, but the Internet is an evolving
environment. Protocols, applications, etc., change over time. We conjecture
that underlying network dynamics change less frequently than specific
environments; thus, the same NTT may be used for several updates of
the same fine-tuned model. Nevertheless, even a pre-trained model may
become outdated. It is already difficult to determine when to re-train a
specific model [16]; it might be even more difficult for a model supposed to
capture a large range of environments. While we have treated this chapter
independently from our results on learning over time in Chapter 2, we believe
that it would be an interesting future research direction to combine both.

9 The Puffer data itself does not contain packet data, but several sample videos are available in
their public repository, which we used to determine this number.
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LEARNING LATENT NETWORK STATE: A LOOK
BEHIND THE CURTAIN OF TRAFFIC MODELING

In the previous chapters, we have investigated learning over time and space.
In both cases, we considered specific models: the Fugu transmit time predic-
tor, a standard neural network (Chapter 2), and NTT, a Transformer model
for packet traces (Chapter 3). Just as we leveraged a Transformer archi-
tecture and pretraining to improve generalization, a plethora of modeling
strategies have been proposed for different traffic modeling tasks.

Consider the following video-streaming tasks: (i) predicting the future
download time (like Fugu); and (ii) counterfactual reasoning, which aims to
answer questions like How would past download times have changed with a dif-
ferent ABR? Solutions for counterfactual reasoning, such as CausalSim [102]
and Veritas [103] use different models and training methods than Fugu, and
it is impossible to directly apply and compare them in each other’s domain.
This lack of comparability limits knowledge transfer and generalization.

Here, we see an opportunity: at their core, network traffic models share
an underlying problem: from past observations, estimate the latent network
state to predict future or counterfactual network responses. By evaluating
the different strategies through a common lens of latent state estimation,
they become comparable, allowing us to transfer successful ideas, identify
strategies that generalize well, and remove unnecessary constraints. For
example, CausalSim can only be trained from data with multiple distinct
ABRs and cannot be used otherwise. Is this constraint necessary?

We realize this opportunity by formulating the general problem of learn-
ing latent network state and identifying key steps needed to solve it. This
allows us to analyze how Fugu, NTT, CausalSim and Veritas solve these
individual steps, making them comparable even if their final tasks are not.

This chapter is structured as follows. Section 4.1 summarizes the learning
strategies of Fugu, NTT, CausalSim, and Veritas. Section 4.2 presents the
general problem of learning latent network state, its key components, and
how the different strategies address them. Section 4.3 evaluates the different
approaches on both the Puffer video streaming dataset and a preliminary
packet dataset. Finally, Section 4.4 summarizes our findings, discusses
limitations, and presents open research questions.
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4.1 OVERVIEW

In this section, we provide an overview of the different prediction tasks and
systems we analyze. In particular, we explain how they share a fundamental
problem: estimating the latent network state. For the first task, download
time prediction, we summarize Fugu and NTT (see Chapters 2 and 3 for
more details). For the second task, counterfactual reasoning, we introduce
CausalSim [102] and Veritas [103].

4.1.1  Download time prediction

ABR algorithms select the quality of the next video chunk to optimize the
user Quality of Experience (QoE), i.e., they select the chunk size maximizing
quality while minimizing stalls (see also Chapter 2 for details) This is a
control loop that must model the current network traffic to make optimal
decisions. Placing more load on the network, e.g., by downloading a larger
high-quality video chunk, can improve the user experience—but it may
also overload the network, leading to interrupted streams and a worse QoE.
ABR algorithms must predict the outcome of their actions, typically the
time to download a chunk of a given size. In the following, we discuss
ABR algorithms that combine a classical model-driven control loop with an
ML model. Alternatively, reinforcement learning-based ABR algorithms like
Pensieve [53] remove the control loop and predict the next action directly.
We focus on the former, as it allows us to analyze the quality of modeling
the network independently of the quality of the planning algorithm.

Output Output Output Output Output
download time bin download time source ABR | download time, bandwidth trace
probabilities T next buffer
bl ! Rt
Decoder l |Adversary| ‘ Decoder |
[w ] [
Input Input Input Input Input Input
chunks & TCP, next chunk size packets chunk size source chunk buffer,chunk size source chunks & TCP
(a) Fugu (b) NTT (c) CausalSim (d) Veritas

Figure 4.1: Models for download time prediction and counterfactual reasoning.
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Buffer-based ABR Not all ABR algorithms are based on ML, nor do all of
them explicitly estimate the latent network state. Linear BBA [104] and other
buffer-based algorithms select the next video chunk based on the current
buffer level, selecting higher quality chunks if the buffer is full and vice
versa. Still, this implicitly models the latent network state, although coarsely:
among other options, a low buffer may indicate a network with low inherent
capacity, or a network that is under a heavy load. However, this model only
describes the current state and has no predictive power. Predictions are
made with a heuristic, assigning each chunk size a minimum buffer level
that is assumed to be sufficient to download the chunk in time.

Model-predictive ABR More advanced ABR algorithms use model predic-
tive control (MPC) to plan ahead and optimize expected QoE over a future
time horizon [105]. By employing a model to predict download times,* they
can improve over heuristics like BBA if the model is good enough. Yet, if
the models do not capture the network state accurately, these algorithms
can fail to outperform simpler alternatives like BBA [16].

Fugu improves model-predictive ABR with an ML-based model, pre-
dicting a distribution over download times based on the network state
estimated from the past 8 video chunks (Figure 4.1a). Fugu uses application
and transport protocol inputs: it observes video chunk sizes and download
times as well as TCPInfo metrics like the congestion window size.

Instead of Fugu, we could also use NTT to predict the download time. In
Chapter 3, we have tested NTT with multiple prediction tasks, including
predicting the message completion time. In the context of video streaming
where messages are video chunks, this is equivalent to predicting the
download time of the next video chunk. However, where Fugu considers
application- (video chunks) and transport protocol (TCPInfo) observations,
NTT steps closer to the network and considers packet traces (Figure 4.1b).

4.1.2  Counterfactual Reasoning

Another important use case for predicting the latent network state is counter-
factual reasoning. In video streaming, this typically means: given actions and
observations from a source ABR, how would both have changed if a different
target ABR had been used instead? The latent network state impacts both
actions and observations; in counterfactual reasoning, latent variables that
introduce such causal dependencies are called confounders.

Predicting download times is typically more accurate than predicting throughput, as the
relationship between them is nonlinear [16, 103].
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Accurate counterfactual reasoning requires accounting for confounders.
In fields like medicine, randomized controlled trials (RCTs) are considered
the “gold standard” to achieve this. In an RCT, actions (called interventions)
are randomly assigned to make them independent of the confounders. This
has also been applied in networking. The Puffer project is a large-scale
RCT, randomizing the choice of ABR to make the aggregated long-term
performance independent of user network conditions. However, this is
no silver bullet for counterfactual queries in video streaming: RCTs can
remove the impact of confounders on the aggregated performance, but not
on individual actions. ABRs make decisions based on the current state and
may influence the network state, and thus the future observations, e.g., by
causing congestion. Thus, we cannot remove the impact of confounders
on individual ABR actions through our experiment setup and must esti-
mate and compensate for them explicitly. In other words, counterfactual
reasoning for video streaming requires estimating the latent network state.

Estimating confounders in video streaming The need to model con-
founders for counterfactual reasoning in video streaming was first high-
lighted in a case study by Sruthi et al. [106]. Faced with RCT limitations,
the study argues for using domain knowledge to (i) identify confounders,
and (ii) build a causal graph relating them to actions and observations.

The study models a single confounder, the available network bandwidth,
and models it as a square wave (high and low bandwidth alternating in fixed
intervals), and its impact on actions and download times. They generate
synthetic data from this model and show that modeling dependencies
improves results over ignoring confounders or relying on RCTs.

However, even for this simple case with minimal confounders, the derived
causal graph is complex and difficult to scale up to real-world networks. As
a result, the case study became the foundation of CausalSim and Veritas,
which address the study’s limitations in two opposing ways.

CausalSim: removing RCT bias with adversarial learning Instead of
hand-crafting a complex causal dependency graph to avoid RCTs, Causal-
Sim [102] learns how to remove biases from RCT data.

The key idea behind CausalSim is to leverage adversarial learning [107].
Adpversarial learning uses an encoder-decoder structure with an additional
adversarial decoder (Figure 4.1c). The encoder and first decoder solve the
prediction task: From past actions and observations, the encoder extracts
the latent state, and given the latent state and action, the decoder predicts
the original observations. The trained decoder can later use the estimated
latent state and an alternative action for counterfactual reasoning.
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However, training with RCT data may result in a biased latent state. The
goal of the second, adversarial decoder is to reveal these biases. It learns
to classify the ABR from the latent state, exploiting any ABR-dependent
biases. This can be leveraged to improve the encoder by training it to both
minimize the prediction loss (the actual task) and to maximize classification
loss. As predicting the correct ABR requires latent state biases, maximizing
the loss of the adversary promotes removing these biases during training.

Veritas: learning a causal dependencies Where CausalSim aims to remove
RCT biases, Veritas [103] follows the case study’s approach and proposes a
causal model suitable to represent real-world video streaming dynamics.

Veritas achieves this with a hidden Markov model (HMM). An HMM
combines a latent state with learnable transition- and emission probabilities.
The transition probabilities describe how the latent state evolves, and the
emission probabilities describe the likelihood of observations conditioned
on the latent state. Veritas modifies this HMM to make learning tractable,
and we discuss the most important modifications below.

First of all, Veritas uses a partially observable state. It uses only a single
truly latent variable, the available network bandwidth, and several observ-
able variables: the chunk size, the buffer level, and TCPInfo metrics.? As a
result, it can express complex state transitions, yet only needs to learn the
transition probabilities for the single latent variable given the observable
ones, instead of all combinations. To further simplify learning these proba-
bilities, Veritas discretizes the bandwidth and assumes that it only changes
in fixed intervals (by default 0.5 Mbps bins and 5 seconds intervals).

Furthermore, Veritas replaces learnable emission probabilities with a
hand-crafted emission function that translates the state into the observed
throughput. This further reduces the complexity of fitting the HMM to the
data, completely removing the need to learn emission probabilities.

Veritas uses this modified HMM for counterfactual reasoning as follows:
Given a video streaming trace, it samples one (or several) traces of latent
states, i.e., available bandwidths during the stream (Figure 4.1d). These
sequences are then used as input to a network simulator, which can now be
used for counterfactual reasoning. Compared to using the potentially biased
observed bandwidth, Veritas argues that the latent available bandwidth
allows for more accurate counterfactual reasoning. Additionally, sampling
multiple traces can provide a distribution over counterfactual outcomes,
allowing for both more conservative and more optimistic estimates.

2 Veritas is trained on Puffer and uses the same statistics as Fugu.

52



4.2 LEARNING NETWORK DYNAMICS

4.2 LEARNING NETWORK DYNAMICS

In this section, we formalize the general network modeling problem as a
nonlinear dynamical system. First, we demonstrate how download time pre-
diction and counterfactual reasoning can be represented in this framework.
Next, we then discuss four key components for learning this system:

1. the choice of model architecture,

2. the representation of latent state space,

3. the history, i.e., observations used to estimate the latent state,

4. the training objectives and data.
Our goal is to understand how to best implement these components to learn
the latent network state. Thus, we analyze how the overall strategies of
Fugu, NTT, CausalSim, and Veritas approach these individual components
and summarize their differences as open questions to guide our evaluation
in Section 4.3. Table 4.1 provides a summary at the end of this section.

4.2.1  Dynamic equations

We model the network traffic dynamics as a nonlinear dynamical system:

%(t) = f(t, x(t), u(t)) (4.1)
y(t) = g(t, x(t), u(t)) (4-2)

where x(f) and % (t) are the system state and its evolution; u(t) are inputs;
and y(t) are observable variables. The function f determines the evolution
of the system state, while the function g captures the observability of the
system. Typically, ¢ does not allow observing the full state x(¢), and the
unobserved part is called the latent state. This latent state captures anything
that impacts observations, from the network topology to congestion control
algorithms used by other applications. We concretize this in Section 4.2.3.

Prediction and counterfactual reasoning We can represent both predic-
tion and counterfactual reasoning in the framework of Egs. (4.1) and (4.2).

For download time prediction, we are given a chunk size u(t*) at time
t* and a trace of past observations T, i.e., a set of (¥, u(t'), y(t')) where
t' < t*. We aim to predict the download time y(¢*). This implies estimating
the latent state %(¢) such that Egs. (4.1) and (4.2) hold for all observations
in 7 with a minimal error. Note that we can typically not perfectly estimate
x(t) and y(t), as the system is noisy and not fully observable.
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For counterfactual reasoning, we are again given a trace 7 of past ob-
servations and inputs (fsrc, Usrc(tsrc), Y(tsrc)) collected from a source ABR,
and we are asked to predict the outcome of a different input sequence
ugt(t) produced by a target ABR. As before, this implies estimating the
latent state ¥(f), such that we can predict the alternative state evolution
given ug(t) and predict the counterfactual observations yyg(t).

Learning strategies It is not necessary for a system to explicitly go through
the steps described above. For example, we may train a model to predict
download times without explicitly returning the estimated latent state X(t).
Implicitly, the model must still estimate the latent state to correctly estimate
the network behavior and predict accurately. In the following, we discuss
the key steps to learning a system for download time prediction and/or
counterfactual reasoning under the framework of Egs. (4.1) and (4.2).

4.2.2  Model architecture

The first and most fundamental decision is the choice of model architecture,
that is, how we choose to represent the abstract approach presented in
Section 4.2.1 as an actual model that we can train and evaluate.

Like Veritas, we can attempt to design such a model by hand. Alterna-
tively, we can use a black-box model, as done by Fugu, NTT, and CausalSim.
A hand-crafted model can be easier to interpret and analyze but may suffer
from underspecification, not capturing all important network dynamics.
Black-box models can learn more, and often more complex dynamics, but
may be harder to interpret and analyze. Additionally, they require the
training data to be rich enough to contain all important dynamics; if this is
not the case, a black-box model may provide no advantage.

However, even a black-box model is not free of design choices. One
important difference is whether we predict the latent state (t) explicitly
or implicitly. Fugu uses a single model, mapping all available inputs to the
required predictions directly. Concretely, this means that the inputs include
both past observations 7 as well as the next input u(t*), and the model
returns the prediction y(t*). The model does not expose the latent state,
it is implicit in the model. This results in a simple but task-specific model
architecture: while the model has learned to estimate the latent state, we
cannot easily transfer this knowledge to other tasks.
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Alternatively, NTT and CausalSim use an encoder-decoder architecture:

%(t) = Encoder(7) (4.3)
y<t*) = DeCOderpredict(t*r f(t*), u(t*)) (4-4)
yfgt(t) = DeCOdercounterfactuul(t/ (1), utgt(t)) (4-5)

In this architecture, a general encoder is trained to estimate the latent state
which is passed to task-specific decoders. The latent state can be reused for
different tasks by exchanging the (typically small) decoder, as we’ve already
shown with NTT in Chapter 3. This architecture also enables designs like
CausalSim, where a single encoder is combined with multiple decoders.

We can summarize this design space with two key questions:

In which contexts are hand-crafted models worth the effort?
What are the trade-offs between explicit and implicit latent state?

4.2.3 Latent space representation

For hand-crafted models or models with an explicit latent state, we must
decide whether to represent this state with a low or high-dimensional space.

For NTT, we have argued for learning the “best features” from traffic,
i.e., learning a high-dimensional latent representation (see Chapter 3).

Both CausalSim and Veritas use a one-dimensional latent space. Veri-
tas models the latent state as the available capacity of the network. The
authors of CausalSim similarly interpret their latent state as the available
capacity and implicitly assume that a higher-dimensional latent space is
not necessary to capture the network dynamics, not discussing it further.

We argue that a single latent variable is insufficient. For example, what
happens if we exceed the available capacity? The network may carry pre-
dominantly elastic traffic like TCP; upon exceeding the capacity, this traffic
backs off, making additional capacity available. Alternatively, inelastic traf-
fic like UDP continues to send at the same rate. An ABR algorithm may
deliberately choose to exceed the capacity if the buffer level is high and
additional download time is acceptable; with a single latent variable, we can-
not fully capture the network response. It is easy to imagine such scenarios,
yet difficult to determine whether they are relevant. In other words:

Is there a benefit from a high-dimensional latent space?
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4.2.4 History

We must estimate the latent state from past observations 7. A richer history
can help to estimate the latent state in several ways. First of all, observations
are noisy, and a longer trace can help to find a more robust estimate.
Furthermore, the history may also reveal the trajectory of the latent state,
which may be impossible to estimate from a single observation. The different
systems we analyze treat that history very differently.

NTT considers a trace of individual packets, i.e., the finest granularity of
observations. For each packet, it includes minimal information (timestamp,
size, and RTT). Fugu, Veritas, and CausalSim are all designed for the Puffer
data, which does not include packet-level information. Thus, they include
metrics at a coarser granularity. All of them include the size and download
time of video chunks. Fugu und Veritas include additional transport pro-
tocol statistics by considering TCPInfo metrics, which include the current
transport protocol state (congestion window size) and traffic aggregates
(RTT and delivery rate estimates). CausalSim and Veritas also include an
application metric: the current buffer level. To be precise, CausalSim does
not provide the buffer level as an input to the encoder, but as an input to
the decoder. At the same time, the current playback buffer is a result of past
decisions and network conditions, and thus implicitly provides additional
history to the decoder, albeit in an aggregated form.

The systems also differ in the amount of history they consider: NTT
and Fugu include a fixed window of 1024 packets and 8 video chunks,
respectively. In theory, Veritas considers the whole trace of past observations.
In practice, however, its performance depends on the sequence length, and
the published Veritas model is limited to traces of at most 200 video chunks.
CausalSim considers only the current video chunk and buffer size.

We have seen metrics from fine granularity (packets) to coarse granularity
(video chunks, which can encompass hundreds of packets) as well as the
use of additional metrics provided by underlying protocols (TCPInfo) or
the application (buffer). In general, the more metrics we include, the more
information we have to estimate the latent state. Yet having a richer history
also comes with the overhead of collecting, storing, and processing the
additional information. This trade-off leads to the following questions:

Which metrics, in particuar at which granularity, are most helpful?
Is a longer history always better, or are there diminishing returns?
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4.2.5 Training

Hand-crafted models Hand-crafted models often require specialized train-
ing algorithms. Veritas, for example, implements a modified HMM training
algorithm to make training their model tractable. In this case, the choice of
model architecture forces our hand in the choice of training algorithm.

Black-box models Black-box models approximate an arbitrary function
with a parametrized model, most commonly a neural network. They are
typically trained with supervised learning algorithms: an off-the-shelf op-
timizer searches for the model parameters that minimize a loss I(y, )
between the ground truth y and prediction #. A key design decision is the
choice of output, e.g., whether to predict a distribution or a point value.

Fugu, NTT, and CausalSim use two common approaches for their primary
predictions: Fugu is a probabilistic model and predicts a distribution of
download times. NTT predicts the download time as a point value. Causal-
Sim also predicts the download time as a point value and additionally
predicts the buffer size to predict rebuffering more accurately. Alternatively,
we could also simulate the buffer size from the download time:

buffer;,; = max (0, min (bufferyy, buffer; — di + d)) (4.6)

where dt is the predicted download time and d the video chunk duration.
Any time above buffer,;, is spent waiting, as we can only download the
next chunk once there is free space. Time below 0 is time spent rebuffering.

Biased training data CausalSim argues that the training data is biased,
and thus requires data from an RCT with multiple ABRs and aims to
remove this bias with the help of adversarial learning (see Section 4.1).
More generally, such data biases imply that the training data does not
sufficiently cover the space of possible system evolutions (called trajectories)
to learn the system dynamics. In data-driven control, training data that
fully explores the trajectory space is called persistently exciting. The more
persistently exciting the data, the better we can learn the system dynam-
ics [108]. Do we need an RCT with multiple ABRs, or can a single ABR
provide persistently exciting data to learn unbiased network dynamics?

In summary, we investigate the following questions:

How much does the choice of output matter?
What determines “good” training data?
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Application System Model Latent Space History Metrics History Length ~ Output
Prediction Puffer Single Model Implicit Chunk size 8 Chunks Download time
Download time (distribution)
TCPInfo
NTT Encoder/Decoder  Explicit Packet timestamp 1024 Packets Download time
high-dim. Packet size (point value)
(black box) Packet delay
Counterfactual ~ CausalSim  Encoder/Decoder  Explicit Chunk size 1 Chunk Download time, next
with Adversary 1 dim. Download time buffer level (point value)
(black box) Buffer level ABR (distribution)
Veritas Modified HMM Explicit Chunk size Full trace Bandwidth trace
1 dim. Download time (<200 chunks) (distribution)
(Available TCPInfo
bandwidth) Buffer level
Table 4.1: Overview of key differences between Fugu, NTT, CausalSim, and Veritas.
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4.3 EVALUATION

In this section, we put the questions posed in Section 4.2 to the test. We
train and evaluate 49 different model variants with 5 different datasets
representing different times and network environments, considering both
download time prediction and counterfactual reasoning. We evaluate each
model with over 12 stream-years of video data.

Limitations We discuss the limitations of our evaluation in Section 4.4,
but want to highlight a key point here: The majority of our results are
based on the Puffer dataset, which is limited to North American users and
network environments and has been relatively stable over time.3 In other
parts of the world, network dynamics may be different and lead to different
conclusions. We are working to collect a geographically diverse dataset and
present preliminary results at the end of this section.

4.3.1  Models, datasets, and metrics

Models We train and evaluate three different model architectures:

LINEAR A linear, Fugu-like model. It combines history (past observations)
and action into a single input.

ENCODER A linear encoder/decoder model. The encoder processes the
history and predicts an explicit latent state. This latent state is then
combined with the action and passed to the decoder.

TRANSFORMER Encoder/decoder model with Transformer encoder.

By default, we train these models to predict download times; to use
them for counterfactual simulations, we use the hand-crafted buffer model
described in Section 4.2.5. We train these models with different latent space
dimensions, history metrics and lengths, and outputs (including directly
predicting buffer levels). We trim the total space of combinations to 44
distinct models. We provide the model hyperparameters in Appendix A.3.

We also train and evaluate 5 different variants of CausalSim, varying

the importance of the adversarial decoder as well as removing RCT data.

Finally, we evaluate the published Veritas model. We are not able to retrain
this model, as the training code is non-functional. Veritas’ custom training
is complex and we were unable to repair it. We have reached out to the
authors, but at the time of writing, the issue remains unresolved.

When retraining with Memento in Chapter 2, after retraining a few initial times, we did not
need further retraining for the rest of our deployment (over half a year).
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Datasets CausalSim and Veritas are trained and evaluated on Puffer data,
collected between summer 2020 and 2021, including only “slow” streams
with an average delivery rate below 6 Mbps. For a fair comparison, we also
use this subset. Additionally, we consider “fast” streams with an average
delivery rate above 6 Mbps and data from 2023. This gives us four datasets
with different environments and times. We use the following shorthands:

SLOW/FAST STREAMS refers to the environment for training or testing.
SLOW/FAST MODEL refers to a model trained with slow/fast streams.
2021/2023 refers to the time ranges 2020-2021, and 2023, respectively.
For evaluation, we use a month of data each.* For training, we use the
whole time range, excluding evaluation data. Unless otherwise stated, we
show results for the 2021 slow model evaluated on 2021 slow streams.
The Puffer dataset lacks packet-level data. This prevents us from evalu-
ating NTT. To address this, we have extended the Puffer media server to
collect packet traces, and are preparing a global experiment with real users
to create a geographically diverse dataset. This is a lengthy process that is
not yet completed. We tested our modified media server in cloud environ-
ments, streaming between Europe, South America, and Asia. We use these
results as a preliminary packet dataset, even though it is comparatively
small, containing 245 stream hours, 200 for training and 45 for evaluation.

Metrics For download time prediction, we compute the mean squared er-
ror (MSE).> We also compute the ggth percentile error per stream, averaged
over all streams (9gth percentile MSE), as a measure of tail performance.

For counterfactual reasoning, we use Linear BBA as the target ABR and
all other ABRs as sources. We report the Earth Mover’s Distance (EMD)
between the counterfactual buffer distribution and the target ABR buffer
distribution in the same environment and time. A smaller distance indicates
a more closely matching ABR state. In addition, we also evaluate the Quality
of Experience (QoE), measured by image quality and rebuffering time.

We aggregate each metric per day and report the mean and goth percentile
bootstrap confidence interval over all days. This allows us to put differences
in the context of random daily fluctuations to judge their significance.

By default, we report MSE and EMD for the 2021 slow model on 2021
slow evaluation data. We show other metrics, environments, and times
when they show significantly different patterns.

CausalSim is evaluated on a year of data instead of one month. We considered this and found
no significant differences. Thus, we opted for a shorter period to allow for more experiments.
Our model variants do not use probabilistic predictions, thus the logscore as used in Chapter 2
is not applicable. For Fugu, we report the expected MSE over all predictions.
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and a linear Encoder out- CDF: all models except the Encoder predicts im-
perform a baseline that Veritas estimate the target age quality best, but un-
uses the harmonic mean distribution well, the En- derestimates rebuffering,
of the throughput. coder performs best. vice versa for CausalSim.

Figure 4.2: Comparing an Encoder, Fugu, CausalSim, and Veritas with non-ML
baselines. Not shown: a linear model performed identically to the Encoder; a
Transformer performed worse but still outperformed the baselines.

4.3.2 Model architectures

Figure 4.2 shows the comparison of different model architectures for down-
load time prediction and counterfactual reasoning on the 2021 slow streams
for a fair comparison with CausalSim and Veritas. In comparison to non-ML
baselines, Fugu (we use the Fuguge, variant, see Chapter 2), CausalSim, and
Veritas, it shows a linear Encoder architecture. We show a ‘baseline” Encoder
with 128 latent space dimensions and 8 video chunks of history, including
minimal chunk information (timestamp, size and download time).

Implicit vs explicit latent state In all experiments, the linear architecture
performs equally well as the Encoder, i.e., we observe no performance
difference between implicit or explicit latent state estimation (not shown).

To our surprise, we found a Transformer encoder extracts a worse latent
state. Its prediction error is 2x higher than the Encoder (not shown). We
observe better results with packet data (see Section 4.3.6 below).

Download times Figure 4.2a shows the download time prediction error.
Both Fugu and the Encoder perform similarly; there is no significant differ-
ence between the probabilistic and point value prediction. Both outperform
an ML-free baseline, which uses the harmonic mean (HM) of the through-
put over the last 8 chunks to predict the next download time. This is in line
with results presented by the authors of Fugu that similarly show an HM
error an order of magnitude higher than Fugu [16, Figure 7].
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Counterfactual buffer distribution Figure 4.2b shows the counterfactual
buffer distribution. As a non-ML baseline, we use a trace simulator that
replays the observed throughput trace. The simulator, CausalSim, and En-
coder perform similarly, with the Encoder matching the overall distribution
most closely, yet underestimating low buffer levels (show in more detailed
in Section 4.3.5 below). CausalSim tends to overestimate low buffer levels,
in line with observations made by the authors of Veritas. However, we
observe discrepancies with the results reported by CausalSim and Veritas.
The authors of CausalSim find it to outperform a trace simulator [102,
Figure 7a], while both perform similarly in our evaluation. We find two
probable causes for this: first, their reported EMD may not be statistically
significant, it falls within the 9o% confidence interval over daily fluctuations;
Nevertheless, we compare their trace simulator to ours to find alternative
explanations, finding only one notable difference: our trace simulator ex-
cludes sessions if there is insufficient observed data to allow any choice
of initial chunk size for the simulated ABR algorithm. These are typically
traces with only one or two video chunks that are recorded when a user is
flipping through channels. We also exclude these traces from all systems for
a fair comparison; it seems that some of the observed differences may be
due to these ultra-short traces; not due to improvements on longer traces.
The discrepancy with Veritas is more striking. Veritas claims to perform
similarly to CausalSim while offering a more interpretable and generalizable
causal model. Our results show a significantly different buffer distribution.
However, Veritas is trained and evaluated on a only single day of Puffer
(August 24, 2020). On this day, Veritas does perform similarly to CausalSim.
Yet, as our results show, it does not generalize well. Unable to retrain Veritas,
we could not verify whether it would perform better with a larger dataset.
Notably, Veritas is also much slower than CausalSim or the Encoder, taking
approximately 13x as long to evaluate on the same hardware.

Counterfactual QoE Figure 4.2c shows the counterfactual QoE. CausalSim
is closest to the target in terms of rebuffering but underestimates the image
quality slightly. This matches the buffer distribution: CausalSim overes-
timates low buffer levels and thus more likely predicts rebuffering. The
Encoder matches the overall distribution more closely, which is reflected
in the most accurate image quality prediction. However, our hand-crafted
buffer model fails to predict low buffer levels well and predicts a signifi-
cantly lower rebuffering rate. We investigate this further in Section 4.3.5
below, and show that learning to directly predict the buffer level can im-
prove the prediction of rebuffering compared to a hand-crafted approach.
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Figure 4.3: A high-dimensional latent space seems useless for a slow model on
slow streams, but significantly improves generalization, in particular over time.

4.3.3 Latent Space

Figure 4.3 show the impact of a higher-dimensional latent space on the
download time prediction performance of the Encoder model. Figure 4.3a
shows the 2021 slow Encoder evaluated on slow streams, where we observe
no changes in the average MSE. This reinforces the design choices by Causal-
Sim and Veritas: both were trained and tested in the same environment and
performed well with a just one-dimensional latent space.

Perhaps surprisingly, evaluating the same model on fast streams shows
a significant improvement with a higher-dimensional latent space. While
throughputs are higher and thus the MSE is lower overall, a second di-
mension already reduces the MSE by 24 %, and this benefit increases to a
reduction of 46 % with 128 dimensions (Figure 4.3b). The model has learned
to extract a complex latent representation, even if it may not be immediately
apparent or seemingly not useful in the current environment.

We find that these results are conditional: while generalization for the
fast model to slow streams is also improved, the benefit is smaller (6.6 %,
Table 4.2). We suspect that the slow stream dataset is more persistently
exciting, which allows the model to extract more diverse patterns—if the
latent space is large enough. We present additional evidence for this in our
evaluation of adversarial training (see Section 4.3.5 below).

Finally, Figure 4.4 shows the results for a slow model in counterfactual
simulation. Simulating the buffer distribution appears to be much easier for
fast streams, as the buffer is almost always full. Thus, we cannot observe
notable benefits from a higher-dimensional latent space for the slow model.
We still observe the benefits of generalizing the fast model to slow streams.
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4.3.4 History

Figure 4.5 compares different metrics to represent the recent history, from
coarse-grained buffer level to aggregated TCPInfo statistics, to using several
past video chunks, the finest granularity available in the Puffer dataset.
The buffer level alone does allow the model to extract a useful latent state,
and performance is not significantly better than providing no history at all.
It is marginally more useful for generalization, but still far behind more
fine-grained metrics. TCPInfo as well as past chunks significantly improve
the prediction performance both in the same environment as well as for
generalization, with chunks slightly outperforming TCPInfo. In particular,
we notice a difference between average (Figure 4.6a) and tail ((Figure 4.6b))
performance: TCPInfo provides a noticeably lesser benefit for the tail, where
the more fine-grained chunk history appears to be crucial.

We can confirm the observation made by the Puffer authors that TCPInfo
reduces the error for the first chunk in a stream where no chunk history
is available (Figure 4.7). This benefit vanishes with the second chunk, and
we conjecture that it is not any particular information in the TCPInfo that
is helpful but rather the general fact of providing any history for the first
chunk. However, a video stream does not start with the first chunk, as we
usually download the website or a manifest file first. It may be possible to
track this download as initial history instead of TCPInfo. The Puffer data
does not include this information, and we leave this idea for future work.

For overall performance, there is no difference between using a chunk
history alone or in combination with TCPInfo, and we thus omit TCPInfo
in the following. Figure 4.6b shows that a longer history is beneficial, but
there are diminishing returns, in particular in the slow environment, where

improvements for longer histories are barely out of the confidence interval.
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Figure 4.5: Using a fine-grained chunk history outperforms coarse metrics like
buffer level or TCPInfo, in particular at the tail and for generalization.
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Figure 4.6: The slow model benefits from a longer history. The relative improve-
ments are more significant when generalizing to fast streams.

A Mean Squared Error [%]

1 — 8 Chunks 1 — 128 Dim.

MSE Train Test 1 Dim. 128 Dim. 1 Chunk 8 Chunks
Mean slow  slow -12.6 -13.5 -0.7 -1.7
fast -15.3 -26.8 -38.3 -46.7

fast slow -26.4 -32.3 1.6 -6.6

fast -7.1 -8.9 -0.2 -2.0

goth Perc.  slow  slow -13.2 -13.1 0.7 0.9
fast -23.6 -40.5 -20.6 -38.1

fast slow -19.5 -22.9 0.6 -3.6

fast -9.3 -9.2 -0.9 -0.8

Table 4.3: Relative benefits for increasing history or latent space.
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We also investigate the relationship between the history and the latent
space dimension in Table 4.3, which shows the relative difference between
increasing the history length (for a fixed latent space dimension of 1 or 128)
as well as increasing the latent space dimension (for a fixed history length
of 1 or 8 chunks). For an increasing history length, performance universally
improves. On the other hand, a higher-dimensional latent space is more
beneficial for generalization, but without a sufficiently long history, we
cannot realize these gains, in particular at the tail: increasing the latent space
dimension from 1 to 128 reduces the ggth percentile MSE of the slow model
tested on fast streams by 20.6 % when using single chunk as history, but by
38.1 % when using 8 chunks. This indicates that we require a sufficiently
long history to distinguish some patterns in the higher-dimensional latent
space. With a single data point, we cannot fully leverage the latent space.

For counterfactual buffer distribution prediction, we expect the buffer
level to be a more relevant aggregator of history. Figure 4.8 shows that
this is indeed the case. We test four settings: no history, i.e., using only the
current chunk from the source ABR, using the source buffer level as history,
and using the last 8 chunks. Compared to using no history, the buffer level
reduces the EMD by 24 %. When testing on fast streams, no history fails to
generalize, even though the environment is easy (see Figure 4.4). Using the
buffer level is a significant improvement over no history, but using a chunk
further reduces the EMD by 40 % compared to the buffer level.
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Figure 4.7: TCPInfo statistic improves Figure 4.8: For predicting the counter-
the download time prediction of the first factual buffer distribution, using the
chunk in the video stream, as there are source buffer level is effective, but us-
no past chunks to use as history. ing a trace of chunks is still better.
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4.3.5 Training

Buffer prediction For the next experiments, we focus on counterfactual
reasoning. In general, a download time prediction task allows an Encoder
to learn a good representation of the latent network state. We used a
hand-crafted buffer model to use this Encoder for counterfactual

This knowledge transfers to counterfactual reasoning, where the Encoder
predicts the overall buffer distribution and image quality best. However, it
significantly underestimates rebuffering, as it tends to underestimate the
fraction of low buffer levels (Figure 4.9b). These buffer levels are crucial for
predicting rebuffering, as a full buffer rarely leads to rebuffering.

One benefit of using an Encoder model with explicit latents is the flexibil-
ity to add additional decoders for different prediction tasks. When adding
a decoder predicting the buffer level, the Encoder can learn to predict the
rebuffering rate more accurately (Figure 4.9a) and the predicted distribution
for low buffer levels matches CausalSim more closely (Figure 4.9b).

Adversarial learning Yet, the performance does not fully match, which
raises the question: is this caused by subtle differences in the model hy-
perparameters, or is the adversarial training of CausalSim the key to its
success? We investigate this by training five different variants of CausalSim.
For the first two variants, we remove the adversarial encoder. For the first
variant, we also use training data from only a single ABR. For the remaining
three variants, we gradually increase the weight of the adversarial loss.

To our surprise, Figure 4.10a shows that the adversarial decoder does not
improve CausalSim. A strong adversarial loss can even prevent generaliza-
tion: CausalSim trained on fast streams performs well on slow streams with
no or low adversarial loss, it breaks down with higher adversarial loss.®
This implies that CausalSim does not learn an ABR-biased latent state.

Figure 4.9b investigates this further by comparing the performance of
CausalSim models in-distribution (i.e., a slow model evaluated on slow
streams, with a source ABR seen during training) with two different out-
of-distribution settings: (i) OOD(ABR): a source ABR not seen during
training; and (i) OOD(Env) a different environment, i.e., testing the slow

This result, once again, seems to contradict the results presented by the Veritas paper, which
finds that training CausalSim without RCT data significantly degrades its performance. We
hypothesize that this may be a result of removing RCT data without removing the adversarial
decoder. With only a single ABR, the adversarial decoder can always predict perfectly. Thus, the
encoder cannot learn how to minimize the adversarial loss, which may degrade performance
similar to a strong weight in Figure 4.10a. We have reached out to the Veritas authors to clarify
how they retrained CausalSim, but have not received a response at the time of writing.

67



16.0 0.10

15.8 1

SSIM [dB]

15.4 + 0.04
15.2 ‘\' 0.02

0.08
15.6 'I_ 0.06

4.3 EVALUATION

Target
CausalSim
Encoder
Encoder+Buffer

15. 0.00,
8‘80 0.02 0.04 0.06 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Rebuffering [s]
(a) Counterfactual QoE

Buffer [s]

(b) Counterfactual: buffer CDF (zoomed in).

Figure 4.9: An additional buffer prediction for the Encoder improves the predic-
tion of the rebuffering rate but degrades image quality prediction.
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Figure 4.11: The slow dataset is more persistently exciting (lower density) than
the fast dataset, and additional ABRs only marginally improve this.
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model on fast streams and vice versa. If CausalSim learns a latent state
strongly biased towards some ABRs, the performance of OOD(Abr) should
degrade significantly, but the evidence for this is weak. While there is
some degradation, it is barely outside the confidence intervals, and far less
significant than changes in the environment.

As we argue in Section 4.2, it may be more important for the observed
trace to be persistently exciting in order to learn a rich latent state. We
test this hypothesis by extracting simplified trajectories from the datasets,
containing state transitions in the form of (buffery, actiony, buffery, ), that
is, the buffer level before and after a chunk download and the chosen chunk
size. A set of trajectories is the more persistently exciting, the more it allows
to explore the state space. While there is no closed form to quantify this
in a nonlinear, noisy setting, we use Memento (see Chapter 2) to estimate
the density of the trajectory sample space. If the density is low, individual
trajectories are not similar and thus explore the space better than if the
density is high, which implies many similar trajectories.

Figure 4.11 show that the degree of persistent excitation as measured
by the density matches our previous observations: the difference between
environments is much larger than the difference between including one or
more ABRs; the slow environment is generally more persistently exciting.
This also matches the fact that we learn a more generalizable latent state only
from the slow dataset, and not as much from the fast dataset (Section 4.3.3);
the fast dataset is less diverse and there may be fewer patterns to learn.

4.3.6  Packet traces

In the following, we present preliminary results on the packet-level dataset.
There are two important limitations to this dataset: (i) it is much smaller
than the Puffer dataset, containing only 45 hours instead of several years
of streaming data; and (i) it was collected between cloud servers in well-
connected data centers. As a result, all streams are fast and the environment
is stable. It is “too easy” for counterfactual reasoning: the buffers are always
full, and all algorithms perform equally well. Nevertheless, for download
time prediction, our results show the potential of packet-level data.

Figure 4.12 compares a history of 8 chunks with a history of 1024 packets.
First of all, a packet Transformer performs much better than its chunk
counterpart, on par with the linear Encoder (Figure 4.12a). Interestingly,
a packet-only history significantly outperforms both a chunk-only history
and a combination of chunks and packets.
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Additionally, we can evaluate NTT’s hierarchical aggregation. Compared
to no aggregation or an off-the-shelf convolutional layer, the hierarchical
aggregation works best for the Transformer (Figure 4.12b); in particular,
using a convolutional layer does not seem to work with the Transformer.
This is in contrast to the linear Encoder, which benefits more from the
convolutional layer compared to the hierarchical aggregation. For both
models, however, the most effective strategy is to use only a trimmed
packet sequence of only 32 packets instead of aggregation.

However, we suspect that these results may be biased by the cloud
environment, where long-term patterns may not play a significant role. We
are currently working on collecting a global dataset with real users, and
plan to release it publicly to enable future research in this direction.
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Figure 4.12: In our preliminary dataset, a packet history allows for much better
download time predictions than chunk history.
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4.4 DISCUSSION & FUTURE RESEARCH

In this chapter, we have discussed predicting the latent network state. We
explained how this problem is a fundamental part of downstream tasks like
download time prediction or counterfactual reasoning. Furthermore, we
explained several components necessary to learn the latent network state.
Based on this common problem, we analyzed four different systems (Fugu,
NTT, CausalSim, and Veritas) and identified how they implement each
component of learning latent state. From their different implementations,
we formulated key design questions, which we investigated with over 12
years of video stream data. We made several notable discoveries:
* ML models outperform hand-crafted solutions. Veritas implements
a complex causal graph with a modified Hidden Markov Model but
ultimately underperforms in our evaluation. It is both slower to run
and does not generalize to data outside of its training environment.
Similarly, a hand-crafted buffer model predicts rebuffering signifi-
cantly less accurately than learning the buffer evolution from data.

* A high-dimensional latent space helps generalization. Both Causal-
Sim and Veritas use a one-dimensional latent space, which seems
optimal for their original environment. However, a larger latent space
helps the model generalize better to new environments. Models with
a large latent space performed significantly better with data from
different environments as well as data from different time periods.

* A fine-grained history is important for tail performance. A history
of video chunks allowed the model to learn a more informative latent
state, enabling both the benefits of high-dimensional latent space
above, as well as improving tail performance. Coarser metrics like the
application buffer level or TCPInfo statistic lead the model to estimate
a worse latent state, reducing downstream task performance. In a
small preliminary dataset, we observe that an even finer packet-level
history can further improve performance.

¢ Persistent excitation is more important than RCTs. We find that data
from a single ABR can be highly persistently exciting, covering a wide
range of network behaviors. Additional ABRs as part of a Randomized
Controlled Trial (RCT) do not necessarily explore the space further. As
a result, we do not find significant evidence that the estimated latent
space is biased towards specific ABRs. Strategies like CausalSim’s
adversarial training to remove ABR biases seem unnecessary, and we
were able to estimate the latent state equally well without it.
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Limitations An empirical study as presented in this chapter is fundamen-
tally tied to the data it is based on. The majority of our results are based on
the Puffer dataset. This is a rich long-term dataset, yet it is limited to North
American users and network environments. In other parts of the world,
network dynamics may be different, as other technologies are prevalent,
networks are differently managed, or other applications are more popular.
Additionally, it does not contain packet-level data, which prevents us from
evaluating the benefits of NTT-like solutions.

We are in the process of collecting a geographically diverse dataset
that includes packet-level data to complement the Puffer dataset in future
research. While this process is ongoing, we presented preliminary results
highlighting the potential benefits of packet-level data, and thus such a
dataset. However, this preliminary dataset was only collected in a cloud
environment and does not include geographically diverse data from real
users, which we aim to address with our ongoing data collection efforts.

Additionally, while our analysis is in-depth, it is not exhaustive. We
closely evaluated Fugu, NTT, CausalSim, and Veritas, but many other ML-
based systems in networking also learn network traffic models, from conges-
tion control [72—75] over RL-based video streaming [53] to emulating traffic
between datacenter pods [83]. Future research may extend our analysis to
include these systems to understand how they learn latent network state.

Finally, while our model for learning latent network state is general,
it is also explicitly focused on predicting the network behavior. Notably,
we assume that application decisions such as the ABR chunk size are
provided as input to the model, and do not learn them. In other domains
such as security, we often aim to not understand not the network, but the
applications using it. While our work is not directly applicable to this, our
methods may be adapted to a more application-focused approach.

A place for domain knowledge In our results, we find that hand-crafted
models underperform compared to black-box models learned from data.
This does not imply that domain knowledge is useless, but rather that
it perhaps should be applied differently. Overly tailoring models or the
latent space to any particular problem limits generalizability as well as
the possibility of reusing models for different yet similar tasks. Instead,
we argue for building models as general as possible and focus domain
knowledge on ensuring that we provide a diverse dataset that captures
the full range of network behaviors, as well as a training output and loss
function that promotes learning important network dynamics.
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In this section, we have only taken a small step in these directions, by
analyzing the impact of predicting buffer levels in addition to download
times on the one hand, and by evaluating the degree of persistent excitation
of the training datasets on the other. Nevertheless, we believe that this is an
important avenue for future research.

A case for model explainability A key disadvantage of black-box models
like CausalSim is their lack of inherent interpretability compared to hand-
crafted models like Veritas. This applies to the latent space representation
as well: we observe that a larger latent space dimension helps to generalize,
but we do not know what each dimension represents. This lack of under-
standing can lead to problems, as the model may overfit irrelevant features,
learn spurious correlations, or exploit shortcuts in the data, i.e., patterns
that have high predictive power in the training data but do not generalize.

Model explainability tools such as Trustee [109] aim to fill this gap.
Trustee extracts an interpretable decision tree from a black-box model,
allowing to reason about the model’s decisions and identify potential
shortcuts or spurious correlations. These techniques can be used to actively
ensure that the chosen inputs and training tasks are relevant and allow
for learning meaningful latent network dynamics. They can also help to
better understand some of the patterns we observed in this chapter, such as
understanding how additional latent dimensions impact model decisions.

A question of scale Finally, when designing models to learn latent net-
work dynamics, we must consider scalability. To deploy these models in
real-world scenarios, we need to consider the computational cost of running
them for potentially millions of users. In the future, we must not only
answer how can we learn the latent state? but also how can we do so efficiently?.

Consider Transformer models like NTT (Chapter 3). They have the poten-
tial to improve generalizability, but at the same time, they are computation-
ally much more expensive than the simple linear Encoder we used in this
Chapter. Where the Encoder can run efficiently on a CPU, the Transformer
requires a GPU for the same performance. Similarly, increasing the latent
space or using a larger history also increases the computational cost. Inves-
tigating the trade-off between model complexity and computational cost is
an important direction for future research, in order to offer the most useful
state estimation for a given computational budget.
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LEARNING IN THE DATA PLANE:
HARDWARE-SOFTWARE CO-DESIGN
LEVERAGING PROGRAMMABLE NETWORKS

In the previous chapters, we focused on improving ML-based applications.
A key reason for using ML is limited observability: applications must
estimate the latent state from past observations, as discussed in Chapter 4.

Networks can improve observability by sampling traffic or collecting
aggregate statistics. However, this is limited by the sheer amount of traffic
in today’s networks: we cannot sample all of it. To limit the overhead in
communication and processing, networks must either sample at low rates
or aggregate aggressively. In the end, this turns not observable into just about
barely observable, as the data plane can only share a fraction of its insights.

This chapter explores how we can utilize programmable network devices
to extract information from the network more efficiently, opening two
avenues for improvement. We can use the improved network feedback:

(i) to guide sampling towards more informative subsets of traffic;
or (ii) to side-step sampling and directly optimize model parameters.

Our key insight: while learning predictive models is too computationally
expensive for the data plane, evaluating their accuracy can be made feasible.
This enables hardware-software co-designs that leverage the data plane’s
observability while offloading heavy computations to the control plane.

We present FitNets, a system for monitoring and anomaly detection
implementing this insight with a closed loop between the data- and control
plane. FitNets learns traffic distributions, as this is a simple yet useful
learning task that allows adapting to changing traffic patterns quickly. We
discuss extending FitNets to different models at the end of the chapter.

This chapter is organized as follows: Section 5.1 introduces programmable
networking fundamentals. Section 5.2 provides a brief background and
overview of FitNets. Section 5.3 explains the FitNets data plane which
extracts feature values and scores the current distributions. Section 5.4
demonstrates how FitNets can improve sampling, while Section 5.5 shows
how it can alternatively search for optimal model parameters without
sampling. Finally, Section 5.6 presents preliminary evaluation results and
Section 5.7 outlines future directions of data-plane assisted learning.
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5.1 PROGRAMMABLE NETWORKS

This section provides an overview of classical and programmable network-
ing, focusing on concepts that are relevant to the remainder of this chapter.
We begin by summarizing the data- and control split in classical networks,
followed by a simplified overview of programmable networks.

5.1.1  Classical networking

Classical networks feature a separation between the data plane and the
control plane. The data plane is responsible for forwarding packets, while
the control plane is responsible for managing the data plane configuration.

Data plane Network devices require a variety of components to parse and
buffer packets, but the core of the data plane processing are match-action
tables. As the name suggests, the data plane uses these tables to match
packets against configured rules and execute corresponding actions. The
most common example of such a table is the forwarding table, which matches
packet destination address and sets the output port accordingly. These
tables are implemented in hardware to process packets at line rate.

Classical network devices are often called ‘fixed function” devices. They
may support a large variety of features with different match-action tables,
but these tables are pre-determined and cannot be exchanged. For example,
we cannot modify the forwarding table to match the source address.

In addition to match-action tables, network devices also support data
structures like counters and meters. Counters are used to count packets or
bytes, while meters are used to measure rates or enforce rate limits. Like
match-action tables, these data structures also fixed functions. Similarly,
network devices support sampling packets with a configurable probability.

Control plane The control plane, on the other hand, is implemented in
software and is responsible for configuring the match-action tables in the
data plane. For example, the control plane may execute a complex routing
algorithm to determine the optimal path through the network for each
destination address. Once computed, it installs the resulting forwarding
rules (matching destinations to ports) in the data plane.

The control plane also provides an interface to access other data struc-
tures, offering functions such as reading and resetting counters, configuring
meter rates, or setting sampling probabilities.
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5.1.2  Programmable networking

Programmable networks extend classical networks by allowing operators to
modify the data plane’s behavior, replacing fixed-function tables and data
structures with reprogrammable alternatives.

Match-action pipelines Programmable switches process packets in a
multi-stage pipeline. In each pipeline stage, one or more match-action
tables can be applied, which can in turn read and modify both packet
headers and metadata. The metadata contains variables such as output port,
allowing them to be matched and updated like header values.

Programmable match-action tables can be freely configured to match and
modify any header fields and metadata. Multiple tables can be applied
in sequence, allowing for complex packet processing pipelines. Whether
a table is applied or not is determined by the control flow of the pipeline,
which defines the sequence and conditions under which tables are applied.

Match-action pipelines also support programmable counters, meters, and
sampling. Additionally, they offer programmable registers. Registers are
array-like data structures that can persist state between packets. Registers
can be read and written by both data- and control plane.

Control plane The match-action pipeline’s control flow, tables, and data
structures are programmed using a domain-specific language like P4 [110].

The control plane compiles the P4 program and reconfigures the data
plane accordingly. This compilation step also generates the control-plane
interface to access the individual match-action tables, counters, meters, and
registers, allowing them to be re-configured at runtime.

Limitations While programmable networks offer more flexibility than
classical networks, they also have limitations. To ensure that packets can
be processed at line rate, the control flow does not support loops. Thus,
the number of stages in the pipeline determines the maximum depth of
processing. Depending on the devices, 10 to 20 stages are common.

Additionally, the persistent state in registers is restricted in several ways.
Total register memory is limited to a few Megabytes, depending on the
device. Registers memory can also not be (re)allocated at runtime; all space
must be assigned when the P4 program is installed.

Consequently, it is not possible to run complex algorithms in the data
plane, as the number of operations and available memory is strictly limited.
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5.2 TRAFFIC MONITORING WITH FITNETS

This section provides a brief background on network monitoring from com-
mon tools to in-network monitoring with programmable data planes. We
highlight challenges, in particular the difficulty of monitoring rare events,
and motivate the learning oftraffic distributions. Finally, we introduce Fit-
Nets and provide an overview of its inputs, outputs, and variants.

Network monitoring with sampled traffic Collecting reliable traffic statis-
tics is a fundamental problem of network monitoring and is crucial for
successfully operating a network. Traffic statistics are used in a wide range
of network management tasks including capacity planning, traffic engi-
neering, and billing. An especially important task is anomaly detection,
which is essential to DDoS detection, root cause analysis, and many more
applications. Despite this importance, detecting anomalies in network traffic
is notoriously hard to get right. Anomaly detection requires establishing a
sense of normality [111]. This includes monitoring rare events (e.g., tails of
traffic distributions) to avoid errors on uncommon yet benign traffic.
Because of the scale of the Internet, collecting accurate statistics in general
and rare events in particular remains challenging with current monitoring
tools. The majority of common tools, e.g., NetFlow [112] and sFlow [113]
are based on random packet sampling. Studies have shown that sampling
with fixed low rates fails to estimate many important statistics [114, 115].

In-network monitoring With the advent of programmable network de-
vices, a range of solutions have been proposed to leverage the data plane
for monitoring. Two prominent directions are: (i) processing queries such as
filter and map directly in the data plane [116, 117]; and (ii) aggregating
statistics using probabilistic data structures like sketches (e.g., [118, 119]).

However, the limited data plane processing capabilities present a tradeoff:
while the increased visibility can improve some aspects of monitoring, the
limited capabilities can restrict others. Often, these limitations are especially
affecting the detection of rare events. Sketches, for example, must allow
for errors in their estimated aggregates, and their memory footprint can
be determined as a function of the desired error bounds. These bounds
are usually derived with respect to all traffic and are thus much tighter for
heavy hitters than for rare events.”

Consider a 1% error bound and a total of 1000 packets to be counted in the sketch, which is
split between a common flow of goo packets and a rare flow of 100 packets. The error bound
is 10 packets, which equals about 1.1% of the common flow, but 10% of the rare flow.
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Despite these limitations, in-network monitoring has shown promising re-
sults, e.g., for DDoS detection: ACC-Turbo [120], a state-of-the-art detection
system in the data plane, uses an online learning approach that adaptively
clusters traffic. As it runs in the data plane, it can adapt quickly to all
incoming traffic. However, it can only track the minimum and maximum
values of traffic features,? and cannot track the distribution within a cluster.
It identifies anomalies as high-volume clusters with high similarity, i.e.,
similar min and max values. As such, it is vulnerable to rare outliers that
stretch the min/max value of a cluster, making an anomalous cluster seem
dissimilar and harmless, even if the distribution remains narrow.

Opportunity We argue that applications such as anomaly detection can be
improved by learning feature (i) distributions based on the (ii) entire traffic.
Distributions allow deeper insights, in particular into rare low-probability
events, which are often missed by sampling or “swallowed” by aggregation.
But how can we learn accurate distributions? We cannot sample enough
traffic to learn them accurately in the control plane: we are already missing
rare events and cannot magically learn a distribution that is more accurate
than the data we have. But we also do not have the resources to learn the
distributions in the data plane. We must leverage the strengths of both data-
and control plane to overcome their respective limitations.

FitNets Our key insight is that while learning distributions is only feasible
in the control plane, verifying already learned distributions is possible in
the data plane. This allows us to close the loop and learn distributions in
rounds: after learning one or more candidate distributions in the control
plane, we can evaluate them on all traffic, leveraging data plane visibility.
With the evaluation results, we can refine the distributions in the control
plane, and repeat the process in the next round.

We call this closed-loop system FitNets, and in the following chapters,
we evaluate two different variants: (i) a sampling-based variant, which
learns non-parametric distributions from samples, and uses the evaluation
results to guide the sampling process; (ii) a search-based variant, which
learns parametrized distributions by navigating their parameter space
with Bayesian optimization, and uses the evaluation results to guide the
search process to optimize distribution parameters. Both variants share the
same data-plane pipeline for extracting features and scoring the predicted
distributions. They only differ in the control-plane learning process, which
can be selected based on requirements on the learned distributions.

2 Measurable properties like ports, size, inter-packet time, flow duration, etc.
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Task Location Constraints Feature
1 Switch 1 src(42.0.0.0/8) burst_size
2 burst_duration
3 src(43.0.0.0/8) queue_time

4 Switch 2 src(13.37.0.0/16) & proto(TCP) packet_size

Figure 5.1: FitNets is configured with monitoring tasks: where to monitor which
features under which constraints on the traffic, i.e., which subsets of traffic.

Inputs and outputs Operators configure FitNets with a list of monitoring
tasks and in return, FitNets provides a stream of probability distributions
per task along with their data-plane scores, updated after each round.

Monitoring tasks are specified by (i) the location where traffic is monitored,
i.e., the programmable switch; (ii) constraints, i.e., which subset of traffic is
monitored; and (7ii) which features are monitored (Figure 5.1). For each loca-
tion, multiple constraints can be specified, and for each constraint, multiple
features can be monitored. We have implemented common constraints and
features, but in general, FitNets can be extended to any constraint that can
be matched on programmable network devices, as well as any feature that
can be extracted. For constraints, we implement arbitrary combinations of
source address, destination address, protocol, source port and destination
port. For features, we implement both features that can be directly extracted
from a single packet, e.g., packet size, as well as more complex stateful
features, e.g., inter-arrival time and flowlet size. We focus on flowlet instead
of flow state to limit memory usage. Flowlets are short bursts of packets,
separated by an inter-packet gap of inactivity, and the number of concur-
rently active flowlets for gaps such as 500ms is typically well below 100k,
feasible for programmable network devices [121]. Flows can be active for
minutes or longer, and thus millions of them can be concurrently active at
the same time. Solving this challenge is out of scope for FitNets.

The sampling variant of FitNets requires an adaptation objective; it can
either maximize the accuracy of learned distributions given a fixed sampling
budget or minimize the sampling rate while meeting a target accuracy. The
search variant requires a distribution parameter space to search. Finally, we
must specify the round duration, i.e., the update frequency.
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In the following sections, we will discuss two different ways of learning
distributions in the control plane, leveraging data-plane scores to guide the
learning process. In this section, we focus on one round of FitNets. Given a
probability density estimate f,, by the control plane, we discuss how we can
use programmable network devices to score this estimate using all traffic.
Figure 5.2 shows the data-plane processing pipeline of FitNets, from
matching packets and extracting feature values over sampling to scoring.

Matching and feature extraction We extract features from traffic matching
the constraints specified in the monitoring tasks. For the constraints, FitNets
employs a table matching the flow id (5-tuple) of a packet. The table uses
ternary matches, allowing flexible queries such as ranges and longest-prefix-
match, covering even complex constraints such as “UDP packets from the
subnet 42.0.0.0/8 with a destination port below 1024’.

If required by any monitoring task, FitNets checks the flowlet state using
a hash table. This table stores the flow id and the timestamp to check for
collisions and timeouts. A packet is considered to start a new flowlet if
there is no entry in the hash table, or if the current entry is older than a
configured inter-packet gap. The flowlet state can be either (i) the packet
starts a new flowlet; (ii) the packet belongs to an active flowlet; (iii) the
packet explicitly ends a flowlet (e.g., after a TCP FIN); or (iv) the state could
not be determined because of a hash collision.FitNets keeps a collision
counter such that operators can resize the flowlet state table manually if
there are too many collisions, as memory cannot be changed at runtime.

Finally, FitNets extracts the feature values. If the same feature is used for
multiple monitoring tasks, it is only extracted once and re-used. Flowlet
features might keep additional state, e.g., a byte counter for flowlet sizes.
Flowlet features are only extracted if there has not been a collision. FitNets
cannot extract every feature after every packet, e.g., the flowlet duration can-
not be extracted while the flowlet is still active. Only successfully extracted
feature values are sampled or used for scoring.

Sampling For each task, FitNets individually decides whether the feature
value is sampled via rate-limiting meters configured from the control plane.
If any feature value is sampled, FitNets creates a new packet containing all
sampled features and forwards it to the control plane. This step is skipped
for the search variant of FitNets, as it does not require sampling.
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Figure 5.2: The FitNets data plane first matches traffic and extracts features, then samples and scores predictions. Multiple
features can be processed in parallel; we show the per-feature pipeline here. Flowlet state is split in a shared part (flowlet id,
timestamp) and feature-specific state (e.g., flowlet size byte counter). Sampling is skipped for the search variant of FitNets.
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Proper scoring rules A proper scoring rule [36] assigns a score S(fy, x) to
probability estimate f,(x) for a value x. The sample score for a sample X
is the average score over all sample values:

S(fu, X) = |1X| S S(f, %) (5.1)

xeX

A proper score can only be maximized by the true distribution. That is, if
X ~ f, then the maximum score can only be achieved by f, = f.

As we can only compute the score for a finite sample, it is noisy and may
be unreliable for small sample sizes. Here, programmable data planes shine
as we can compute the sample score for all observed traffic, i.e., the largest
possible sample size and thus most reliable score possible.

Data planes typically cannot handle floating-point operations, so we
cannot compute the average score directly. Instead, we keep a running
sum of scores and a value counter in the data plane, which enables us to
compute the average score in the control plane.

Lookup tables and binning Depending on the complexity of f; and S, it
may be impossible to compute S(fy, x) in the data plane, e.g., we cannot
compute the logarithmic score as the data plane cannot compute logarithms.
Thus, we translate S(f,,, x) into a lookup table storing pre-computed scores
over the range of possible feature values and corresponding predictions.
However, this range can be enormous, resulting in unsatisfiable memory
requirements for the lookup table. To address this issue, we implement
the following binning scheme to handle large feature ranges with efficient
data-plane lookup methods: we use bins with a width of a power of 2,
which essentially enables us to use longest-prefix matching for the lookup
table as well as other TCAM-based range matches. While this is our default
choice, FitNets can work with any other implemented lookup method.

Distance measures Proper scoring rules have an associated distance mea-
sure, which reflects the difference between the true and estimated distri-
bution. For example, the logarithmic score log(f,(x)) is associated with
the Kullback-Leibler divergence [32]. Maximizing the expected logarithmic
score minimizes the Kullback-Leibler divergence between f and f;,.
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In this section, we introduce the first variant of FitNets, which focuses on
improving sampling. We start by introducing the problem of sampling in
network monitoring and then explain how FitNets can improve the sampling
process by leveraging the data-plane scoring introduced above.

In a nutshell, this variant of FitNets (in the following simply FitNets) learns
distributions in the control plane by computing kernel density estimates
(KDE, see Section 5.4.2 below) from samples. As a result, FitNets can
optimize for one of two objectives: (i), minimize the required sampling
rate for a given accuracy requirement, or (ii), maximize the accuracy across
multiple monitoring tasks for a given sampling rate.

5.4.1 Ouverview

Sampling on a budget We cannot sample all network traffic. Ultimately,
this presents a trade-off: a high sampling rate is more accurate, but also
more expensive in terms of communication and processing overhead.

The following example illustrates how this trade-off may look in prac-
tice. Consider the internet service providers A and B. Both have a set of
monitoring tasks (see Section 5.2), and they have different sampling goals:

* A wants to minimize overhead costs. Monitoring should reach a
certain level of accuracy with as little sampling as possible.

* B wants to maximize accuracy. Using a given bandwidth available for
sampling, we should extract the most information.

With accuracy, we refer to the distance between the learned and true dis-
tribution, i.e., maximizing the accuracy means minimizing this distance.
Given a set of monitoring tasks, we consider the max-min accuracy, i.e., we
aim to maximize the lowest accuracy, minimizing the largest distance.

Despite their different goals, both A and B ultimately try to determine
the optimal sampling rate across their sets of monitoring tasks. This rate is
not necessarily equal for all tasks, i.e., not all subsets of traffic and features
benefit equally from high sampling rates. In general, the more complex a
distribution is, the higher the sampling rate needs to be. In particular, this
applies to distributions with many distinct but rare values, like heavy-tailed
distributions: a low sampling rare is bound to miss most of these rare
values, making an accurate estimation of the tail difficult. Furthermore,
increasing the sampling rate leads to diminishing returns.
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Figure 5.3: FitNets learns from traffic and adapts sampling.

Problem A priori, it is not possible to estimate how complex a partic-
ular traffic distribution is or to which degree we experience diminishing
returns. To make matters worse, using samples to estimate the complexity
of a distribution is also prone to error. Typically, only a few percent of
network traffic can be realistically monitored, and attempting to estimate
the accuracy based on only this fraction of traffic potentially misses the
majority of information, in particular at the tail.

Both A and B end up either sampling too much or too little traffic: A
resorts to over-provisioning to ensure that the minimum accuracy require-
ments are met, resulting in unnecessary cost, while B tries to manually
adjust the sampling for each task, prone to miss new trends or react slowly.

Solution To optimally adapt the sampling rate for learning distributions,
we build on two theoretical results: one the one hand, the asymptotic
convergence of the mean-integrated-squared error (MISE) of the kernel-
density estimate as a function of sample size has been extensively studied;
and on the other hand, the MISE is also the distance metric associated
with the Quadratic Score. Combined, this allows us to compute the required
sampling rate from quadratic scores collected in the data plane. In the
following, we explain these components in detail.
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5.4.2 Kernel density estimation, scores, and sampling rate

FitNets estimates distributions using Kernel Density Estimation (KDE), a
non-parametric method that can approximate any distribution with suffi-
cient samples. FitNets needs to pick a sampling rate of n packets per round
for each task. To adapt 1, we must estimate the accuracy of a KDE fit to n
samples. In the following, we explain how we can achieve this by leveraging
asymptotic properties of KDE and the quadratic score.

Kernel Density Estimation Let xq,..., x; be independent and identically
distributed samples from an unknown probability density f. The Kernel
Density Estimate (KDE) f, is defined as [122, p. 11]:

fu(x) =nlhlé1<<x;x") (5.2)

The function K is the kernel and h is the bandwidth of the estimator. The
density estimate at point x is inversely proportional to the distances to the
samples x;, with diminishing weights for larger distances. The bandwidth
or “smoothing factor” determines how quickly this weight drop-off occurs.
Heuristics such as Silverman’s Rule or algorithms such as the Improved
Sheather-Jones algorithm can estimate the optimal bandwidth from samples.

Asymptotic Convergence of KDE KDEs are asymptotically unbiased, i.e.,
given sufficient samples, they can estimate any distribution in the sense
that the Mean Integrated Square Error (MISE), which is defined as

MISE(f,) = E [ (fu(x) = £(x))? dx 53)

goes to zero for n — oo [122, p. 23]. In particular, for an optimally chosen
bandwidth, the MISE can be asymptotically approximated by

MISE(f,) ~ cn*/5 (5.4

where the constant factor ¢ > 0 depends mainly on the complexity of the
unknown distribution in terms of its curvature |f”| [122, p. 22]. It also
depends on the shape of the kernel function, yet the difference in c between
commonly used kernels is small [122, p. 31] and can be neglected.

The factor ¢ is different for each measurement task and may change over
time. To optimally adapt the sampling rate for each task, we need to not
only estimate it but also continually adapt this estimate.
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Quadratic Score The quadratic score for a sample x is defined as [36]:

Q(far ) = 2fu(x) = [ fulw)?deo 5:3)
N—— N——
reward regularization

This can be interpreted as a combination of a reward for predicting the
correct probability of a test sample and a regularization term, penalizing
overly complex estimates (independent of the test sample).

The associated distance measure for the quadratic score is the integrated
square error (see Section 5.3), which is defined as:

A(fur ) = QS(f, ) = QS(fu f) = [ (ful) = () dx  (56)

In expectation w.r.t to f, we can relate this to the convergence results above:

MISE(f,) = E [ (falx) - £(x))"dx 57)
=E[QS(f, f) —QS(fu f)] (5.8)
= QS(f, f) —E[QS(fu, f)] (5.9)
~cen Y5 (5.10)

This equation also highlights the benefit of data plane visibility. We can
only estimate E [QS(f,,, f)] empirically. With a small sample in the control
plane, this estimate is much noisier than using all traffic in the data plane,
i.e., a sample that is several orders of magnitude larger.

Constrained Linear Optimization We can obtain QS(f,, f) from the data
plane. However, to estimate the MISE (the distance between f and f;) as a
function of n, we also need to determine ¢ and QS(f, f), which both rely on
the unknown f. By scoring distributions for different sample sizes, we can
estimate these parameters through solving a linear optimization problem.

To define this optimization problem, we first rewrite Eq. (5.10). Let N be
a vector of sample sizes, and S be a vector of quadratic scores, s.t. S; is the
score of the distribution learned from a sample of size N;. Then:

N5 ~T1-QS(f, f) - § (5.11)
& 0~T1-QS(f, f) =S —cN~*5 (5.12)
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Next, we can define constraints to improve the quality of the solution. The
constant ¢ is by definition positive. Furthermore, as the quadratic score
is proper, the optimal (highest) score can only be achieved for the true
distribution (see Section 5.3), and thus must be at least as large as any
observed score, i.e., QS(f, f) > max§S. Finally, c and QS(f, f) are solutions
to the following constrained linear optimization problem:

. - L s

L Qin I1-QS(f, f) =S —cN"7| (5.13)

subject to [QS(f f )] > lmzx S] (5.14)
c

Prediction Given c and QS(f, f), we can predict both the estimated score
for a given sample size, as well as the expected MISE:

QS(n) = QS(f, f) —cn™*” (5-15)
MISE(1) = cn™*/ (5.16)

Multiple sample sizes We can estimate densities for multiple sample
sizes from a single sample by using sub-sampling, which we will explain
the the following subsection. Additionally, as explained in Section 5.3, we
can easily score multiple densities in parallel in the data plane.

Generalization With mild assumptions, we can generalize Eq. (5.13) to a

nonlinear optimization problem to more complex models and scoring rules.
Let S(-) be a proper scoring rule with associated distance metric d(fy, f).

Assume that d asymptotically decreases with increasing sample size, albeit
with an unknown rate r. Then, we can write:

d(fu, f) =S(f, f) =E[S(fu, /)l men™" (5.17)

where ¢, > 0. As above, we can formulate this as an optimization problem:

min S(f, f)—cN"—§ .18
_min [IS(7, 1) H 518)
subject to ¢, r >0 (5.19)

S(f, f) > max§ (5.20)

This optimization problem is non-linear and is more complex to solve than
Eq. (5.13), but demonstrates how our approach can be generalized to other
models (i.e., FitNets is not limited to KDE) and other proper scoring rules.
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5.4.3 Control Plane

Figure 5.4 shows the control plane of FitNets, which consists of: (i) estimat-
ing densities from samples; (ii) processing the scores received from the data
plane; and (iii) adapting the sampling rate based on the scores. Most of
the computations can be parallelized, allowing FitNets to scale to a large
number of tasks and samples. Density computation and score processing
can even be distributed across multiple machines, as tasks are independent
of each other. Only adaptation requires the processed scores and is thus not
fully independent, but it is also the computationally cheapest step.

Density Estimation To estimate the parameters ¢ and QS(f, f) that are
required to predict the expected MISE, we need to estimate densities for
multiple sample sizes. Repeatedly drawing samples, estimating distribu-
tions, and scoring them over multiple rounds is impractical and delays
FitNets” ability to return updated distributions quickly. Fortunately, we can
score multiple distributions in the data plane in parallel with relatively low
overhead (see Section 5.3). Thus, if we can estimate multiple distributions,
we can score them in a single round and avoid unnecessary delays.

To estimate multiple distributions with minimal overhead, we transform
a single set of samples per measurement task into multiple sets of samples
by sub-sampling. As there are diminishing returns for increasing sam-
ple sizes, we choose a geometric progression of sample sizes by default:
n,n/2,n/3, n/4, etc. Different sub-sample sizes can be configured by op-
erators if desired. In general, the more unique sample sizes we use, the
more accurate the estimation of the optimal sampling rate will be, but the
more overhead we incur for estimation and data plane lookups.

For each sample size, we estimate a density using KDE and pre-compute
the data-plane scores (see Section 5.3). We record the selected sample sizes,
as they are required to solve the optimization problem in the next round.

Score Processing In parallel to estimating new densities, we process the
data-plane results for the previous round. We only compute the reward
term of the quadratic score in the data plane, which we combine with the
pre-computed regularization term to compute the final score. Together with
the recorded sample sizes, we can solve the linear optimization problem
defined in Eq. (5.13), giving us the parameters ¢ and QS(f, f) for each
monitoring task, which are required for the adaptation step.
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Adaptation With ¢ and QS(f, f) parameters, we can predict the expected
score and MISE for a given sample size (Eq. (5.16)). How we adapt the
sampling rate depends on the operator’s objective.

For Resource Minimization, we can directly solve either Eq. (5.15) or
Eq. (5.16) for n, the required sample size to reach a specific accuracy,
which can be given in terms of a target score or MISE.

For Accuracy Maximization, we need to optimally distribute the available
sampling budget across all tasks to maximize the lowest expected MISE.
To avoid having to search all possible sample size combinations across all
tasks, we invert the problem: for any given accuracy, we predict the sample
size according to Eq. (5.16) and return the sum of sample sizes across tasks.
Subsequently, finding the accuracy that uses all available resources, but not
more, is a scalar root-finding problem that can be solved quickly.
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Figure 5.4: In the control plane we estimate densities and solve a constrained
linear optimization problem to optimize the sampling rate from scores.
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In this section, we introduce the second variant of FitNets, which searches for
the optimal distribution parameters while side-stepping sampling entirely.
We first motivate sampling-free learning and then discuss the challenges of
using this approach for anomaly detection as well as how to solve them.

In a nutshell, this variant of FitNets (in the following again simply FitNets)
learns by searching a parameter space for the best-fitting distribution. We
use Bayesian optimization to guide this search with data-plane scores.

Sampling-free learning Even if optimized by FitNets (see Section 5.4),
sampling is inherently limited: even if we optimize the sampling budget
allocation, the overall rate is finite. We are bound to miss some traffic,
in particular rare events. Thus, as the control plane can only learn from
samples, learning the tails of distributions is challenging. On the other hand,
data plane scores can be computed for all traffic. Also, by using scores like
the logarithmic score, which is particularly sensitive to rare events, we can
ensure that the score sufficiently represents the distribution tail. This raises
the question: can we use data plane scores for learning without sampling?

The answer is yes, but it is not straightforward: without sampling, we
need to search a space of parameters to find the distribution that best fits
the data, i.e., achieves the highest scores. Naively, we could try to evaluate
all possible distributions, but this can quickly become intractable with a
large parameter space. Similarly, randomly testing distribution candidates
may require a prohibitively large number of trials to find a good fit.

We can do better by learning from data-plane scores to guide our search.
The key tool enabling this is Bayesian optimization, which we explain below.

Bayesian optimization Bayesian Optimization (BO) maximizes a black-
box objective function from potentially noisy evaluations. To learn dis-
tributions, maximizing a proper scoring rule is a natural choice, as this
minimizes the distance to the true distribution (see Section 5.3). Thus, learn-
ing distributions via BO can be stated as arg max,.p S(fp), where f, is a
distribution parametrized by a set of parameters p from the space P, and S
is the data-plane score of f,, which is indeed a noisy objective.3

The parameter space P is defined by the operator and may range from a
single distribution to a mixture of different distribution families. Theoreti-
cally, BO can handle any parameter space, but in practice, the complexity
of the space may limit the effectiveness of the search (see Section 5.7).

The data-plane score is less noisy than a control-plane score as the effective sample size is
significantly larger (see Section 5.4), but it is noisy nonetheless.
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Figure 5.5: Abstract representation of Bayesian optimization: BO uses a surrogate
model to estimate a black-box function, here a Gaussian process. The x-axis
represents the parameter space, and the y-axis the function value. The dashed
line shows the best current estimate, and the shaded area shows the uncertainty
of the Gaussian process. Blue dots are past function evaluations, and red stars
are proposed candidates to evaluate. We can observe how Bayesian optimization
explores the parameter space over three rounds. Using multiple candidates allows
for exploiting the current best parameters while still exploring alternatives.

Bayesian optimization (BO) explores the parameter space with the help
of a tractable surrogate model, which is used to approximate the objective
function. Evaluating the surrogate model is much faster than evaluating the
objective function, allowing BO to quickly search the parameter space of
the surrogate model. After generating a set of candidate parameters, the
objective function is evaluated, the result is used to update the surrogate
model, and the process is repeated. The most common surrogate model is a
Gaussian process, i.e., a distribution over functions that naturally captures
uncertainty and/or noise in the objective function.

To fully leverage data-plane scoring and make the most of observed
traffic, we should evaluate multiple candidate parameters in parallel (see
Section 5.3). However, BO only returns a single candidate in each round.
This forces a decision between exploration and exploitation: do we stick
to the current best distribution or explore other promising parameters? A
common approach to generate multiple candidates is to lie to BO: after
generating the first candidate, we update the surrogate model with a fake
low function value for this candidate, motivating BO to explore. Then, we
generate another candidate, and so on. Once all candidates are generated,
they are evaluated and the fake values are replaced with real results.

Control plane BO integrates into FitNets easily. In each round, we generate
multiple distribution parameter candidates. For each candidate distribution,
we precompute scores (see Section 5.3) and send them to the data plane. In
the next round, we update BO with the data-plane scores and repeat.
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Anomaly detection We can use data-plane scoring to detect anomalies
in the network. As anomalies are by definition rare, this particularly ben-
efits from being able to learn distributions that cover rare events: these
distributions allow us to distinguish rare but expected events from truly
anomalous traffic, such as attacks. However, this comes at a cost: if we
naively learn from the data plane, we risk poisoning the learning process
with attack traffic, counteracting our ability to detect it. In the following,
we first describe how we can detect anomalies, and then how this approach
can also be used to protect the learning process from attack traffic.

The key insight is that anomalies follow a different distribution than
benign traffic: anomalous traffic scores differently than benign traffic. Thus,
we calculate a confidence interval on the score of expected traffic for the
current best distribution estimate and classify any traffic scoring outside
of this interval as anomalous. By deferring this until n packets arrive, we
can reduce false positives on single packets and only alert on anomalous
sequences of size n. The exact number of packets can be chosen by the
operator to balance false positives with detection delay.

We can use this result as an additional step in the data-plane pipeline
(Figure 5.2) to avoid poisoning the learning process with attack traffic by
scoring in two stages. The first stage keeps scores until n packets arrive. If
the aggregated score of the first stage is within the confidence interval, it
is added to the second stage, keeping the final scores. As a result, we can
detect anomalies while keeping them separate from the learning process.

Fundamentally, this approach is built on the assumption that benign
shifts in traffic are gradual, while anomalies like attacks are sudden. Grad-
ual shifts are persistent but small, and thus more likely to fall into the
confidence interval. As a result, they are not classified as anomalies but
rather contribute to the learning process. The width of the confidence
interval represents the cutoff between benign shifts and anomalies.
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In this section, we evaluate data-plane scoring and FitNets. We evaluate the
sampling variant of FitNets with a focus on resource usage and accuracy,
and the search variant of FitNets with a focus on anomaly detection.

5.6.1 Evaluation data

To evaluate data-plane scoring and sampling adaptation, we extracted rep-
resentative distributions for five packet and flowlet features from real-world
network traces. We analyzed one hour of CAIDA backbone traces [123]
and collected data for packet size, inter-arrival time, packets per flowlet,
flowlet size, and flowlet duration. We use an inter-packet gap of 500ms
for flowlets, i.e., after 500ms of inactivity, a new flowlet starts. Figure 5.6
shows the distributions per feature, which we use as ground truth. The
distributions exhibit a broad range of shapes, e.g., the size distribution is
bimodal, showing a large peak for very small packets, and a smaller peak
for packets at maximum frame size, with other sizes mixed in between.
While the used distributions are representative, we want to stress that the dis-
tributions represent just a moment in time and space. In different networks
and at different times, the same features are likely distributed differently.

However, we cannot evaluate anomaly detection with this data, as we do
not know if any subset of traffic is benign or malicious. Thus, we evaluate
our anomaly detection approach with synthetic data. We simulate a traffic
feature that follows a Zipf distribution with 4 = 1.3 and attack traffic that
follows another Zipf distribution with a = 1.1. This represents a feature
like destination ports per source: For benign sources, the distribution is
narrow, as most send packets to widely used ports. For attack sources, e.g.,
a port-scanning attacker, the distribution is naturally wider.

. x10~6 x10~3
5 x10~1 x1072
x10 1.0

pdf(x)

R SE-Y

0.0 : 0.0 4 04 : . :
0.0 L7 0 50 0.0 2.5 0.0 2.5 0 1
x  x10° x x  x10? x %107 x  x10%

Figure 5.6: Ground truth distributions. Left to right: packet size [bytes], inter-
arrival time [ms], flowlet size [packets], flowlet size [bytes], flowlet duration [ms].
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5.6.2  Data-plane scoring

Figure 5.7 shows the relative error score between the empirical and true
score along with different ratios of test sample size to training sample size
to evaluate the benefit of data-plane scoring. We repeatedly train KDEs
with sample sizes from 100 to 10000 and score with sample sizes from 10
to 1000000. We show the average error and standard deviation over 100
repetitions for each feature, train-, and test sample size.

Test samples at about as large as the training sample lead to reliable
(< 10% error) scores. For smaller fractions, the error varies strongly (up to
40%). For increasingly large test samples, the error approaches 0% for all
features. This highlights the benefits of data-plane scoring: FitNets does not
need to reserve a small fraction of the already limited sampled data and
can instead use all traffic as one large test set.
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Figure 5.7: Without a large test sample, scores are inaccurate.
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Figure 5.8: We need to adapt sampling rates as Figure 5.9: A few KDEs suffice
different features are not equally complex. to approximate c and QS(f, f).
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5.6.3 FitNets for sampling

Density Estimation Figure 5.8 shows the MISE between the estimated
and true distribution for increasing training sample size (on a log scale).
We again show the mean and standard deviation over 100 repetitions each.

We can see that the error decreases with increasing sample size, and
this experiment highlights the need for adapting sampling rates to the
complexity of monitoring tasks. For example, reaching an error below
10~ requires 100k samples for the inter-arrival time and less than 1000
samples for the flowlet duration. Assigning a fixed equal sampling rate to
both features would either waste resources for the flowlet duration or not
provide enough samples for the inter-arrival time.

Score Processing Figure 5.9 show the approximation error of the con-
strained linear optimization used by FitNets to approximate the unknown
parameters ¢ and QS(f, f); mean and std. over 100 repetitions each.
FitNets approximates the unknown parameters ¢ and QS(f, f) well, even
if only a small number of distinct sample sizes are evaluated. The approx-
imation error is below 15% for 3 distinct sample sizes and below 5% for
6 sample sizes. Our experiments indicate that using a larger number of
distinct sample sizes with our subsampling strategy does not substantially
improve the performance further. We suspect that we observe diminish-
ing returns as we need to split the training sample into subsamples of
decreasing size, which decreases the quality of the additional estimators.

Benchmarks Figure 5.10a shows that computing probability densities is
fast, requiring roughly 40 milliseconds to estimate a distribution for up
to 100k samples. For larger sample sizes, the time increases linearly and
requires about 1 second for 3.9M samples. Extending estimation to multiple
densities can be efficiently parallelized, as all estimations are independent.
On our (16 core) test machine, estimating distributions for 16 densities with
100k samples each requires about 100 milliseconds (there is some overhead
from initializing worker processes and distributing samples). In one second,
FitNets can process up to 1.5M samples each for 16 densities in parallel,
and a bit short of 100k samples each for 500 densities, which corresponds
to 24M and 50M samples in total, highlighting that FitNets can process
millions of samples for up to hundreds of densities in parallel.

Figure 5.10b shows that solving the optimization problem is even faster
and requires less than 10 milliseconds per optimization. On our test machine,
we can solve the problem for 500 tasks in parallel in less than 50 ms.
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Figure 5.10: FitNets is efficient and parallelizable.

96



5.6 EVALUATION 97

Adaptation Finally, we evaluate the two adaptation objectives of FitNets,
resource minimization and accuracy maximization in two small case studies.
For easier interpretation, we show accuracy with a normalized score: an
accuracy of 0.9 means the observed score was 10% below the optimal score.

Figure 5.11 showsresource minimization with an accuracy objective of
0.98. FitNets sets the sampling rates appropriately, matching the target
accuracy within £2% in general, and £4% in the worst case.

Figure 5.12 show the results for accuracy maximization with fixed band-
width, comparing the performance of FitNets with a static allocation. On
average, FitNets achieves higher accuracy with the same total resources.
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Figure 5.11: FitNets minimizes the sampling rate to meet a target accuracy.
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5.6.4 FitNets for search

We evaluate search-based FitNets with the synthetic data described above.
For all tests, we generate three distribution candidates with BO each round:
the current best estimate, which is also used for anomaly detection, and
two others for exploring the parameter space. For anomaly detection, we
update our classification every 1oth packet (see Section 5.5 for details).

Anomaly detection The ROC curve in Figure 5.13 shows the true and
false positive rate for confidence interval (CI) thresholds from o-100%.

Our approach works well if we can learn an accurate distribution of
benign traffic. The ROC curve in Figure 5.13 shows the true and false
positive rate for confidence interval (CI) thresholds from 0-100%. With a
95% CI, we detect 94% of anomalies with 5% false positives (green line,
top left). We also show how performance degrades if we learn from attack
traffic, highlighting the importance of detecting and excluding this traffic
when learned based on data-plane scores.
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Figure 5.13: Anomaly detection degrades significantly if the distribution is learned
from data containing a high fraction of attack packets.
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Case study Figure 5.14 shows a small case study comparing sampling-
based learning with search-based learning for anomaly detection. For search-
based learning, we include a both naive version that learns from all data
plane traffic as well as a FitNets, which excludes anomalies from the learning
process. We bootstrap learning with 20 iterations of 1000 benign packets
each, followed by 10 iterations of 1000 benign and attack packets each. For
sampling-based learning, we sample a rather high rate of 10% of traffic for
learning. We show the mean and standard deviation over three repetitions.

Overall, we confirm that sampling-based learning struggles to detect
anomalies. As sampling misses many rare events, we struggle to learn the
tail-heavy Zip distribution. However, there is a silver lining: we also sample
only a fraction of attack traffic, limiting the attack’s impact on the model.
We do not observe a particular degradation after the attack begins.

By combining scoring with anomaly detection, we avoid poisoning the
model with attack traffic. The naive search-based learning experiences
significant drops in the true positive rate and increases in the false positive
rate after the attack begins. On the other hand, FitNets remains stable and is
not affected. Note that BO re-estimates the parameters based on the current
and past measurements at each iteration. Thus, the naive search does not
immediately degrade once attack traffic is introduced but rather becomes
unreliable over time as the attack slowly poisons the estimates and makes
the surrogate model less useful.

Learning Strategy
—— Sampling (10%)
DP (all traffic)

{ i
Jd = —— DP (filter anomalies)
2 06 Rt o
= y! 1 .
[} il i Metric
=04 vl o .
\ o True Positive Rate
\“, ©f (higher is better)
0.2 % LAY iR g Y False Positive Rate
N A s e 77 (lower is better)
0.0 - -
0 5 10 15 20 25 30
Iteration

Figure 5.14: The search variant of FitNets can efficiently learn a distribution from
data-plane scores (DP). Combined with anomaly detection, we avoid poisoning
with attack traffic. Sampling detects anomalies worse as it misses the distribution
tail. Lines show mean over three runs, shaded areas show standard deviation.
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5.7 DISCUSSION & FUTURE RESEARCH

We have shown how to leverage programmable network devices to improve
the observability of network traffic. To achieve this, we had to overcome one
critical limitation: we cannot simply sample all traffic. Without a strategy to
extract information from the network efficiently, the network may be able
to observe all traffic, but cannot share its insights.

We introduced FitNets, a system for monitoring and anomaly detection
that implements a closed loop between the data- and control plane. Fit-
Nets learns in the control plane, leveraging its computational resources,
while scoring the learned distributions in the data plane, leveraging its
observability. However, FitNets is only a prototype towards a more general
approach to leverage programmable network devices for learning tasks,
and we outline open questions and future directions below.

Sampling and searching We introduced two distinct variants of FitNets.
Both build on data-plane scoring, but implement different learning strate-
gies in the control plane. The first variant learns distributions from sampled
traffic, and the second variant learns by using Bayesian optimization to
search for the best model parameters. We have shown the limitations of
sampling-based approaches and highlighted how the search-based FitNets
can perform better for heavy-tailed distributions, delivering better results
in an anomaly detection case study. But search with Bayesian optimization
has limitations as well. In particular, it loses effectiveness with an increasing
number of parameters and learning complex models such as deep neural
networks is simply infeasible with this approach.

Future work might explore hybrid approaches that combine the best of
both worlds. Leveraging an available sampling budget to allow training
more complex models in the control plane, while still using data plane
search, e.g., to tune hyperparameters for better tail performance.

Large models We have shown that FitNets can learn distributions from
traffic traces and detect anomalies with short delays. We focused on learning
distributions to make the most out of the loop between the data- and control
plane: they can be learned efficiently, so we can adapt to changing traffic
patterns quickly. However, these models are limited in their complexity and
predictive power. More complex models, such as deep neural networks, may
make better predictions, but also come with much larger computational
requirements for the data- and control plane. In the control plane, they take
much larger to train, and in the data plane, they are much more difficult
to evaluate. While one-dimensional distributions are easy to translate to a
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lookup table, deep neural networks are not. Can we still benefit from the
tight control loop while using larger and more complex models?

In the data plane, there have already been steps to implement more
complex models like random forests on programmable network devices [7].
In the control plane, incremental updates to the model might be a promising
direction to explore. Similar to the concept of cheap finetuning of large
pre-trained models discussed in Chapter 3, we might be able to update a
large model incrementally, guided by the data plane feedback, keeping it
up to date while still benefiting from fast data-plane feedback.

Applications Aside from considering different models, future work could
explore how different learning tasks could benefit from FitNets. In this
chapter, we have considered general monitoring and anomaly detection,
but many other applications are limited by a lack of network observability.

How can applications like video streaming best leverage a system like
FitNets? Are distributions the best way to provide additional information, or
would a more specialized interface be more beneficial? Also, considering the
diversity of applications, how can we use the limited data-plane resources
most effectively to support a wide range of applications?

Adaptation Finally, we have not thoroughly discussed how to adapt to
changing traffic patterns over time. For the sampling variant of FitNets, we
relied on the latest set of samples to learn updated distributions. For the
search variant of FitNets, we assumed that benign traffic undergoes gradual
changes, while anomalies are sharp deviations, allowing us to safely update
the surrogate model over time. However, as we have discussed in Chapter 2,
changes in traffic patterns over time can be much more complex.

Can we make the detection of changes over time a first-class citizen of
FitNets? There are many interesting directions to explore. For example, we
might combine FitNets with Memento: instead of computing the density
of in-memory samples based on collected samples, we might be able to
leverage data-plane scoring to evaluate how common or rare parts of the
sample space really are. This might allow us to update Memento’s memory
more efficiently. We might also leverage this information as an alternative
way to adapt sampling rates, e.g., by increasing the sampling rate in regions
of the sample space that are currently underrepresented.
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CONCLUSION AND OUTLOOK

6.1 SUMMARY

In this dissertation, we have explored how ML and programmable networks
can aid network traffic modeling. We have analyzed and addressed chal-
lenges of ML-based network traffic models and presented strategies for
adaptive network traffic modeling, i.e., strategies to (i) adapt over time, keep-
ing up with the network’s evolution; and (ii) adapt over space, transferring
knowledge between different networks and tasks. Moreover, we investi-
gated how to improve network traffic modeling in general by studying the
fundamental challenge of learning latent network state. Finally, we explored
the potential of programmable networks for learning in the data plane.

Learning over time In Chapter 2, we have addressed the challenge of
continual learning or adapting models over time. We have shown that
common approaches of using more—more data, more complex models,
more training—are insufficient to ensure good performance, in particular
at the long tail of network traffic. We presented Memento, which meets this
challenge through a smarter sample selection. Memento estimates the sample
space density, allowing it to retain samples in low-density regions while
readily replacing samples in high-density regions. This allows Memento to
adapt to changes in common traffic patterns quickly while remembering
rare ones that are crucial for tail performance. Finally, by monitoring sample
space changes, Memento allows us to assess rationally when to retrain.

Learning over space In Chapter 3, we have presented a vision for general-
izing network traffic models to new environments and tasks. We explored
Transformer architectures, which have enabled previously unimaginable
generalization in domains such as natural language processing, and pro-
posed a Network Traffic Transformer (NTT) that learns network dynamics
from packet traces. In particular, we advocate for pre-training: we can pre-
train models on massive datasets and fine-tune them to new tasks and
environments with comparatively little time and data. We showed promis-
ing initial results on simulation data, demonstrating that NTT effectively
learns traffic patterns and that the pre-training knowledge generalizes.
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Learning latent variables In Chapter 4, we have investigated the funda-
mental problem of network traffic modeling: predicting the latent network
state from observed traffic metrics. We first formalized this problem as a
nonlinear dynamical system and identified important components neces-
sary to learn its behavior. Then, we analyzed four different systems (Fugu,
NTT, CausalSim, and Veritas) in-depth to identify how they implement
each component. Based on this comparison, we evaluated over 12 years
of video streaming data, considering both download time prediction and
counterfactual reasoning. We made the following key observations: (i) ML
models outperform hand-crafted models; (i) a high-dimensional latent
space helps generalization; (iii) a fine-grained history is important for both
tail performance and generalization; and (iv) a high degree of persistent
excitation, i.e., data diversity, is important. However, we note that this is an
empirical study, and results may vary in other network environments.

Learning in the data plane Finally, in Chapter 5, we explored how we can
leverage programmable networks to learn distributions of traffic features
such as packet sizes or interarrival times. One of the key benefits of pro-
grammable networks is the ability to programmatically process all traffic in
the network, providing unmatched observability of traffic. We introduced
FitNets, a system for monitoring and anomaly detection that implements
a closed loop between the data- and control plane. It learns distributions
in the control plane, leveraging computational resources, and evaluates
them with easy-to-compute scoring rules in the data plane, leveraging
the data-plane observability. We presented two variants of FitNets: (i) a
sampling-based variant that uses data-plane scores to optimize the sampling
rate for different subsets and features, matching their complexity. And
(ii), a search-based variant that uses data-plane scores to guide Bayesian
optimization in the control plane. While the latter approach is restricted to
parametrized distributions, it can effectively learn heavy-tailed distributions
that are challenging to fit from samples.
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The data In Chapters 2 and 4, we have seen the importance of good
training data for ML-based network traffic models. We believe that this is a
critical direction for future research in ML-based traffic modeling. There
are several dimensions to this problem:

First of all, we must address data diversity. Chapter 4 has shown that
more diverse data is particularly important for generalization and tail
performance. In different parts of the world, different applications are
popular, different network topologies are prevalent, and so on. With more
diverse data, we can make models useful to a broader range of users.

However, Chapter 2 showed that data is often biased towards common
traffic patterns, making it challenging to learn important rare patterns.
Simply collecting more leads to collecting mostly irrelevant data. Future
research could investigate methods to collect more useful data. This is a key
principle of active learning, but given the complexity of network traffic, it can
be challenging to decide what data to collect. Methods similar to Memento
could help to discover important traffic patterns.

Finally, Chapters 3 and 4 have shown the benefits of combining differ-
ent types of data, such as using packet traces to predict application-level
download times. To build on these ideas, we need more datasets that in-
clude multi-modal data. Currently, most available datasets are either one or
the other: packet-traces without application metrics or application traces
without packet data. There is an opportunity for future data collection to be
more holistic, enabling models to learn the connection between low-level
network traffic and high-level application performance.

The models In no other domain have multi-modal models advanced as
quickly as in natural language processing and computer vision. Where
initial Transformer models were “only” state-of-the-art translators, modern
models can summarize videos, generate images from text, or even interact
with other applications. In Chapter 3, we have discussed generalization
for network traffic models with Transformers, yet still limited ourselves to
networking tasks. There has been some research on using language models
for network traffic by converting traffic into text-like tokens, but this is a
crude approximation. Future research could investigate integrating network
traffic into large multi-modal models as a first-class citizen, which could
unlock applications such as explaining packet traces to human operators or
generating customized traffic patterns based on text descriptions.
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While impressive, modern language models are also incredibly large. But
even with more modest models such as the ones discussed throughout
this dissertation, we are facing a challenge of scale. These models can
be applied to applications such as video streaming, where a new chunk
is requested every few seconds. However, applying them to individual
packets would necessitate significantly more computational power. Past
research has proposed ML models for congestion control, routing, and other
packet-level tasks, but these models are not used online. Instead, they are
used offline to learn non-ML algorithms which are then deployed to make
packet-level decisions. Instead of focussing on how to train better models,
future research could explore how to train more efficient ones that could be
applied to individual packets. This presents an interesting trade-off between
model complexity, prediction accuracy, and resource requirements.

The network Finally, we close this dissertation where it began: by looking
at the network. We have mostly discussed how we can use ML models to
interpret network traffic, but networks can also play a more active role.

Future research may consider additional signals the network could pro-
vide to ML models. In Chapter 5, we have shown how data-plane scores
can improve learning in the data plane, and future research may investigate
what signals the network could provide to allow applications to estimate
a more accurate latent network state. This is an active area of research for
non-ML algorithms, e.g., HPCC [124] provides additional signals for hand-
crafted network models. Future research could analyze whether ML-based
applications also benefit from these signals, or whether there are even more
complex or noisy signals thay may need ML models to fully leverage them.

Finally, we have already discussed research that uses ML to optimize
network algorithms and the potential to apply future ML models to indi-
vidual packets. Yet, we may go further. With the advance of programmable
networking, it is not implausible that future network devices may support
ML-capable hardware, and we may become able to deploy ML models di-
rectly in the data plane. Fundamentally, these models are not different from
the ones we discussed in Chapter 4: they still predict the latent network
state from observed traffic—they just have access to far more traffic. Thus,
continued research in this direction may ultimately benefit in-network ML,
reaching an even greater scale than we have discussed in this dissertation.
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APPENDIX

A.1 MEMENTO: SUPPLEMENTAL REAL-WORLD RESULTS

Recurring patterns Figure A.1 illustrates that the Puffer traffic does con-
tain patterns that recur at the tail. Each line in this plot corresponds to one
batch in the memory assembled by Memento after three weeks of sample
selection. After these three weeks, we do not change the memory anymore
and only observe whether the patterns are observed again in the following
weeks. The lines show the density of batches with respect to the daily
samples over the next 200 days; this captures “how similar the batches in
memory are to the traffic of the current day.” It shows that some tail batches
(the lines with the lowest densities) are sometimes more represented in the
daily traffic for a couple of days, then fade away again.

max

Weeks

Figure A.1: Coverage of batches in the daily samples

Aggregate performance Figure A.2 shows the aggregated SSIM and per-
cent of stream-time spent stalled on a 2D grid in the style of the Puffer [16]
publication and website [25]. Concretely, we show two sets of ABRs. First
Memento (default and T = 0) and Fugug,,, aggregated since the latest ver-
sion of Memento was deployed on September 19th, 2022 until February
13th, the cutoff for our current evaluation. We cannot aggregate over the
deployment duration Fugu as it was discontinued on October s5th. Thus, we
additionally include a second set consisting of Fugu and Fugug,,, aggregated
from 2020 until Fugu was discontinued.
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Figure A.2: Aggregate performance. Mean and bootstrapped 90% confidence
intervals from the deployment of the current version of Memento on September
19th, 2022 until February 13th, 2023. ABRs annotated with ‘past’ indicate past
data from April gth, 2020 until October 5th, 2022, when Fugu was discontinued.
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Figure A.3: Long-term degradation of Memento (T = 0) in an earlier deployment.

Past degradation of Memento (T = 0) over time In a previous deploy-
ment, we observed Memento (T = 0) to degrade over time, as shown in
Figure A.3. Without forgetting, it kept accumulating noise and retraining.
At first, the Puffer control loop around the TTP was able to compensate for
this degradation, but as the model became too bad, it failed. Over time, the
Image quality degraded by over 30 %.

However, we later discovered an issue in this deployment that prevented
Memento from using the deployed models’ prediction, effectively disabling
BBDR. After fixing this issue, we observed that the performance of Memento
(T = 0) recovered, highlighting the benefits of considering both predic-
tion and output space. Nevertheless, we are still observing signs of noise
accumulation like stronger coverage increase and frequent retraining.

Prediction score improvements compared to the past Figure A.4 shows
Figure 2.6a overlayed with the prediction score improvements of Fugu com-
pared to Fugugep in the past. These curves are not directly comparable, as
they come from different periods of time and the underlying data may have
shifted. However, we can see that daily retraining with random samples did
not consistently improve the TTP tail score; it even worsened the tail score
for 20 % of days. This may explain why daily retraining yields significantly
smaller tail QoE improvements than retraining with samples selected by
Memento, which consistently improves the tail predictions.
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Figure A.4: Retraining daily did not consistently improve the tail prediction.

Alternative selection metrics Figure A.5 shows further alternative sample
selection metrics in addition to loss (Section 2.4.4).

Figure A.5a shows the results for model confidence, i.e., the probability
of the predicted transmission time bin (Puffer separates the transmit time
into 21 bins ranging from 0.125s to 10s). With this metric, Memento prefers
to discard samples with high confidence to keep ‘difficult’ samples with low
confidence. For high temperatures, performance improvements are small.
For low temperatures, we observe strong variation between runs, with more
performance degradation than improvement. In summary, this selection
metric is unreliable and fails to consistently improve performance.

Figure A.s5b shows the results for label counts, a simplified version of
density that is often used for classification data. We use the transmission
time bin of each sample as the label. With this metric, Memento prefers to
discard samples with high label counts to keep ‘rare” samples with low
label counts. We observe this approach to drastically reduce performance.
In the Puffer environment, the majority of samples are assigned to the
lowest transmit time bins. Using label counts alone removes too many of
these samples and the model forgets common patterns, similar to loss.

Finally, Figure A.5c shows the results for stalled sessions. With this metric,
Memento prefers to discard samples if they belong to a session that did not
stall to keep samples from sessions that did stall. We observe consistent
improvements, but they are small. It does not provide a fine-grained enough
selection to significantly improve tail performance.
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Figure A.5: Additional alternative selection metrics.
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Timeseries (real-world) Figure A.6 shows the prediction improvements
over Fuguge, for Memento and Memento (T = 0). Figure A.7 shows QoE
results per day over time for Memento, Memento (T = 0) and for Fuguge,
since September 19th. Figure A.8 shows the same results, but the mean and
bootstrapped 9o0% CI over a two-week sliding window.

Increased memory capacity Figure A.g9 shows the results for Memento
compared to a random memory with the same capacity (both 1M) and to a
random memory with a double capacity (2M). The random memory is set
up like Fugu, selecting samples randomly over the last two weeks. We can
see that simply increasing the capacity fails to address dataset imbalance,
and performance is virtually identical at double the training effort.

Timeseries (replay) Figure A.10 shows the evolution of each benchmark
experiment over the whole 6-month duration. Figure A.11 and Figure A.12
show the same time series for the experiments with alternative selection
metrics, and for combining Memento with Matchmaker and JTT, respectively.

For temperature-related benchmarks, we observe that a high temperature
(uniformly random selection) performs slightly worse at the tail than Fugu.
This may be because Fugu keeps samples from the past 14 days, while a
uniformly random selection phases samples out more quickly.
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Figure A.6: Logscore improvements compared to Fugug,y,.

112



——— Memento ——— Memento
. B— Memento (T=0) —2 —— Memento (T=0)
&) . 2 .
=, —— Fugu (static) = Fugu (static)
s 2
%) sl
7 3
0
3 6 9 12 15 18 21 24 27 30 33 36 39 42 3 6 9 12 15 18 21 24 27 30 33 36 39 42
Weeks in Deployment Weeks in Deployment
(a) Image quality, measured in SSIM. (b) Percent of stream-time spent stalled.

Figure A.7: Evolution of QoE metrics over time. Absolute Values for each ABR.
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Figure A.8: Evolution of QoE metrics over time. Absolute Values for each ABR. Mean and bootstrapped 90% confidence
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Figure A.10: Logscore improvements compared to Fugu (see Figure A.9) for all selection metric experiments (1/2).
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Figure A.10: Logscore improvements compared to Fugu (see Figure A.9) for all selection metric experiments (2/2).
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Figure A.11: Logscore improvements compared to Fugu (see Figure A.9) for all selection metric experiments (1/2).
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Figure A.11: Logscore improvements compared to Fugu (see Figure A.9) for all selection metric experiments (2/2).
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Figure A.12: Logscore improvements compared to Fugu (see Figure A.9) for all combination experiments (1/2).
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Figure A.13: Logscore improvements compared to Fugu (see Figure A.9) for all combination experiments (2/2).
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A.2 MEMENTO: SUPPLEMENTAL SYNTHETIC RESULTS

Simulation setup Figure A.14 illustrates the setup we used for the evalua-
tion of Memento in simulation.

Senders Receivers

-\ Network /
—

cross traffic )
@ workload W1
- pkt. size 542B
trans. time  60ms

Figure A.14: Simulation setup.

Model Architecture We use the following parameters for the classifica-
tion and regression models used in our simulation experiments. We use
supervised training and select the number of layers, neurons, and training
parameters via hyperparameter optimization [125].

We have implemented both models using Keras [126]. For all layers, we
use batch normalization [127] and ReLU activation [128]. We train both
networks with the Adam optimizer [129] using the default decay parameters
B1 =09, B2 = 0.999. We train for up 200 epochs with early stopping.

Model
Parameter Classification =~ Regression
Hidden Layers 3 4
Hidden Units 512 362
Learning Batchsize 512 512
Learning Rate 5.91 x 1075 0.382

Table A.1: Model parameters.
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Workload distributions Figure A.15 shows the message size distribution
for the workloads we use, published by the HOMA project [40]): Facebook
web server (W1), DC-TCP (W2), and Facebook Hadoop (W3). Messages are

generated with Poisson-distributed inter-arrival times.
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Figure A.15: Message size distributions [40].

Samples in memory Table A.2 shows the number of samples in memory
after the last iteration of Section 2.5.2 and Section 2.5.3. Memento retains all
workloads in memory, whereas other approaches either forget existing or

fail to pick up new samples.

106 1(

Wi W2 W3
Rare Patterns (Section 2.5.2)
Memento 5696 9053 5219
Random 252 19634 114
LARS 3159 14231 2610
FIFO 0 20000 (o]
Incremental Learning (Section 2.5.3)
Memento 5376 5888 8704
Random 1266 17836 898
LARS 9540 9557 903
FIFO 0 0 20000

Table A.2: In-memory samples after each experiment.
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A.3 LATENT LEARNING: MODEL HYPERPARAMETERS

In this section, we provide the model hyperparameters for Section 4.2.

Model We use linear layers with GeLU activation, layer normalization,
and dropout (0.1) in between layers. All layers use 128 hidden units. The
linear model uses four layers, while the Encoder model uses two layers
to extract the latent state from history, and two additional layers for each
prediction head. For variants restricting the dimension of latent space, we
add a learnable linear projection layer after the latent extraction layers.

For the Transformer model, we use a default Transformer encoder with 8
heads and 128 hidden units. We trained both a shallow transformer with
only a single transformer layer (containing attention and two linear layers)
as well as a deeper transformer with 4 transformer layers. Additionally, we
add a single embedding layer to upscale inputs to 128 dimensions.

For packet aggregation layers, we either use the hierarchical aggregation
as described in Chapter 3 or a convolutional layer with kernel size 32, stride
16, and a padding size of 8.

Training Both both download time and buffer level prediction we use the
Huber loss. We use an Adam optimizer with a learning rate of 4 x 1073,
B1 =09, B» =095 and € = 1 x 107>, and a weight decay of 0.1. We use
a batch size of 1024, except for the Transformer models, where we use a
batch size of 64 due to memory constraints.

With the Puffer dataset, we train for 3 epochs with 10M samples per
epoch. With our preliminary packet dataset, we train for 15 epochs using
365k samples per epoch.

CausalSim We retrain CausalSim with its default hyperparameters and
x € {0,0.1,1.0,10.0} as the weight of the adversarial loss, corresponding
to the labels none, weak, medium, and strong respectively. For the case of
x = 0, we train CausalSim without the adversarial loss, i.e., we completely
remove the adversarial decoder.
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