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Abstract

Humans have been exposed to snow avalanches ever since they inhabited or travelled through
mountainous regions. For centuries, ways of managing risk and mitigating damage due to
avalanches have been limited. For example, forests prevented the release of avalanches,
protecting the villages below. In the past ca. 150 years, avalanche protection measures and risk
reduction strategies have become increasingly sophisticated. With a growing population, the rise
of alpine tourism, and major transportation corridors running through the mountains, dealing with
avalanches has become more important than ever. Operational services such as the avalanche
warning service, hazard mapping, or the installation of protection and mitigation measures for
endangered zones are important tools for avalanche risk management. The efficiency of these
tools depends on knowledge about past avalanche occurrences. In this thesis, novel methods are
developed to automatically provide this information over large regions. Specifically,
state-of-the-art deep learning technology is used to extract such information from optical satellite
and webcam imagery. The avalanches required to train the deep learning models are identified
and mapped by human experts in the domain. Therefore, the thesis also focuses on the
consistency of the avalanche area identified by various domain experts.

In the first part of the thesis, a DeeplabV3+ model is adapted to automatically identify and map
avalanches from optical SPOT 6/7 satellite imagery (1.5 m resolution). The model is trained,
validated, and tested with more than 24’000 manually annotated avalanche polygons. The data
originate from two avalanche periods in January 2018 and January 2019 and cover an area of
more than 22’000 km2. In addition, the quality of the model and the reproducibility of avalanches
manually annotated by experts are assessed for a small subset of the data.

The second part of the thesis investigates in more detail the reproducibility of estimates of
avalanche dimensions by human experts in three user studies. The first study analyzes the
classification of ten avalanches into five standardized size categories by each of 170 avalanche
experts from Europe and North America. The second and the third study examine avalanches
manually mapped from oblique photographs (6 avalanches, 10 participants) or from remotely
sensed imagery (2.9 km2, 5 participants), respectively.

The third part of the thesis leverages interactive avalanche segmentation (IAS) to combine
human expert knowledge with deep learning. Here, when mapping avalanches from webcam
imagery, the user collaborates with the previously trained model. The use of the model is
supposed to make avalanche mapping more accurate and efficient. For this purpose, we adapt a
state-of-the-art interactive segmentation model based on HRNet+OCR and train it for avalanche
segmentation from webcam imagery. The human user interacts with the model through
confirming or corrective feedback.

In summary, this thesis makes a substantial contribution to the development of an operational
automatic avalanche mapping service. The thesis provides the first automatic avalanche
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mapping from optical satellite imagery with deep learning, it quantifies, for the first time to this
extent, the reproducibility of human avalanche estimates, and it presents a first interactive
approach for the mapping of avalanches from webcam imagery. Thereby, this thesis contributes
to a more efficient use of data and better provision of information on past avalanche occurrences,
and thus it benefits decision making in safety-relevant applications.
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Zusammenfassung

Seit der Mensch in Bergregionen lebt oder durch sie reist, hat er mit Lawinen zu tun.
Jahrhundertelang waren die Möglichkeiten zur Risikosenkung und zum Schutz vor Lawinen
begrenzt. Zum Beispiel verhinderten Wälder den Abgang von Lawinen und schützten dadurch
die darunterliegenden Dörfer. Lawinenschutzmassnahmen und weitere Möglichkeiten zur
Risikominimierung haben sich in den letzten etwa 150 Jahren stark weiterentwickelt. Der
Umgang mit Lawinen ist heute aufgrund der gewachsenen Bevölkerung, des Tourismus und des
Baus neuer Verkehrsachsen in Bergregionen mehr den je von entscheidender Bedeutung. Dabei
sind der Lawinenwarndienst, die Gefahrenkartierung oder die Errichtung von
Schutzmassnahmen in gefährdeten Gebieten wichtige Instrumente des Risikomanagements. Die
Wirksamkeit dieser Instrumente basiert zu einem grossen Anteil auf Informationen über
vergangene Lawinenereignisse. In dieser Arbeit werden neue Methoden entwickelt, um solche
Informationen automatisch über grössere Regionen bereitzustellen. Konkret werden mit
modernen Deep-Learning-Methoden Lawinen aus optischen Satellitenbildern und aus
Webcambildern extrahiert. Die für das Training der Deep-Learning-Methoden verwendeten
Lawinen werden von menschlichen Experten eingezeichnet. Daher befasst sich ein weiterer Teil
der Arbeit mit der Übereinstimmung der von verschiedenen Experten geschätzten Ausdehnung
einzelner Lawinen.

Im ersten Teil der Arbeit wird ein DeeplabV3+ Modell zur automatischen Identifizierung und
Kartierung von Lawinen aus optischen SPOT 6/7-Satellitenbildern (1.5 m Auflösung) vorgestellt .
Das Modell wurde mit über 24’000 manuell kartierten Lawinenpolygonen trainiert, validiert und
getestet. Diese Kartierungen stammen von zwei Lawinenperioden im Januar 2018 und Januar
2019 und decken eine Fläche von über 22’000 km2 ab. Zusätzlich wurden die Qualität des
Modells und die Reproduzierbarkeit der manuellen Erfassung von Lawinengrenzen durch
Experten in einem Teilgebiet untersucht.

Der zweite Teil der Arbeit geht mit drei Studien noch näher auf die Reproduzierbarkeit der
Einschätzung von Lawineneigenschaften durch verschiedene Experten ein. Die erste Studie
analysiert die Einteilung von zehn Lawinen durch je 170 Lawinenexperten aus Europa und
Nordamerika in fünf standardisierte Grössenkategorien. Die zweite und dritte Studie analysieren
manuell auf Karten übertragene Lawinenumrisse aus Schrägfotos (6 Lawinen, 10
TeilnehmerInnen) bzw. aus Fernerkundungsdaten (2,9 km2, 5 TeilnehmerInnen).

Der dritte Teil der Arbeit kombiniert mittels interaktiver Lawinensegmentierung menschliches
Expertenwissen mit Deep-Learning. Dabei arbeitet der Nutzer beim Einzeichnen von
Lawinenumrissen in Webcambildern mit einem zuvor trainierten Modell zusammen. Das Modell
soll dabei den zeitichen Aufwand für die genaue Erfassung von Lawinen reduzieren. Dafür
passen wir ein bestehendes Modell auf der Basis von HRNet+OCR an und trainieren es speziell
für Lawinen auf Webcambildern. Der Nutzer interagiert dann mit bestätigenden oder
korrigierenden Rückmeldungen mit dem Modell.
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Insgesamt leistet diese Arbeit einen wichtigen Beitrag zur Entwicklung einer automatisierten
operationellen Lawinenkartierung. Sie stellt die erste vollautomatisierte Lawinenkartierung aus
optischen Satellitenbildern mit Deep learning bereit, sie quantifiziert zum ersten Mal im
vorgelegten Umfang die Reproduzierbarkeit der von menschlichen Experten gemachten
Lawineneinschätzung, und sie präsentiert einen ersten interaktiver Ansatz zur Kartierung von
Lawinen aus Webcambildern. Damit trägt die Arbeit zu einer effizienteren Aufbereitung und
Bereitstellung von Informationen über Lawinenereignisse bei und verbessert dadurch die
Grundlage zur fundierten Entscheidungsfindung in sicherheitsrelevanten Anwendungen.
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1
Living with avalanches

Ever since humans have inhabited or travelled through the Alps, they have been confronted with
the dangers of snow avalanches (hereafter called avalanches). The development of settlements
in mountainous regions was heavily influenced by avalanches, as for many centuries humans
were not able to protect themselves effectively. In addition, heavy exploitation of the forest as well
as deforestation increased the population’s exposure (Mathieu et al., 2016). Almost two thirds of
Switzerland are classified as mountainous regions with large portions endangered by
avalanches. These regions are currently inhabited by around 2.2 million people (Egger et al.,
2020) and numerous important transportation corridors lead through them. Furthermore, tourism
is a very important part of the economy in the mountains, especially in winter, with up to one forth
of all jobs directly or indirectly dependent on tourism (10% of the Gross Domestic Product for the
cantons Grisons and Valais (GDP for 2019; Federal Statistical Office, 2024)). Consequently, a
large number of people, businesses and infrastructure are exposed to and potentially affected by
avalanches in Switzerland. As has been the case for centuries, avalanches still today endanger
people in settlements and on transportation routes (Stethem et al., 2003; Statham et al., 2017).
This is referred to a involuntary exposure, while exposure can also be voluntary when humans
are deliberately moving outside of secured terrain, e.g., for ski tours (Stethem et al., 2003;
Statham et al., 2017). On average, 21 people in Switzerland loose their lives in avalanches per
year (past 20 years; Pielmeier et al., 2024), making it the natural hazard causing most
fatalities (Badoux et al., 2016). Additionally, on average 135 avalanches per year cause damage
in inhabited areas or to infrastructure (past 25 years; Harvey et al., 2013; Pielmeier et al., 2024).

The most obvious damage from avalanches is the so-called direct cost, resulting from the
damage to lives or property when an object is hit (e.g., buildings, infrastructure, forests; Meyer
et al., 2013). In addition, indirect costs arise from the direct damages or business
interruptions (e.g., loss of customers, impedement of transport; Meyer et al., 2013). The indirect
costs reach beyond the mountainous regions, affecting for example cargo businesses
transporting their goods on the transportation corridors leading through the mountains. In the
“avalanche winter” of 1999, the direct costs from destructive avalanches were estimated at 437
million CHF, while indirect costs were assessed at 181 million CHF (Wilhelm et al., 2000).
Interestingly, the indirect costs in the tourism sector were 10 times higher than the direct
costs (Nöthiger and Elsasser, 2004).
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In view of the potential impact and the costs of avalanches in mountainous regions, managing the
risk and mitigating damage is vitally important. This is achieved, for example, through operational
services such as avalanche forecasting, hazard mapping or the installation of mitigation
measures for endangered zones. These measures are continuously improved by avalanche
research. Knowing avalanche history - when, where and under which conditions avalanches
occurred, as well as their exact dimensions - is critical information for risk management and
research. Spatially continuous knowledge on the magnitude of past avalanches over large areas,
has been made possible in recent years thanks to satellite imagery. While less continuous in its
coverage, webcam imagery has also proven helpful. Information extraction from these large
datasets can only be handled effectively through automation, for example by combining the
power of computers with advanced machine learning techniques. In light of the current exposure
to avalanches, both involuntary and voluntary, and the anticipated changes in snowfall-line and
precipitation patterns through climate change (e.g., Marty et al., 2023), automatically monitoring
and keeping track of avalanche activity now and in the future is crucially important.

1.1 Research questions
This thesis explores the potential of deep learning to automatically extract information about
avalanche occurrences from optical satellite imagery and from oblique webcam imagery. It
addresses the following research questions:

• Can deep learning be used for the mapping of avalanches in large-scale optical satellite
data, such as SPOT6/7?

• Which factors affect the agreement or disagreement between experts and how does this
consequently influence the results of the automated mapping?

• What is the agreement between experts in estimating avalanche size and in mapping
avalanches from oblique photographs (“traditional way”) or from aerial/space-based
imagery?

• Can deep learning be used for the mapping of avalanches from webcam imagery?

The thesis is structured as follows: at the beginning, a general introduction to avalanche
definitions and avalanche history (Sect. 2 and 3) is provided. An in-depth description of the
applications in need of information about avalanches as well as the ways of providing such
information (Sect. 4 and 5) is given next. This is followed by a detailed explanation of the
background of the data and the methods employed for this thesis (Sect. 6). The research
questions are explored in the following three chapters. They are based on three research articles
published in renowned peer-reviewed journals within the field of snow and avalanche research
(cumulative thesis in accordance with ETH provisions). The first chapter focuses on the
automatic mapping of avalanches from SPOT 6/7 imagery (Chap. II), the second on the
agreement of expert estimates as well as the reliability of manual labels (Chap. III) and the third
on interactively segmenting avalanches from webcam imagery with deep learning (Chap. IV). The
thesis concludes with a summary of the contributions of this thesis, remaining areas of research
and a visionary view into the future (Chap. V).
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2
Classification and definition of

avalanches

Avalanches can release on slopes steeper than about 30° when enough snow accumulates
within a short time-span (Rudolf-Miklau et al., 2014). They can be distinguished by size or
categorized into avalanche types according to the release type, the type of trigger, the form of
movement or the liquid water content (EAWS, 2024b).

2.1 Avalanche types
2.1.1 Release type
There are different manners of starting for avalanches (McClung and Schaerer, 2006; EAWS,
2024b; SLF, 2024a): a slab avalanche may only form when there is a sufficiently widespread
weak layer in the snowpack, overlayed by a well-bonded cohesive layer of snow (slab). On slopes
with an inclination of 30° or steeper, the slab will slide down if a trigger (Sect. 2.1.2) causes the
weak layer to collapse and the weak layer properties cause the failure to propagate over a larger
area. Slab avalanches are responsible for 90% of avalanche deaths, with most fatalities being
recreationists who trigger the avalanche themselves. Loose snow avalanches, in contrast, start
from a point source where, due to cohesion loss, a small amount of snow starts moving
downwards, entraining more snow and fanning out on the way down. Loose snow avalanches are
often released naturally (Sect. 2.1.2) following a snowfall event or when significant warming takes
place. Glide-snow avalanches release due to a loss of friction at the interface between the
snowpack and the ground (Fees et al., 2023). The gliding movement preferably happens over
smooth ground like grass slopes or smooth rock, sometimes causing glide cracks to open before
an avalanche releases. Glide snow avalanches only release naturally and cannot be artificially
triggered, consequently they are of minor importance to recreational activities, but significant for
transportation routes.

2.1.2 Type of trigger
Avalanches can either occur naturally, be triggered by an additional load such as a skier, a
snowmobile or an animal, or be artificially triggered using explosives (EAWS, 2024b; SLF,
2024a). In the case of spontaneous or natural avalanches, new snow or wind-transported snow
deposited on the snowpack can lead to an avalanche. A rapid rise in temperatures, or a
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(a) A typical slab avalanche with the sharp-edged
fracture line well visible on top (photo: SOS Jakob-
shorn).

(b) Several loose snow avalanches starting in steep,
rocky terrain and fanning out on the way down
(photo: SLF/E. Hafner).

(c) Glide snow avalanche. The bare ground on which
the gliding occurred is clearly visible after the release
(photo: SLF/E. Hafner).

Figure 2.1: The three different avalanche types according to the manner of starting.

rain-on-snow event can weaken the snowpack and increase the likelihood of avalanches.
Especially slab avalanches can be triggered by the additional load of a human, for example
skiers, on top of the snowpack. The stress on the layers in the snowpack is greater when a skier
jumps or falls. To secure ski areas or roads, the responsible services revert to using explosives,
either from permanently installed devices, by hand or from the helicopter. The use of explosives
allows for the intentional triggering of avalanches in a controlled manner.

2.1.3 Type of movement
The form of motion is directly influenced by the snowpack properties in the release area of an
avalanche (Ancey, 2001), resulting in either a dense flow avalanche, a powder avalanche or an
avalanche with a combination of those two flow regimes (EAWS, 2024b). When avalanches are
released in terrain with large altitude differences, snow can be suspended in the air, forming
powder avalanches reaching speeds up to 300 km/h (SLF, 2024a). In a dense flow avalanche, in
contrast, the snow is primarily flowing, sliding and slipping (EAWS, 2024b) with fairly high
densities between 150 kg/m3 and 500 kg/m3 (Ancey, 2001). An avalanche may include a mixture
of these motion types with a dense flowing part and snow turbulently suspended (Köhler et al.,
2018).
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Figure 2.2: Release, track and deposit area of a slab avalanche (photo: E. Hafner).

2.1.4 Liquid water content
Depending on the presence or absence of liquid water in the snowpack, wet or dry snow
avalanches will form. This classification into wet and dry snow refers to the release area of the
avalanche (Sect. 2.2). Consequently, a large dry snow avalanche can arrive wet in the runout
zone. The velocity of wet snow avalanches is usually lower than of dry snow avalanches. Wet
snow avalanches primarily occur with the warming of the snowpack during the day, typical for
springtime or rain-on-snow events. The water in the snowpack weakens the bonding at the layer
boundaries, especially at layer boundaries with large differences in grain size where the water
may accumulate (SLF, 2024a).

2.2 Avalanche parts
Avalanches are distinguished into the release area (starting zone), the track and the deposit area
(runout zone; Fig. 2.2). They start in the release area, flow down the track with the snow coming
to a stop in the deposit area (EAWS, 2024b). The deposits remain visible longer than the other
parts of the avalanche. Large deposits on valley floors may persist well into summer (Caiserman
et al., 2022).

2.3 Avalanche size
The maximum avalanche size is limited by the altitude differences of the respective mountain
range and the availability of snow (Bozhinskiy and Losev, 1998). For the communication among
practitioners and with the public, standardized avalanche scales have been introduced (U.S.
Department of Agriculture, 1961; McClung and Schaerer, 1980). In Europe, Canada and New
Zealand, among others, avalanches are classified using a scale with five size classes, with size 1
being the smallest and size 5 being the largest avalanche (EAWS, 2023). Each one of these
sizes is defined by the avalanche’s destructive potential, the runout/length, the volume/mass and
sometimes the impact pressure (Tab. 2.1; e.g., Canadian Avalanche Association, 2016; EAWS,
2023).
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Table 2.1: European definition of avalanche size (EAWS, 2023, all photos SLF, except size 4: P.
Stoebener).

Size Parameter Definition Example image
1: Small
avalanche

Potential
damage

Unlikely to bury a person, except in
run out zones with unfavourable terrain
features (e.g. terrain traps).

Runout Stops within steep slopes.
Length 10-30 m
Volume 100 m3

2: Medium
avalanche

Potential
damage

May bury, injure or kill a person.

Runout May reach the end of the relevant
steep slope.

Length 50-200 m
Volume 1’000 m3

3: Large
avalanche

Potential
damage

May bury and destroy cars, damage
trucks, destroy small buildings and
break a few trees.

Runout May cross flat terrain (well below 30°)
over a distance of less than 50 m.

Length several 100 m
Volume 10’000 m3

4: Very
large
avalanche

Potential
damage

May bury and destroy trucks and trains,
may destroy fairly large buildings and
small areas of forest.

Runout Crosses flat terrain (well below 30°)
over a distance of more than 50 m.
May reach the valley floor.

Length 1-2 km
Volume 100’000 m3

5: Extremly
large
avalanche

Potential
damage

May devastate the landscape and has
catastrophic destructive potential.

Runout Reaches the valley floor. Largest
known avalanche.

Length >2 km
Volume >100’000 m3
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3
Destructive avalanche periods in the

past

The main driving factor for severe and disastrous avalanches is the amount and intensity of
snowfall (Laternser and Pfister, 1997). Large-scale weather conditions vary between single
winters, leading to periods with higher avalanche activity and more damage, sometimes referred
to as “avalanche winters”. Historical records are incomplete, but existing records are often from
winters with larger-than-usual avalanches that caused memorable damage. For example Peter
Ruosch mentions in his avalanche chronicle of St. Anthönien, Switzerland (spanning the years
1608-1876) that in the winter of 1667/1668 ten avalanches destroyed one house, 17 large and 6
small stables, killing 55 large and 30 small livestock (Coaz, 1881). In Ftan, Switzerland Coaz
(1881) reports an avalanche destroying 15 livestock and killing 36 people in February 1720. In
the winter of 1950/51, a period with up to 250 cm of new snow in six days in combination with an
existing weak snowpack lead to 1000 destructive avalanches causing 75 deaths and large
damage in several regions in Switzerland (EISLF, 2000). Numerous large powder avalanches,
formed in the winter of 1967/68 after a cold period with high wind-speeds and a lot of new snow
falling on a weak snowpack. 250 avalanches were recorded to have damaged goods and
infrastructure and killed 23 people (EISLF, 2000).

February of 1999 is the most recent, most widespread and longest avalanche period known in
the Alps with approx. 400 to 750cm of new snow and numerous large and extremely large
avalanches (Wilhelm et al., 2000). In Switzerland alone 28 people in inhabited areas or on roads
were caught in avalanches. Ultimately, 17 of the victims died (Wilhelm et al., 2000). 27 buildings
were partially demolished, 11 buildings were completely destroyed and around 1’700 damaged
buildings were reported to the cantonal insurance companies causing an overall economic losses
of more than 600 million CHF (Wilhelm et al., 2000). “Avalanche winters” and extreme
avalanches often led to advancements in avalanche understanding and protection techniques as
well as increased awareness and provision of financial means. After an avalanche in 1867 above
Martina, Switzerland, about half a kilometer of stone walls were erected to protect the village.
This is the first known utilization of stone walls in the potential release area of an
avalanche (Coaz, 1881).

8



Periods of deforestation can historically be linked to population rise and the increased demand for
wood during industrialization (Mather et al., 1999; Conedera et al., 2017). In the mid 19th
century, increasing awareness of the protective effect of mountain forests against natural hazards
contributed to afforestation, stricter laws, and adapted management of mountain forests (Mather
and Fairbairn, 2000). In Switzerland, legislation to keep and maintain healthy forests as
protection against avalanches and other natural hazards was passed and compliance enforced
upon the initiative of the first Swiss forest inspector J.F. Coaz (Coaz, 1881). Afforestation lead to
a stark increase in forest cover: in the Swiss Alps these secondary forests, that were established
after 1880, constitute approximately 43% of the total forest area nowadays (Bebi et al., 2017).
These post-1880 forests are situated primarily on steep slopes, mitigating the hazard from those
potential avalanche release areas (> 30°; Bebi et al., 2017). The “avalanche winters” of 1951 and
1954 brought about a major rethink in structural avalanche protection: previously used vertical
earth or stone terraces were replaced by supporting structures made of steel, rope wires or wood
erected perpendicular to the slope, being structures that do not fill with snow so easily and hence
are more effective (Rudolf-Miklau et al., 2014). The “avalanche winter” of 1999 was thoroughly
analyzed by EISLF (2000) and several aspects requiring action were identified. For example, a
systematic check of the hazard maps, and their revision where necessary, was introduced
(Sec. 4.3). By 2018, 98% of all necessary maps had been created in Switzerland (Bründl et al.,
2019). Since 1999, the Federal Office of the Environment (FOEN) has played a significant role in
financing the avalanche warning service (Sect. 4.1; Bründl et al., 2019). Additionally, the decision
base for the avalanche warning service was improved by increasing the number of meteorological
measurement stations from 103 in 1999 to 189 in 2023 (SLF, 2024b). As one means of improving
the avalanche protection of transportation infrastructure, the number of stationary avalanche
blasting systems has increased tenfold since 1999 (currently around 250; Bründl et al., 2019).
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4
Applications depending on proper

avalanche information

There are numerous applications such as hazard mapping, mitigation measure planning and
evaluation, risk analysis, avalanche warning, avalanche models and various avalanche research
topics which depend on information regarding past avalanches. Generally, data on avalanche
occurrences is often limited to selected locations and events. All applications would profit from a
more comprehensive database of well-documented avalanche occurrences for informed decision
making. The required information per application varies, such as the time gap between avalanche
occurrence and the provision of information, or the specifics regarding avalanche size (Tab. 4.1).

4.1 Avalanche warning service
Most national avalanche warning services in Europe were established in the 20th century,
forecasting the avalanche danger based on an assessment of current conditions in combination
with the meteorological forecast (McClung and Schaerer, 2006; Müller et al., 2023). Current
conditions are determined by meteorological measurements, observations from the field such as
whumpf-sounds, shooting cracks, snow profiles, snow stability tests and the number of observed
avalanches within the last 24 h (McClung and Schaerer, 2006; Techel et al., 2020). Knowing
about these avalanches, their approximate location, their size, their manner of starting as well as
their trigger type as soon as possible after their release is essential. In 1994, the European
danger scale with five danger levels was introduced to homogenize the forecast between the
different countries. There are five danger levels that might be forecasted: 5 – very high, 4 – high,
3 – considerable, 2 – moderate, 1 – low (EAWS, 2024a). They are a function of snowpack
stability, the frequency distribution of that stability and avalanche size for a given unit (area and
time; EAWS, 2024a). In Switzerland, the avalanche forecast is published daily at 5 pm during the
winter and updated in the morning at 8 am if danger levels are at or above considerable
(Fig. 4.1). For avalanche forecasting, near-real-time data availability is essential, except when
retrospectively assessing forecasted avalanche risk. For this, comprehensive avalanche activity
over a lager area is compared to the anticipated activity outlined in the forecast (for danger level 3
and up; EISLF, 2000; Bründl et al., 2019).
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Application Desired Input Information

Avalanche warning
service

• Information about occurrence as soon as possible (max. a
couple of hours)

• Approximate location
• Avalanche size
• Aspect of the release area
• Type of trigger
• Information on weak layer
• Information on damage caused to e.g. people, infrastruc-

ture
• Evaluation of forecast in hindcast: comprehensive informa-

tion about avalanche occurrences (size, location), including
the (approximate) date of release is essential

Avalanche models

Hazard mapping

Protection/mitigation
measure planning
and evaluation

Risk analysis and
safety concepts

• Date of release (time lag of reporting negligible)
• Entire extent/ outline from release to deposit (dense part)
• Extent of the powder part
• Extent of release area
• Type of trigger
• Fracture depth
• Mass balance/volume (distribution patterns) for the whole

avalanche area
• Information on damage caused to e.g. infrastructure, vege-

tation

Table 4.1: Overview of applications relying on information from past avalanches, including a de-
scription of the desired input.
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Figure 4.1: Overview of an avalanche forecast, including the danger level, the aspect and the
altitude, for Switzerland (danger levels from the 14.01.2019 at 8 am, source: archive SLF).

4.2 Avalanche modeling
From the beginning, avalanche science attempted to understand and mathematically describe
the processes underlying avalanches. The work of Voellmy (1955) on the destructive potential of
avalanches is considered a milestone for avalanche modeling. Research was conducted in
different places, occurring simultaneously in the former USSR (Bozhinskiy and Losev, 1998) and
in the so-called West. Before the advent of computers, simple avalanche dynamics models based
on steady state flow without motion tracking were used and lateral spreading was accounted for
in a simplistic approach (Salm, 2004). Later, several numerical avalanche simulation software
solutions like SAMOS (Sampl and Zwinger, 2004), RAMMS (Fig. 4.2, Christen et al., 2010) or
AvaFrame (Tonnel et al., 2023) were developed. Avalanche hazard mapping is the primary use
and motivation for avalanche dynamics models (Salm, 2004). To accurately depict reality,
numerical models must undergo calibration using data from numerous field-observed avalanches
across diverse snow conditions, topographies, and climates. This works best if the complete
avalanche outlines, the release area, the fracture depth and the snow conditions are known and
information on the mass balance/volume as well as the damage caused is available (if applicable;
Salm, 2004).
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Figure 4.2: Example of an avalanche mapped from satellite imagery (red line, Hafner and Bühler,
2019), reconstructed and modeled with RAMMS::Avalanche (Christen et al., 2010, map source:
Federal Office of Topography).

4.3 Hazard mapping
The spatial distribution of damage potential is heavily influenced by the historical growth of
settlements on the one hand and spatial planning on the other hand. Preventing building activity
in endangered areas through land-use planning is regarded as a cost-effective method to
mitigate the risk of avalanches (Bründl and Margreth, 2021). One tool for land-use planning are
hazard maps (Fig. 4.3), which indicate the endangered area, typically based on the frequency
and intensity of events (Gruber and Margreth, 2001). These hazard maps delineate various levels
of endangerment, which are then integrated in the communal zoning maps. These zones dictate
where construction is prohibited or permitted only under specific conditions. In Switzerland (BFF
and EISLF, 1984), the different zones are based on the expected avalanche intensity and
frequency: red zones indicate significant danger, where there is endangerment even within
buildings; in blue zones, people inside reinforced buildings are relatively safe while people are
endangered outside of the buildings; in the yellow zone, there is low danger; in the yellow-white
zone, some residual danger remains; while in the white zone, the avalanche danger is negligible
(Fig. 4.3).

Hazard maps have a long history. The first one was established in 1954 in Gadmen, Bernese
Oberland, Switzerland based on a “cadastre” of all observed avalanche runouts and expert
judgment (Salm, 2004). To predict the extent and intensity of rare and possibly extreme
avalanches, which might have never been observed, avalanche dynamics models were
established (Salm, 2004, Sect. 4.2). Especially for areas with few or no avalanche observations,
like new transportation routes or settlements built in remote areas, avalanche dynamics models
have an enormous value. During the last catastrophic avalanche winter in Switzerland in 1999,
97% of all hazard maps worked as expected and the failure of the other 3% was mostly not
caused by calculation errors (Gruber and Margreth, 2001), but by unforeseen scenarios such as
multiple avalanches within a short period of time or unexpectedly long run-out distances of

13



fluidized avalanches (Wilhelm et al., 2000). Hazardous areas undergo reassessment
approximately every 10 to 15 years, taking into account new insights from avalanche occurrences
or changes in climate, alterations in the topography, advancements in simulation models or the
implementation of new mitigation measures (Margreth, 2018).

Figure 4.3: Example of a hazard map showing zones with different exposure to snow avalanches
in Davos, Canton Grisons (©Amt für Wald und Naturgefahren, GR 2024, Map source: Federal
Office for Topography).

4.4 Planning and evaluation of protection/mitigation measures
Risk may be reduced by protection measures in the release area, on the track or in the runout
zone of an avalanche: mitigation measures can be implemented to prevent the release of
avalanches, influence their direction of movement or trap and retain them in a deposit
area (Bründl and Margreth, 2021). In the release area, avalanche initiation may be prevented by
the presence of permanent snow supporting structures (e.g., steel bridges, Fig. 4.4b) designed
for a lifespan of 100 years, or temporary wooden supporting structures designed to last
approximately 30 years (Bründl and Margreth, 2021). Protective forests have a similar function
and reforestation up to the tree line is often applied together with temporary supporting structures
until the trees are large enough. The avalanche flow direction can be influenced with deflecting
structures such as dams, walls or snow sheds, while catching dams or breaking mounds reduce
the avalanche velocity and retard or stop dense flow avalanches (Bründl and Margreth, 2021). In
areas where the anticipated avalanche impact loads are less than 30 kPa, buildings in
Switzerland are permitted to be constructed with structural enhancements, such as reinforced
walls without openings in upstream direction or splitting wedges which deviate the moving snow
masses on both sides of a building (Fig. 4.4a; Holub and Hübl, 2008). It is essential to carefully
quantify and analyze the impact of mitigation measures in the 30-, 100-, and 300-year scenarios,
as well as in an extreme scenario, surpassing the applied design scenario, in order to determine
their effect on the extent of the hazard zones (Margreth and Romang, 2010). Overall, the amount
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of risk reduction should ideally be greater than the amount of money required to achieve said
reduction (Bründl and Margreth, 2021). Knowing the exact extent of past avalanches is important
for the planning of mitigation measures, e.g. in order to identify the relevant release areas for
support structures. In order to evaluate the effectiveness of existing structures, it is key to analyze
the area protected by the measures as well as the surrounding area under extreme conditions, as
was done for the “avalanche winter” of 1999 (EISLF, 2000).

(a) The church in Davos Frauenkirch was rebuilt
with a wedge in 1602, intended to deviate future
avalanches past the building on both sides. The
modern building (background right) is situated in the
blue zone and has a reinforced concrete wall in up-
stream direction without (large) openings (photo: E.
Hafner).

(b) Steel supporting structures at the Grüniberg sta-
bilizing the snowpack and preventing avalanches
from starting in the release area, thereby protecting
the city of Davos beneath. The structures are di-
mensioned according to the expected snow heights,
since snowed-in structures loose their protective
function (photo: I. Rittmeyer).

Figure 4.4: Examples of both historic and modern avalanche mitigation measures.

4.5 Risk analysis and safety concepts
The long-term avalanche risk for permanent settlements and critical infrastructure is kept low by
building in compliance with hazard maps (Statham et al., 2017). However, this does not
encompass short-term peaks with high avalanche risk in ski areas, backcountry areas, on
transportation corridors, or other outdoor areas where people move outside of safe buildings. In
these locations, it is important to assess the current risk level, defined as “the combination of the
probability of an event and its negative consequences” (UNISDR, 2009), to ascertain whether it is
deemed acceptable by society or not (Bründl, 2013). Short-term risk for ski resorts, temporary
worksites, and transportation corridors is dealt with by safety services through the
implementation of closures and controlled artificial avalanche releases (Statham et al., 2017).
Local safety authorities implement warnings, closures, and evacuations for areas at risk,
according to their judgement of the current situation (Bründl and Margreth, 2021). Mountain
guides use professional route selection to manage the exposure of their clients, and the public
avalanche forecast communicates the regional avalanche danger to an audience managing their
own risk for snow-sport activities outside secured areas (Statham et al., 2017). For risk analysis,
the frequency of avalanches is essential. Frequency is influenced by the climatic region, the
elevation, the location of a mountain range compared to storm tracks, the location (of the object
to protect) within the avalanche path and whether avalanches are artificially released, for
example with explosives (Rudolf-Miklau et al., 2014). The frequency of avalanches is generally
greater in the upper, steeper sections of the avalanche path (Rudolf-Miklau et al., 2014). Risk
analysis is based on scenarios characterized by the frequency, the spatial extent and the physical
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impact (intensity) of avalanches, the most important basis for scenarios being data from past
events (Bründl, 2013). Nearest neighbour methods might be used to search for past situations
with similar conditions, assuming a similar avalanche activity (e.g., Kristensen and Larsson,
1994).
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5
Documentation of avalanches

5.1 Historical events and data from the past
Gathering and analyzing information on documented historical avalanches is the initial source of
knowledge for understanding their spatial and temporal extent (Bonnefoy et al., 2012). Long time
series enable the understanding of the dynamics (return period) and the definition of reference
scenarios (Giacona et al., 2017). Generally, the information on past events is denser near
inhabited areas where impacts on life and personal goods can be observed by a large(r) number
of people (Bonnefoy et al., 2012). However, the information is usually scattered across various
historical sources, varies in detail and is only available for selected avalanches (Butler, 1986). For
example, information on historic avalanches (between 1910–1982) was compiled in the Glacier
National Park, US from ranger logbooks, annual park reports, photographs, local weekly
newspapers and state highway reports. Giacona et al. (2017) reconstructed 730 avalanches with
historical and geographical methods between the winters of 1783/1784 and 2013/2014 on 128
paths in the Vosges mountains in France. If trees were affected by the avalanches, activity can be
reconstructed with tree-ring analysis, even if no observers were present (e.g., de Bouchard
d’Aubeterre et al., 2019). Systematic large-scale recordings of avalanches (with records still
available) through observers are known from the beginning of the second half of the 19th century
for certain sections of the Georgian Military Road (Bozhinskiy and Losev, 1998) or for the whole
canton of Grisons in Switzerland for the year of 1872 through the forest service (Coaz, 1881).

5.2 Avalanche documentation and mapping today
Numerous safety related applications (Sect. 4) as well as research are dependent on knowing
about past avalanches to continuously ensure safety and advance avalanche understanding.
Currently, there are several possibilities to record avalanches: ground based (“traditionally”,
through observers), with seismics, with infrasound, with ground-based radar, from webcam
imagery or space/aerial-based like satellite, airplane or drone data. The requirements per
application (Tab. 4.1) differ and depending on the way the avalanches are documented, additional
information can be recorded and provided (Tab. 5.1). Especially for the sensors generating lots of
data, the mere capability of capturing avalanches is not enough as manual interpretation of the
data is too time consuming. Consequently, not only the sensors, but also the processing
determines if the data is of value for the applications dependent on it (Sect. 4).
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5.2.1 Observers
Residents in mountainous areas or individuals working in these regions regularly report
avalanches, supplemented by occasional reports from recreational users (Jamieson et al., 2009;
Kosberg et al., 2013; Techel et al., 2022). In Switzerland, there are about 80 observers reporting
avalanches in their “stationary” region on a daily basis (Techel et al., 2022), including information
on the location, the estimated time of the release, the avalanche size (size classes 1 to 5
according to EAWS (2023)), the moisture content (dry or wet), the trigger type (i.e., natural
release, human-triggered) and the damage caused (if applicable). Especially for larger
avalanches and those close to infrastructure, the complete outlines are often mapped as well,
either directly in the field or later from photographs.

5.2.2 Seismic sensors
The ground motion caused by avalanches is strong enough to be recorded by seismometers or
geophones. This was first investigated by Harrison (1976) about 50 years ago. The detection
range of a seismic monitoring system is limited to approximately 2–4 km around the sensor (Heck
et al., 2018b; Steinkogler et al., 2018). The avalanche size can be estimated from the seismic
signals (Pérez- Guillén et al., 2016) as well as the rough direction of the path the avalanche
followed, given an array of sensors is used (Heck et al., 2018b). The sensors are independent of
weather conditions and may be used to monitor avalanche activity continuously in selected
regions (Heck et al., 2018a; Steinkogler et al., 2018).

5.2.3 Infrasound
The flowing and turbulent snow masses of an avalanche create pressure waves in the air that can
be measured by infrasound sensors (Bedard Jr et al., 1988; Kogelnig et al., 2011; Mayer et al.,
2020). Infrasound is also strongly affected by noise produced by natural (wind, earthquakes) and
artificial sources (planes, helicopters, industry), which may be countered by using an array of
sensors keeping the signal-to-noise ratio low (Schimmel et al., 2017). Using an array allows for
the avalanche detection to be assigned to a certain avalanche path up to a distance of approx.
3 km, given the absence of major topographic barriers (Schimmel et al., 2017; Mayer et al., 2020).
The amplitude of the recorded infrasound signal is controlled by the avalanche type and the flow
evolution allowing an approximate reconstruction of the avalanche size (Marchetti et al., 2020).

5.2.4 Doppler radar
Doppler radars can be used to monitor selected avalanche paths/ slopes by emitting
electromagnetic radiation in the range of a few to several tens of GHz to a target area (Meier
et al., 2016). The beam is consequently reflected, returned to the antenna and recorded by the
receiver. If an object within the target area is moving towards the radar, the reflected signal will
experience a frequency shift enabling avalanche detection (Schimmel et al., 2017; Meier et al.,
2016). With a Doppler radar, velocities between 1 and 300 km/h can be measured in real
time (Koschuch, 2018). Within their target area, radars are very reliable under all weather
conditions, detecting also small avalanches without serious false alarms, if well
parameterized (Schimmel et al., 2017). The length of the frequency shift gives an indication of
the size of the detected avalanche.

5.2.5 Webcam data
With time-lapse photography, avalanches in the camera’s field of view can be monitored. This has
mostly been done for glide snow cracks and/or glide snow avalanches (Hendrikx et al., 2012;
Feick et al., 2012; Helbig et al., 2015; Fees et al., 2023), wet snow avalanche activity (Helbig
et al., 2015; Abermann et al., 2019) or more recently all avalanche types and glide snow
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cracks (Fox et al., 2023). The monitoring of avalanche activity with automatic webcams provides
accurate near-real time data, though bad weather conditions hinder continuous
monitoring (Eckerstorfer et al., 2016). Thanks to the high temporal resolution of many webcams,
the likelihood of capturing an avalanche is higher than with the “single-shot” of satellite data
acquisition. However, compared to airborne or satellite-borne optical remote sensing, the spatial
coverage is limited (Eckerstorfer et al., 2016).

5.2.6 Satellite data
Satellite data covers terrain otherwise inaccessible (Eckerstorfer and Malnes, 2015; Eckerstorfer
et al., 2016) and may be used to document avalanches over large regions (Bühler et al., 2019;
Eckerstorfer et al., 2019). For avalanches, both passive optical sensors, capturing the visible
light, as well as active sensors using microwaves are in use:

SAR
Wiesmann et al. (2001) were the first to describe the potential of mapping avalanches from active
synthetic aperture radar (SAR). Avalanches may be distinguished from surrounding undisturbed
snow by differences in backscatter (Wiesmann et al., 2001; Eckerstorfer and Malnes, 2015) or
with change detection (Vickers et al., 2016; Leinss et al., 2020; Eckerstorfer et al., 2019; Hafner
et al., 2021; Keskinen et al., 2022; Eckerstorfer et al., 2022) under all-weather and all light
conditions (Eckerstorfer et al., 2016). The backscatter changes are strongest in the deposit area
of avalanches, limiting detection of the other avalanche parts (Vickers et al., 2016; Hafner et al.,
2021; Keskinen et al., 2022). While most current work relies on free of charge Sentinel-1
data (Vickers et al., 2016; Wesselink et al., 2017; Abermann et al., 2019; Eckerstorfer et al.,
2019; Leinss et al., 2020; Hafner et al., 2021; Eckerstorfer et al., 2022; Kapper et al., 2023),
various sensors have been proposed and tested in the last approx. 25 years: ERS1/2 (Wiesmann
et al., 2001), Radarsat-2 Ultrafine (Eckerstorfer and Malnes, 2015; Wesselink et al., 2017) and
TerraSAR-X (Bühler et al., 2019; Leinss et al., 2020). With Sentinel-1 imagery, an overall
Probability of Detection (POD; see Equation 11.2) between 11.3% (for exclusivly dry snow
avalanches; Eckerstorfer et al., 2022) and 27% (for a mixture of dry and wet snow avalanches;
Hafner et al., 2021) was achieved. The performance is better for larger avalanches, for example
for size 3 avalanches (EAWS, 2023) the POD was found to be 42% (Hafner et al., 2021) and
65% (Keskinen et al., 2022) respectively.

Optical
Images from several optical satellites with varying resolution have been tested for avalanche
mapping: SPOT-2 and SPOT-4 (Satellite Pour l’Observation de la Terre; 20 and 10 m spatial
resolution; Frauenfelder et al., 2012), Quickbird (0.65 m; Frauenfelder et al., 2012; Lato et al.,
2012), WorldView-1 (0.5 m; Feick et al., 2012; Frauenfelder et al., 2015), Landsat-8 (15 m
Eckerstorfer and Malnes, 2015), World-View 4, Pleiades, SPOT 6/7 (0.3 m, 0.5 m, 1.5 m; Bühler
et al., 2019) and Sentinel-2 (10 m Abermann et al., 2019; Hafner et al., 2021). For the large scale
mapping of avalanches in Switzerland, Bühler et al. (2019) found SPOT 6/7 to be the best
compromise between large area coverage as well as good avalanche detectability and mapped
over 18’000 avalanches in 12’500 km2 of imagery. Hafner et al. (2021) showed that the mapping
from SPOT 6/7 captures 74% of all avalanches (≥ size 2) and 91% of size 3 avalanches (EAWS,
2023, POD scores given). The maximum resolution for avalanche identification depends on the
avalanche type: Abermann et al. (2019) was able to identify very wet avalanches (slush flows) in
Greenland from Sentinel-2 with a relatively coarse resolution of 10×10m, while Hafner et al.
(2021) found Sentinel-2 unsuitable for avalanche identification for two periods with dry and wet
snow avalanches in Switzerland. As opposed to SAR, the whole avalanche outline can be
identified from the imagery, at least in well illuminated areas. The largest limitation of optical
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satellite data is the dependency on cloud and fog-free weather conditions during data acquisition,
the cast shadow as well as the absence of solar illumination in higher latitudes during
winter (Frauenfelder et al., 2012; Eckerstorfer et al., 2016; Bühler et al., 2019).

5.2.7 Airplane and Drone data
Airborne optical remote sensing data have been proposed for avalanche mapping relying on
different sensors with a spatial resolution of approx. 25 cm (Bühler et al., 2009; Frauenfelder
et al., 2012; Lato et al., 2012; Korzeniowska et al., 2017; Bührle et al., 2023). Drone imagery has
been tested for the documentation of selected avalanches, e.g. in roadside avalanche
monitoring (McCormack and Vaa, 2019). High-resolution orthophotos allow for avalanche
identification from the release area to the deposit area. In addition, a Digital Surface Model (DSM)
may be calculated with photogrammetry as shown by Bührle et al. (2023), who have shown this
with a Root Mean Square Error (RMSE) of 0.1 to 0.2 m from airborne data while Bühler et al.
(2016, 2017) demonstrated a RMSE of 0.01 m for drone imagery. Consequently, the fracture
depth, volume, mass balance and snow distribution for and around each avalanche can be
derived with high accuracy (Bühler et al., 2017; Bührle et al., 2023), helping to understand flow
and deposition patterns. Even though airplane and drone data are dependent on good weather
conditions, as any optical data, they may acquire data when flying under high clouds. However,
especially drones might be additionally restricted in operation by high wind speeds.
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6
Data and processing methods

6.1 Sensors and datasets
This thesis uses several remotely-sensed datasets, from Open Government (OGD) Swiss
datasets from the Federal Office for Topography (swisstopo), commercial Satellite Pour
l’Observation de la Terre (SPOT) satellites to open access data from the Copernicus Sentinel
missions. The following sections give a background on the characteristics of each sensor and
dataset of importance for this thesis.

6.1.1 Sentinel-1
The Sentinel-1 mission has a constellation of two sun-synchronous polar-orbiting satellites both
equipped with a C-band Sythetic Aperature Radar (SAR) instrument, an active sensor (center
frequency 5.405 GHz; ESA, 2024b). Sentinel-1A was launched in 2014 and is still in operation,
while Sentinel-1B was launched in 2016 and failed in December 2021. With two satellites in
operation, the orbit repeat interval at mid-latitudes like Switzerland was six days, with one satellite
it doubled to 12 days. Sentinel-1C is planned to launch in 2024, bringing the orbit repeat interval
back to 6 days. The satellites posses four different imaging modes, with the Interferometric Wide
(IW) swath mode being the main acquisition mode over land (5×20 m spatial resolution). The
SAR antenna measures returning amplitude and phase information from the emitted microwave
signal. The system may acquire data under all weather conditions and independent of daylight, a
significant advantage over all optical sensors. The data is publicly available and free of charge.

6.1.2 Sentinel-2
The Sentinel-2 mission collects high-resolution multi-spectral images utilizing two identical
satellites in sun-synchronous orbits: Sentinel-2A and Sentinel-2B (ESA, 2024b). Together they
result in an orbit repeat interval of 6 days at mid-latitudes. The Multi Spectral Instrument (MSI)
acquires data in 13 spectral bands ranging from the visible bands to the near and short wave
Infrared (NIR and SWIR). The Red, Green, Blue (RGB) and NIR are acquired with a spatial
resolution of 10 m, while the other Infrared bands have 20 m resolution and the bands focused on
cloud screening and atmospheric correction have 60 m resolution. Like Sentinel-1, the data is
publicly available and free of charge, but usable data is only acquired under cloud-free weather
conditions.
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6.1.3 SPOT 6/7
SPOT 6 and SPOT 7 are the last satellites from the SPOT series owned by Airbus Space and
Defense, a series originally conceived by the French National Centre for Space Studies (CNES).
The identical satellites were launched in 2012 and 2014 respectively, with SPOT 6 being still in
operation while SPOT 7 went out of operation in March 2023 (ESA, 2024a). They acquire optical
imagery from a sun-synchronous orbit at an altitude of 694 km. With two New Astrosat Optical
Modular Instruments (NAOMI) onboard, SPOT 6/7 can achieve a swath of 120 km2 and
consequently capture large areas with one overpass. At nadir data is acquired with 1.5 to 2.5 m
Ground Sample Distance (GSD) in the panchromatic channel and 6 to 10 m GSD in the
multispectral channels (RGB, NIR). After pan-sharpening, the multispectral channels are usually
provided with 1.5 m spatial resolution. As a constellation, the satellites had a orbit repeat interval
capability of one day, with only one satellite the orbit repeat interval capability is between one and
three days. The satellites are commercial, the cost is approx. 4 CHF per km2, but it might be
higher if the data is prioritized and ordered in Rapid Mapping mode.

6.1.4 Ultracam airplane imagery
The Vexel UltraCam Eagle M3 is an airplane-mounted camera for photogrammetric
measurements with 450 megapixel (Bührle et al., 2023). It acquires data in the four spectral
bands RGB and NIR with a radiometric resolution of 14 bits and a GSD of 12 cm at a flight height
of approx. 4000 m a.s.l.. The camera positions are tracked using the differential Global
Navigation Satellite System (dGNSS) with a nominal accuracy of 0.2 m. The camera orientation
is recorded with an inertial measurement unit (IMU) posessing a nominal accuracy of 0.01°
(omega, phi, kappa). To ensure a positional accuracy of approx. 0.1 m, Ground Control Points
(GCPs) are used. The orthophotos are generated with Agisoft Metashape
(structure-from-motion) processed to a spatial resolution of 0.25 m and the digital surface model
(DSM) with 0.5 m spatial resolution.

6.1.5 Wingtra drone imagery
The Wingtra One is a fixed-wing drone able to cover about 5 km2 of high alpine terrain on a daily
basis (Wingtra, 2024). The drone is equipped with Post-Processing Kinematics (PPK) and
acquires data in RGB with a Sony RX1R II 42 megapixel camera achieving a GSD of 4 cm at a
flight altitude of roughly 150 m a.s.l.. The orthophotos are processed with Agisoft Metashape to
4 cm and the DSM to 10 cm spatial resolution.

6.1.6 Swiss national DEM

swissALTI3D is the precise Swiss digital elevation model (DEM), representing the surface of
Switzerland without vegetation and buildings with a six year repeat cycle (swisstopo, 2018). The
data is based on a combination of sources: Light Detection and Ranging (LiDAR) and
photogrammetry. The datasets are freely available at a spatial resolution of 0.5 m, 2 m, 5 m and
10 m. The quality varies due to the combination of different methods but the accuracy is between
30 and 50 cm below 2000 m a.s.l. and between 1 and 3 m above.

6.1.7 SWISSIMAGE
SWISSIMAGE is the Swiss summer orthophoto mosaic, based on color aerial photographs, with
a spatial resolution of 10 cm, except for the Alps where the resolution is coarser with 25 cm. The
positional accuracy lies between 0.1 and 0.25 cm (swisstopo, 2020a). The images are updated
every three years with an ADS100 camera from Leica Geosystems mounted on a plane. The
imagery acquired in the NIR and the RGB channels are orthorectified with the swissALTI3D. To
generate a homogeneous mosaic, the images are radiometrically corrected and artefacts, like
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bridges, are manually corrected.

6.1.8 Swiss national topographic map
Swiss national topographic maps encompass all digital national maps in raster format (1:10’000
to 1:1 million; swisstopo, 2020b). The data are derived from the digital map basics and are
available as georeferenced rasters. The content is identical to the printed national maps and is
often used as a background information or as basemaps.

6.2 Semantic segmentation with neural networks
Computer vision includes a set of techniques enabling machines to interpret and understand
visual information from the world, similar to the way humans perceive and process visual
information (Gu et al., 2018). Semantic segmentation is a fundamental computer vision task that
aims at classifying each pixel in an image into a specific class or category. In the past years
semantic segmentation shifted focus from traditional machine learning algorithms to
convolutional neural networks (CNNs; Sultana et al., 2020).

Most deep network architectures for segmentation are based on the encoder-decoder paradigm
(Fig. 6.1): The encoder network takes the input and through a layer of learnable filters extracts
features from the input image at different levels. The decoder network takes the condensed
information at different layers and through a series of upsampling/deconvolutional layers
increases their size to the original size of the input image.

Figure 6.1: Overview of the basic architecture of a CNN.

At the core of the encoder are multiple convolutions, mathematical operations intended to extract
the local information from the input images. For each convolutional layer several convolutional
kernels, small matrices of learnable weights, typically square, are used to compute different
feature maps (Goodfellow et al., 2016; Gu et al., 2018). Like sliding windows, the kernels look at
one neighborhood before moving to the next, until they have covered the whole image and
eventually the whole dataset (Goodfellow et al., 2016). The weights of the kernels are learned
while training. The first layers of convolutions may identify and learn edges, textures and shapes,
while later the information they extract becomes more complex and abstract (LeCun et al., 1998).
Computational efficiency is achieved by the sliding of the kernels, each with a small set of
weights (Goodfellow et al., 2016). After each convolutional operation, an activation function is
applied element-wise to the output followed by a pooling operation or another convolution.
Non-linear activation functions, such as Rectified Linear Unit (ReLU), enable CNNs to learn
complex non-linear relationships and representations in the data. Pooling layers downsample the
feature maps obtained from the convolutional layers, reducing their spatial dimensions and
increasing the receptive field while retaining important information. Typical pooling operations
would be max pooling (Boureau et al., 2010), keeping only the maximum value from a fixed
kernel or average pooling (Wang et al., 2012), retaining the average value only. The decoder
combines upsampling operations, skip connections, convolutional layers, activation functions,
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and regularization techniques to make detailed predictions based on the low-resolution feature
maps. Upsampling is mostly done with unpooling (e.g., nearest neighbor) or deconvolutions
(transpose convolution, upconvolution), increasing the spatial resolution of feature maps. The
output layer is the last layer of a CNN, providing a probabilistic classification based on extracted
features (Gu et al., 2018). This architecture of CNNs helps to capture and learn both local and
global patterns in the input data (Goodfellow et al., 2016). For a short explanation of more
CNN-related terms see Appendix A.

6.3 Monophotogrammetry
Monophotogrammetry, also called mono-plotting, is a technique to derive 3D information from a
single photograph. The development of models to achieve this was largely driven by the vast
amount of available historical photographs and the desire to study landscape change (e.g., Kull,
2005) or to analyze natural hazards (e.g., Conedera et al., 2018). Monophotogrammetry was first
proposed in the 1970ies (Conedera et al., 2018) and relates a single image to the corresponding
DEM. By using Control Points (CPs), selected pixels in the image (unambiguous landmarks) are
given known real world coordinates that are then used to calculate the extrinsic and intrinsic
camera parameters of the image (Bozzini et al., 2012). A minimum of four CPs is required to
determine the unknown camera parameters. If the CPs are well distributed in the photo and in the
terrain, the algorithms should automatically move towards the best solution (Samtaney, 1999).
The accuracy of the results depends on the quality of the used photograph as well as the angle of
incidence in which it was taken, the CPs (number, precision, distribution), the DEM (resolution
and accuracy) and the accuracy of the camera calibration (Conedera et al., 2018). With accurate
data and well distributed CPs, an accuracy of less than a meter may be achieved (Conedera
et al., 2018). There are several monophotogrammetry tools available for solving the task,
like Bozzini et al. (2012, 2013), Produit et al. (2016) or Golparvar and Wang (2021).
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7
Preceding work on optical satellite

avalanche mapping

7.1 Large-scale mapping in Switzerland
The research is built upon work conducted before this thesis, namely the large scale mapping of
avalanches from optical SPOT 6/7 imagery: In the beginning of January 2018, for the first time
since 1999, very high avalanche danger (level 5; EAWS, 2024a) was forecasted and confirmed.
At SLF, the question arose if the avalanche activity might be captured with satellite data. Data
from various sensors: optical WorldView-4, Pleiades, SPOT 6/7 and TerraSar-X radar data in
SpotLight and StripMap mode was acquired and analyzed to test this hypothesis (Bühler et al.,
2019).

After the analysis Bühler et al. (2019) concluded that SPOT 6/7 is the best compromise between
large area coverage and a spatial resolution suitable to identify avalanches. Towards the end of
January 2018, another major snowfall led to large-scale very high avalanche danger (level 5;
EAWS, 2024a) being forecasted. Together with the Swiss Federal Office for the Environment
(FOEN), the swisstopo ordered SPOT 6/7 data over all warning regions where level 5 was
predicted (Bühler et al., 2019). The same procedure was repeated approximately a year later in
January 2019, when again very high avalanche danger (level 5; EAWS, 2024a) was
forecasted (Zweifel et al., 2019). From both avalanche periods cloud-free imagery covering
approximately 22’000 km2 was acquired and orthorectified by swisstopo. The captured
avalanches were consequently manually identified and digitized over the whole area (Bühler
et al., 2019; Bründl et al., 2019). For each avalanche outline (2018: 18’737; 2019: 6’041)
metadata describing important attributes, like avalanche type or avalanche size as well as how
well the avalanche was visible, were saved (Bühler et al., 2019).

7.2 Investigation into performance and completeness
The performance and reliability of mapping avalanches from the chosen sensor were
consequently investigated by Hafner et al. (2021). The validation was performed relying on
photographs from the ground and from helicopters as a reference for an area of approximately
180 km2 around Davos, Switzerland. The performance was quantified using probability of
detection (POD) and the positive predictive value (PPV; see Equation 11.2). Hafner et al. (2021)
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showed that the POD for the mapping from SPOT 6/7 imagery is 0.74 and the PPV 0.88 (for
avalanches ≥ size 2). Larger avalanches are more likely to be mapped than small avalanches
(Fig. 7.1) and avalanches located fully in the shaded slopes are missed more easily than those
on illuminated slopes (Hafner et al., 2021). These analyses confirmed the great potential of
SPOT 6/7 for the comprehensive mapping of avalanches. However, as noted previously
by Eckerstorfer and Malnes (2015), large image datasets can only reasonably be handled using
automatic avalanche detection algorithms.

Figure 7.1: Probability of detection (POD) by size for the four avalanche mapping methods tested
by Hafner et al. (2021, SPOT: SPOT 6/7, S1: Sentinel-1, S2: Sentinel-2, DAvalMap: Davos
avalanche mapping project): The black dots and line represent the mean proportion of avalanches
per size identified by the different mapping methods; additionally, the proportions are shaded grey.
In addition, the values for 2018 (yellow triangles) and 2019 (turquoise squares) are shown for each
mapping method (Fig. from Hafner et al. (2021)).

The aim of this thesis is to enlarge the databases on avalanche occurrences for the safety-related
applications by using deep-learning to automatically identify and map the avalanches in the
SPOT 6/7 imagery. Furthermore, this thesis pursues the goal of better understanding how
reliable both the estimation of avalanche size as well as the mapping of avalanches in the
“traditional way” in the field/from photographs or from remotely sensed imagery are. In this
context, reliability is defined as to how consistent repeated measurements or judgments of the
same event with the same process are (Cronbach, 1947). Lastly, with Interactive Avalanche
Segmentation (IAS), the thesis eases the mapping of avalanches from webcam imagery, tapping
into another data source for documenting avalanche occurrences.
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Automated avalanche mapping from
SPOT 6/7 satellite imagery with deep

learning: results, evaluation, potential
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Abstract
Spatially dense and continuous information on avalanche occurrences is crucial for numerous
safety-related applications such as avalanche warning, hazard zoning, hazard mitigation
measures, forestry, risk management and numerical simulations. This information is today still
collected in a non-systematic way by observers in the field. Current research has explored the
application of remote sensing technology to fill this information gap by providing spatially
continuous information on avalanche occurrences over large regions. Previous investigations
have confirmed the high potential of avalanche mapping from remotely sensed imagery to
complement existing databases. Currently, the bottleneck for fast data provision from optical data
is the time-consuming manual mapping. In our study we deploy a slightly adapted DeepLabV3+,
a state-of-the-art deep learning model, to automatically identify and map avalanches in SPOT 6/7
imagery from 24 January 2018 and 16 January 2019. We relied on 24 778 manually annotated
avalanche polygons split into geographically disjointed regions for training, validating and testing.
Additionally, we investigate generalization ability by testing our best model configuration on SPOT
6/7 data from 6 January 2018 and comparing it to avalanches we manually annotated for that
purpose. To assess the quality of the model results, we investigate the probability of detection
(POD), the positive predictive value (PPV) and the F1 score. Additionally, we assessed the
reproducibility of manually annotated avalanches in a small subset of our data. We achieved an
average POD of 0.610, PPV of 0.668 and an F1 score of 0.625 in our test areas and found an F1
score in the same range for avalanche outlines annotated by different experts. Our model and
approach are an important step towards a fast and comprehensive documentation of avalanche
periods from optical satellite imagery in the future, complementing existing avalanche databases.
This will have a large impact on safety-related applications, making mountain regions safer.

29



8
Introduction

Information about avalanche occurrences, their location and dimensions is pivotal for many
applications such as avalanche warning, hazard zoning, hazard mitigation infrastructure, forestry,
risk management and numerical simulations (e.g., Meister, 1994; Rudolf-Miklau et al., 2014; Bebi
et al., 2009; Bründl and Margreth, 2015; Christen et al., 2010; Bühler et al., 2022). Currently this
information is reported and collected unsystematically by observers and (local) avalanche
warning services. In recent years different groups have proposed to use remote sensing to fill
that gap and provide spatially continuous, complete maps of avalanche occurrences over some
region of interest (Bühler et al., 2009; Lato et al., 2012; Eckerstorfer et al., 2016; Korzeniowska
et al., 2017). It has been shown that avalanches can be identified with sufficient reliability from
optical data (e.g., Bühler et al., 2019) or synthetic aperture radar (SAR; e.g., Eckerstorfer et al.,
2016; Abermann et al., 2019), with varying degrees of completeness depending on the sensor
and the size of the avalanches (Hafner et al., 2021).

Both optical and SAR data have inherent advantages and disadvantages which we would like to
elaborate on in the following section: for the acquisition of suitable data, SAR is independent of
cloud cover, whereas for optical data a clear sky is a crucial prerequisite. Consequently, optical
data may only capture avalanche occurrences after a period with activity is over (except for
avalanches releasing solely due to the warming during the day), whereas with SAR information
may also be retrieved during an avalanche period. Due to that independence from low-visibility
weather conditions, and in the case of Sentinel-1 a 12-day repeat cycle at midlatitudes, the
temporal resolution is in the best case daily in northern Norway or about every 6 days in central
Europe (numbers for two Sentinel-1 satellites acquiring data, currently the temporal resolution is
about half as Sentinel-1B has not been acquiring since 23 December 2021). The optical satellite
data currently known to be suitable for avalanche mapping need to be ordered specifically and
are therefore only available at isolated dates in time. Compared to SAR, optical data are however
easier to process and interpret. In our previous work (Hafner et al., 2021) we compared the
performance and completeness of SAR Sentinel-1 as well as optical SPOT 6/7 and Sentinel-2 for
avalanche mapping. In a detailed analysis of the manual mappings we found the following: the
ground sampling distance of 10m makes Sentinel-2 unsuitable for the mapping of avalanches.
The mapping from SPOT 6/7 is overall more complete compared to Sentinel-1, which is mostly
caused by the inability to confidently map avalanches of size 3 and smaller in Sentinel-1 imagery,
a characteristic related to the underlying spatial resolution of approximately 10-15 m for
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Sentinel-1 and 1.5 m for SPOT 6/7. Depending on the application, practitioners not only want to
know when and where an avalanche occurred, but also the outlines. When analyzing which part
of an avalanche can typically be identified using Sentinel-1 we found (in accordance with, among
others, Eckerstorfer et al., 2022) that it is mostly the deposit, but may include patches from track
and release area. When only using Sentinel-1 data it is therefore not possible to derive the
number of avalanche occurrences (possibly several unconnected patches for one avalanche) or
the size of the avalanche occurrences (size of patches detected does not usually correspond to
avalanche size). Consequently, unless unambiguous with respect to the terrain, the origin and
release area of avalanche deposits detected using SAR images remain unknown. In contrast,
except for shaded areas, in SPOT 6/7 avalanches can be identified from release zone to deposit
in almost all cases. Additionally, research suggests SAR to be a lot less reliable for detecting dry
snow avalanches compared to wet snow avalanches (among others Hafner et al., 2021;
Eckerstorfer et al., 2022). The above statements made about SPOT 6/7 are transferable to optical
data with similar or better spatial and spectral resolution.

To bypass the time-consuming manual mapping, several groups have explored (semi-) automatic
mapping approaches. Bühler et al. (2009) used a processing chain that relies on directional,
textural and spectral information to automatically detect avalanches in airborne optical data. Lato
et al. (2012) and Korzeniowska et al. (2017) applied object-based classification techniques to
optical high-spatial-resolution data (0.25 - 0.5 m). Wesselink et al. (2017) and Eckerstorfer et al.
(2019) have introduced and consequently refined an algorithm to automatically detect avalanches
in Sentinel-1 SAR imagery, via changes in the backscatter between pre- and post-event
images. Karbou et al. (2018) also utilized changes in backscatter to identify avalanche debris. For
avalanche detection in RADARSAT-2 imagery, Hamar et al. (2016) used supervised classification
with a random forest classifier. In contrast, the avalanche mapping from optical satellite data has
so far been exclusively done manually (Bühler et al., 2019; Hafner et al., 2021; Abermann et al.,
2019).
The deployment of machine learning for remote sensing image analysis has seen a surge in the
last decade (Ma et al., 2019). Modern deep learning methods often outperform competing ones
in complex image understanding tasks and have been used, for example, to detect rock
glaciers (Robson et al., 2020), landslides (Prakash et al., 2021) and crop types in fields (Cai
et al., 2018). For avalanches, the use of deep learning has so far focused on Sentinel-1
imagery: Waldeland et al. (2018) applied a pre-trained ResNet (He et al., 2016) for avalanche
identification by change detection using manual reference annotations. Bianchi et al. (2021)
segmented avalanches with a fully convolutional U-Net (Ronneberger et al., 2015), also relying on
manual annotations for training the network. Sinha et al. (2019a) proposed a fully convolutional
VGG16 network (Simonyan and Zisserman, 2015) that was trained on, and compared against, an
inventory of avalanche field observations. With the same inventory, Sinha et al. (2019b) also,
alternatively used a variational autoencoder (Kingma and Welling, 2019) for avalanche detection.

In contrast to previous studies, our work is the first to attempt to use deep learning for the
detection of avalanches in optical satellite data. This is of major importance, as the largest
avalanche mapping from remotely sensed imagery to date, with 24’778 single avalanche
polygons (Bühler et al., 2019; Hafner and Bühler, 2019, 2021), relied on optical SPOT 6/7
satellite imagery. Furthermore, there have been investigations with external data into the
reliability and completeness of mappings from SPOT 6/7 (Hafner et al., 2021). Consequently, an
automation of the manual mapping from this imagery would allow for a fast comprehensive
documentation of future avalanche periods with background knowledge about how well it works
and how much avalanche area approximately is missed. Without an automation it is not feasible
to cover large regions quickly. With manual image interpretation (Hafner et al., 2021) it took
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approximately one hour to manually delineate avalanches in SPOT images covering a region of
≈ 27.5 km2. Thus, in this work we develop, describe and apply a deep learning approach for
avalanche mapping based on the SPOT 6/7 sensor with the goal to automate the mapping
process, so as to cover large areas and eventually operate at country-scale. We developed a
variant of DeepLabV3+ (Chen et al., 2018) that takes as input SPOT 6/7 images and a digital
elevation model (DEM), and outputs spatially explicit raster maps of avalanches. For our
DeepLabV3+ variant we made the encoder and decoder deformable (Dai et al., 2017), thereby
our convolutional kernels adapt according to the underlying terrain, which is essential in the study
of avalanches. In addition to a careful description of the network architecture we evaluate results,
compare them to previous work, examine the reproducibility of the manually mapped avalanches,
and discuss the potential and limitations of our method.
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9
Data

For training and validating our proposed mapping system we utilize SPOT 6/7 top-of-atmosphere
reflectance images acquired on 24 January 2018 (referred to as 2018 in the remainder of this
paper, Hafner and Bühler, 2019) and 16 January 2019 (referred to as 2019 from now on; Hafner
and Bühler, 2021), together with a set of 24’776 avalanche annotations delineated by manual
photo-interpretation. In both cases the images were acquired after periods with very high
avalanche danger, i.e., the maximum level 5 of the Swiss avalanche warning system (WSL
Institute for Snow and Avalanche Research SLF (ed.), 2021). SPOT 6/7 images have a ground
sampling distance (GSD) of 1.5 m and provide information in four spectral bands, namely red,
green, blue, and near-infrared (R, G, B, NIR), at a radiometric resolution of 12 bits. The dataset
covers an area of ≈ 12’500km2 in 2018 and ≈ 9’500km2 in 2019. These two areas partly overlap.
As both were acquired in January, the illumination conditions exhibit little variability between the
two years, but they differ in terms of snow conditions: in 2019 the snow line was at a lower
altitude, and consequently there was more dry snow, hardly any wet snow, and fewer glide snow
avalanches. As additional input information we use the Swiss national DEM swissALTI3D. To
match the resolution of SPOT imagery, we resample the DEM (original GSD 2 m) to 1.5 m,
aligned with SPOT 6/7. Its nominal vertical accuracy is 0.5 m below the treeline (∼2100 m a.s.l.)
and 1–3 m above the treeline (swisstopo, 2018). We did not apply atmospheric corrections as our
main focus is texture and the absolute spectral values do not matter for avalanche identification.

The 24’776 avalanches were annotated by a single person, an expert, whom we define as
somebody very familiar with both satellite image interpretation and avalanches. For the mapping
of avalanches the visual identification of crown and release areas, track and deposit through
texture and hue, as well as hints of possible damage have played a role (for details on the
methodology see Bühler et al., 2019). For each mapped avalanche polygon the expert also
recorded a score of how well the avalanche was visible, splitting the annotations in three groups:
complete, well visible outline; mostly well visible outline; and not completely visible outline, where
significant parts had to be inferred with the help of domain knowledge (see also Bühler et al.,
2019). Furthermore, we validated a subset of the initial mapping with independent ground- and
helicopter-based photographs as reference (Hafner et al., 2021). We found that for manual
mapping based on SPOT images the probability of detection (POD; see Equation 11.2; the
probability of a true avalanche being annotated) is 0.74 for avalanches larger than size 1
(avalanche size is categorised on a scale from 1 to 5, with size 5 the largest and most destructive
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ones; for more details see WSL Institute for Snow and Avalanche Research SLF (ed.), 2021). The
positive predictive value (PPV; see Equation 11.2; probability of an annotated avalanche having a
true counterpart) is 0.88, indicating only a few false positive annotations (again for size ≥2).

Additionally, we used SPOT 7 imagery of the Mattertal, Val d’Hérens and Val d’Herémence in
Valais, Switzerland from 6 January 2018 covering ≈ 660km2 to evaluate our model. The data
were acquired for test purposes after a period with high avalanche danger, and the 538
avalanches used for validation have been manually mapped with the same methodology as the
others used in this work and described in Bühler et al. (2019). The geographical region with
additional data overlaps with data acquired on 24 January 2018, but served as test area before
and did not go into training or validation (see “Generalitzation Test” areas in Figure 10.5). The
images suffer from distortion in steep terrain as they were part of a suitability study for avalanche
mapping from optical data (for details see Bühler et al., 2019) and orthorectified by the satellite
providers using the height information from the Shuttle Radar Topography Mission (SRTM;
OpenTopography, 2013).
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10
Method

Many overlapping avalanches exist in the dataset whose boundaries cannot be precisely
distinguished from each other even by experts. We thus restrict ourselves to identifying all pixels
where avalanches have occurred, but do not attempt to group them into individual avalanche
events. In terms of image analysis this corresponds to a semantic segmentation task, where
each pixel is assigned a class label: avalanche or background, according to the model
confidence. Several deep learning models have been developed for solving such problems and
have achieved excellent results in various domains, such as U-Net (Ronneberger et al., 2015),
HRNetV2 (Sun et al., 2019) and DeepLabV3+ (Chen et al., 2018).

10.1 Model architecture
On their way downwards, avalanches are constrained and guided by the local terrain. In order to
accurately map avalanches from the input data, we therefore propose a deep learning
architecture that adapts to the underlying terrain model. We build on the state-of-the-art model
DeepLabV3+ designed for semantic segmentation and add deformable convolutions that adapt
their receptive field size according to the input data, i.e., the terrain model in our case.

DeepLabV3+ is a popular, fully convolutional semantic segmentation model that has been used
successfully with a variety of datasets. It features a dilated ResNet (He et al., 2016) encoder as a
backbone for feature extraction, in combination with the Atrous spatial pyramid pooling module
(ASPP). To achieve a wide receptive field able to capture multi-scale context, ASPP employs
dilated convolutions at different rates. Before being fed into the decoder, the resulting features
are concatenated and merged using a 1×1 convolution. These high-level features are then
decoded, upsampled and combined with high-resolution, low-level features from the first encoder
layer. For further details about DeepLabV3+, see Chen et al. (2018).

Our adaptions to the standard DeepLabV3+ include deformable kernels (Dai et al., 2017) in the
encoder and decoder, as well as a small network with offsets that estimates the appropriate
kernel deformations in a data-driven manner and modifies the decoder such that it can process
features from all backbone layers (Figure 10.1 and Figure 10.2). These changes add a modest
1.9 million network weights to the 22.4 million weights of the standard DeepLabV3+.

The reasoning behind deformable convolution kernels in the backbone (Figure 10.3) is to adapt
their receptive fields to the underlying terrain. To obtain deformable convolutions, we introduce an
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Figure 10.1: Overview of our DeepLabV3+ variant. The encoder is shown in more detail in Fig-
ure 10.3 and the deformable spatial pyramid flow (DSPF) in Figure 10.4.

additional 18-channel tensor that encodes the 2D offset of each kernel element at each location
i.e., it enables free-form deformations of the kernel, beyond dilation or rotation. The offsets are
not fixed a priori but calculated as a learned function of the DEM, separately for each feature
resolution, by a small additional network branch. By replacing the first convolution in each
residual block with a deformable one, we are able to explicitly include the terrain shape encoded
in the DEM, but without the need to modify other parts of the architecture, so as to benefit from
the pretrained weights of the encoder.

The augmented decoder helps our DeepLabV3+ to propagate features along specific directions,
in our case this is the possible downhill flow direction of avalanches which can be extracted from
the DEM. Hence, we alter the ASPP such that it aggregates features from all backbone layers,
and increases the receptive field. The new module, which we call deformable spatial pyramid flow
(DSPF, Figure 10.4), performs deformable convolutions at different dilation rates. The
deformations are again obtained from our small network with offsets, based on the DEM. In order
to propagate information along the gradient field, we also model the flow direction of an
avalanche in the DSPF module of the decoder.

10.1.1 Sampling and data split
Given the proposed model architecture and the available computational resources (CPU: 20 Intel
Core 3.70 GHz, GPU: 1 NVIDIA GeForce RTX 2080 Ti), we are unable to process an entire

Figure 10.2: For the deformable convolutions, a standard kernel (like the 3 × 3 as shown in a) will
be adapted according to 2D offsets learned from the underlying DEM. The green dots in (b), (c)
and (d) exemplarily show possible final positions of the kernel elements, the displacement from
the standard kernel is illustrated by the black arrows.
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Figure 10.3: Encoder of our DeepLabV3+ in detail.
.

Figure 10.4: Detailed architecture of the deformable spatial pyramid flow (DSPF) used in the
decoder of our DeepLabV3+ variant.

orthomosaic at once. Therefore, we process squared image subsets, called patches, of up to
512 × 512 pixels at training time, which translates into an area of 589’824 m2 at the spatial
resolution of SPOT 6/7 imagery. With our model and computational resources we can
simultaneously process batches of two image patches per GPU.

For supervised machine learning approaches it is vitally important that all desired classes are
present in the patches the model learns from. As classes are usually not evenly distributed, class
imbalance is a frequent challenge. Our dataset is very imbalanced: avalanches cover only
1/1785 of the entire area covered by SPOT 6/7 imagery. Re-balancing of class frequencies is
necessary to make sure our model adequately captures the variability of the avalanche class. We
use the following pragmatic strategy to ensure a training set that includes relevant examples and
with sufficient representation of both classes. First, we iteratively sample patch centers inside
manually annotated avalanche polygons while avoiding overlapping patches. In this way, we
obtain a set of samples that is not overly imbalanced, with ≈3.5× more background pixels than
avalanche pixels. These patches form 95% of our training set. Second, the remaining 5% are
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sampled randomly in areas without avalanches to ensure also patches without avalanche pixels
are seen during training. This leads to an effective ratio of 1:4 between avalanche and
background pixels in the 5185 512 × 512 patches of the training set.

As the edges of the patches lack context, they were also given smaller weights when calculating
the loss function during training, starting 100 pixels from the edge, decreasing the weight linearly
to 10% of the base weight given above at the very edge. For our DeepLabV3+ we additionally
used deep supervision as in Simonyan and Zisserman (2015) to help the model converge.

10.1.2 Training
For training and quantitative evaluation, the data were split into mutually exclusive, geographically
disjoint regions for training (80%), validation and hyper-parameter tuning (10%) and testing
(10%), as depicted in Figure 10.5. The test set is located completely in regions acquired either
only in 2018 or only in 2019 but not in the overlap between the two acquisitions to prevent
memorization (especially of the identical topography).

Figure 10.5: Visualization of the disjoint regions for training, validation and testing for both 2018
and 2019. Also shown are the test region for the generalization experiments, where we had
additional data from 6 January 2018, and the regions used to study reproducibility of manual
avalanche maps.

The network is trained by minimizing a weighted binary cross entropy (BCE) loss (see also
10.1.2), using the Adam optimizer (Kingma and Ba, 2017) for 20 epochs. The base learning rate
was initialized to 1×10−4 and reduced by a factor of 4 after 10 epochs. A summary of the
hyper-parameter settings is given in Table 10.1.

Table 10.1: Summary of training parameters

Parameter Value
Loss function Weighted BCE
Optimizer Adam
Initial learning rate 1×10−4

Effective batch size 16
Patch size 512×512
Epochs 20

As a preprocessing step, the input images are normalized channel-wise using the mean and
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variance values of the entire dataset. Additionally, we flattened the peak in the image histograms
caused by the shadow pixels by transforming negative values v → (−3 · v2) while keeping positive
values unchanged.

Even though our training dataset is large, it covers only two avalanche periods and cannot be
expected to account for the whole variety of possible conditions. In order to increase the
robustness of the network, we further expand the training set with synthetic data augmentation.
We used randomized rotation and flipping for greater topographic variety, mean-shifting and
variance-scaling to simulate varying atmosphere and lighting conditions, and patch shifting to
increase robustness when only part of an avalanche is visible. To speed up data loading we used
batch augmentation (Hoffer et al., 2019), in which the same sample is read only once and used
multiple times with different augmentations computed on the fly. To increase the model’s
performance, we additionally accumulated gradients over two iterations before weights were
updated. Thereby an effective batch size of four (2+2) was reached, and the 512 × 512 pixel
patches may be used (see also Section 11.2).

As mentioned in Section 9 the avalanche polygons come with labels that quantify their visibility in
the SPOT data. These labels are used to re-weight their contributions to the BCE loss as follows:
pixels on complete, well visible avalanches have weight 2, mostly well visible avalanches, as well
as background pixels not on an avalanche, have weight 1, and not completely visible avalanches
have weight 0.5.
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11
Results and discussion

Predictions are made for a target area specified by vector polygons in the form of shapefiles. To
reduce artifacts at the edges of patches, the samples for the predictions overlap by 100 pixels
before being cropped. To assess the detection performance of the network, we calculated
positive predictive value (PPV, also called precision) and probability of detection (POD, also
called recall) on a pixel level, as well as the F1 score. PPV and POD are both based on a
standard 2 × 2 confusion matrix (Trevethan, 2017). As per-pixel metrics take as input a binary
mask (avalanche yes or no) and the network yields scores, we thresholded the predictions at 0.5
before calculating statistics and computed the F1 score as

F1 = 2 · PPV · POD
PPV + POD

, (11.1)

where POD and PPV are defined as

POD = TP
TP + FN

and PPV = TP
TP + FP

, (11.2)

where TP is true positive, FP is false positive and FN is false negative.

In this paper the presented pixel-wise metrics (POD, PPV and F1 score) represent the average
score over all the patches we tested on. As our dataset is imbalanced and the F1 score
non-symmetric, we calculated those metrics for both avalanches and the background.
Additionally, we wanted to estimate how many avalanches were detected by each model.
Consequently, for the object-based metrics we tested two different measures: we counted an
avalanche as detected if 50% or 80% of all pixels within an avalanche from the manual mapping
had a score of 0.5 or higher.

11.1 Results and generalization ability
Results were calculated for the test areas and are reported in Table 11.1. Compared to the
standard DeepLabV3+, our model, when run with the parameters described in Table 10.1, has a
higher POD for avalanches (0.610 vs. 0.587) while having the same PPV. This results in an F1
score of 0.612 for the standard DeepLabV3+ and 0.625 for our version. For the background, the
pattern is similar: the POD is slightly better for our method (0.894), compared to the standard
DeepLabV3+ (0.888), while the PPV is slightly higher for the standard model (0.900 vs. 0.894).
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Figure 11.1: An example for the model confidence when predicting on data from a previously
unseen avalanche period from 6 January 2018 (SPOT 6 data © Airbus DS 2018). The values
closer to 1, in darker hues, indicate places where the model is more confident about the existence
of an avalanche. In the illuminated regions those areas almost always overlap with manually
mapped avalanches.

Consequently, the F1 score is very similar as it only differs by one in the third decimal place
between our and the standard DeepLabV3+.

For any supervised classification and deep learning methods in particular, the ability to
generalize well to new datasets and regions not seen during the training phase is key. To
evaluate this, we test our trained model using SPOT 7 imagery from 6 January 2018. The test
metrics for predictions on the data from 6 January 2018 were calculated with the standard
DeepLabV3+ and the adapted DeepLabV3+. As Table 11.1 shows, our version generalizes very
well (see also Figure 11.1), the metrics only differ from tests on the initial dataset in the fourth
decimal place. The standard DeepLabV3+ on the other hand, does not generalize so well as the
POD and the detection rates per avalanche are lower than for testing on the initial data.

We also investigated object-based metrics for all model variations, when detection means 50% of
the avalanche area the models rightly capture between roughly 58% and 69% of all avalanches
and between 38% and 51% when detection requires 80% of the area (Table 11.2). Again the the
standard DeepLabV3+ performs slightly worse than our adapted DeepLabV3+, especially when
run on data from a new avalanche period (6 January 2018). Therefore, our DeeplabV3+ shows
better ability to generalize to new and previously unseen data. Overall, the best performance is
achieved when considering sunlit avalanche parts only, for both training and testing.
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Table 11.2: Object-based metrics for selected model configurations.

Model SPOT data Training data Detection rate
50% of avalanche
area

Detection
rate 80% of
avalanche
area

Standard
DeepLabV3+

24.01.2018
16.01.2019

Whole avalanches 0.63 0.45

Adapted
DeepLabV3+

24.01.2018
16.01.2019

Whole avalanches 0.66 0.46

Standard
DeepLabV3+

06.01.2018 Whole avalanches 0.58 0.38

Adapted
DeepLabV3+

06.01.2018 Whole avalanches 0.66 0.46

Adapted
DeepLabV3+

24.01.2018
16.01.2019

Sunlit avalanches only 0.69 0.51

11.2 Ablation studies
To understand how our changes to the standard DeepLabV3+ affect performance we varied the
model in different ways and trained, tested and compared the performance. These results can be
found in Table 11.1. First, we investigated the influence of the deformable backbone and
discovered that including it outperforms the non-deformable backbone configurations of the
standard DeepLabV3+. This is the case in our test areas for 2018 and 2019, but also for testing
on the avalanche period from 6 January 2018. Secondly, the avalanches in our network have
been weighted (see 10.1.2) according to the quality index assigned by the manual mapper. To
quantify the effects of using weights we ran training with unweighted BCE and observed a
decrease in POD, a slight increase in PPV and overall a smaller F1 score. Additionally, in our
adapted version of DeepLabV3+ we only considered the red and near-infrared from SPOT, as
well as the DEM as input channels. We cannot test the adapted DeepLabV3+ without the DEM
as it is explicitly included as an integral part of the network. We analyzed, however, how including
all SPOT channels (additionally Blue and Green) and also adding another Wallis filtered channel
(to bring out details in the shade) affect network performance (see Table 11.1). For our model we
found that including more channels did not improve the performance; rather training time was
longer and metrics worse than with the initial channels.

We hypothesize that the proportion of potential avalanche area and context visible in the patches
strongly influences network output. To investigate this, we have trained our model with varying
patch sizes: 512 × 512, 256 × 256 and 128 × 128 pixels (corresponding to 768 × 768, 384 × 384 and
192 × 192 meters). Quantitative results in Table 11.1 show the largest patch size performs best
considering metrics for both avalanches and background. When comparing them visually
(Figure 11.2), this is further supported as the predictions on the smallest size are patchy and
dispersed over the image, showing the model is unsure about the occurrence of avalanches.
With increasing context through a larger patch size though, the model becomes more confident,
and the avalanche borders are distinctly visible.

Subsequently, in order to understand what is better for training the network, we trained on
avalanche deposits or release areas only. As deposit area, we assumed the lower third (based on
elevation) of each manually mapped avalanche, ignoring those avalanches where the deposit had
been inferred. For the release areas, we used the zones identified by Bühler et al. (2019), again
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disregarding those avalanches where the release zone had been inferred and was therefore
uncertain. As results in Table 11.1 show, performance for predicting all avalanches is a lot worse
in both cases. We also observe that PPV and POD are significantly higher when the network is
trained on deposits only rather than trained only on release areas. This resulted in an increase of
0.146 in F1 score and suggests that the original model might also be learning more from
texture-rich avalanche deposits than from release zones.

Figure 11.2: Comparison of results for four patches when training the network with different patch
sizes. The tiles depict a) the SPOT 6 image, b) the manually mapped annotations used as ref-
erence, c) the predictions thresholded at 0.5 and d) the predicted avalanche probability (SPOT 6
data © Airbus DS 2018). Visual inspections show that the model is a lot more confident the larger
the patch size is.

Finally, the experts manually mapping the avalanches generally perceived those in the sun as
better visible. Hafner et al. (2021) confirmed that and found the POD to be higher roughly by a
factor of 5 for avalanches in fully illuminated terrain compared to those, at the time of image
acquisition, in fully shaded terrain. In order to investigate this further, we used a support vector
machine (SVM) classifier to calculate a shadow mask for both 2018 and 2019. The mask also
includes most forested areas due to their speckled sun-shade pattern. Subsequently, we
excluded the avalanche parts located in the shade and trained only with the remaining areas
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(about one fourth of the avalanche area per year). Calculating the metrics considering only
avalanches in illuminated areas, we found an increase of 0.058 in POD, a slight decrease of
0.015 in PPV and consequently an increase in F1 score of 0.014. The object-based metrics
(Table 11.2) are also slightly better when only considering sunlit regions.

11.3 Reproducibility of manually mapped avalanches
To assess the degree of label noise in our dataset, we conducted a reproducibility experiment on
the manually mapped avalanches to understand how similar the assessment of a given area by
different experts would be. In other fields several comprehensive studies have already been
conducted to investigate inter-observer variability, for example for contouring organs in medical
images (Fiorino et al., 1998) or for manual glacier outline identification (Paul et al., 2013). For our
investigation five people attempted to replicate the manual mapping with the same methodology
as used before and described in detail in Bühler et al. (2019). All five mapping experts are very
familiar with satellite imagery and/or avalanches and received the same standardized
introductions. The experiment was conducted twice in an area of 9km2 around Flims,
Switzerland, on the 2018 and 2019 SPOT 6/7 imagery (see Figure 10.5). The area contains
avalanches in the shade and in illuminated terrain as well as all outline quality classes in the
initial mappings (Hafner and Bühler, 2019, 2021). The mapping experts did not see another
mapping before having finished theirs.

Table 11.3: F1 scores for the reproducibility investigation: the bold values in the upper-right part
of the table represent the scores comparing two expert mappings in illuminated terrain, and the
lower-left values are the scores in shaded terrain.

Expert 1 Expert 2 Expert 3 Expert 4 Expert 5
Expert 1 0.758 0.623 0.617 0.653
Expert 2 0.401 0.711 0.723 0.724
Expert 3 0.232 0.198 0.656 0.782
Expert 4 0.188 0.236 0.205 0.786
Expert 5 0.123 0.155 0.204 0.244

Calculating F1 score (see Equation 21.1) between all experiment mappings, we found an overall
F1 score of 0.381 in illuminated and 0.018 in shaded areas (area-wise metrics). Comparing two
expert mappings at a time, the values range from 0.617 to 0.786 in the illuminated regions and
from 0.123 to 0.401 in the shaded regions of our study area (Table 11.3). The F1 scores of the
expert manual mappings with the initial mapping are in the same range (not shown). The results
from 2018 (Figure 11.3) illustrate that for some selected avalanches the agreement is very good,
while, especially in the shade, there is little agreement among experts on the presence of
avalanches.
Reexamining the results from the network now in the light of this experiment, the adapted
DeepLabV3+ is equally good as the experts in identifying avalanches. In other words, we cannot
expect a computer algorithm to provide better scores than the average F1 score of two mapping
experts. Even for the avalanches with the highest agreement, a specific boundary line will usually
not match exactly. This makes it hard for any network to learn the localization of boundaries. We
do not yet know what exactly causes the differences in avalanche identification between experts.
Therefore we plan on conducting a thorough analysis on imagery with different spatial resolutions
in the future. This will help us to better understand the inherent mapping uncertainty of
avalanches and may give an indication of what performance can be expected if training
computational detection algorithms on different optical data.
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Figure 11.3: Heat map exemplarily illustrating expert agreement on avalanche area for avalanches
mapped from SPOT in January 2018 (24 January 2018, SPOT 6 © Airbus DS2018). Agreement in
the shade (northern part of the study area) is generally lower than in the sunlit areas to the south.
Dark blue indicates very good agreement or in other words marks areas that where identified as
an avalanche by all five experts involved. For a more detailed location of the reproducibility study
area see Figure 10.5.

11.4 Limitations of this study
The three avalanche periods for which we have SPOT imagery all occurred in January. Those
images are relatively close to the winter solstice and therefore have a high percentage of shaded
area. The amount of shaded area depends very much on the terrain and on the season. Around
Davos, Switzerland, for example, 43% of the area is shaded on the winter solstice but only 7% 3
months later (both at SPOT 6/7 image acquisition time; Hafner et al., 2021). We know that the
quality of the manually annotated avalanches is lower in shaded areas (POD: 0.15 shade, 0.86
illuminated, 0.74 overall; Hafner et al., 2021). Consequently, the training data have lower quality
in shaded regions, which makes learning there more difficult for our model and leads to lower
model confidence, as well as poorer results. Based on the results when training and testing on
sunlit avalanche parts only, however, we see potential for better overall metrics when a smaller
portion of the area is shaded closer to the summer solstice. But regardless of how much area is
well illuminated, the challenges in the shade remain and make results in those areas less
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trustworthy. Further research to better understand and tackle that problem is needed.

Additionally, even though 2018 includes wet snow and wet snow avalanches, the snow in January
is generally colder and drier than towards the end of the winter. Consequently, we do not know
how well our model performs under different snow conditions, for example in spring. Whether our
model already generalizes enough or is biased towards high winter conditions and requires
retraining with different snow conditions, we could not yet test.
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12
Conclusion and outlook

We present a novel deep learning approach for avalanche mapping with deformable convolutions
that adapts its notion of the local terrain according to the input digital elevation model (DEM).
Experiments at large scale with optical, high-spatial-resolution (1.5 m) SPOT 6/7 satellite imagery
show that our approach achieves good performance (F1 score 0.625) and generalizes well to
new scenes not seen during the training phase (F1 score 0.625). As reference data for training,
validating and testing our model we relied on 24’747 manually mapped and annotated
avalanches from two avalanche periods in different years. With our adapted DeepLabV3+ we
were able to detect 66% of all avalanches. By varying model parameters and the input data we
analyzed the impact of different configurations on the mapping result. We found that weighting
the avalanches according to the perceived visibility did result in slightly better metrics than when
not weighting them. By training on release areas and deposits only we demonstrated that the
network learns more from deposits (Table 11.1), and by excluding shaded areas from training we
showed that in illuminated terrain both training is easier and test results are better (F1 score
0.639). Furthermore, we investigated expert agreement for manual avalanche mapping in a small
reproducibility study and found that agreement on avalanche area is substantially lower than
expected. Compared to the model, the agreement between experts is in the same range as the
adapted DeepLabV3+ performance.

Our work is an important step towards a fast and comprehensive documentation of avalanche
periods from optical satellite imagery. This could substantially complement existing avalanche
databases, improving their reliability to perform hazard zoning or the planning of mitigation
measures. For the future we aim at conducting a more through study investigating expert
agreement for manual avalanche identification and its implications for automated avalanche
mapping. Additionally, we intend to study the performance of our model on data from different
sensors and time periods. Furthermore, we plan on improving results by masking out areas
where avalanches cannot occur using, for example, modeled avalanche hazard indication data
from Bühler et al. (2022).
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Abstract
Consistent estimates of avalanche size are crucial for communicating not only among avalanche
practitioners but also between avalanche forecasters and the public, for instance in public
avalanche forecasts. Moreover, applications such as risk management and numerical avalanche
simulations rely on accurately mapped outlines of past avalanche events. Since there is not a
widely applicable and objective way to measure avalanche size or to determine the outlines of an
avalanche, we need to rely on human estimations. Therefore, knowing about the reliability of
avalanche size estimates and avalanche outlines is essential as errors will impact applications
relying on this kind of data. In the first of three user studies, we investigate the reliability in
avalanche size estimates by comparing estimates for 10 avalanches made by 170 avalanche
professionals working in Europe or North America. In the other two studies, completed with two
pilot studies, we explore reliability in the mappings of six avalanches from oblique photographs
from 10 participants and the mappings of avalanches visible on 2.9 km2 of remotely sensed
imagery in four different spatial resolutions from 5 participants. We observed an average
agreement of 66% in the most frequently given avalanche size, while agreement with the
avalanche size considered ≪correct≫ was 74%. Moreover, European avalanche practitioners
rated avalanches significantly larger for 8 out of 10 avalanches, compared to North Americans.
Assuming that participants are equally competent in the estimation of avalanche size, we
calculated a score describing the factor required to obtain the observed agreement rate between
any two size estimates. This factor was 0.72 in our dataset. It can be regarded as the certainty
related to a size estimate by an individual, and thus provides an indication of the reliability of a
label. For the outlines mapped from oblique photographs, we noted a mean overlapping
proportion of 52% for any two avalanche mappings and 60% compared to a reference mapping.
The outlines mapped from remotely sensed imagery had a mean overlapping proportion of 46%
(image resolution of 2 m) to 68% (25 cm) between any two mappings and 64% (2 m) to 80%
(25 cm) when compared to the reference. The presented findings demonstrate that the reliability
of size estimates and of mapped avalanche outlines is limited. As these data are often used as
reference data or even ground truth to validate further applications, the identified limitations and
uncertainties may influence results and should be considered.
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13
Introduction

Information on the location and size of avalanches is crucial for avalanche forecasting. A
consistent and accurate documentation of the outlines of avalanches is important for applications
such as avalanche-related risk management, hazard mitigation measures or hazard zone
planning. In addition, these data are used as ground truth, for instance, for the validation of
numerical avalanche simulations (e.g., Wever et al., 2018), when training models for the
automated detection of avalanches on satellite images (e.g., Hafner et al., 2022) or for training
models estimating avalanche size from snowpack simulations (e.g., Mayer et al., 2023a).
However, avalanche size estimates are subjective as they cannot easily be measured like, for
instance, earthquakes. The same is true for avalanche outlines, where no objective way of
determining them exists. In many applications where direct measurements are not possible,
human estimates are used as the reference, sometimes referred to as a ≪gold standard≫ (e.g.,
Weller and Mann, 1997). Applications, where such data are used, include mapping of
landslides (Ardizzone et al., 2002; Galli et al., 2008), identifying rock glaciers (Brardinoni et al.,
2019), or the estimation of avalanche size and danger (e.g., Schweizer et al., 2020). When these
data are used for validation, errors in the estimates may cause an observed reduction in model or
forecast performance, simply due to errors in the reference (e.g., Bowler, 2006; Lampert et al.,
2016). Therefore, quantifying reliability, defined as the consistency of repeated measurements or
judgments of the same event relying on the same process (Cronbach, 1947), is vital.

The reliability of judgments of something that cannot be known directly may be described using
Brunswik’s lens model (Stewart, 2001): the parameter that cannot be directly measured is
estimated using the information available (data). These data may be imperfectly describing the
parameter of interest. The connection between the parameter and the actual event is the
accuracy of the estimate. It may be reduced by unreliability either in the information (data) or in
the information processing for making the judgment (skill of the judge; Stewart, 2001). The
reliability of judgments may be approximated with repeated estimates, regression models or the
measurement of agreement among estimates (Stewart, 2001). Such investigations, for
comparable tasks where human estimates are important, have revealed that the automated
mapping of clean glacier ice is at least as accurate as manual digitization (Paul et al., 2013). Galli
et al. (2008) found the time available for field reconnaissance to correlate with the accuracy of
landslide event inventory maps. Brardinoni et al. (2019) analyzed the variability in rock glacier
inventories and found it to depend, in comparable proportions, on inter-operator variability and

51



the quality of available imagery.

Since both avalanche size and avalanche outlines are currently assessed relying on human
interpreters, and since consistent and accurate size estimates and avalanche outlines are key
data for several applications, our objective is to quantify the reliability of these data. We expand
previous studies exploring the consistency in avalanche size estimates (Moner et al., 2013;
Jamieson et al., 2014) using a larger sample. Moreover, we quantify the reliability in avalanche
outlines mapped from oblique photographs and remotely sensed imagery, and investigate
potential factors explaining inter- and intra-rater variations.
In three independent user studies we address the following two research questions:

1. To what degree do experts agree when rating the size of an avalanche from photographs?

2. To what degree do experts agree when mapping the outline of avalanches from oblique
photographs or from remotely sensed imagery?

Moreover, we explore potential factors influencing the agreement rates in size estimates or
avalanche outline mappings. This allows for the estimation of benchmark values describing the
reliability of these kind of data, and hence the interpretation of the performance of applications
relying on these data.
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Background

Avalanche size may be assessed by installing infrastructure to measure impact pressure (e.g.,
Sovilla et al., 2008) or by determining deposit volumes with photogrammetry (e.g., Eckerstorfer
et al., 2016), optionally complemented with snow density samples of the avalanche deposit or by
assuming a plausible density to calculate mass (Jamieson et al., 2014). Given current
technologies, this is not feasible for all avalanches, and in addition it was not possible at all until a
few years ago. Therefore most avalanche inventories rely on size estimates made by humans.
Even though avalanches may be identified in remotely sensed imagery with high locational
accuracy, there is as of yet no objective way to determine the outlines of avalanches, and – so far
– all automatic approaches have been validated against manual mappings (e.g., Lato et al., 2012;
Bianchi et al., 2021). Furthermore, suitable remotely sensed imagery is often not available;
therefore avalanche outlines are mostly manually mapped, directly in the field or later from
photographs.

In practice, field observers or the public may provide an estimation of avalanche size together
with the approximate location of the avalanche (a point) or map the outlines of avalanches, while
avalanche forecasters recording avalanches may also use photographs provided by third parties
for these tasks. It is common practice for avalanches to be assigned a size estimate using a
scale. Standardized scales were first proposed about 60 years ago by the U.S. Department of
Agriculture (1961) to ≪provide an effective vehicle for communication between the observers
themselves and others≫ (McClung and Schaerer, 1980, p.15). The earliest classification of
avalanches into size categories was based on destructive potential (U.S. Department of
Agriculture, 1961). Since then, the classification has been extended and refined by analyzing
mass and frequency distributions of avalanches (McClung and Schaerer, 1980). This scale was
adopted in several countries (among others Canada and New Zealand). In addition, in the United
States the destructive scale is often combined with a relative scale, where avalanches are given a
size relative to the avalanche path they occurred on (Birkeland and Greene, 2011). In this
system, the size of an avalanche is dependent on its location (McClung and Schaerer, 1980).
Both scales use five size classes, with size 1 being the smallest and size 5 being the largest
avalanche. With some variations, the destructive scale was adopted in Europe in 2009 and later
complemented with more details. An overview of the scales currently used in North America and
Europe is shown in Tab. 14.1.
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Inventories of avalanches mapped either directly in the field or later from photographs have been
used in numerous studies (e.g., Hafner et al., 2021; Bühler et al., 2022; Techel et al., 2022) but
are known to be incomplete (Schweizer et al., 2020) and biased towards accessible terrain and
larger avalanches (Hendrikx et al., 2005). Avalanche size may be directly derived from avalanche
outlines (Schweizer et al., 2020; Völk, 2020; Bühler et al., 2019), for example, by thresholding the
mapped area. In addition to manual avalanche outline mapping, avalanches have increasingly
been mapped (manually or automatically) from remotely sensed imagery such as satellite images
or orthophotos acquired from airplanes or drones (e.g., Korzeniowska et al., 2017; Eckerstorfer
et al., 2017; Bühler et al., 2019; Bianchi et al., 2021; Hafner et al., 2022). Specifically satellite
imagery has the potential to close the information gap in avalanche documentation and record
avalanche occurrences over large areas with a consistent methodology, thereby complementing
existing databases (e.g., Lato et al., 2012; Vickers et al., 2016; Eckerstorfer et al., 2017; Bühler
et al., 2019).
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15
Data and methods

To explore the reliability of avalanche size estimates and avalanche outline determination, we
conducted three user studies, described in Sections 15.1 to 15.3. In all three studies, we
simulated different typical size estimation or avalanche mapping tasks based on either oblique
photos or remotely sensed images. For each of the three experiments, this translated to the
following common task for the study participants: an assessor is given an image and has to (1)
detect the avalanche(s) in the image. If an avalanche is detected, the assessor (2) either judges
the size of the avalanche or distinguishes between avalanche and no avalanche by drawing an
outline.

15.1 Study 1: avalanche size estimation
To explore the reliability of avalanche size estimates provided by avalanche practitioners, we
developed a survey consisting of 10 photographs of avalanches (see the Supplement C). The
photographs used were originally captured for the purpose of documenting avalanches. They
show clearly identifiable avalanches in various terrain and were chosen to provide a diverse set of
perspectives, sizes and illumination, as well as the presence of various reference objects. In the
survey, each participant was asked to estimate the size of each of the 10 avalanches using the
five-class integer scale, which we refer to as the ≪full≫ size (for instance, size 3; see Tab. 14.1).
After estimating the full size of an avalanche, participants had the opportunity to provide an
intermediate size (≪half≫-size, nine levels; for instance, size 2.5). As a second task, we asked
participants to rate the importance of the factors characterizing avalanche size for their size
estimations on a four-point Likert scale as either very important, important, less important or not
at all important (factors: destructive potential, dimensions, runout and volume; Tab. 14.1). We
designed the survey with a European audience in mind and only later decided to extend it to
North America. For this reason, runout and volume were included as factors even though they
are not part of the North American avalanche size definition. Similarly, in the European definition
typical length and volume are presented under the headline typical dimensions (EAWS, 2023), a
term which is not present in the North American definition.

The survey was sent to avalanche practitioners, primarily regional avalanche forecasters in
Europe and North America, through personal contacts or using forecast center mailing lists. The
survey was available in English, French, German and Italian. We asked participants at the
beginning of the survey whether they were avalanche forecasters, and in which country they
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work. In total, 170 responses were received: 105 from Europe, and 65 from North America. The
proportion of professional avalanche forecasters in our dataset was 86% (146). The other 24
participants either had additional roles besides forecasting or worked closely with the avalanche
warning service, for example as avalanche educators, mountain guides, ski patrollers or field
observers for a warning service. The professional forecasters in our sample were from the United
States (39 participants), Italy (33), Canada (17), Norway (15), Spain (10), Austria (10) and
Switzerland (7), while all other countries had 2 or fewer participants.

15.2 Study 2: avalanche mapping from oblique photographs
To investigate the reliability in avalanche outlines, we asked nine people, who map avalanches as
part of their professional duties, to map six avalanches in the area around Davos (Switzerland)
from winter 2020/21.

For each avalanche, we provided three to six photographs and indicated the approximate location
by giving the name of a ridge or summit in the proximity of the avalanche (distance 50 to 300 m).
Mapping was conducted using operational mapping tools, which provide the user with a
topographic map (at best with a scale of 1:10’000; swisstopo, 2020a), orthophotos (resolution of
10×10 cm; swisstopo, 2020b) and slope incline classes for areas steeper than 30◦ (resolution of
10×10 m). Each participant was asked to map the six avalanches with the same accuracy as
they usually would when mapping avalanches. In addition to the nine participants, we used the
avalanche outlines that were initially mapped for documentation purposes in winter 2020/21.

To create a reference for the map analysis, we georeferenced one image per avalanche with the
monoplotting tool developed by Bozzini et al. (2012, 2013), then drew and exported the avalanche
outlines. Since this approach allows for a much more accurate localization of avalanche outlines,
we used these as a reference in this study. For one avalanche (a in Fig. 16.4), the deposit was
obscured by a tree in the only photograph where the whole avalanche was visible. This part of
the avalanche was therefore disregarded in the analyses including this reference.

15.3 Study 3: avalanche mapping from remotely sensed imagery
The third experiment concerned the mapping of avalanche outlines from remotely sensed
imagery. In addition to comparing mapped avalanche outlines between individuals, this
experiment allowed for exploring some of the potential factors influencing the quality of mapped
avalanche outlines (illumination, snow conditions, avalanche type, image resolution; Hafner et al.,
2022).

We selected two georeferenced images acquired under different snow conditions (see Tab. 15.1)
without artifacts, without saturation and as 16-bit radiometric information. The images were
processed in Agisoft Metashape. To obtain different resolutions, we bi-linearly resampled the data
in the red-green-blue channel (RGB) to 25 cm, 50 cm, 1 m and 2 m spatial resolution (for native
resolutions see Tab. 15.1). For separating illuminated from shaded areas, we used a support
vector machine classifier to calculate a shadow mask (see Hafner et al., 2022, for details).

We provided a standardized introduction to the five participants, who were all familiar with
avalanches and remotely sensed imagery. All visible avalanches were to be digitized in the
software ArcGIS Pro, starting from the coarsest (2 m) and ending with the finest resolution
(25 cm). Images with higher resolution were only made available after the mapping of the
(one-step) coarser resolution had been completed. Participants could not re-examine their earlier
mappings. They had access to the topographic map (at best a scale of 1:10’000; swisstopo,
2020a) and slope incline classes for areas steeper than 30◦ (resolution of 10×10 m). We
instructed participants to outline all areas with signs of avalanche activity rather than drawing
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Table 15.1: Properties of remotely sensed imagery, which was used to investigate variations in the
performed avalanche mapping.

Acquisition
date

Sensor Mean ground
sampling
distance (GSD)

Area cov-
ered [km2]

Snow and avalanche
conditions

16 March
2019

UltraCam
Eagle M3
(piloted
airplane)

12 cm 2.2 Following a period with
numerous dry-snow
avalanches

25 February
2021

WingtraOne
(drone)

4 cm 0.7 Following a period with
numerous wet-snow
avalanches

individual events; thus, they were asked to delimit all visible avalanche regions but not to
separate them into individual avalanche polygons. The participants did not see the mapped
outlines from other participants before they had finished with the highest resolution.

15.4 Data analysis
15.4.1 Avalanche size estimates
Presumably, having many assessors performing the same task is a rare exception; thus, in most
situations only a single estimate for avalanche size is available. Therefore, the reliability of an
individual estimate is of interest. Not making an assumption about whether any two size
estimates contain the true label, the agreement between raters can be considered an indirect
indicator of reliability (Stewart, 2001). For the avalanche size estimation study (Sect. 15.1), we
calculated inter-rater agreement as the proportion of agreements in avalanche size between any
two raters for the 10 avalanches (Pagree). Following Stewart (2001), if random errors between two
raters are independent, then the correlation between two raters’ estimates cannot be larger than
the product of their reliabilities, except by chance. In other words without knowing which rater is
more competent or reliable, the reliability (rel) of an individual rater is the geometric mean of the
individual reliabilities (Techel, 2020, p. 35). In the special case with two raters i = {1, 2}, rel can
be derived as:

rel =
√

rel(1) × rel(2) =
√

Pagree(1, 2) (15.1)

Reliability rel thus provides an indication regarding the certainty related to estimates by
individuals (Stewart, 2001, pp. 84-85).

Several studies have shown that the competency of raters influences the reliability of the
labels (e.g., Lampert et al., 2016; Wong et al., 2022). We therefore investigated whether some
raters more often provided different or rather extreme size estimates compared to others. As we
are lacking an independent ground truth label, we infer a ground truth size assuming that the
consensus or most frequently chosen size is a suitable approximation. This is a frequently used
approach when no ground truth label is available (e.g., Lampert et al., 2016; Wong et al., 2022).
Thus, we extracted the mode (smode) and median size. However, as the number of participants
differed between North America and Europe, and not wanting to favor either in case of
differences, we considered the mean of the corresponding median size in North America and
Europe for avalanche j as the reference size sj . In the case that sj was between two integer
values, for instance , 2.5, we considered the result inconclusive and treated the correspondingly
lower and higher integer size as correct too (here size 2 and 3). Similarly, in the case of equal
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Figure 15.1: Intersection over union (IoU) with the area of overlap (AoO) and the area of union
(AoU).

votes for two avalanche sizes, we considered both for the calculation of agreement with smode.

To obtain an indication on the competency of individual raters, we derived a proportion of those
that are ≪correct≫ for each rater i of Pcorrect, defined as the number of size estimates sij being
equal to sj divided by the number of avalanches. As an alternative approach, we calculated
Pmode for each rater i, specified as the number of size estimates sij equal to the most frequently
chosen size smode divided by the number of avalanches.

We used the Wilcoxon rank-sum test and the proportion test (as implemented in R Core Team,
2021) to test for significant differences between groups. We considered p values ≤ 0.05 as
statistically significant.

15.4.2 Avalanche outline determination
For the outline determination exercises (studies 2 and 3), we calculated the intersection over
union (IoU) as an indicator of spatial agreement in the mappings by any two annotators (e.g.,
Levandowsky and Winter, 1971). Here, IoU describes the overlapping proportion of two
avalanche areas (AoO) relative to the combined area of the two avalanche areas (AoU):

IoU = area of overlap (AoO)
area of union (AoU)

, (15.2)

where IoU lies between 0 (no overlap) and 1 (full overlap; Fig. 15.1).

We used three variations for IoU:

• IoUpairwise, which is the ratio between the intersection of any two individual mappings to the
union of these two mappings;

• IoUall, which is the ratio between the intersection of an individual mapping to the union of all
mappings;

• IoUref, which is the ratio between the intersection of an individual mapping and the
reference mapping to the union of these two mappings.

As for the avalanche size estimation study (Sect. 15.1), we explored annotator competence. In
study 2 (Sect. 15.2), we used the reference mapping as ground truth. In study 3 (Sect. 15.3),
with five participants, we assumed that the area marked as an avalanche by a simple majority
(three out of five participants) represented a good approximation of a ground truth.
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16
Results

16.1 Avalanche size estimation (study 1)
A total of 170 people participated in the survey and estimated the size of 10 avalanches, shown
in Fig. 16.1. The agreement rate between any two size estimates Pagree was 0.53, ranging
from 0.22 to 0.68 for individual raters. Nine of these raters had an agreement rate lower than the
95th percentile of the 170 participants (Pagree ≤ 0.39), indicating particularly low correspondence
with avalanche size as perceived by others. Each of these nine raters suggested at least for one
avalanche a rather ≪extreme≫ avalanche size, a size which less than 10% of the participants had
chosen. Without these nine raters, the agreement rate was 0.54, which is only marginally higher
than the overall agreement. Considering all responses, the mean reliability rel of individual
estimates was 0.72, ranging from 0.47 to 0.82, and, if excluding the nine raters with the lowest
agreement with others, rel was 0.73.

On average, the agreement with the size considered correct (sj) was Pcorrect = 0.74, or, if
treating a simple most frequent vote smode as the reference size, Pmode was 0.66; 16 participants
were in full agreement (Pcorrect = 1) with the avalanche sizes considered the most likely size sj ,
while the nine raters with the lowest agreement with others also had low values of agreement
with sj . Excluding these resulted in Pcorrect = 0.76. In addition to the 66% of the respondents who
provided the same size estimate as the most frequently chosen size smode, another 29% chose
the second-most popular neighboring size. Thus, in total 92% of all estimates fell into two
adjacent size classes highlighting that there was a reasonable consensus on the most likely
size(s). Relaxing the definition for agreement even more (as in Moner et al., 2013), 97% of the
responses were size smode ± 1, ranging from 46% for Fig. 16.1b to 98% for avalanche Fig. 16.1f.
The average number of different full size classes chosen was 3.7, ranging between two for
avalanche Fig. 16.1f and five for avalanche Fig. 16.1j. The latter example means that each of the
five size classes were indicated at least once. This shows that even though most votes were in
correspondence with one of the two most frequent size classes, at least some estimates regularly
deviated strongly from this opinion. An intermediate size class was given in 26% of all cases. The
agreement of the intermediate size estimated by a respondent with the most frequently indicated
intermediate size smode.intermediate was 0.49, and for smode.intermediate ± 0.5 the agreement was 0.74,
while Pcorrect was 0.53. The most frequent intermediate size was always between the two most
frequent full sizes, underlining that a share of participants differed in their estimates less than a
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full size (Fig. 16.1). The mean agreement rate Pagree, when allowing for full and intermediate
sizes, was 0.37, the reliability rel was consequently 0.61.
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Figure 16.1: Distribution of the size classes and the intermediate sizes assigned to
avalanches/pictures (a) to (j) in the survey.

To explore if the size of an avalanche relative within an image and in relation to the surroundings
influences size estimation, we included one avalanche twice though the image was cropped and
flipped (avalanches Fig. 16.1a and c); 168 out of 170 participants rated both avalanches. Of
those 168, 78% indicated the same size, and 15% rated the avalanche one size larger in the
close-up view in Fig. 16.1c than in the overview in Fig. 16.1a, whereas 7% rated the avalanche
one size smaller in the close-up view compared to the overview. The shift in the proportions is
statistically significant (proportion test p = 0.036).

When comparing the results from Europe and North America, we found the agreement of
individual raters in the most frequently estimated size smode to be identical (Pmode = 0.66). This
approach slightly favors European respondents, as these contributed a larger share of responses
(Europe: N = 105, North America: N = 65). Considering sj instead, the agreement Pcorrect was
0.74 overall and 0.66 for both Europe and North America individually. The higher overall
agreement results from the definition of the reference size sj , where two sizes were considered
correct if the reference size was located in between two values. North Americans had a tendency
to assign smaller sizes than their European counterparts. This is most notable for the three
largest avalanches (avalanches in Fig. 16.2b, g and i), with a median size of 4 by Europeans and
a median size 3 by North Americans. With the exception of avalanches e and f, differences in
size estimates were statistically significant (Wilcoxon rank-sum test: p ranging from 0.045 to
< 0.001). Within their continents, respondents had a similar agreement with each other
(proportion test: p = 1): on average, Pagree was 0.53 within Europe and 0.56 within North
America, resulting in rel of 0.73 and 0.75, respectively. Intermediate sizes, which are more
commonly used in North America, were chosen in 31% of the cases by North Americans
compared to 23% by Europeans (proportion test: p = 0.368). When using intermediate sizes, the
agreement with the mode intermediate size, smode.intermediate was 53% for Europe (±0.5: 75%) and
49% for North America (±0.5: 81%).

Among the factors used to determine avalanche size (Tab. 14.1), runout was considered the
most important with 56% of respondents considering this factor as very important, followed by
volume (very important: 39%), dimensions (29%) and destructive potential (20%)(Fig. 16.3).
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Figure 16.2: Boxplots showing the size distributions for the 10 avalanches for Europe and North
America. Mean values are indicated with +. Avalanches are labeled according to Fig. 16.1, and
(a) and (c) depict the same avalanche. The results from the Wilcoxon rank-sum test indicate that
the differences in avalanche size estimation between Europe and North America are significant
for 8 out of the 10 avalanches (all except (e) and (f); * (0.01, 0.05], ** (0.001, 0.01], *** ≤ 0.001)).

Comparing responses from Europe and North America, we found the most frequent response to
be identical for all four factors (very important for runout, important for the other three). However,
runout was considered significantly less often as very important in Europe (46%) compared to
North America (72%, proportion test: p = 0.001). The factor volume showed a similar pattern with
significantly more votes from North America (46%) than Europe (18%) for being very important
(proportion test: p < 0.001) and the opposite pattern for volume being either less important or not
at all important (Europe: 39%, North America: 7%, proportion test: p < 0.001). The differences
between the continents for rating the importance of destructive potential and dimensions were not
significant (proportion test with rating of very important: p = 0.260 and p = 0.718).
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Figure 16.3: Comparison of the importance ranking for the factors determining avalanche size for
(a) Europe and (b) North America.
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16.2 Avalanche mapping from oblique photographs (study 2)
The 10 participants, all very familiar with the study area, centered the avalanches based on
oblique photographs around the corresponding reference mapping (Fig. 16.4), identifying the
correct locations.

On average, the overlapping proportion of the mappings of any two participants of IoUpairwise was
0.52, varying from 0.32 for the worst pairwise agreement to 0.69 for the best one (Tab. 16.1).
Individual pairwise comparisons are shown in Fig. B.1 in the Appendix. When comparing
individual mappings to the area mapped by at least one person as AoU, the mean IoUall is 0.31,
ranging from 0.21 to 0.41. Only a fraction of 9% of the combined area of union (AoU for all 10
participants) was identified by all participants as an avalanche (area of overlap for all 10
participants, AoO) showing the considerable scatter of individual mappings. Comparing individual
mappings to the reference resulted in a mean IoUref of 0.60, with a minimum of 0.40 and a
maximum of 0.80. These areas of higher agreement between participants, visible in darker hues
in Fig. 16.4, coincide with the outlines from the reference mapping highlighting that variations
happened around the reference. In other words, individual mappings had a higher
correspondence with the reference mapping compared to mappings by other individuals (see
also Fig. B.1 in the Appendix). The large variation between individual mappings was also shown
when analyzing the absolute values of the mapped areas (Tab. 16.2): the largest mapped area
was between 2 and 4 times larger than the smallest mapped area (Fig. 16.4f and b). Additionally,
the comparison with the reference showed a systematic tendency towards underestimation of the
area, as in all cases the median mapped area was between 10% and 36% smaller than the
reference area.

Two of the raters had statistically lower pairwise overlap in their area of avalanche activity (mean
IoUpairwise ≤ 0.49) compared to the other eight raters (mean IoUpairwise ≥ 0.69, Wilcoxon
rank-sum test: p = 0.011 and p = 0.002; see Fig. B.1 in the Appendix). These two raters also had
the lowest agreement with the reference mapping (IoUref ≤ 0.44), lower than the other eight
(IoUref ≥ 0.53).

Table 16.1: Intersection over union (IoU) for avalanches mapped from oblique photographs (study
2). Values represent the mean of six avalanches.

IoUpairwise IoUall IoUref*
Mean 0.52 0.31 0.60
Min 0.32 0.21 0.40
Max 0.69 0.41 0.80
*without deposit from Fig. 16.4a

67



Figure 16.4: Heat map illustrating expert agreement on avalanche area for the six avalanches
mapped from oblique photographs. Dark blue indicates areas of very good agreement, identified
as part of an avalanche by all 10 experts. For location and size comparison the outlines of the
avalanches, mapped from the photographs georeferenced with the monoplotting tool by Bozzini
et al. (2012, 2013), are shown as a reference in pink (for avalanche a the lower part was occluded
by a tree; map source: Federal Office of Topography).

Table 16.2: Avalanches mapped from oblique photographs (numbering corresponds to Fig. 16.4,
study 2). Shown are the areas of the reference mapping, and the respective median, minimum
and maximum of the 10 individual mappings. The relative difference to the reference (in %) is
indicated in parentheses.

Avalanche Reference ( m2) Median ( m2) Min ( m2) Max ( m2)
(a)* 118’615 106’566 (-10) 66’143 (-44) 190’823 (+61)
(b) 13’673 8’741 (-36) 3’745 (-73) 15’518 (+14)
(c) 13’082 11’071 (-15) 7’422 (-43) 16’221 (+24)
(d) 6’570 5’422 (-18) 2’183 (-67) 7’533 (+15)
(e) 63’807 50’127 (-21) 24’804 (-61) 64’680 (+1)
(f) 90’400 71’967 (-20) 58’383 (-35) 114’404 (+23)
* without lower part of deposit
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16.3 Avalanche mapping from remotely sensed imagery (study 3)
When visually comparing the mappings, differences can be observed not only between image
resolutions (Fig. 16.5) but also between participants (Fig. 16.6). The mean of the pairwise
overlapping proportion of avalanches of IoUpairwise increased with increasing image resolution
from 0.46 at 2 m resolution to 0.68 at 25 cm resolution (Tab. 16.3). Considering the area
classified as an avalanche by three or more raters as the reference showed an increase in IoUref
from 0.64 at 2 m resolution to 0.80 at 25 cm resolution (Tab. 16.4). Regarding the influence of
illumination conditions, all IoUpairwise scores were higher in illuminated areas compared to shaded
areas of the image (for instance, at 25 cm resolution - illuminated: 0.77, shaded: 0.54; Tab. 16.3).
Snow conditions also influenced the agreement of the mappings (Figs. 16.5 and 16.6): the mean
IoUpairwise was higher in wet-snow conditions (25 cm resolution: 0.90) compared to dry-snow
conditions (25 cm resolution: 0.66; Tab. 16.3). Moreover, individual mappings were also much
more similar in wet-snow conditions compared to dry-snow conditions with the variations in
IoUpairwise ranging for dry-snow conditions at 25 cm resolution between 0.56 and 0.77 (mean:
0.66; standard deviation: 0.07), and for wet-snow conditions between 0.88 and 0.91 (mean: 0.9;
standard deviation: 0.01; Fig. 16.7d). Overall, variations in mean IoUpairwise were smaller across
resolutions (0.02 to 0.22) than the differences between the minimum and maximum IoUpairwise
within one resolution (0.20 for 25 cm resolution to 0.43 for 2 m resolution). This is especially
pronounced for dry-snow conditions (Fig. 16.7). The large variations between different experts
are also reflected in the avalanche area that was consistently identified by one person over all
four spatial resolutions (dark red in Fig. 16.6).

One of the five participants had a lower pairwise agreement compared to the other four (for
instance at 2 m resolution: IoUpairwise ≤ 0.41 vs. IoUpairwise 0.37 - 0.76), although this was not
significant (Wilcoxon rank-sum test: 2 m resolution p = 0.088, 25 cm resolution p = 0.055).
Considering the area classified as avalanche by three or more raters as the best approximation of
a ground truth, the mean agreement with this mapping ranged between IoUref = 0.64 and
IoUref = 0.80 (Tab. 16.4). Again the same participant had the lowest mean agreement.

Table 16.3: Mean IoUpairwise for different subsets and spatial resolutions.

Image resolution Area
Subset 2 m 1 m 50 cm 25 cm ( km2)
Overall 0.46 0.61 0.66 0.68 2.9
Illuminated 0.51 0.67 0.73 0.77 1.6
Shaded 0.36 0.49 0.54 0.54 1.3
Dry snow 0.44 0.59 0.64 0.66 2.2
Wet snow 0.70 0.81 0.86 0.90 0.7

Table 16.4: Mean IoUref for all spatial resolutions.

Image resolution
2 m 1 m 50 cm 25 cm

IoUref 0.64 0.76 0.79 0.80
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Figure 16.5: Heat map illustrating expert agreement on the avalanche area mapped from remotely
sensed imagery for four spatial resolutions (2 m to 25 cm, rows, from top to bottom) for the example
dry-snow conditions (left column) and wet-snow conditions (right column). The darker the hue,
the greater the agreement of the five experts on the existence of an avalanche in that particular
location (map source: Federal Office of Topography).

70



Figure 16.6: Heat map showing differences in the avalanche mappings for participants A to E
(rows, from top to bottom), as a function of the four resolutions for the example dry-snow conditions
(left column) and wet-snow conditions (right column). Dark hues (red) indicate areas, where an
avalanche was detected in all four resolutions; light hues indicate areas where an avalanche was
detected in only one resolution (map source: Federal Office of Topography).
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Figure 16.7: IoUpairwise for dry- (below diagonal) and wet-snow conditions (above diagonal). The
letters A to E represent the different participants, the four tiles (a-d) represent the four resolutions.
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17
Discussion

We explored the reliability of estimates of avalanche size and detecting the outline of avalanches
from images. The key findings are as follows.

• The agreement rate Pagree between any two size estimates was 0.53, resulting in a
reliability rel of 0.72, while the agreement with the avalanche size considered correct was
0.74, with the most frequently chosen size of 0.66 (mode).

• Significant differences were observed between Europe and North America, both for rating
avalanche size and for weighing the factors determining avalanche size.

• The mean overlapping proportion of any two avalanche mappings of IoUpairwise was 0.52
(Study 2) and between 0.46 and 0.68 (study 3) and thus lower than the mean agreement
with the reference of IoUref, which was 0.60 (study 2) and between 0.64 and 0.8 (study 3).

In the following, we discuss these results by considering definitions, the conclusiveness of the
data for the task at hand and the competence of participants. Finally, we provide
recommendations for practice.

17.1 Avalanche size estimation (study 1)
Our results show that it is difficult to achieve consistent size estimates of avalanches: in only 53%
of the cases did any two size estimates agree, and in 66% of the cases an individual estimate
agreed with the most frequent size among the respondents (mode). It showed, however, that in
most cases disagreements were comparably small with 92% of individual estimates being either
equal to the mode smode or equal to the second-most frequent neighboring size or, if considering
intermediate sizes, that 74% of the estimates were within one intermediate size class. Comparing
our results to previous studies investigating agreement for avalanche size estimates (Tab. 17.1),
the agreement rate with the most frequent size ranged from 62% (Moner et al., 2013) to
84% (Hafner et al., 2021). The high agreement rates in Jamieson et al. (2014) and Hafner et al.
(2021) are probably related to the fact that these studies relied on a small number of experienced
practitioners with a comparably similar background and training. In contrast, both the studies
by Moner et al. (2013) and our study included participants from numerous countries and thus
respondents with different avalanche backgrounds, leading to a more diverse group of avalanche
practitioners. Moreover, Moner et al. (2013) speculated that the changes introduced in the
avalanche size definitions shortly before their survey may have lowered the agreement. The
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reliability of an individual size estimate in this study was 0.73, highlighting the uncertainty
associated with these data. Thus, using size estimates by an individual as ground truth when
developing or evaluating models, a perfect model can achieve more than 73% accuracy only by
chance if the errors a model makes are independent from the errors contained in the avalanche
size labels.

In our survey, we found the lowest agreement with smode for the three largest avalanches (sj ≥ 3.5)
(avalanches Fig. 16.1b, g and i). For these three avalanches, smode differed between Europe and
North America. Jamieson et al. (2014) argued that practitioners have more experience with
smaller avalanches (sizes 1, 2 and 3), which are much more frequent than larger avalanches,
which may cause size estimates of large avalanches to be more variable and less accurate.

Table 17.1: Comparing the agreement in the mode for avalanche size estimates with previous
studies.

Average agreement [%]
Study Full size Full size ±1

class
Intermediate
size

Raters (sam-
ples)

Moner et al. (2013)* 62 — 25 61 (18)
Jamieson et al. (2014) 79 100 44 22 (18)
Hafner et al. (2021) 84 — — 2 (351)
This study 67 97 49 170 (10)
* European forecasters only, for the Canadian ones see Jamieson et al. (2014)

We noted systematic differences between size estimates provided by North Americans and by
Europeans, with North Americans tending towards smaller sizes (Fig. 16.2). This might stem
from differences in the European and the North American definitions (see Fig. 16.2): for the
typical length the European definition provides a range, whereas in the North American definition
a typical value is given. The European definition encompasses the North American values
describing typical length for the smaller avalanches, while it coincides with the upper bound for
size 4 and provides only a minimum value for size 5. Another difference is that the North
American definition includes typical mass, in line with the definition introduced by McClung and
Schaerer (1980), while in Europe typical volume is defined. Combining deposit volume with
density measurements or density estimates of the deposit, mass may be determined (mass =
volume×density). For instance, calculating the mass of avalanches assuming a mean density of
390 kg m−3, measured from 95 avalanches at Rogers Pass, British Columbia (McClung and
Schaerer, 1985), avalanches are almost 4 times larger in the European compared to the North
American definition: 4 times larger corresponds approximately to a half size (e.g., for size 2 the
mass according to the definition is 102 = 100 t; for size 2.5, it is 102.5 = 316 t). Consequently, the
significant intercontinental differences may be, at least partially, attributed to the differing size
class definitions.

We also observed differences in the importance ranking assigned to the factors determining
avalanche size, with both the criteria runout and volume being considered more relevant for size
estimation by North Americans compared to Europeans. This is particularly noteworthy as
neither a description of runout nor an indication of volume are part of the North American size
definitions (Tab. 14.1). We found the size-determining factor of destructive potential to be
considered the least important by North Americans and the second-least important by
Europeans. This is surprising as both the definitions in Europe and North America state that
avalanche size is classified according to destructive potential (e.g., EAWS, 2023; CAA, 2023).
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Furthermore, this finding is also contradictory to that in the study by Moner et al. (2013), where
destructive potential was the highest-rated factor. One possible reason for the low importance of
destructive potential in our study might be related to the study design, where supplementary
information about damage to property or people, beyond the photographs, was absent. Thus,
destructive potential had to be inferred from avalanche properties like width, length and volume,
which is arguably the normal situation when estimating avalanche size.

To find out if the way an avalanche is shown in an image influences size estimations, we included
one avalanche twice, changing the perspective and zoom. Even though 78% rated the avalanche
in Fig. 16.1a and c the same, we observed a significant proportion of larger estimates in the
close-up view. We suspect that this might be caused by the perception of the avalanche being
larger when covering more area in the photograph. But our sample is small, and understanding
the effect of perspective and area covered by avalanche would require further investigations with
a more meaningful sample.

17.2 Avalanche mapping from oblique photographs (study 2) and
from remotely sensed imagery (study 3)

Study 2 required participants to first find the location of the avalanche on the map, matching the
topography visible in the images with the topography as shown on the map, before mapping was
possible. The 10 experts, all very familiar with the study area, located the avalanches in the same
place. This first step of the assignment would have been more difficult for someone that did not
know the area well, possibly resulting in entirely different locations and hence mappings. Thus,
the mean overlapping proportion of any two mappings (IoUpairwise), which was 0.52 in our study,
may potentially be 0 if an avalanche is located in the wrong place. We therefore assume that an
IoUpairwise of 0.52 may well describe the upper limit of agreement in mappings from oblique
photographs.

Study 2 allowed for a comparison with a reference mapping using a methodology superior to the
approach the 10 experts used. Thus, the agreement between experts’ mapping and the
reference mapping can be interpreted as the proportion correct and, hence, allows for assessing
the experts’ competence in mapping avalanche outlines. The overall proportion considered
correct (IoUref) was 0.6, with a clear bias towards smaller mapped areas compared to the
reference. The results showed that experts were not equally competent, with the proportion
correct ranging from 0.4 to 0.8 (Tab. 16.2). The agreement between individual mappings and the
reference mapping is larger than the agreement in the mappings between participants
(IoUpairwise = 0.52). This means that the reliability of individual mappings would be
underestimated when relying on a measure like the agreement rate between domain experts. If
competence is known, it would be possible to weigh individual mappings if two or more mappings
were available, likely resulting in more reliable results. Overall, we consider the mapping of
avalanches using oblique photographs a challenging task to perform consistently and accurately.

In study 3, five participants had to identify the avalanches in the remotely sensed imagery, for
each of four image resolutions, before mapping them. In other words, whether a point is identified
as an avalanche is a combination of existential and extensional uncertainty (Molenaar, 1998),
addressing the following questions: is there an avalanche, and where are the boundaries? This
uncertainty was lower with higher image resolution and for illuminated compared to shaded parts
of the image, it allowed participants to identify avalanche area more consistently, and confirmed
the findings of earlier work (Hafner et al., 2022). Moreover, snow conditions influenced
agreement too, with higher agreement under wet-snow compared to dry-snow conditions
(Fig. 16.7). We suspect that this difference is caused by the presence of liquid water in the case
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of a wet snowpack, which leads to more pronounced avalanche boundaries compared to
dry-snow conditions.

Another important finding from these studies are the large differences in the areas mapped as an
avalanche by the experts. For the six avalanches in study 2, the largest mapped area was
between 2 and 4 times larger than the smallest mapped area (Tab. 16.4). For study 3, variations
across resolutions were found to be smaller than the variations in IoUpairwise per resolution,
suggesting individual experience and competence have a larger impact than the underlying
spatial resolution. If avalanches would be classified automatically using area or by extracting
width and length from the mapping (e.g., Schweizer et al., 2020), completely different size
classes may result due to these variations. For instance, comparing the mappings of 4’000
avalanches with the reported size estimate, Völk (2020) showed that the median area of size-2
avalanches was about 3 to 5 times larger than size-1 avalanches, or that the mapped area of
size-4 avalanches was about 7 times larger compared to size 3 avalanches (Völk, 2020, pp. 49,
51). Comparing these values to the variation observed in the mappings by different experts in our
study suggests that estimating avalanche size based on mapped area would, quite frequently,
result in different size estimates.

17.3 Implications for practice
Several sources of error may impact the reliability of tasks involving human judgment and
estimation. These are related to the data being suitable; the skill or competence of the rater
interpreting the data; and, finally, the level of generalization (e.g. forcing avalanches into five size
classes). In the context of size estimation and outline determination, low image resolution, lack of
image context/reference objects, and unfavourable illumination conditions such as shade or
diffuse light may impact the conclusiveness of the data for the task to be performed and, hence,
reliability. Similarly, differences in the raters’ backgrounds and experiences may lead to different
levels of competence in interpreting the data. Furthermore, variations in the perception and
definition may result in systematic variations in size estimates or outlines. Moreover, the binary
choice between an avalanche and no avalanche, when mapping avalanche outlines, does not
allow for expressing uncertainty. This may lead to more pronounced differences in the avalanche
area identified by participants. Addressing and being aware of these issues will improve the
quality of avalanche size estimation and outline determination.

The results of this study indicate that size inventories from North America and Europe, different
warning services within Europe, or simply different domain experts may systematically differ in
their assessments. Consequently, transferability of size inventories between continents or
different warning services may be limited. To achieve a common understanding and comparable
size estimation, in particular for expert forecasters and for observers, we suggest a joint effort of
the continental and national avalanche associations, together with avalanche forecasters and
other avalanche practitioners, to develop training tools that help standardize the size estimations.
An in-depth analysis of current protocols or training programs could be fruitful and serve as a first
step in tackling this issue. One option might be training people in the ≪all observables
approach≫ advocated by McClung and Schaerer (1980), which requires imagining the objects
that might be destroyed in the track or start of the runout zone of an avalanche.

In the meantime, the uncertainty related to size estimates may be reduced taking into account
second estimates and/or jointly deciding on the size in the case of disagreements (e.g., Hafner
et al., 2021). Additionally, we recommend the use of intermediate sizes in the following way: first
the (full) size class should be estimated. In a second step, the assessor may judge whether
avalanche size is low or high or in the middle of the class (like suggested for evaluative social
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judgments by Goffin and Olson, 2011). If it was low or high, this would result in the intermediate
sizes between the chosen and the upper or lower adjacent full size. Practically, this could mean
that from a full size 2 the assessor may, in a second step, assign size 1.5 if the avalanche is at
the lower end of size 2, assign 2.5 if it is at the upper end or keep a full size 2 if it is a
≪typical≫ avalanche for that size.

While the observed variations in avalanche outlines may partly be attributed to a different
background and level of experience, we argue that it is partly caused by the lack of a common,
precise definition of where to delimit an avalanche. We are not aware of any unambiguous,
actionable guideline of where exactly to place the visible outline. Arguably, there is no “natural”,
self-evident definition, especially for dry-snow avalanches. Consistency, in the sense of
repeatability across expert annotators, can perhaps only be achieved through a generally agreed
consensus that includes shared but, to some degree arbitrary, conventions. It appears that a
standardization effort may be beneficial and that standardized training could go a long way
towards reducing the spread between different experts and organizations; even if some causes of
variability, e.g. lighting conditions after a large snowfall, cannot easily be controlled and will
remain.

If reliable mappings from photographs are required we recommend second mappings, jointly
deciding on the extent of the outline, using a monoplotting tool (e.g., Bozzini et al., 2013) or the
overlay image capabilities of Google Earth. For remotely sensed imagery we advocate using a
spatial resolution of 50 cm or finer for the detailed segmentation of specific avalanches, whereas
a resolution of approximately 2 m seems to be sufficient to capture the overall avalanche activity
over a larger region. Intermediate resolutions may provide a reasonable compromise between
the precision of individual outlines and large-area coverage at a reasonable cost and immediacy.
Recording the perceived uncertainty while mapping might help (Hafner et al., 2022) as well as
using the area of agreement from several mappings, or jointly discussing areas of disagreement.
We generally recommend aiming for good illumination for mapping avalanches, especially under
dry-snow conditions.

17.4 Limitations
In all three studies, we relied on comparably small sets of images: in study 1, the size survey, we
aimed at a high response rate, which came at the cost of a smaller selection of different
avalanche examples (10) since we did not want to introduce a bias by showing different images to
different participants. The two mapping tasks (studies 2 and 3) were rather time-consuming and
were, therefore, limited to few participants and to few examples. They may therefore be regarded
as pilot studies, whose results should be interpreted with caution, keeping in mind the
comparably small datasets and the potential particularities of the data. In particular, biases may
be present due to the homogeneous sample from participants with a similar background and
training, as well as due to the chosen oblique photos and remotely sensed data.

For study 1, we provided photographs but no maps and no additional information, for instance on
damage which may have occurred. This certainly made the size estimation task somewhat more
difficult, as often suspect either that a map is available or that the person is familiar with the
avalanche path, which may both help in estimating avalanche dimensions. We did not provide
maps together with the photographs, as we wanted to avoid introducing a bias related to the
(un)familiarity with a specific map design. We have, however, tried to compensate the lack of an
accompanying map through the presence of reference objects (people, trees, ski lifts, etc.) in our
example photographs to help participants determine the potential damage and volume/mass.
Nevertheless, photographs in Fig. 16.1a and e lack recognizable reference objects, and the other
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photographs (Fig. 16.1) must be analyzed carefully to identify the ski tracks, people and houses.
Agreement for avalanches next to clearly visible reference objects could therefore be higher than
in our analysis.

For the avalanches mapped from oblique photographs (study 2), we speculate that study
participants, being aware that their mappings will be analyzed in detail, may have paid more
attention to finding the exact boundaries than during routine documentation work. We
acknowledge that our sample size of six avalanche examples covers only a fraction of possible
viewing angles, snow and avalanche conditions, and terrain characteristics. Furthermore, all
participants were well acquainted with the study area and had extensive experience with
mapping avalanches using oblique photos. Thus, we regard our results as a best-case scenario.
Still, we believe that within the range of (fairly typical) conditions captured by our set of pictures,
the evaluation is representative of avalanche outlines currently used in Switzerland. We
encourage further research to ascertain the worldwide validity of the results.

Finally, we would like to point out that three of the authors were also involved as participants in
the studies (one in study 1, and two in studies 2 and 3). Particularly in Studies 2 and 3, with few
participants, this may impact results favorably and suggests the presented findings should be
treated as an upper bound.
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18
Conclusions and Outlook

We quantified uncertainty related to avalanche size estimation and avalanche outline
determination calculating the proportion of agreement between raters, the agreement with the
most frequently chosen size and the agreement with the reference size. For avalanche outlines
we investigated spatial agreement using the intersection over union between individual mappings
as well as compared to a reference. Like in Van Coillie et al. (2014) the amount of variation
depends on the type of task presented to the operator: we showed that it is difficult to
consistently estimate avalanche sizes, and our analyses revealed significant differences between
North American and European experts. The mapping of avalanches either from oblique
photographs or from remotely sensed imagery proved to be a challenging task resulting in large
intra-rater variabilities: some experts showed consistently larger deviations from the reference
data. In the most extreme case this resulted in the deviation being 2 to 4 times larger than the
smallest mapped avalanche area. For the mapping from remotely sensed imagery, individual
experience and competence proved to have a larger impact than the underlying spatial
resolution. Snow conditions also influenced agreement, with higher agreement under wet-snow
compared to dry-snow conditions. For both mapping tasks our samples were fairly homogeneous
and the sample size was rather small, limiting the generalizability of our results. Nevertheless,
they shed light on the uncertainty underlying avalanche outlines for the first time. We strongly
encourage further investigations into agreement between avalanche outlines to paint a more
complete picture of the variation in the currently widely used and generated datasets.

Our findings indicate that the reliability of human estimates as a reference or ground truth for
avalanche-related tasks needs to be questioned and critically assessed. Since these data are
used as ground truth, for instance, for the validation of numerical avalanche simulations (e.g.,
Wever et al., 2018) or for training models estimating avalanche size from snowpack
simulations (e.g., Mayer et al., 2023a), efforts should be made to obtain at least an approximate
idea on the reliability of labels used when depending on them. Specifically efforts to average out
unsystematic error and those requiring justification for the choice to endorse the analytic
process (Stewart, 2001; Hagafors and Brehmer, 1983), may help to achieve more reliable results
for the avalanche-related tasks presented in this paper. This could be achieved by relying on a
superior method to obtain a ground truth or otherwise independent estimates of several experts
to allow, for example, choosing the most frequent size.

Besides suggesting more precise definitions and training protocols, our results call for
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automation. Modern image analysis algorithms, often based on machine learning (like Hafner
et al., 2022, in the context of avalanche mapping from SPOT 6/7 – Satellite pour l’Observation de
la Terre – imagery), are by no means perfect, but they rival human performance and offer
consistent, repeatable results. Our reliability study may serve as a baseline to relate the outputs
of such automatic methods to human expert performance. Even though the models cannot erase
the inter-observer variability and will only learn to reproduce the outlines they are trained with,
they can help to generate reproducible and comparable results.
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Abstract
For many safety-related applications such as hazard mapping or road management,
well-documented avalanche events are crucial. Nowadays, despite the variety of research
directions, the available data are mostly restricted to isolated locations where they are collected
by observers in the field. Webcams are becoming more frequent in the Alps and beyond,
capturing numerous avalanche-prone slopes. To complement the knowledge about avalanche
occurrences, we propose making use of this webcam imagery for avalanche mapping. For
humans, avalanches are relatively easy to identify, but the manual mapping of their outlines is
time intensive. Therefore, we propose supporting the mapping of avalanches in images with a
learned segmentation model. In interactive avalanche segmentation (IAS), a user collaborates
with a deep-learning model to segment the avalanche outlines, taking advantage of human expert
knowledge while keeping the effort low thanks to the model’s ability to delineate avalanches. The
human corrections to the segmentation in the form of positive clicks on the avalanche or negative
clicks on the background result in avalanche outlines of good quality with little effort. Relying on
IAS, we extract avalanches from the images in a flexible and efficient manner, resulting in a 90%
time saving compared to conventional manual mapping. The images can be georeferenced with
a mono-photogrammetry tool, allowing for exact geolocation of the avalanche outlines and
subsequent use in geographical information systems (GISs). If a webcam is mounted in a stable
position, the georeferencing can be re-used for all subsequent images. In this way, all avalanches
mapped in images from a webcam can be imported into a designated database, making them
available for the relevant safety-related applications. For imagery, we rely on current data and
data archived from webcams that cover the Dischma Valley near Davos, Switzerland, and that
have captured an image every 30 min during the daytime since the winter of 2019. Our model
and the associated mapping pipeline represent an important step forward towards continuous
and precise avalanche documentation, complementing existing databases and thereby providing
a better base for safety-critical decisions and planning in avalanche-prone mountain regions.
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19
Introduction

Information on avalanche occurrences is crucial for many safety-related applications: for hazard
mitigation, the dimensions of past avalanches are crucial for planning new and evaluating existing
protection measures (e.g., Rudolf-Miklau et al., 2014). For the derivation of risk scenarios and
the estimation of avalanche frequency, past events are an important piece of information as
well (Bründl and Margreth, 2015). Mapped avalanches are also used to fine-tune and further
develop numerical avalanche simulation software like SAMOS or RAMMS (Sampl and Zwinger,
2004; Christen et al., 2010). Today, information on past avalanches is still mainly reported and
collected unsystematically from isolated locations, by observers and (local) avalanche warning
services, though more recent research has proposed using satellite imagery (e.g., Eckerstorfer
et al., 2016; Wesselink et al., 2017; Bianchi et al., 2021; Hafner et al., 2022). Depending on the
source, these reports contain information on the avalanche type; the avalanche size; the
approximate release time; the complete outlines, or at least the approximate location; the aspect;
the type of trigger; and additional parameters. To enlarge the knowledge about avalanche
occurrences, we propose a systematic recording of avalanches from webcam imagery. This
usage of existing infrastructure allows for a large-scale application anywhere avalanche-prone
slopes are already captured by webcams. Images can be acquired as frequently as needed
without additional cost, enabling a near-real-time determination of release time. Furthermore, the
sequence of images increases the chance of obtaining an image without low cloud cover or fog
that would prevent documentation of the whole avalanche. Except for our own initial
proposition (Hafner et al., 2023a) and that of Fox et al. (2023), we do not know of any attempt
that makes use of this data source for avalanche identification and documentation. Fox et al.
(2023) proposed two models in their initial experimental study for automatic avalanche detection
from ground-based photographs: one for classifying images with and without avalanche
occurrences and the other for segmenting the contained avalanches with bounding boxes. In
opposition to their focus on finding the images and areas containing avalanches, we are aiming to
extract the exact avalanche outlines from the imagery.

Detecting individual objects and determining their outlines is the objective of instance
segmentation. This is important, for example, in the fields of autonomous driving (e.g.,
De Brabandere et al., 2017), remote sensing (e.g., Liu et al., 2022), and medical imaging (e.g.,
Chen et al., 2020). Numerous instance segmentation models have been proposed in recent
years that are based on the superior image-understanding capabilities of deep learning. Besides
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the quest for fully automatic methods, there is also an area of research dedicated to interactive
object segmentation (IOS), where a human collaborates with the computer vision model to
segment the desired object with high accuracy but low effort (Boykov and Jolly, 2001; Gulshan
et al., 2010; Xu et al., 2016; Sofiiuk et al., 2020; Kontogianni et al., 2020; Lin et al., 2022; Kirillov
et al., 2023). The human operator explicitly controls the segmentation, first by an initial input to
mark the desired object (e.g., through a click or scribbles) and then by iteratively adding
annotations to correct the segmentation where the automatic model makes mistakes, gradually
refining the result. The goal is an accurate segmentation, provided by the IOS model with as little
user input as possible. The key differences compared to instance segmentation are the user
corrections and the way they are processed and encoded in the model. The vast majority of
models proposed in recent years are employing clicks from the user for correcting the
segmentation (e.g., Boykov and Jolly, 2001; Rother et al., 2004; Xu et al., 2016; Benenson et al.,
2019; Kontogianni et al., 2020; Sofiiuk et al., 2021) and are using a combination of random
sampling and simulating user clicks for training the model. The neighborhood of the clicked pixel
is expanded to disks with radii of 3 to 5 pixels or to Gaussians, depending on the model. When
disks are used to encode clicks, the whole area specified by the radius is given the same weight.
When clicks are encoded as Gaussians, the weight is a Gaussian distribution, decreasing from
the center of the click over the area specified by the radius.

There has been only little work on webcam (-like) imagery; the dominant data source for
automatic avalanche documentation so far has been satellite imagery (e.g., Bühler et al., 2019;
Eckerstorfer et al., 2019; Hafner et al., 2021; Bianchi et al., 2021; Karas et al., 2022; Kapper
et al., 2023). Optical satellite data, proven to be suitable to reliably capture avalanches (spatial
resolution of approx. 2 m or finer; Hafner et al., 2021; Hafner, 2023), need to be ordered and
captured upon request which is expensive and dependent on cloud-free weather conditions.
Radar data have the big advantage of being weather independent, but with one satellite in
operation, open-access Sentinel-1 data is only available at selected dates (currently,
approximately every 12 d in Switzerland) and other suitable radar data need to be ordered and
purchased as well. Additionally, with a spatial resolution of approximately 10–15 m, it is not
possible to confidently map avalanches of size 3 and smaller from Sentinel-1 imagery (Hafner
et al., 2021; Keskinen et al., 2022). Furthermore, the exact or even approximate time of
avalanche release cannot be retrieved from satellite data and remains unknown. However, where
suitable satellite data are available, areas affected by avalanches may be identified and
documented continuously over large regions with identical methodology.

Applications relying on information about avalanche occurrences not only seek confirmation of an
avalanche near a specific webcam but also require details such as the precise location, extent,
aspect of the release area, and size of the avalanche. Avalanches captured on oblique
photographs may be georeferenced to enable a transfer of the avalanche identified in the image
to a map. There are several mono-photogrammetry tools available to georeference single
images, initially developed to georeference historic photographs (e.g., Bozzini et al., 2012, 2013;
Produit et al., 2016; Golparvar and Wang, 2021). Only with existing georeferencing can the
detected avalanches be exactly geolocated; compared by size, aspect, or slope angle; and
imported into existing long-term databases. Since most webcams are mounted in a stable
position, always capturing the same area, the georeferencing only needs to be done once and
may be re-used for all subsequent images.

To complement the currently established ways avalanche occurrences are documented, we
propose to using webcam infrastructure, regularly acquiring imagery for avalanche mapping. In
the present work, we identify avalanches in imagery employing interactive object segmentation
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(interactive avalanche segmentation, IAS). Since human user interactions are modeled during
training we investigate the transferability of our model results to the real-world use by humans in
a user study. We use webcam imagery from stations maintained by the WSL Institute for Snow
and Avalanche Research SLF (SLF) available every 30 min in near-real-time, and the avalanche
library published by Fox et al. (2023). Additionally, we propose a workflow to georeference the
identified avalanches with the mono-photogrammetry tool from Bozzini et al. (2012, 2013). By
mapping avalanches from webcam imagery, we enlarge existing avalanche databases, thereby
allowing for better decision-making for downstream applications.
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20
Data

20.1 SLF Webcam network
Our webcam network covers the Dischma Valley, a high alpine side valley of Davos, with 14
cameras mounted at six different locations (Fig. 20.1). The valley is about 13 km long, and the
valley floor reaches from 1500 m a.s.l to 2000 m a.s.l, while the summits reach heights over
3000 m a.s.l. The Dischma Valley is permanently inhabited in the lower 5 km while the road
leading to its upper part is closed in winter. Steep mountains are located on both sides of the
valley, and over 80% of the entire area constitutes potential avalanche terrain (Bühler et al.,
2022). Outside the permanent settlements, avalanches can only be monitored remotely,
especially during high avalanche danger.

Each of our six stations is equipped with two to three cameras (usually a Canon EOS M100),
operated with an independent power supply with a solar panel and a battery, except for Stillberg,
where we connected to existing power lines (Fig. 20.2). The acquisition of images every 30 min
during daylight is programmed and automatically triggered by a small on-station computer. This
interval lowers the risk of cloud cover and captures avalanches under different illumination
conditions once they have occurred. The images are then sent to SLF in near-real-time via the
mobile network and are stored on a server. The first camera was mounted at the Büelenberg
station in the summer of 2019, with the next four stations being established in the following
months. The Börterhorn station came later, having only been in operation from December 2021
to June 2023, and was moved to a new location with a similar view in December 2023 (Hüreli
station). The images have previously been used in the ESA DeFROST project (ESA, 2020) and
in Baumer et al. (2023).
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Figure 20.1: Locations, view directions (red arrows), and area covered by the 14 cameras mounted
in six different locations in the Dischma Valley, Davos. The Hüreli station succeeded the Börter-
horn station (dashed arrows), which is no longer in operation (map source: Federal Office of
Topography).

Figure 20.2: The stations in the Dischma Valley were either bolted to rock faces (left; Lukschalp) or
mounted on a mast (right; Sattel). They host two to three cameras and all infrastructure necessary
to ensure power supply as well as data acquisition and transmission.
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20.2 Avalanche images and annotations
We used unique sets of images for the model to learn from (training), for the unbiased evaluation
during training and hyperparameter tuning (validation), and for the unbiased evaluation of the
final model (testing).

20.2.1 SLF dataset
We rely on imagery from the webcams at our stations for training (all except Börterhorn and
Hüreli; Sect. 20.1), validation, and testing. The images, with a size of 6000 × 4000 pixels, are from
seven different cameras that have captured identifiable avalanches well since being in operation.
For training, we prepared the images and cropped them to 1000 × 1000 pixels, keeping only the
avalanches and their immediate surroundings in the original resolution. For evaluation and for our
user study, we want to segment all captured avalanches per image; therefore we only resized the
images to 3600 × 2400, the largest the model may handle.

The avalanches in the images were manually annotated with the smart labeling interface
provided by Supervisely (Supervisely, 2023). The SLF dataset contains roughly 400 annotated
avalanches (Tab. 20.1). About three-quarters of the avalanches are used for training, testing, and
validation, while the rest are used to test generalizability. For this, we use images with a certain
domain gap relative to the training images: 46 images from the two Börterhorn webcams,
excluded from training (WebNew) and a set of 44 images taken from handheld cameras
(GroundPic; Tab. 20.1). The WebNew contains mostly small avalanches, some of them captured
under diffuse illumination conditions, while the GroundPic depicts larger avalanches and includes
some lower quality images taken with mobile phones. For our user study, we relied on a
combination of different webcam images showing avalanches of different sizes and captured
under varying illumination conditions. Of the 20 annotated avalanches (UserPic), 75% are unique
to the dataset, while the rest are also part of the WebNew or the GroundPic.

Table 20.1: Overview of the datasets used.

Dataset
name

Avalanche an-
notations

Description

SLF train 200 Webcam imagery and annotations from our test site in Di-
schma (Fig. 20.1).

vali 44
test 45
WebNew 46 Imagery and annotations from the Börterhorn station

(Fig. 20.1), whose two webcams were excluded from the
SLF train, vali and test and have an unseen viewpoint rela-
tive to these images.

GroundPic 45 Imagery and annotations taken from handheld cameras
with an unseen viewpoint relative to all training images.

UserPic 20 Imagery from webcams and corresponding annotations.
75% of the images are unique to this dataset while the rest
are also part of the WebNew or GroundPic.

UIBK train 2102 Imagery and annotations used by Fox et al. (2023).
vali 382
test 867
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20.2.2 UIBK dataset
Fox et al. (2023) have published a dataset containing images of over 3000 avalanches from
different perspectives with annotations of the avalanche type (slab, loose snow and glide snow
avalanches; University of Innsbruck et al., 2023). In addition to avalanches, their category “glide
snow avalanche” also contains glide snow cracks where no avalanche has occurred (yet). We
decided to include a selection of their annotations in some of our training configurations to
evaluate the performance of our setup using a multi-source dataset. We are, however, interested
in avalanches only; therefore, we manually sorted out images with glide snow cracks and
excluded them for training. Consequently, we used a subset of 2102 binary avalanche masks
from the UIBK dataset for training and 382 avalanches for validation, which we prepared by
cropping to 1000 × 1000 pixels (Tab. 20.1). For the test dataset, we kept all images, depicting 867
avalanches and glide snow cracks, to allow for a fair comparison to Fox et al. (2023). Fox et al.
(2023) provide no details about the manual annotation procedure. We note that upon
comparison, their annotations are markedly coarser than ours, with significantly smoother and
more generalized avalanche outlines (e.g., Fig. 20.3). We resized the images larger than
3600 × 2400 to that size for the evaluation.

Figure 20.3: Comparing the details in the annotation from one of the SLF webcam images (left) to
an image from the UIBK dataset (right; University of Innsbruck et al. (2023)).
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21
Methodology

We used a state-of-the-art interactive image segmentation model (Sofiiuk et al., 2021), modified it
for avalanches, and trained it with three different sets of avalanche imagery. The trained model
was then applied to new, unseen images to qualitatively and quantitatively evaluate the resulting
avalanche outlines using both per-pixel and per-avalanche metrics. It is important to note that
click locations have to be selected automatically to enable large-scale training and testing. This
could lead to performance differences caused by deviations between simulated clicks and real
user behavior. We therefore additionally designed and carried out a user study with human
annotators to ascertain that the efficiency gains carry over to the real use case.

21.1 Model architecture
We employed the interactive segmentation model introduced by Sofiiuk et al. (2021), adapted it
specifically to avalanches, and trained it with a variety of avalanche datasets. Sofiiuk et al. (2021)
used the HRNet+OCR method, a high-resolution network (HRNet) with an added
object-contextual-representation (OCR) module (Wang et al., 2020; Yuan et al., 2020; Xu and
Zhao, 2024). The HRNet+OCR architecture connects high- and low-resolution convolutional
processing streams in parallel and enables information exchange across different
resolutions (Wang et al., 2020). The OCR module explicitly accounts for the global context to
achieve better segmentation of objects in complex images (Xu and Zhao, 2024), which is
particularly valuable in our case, where of avalanches that can make up large parts of the images
while being hard to distinguish from the white snow in the background if considering only local
evidence. Positive and negative click locations from interactive user input were encoded as disks
with a fixed radius of 5 pixels (Benenson et al., 2019).

Semantic segmentation backbones usually take only RGB images as input; for interactive
segmentation, the handling of additional model input in our case, encoded user clicks needs to
be carefully implemented (Fig. 21.1). Sofiiuk et al. (2021)’s solution to this is Conv1S: a
convolutional block that outputs a tensor of exactly the same shape as the first convolutional
block in the backbone. The output of the first backbone convolutional layer (usually 64 channels)
is then summed up element-wise, with the convolutional block being applied to the encoded user
clicks. With this implementation, it is possible to choose a different learning rate for new weights
without affecting the weights of a pre-trained backbone.
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Figure 21.1: Illustration of the fine-tuning step of the IOS when training on avalanches.

A combination of random and iterative sampling strategies are employed to simulate human user
clicks for training, with masks from previous steps being included in the iterative sampling
procedure (Fig. 21.2). Morphological erosion is used to shrink the largest mislabeled region
before setting the sampling point into its center, which proved to be superior to simply setting the
next click in the center of the erroneous region (Mahadevan et al., 2018). The click may be
positive, denoting the avalanche, or negative for the background. In the evaluation mode, the click
is put at the center of the largest erroneous region, be it false positive or false negative, as
proposed in Xu et al. (2016) and Li et al. (2018). The maximum number of clicks (positive or
negative) is set to 20 for both training and evaluation.

We made the following adaptions to the original model from Sofiiuk et al. (2021):

• We trained on patches of 600 × 600 pixels instead of patches of 320 × 480 pixels, which we
cropped from varying places of our training images.

• For data augmentation during training, we additionally included random translation (max.
3%) and rotation (max. 10°).

• We replaced the manual multistep learning-rate scheduler with a cosine learning-rate
scheduler to profit from a decreasing learning rate without the need to fiddle with the steps
and rates of decay.

• We did not use the zoom-in function.

• We used a batch size of 4 instead of 28 due to our relatively small training dataset but fine
image resolution.

21.2 Evaluation metrics
The raw predictions (i.e., the per-pixel probabilities for being part of the avalanche) were
thresholded at 0.5 to obtain binary avalanche masks for the analyses. We used the intersection
over union (IoU) as an indicator of spatial agreement between either the predicted and ground
truth masks or the bounding boxes around those masks (e.g., Levandowsky and Winter, 1971).
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Figure 21.2: Illustration of the handling of one avalanche when training the IAS model with clicks
generated by random and iterative sampling. For the new prediction, all previous clicks, as well as
the previous mask (if available), are considered.

21.2.1 Pixel-wise metrics
On the pixel level of the masks, we recorded the average number of clicks (NoC) necessary to
reach IoU thresholds of 0.8 and 0.9 (denoted as mNoC@80 and mNoC@90, respectivly).
Achieving a high IoU after few clicks makes the model most useful. Consequently, we compared
the IoU at click k (for k = 1,2,....,20) averaged over all the images (mIoU@k). Additionally, we
calculated the number of images that do not reach 0.85 IoU, even after 20 clicks (NoC20@85).

21.2.2 Object-wise metrics
On the object level, we compared the IoU of the bounding box of the predicted and that of the
ground truth avalanche annotation. If the IoU between two bounding boxes is larger than or equal
to a threshold T, the detection is considered to be correct, while, for values below the threshold T,
it is not (Padilla et al., 2020). Like Fox et al. (2023), we first considered a T ≥ 5% between the
bounding boxes to be a match, but, additionally, we evaluated with T ≥ 50%, which is a more
standard value in literature (Redmon et al., 2016; He et al., 2018).

From the matches, we computed the F1 score as

F1 = 2 · PPV · POD
PPV + POD

, (21.1)

where the probability of detection (POD) and positive predictive value (PPV) are defined as

POD = TP
TP + FN

and PPV = TP
TP + FP

, (21.2)

where TP is true positive, FP is false positive and FN is false negative.

21.2.3 Comparison of time needed
The time spent to map an avalanche with the “traditional method”, such as with the avalanches
that are part of the DAvalMap inventory (Hafner et al., 2021), is not recorded by default. For a
comparison to the time spent on IAS, we had one experienced person record the number of
minutes needed for manually mapping 274 avalanches from photographs (mean size of 1.75;
European avalanche size definition (EAWS, 2023)) with the methodology described in Hafner
(study 2; 2023).
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21.3 Experimental setup
To find the best model for interactively segmenting avalanches from our webcam imagery, we
evaluated several training regimes, all with the same model architecture but varying training
datasets (see Sect. 21.1). Our baseline was the model trained only on COCO+LVIS (104 000
images and 1.6 million instance-level masks; Lin et al., 2015; Gupta et al., 2019), meaning that it
has never seen an avalanche. We then trained three further versions, re-using the knowledge
already learned from being trained on COCO+LVIS, and fine-tuning the model with different sets
of avalanche data: AvaWeb, trained on the SLF dataset, AvaPic, trained on the UIBK dataset;
and AvaMix, trained on a combination of those two (Tab. 20.1). Preliminary tests confirmed that
fine-tuning the model pre-trained on COCO+LVIS was always superior to training from scratch
using only avalanche data. This is in line with previous work on avalanches (Hafner et al., 2022).
We performed hyperparameter tuning on the validation set (e.g., selecting the ideal number of
training epochs 90 for AvaWeb and AvaPic and 95 for AvaMix – using a threshold of 0.5 on the
raw predictions). We used the hyperparameters selected for the validation set, fixed during our
evaluation, of the test set. For the evaluation, we checked how well the model generalizes to the
SLF test as well as to images from other webcams (WebNew). We additionally evaluated the
GroundPic and the UIBK test to assess the robustness of the model configurationsin relation to
images from outside our webcam perspective. In addition, we compared to segmentation results
from previous work by Fox et al. (2023) by calculating bounding boxes for our predictions and
evaluating their overlap with respect to the ground truth bounding boxes from the UIBK test.

21.4 User Study
We carried out a small user study to investigate if the metrics from evaluating our model hold with
real users, whose inputs are noisier and who may adapt to model behavior. Eight participants
were given a short introduction and mapped one avalanche per UserPic image. For our user
study, we used the graphical user interface (GUI) provided by Sofiiuk et al. (2021), adapting it to
save the click coordinates, the time needed per click, and the predicted masks for each click
together with the IoU. Since several images captured more than one avalanche, we added an
arrow pointing at the desired avalanche in each UserPic image. Before segmenting the marked
avalanches in UserPic, the participants performed two trial segmentations that were not used for
evaluation to familiarize themselves with the GUI, the annotation protocol, and the data
characteristics. Participants were allowed a maximum number of 20 clicks per avalanche but
were told they could stop earlier if they were satisfied with the segmentation. As metrics for the
user study, we calculated the mNoC@80 and mNoC@90 and compared the mIoU@k, the mean
annotation time, the NoC20@85, and the differences between the best and worst results in terms
of mean IoU. To investigate variability in the avalanche areas identified, like in Hafner (2023), we
calculated pairwise IoU scores for the final masks based on the last employed click per
participant. To test whether the differences between the mIoU scores of the participants are
statistically significant, we used the two-sided t test (as implemented in R Core Team, 2021), with
a significance level p ≤ 0.05.
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22
Results

22.1 Pixel-wise metrics
Evaluating based on the SLF test, the model trained on the AvaWeb was almost 10% better than
the others and almost 25% better than the baseline (COCO+LVIS; Fig. 22.1) from click 1. It
remained on top, but the others caught up by approximately click 16. AvaPic was consistently the
worst at high click numbers and even dropped below the baseline. Adding the data from AvaWeb
to AvaPic in the AvaMix improved the results, but the quality reached only half that of the results
of the AvaWeb alone. Compared to the baseline, all models trained with avalanches were
superior to the baseline, especially for the first half of the clicks and, except for the AvaPic, for the
last half of the clicks. Overall, the AvaWeb needed the least clicks to reach the desired IoU
thresholds, and it was only for one image that it never reached the NoC20@85. The AvaPic never
reached this threshold for five images, while this was the case for only two images for the AvaMix,
and even the baseline reached an IoU of 85% for more images. For the remaining analyses, we
did not consider the model trained only on COCO+LVIS (baseline).

Table 22.1: Results for the different datasets when evaluating based on the SLF test. The bold
values highlight the best metrics.

Model Pretrained
weights

mIoU@1
(%)

mIoU@2
(%)

mIoU@3
(%)

mNoC
@80

mNoC
@90

NoC20
@85

COCO+
LVIS
(baseline)

— 35.07 52.62 65.00 5.58 9.42 3

AvaWeb COCO+LVIS 58.59 73.40 78.30 3.31 7.60 1
AvaPic COCO+LVIS 48.50 62.51 69.42 5.24 10.73 5
AvaMix COCO+LVIS 49.75 66.24 73.03 4.11 9.40 2
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Figure 22.1: Evaluation on the SLF test based on models trained with different datasets: baseline
(COCO-LVIS), AvaWeb (SLF train), AvaPic (UIBK train), and AvaMix (SLF + UIBK train).

To check how well the models generalize to new avalanches under varying perspectives, we
evaluated them based on the WebNew, the GroundPic and the UIBK test (Fig. 22.3; Tab. 22.2):
AvaWeb was superior, with a margin of up to 30% from click 1 over the AvaPic and AvaMix based
on the WebNew (Tab. 22.1; Fig. 22.2). The AvaPic and AvaMix only caught up around click 10 but
never surpassed the AvaWeb. For all models, the images in the NoC20@85 category depicted
small, often long and slim avalanches located in the shade in imagery acquired under
diffuse-illumination conditions and/or avalanches that had been snowed on, reducing the overall
visibility of the features (Fig. 22.4).

Figure 22.2: Example of an image from the SLF test that all three models solve well. The lighter
the hue in the model predictions, the higher the model certainty concerning the existence of
an avalanche. In a close-up look, the AvaWeb prediction exhibits more nuanced and detailed
avalanche boundaries.

Based on the ground-based GroundPic, the AvaWeb started out being the worst by a margin of
about 10%, but it caught up and surpassed the AvaPic from click 5 onwards, though it never
reached the AvaMix. For the large but more coarsely annotated UIBK test, the AvaPic and the
AvaMix were consistently superior to the AvaWeb by 10 to 20%. The AvaWeb struggled the most
with ground-based close-up views of avalanches, often in combination with diffuse-illumination
conditions or shade, as well as avalanches captured on coarse images from mobile phones
(Fig. 22.5). For some of those avalanches, the IoU score reached after 20 clicks is well below
50%. For more than one-quarter of all avalanches, the AvaWeb never reached the NoC20@85,
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while, for the AvaPic and AvaMix, less than 1% of all avalanches never reached an IoU of 85%.
The AvaPic and AvaMix struggled mostly with the same images, which depicted close-up views
of the release area of avalanches in diffuse illumination conditions or avalanches which have
been snowed on and are hard to spot.

Figure 22.3: Comparing mIoU per click for three datasets with a domain gap in relation to the initial
webcam data for our three training configurations: AvaWeb ( SLF train), AvaPic (UIBK train) and
AvaMix (SLF + UIBK train).
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Table 22.2: Results when evaluating the generalizability in relation to data not seen during training,
with a domain gap with respect to the training data. The bold values highlight the best metrics.

Dataset Model mIoU@1
(%)

mIoU@2
(%)

mIoU@3
(%)

mNoC
@80

mNoC
@90

NoC20
@85

WebNew AvaWeb 55.61 68.24 73.85 6.65 13.57 12
AvaPic 24.31 40.08 50.76 10.78 16.07 15
AvaMix 26.72 43.26 57.20 9.07 14.39 14

GroundTest AvaWeb 43.32 63.43 73.38 4.53 6.91 2
AvaPic 54.63 71.25 76.92 3.98 7.73 2
AvaMix 54.82 72.72 80.51 3.09 6.96 1

UIBK test AvaWeb 26.19 41.71 51.05 10.47 15.82 246
AvaPic 44.28 61.29 70.37 5.84 11.26 50
AvaMix 45.70 62.67 70.99 6.06 11.72 75

Figure 22.4: Example of an image from the WebNew with diffuse illumination and a long and slim
avalanche that all three models struggled with. The lighter the hue in the model predictions, the
higher the model certainty concerning the existence of an avalanche.

Figure 22.5: Example of a close-up view of an avalanche from the GroundPic, where the AvaWeb
struggled with correctly identifying the avalanche area close to the photographer. The lighter
the hue in the model predictions, the higher the model certainty concerning the existence of an
avalanche.
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22.2 Object-wise metrics
Comparing bounding boxes, the AvaWeb achieved an F1 score 0.12 points higher than that
of Fox et al. (2023) from the first click onwards (0.64 vs. 0.76; bounding-box threshold of 0.05;
Tab. 22.3). For both the AvaPic and the AvaMix, the F1 score was even close to 1, therefore being
superior to Fox et al. (2023) by 0.33 to 0.34 and higher than the AvaWeb. With a threshold of 0.5
for the overlap of the bounding boxes, the scores were lower and lay between 0.23 (AvaWeb) and
0.44 (AvaPic) for the first click. Consequently, the AvaPic and the AvaMix were again superior to
the AvaWeb (by around 0.2) and also remained on top for click 3 and 5. For click 5, the AvaPic
and the AvaMix already achieved an exceptionally good F1 score above or equal to 0.94. No
comparison to Fox et al. (2023) was possible for the 0.5 bounding-box threshold.

Table 22.3: Comparison of F1 scores and standard deviations (SDs) for the two different IoU
thresholds (5% like Fox et al. (2023) and 50%) for the UIBK test. The bold values highlight the
best metrics.

Fox et al. (2023) AvaWeb AvaPic AvaMix
F1 score ± SD IoU 5%
Automated 0.64 ± 0.60 — — —
Click 1 — 0.76 ± 0.43 0.97 ± 0.16 0.96 ± 0.20
Click 3 — 0.99 ± 0.11 1 1 ± 0.05
Click 5 — 1 ± 0.08 1 1

IoU 50%
Click 1 — 0.23 ± 0.42 0.44 ± 0.50 0.42 ± 0.49
Click 3 — 0.66 ± 0.47 0.86 ± 0.34 0.87 ± 0.31
Click 5 — 0.80 ± 0.40 0.94 ± 0.24 0.96 ± 0.20

22.3 User study and time saved
For our user study, we loaded the model trained on AvaWeb for making predictions upon user
input. On average, the participants employed 4.9 clicks for the UserPic, with variations from 1.25
to 9.63 clicks for the 20 different images. The employed clicks were on avalanches in 79% of all
cases, while the rest were on the background. The avalanches that needed fewer clicks to reach
a certain IoU threshold tended to be the smaller ones. Even though not everyone always clicked
until an IoU of 85% was reached, on average, only one image remained below that value. This
image depicted an avalanche that was located in a partly shaded and partly illuminated area,
where, especially in the shade, features are hard to identify. On average, participants needed 6.5
s to reach an IoU of 80% and 9.1 s to reach an IoU of 90%. In opposition, on average, 2 min and
36 s were required for mapping one avalanche with the traditional method, with time needed
ranging from 1 to 8 min. This is more than 2 min extra than when relying on IAS and translates to
a saving in time of more than 90% compared to a manual mapping.

In our user study, we observed large variations between the different participants in terms of the
average number of clicks (2.90 to 8.10), the mNoC@80 (1.80 to 2.80), and the mNoC@90 (2.00
to 3.12). Additionally, for avalanches such as that in Fig. 22.6 (top), there was no clear “middle”
on which to place the first click, which resulted in very diverse click strategies for the participants.
In contrast, for the avalanche in Fig. 22.6 (bottom), clicks were placed more homogeneously: first
in the middle and then at the top and bottom, thereby correcting details. For clicks 1 to 5, where
we had enough samples from all participants, we checked if the differences between the highest
and the lowest mIoU values were statistically significant. The differences were not significant for
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Figure 22.6: Illustration of where the first three clicks in two images from the UserPic dataset were
placed. Green dots denote positive clicks, while red dots denote negative clicks.

IoU@1 and IoU@2 (t-test; p value > 0.05) but they were statistically significant for IoU@3 (p
value= 0.045), IoU@4 (p value= 0.034), and IoU@5 (p value= 0.035). This was caused by very
consistent results with low standard deviations for the participants with the highest mIoU@k
scores. However, when taking the mask from the last click as a final result, the differences
between participants were quite small: the mean pairwise IoU was 93.53%, the maximum was
95.44%, and the minimum was 90.59%. Consequently, all pairs had an IoU within 5% of each
other as their segmented final avalanche masks were very similar (Fig. 22.8).

When evaluating the model trained on AvaWeb based on the UserPic with simulated clicks and
comparing to the user study results (see Tab. 22.4), the AvaWeb results were superior for all
investigated metrics, except for the mNoC@80. The participants with the highest mIoU@k held
up in comparison to the numbers from the model (Fig. 22.8).

Table 22.4: Comparison of the results from the user study with the model results when evaluating
on the same imagery (UserPic; N = 20).

User Study AvaWeb
mNoC@80 2.11 1.85
mNoC@90 2.50 2.55
NoC20@85 1 0
mIoU@1 (%) 66.61 74.31
mIoU@2 (%) 80.91 89.57
mIoU@3 (%) 86.22 91.53
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Figure 22.7: Comparison of the mIoU for all participants of the user study to the mIoU of the
AvaWeb evaluated based on the UserPic dataset. Note that only two participants used the maxi-
mum possible number of 20 clicks.

Figure 22.8: IoU for all participant pairs (participants denoted as P, and the ground truth as GT)
for the final masks from our user study on the UserPic.
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23
Discussion

Our results show that IAS enables the segmentation of avalanches from webcam imagery within
seconds. We compared the performance of the model trained with different datasets: as
expected the model trained with any avalanche dataset outperformed the baseline
(COCO+LVIS). The model trained on AvaWeb performed best for the two test datasets containing
webcam imagery (SLF test and WebNew) and performed on par with the dataset with a
perspective unlike those of the webcams (GroundPic) but failed to generalize well to the large but
coarsely annotated UIBK test with a large variety of perspectives and resolutions. In contrast, the
model trained on larger and more diverse datasets (AvaPic and AvaMix) exhibited lower mIoU
scores and a higher number of clicks to reach a certain IoU for all test sets containing webcam
imagery (SLF test and WebNew), but it performed better with imagery not from webcams
(GroundPic and UIBK test). The model trained on AvaMix seems to have learned more details
since the mIoU scores were higher than for the AvaPic for three out of four datasets from
approximately click 3 to 10. During those clicks, after the initial coarse segmentation, details of
the avalanche are segmented. We suspect that the detailed annotations, following the visible
texture from the SLF dataset, helped the AvaMix to outperform the AvaPic.

Overall, the model struggled with images of avalanches recorded under unfavorable illumination
conditions. This is in line with previous studies that found the agreement between different
experts for manual mapping to be lower in shaded areas (Hafner et al., 2022; Hafner, 2023).
Furthermore, in particular the AvaWeb struggled with close-up views of avalanches; often, these
images are photographed from below the avalanche, resulting in a very specific perspective that
the model has never seen during training. But overall, the AvaWeb, with less than 10% of the
training data of the other two datasets, achieved the best performance for two out of three test
sets with detailed avalanche annotations (SLF test, WebNew, GroundPic). Even though the UIBK
test contained perspectives unknown to the AvaWeb, we believe the low performance
(approximately 20% lower IoU) compared to AvaPic and AvaMix is mostly caused by the
coarseness of the annotations in combination with low-resolution imagery, which the model
struggles to reproduce. However, results also showed that any model trained on avalanches is
better than the baseline which has never before seen an avalanche. We believe the coarseness
of the annotations in the AvaPic prevents the model from learning all it could from such a large
and diverse dataset. Investigating this in more detail is beyond the scope of this paper, but future
work should consider experimenting with a larger dataset of finely annotated avalanches covering
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various perspectives, avalanche types, avalanche sizes, and snow and illumination conditions.

For their fully automated method, Fox et al. (2023) only evaluated bounding-box overlap, which is
less challenging than the pixel overlap we focused on. When comparing our IAS best-model
bounding boxes on the first click to the result of Fox et al. (2023), we outperformed their F1 score
by a large margin (0.64 vs. 0.97). Consequently, we captured the area that the avalanche covers
better from the first prediction onwards.

In our user study, the participants with the best performance were as good as the simulation, but
the mean IoU scores of all participants did not exceed the model (Tab. 22.4). We attribute this to
the lack of serious training (visible in the variations in the number of clicks and time used) and
knowing that estimations of avalanche area exhibit large variabilities (Hafner, 2023) as there is no
clear unambiguous definition of an avalanche boundary. Since the differences between the
model and the participants were rather small, we consider the way user clicks are simulated
during training to be representative of employed real-life click strategies.

Previous work (Hafner, 2023) found variations of up to 43% between experts when mapping
avalanches from oblique photographs or from remote sensed imagery. In opposition to Hafner
(2023), our mean pairwise IoU scores for the avalanche area mapped (pixels, in our case) were
all within 5% of each other and all have an IoU above 0.9 with respect to the ground truth mask
(Fig. 22.8). We believe having humans collaborate with the same underlying model homogenizes
the avalanche area identified as it guides the participants and constrains the results.
Consequently, IAS not only improves efficiency but enhances the reliability, defined as the
consistency of repeated measurements or judgments of the same event relying on the same
process (Cronbach, 1947). Even though we had no overlapping avalanches in our UserPic, we
still believe our findings also apply in this more challenging scenario.

As opposed to fully automatic avalanche segmentation IAS requires a human annotator. We do
not see this as a disadvantage, but rather as complementary since humans are present and will
remain present in the future in many settings where avalanches are recorded, either in
connection to work or as part of winter leisure activities in the mountains. Compared to the
traditional way of mapping avalanches, IAS shows time savings of 90%. We believe that the time
saved may be even greater since the avalanches with a time recording were rather small (mean
size of 1.75; European avalanche size definition (EAWS, 2023)) compared to the ones in the user
study, and all were located in an area well known to the person mapping. In practice, when using
the tool to segment new avalanches, the user needs to decide when the predicted and corrected
mask are detailed enough. Consequently, the final masks are the most important.

Webcams have limited coverage and cannot record avalanches in a spatially continuous manner
like satellite imagery can (Bühler et al., 2019; Eckerstorfer et al., 2019; Hafner et al., 2022), but
their temporal resolution is superior and allows for a better monitoring of the avalanche activity
over the course of the winter, leading to more complete datasets and allowing for more detailed
analyses of, e.g., predisposition factors. However, their inclusion in existing databases, requires
the georeferencing of the avalanches, achievable with, e.g., mono-photogrammetry tools like
those of Bozzini et al. (2012, 2013), Produit et al. (2016) or Golparvar and Wang (2021). The
georeferencing allows for avalanches segmented in an image to be displayed on a map (as is
exemplarily shown in Fig. 23.1). Without that, the application is limited to providing an overview of
the current activity to an avalanche warning service, while all other downstream applications
cannot profit from the data.
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Figure 23.1: Example of avalanches segmented from an image with AvaWeb (left) and the cor-
responding avalanches displayed on a map after they have been georeferenced with the mono-
plotting tool (right, Bozzini et al. (2012); map source: Federal Office of Topography).
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24
Conclusions and Outlook

We introduce a novel approach to map avalanches from webcam imagery employing interactive
object segmentation. During training, the user’s clicks that guide and correct the segmentation
were simulated, optimizing the model to quickly identify the features of an avalanche. With IAS, a
human user may, in seconds instead of minutes, segment the desired avalanche in collaboration
with the model. Compared to satellite imagery, webcam imagery covers only limited areas.
However, the abundance of webcams and possibility of acquiring images as frequently as needed
without additional cost increase the likelihood of capturing avalanches, even under adverse
visibility conditions, offering a very valuable complementary data source for existing avalanche
databases. This allows for the documentation of avalanche activity for a whole season compared
to for just one extreme event, like in Bühler et al. (2019). Additionally, the release time may be
determined with less uncertainty, helping avalanche warning services and research endeavors to
better connect the snow and weather conditions to avalanche releases.

In combination, IAS and georeferencing have great potential to improve avalanche mapping:
existing mono-photogrammetry tools may be used to import avalanches detected with IAS from
webcams. Assuming the camera position and area captured are stable, the georeferencing can
be reused for all subsequent images. In the past, this has been done for webcam-based snow
cover monitoring (Portenier et al., 2020). In the future, existing approaches could be enhanced
and expanded to a pipeline hosting the entire process from IAS to georeferencing and for
purposes of importing the detected avalanches into existing databases. Furthermore, we see
potential to automatically georeference images from mobile devices with the available information
on the location and orientation in combination with the visible skyline and a digital elevation
model (DEM). This would allow avalanche observers and the interested backcountry skiers to
photograph an observed avalanche; quickly segment it with IAS; and automatically send the
georeferenced outlines to existing databases, making them available to, e.g., the avalanche
warning service. This would make the outlines and geolocations of avalanches mapped in the
field more reliable compared to the traditional mapping approach described in Hafner (2023). The
possibility of recording observed avalanches in an easy way could also help to motivate more
people in reporting observed avalanches and therefore enlarge current databases with valuable
detailed records.
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Compared to the currently widely used mapping method (study 2; Hafner, 2023), segmenting an
avalanche with IAS shows time savings of over 90%, and the results are more reliable in terms of
consistency between mappings from different individuals. For the future we recommend training
with a larger dataset with fine annotations and various perspectives, avalanche types, avalanche
sizes, and snow and illumination conditions. Our results indicate that this would help the model
significantly in making fast and detailed segmentations, as well as in generalizing well to all sorts
of unseen perspectives. For fast image annotation or the correction of existing annotations with
minimum user input, our current model may be used. Annotations generated with IAS may, in
addition, be used to develop and enhance models for automatic avalanche segmentation, saving
time while generating outlines that follow the visible avalanche textures, thereby easing the
learning and obtaining more accurate and reliable avalanche annotations in the future. Overall,
this is a promising approach for continuous and precise avalanche documentation,
complementing existing databases and thereby providing a better base for safety-critical
decisions and planning in avalanche-prone mountain regions.
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Part V
Conclusions
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25
Contributions of this thesis

This thesis explores the potential of machine learning to automatically map avalanche outlines in
remotely sensed imagery. High resolution optical satellites are currently the only source for
acquiring comprehensive information on the complete avalanche outlines over a large area
(Tab. 5.1). All other currently available methods do not possess the capability to comprehensively
cover large areas or to capture the entire extent of avalanches from their release to the deposit
area. Webcam imagery, though less comprehensive, has a higher temporal resolution than
satellite imagery and is therefore less weather dependent capturing avalanches on selected
slopes at regular sub-daily intervals. The information regarding the extent of avalanches obtained
from optical satellite imagery or webcams is essential to complement existing avalanche
databases used by safety critical applications. For applications such as hazard mapping,
planning mitigation measures, or conducting risk analysis, the history of avalanches serves as
crucial information when assessing the risk or determining appropriate measures to ensure
safety. In avalanche modeling, it is crucial to ensure that the models accurately reflect reality by
calibrating them with real avalanches.

This thesis is the first to automate avalanche mapping from optical imagery with deep learning.
This work has shown that large scale automatic avalanche mapping from optical SPOT 6/7
satellite imagery is possible, fast and reliable. In reproducibility experiments, the thesis illustrates
and quantifies, for the first time, how the perception of avalanches and the delineation of the area
covered by one-and-the-same avalanche differs between individuals. In addition, the thesis
investigates how the reliability of the human avalanche mapping affects the results of deep
learning models and what causes the variations in human estimates. The implications of these
investigations for the reliability of avalanche size estimates and mapped avalanche outlines from
photographs or remotely sensed imagery are essential for future automation and will influence
the perception and management of currently used data. Beyond the field of avalanche research,
this largest avalanche mapping reliability investigation to date highlights the importance of
understanding reliability of any manually labelled data. With the interactive deep-learning aided
mapping of avalanches from webcam imagery, this thesis proposes a second promising way to
map avalanches in a fast and reliable way with human guidance, unlocking another data source,
besides optical satellite imagery, for the mapping of entire avalanche outlines.
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25.1 Benefits to practice, science and relevance to society
The methods proposed in this thesis for avalanche mapping provide comprehensive avalanche
information over large(r) areas and detailed information on the location, extent, aspect and size of
each avalanche (Tab. 5.1). This information is essential for numerical avalanche simulations,
hazard mapping, protection/mitigation measure planning and evaluation as well as risk analysis
and establishing safety concepts (Tab. 4.1). The proposed methods are not well-suited for
avalanche warning services, where rapid notification of avalanche occurrences under all weather
conditions is of utmost importance. The data is also of limited use for the development of
avalanche models, which connect the weather and snow conditions to avalanche release,
because knowing the exact time of release is key (e.g., Kristensen and Larsson, 1994) and our
methodology can only be used in conjunction with weather independent avalanche sensors
(Tab. 5.1).

It must be mentioned, however, that SAR data like Sentinel-1 is not capable of providing
continuous information on avalanche occurrences either: over mid-latitudes, data is currently only
available every 12 days. This time-lag is too great for avalanche warning services and for all other
applications the data is of little use as it does not provide the relevant information on the complete
avalanche outlines (Tab. 4.1 and 5.1). The avalanches mapped from optical satellite imagery
can, however, be used to evaluate the avalanche forecast in hindcast, by allowing a comparison
of forecasted and documented avalanche activity. In summary, the majority of safety-related
applications rely on information about avalanches to make informed decisions, and therefore,
benefit from the methods proposed in this thesis. Consequently, this thesis contributes to
enhancing safety in mountainous regions for society as a whole.

25.2 Limitations
An operational automatic mapping of complete avalanches is currently not possible, as no
suitable optical satellite data is available on a regular basis. The spatial resolution of optical
satellites like Sentinel-2 (10×10 m), acquiring imagery regularly, is too coarse for a
comprehensive mapping, allowing only for the documentation of large glide snow avalanches or
slush flows (Hafner et al., 2021; Abermann et al., 2019). Consequently, suitable optical data
currently needs to be specifically ordered, acquired and paid for. This is expensive and requires
precise knowledge of the specific area of interest, in addition to being reliant on acquiring
imagery under cloud-free conditions. The cost, which depends on the covered area, has
prevented the testing of our model on data from multiple dates in winter with a large variety of
snow conditions and imagery with some clouds. Therefore, further investigation into
generalizability is warranted to ensure that the model functions effectively under all possible
conditions and times when avalanches may occur.

For the reliability study, the sample for the two mapping experiments was rather small: Due to the
homogeneous background and familiarity with the mapping procedure, we judge our results to
represent the upper reliability limit. The effect of different countries of origin, self assessed
experience or familiarity with the mapping region remains unknown. Consequently, the validity of
our findings should be tested with more participants, including various backgrounds. For better
comparability and evaluation of all available methods (Tab. 4.1), the reliability of avalanches
mapped in other data sources, e.g. from SAR imagery, would be of interest.

The workflow for the IAS from webcam imagery is currently not operational, as it has not been
joined with georeferencing to a single model chain. Additionally, the current webcam data is not
accessible in the same interface and there is no direct connection to import the avalanches into
the designated databases. For operational use, it would also be necessary to include more
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finely-mapped avalanches from a wider range of perspectives during training. This would enable
the easy segmentation of avalanches from any webcam perspective in the operational setting.
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26
Avalanche mapping in the future

26.1 Avalanches in a changing climate
Matiu et al. (2021) investigated the trends in snow depth in the European Alps from 1971 to 2019,
relying on measured data. From May to November, the average snow depth decreased by 8.4%,
and the average duration of seasonal snow cover decreased by 5.6%, as assessed across all
observed stations. The decrease of the snow cover duration was significant below 2000 m a.s.l,
while no consistent change was observed for higher altitudes (Matiu et al., 2021). Marty et al.
(2023) described the series of low-snow winters since the 1990s as unprecedented. The
observations show less and wetter snow, with increasing variability and an increase in winter
melting (Marty et al., 2023). The availability of snow will influence the avalanche activity in the
future.

Mayer et al. (2023a) downscaled climate projections (eight climate model chains and three
emission scenarios) for two automatic weather stations in Davos and simulated snow stratigraphy
until the end of the century. They found a shift of the wet-snow instability to earlier winter months,
a decrease in dry snow instability and an increase for wet-snow instabilities at the higher
elevation site. Similarly, Ortner et al. (2023) found a general trend towards less area being
affected by avalanches as well as reduced avalanche pressure and shorter run-outs when
simulating the snowpack of 100 future winters (RCP 8.5 emission scenario considering six
different climate model chains). Consequently, the hazard of avalanches will persist at higher
elevations and it will lessen at low elevations, while the development at mid-elevations is less
sure. In order to capture long-term changes and trends in activity, the comprehensive
documentation of avalanches from now into the future is of key relevance.

26.2 Deep learning aided avalanche mapping
The volume of data when utilizing comprehensive satellite data or sub-daily webcam imagery to
map avalanches is substantial and can only be effectively managed through automation. Deep
learning can deal with large datasets due to its ability to automatically learn and extract complex
patterns, features and representations directly from the input imagery. In addition, it can scale
from small to larger datasets and, unlike humans, is reproducible, yielding identical results when
based on the same data and parameters. This makes it a powerful set of methods to effectively
and computationally efficiently extract relevant information from large datasets. A future
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development for deep learning and avalanche mapping might be the fusion of different data
sources and sensors: possible combinations include SAR and optical satellite data, higher and
lower resolution optical data as well as a combination of ground-based and spatial/aerial-based
sensors. For data with a high temporal resolution, like webcam imagery, recurrent CNNs (e.g., in
Daudt et al., 2023) learning from the evolution and occurred changes might be helpful, especially
when fully automating the avalanche segmentation. Computer-aided analysis has already been
implemented for the Swiss avalanche warning service (e.g., Pérez-Guillén et al., 2022; Hendrick
et al., 2023; Mayer et al., 2023b) and has been proposed for data from other sensors (e.g., Heck
et al., 2018a; Bianchi et al., 2021; Fox et al., 2023). It can be anticipated that its significance will
increase as we continue to deal with ever larger datasets in the future.

26.3 Anticipated advancements of sensors and techniques
Using optical satellite imagery is currently the only option for a comprehensive large-scale
mapping of the complete avalanche outlines (for smaller areas, airplane data works as well).
Even though suitable data is currently only available when ordered, recorded and payed, the
current development for optical satellites is promising. In the future, microsatellites and swarms of
satellites will likely provide regular suitable optical imagery at reasonable - lower than nowadays -
pricing. The dependence on cloud-free conditions will be mitigated by daily overpasses and will
enable regular automatic avalanche mapping over large regions. Regular mappings will improve
the understanding of avalanche activity, not only during extreme situations. Currently, the
complete outlines of avalanches cannot be derived from weather independent SAR imagery.
Radar microsatellites, like ICEYE (ICEEYE, 2024), with higher spatial resolution could make the
identification of whole avalanches from SAR imagery possible, though the suitability has yet to be
investigated and shown.

In the future, autonomous drones might be able to cover large areas and could be employed to
document avalanche periods. The big advantage of drone and aerial imagery is that information
on the snow distribution is collected and consequently precise information on the fracture depth
and the mass balance/volume distribution can be derived. These drones could be deployed upon
request, autonomously documenting avalanche periods. Theoretically, the orthorectification and
the automatic avalanche mapping could already be done on-the-fly with an on-board computer,
which would make data provision significantly faster.

Webcam imagery allows for a systematic mapping of all avalanche occurrences in the slopes
covered by the webcam. Today, most tourist destinations in the Alps maintain webcams, enabling
their guests to explore the destination before visiting. Additionally, these webcams serve as a
marketing tool, showcasing the beauty of the destination to potential visitors. All webcams
capturing avalanche prone slopes could be used in the future to map avalanches with IAS and
enlarge the decision base for applications. Even though the spatial coverage of webcams is
limited and patchy compared to satellite imagery, they would provide valuable information with
superior temporal resolution. Moving from IAS to a reliable, fully automatic avalanche mapping
procedure would be desirable for the large-scale use of webcams. Annotating training data with
the current IAS interface could help to develop such models. Another future application for IAS
would be the combination with automatic georeferencing of avalanche images taken from mobile
phones: avalanche observers and interested backcountry recreationists could photograph an
observed avalanche with their mobile phone, quickly segment it with IAS and automatically send
the georeferenced outlines to existing databases. Future research could explore this, making a
pipeline and developing an app for observer guided avalanche mapping with IAS in the field.

The greatest benefit would be cooperative sensors, a combination of currently available sensors
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to provide all relevant information for the stakeholders at once (Tab. 4.1 and 5.1). For example, as
soon as the weather permits a drone could automatically document the avalanche registered by
radar, seismics or infrasound during the snowfall. Likewise, drones could be employed to
artificially release avalanches with explosives and consequently map them in detail.
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27
Final remarks

Capturing regular avalanche activity and especially extreme events as comprehensively as
possible continues to be important. This can be achieved by regularly testing new sensors for
suitability as well as fully automating information extraction from currently available sensors and
data. Furthermore, developing new models and evaluating existing and newly emerging deep
learning methods are key for continuously extracting the relevant information from all datasources
and passing them on to the relevant stakeholders. In the past, selected avalanche periods have
been documented with airplane imagery, for example in Switzerland in the winter of 1950/51 and
more systematically in the “avalanche winter” of 1999. Automating the mapping and documenting
all avalanches from the available historical data would be extremely important. The available
historical data tends to be from extraordinary avalanche periods with larger-than-usual
avalanches that are especially important for the downstream applications. Extracting those
avalanches would immediately provide a better decision base for the relevant stakeholders,
without having to wait for new avalanches to be recorded.

To summarize, enlarging the knowledge about avalanche occurrences with, but not limited to, the
proposed methods and automating the information extraction from various sources (Tab. 5.1) is of
paramount importance to ensure safety in mountainous regions. Deep learning holds the
potential to handle large datasets effectively and produce reliable results, allowing for the
identification of patterns induced by climate change and the implementation of appropriate
measures. As the population grows and cargo transportation continues, along with the ongoing
significance of tourism, having comprehensive and reliable information on avalanche occurrences
remains essential for maintaining safety in Switzerland’s mountainous regions.
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A
Appendix to section 6.2

Short explanation of important terms for CNNs
Backbone
The backbone refers to the feature extracting network used within the chosen model architecture.
It is used to encode the input of the model into a certain feature representations. A typical
backbone might be a ResNet (He et al., 2016).
Batch size
Batch size describes the number of training samples in one iteration (forward-backward pass).
Larger batch sizes require more memory as more samples will be propagated through the
network. Networks are often trained with mini-batches where the batch size is smaller than the
overall number of all samples.
Convergence
When the loss changes are very small between iterations, a network is converging.
Data augmentation
Through augmentation like flipping, rotating or adding noise the sample size is increased.
Dilated convolution
A dilated convolution is a convolution with spacing between the values of the kernel, a kernel of
3×3 with a dilation rate of two will cover the same area as a 5×5 kernel, but needing nine instead
of 25 parameters.
Encoder-decoder
The encoder takes input data and produces a condensed representation of it, while the decoder
takes this representation and generates an feature map with the closest match to the actual input.
During training, the model learns to map input to output representations by optimizing parameters
to minimize the difference between predicted and actual results. Both encoder and decoder are
networks, usually the decoder has the same structure as the encoder but with different direction.
Epoch
An epoch describes the number of passes through the used training set, one epoch consequently
is one forward and one backward pass of all the samples in the training dataset.
Hyper-parameter
Hyper-parameters like the learning rate or batch size are controlling the learning process and are
defined before training.
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Kernel
A kernel is a small matrix used to extract features from the input data by sliding over it and
performing element-wise multiplications and summations to produce feature maps (e.g., in
convolutions).
Learning rate
The learning rate is a hyper-parameter set before training determining the step size for each
iteration when moving towards a minimum of the chosen loss function.
Loss function
A loss function is quantifies the difference between the predicted outputs of a model and the
target outputs. Through that it guides the model while training and optimizes it.
Padding
Padding determines how the border regions of each sample are handled for a convolutional layer.
If no padding is applied, part of the border of each kernel (larger than one) will be cropped. away.
Patch size
The patch size is the size of the input image processed by the convolutional layers of the
network. It determines the area of the input that is considered by each filter during the
convolution operation. Larger areas of input/ patch sizes capture more contextual information in
contrast to smaller patch sizes which focus on details.
Receptive field
The receptive field describes the size of the region in the input that produces the feature (Araujo
et al., 2019). A larger receptive field allows the network to capture more context and may improve
its ability to generalize to unseen data.
Strided convolution
In a standard convolution the kernel will move one pixel at a time (stride = 1). With a stride larger
than one the sample image will be downsampled, leading to higher computational efficiency.
Training, validation and test dataset
The annotated dataset is usually divided, the largest part is used for training the model. After
each training epoch, performance of the model is evaluated on the validation dataset. The test
dataset, which the model has not seen during training or validation, is used to evaluate the final
performance of the trained model.
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B
Appendix to part III

Figure B.1: IoU for all expert pairs for the mapping from oblique photographs. The numbers I to X
represent the different expert participants.

117



C
Supplement to part III

Overview on how the survey looked like for the participants. The structure of Question 2 to 10 is
identical to Question 1, the images for those questions are displayed in Figure 16.1.
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