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Abstract

The recent thrusts in wave propagation and semiconductors since the late 20th century
have gradually shifted the design paradigm of civil and mechanical structures from trial-
and-error iterations into target-oriented applications. Through integration of wave manip-
ulation mechanisms, the elastic or mechanical energy can be guided, reflected, redirected,
or localized with predefined paths, thus enabling diverse functionalities for the original
structures. From the mechanical perspective, these functions could be exploited for vi-
bration mitigation or attenuation under certain frequency ranges, so-called as bandgaps.
From the electrical perspective, they can also be utilized for signal sensing and energy
harvesting when the elastic wave is focused or amplified at desired positions or frequen-
cies. To introduce such novel wave manipulation mechanisms into the conventional elastic
systems, the concepts of metamaterials and nonlinear dynamics are discussed and studied
in this thesis. In particular, we capitalize on local resonance effects and the nonlinear
effect induced via use of auxiliary structures as local resonators.

These artificially altered mechanical systems are further combined with electromechani-
cal coupling materials and interface circuits for the purposes of energy harvesting and/or
dynamics control, expanding their functionalities and utility with semiconductors and
programmable logic. By putting forth a framework that extends beyond linear dynam-
ics and electromechanical coupling, the studied mechanical systems in this thesis pro-
duce solutions for engineered structures which exhibit resilience to mechanical vibrations
and yield sustainable mechanisms for vibration-powered applications, e.g., for Internet
of Things (IoT) devices. This thesis presents a set of novel mechanical systems for vari-
ous applications, including vibration mitigation, energy harvesting, and dynamics control
i.e., covering use cases from attenuation of low-frequency vibrations to the harvesting of
localized elastic energy, and further towards the utilization of the harvested energy in
mechanical dynamics control.

The first part of this work proposes a graded locally resonant metamaterial for broadband
and high-capability piezoelectric energy harvesting, which preserves its original mechan-
ical bandgap for vibration attenuation. Its design, comprising gradual increase of length
of local resonant beams on a host beam as wave carrier, enables the gradual change of me-
chanical impedance for the dual functions of frequency separation and wave amplification.
These two mechanical characteristics enable broadband and high-capability piezoelectric
energy harvesting. Theoretical lumped parameter models, full scale numerical models,
and experimental realizations with piezoelectric interface circuits have been realized to
validate the proposed metamaterial-based energy harvesting solution. The outcomes of
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this work reveal the capacity for milliwatt-level DC output power with a frequency range
that spans from 50 Hz to 150 Hz, paving the way for powering of IoT devices with meta-
materials under low-frequency vibrations.

A typical application for such harvested energy from mechanical vibration is for use with
IoT devices. In addition, the electromechanical coupling in mechanical systems offers
a bidirectional energy conversion channel, opening up a direct energy conversion path
from the mechanical domain to the electrical domain and vice versa. Based on this idea,
the second part of the thesis shifts to applications in the domain of control for nonlin-
ear mechanical oscillators, using the harvested energy. In forced and periodic nonlinear
dynamical systems, if hysteresis is present, multiple stable states or fixed points exist,
serving as attractors; this leads in generation of different orbits comprising dramatically
different displacement amplitudes. The high-energy orbits are preferred for energy har-
vesting due to their high amplitudes. Motivated by this observation, this work proposes
a circuit solution to reverse boost the electrical energy, thus forming an anti-phase piezo-
electric actuating force applied on the oscillator concerning its velocity. Using a multiple
time scale analysis, the orbit jump mechanism from low-to-high orbit is revealed, which is
effectuated via an unstable spiral and a saddle-node bifurcation. The theoretical results
have been validated experimentally in monostable and bistable nonlinear energy harvest-
ing systems, which offer a compact circuit solution to guide the energy in the coupled
electromechanical system.

The final part of this thesis is dedicated to an extension of the nonlinear dynamic mecha-
nisms which were initially studied at the resonator level, to the level of multiple nonlinear
local resonators. The outcome is a nonlinear metamaterial, which is able to control and
mitigate elastic wave propagation in a broadband fashion. The geometric design of lo-
cal resonators employs an inertia amplification mechanism, which introduces nonlinear
damping forces as reaction forces applied on the substrate beam system. By introducing
a numerical harmonic balance method with Alternating Frequency Time and numerical
continuation techniques, the nonlinear frequency response of a finite nonlinear metama-
terial beam can be solved and verified. The obtained theoretical and experimental results
suggest that the bandgap has been broadened as a result of the nonlinear damping effect.
In addition, nonlinear modal coupling is also revealed for higher modal frequency dissipa-
tion, which not only works for harmonic excitation but also effectively demonstrates the
shock wave attenuation through low-to-high frequency energy transfer and dissipation.
This work not only expands the utility of locally resonant metamaterials to a broader fre-
quency range, but further delivers methods to estimate the nonlinear frequency response
of nonlinear metamaterials, which poses a current challenge for commercially available
simulation software and broadly adopted time domain integration methods.

This thesis contributes to the quest for multifunctional mechanical systems in elastic
wave and energy control, covering a broad range of studies and applications from the
mitigation of vibrations via metamaterials to energy harvesting and dynamics control
with electromechanical coupling designs.
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Zusammenfassung

Die jüngsten Fortschritte in der Wellenausbreitung und Halbleitertechnologie seit dem
späten 20. Jahrhundert haben das Designparadigma von zivilen und mechanischen Struk-
turen schrittweise von iterativen Versuch-und-Irrtum-Methoden hin zu zielorientierten
Anwendungen verschoben. Durch die Integration von Wellenmanipulationsmechanismen
kann die elastische oder mechanische Energie entlang vordefinierter Pfade geleitet, reflek-
tiert, umgelenkt oder lokalisiert werden, was den ursprünglichen Strukturen vielfältige
Funktionalitäten verleiht. Aus mechanischer Sicht könnten diese Funktionen zur Min-
derung oder Dämpfung von Vibrationen in bestimmten Frequenzbereichen, den soge-
nannten Bandlücken, genutzt werden. Aus elektrischer Sicht können sie auch zur Sig-
nalaufzeichnung und Energierückgewinnung verwendet werden, wenn die elastische Welle
an gewünschten Positionen oder Frequenzen fokussiert oder verstärkt wird. Um solche
neuartigen Wellenmanipulationsmechanismen in konventionelle elastische Systeme einzu-
fuhren, werden in dieser Arbeit die Konzepte von Metamaterialien und nichtlinearen Dy-
namiken untersucht und diskutiert. Insbesondere nutzen wir lokale Resonanzeffekte und
den nichtlinearen Effekt, der durch den Einsatz von Hilfsstrukturen als lokale Resonatoren
induziert wird.

Diese künstlich veränderten mechanischen Systeme werden weiter mit elektromechanis-
chen Kopplungsmaterialien und Schnittstellenschaltungen kombiniert, um Energie zu
gewinnen und/oder die Dynamik zu steuern, wodurch ihre Funktionalitäten und Ein-
satzmöglichkeiten mit Halbleitern und programmierbarer Logik erweitert werden. Durch
die Einführung eines Rahmens, der über lineare Dynamik und elektromechanische Kop-
plung hinausgeht, bieten die in dieser Arbeit untersuchten mechanischen Systeme Lösungen
für konstruierte Strukturen, die eine Widerstandsfähigkeit gegen mechanische Vibra-
tionen aufweisen und nachhaltige Mechanismen für vibrationsbetriebene Anwendungen
ermöglichen, z.B. für Geräte des Internets der Dinge (IoT). Diese Arbeit stellt eine
Reihe neuartiger mechanischer Systeme für verschiedene Anwendungen vor, darunter
Schwingungsdämpfung, Energierückgewinnung und Dynamiksteuerung, d.h. sie deckt An-
wendungsfälle von der Dämpfung niederfrequenter Vibrationen über die Rückgewinnung
lokalisierter elastischer Energie bis hin zur Nutzung der gewonnenen Energie zur Steuerung
der mechanischen Dynamik ab.

Der erste Teil dieser Arbeit schlägt ein abgestuftes lokal resonantes Metamaterial für bre-
itbandige und hochleistungsfähige piezoelektrische Energierückgewinnung vor, das seine
ursprüngliche mechanische Bandlücke zur Schwingungsdämpfung bewahrt. Sein Design,
das eine allmähliche Verlängerung der lokal resonanten Strahlen auf einem Trägerstrahl als
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Wellenträger umfasst, ermöglicht die allmähliche Änderung der mechanischen Impedanz
für die dualen Funktionen der Frequenztrennung und Wellenverstärkung. Diese bei-
den mechanischen Eigenschaften ermöglichen eine breitbandige und hochleistungsfähige
piezoelektrische Energierückgewinnung. Theoretische Modelle mit gebündelten Param-
etern, numerische Modelle im großen Maßstab und experimentelle Realisierungen mit
piezoelektrischen Schnittstellenschaltungen wurden durchgeführt, um die vorgeschlagene
Metamaterial-basierte Energierückgewinnungslösung zu validieren. Die Ergebnisse dieser
Arbeit zeigen die Fähigkeit zur Erzeugung einer Gleichstromleistung im Milliwatt-Bereich
mit einem Frequenzbereich von 50 Hz bis 150 Hz und ebnen den Weg zur Stromversorgung
von IoT-Geräten mit Metamaterialien unter niederfrequenten Vibrationen.

Eine typische Anwendung für solche aus mechanischen Vibrationen gewonnene Energie
ist die Nutzung in IoT-Geräten. Darüber hinaus bietet die elektromechanische Kopplung
in mechanischen Systemen einen bidirektionalen Energieumwandlungskanal, der einen
direkten Energieumwandlungspfad vom mechanischen in den elektrischen Bereich und
umgekehrt eröffnet. Basierend auf dieser Idee wechselt der zweite Teil der Arbeit zu An-
wendungen im Bereich der Steuerung von nichtlinearen mechanischen Oszillatoren unter
Nutzung der gewonnenen Energie. In erzwungenen und periodischen nichtlinearen dy-
namischen Systemen, wenn Hysterese vorhanden ist, existieren mehrere stabile Zustände
oder feste Punkte, die als Attraktoren dienen; dies führt zur Erzeugung verschiedener Bah-
nen, die deutlich unterschiedliche Verschiebungsamplituden aufweisen. Die Hochenergie-
Bahnen werden aufgrund ihrer hohen Amplituden für die Energierückgewinnung bevorzugt.
Motiviert durch diese Beobachtung schlägt diese Arbeit eine Schaltungslösung vor, um die
elektrische Energie rückwärts zu verstärken und so eine Piezoaktorkraft gegenphasig zur
Geschwindigkeit des Oszillators anzuwenden. Mittels einer Mehrfachzeit-Skalenanalyse
wird der Mechanismus des Bahnsprungs von einer niedrigen zu einer hohen Bahn aufgedeckt,
der durch eine instabile Spirale und eine Sattel-Knoten-Bifurkation zustande kommt. Die
theoretischen Ergebnisse wurden experimentell in monostabilen und bistabilen nichtlin-
earen Energierückgewinnungssystemen validiert, die eine kompakte Schaltungslösung bi-
eten, um die Energie im gekoppelten elektromechanischen System zu leiten.

Der letzte Teil dieser Arbeit widmet sich einer Erweiterung der nichtlinearen dynamis-
chen Mechanismen, die zunächst auf der Ebene des Resonators untersucht wurden, auf
die Ebene mehrerer nichtlinearer lokaler Resonatoren. Das Ergebnis ist ein nichtlineares
Metamaterial, das in der Lage ist, die elastische Wellenausbreitung in einem breiten Fre-
quenzbereich zu steuern und zu dämpfen. Das geometrische Design der lokalen Res-
onatoren nutzt einen Trägheitsverstärkungsmechanismus, der nichtlineare Dämpfungskräfte
als Reaktionskräfte auf das Trägerstrahlsystem einführt. Durch die Einführung einer nu-
merischen harmonischen Bilanzmethode mit alternierender Frequenzzeit und numerischen
Fortsetzungstechniken kann die nichtlineare Frequenzantwort eines endlichen nichtlin-
earen Metamaterialstrahls gelöst und verifiziert werden. Die erhaltenen theoretischen
und experimentellen Ergebnisse legen nahe, dass die Bandlücke aufgrund des nichtlin-
earen Dämpfungseffekts erweitert wurde. Darüber hinaus wird auch eine nichtlineare
Modenkopplung für die Dissipation höherer Modalfrequenzen aufgedeckt, die nicht nur
für harmonische Erregung, sondern auch für die Dämpfung von Stoßwellen durch En-
ergieübertragung und -dissipation von niedrigen zu hohen Frequenzen wirksam ist. Diese
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Arbeit erweitert nicht nur den Einsatz von lokal resonanten Metamaterialien auf ein bre-
iteres Frequenzspektrum, sondern liefert auch Methoden zur Schätzung der nichtlinearen
Frequenzantwort von nichtlinearen Metamaterialien, was eine aktuelle Herausforderung
für kommerziell verfügbare Simulationssoftware und weit verbreitete zeitbereichsbasierte
Integrationsmethoden darstellt.

Diese Arbeit trägt zur Suche nach multifunktionalen mechanischen Systemen in der
elastischen Wellen- und Energiekontrolle bei und deckt ein breites Spektrum an Studien
und Anwendungen ab, von der Dämpfung von Vibrationen durch Metamaterialien bis hin
zur Energierückgewinnung und Dynamiksteuerung mit elektromechanischen Kopplungs-
designs.
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Chapter 1

Introduction

1.1 Motivation and Problem Statement

Waves, movements of particles governed by energy flows, are present in every corner of our
daily lives, though they often go unnoticed. Sound waves allow us to hear words, radio
waves enable us to navigate maps, and elastic waves transmit vibrations. Among these
waveforms, this thesis focuses on elastic waves propagating in solids [1] and studies the
underlying mechanical systems to guide wave propagation and energy flow within these
systems.

While this thesis relies on concepts from electromagnetism, piezoelectricity, and power
electronics, the primary focus is on mechanical systems serving as host structures for
the entire coupled system. Common applications of these systems involve, for example,
guided wave testing. A wave generation technique used from non-destructive evaluation
for structural health monitoring of civil, aerospace, naval, and mechanical structures
[2, 3]. Guided waves are typically generated by arrays of piezoelectric actuators, reflected
by defects and damages, and detected with piezoelectric sensors for damage detection
and localization. This electrical-to-mechanical energy conversion intermediated by elastic
waves also happens in energy harvesting systems, where the elastic waves are focused,
trapped, and converted into electricity through electromechanical coupling transducers
like electromagnetic or piezoelectric materials.

In these examples, waves serve functional purposes. However, there also exist extreme
cases in which large wave amplitudes lead to destructive, detrimental, or disturbing conse-
quences for mankind. Common examples include seismic waves from the potential release
in crustal materials and airplane noises from the combination of rotational engines. Be-
sides human-related disturbances,, large wave amplitudes also raise fatigue issues, cracks,
and strength failures for structures. The spectrum of these examples covers the wave
propagation spanning from low-frequency (Hz) to high-frequency (MHz) and highlights
the importance of wave control and attenuation in mechanical systems. Conventional vi-
bration attenuation methods have been proposed to address this issue. Common methods
include dynamic vibration absorbers, which protect the host structure with auxiliary os-
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1.1. Motivation and Problem Statement

cillators targeting the detrimental frequency; nonlinear dampers, which dissipate kinetic
energy using energy-absorbing materials; and energy harvesters, which convert mechanical
energy into electricity, thus providing electrically induced damping and stiffness for vi-
bration control. However, these customary approaches have several practical limitations,
including a narrow frequency range for vibration control and low efficiency in energy
conversion, which motivates the search for new technologies.

During the process of vibration control, mechanical energy is either confined or reflected
by auxiliary structures or absorbed by damping materials or coupling transducers. Of
particular interest for this thesis is the case of energy harvesting, where the originally
detrimental wave energy is transformed into useful electricity, simultaneously leading to
the vibration control of the host structures. General energy harvesters consist of vibration
sources, coupling materials, and interface circuits. For piezoelectric energy harvesting,
the best-known interface circuits include the resistive shunting circuit and the standard
energy harvesting circuit (full-bridge rectifier). They both convert the alternating me-
chanical vibrations into electricity, however, one in AC (alternating current) form and
another in DC (direct current) form. When considering the applications of vibration-
powered IoT devices, the harvested power should bear a DC form for power supplies of
microcontrollers and wireless sensor nodes. Thus, recent years have witnessed the growth
of this domain with the thrust of power electronics; more and more interface circuits
applied the switching-mode power conversion rather than simple shunting or analog cir-
cuits to increase the energy harvesting capability and bandwidth. Such as the self-power
SSHI (synchronized switching harvesting on inductor) and SECE (synchronized electri-
cal charge extraction) circuits, which eliminate the phase difference induced by the inner
capacitance from the piezoelectric transducers. However, these interface circuits for en-
ergy harvesting and vibration control also lead to challenges in structural dynamics, to
name a few: the electromechanical dynamics and its effect on wave propagation and the
system-level integration for vibration-powered IoT devices.

Recent advances in mechanics and electronics have introduced a new realm of electrome-
chanical systems, which have garnered attention for their remarkable ability to guide
wave paths and convert mechanical energy for sensing and powering IoT devices. Unlike
conventional vibration absorbers, their underlying mechanical systems rely on so-called
bandgaps to efficiently cancel or reflect the propagation waves under certain frequency
ranges. Depending on different physical mechanisms, mechanical systems with bandgaps
are often referred to as metamaterials and can be classified into photonic crystals [4] and
locally resonant metamaterials [5], as detailed in Section 1.2.1. They initially gained mo-
mentum in electromagnetism [6–8], to sprawl only later to the acoustic [5, 9] and elastic
domains [10, 11].

Despite the staggering perspectives of photonic crystals and metamaterials, only the pure
mechanical systems are not sufficient to reach the level of maturity for applications of
vibration control and energy conversion, where they are facing a number of challenges.
In power electronics, energy sources are typically stable and independent of load condi-
tions. However, practical applications of mechanical systems for power conversion are
challenged by wave propagation, where the equivalent energy sources depend on the in-
put and configuration of the mechanical system. Additionally, the coupling effect induced
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Chapter 1. Introduction

by transducers and circuits generates reaction forces on the host mechanical systems,
further complicating wave propagation. This poses a challenging requirement for elec-
tromechanical systems, as metamaterials, characterized by bandgaps and circuits with
easy tunablilities, offer electrically controlled properties, thus motivating the quest for
integration, such as those relying on the combination of the two. Among the numerous
electromechanical designs proposed in the literature, multifunctional metamaterials
have recently drawn the interest of the research community for their signal processing
and energy harvesting capabilities, in addition to their established uses in wave control
applications [12]. However, research in this direction is still in its infancy, and much has
yet to be discovered about their dynamic and electrical performance.

It is precisely this gap and the limitations of standard metamaterials and power elec-
tronics designs that inspire the current work. This thesis presents novel methods and
systems based on conventional wave manipulation systems for innovative technologies
such as energy harvesting and dynamics control. The first part of this thesis aims to
integrate the piezoelectric energy harvesting interface circuits into graded metamaterials
for broadband and high-capability energy harvesting. By utilizing the harvested energy,
the study transitions toward novel solutions for dynamics control in nonlinear oscillating
systems, which are common in many structural engineering applications (e.g., wings and
blades vibrations under heavy wind load), and ultimately focuses on theoretical methods
and experimental applications of nonlinear dynamics induced by geometric deformation
and interface circuits to guide wave and energy in multifunctional mechanical systems.

1.2 Theoretical Background and Methods

This section provides an overview of the physical framework and key theoretical concepts
adopted in this thesis, providing an overview of the thesis structure and main topics
covered.

1.2.1 Elastic Wave Propagation

Elastic waves propagate in solids depending on the properties and geometry of the media,
which can be tailored using auxiliary structures. Wave propagation can be altered in these
artificially fabricated metamaterials. The following subsections describe wave propagation
in host elastic systems and their corresponding mechanical metamaterials, which consist
of host elastic substrates and local resonators.

Elastic waves in structural components

Structural components are fundamental to wave propagation and engineering applications.
The common structures include rods, beams, plates, and shells. Given the applications
discussed in the following chapters, this section focuses on the principles of wave propa-
gation in plates and beams.

Consider a homogeneous, isotropic, elastic thin plate with thickness 2h in y direction as
shown in Figure 1.1 (a). Given the infinite lateral extension in x direction, we can adopt

10
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Figure 1.1: Sketch of a thin plate; Symmetric (a) and antisymmetric (b) Lamb wave modes.

plane strain assumption in z direction. The strain in xy plane is defined as u = u(x, y, t),
v = v(x, y, t). When considering wave propagation in the z direction, there exist two main
classes of waves according to their particle motions: (1) shear horizontal waves, where
the particle motion is parallel to the middle plane of the plate; (2) Lamb wave, which
consists of parallel and perpendicular particle motions with respect to the middle plane of
the plate. This section focuses on Lamb wave propagation, particularly the asymmetric
zero mode of Lamb wave propagation in plates and beams. The equation of motion of
the plate in the x and y direction can be given as:

∂σxx
∂x

+
∂σxy
∂y

= ρ
∂2u

∂t2

∂σxy
∂x

+
∂σyy
∂y

= ρ
∂2v

∂t2

(1.1)

with Hooke’s law given as:

σxx = λ

(
∂u

∂x
+
∂v

∂y

)
+ 2µ

∂u

∂x

σyy = λ

(
∂u

∂x
+
∂v

∂y

)
+ 2µ

∂v

∂y

σxy = µ

(
∂u

∂y
+
∂v

∂x

) (1.2)

By substituting Eq. 1.2 into Eq. 1.1, the following relationship reads:

λ

(
∂2u

∂x2
+

∂2v

∂x∂y

)
+ 2µ

∂2u

∂x2
+ µ

(
∂2u

∂y2
+

∂2v

∂x∂y

)
= ρ

∂2u

∂t2

µ

(
∂2v

∂x2
+

∂2u

∂x∂y

)
+ λ

(
∂2v

∂y2
+

∂2u

∂x∂y

)
+ 2µ

∂2v

∂y2
= ρ

∂2v

∂t2

(1.3)
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where the Lame coefficient λ relates to the Young’s modulus E, the shear modulus G,
and the Poisson’s ratio ν as:

µ = G =
E

2(1 + ν)
, λ =

2Gν

1− 2ν
,

λ

µ
=

2ν

1− 2ν
. (1.4)

By the plain strain assumption and the Helmholtz decomposition, the displacement will
have the form:

u =
∂φ

∂x
+
∂ψz

∂y
, v =

∂φ

∂y
− ∂ψz

∂x
(1.5)

where the potential φ and ψz satisfy the 2D wave equations:

∂2φ

∂x2
+
∂2φ

∂y2
=

1

c21

∂2φ

∂t2

∂2ψz

∂x2
+
∂2ψz

∂y2
=

1

c22

∂2ψz

∂t2
.

(1.6)

By assuming the harmonic solution and considering the top and bottom of the plate as
traction-free boundaries, the wave propagation of a plain strain thin plate can be solved.
These solutions of Lamb wave propagation can be separated into symmetric modes and
asymmetric modes as shown in Figure 1.1 (b) and (c). Their dispersion relationship can
be expressed as [13]:

tan(αh)

tan(βh)
= −

[
4αβk2

(k2 − β2)2
,

]±1

(1.7)

where:

α2 =
ω2

v2p
− k2, β2 =

ω2

v2s
− k2. (1.8)

The positive exponent in Eq. 1.7 denotes symmetric modes, also named S modes. The red
arrows in Figure 1.1 (b) show the particle motion is symmetric with respect to the plate
middle plane and, therefore, induces compression and extension of the plate. On the con-
trary, Figure 1.1 (c) indicates the asymmetric modes where the particles are asymmetric
with the middle plane. The asymmetric mode is also shortened as A Lamb mode, which
thus undergoes pure bending due to the lack of symmetry with respect to the middle
plane.

In order to validate the dispersion relationships of the symmetric and asymmetric modes
given in Eq. 1.7, here we demonstrate the wave propagation of zero-order Lamb waves:
the S0 and A0 modes. In the low frequency range, these modes are also referred as
extensional mode and flexural mode, which contain most of the elastic energy compared
with higher order Lamb modes. By simulating the Lame wave propagation within an 1
m long thin plate via COMSOL Multiphysics, the wave field and dispersion relationships
of the S0 and A0 modes are shown in Figure 1.2. With a small cross-section area and
thickness, this plate fits the assumption of plain strain, and the numerical results match
the theoretical relationship in Eq. 1.8. It can be seen that the S0 mode is nondispersive at
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Figure 1.3: Beam undergoes transverse motion and its infinitesimal element with loads.

low frequency while the A0 mode is dispersive, which indicates the dependency of phase
velocity on frequency and leads to the dispersive nature of asymmetric modes in plates.

Similar to flexural waves propagating in thin plates, we further discuss the flexural wave
in beams as the host substrates for mechanical metamaterials. By adopting the Euler-
Bernoulli theory of beam, namely, the cross-section of the beam remains perpendicular to
the middle plane of the beam during the bending process. Thus, the relationship of the
bending movement M and the curvature reads:

∂2y/∂x2 = −M/EI, (1.9)

where y coordinates to the middle plane. With reference to Figure 1.3, the equation of
motion in y direction can be given as:

∂V

∂x
+ q = ρA

∂2y

∂t2
, (1.10)

where A is the cross section area and ρ is the density per unit volume. By neglecting
the rotational inertia, the movement balance follows V = ∂M/∂x. Combining this rela-
tionship with the equation of motion and the relationship of deformation curvature, the
governing equation of the transverse motion of a beam can be given as:

∂2

∂x2

(
EI

∂2y

∂x2

)
+ ρA

∂2y

∂t2
= q(x, t). (1.11)
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Under the absence of external load and homogeneity of the beam, the Euler-Bernoulli
equation of the beam reduces to:

EI
∂4y

∂x4
+ ρA

∂2y

∂t2
= 0. (1.12)

Consider an infinite beam governed by this equation, and we can assume the propagation
of harmonic wave by:

y = Aei(kx−ωt), (1.13)

And substituting Eq. 1.13 into the Euler-Bernoulli beam equation, the dispersion of
flexural wave reads:

ω = k2

√
EI

ρA
. (1.14)

It can be seen that the dispersion of the flexural wave in Euler-Bernoulli beams is also
dispersive. The positive and negative wave numbers k in Eq. 1.14 correspond to the
right and left going wave, and the imaginary wave number corresponds to the spatially
evanescent wave. It should be noted that the Euler-Bernoulli beam equation only works
for low-frequency flexural wave propagation since it neglects the rotational inertia and
shear effects.

Elastic waves in mechanical metamaterials

Adding auxiliary structures, such as local resonators, to the underlying host substrate
can modify the dispersion relationship of elastic waves. This introduces the concept of
metamaterials, which feature a periodic pattern similar to crystals. The smallest element
in this periodic arrangement is called a unit cell. An artificially fabricated metamaterial
can be considered a spatially repeatable matrix consisting of unit cells [14]. This spatial
arrangement, known as a crystal lattice, enables the band characteristics from solid-
state physics and is essential to wave propagation in metamaterials. The periodicity of
metamaterials is characterized by translational and rotational symmetries.

This thesis primarily discusses wave propagation in beam- and plate-based locally resonant
metamaterials, with their unit cells and typical configurations shown in Figure 1.4. Due to
the translational symmetry in the periodic arrangement, their periodicities are described
by basis vectors a1 and a2 as [15]:

rn1,n2 = n1a1 + n2a2, (1.15)

where n1 and n2 are integers expanded in the xy plane as shown in Figure 1.4 (b). In the
simpler case of beam-based metamaterials, the unit cells repeat in only one direction, as
shown in Figure 1.4 (a).

The mechanism of locally resonant metamaterials depends on the local resonance of auxil-
iary resonators, which can enable control of low-frequency elastic wave propagation. The
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Figure 1.4: Schematics of mechanical metamaterials. (a) Metamaterial beam; (b) Metamaterial plate.

equation of motion for these local resonators can be given as follows:

mrẍ+ crẋ+ krx = f, (1.16)

which stands for a linear local resonator with mass mr, damping cr, stiffness kr, and
the external force f . For elastic wave propagation in Euler-Bernoulli beams or Kirchhoff
plates, a linear differential operator L is introduced to describe the wave propagation:

L =
∂4

∂x4
, L =

(
∂2

∂x2
+

∂2

∂y2

)2

. (1.17)

The governing equation of beams and plates reads:

D0Lu+ ρ0
∂2u

∂t2
= f, (1.18)

where D0 = EI and f is the external load. Assuming a local resonator (n1, n2) couples
with the substrate structure at the coordinate: xn1,n2 = xc + rn1,n2, then the governing
equation of a unit cell can be given as:

D0Lu+ ρ0∂
2u/∂t2 = f (xn1,n2 , t)

mrür + cru̇r + krur = fr(t)
fr(t) = Lfu (xn1,n2 , t)
f (xn1,n2 , t) = Pfr(t)

(1.19)

where Lf is the differential operator for boundary forces, P is the transformation matrix
for the applied force f (xn1,n2 , t).

Bloch’s theorem originally stemmed from quantum physics for solutions of Schrödinger
equation with a periodic potential [14], which was later introduced to elastic wave prop-

15



Chapter 1. Introduction

agation with periodic configurations. The theorem utilizes the plane wave to represent
the wave propagation elastic solids with periodicity [14, 16]. Take an example of the
metamaterial beam as shown in Figure 1.4 (a). The undamped differential equation of a
unit cell can be discretized into:

M̃ü+ K̃ũ = f̃ , (1.20)

where M̃, K̃, and f̃ are the mass, stiffness, and force matrices. u is the coordinate vector.

Let ũ =
[
uT
L ,u

T
I ,u

T
R,u

T
r

]T
, f̃ =

[
fTL ,0, f

T
R ,0

]T
, and the subscripts L, I, R represent the

coordinates at left, inner, and right side of the unit cell. When applying Bloch’s theorem,
the boundary conditions of a unit cell can be given as:

uR = e−iκauL, fR = −e−iκafL, (1.21)

where the wave number k ∈ [0, 2π]. If we redefine u =
[
uT
L ,u

T
I ,u

T
r

]T
, f =

[
fTL ,0,0

]T
, the

boundary conditions can be rewritten as:

ũ = Ru, (1.22)

where

R =


I 0 0
0 I 0

e−iκaI 0 0
0 0 I

 . (1.23)

In addition, the relationship holds:
RHf̃ = 0, (1.24)

where H stands for conjugate transpose. And RHR = I holds due to:

ũ2j+1 =
(
ũũT

)j
ũ =

(
RuuTRH

)j
Ru = R

(
uuT

)j
u = Ru2j+1. (1.25)

Therefore the coordinate in Eq. 1.20 can be replaced with u:

Mü+Ku = 0, (1.26)

where M = RHM̃R, K = RHK̃R.

By this finite element discretization, Eq. 1.26 can be formulated as an eigenvalue problem
in matrix form [17]:

|K− ω2M| = 0, (1.27)

where ω represents the frequency of the wave propagation. The solution to this eigenvalue
problem is the so-called band structure or dispersion relationship of a periodic lattice.
This representation of the frequency-wavenumber relationship of the traveling wave in the
considered periodic medium enables passbands, which allow the freely propagating waves,
and bandgaps or stop bands, where forbidden the wave propagation within these frequency
ranges [18]. Within bandgaps, the eigenvalue solution of Eq. 1.27 leads to imaginary wave
numbers which give the evanescent waves, whose amplitude decays exponentially in the
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Figure 1.5: (a) Dispersion relationship of a metamaterial beam; (b) Wave packet.

spacial domain [19].

The dispersion relationship of the original Euler-Bernoulli beam is indicated with the
gray dash line in Figure 1.5 (a). It can be seen that with local resonators, a frequency
range exists without real solutions for wave numbers. This grey region is referred to as
a bandgap of a locally resonant metamaterial. Considering their dispersive nature, it is
essential to introduce the concepts of phase and group velocity, which can be promptly
derived from the dispersion relation. A wave packet consisting of multiple harmonic waves
is shown in Figure 1.5(b), where the traveling speed of the individual wave is defined as
phase velocity vp while the traveling speed of the group of these waves is defined as group
velocity vg [19] for the one-dimensional case as:

vp =
ω

k
, vg =

dω

dk
. (1.28)

The geometrical interpretation of these velocities is expressed in Figure 1.5 (a). For a
frequency-wavenumber pair fixed in the dispersion curve, the phase velocity is the slope
of the secant line in red that passes through this point from the dispersion curve to the
origin. The group velocity is given for a fixed pair wavenumber-frequency in the dispersion
curve as the slope of the tangent line in blue at this point (i.e., of the ω(k) curve). In
a non-dispersive medium, all sinusoidal waves travel with equal speed, and so does their
envelope; thus, vp = vg. On the other hand, in a dispersive system, if each propagating
sinusoidal wave moves with a characteristic speed depending on its frequency, then it
will result in the wave packet moving with a velocity different from that of the group
velocity. Since the group velocity is related to the energy transport of the wave packet,
an obvious solution is to look for the case of zero-group velocity waves, which are related
to the boundaries of the Brillouin zone [20]. They result from the interference between two
identical waves propagating in opposite directions, which forms the typical application of
elastic metamaterials for vibration attenuation.
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1.2.2 Electromechanical Coupled Piezoelectric Systems

Piezoelectric materials are used in this thesis to guide elastic wave and energy flow in
the underlying mechanical systems. These materials, combined with mechanical systems,
form electromechanically coupled systems that can achieve multifunctions such as energy
harvesting and vibration actuation. This section focuses on the theoretical background of
piezoelectric energy harvesting and impedance modeling through piezoelectric interface
circuits, particularly those employing synchronized bias-flip techniques [21–23].

Device model of piezoelectric transducers

Piezoelectric materials have direct and inverse piezoelectric effects. Thus they can be used
as energy harvesters or vibration actuators to damp or excite vibrations, respectively. In
order to analyze the dynamical performance of piezoelectric materials under an electri-
cal field, we can refer to the characteristic equation of piezoelectric materials with the
IEEE Standard on Piezoelectricity [24]. Assuming linear deformation, the characteristic
equation reads: [

Tp
Di

]
=

[
cEpq −ekp
eiq εSik

] [
Sq

Ek

]
(1.29)

where T , S, D, and E are stress, strain, electrical displacement, and electrical field; c is
the elastic stiffness coefficient; ε is the dielectric constant; e is the piezoelectric constant;
the lower labels represent tensor notions of the material; the upper labels indicate the
relevant material parameters under a certain applied field. Due to the reciprocity of the
characteristic equation, the electromechanical coupling response can be calculated using
known material properties and applied stress or electrical field.

Figure 1.6 represents an ideal piezoelectric device. If a mechanical load is applied along
1 direction on the cross section, there will be an electrical signal generated along 3 di-
rection. Assume the length of piezoelectric material is much larger than the scattering
wavelength, and the stress, strain, and electrical displacement are evenly distributed along
the material. The relationships of these physical parameters can be given as:

fp = twT1, xp = lS1, vp = −tE3, qp = wlD3 (1.30)
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Figure 1.7: The two-port network of a piezoelectric transducer.

where fp and xp are the applied force and displacement along 1 direction; vp and qp are
the generated voltage and charge along 3 direction due to the direct piezoelectric effect.
Through these relationships, the macroscopic piezoelectric equation can be derived from
the case: [

fp
qp

]
=

[
tw
l
cE11 we31

we31 −wl
t
εS33

] [
xp
vp

]
(1.31)

In order to introduce dynamical responses, we can replace the charge qp and displacement
xp with their derivatives as:

ip =
dqp
dt
, ẋp =

dxp
dt
, (1.32)

where ip and ẋp are the current and velocity. By Laplace transform, the piezoelectric
equation can be represented in Laplace domain as:[

Fp

Ip

]
=

[
KE/s αe

αe −sCs

] [
Xp

Vp

]
(1.33)

where Fp, Ip, Xp, and Vp are the amplitudes of these parameters. KE, cE, and αe are the
short circuit stiffness, clamped capacitance, and electromechanical coupling factor of the
piezoelectric material.

As shown in Figure 1.7 (a), we can employ a two-port network to describe the dynamical
performance of piezoelectric materials due to the bidirectional energy conversion ability
between mechanical energy and electricity [25, 21]. Two-port networks can assemble
the systems with their partial external parameters without considering the details in the
coupling “black box”, which transforms the system into easier representations and extracts
the system as external parameters. A piezoelectric energy harvesting (PEH)system can
be represented by four variables, which include two cross-variables (velocity and voltage)
and two through variables (force and current).

Figure 1.7 (b) illustrates Eq. 1.33 with the input and output of the piezoelectric trans-
ducer. The left side stands for the external force Fp, which equals the internal forces
from the mechanical domain and electrically induced forces. The right side indicates the
output current Ip, which equals the current flowing through the mechanical impedance
and the clamped capacitance. This two-port network forms the basis of an electrome-
chanical coupling system, allowing the equivalent impedance of an arbitrary circuit to be
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Figure 1.8: Equivalent model of a PEH system [21].

transformed to either side of the network. This enables the study of electrically induced
dynamics by transforming electrical impedance into the mechanical domain or explor-
ing bandwidth and power performance by transforming mechanical components into the
electrical domain. From an energy perspective, this two-port network also shows the
possibility of bidirectional energy flows in this electromechanical coupled system, which
features the direct piezoelectric effect for energy harvesting and the inverse piezoelectric
effect for vibration actuating.

Equivalent circuit of PEH systems

The previously mentioned two-port network forms the energy conversion model for piezo-
electric materials. This section further introduces practical interface circuits to form an
equivalent model of a PEH system [21]. A typical PEH system comprises a piezoelectric
cantilever beam and an interface circuit, as shown in Figure 1.8. Under base excitation,
the mechanical part of the system can be considered a single degree of freedom (SDOF)
oscillator around the frequency of its first bending mode. M , D, K, and Kp are the
equivalent mass, damping, mechanical stiffness, and short circuit stiffness of the piezo-
electric cantilever. Cp, vp, ip, and αe are the clamped capacitance, piezoelectric voltage,
piezoelectric current, and the electromechanical coupling factor of the piezoelectric trans-
ducer. ÿ(t) is the sinusoidal base excitation acceleration. x(t) is the relative displacement
of the energy harvester versus the base. For the power supply of DC loads, the standard
method is to utilize a full bridge rectifier to regulate the AC input. As shown in Figure
1.8, the standard energy harvesting (SEH) circuit is connected with a storage capacitor
to regulate the input voltage, store the harvested energy, and power the load represented
with Rload. The governing equation of this SDOF energy harvester can be given as [21]:{

Mẍ(t) +Dẋ(t) + (K +Kp)x(t) + αevp(t) = −Mÿ(t),
ip(t) = αeẋ(t)− Cpv̇p(t),

(1.34)
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where the electromechanical relationships read:

veq(t) = −M
αe

ÿ(t),

ieq(t) = αeẋ(t),

L =
M

α2
e

,

R =
D

α2
e

,

C =
α2
e

K +Kp

,

(1.35)

by combining these equations:

veq(t) = L
dieq(t)

dt
+Rieq(t) +

1

C

∫ t

0

ieq(t)dt+ vp(t),

ieq(t) = ip(t) + Cpv̇p(t).

(1.36)

The governing equations of a PEH system in the electrical domain are shown in Eq.
1.36, and its equivalent circuit model is illustrated in Figure 1.9. Here, veq, R, L, and
C represent the equivalent sinusoidal voltage source of the base excitation, equivalent
resistance for the damping of the cantilever, and equivalent reactance for the stiffness
and mass of the cantilever, respectively. The piezoelectric interface circuit combined with
the clamped capacitance Cp are equivalent to the electrical impedance Zelec. Therefore,
for different interface circuits, the equivalent impedance Zelec is different, which inspires
the application of impedance matching methods to evaluate the power and bandwidth
performance of the PEH system. In addition, a leakage resistance Rp is introduced to
describe the charge leakage of the clamped capacitor and correct the dielectric loss of a
PEH system.

Compared with the fully coupled model in Figure 1.9 (a), the weakly coupled model
in Figure 1.9 (b) describes the situation where the electromechanical coupling factor
is relatively small, and the electrically induced damping and stiffness can be neglected
[21]. Thus, the vibration amplitude of the harvester would not be influenced by interface
circuits. We can use a single current source proportional to the velocity amplitude as the
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mechanical energy source. For a PEH system, there are generally two experimental types
of excitation methods: (1) Excitation with constant acceleration and (2) Excitation with
constant displacement [26]. Under constant displacement, the amplitudes of displacement
and velocity remain the same due to the feedback control of the shaker. Thus, the weakly
coupled model is more suitable. However, the coupling effect matters significantly for real
applications and dynamics tuning with interface circuits. We will adopt the fully coupled
model for analyses in the following parts of this thesis.

Synchronized voltage flip circuits

Synchronized voltage flip circuits utilize the LC resonance to flip the piezoelectric voltage
vp at the current crossing zero point [27, 28]. Compared to conventional SEH circuits, this
technology regulates the piezoelectric voltage and synchronizes it with the piezoelectric
current to increase energy harvesting efficiency. It can be seen in Figure 1.10, the bias
capacitor Cb offers a bias voltage vb for the bias-flip action carried by clamped capacitor
Cp and inductor L. R stands for the parasitic resistance of the inductor, and the switch
S controls the LC resonance. Assuming a large capacitance of Cb compared with Cp, vb
can be regarded as constant during the bias-flip process. Through Kirchhoff’s KVL law,
the second-order ordinary equation of this bias-flip circuit reads:

vp(t) = Vb + rCpv̇p(t) + LCpv̈p(t). (1.37)

Based on the principle of bias-flip actions, the initial conditions of this ordinary equation
are set to be maximum vp with zero inductor current:

vp(t)|t=0 = V0,

Cpv̇p(t)|t=0 = 0.
(1.38)

with underdamped conditions, the piezoelectric voltage response of this second-order cir-
cuit can be solved as:

vp(t) = V0 cos
(π
τ
t
)
e−ξπ/

√
1−ξ2 + Vb, (1.39)

where

ξ =
R

2

√
Cp

L
,

τ = π
√
LCP ,

(1.40)
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Figure 1.11: Voltage waveform of bias-flip. (a) Passive bias-flip action; (b) Active bias-flip action.

represent the damping ratio and half cycle of this second-order oscillating system, respec-
tively.

The waveforms of piezoelectric voltage during the bias-flip actions are shown in Figure
1.11, where γ represents the flip factor defined by the ratio between the difference of
piezoelectric voltage V1 after the bias-flip and the difference of piezoelectric voltage V0
before the bias-flip, both with respect to the bias voltage Vb. To achieve the maximum
bias-flip result, the bias-flip should end at half the LC resonance period, meaning the
switch is conducted for time τ , and the voltage after the bias-flip can be represented as:

V1 = −V0e−ξπ/
√

1−ξ2 + Vb, (1.41)

where the flip factor is defined as:

γ ≜
V1 − Vb
V0 − Vb

= −e−ξπ/
√

1−ξ2 . (1.42)

It can be seen that the damping ratio ξ greatly influences the flip factor, which means the
loss in the conducting path matters significantly for bias-flip-based circuits. To achieve
better bias-flip actions, inductors with small parasitic losses are recommended.

In bias-flip actions, there exist passive and active bias-flips according to the inward or
outward energy flow with respect to the bias capacitor Cb [29], as indicated in Figure
1.11 (a) and (b). Take an example of energy input in Cb; this part of the energy can be
represented by charge movement as:

∆Eb = ∆QVb = Cp(1− γ)UVb. (1.43)

It can be seen that the energy income for Cb is determined by the sign of UVb, which means
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the energy can flow from Cp through the inductor to bias capacitor Cb and vice versa.
Positive ∆Eb indicates passive bias-flip and energy flow for energy harvesting; negative
∆Eb indicates active bias-flip and reverse energy flow for energy injection or vibration
actuation [30] to boost the energy harvesting efficiency by increase the displacement am-
plitude.

In addition to the harvested energy, there also exists dissipated energy due to the bias
flip. This part of energy loss is given as:

Ed,flip =
1

2
CpU

2
(
1− γ2

)
, (1.44)

where the flip factor γ influences the loss. By increasing the flip factor, the dissipated
energy can be reduced. During the bias-flip action, the net energy change of the clamped
capacitor reads:

∆ECp =
1

2
Cp

(
V 2
0 − V 2

1

)
. (1.45)

By quantifying different energy flows, the energy harvesting efficiency and equivalent
impedance of different circuit typologies can be calculated, which serve as essential meth-
ods for analyses of the interface circuits of PEH systems.

Based on the principle of the bias-flip actions, we further discuss the synchronized elec-
trical charge extraction (SECE) [28] circuit as an example. Compared with conventional
synchronized switching harvesting on inductor (SSHI) [27] circuit, SECE has the ad-
vantage of simplified topology and load independence. Therefore, there’s no need for
impedance matching to offer a stable power output.

The circuit topology of SECE is shown in Figure 1.12, which includes a full-bridge rectifier
and a buck-boost converter from a power electronics perspective. It remains open circuit
during the majority of the vibration cycle, and takes actions during the current crossing
zero points which are refereed as synchronized instants. At each synchronized instant, the
integral of the piezoelectric current ieq is reset to zero due to the charge extraction, whose
voltage flip action at the current failing down edge is shown in Figure 1.12. SECE works
on DCM (discontinuous conducting mode) while it differs from the conventional PWM
(pulse width modulation) controlled buck-boost converter in restricting mechanical local
displacement maximums or velocity minimums [31].

The operation of SECE during the positive current half-cycle can be separated into three
phases [22]: Open Circuit Phase, Extraction Phase, and Freewheeling Phase, as shown
from Figure 1.12 (a) to (c).

Open Circuit Phase: Figure 1.12 (a) shows the conduction path during the open circuit
phase in red. The duration of this phase is approximately half of the vibration period.
Switch S and diode D are in the off-state. Therefore, the SECE circuit does not take any
action during this phase. vp is the integration of the current ieq starting from an initial
voltage of zero, as highlighted in red in Figure 1.12 (d) and (e).

Extraction Phase: When the displacement of the piezoelectric beam reaches its maximum
value, switch S is turned on for slightly more than a quarter of the LiCp oscillation period,
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Figure 1.12: The circuit topology of (a)-(c) and characteristic waveforms (d)-(i) of a vibration cycle of
SECE [22].

thus activating the switching phase. The conduction path during the extraction phase is
highlighted in red in Figure 1.12 (b). During this phase, Cp and Li form an LC circuit,
through which the energy stored in Cp is rapidly transferred to Li. Since the voltage vp is
proportional to the charge stored in Cp, vp immediately drops to zero a quarter period after
the LiCp cycle, as shown by the red curve in Figure 1.12 (f) and (g). Strictly speaking,
after a quarter period of the LiCp oscillation, vp drops to twice the forward conduction
voltage of the diode. The conduction interval of S is designed to be slightly longer than
a quarter period to ensure that Cp is completely discharged. When vp reaches zero, the
rectifier automatically stops extracting the charge. After this conduction period, most of
the energy stored in Cp is transferred to Li, while the remaining energy is dissipated at
resistor r, equivalent to the equivalent series resistance (ESR) of the switch branch.

Freewheeling Phase: After the switching phase, switch S is opened, and the energy accu-
mulated in Li is transferred to the filter capacitor Cr through the continuation diode D.
Cr is designed to be much larger than Cp to provide a DC output voltage for the load
resistor R1. The conduction path during this phase is highlighted in red in Figure 1.12
(c). Since the conduction paths are not connected to the piezoelectric source, they do
not affect the piezoelectric elements. In other words, the source and load are decoupled
through the intermediate inductor Li. This decoupling function is very similar to the
Buck-Boost DC-DC converter in power electronics, with the difference being that SECE
converts AC to DC here. Since the piezoelectric patches do not participate in this phase,
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Figure 1.13: Detailed energy flow chart in SECE [22].

it has no effect on the piezoelectric voltage vp. The corresponding waveforms are shown
in Figure 1.12 (h) and (i). The continuation diode D stops conducting until the current
iLi drops to zero, as shown in Figure 1.12 (i).

In the other half of the vibration cycle, that is, when ieq < 0, the operation can also be
divided into three phases, which are the opposite of those in the positive current half-
cycle. As shown in Figure 1.12, from the distribution diagram of the piezoelectric voltage
vp, we can find that it has the same sign as the current source ieq throughout the vibration
cycle; hence, the power extracted from the mechanical source is always positive. Given
the decoupling relationship between the source and the load, the waveform of vp does not
change under different load conditions, thus giving SECE the load-independent feature.

The general energy flow of a PEH system based on SECE is shown in Figure 1.13. Me-
chanical energy enters the PEH system from the surrounding vibration source and cycles
between kinetic and potential energy within the mechanical resonance [32], as shown by
the grey loop. In the case of resonance, no energy returns from the resonator back to
the energy source, while in non-resonant conditions, the energy of the incoming reactive
component (equivalent mass or stiffness) returns to the energy source. During the vibra-
tion process, some mechanical energy is dissipated (converted into thermal energy) due
to mechanical damping, as shown by the orange branch in Figure 1.13. The piezoelectric
transducer converts some of the mechanical energy into electrical energy. In SECE, since
no energy returns from the electrical part to the mechanical part, the converted energy is
merely extracted from the mechanical part. The extracted energy usually has two desti-
nations. A part of it is converted into usable electrical energy that can be stored, called
the harvested electrical energy. The harvested energy is represented by the green arrow.
During power regulation, the rest of the extracted energy is dissipated, that is, converted
into heat. This dissipation is caused by three reasons: the non-zero forward voltage drop
VF in the bridge rectifier, whose corresponding energy branch is represented by the red
arrow in the figure; the parasitic ESR r in the LiCp cycle, whose corresponding energy
branch is indicated by the blue arrow; the non-zero VD in the converter’s continuation
path, whose corresponding energy branch is represented by the purple arrow.

Through a detailed description of the energy flow, we can have a more comprehensive
understanding of the issue of the extracted energy not being equal to the harvested energy.
The total extraction is usually related to the loss factor, which evaluates the damping
effect [21]. However, increasing the extracted energy does not guarantee better harvesting
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Figure 1.14: A Electromechanical coupled resonator. (a) The mechanical schematic; (b) The electrical
schematic.

performance. The design should be carried out by taking the harvested energy or power
as the optimization objective.

1.2.3 Multifunctional Metamaterials

Based on the principles of the locally resonant metamaterials and piezoelectric interface
circuits discussed above, we can combine the two areas for multifunctional metamaterials
to guide the elastic wave and energy in these electromechanical systems. Given the flex-
ibility and tunability of interface circuits, programmable electrically induced impedance
can be achieved by tuning the load, phase, and other circuit parameters. Additionally,
piezoelectric transducers can convert electrical resistance and reactance into mechanical
damping and stiffness. This capability allows for the utilization of elastic energy from
wave propagation or the alteration of wave propagation through electrically induced com-
ponents.

For a mechanical resonator with a general piezoelectric interface circuit, its governing
equation in the Laplace domain can be obtained with reference to Eq. 1.16 and Eq. 1.34
as: {

s2MUr + sDUr +KUr + αeVp = F,
Ip = sαeUr − sCpVp.

(1.46)

Substitute the second line in Eq. 1.46 into the first line, it reads:

F =
(
Zm + α2

eZe

)
sUr, Ze =

1

sCp + Ip/Vp
, (1.47)

where Zm and Ze are the impedance from the mechanical resonator and the piezoelectric
interface circuit. Their detailed expressions are given as:{

Zm(ω) = D + j(ωM −K/ω),
Ze(ω) = De − jKe/ω = 1/(sCp + Ip/Vp).

(1.48)

It can be seen that the equivalent impedance Ze is the parallel impedance of the clamped
capacitor Cp and the interface circuit. If we first neglect the leakage resistance Rp in Figure
1.9, and assume harmonic solution for the wave propagation, the real and imaginary parts
of Ze will give rise to the electrically induced damping De and stiffness Ke in Figure 1.14
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Figure 1.15: Multifunctional metamaterials enabled by piezoelectric interface circuits. (a) A plane of
general equivalent impedance from the mechanical resonator and the interface circuit; (b) The dispersion
curves considering the electrically induced damping and stiffness.

(a), the relationship reads [33]:

De = α2
e Re[Ze], Ke = −α2

eω Im[Ze]. (1.49)

As shown in Figure 1.14, the interface circuits introduce additional damping and stiffness
to the original mechanical resonator. Therefore, the updated governing equation of an
electromechanical coupled resonator is:

Mür + (D +De) u̇r + (K +Ke)ur = −Mü. (1.50)

By combining the equations of a metamaterial beam, the governing equation of a multi-
functional metamaterial beam can be obtained as:{

D0Lu+ ρ0∂
2u/∂t2 = −ρ0üb +

∑S
j=1 fjδ (x− xj) ,

M (ürj + ü+ üb) = − (K +Ke)urj − (D +De) u̇rj = fj,
(1.51)

where S stands for the total number of local resonators attached to the host beam at posi-
tion xj. And üb is the external acceleration. For low-frequency elastic wave propagation,
the lattice constant a in Figure 1.4 (a) is sufficiently smaller than the wavelength of the
elastic wave. Thus, the wave profile between two adjacent unit cells can be approximated
by a smooth function by neglecting the near-field scattering around the local resonators.
Thus, we can utilize the averaging technique from the homogenization method [34] and
transform the concentrated reaction force of the local resonator with the Dirac function
δ into a uniformly distributed force fj applied evenly along the unit cell. The simplified
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equations read:{
D0Lu+ ρ0∂

2u/∂t2 = −ρ0üb − fj,
M (ürj + ü+ üb) = − (K +Ke)urj − (D +De) u̇rj = afj,

(1.52)

By applying the fundamental harmonic wave propagation as u = Uei(ωt−kx) and neglecting
the external force, the dispersion relationship of a multifunctional metamaterial beam
reads:

k(ω) =

[(
ρ0 +

K +Ke + i(D +De)ω

a (ω2
r − ω2 + i(D +De)ω/M)

)
ω2

D0

] 1
4

, (1.53)

where ωr represents the resonant frequency of the local resonator. By introducing the
piezoelectric interface circuits, the original mechanical metamaterials can enable multiple
functions:

• Wave attenuation: As shown with the black dispersion curves in Figure 1.15 (b)
and (c), the wave propagation will be attenuated within the frequency bandgap
induced by local resonators.

• Bandgap shifting: As shown with blue and green stars in Figure 1.15 (a) and
their corresponding blue and green dispersion curves in Figure 1.15 (b) and (c),
the bandgap of the metamaterial beam can be shifted downwards and upwards
through electrically induced negative Ke or positive Ke, thus leading to the resonant
frequency shifting of local resonators for broader bandgap ranges.

• Bandgap broadening: As shown with red star in Figure 1.15 (a) and the disper-
sion curves in Figure 1.15 (b) and (c), the bandgap of the metamaterial beam can be
broadened by the additional electrically induced damping De, which indicates the
energy conversion from elastic energy into electricity and thus leads to the damping
effect for the metamaterial beam.

• Energy harvesting: Based on the electrically induced damping De, the absorbed
energy by the piezoelectric interface circuits can be regulated into useful power for
the power supply of microcontrollers, sensors, and IoT devices.

It should be noted that the tunability of the piezoelectric interface circuits severely de-
pends on the electromechanical coupling factor αe. If the coupling effect is weak, the
attainable range of electrically induced components is relatively limited, impeding the
effects on wave propagation and energy conversion.

The previous discussion on multifunctional metamaterials with piezoelectric interface cir-
cuits mainly focuses on elastic wave propagation through the dispersion analysis. To
demonstrate the applications listed, here we further discuss the energy harvesting func-
tion of multifunctional metamaterials with piezoelectric interface circuits. Compared to
the conventional energy harvesters based on simple structures like cantilever beams, the
metamaterials own the advantage of wave manipulation abilities, thus enabling the pos-
sibilities to guide, redirect, or focus the elastic wave in the desired position under certain
frequency ranges. Thus, the topic of piezoelectric energy harvesting with mechanical
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structures utilizing metamaterial concepts has gained enormous attention during the last
decade [35–38]. Take the example of a metamaterial beam with piezoelectric cantilever
beams for energy harvesting [39]; the piezoelectric output voltage and harvested power
depend on the displacement amplitudes of the local resonators. Therefore, here we briefly
mention the method of separation of variables, also called mode superpositioning, to solve
the governing equation Eq. 1.51. The transverse displacement of the host beam can be
approximated as:

u(x, t) =
N∑
i=1

ηi(t)ϕi(x), (1.54)

where N is the number of modes considered. η and ϕ represent the modal coordinate and
the mode shape. By substituting this ansatz of solution into Eq. 1.51 and apply orthog-
onality relationships with respect to mode shapes, the relative displacement amplitude of
jth local resonator can be expressed as:

Urj =
ω2Ub + ω2

∑N
n=1Hnϕn (xj)

(1 +Ke/K)ω2
r + i2 (1 +De/D) ζrωrω − ω2

, (1.55)

where Ub and Hn represent the amplitude of the harmonic excitation and the nth modal
amplitude, respectively. Recall the electromechanical analogy in Eq. 1.35, the equivalent
current of jth piezoelectric energy harvester reads:

Ieq,j = αeωUrj. (1.56)

With reference to the equivalent circuit illustrated in Figure 1.14(b), the total harvested
power from the local resonators can be formulated as:

Ph =
S∑

j=1

ηh,j
I2eq,j
2
Re,j, (1.57)

where ηh,j is the efficiency of a particular piezoelectric interface circuit considering the
energy loss from leakage resistance, diode conduction, and MOSFET (Metal Oxide Semi-
conductor Field Effect Transistor) switching.

An example of a metamaterial beam for piezoelectric energy harvesting is shown in Figure
1.16, the blue line represents the tip transmissibility of the metamaterial beam with local
resonators as piezoelectric energy harvesters. Due to the presence of the local resonators,
a frequency bandgap star exists that ranges from 54 Hz to 92 Hz. By adding the SECE
interface circuits discussed in Figure 1.12, the total harvested power is shown with the
green curve. It can be seen that at the beginning of the bandgap, the resonance of the local
resonators not only leads to the bandgap for vibration attenuation, but the total harvested
power also increases around this resonant frequency. It should be noted that there are
other power peaks that correspond to the modal frequencies due to the boundary condition
of the metamaterial beam. By introducing piezoelectric material and interface circuit, the
otherwise reflected mechanical energy is harvested as a power supply for further electrical
devices while maintaining the original function for wave attenuation. The multifunctions
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Figure 1.16: A case study of a metamaterial beam for piezoelectric energy harvesting, which shows the
tip transmissibility and total harvested power.

enabled by piezoelectric coupling have provoked much research in this direction to utilize
mechanical energy [40]. However, limited by the same resonant frequency of the local
resonators, the bandwidth of the power performance is narrow. In order to broaden the
energy harvesting bandwidth, we have proposed a graded metamaterial design, which will
be discussed in detail in Chapter 2.

1.3 State of the Art and Open Challenges

The design paradigm of mechanical structures has shifted from trial-and-error iterations
to demand-guided and goal-oriented designs that capitalize on mechanics, electronics,
and computations principles. By tailoring the mechanical response of elastic systems, it
is possible to instill beneficial traits such as resilience to vibrations and impacts. With the
recent thrust of semiconductors and IoT devices, the definition of mechanical metama-
terials extends beyond conventional wave propagation concepts, which are restricted to
bandgap ranges. New concepts, such as electromechanical and nonlinear coupling effects,
have emerged to fulfill the demands for multifunctional systems. These allow for tunable
wave attenuation and guiding, energy harvesting and signal sensing, and active control
and actuation interacting with vibrations and elastic wave propagation.

This section provides an overview of recent breakthroughs in elastic wave control and
energy conversion achieved through electromechanical coupling or nonlinearities for mul-
tifunctional mechanical systems. The discussion follows the overarching structure of the
thesis outlined in Section 1.5 with a focus on mechanical metamaterials: the two main
classes of mechanical systems, passive and active systems, are reviewed separately for
their novel functions involving wave attenuation and guiding, energy harvesting and sig-
nal sensing, and active control and actuation.
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1.3.1 Mechanical Systems for Wave Attenuation and Guiding

Since 2000, locally resonant metamaterials [5] have emerged as a promising field for
manipulating acoustic and elastic waves. Different from the concept of photonic crys-
tals [8, 41], locally resonant metamaterials depend on the anti-phase vibration of local
resonators within the bandgap range rather than the Bragg scattering mechanism de-
pends on the ratio of the lattice constant and the propagation wavelength. Thus, the
sub-wavelength or the low-frequency bandgap can be enabled by tuning local resonators.
Specifically, the low-frequency ranges include kilo-hertz to ten-hertz level vibrations of
structural components, hertz-level vibrations of architected buildings and bridges, or even
sub-hertz level seismic waves from earthquakes.

Research in this area conventionally applies mainly mechanical or architected structures,
such as tuned mass dampers [42], base-isolation resonators [43], and seismic barriers
Meseguer et al. [44]. These local resonators are typically unable to change after in-
stallation, which limit the flexibility considering wave propagation outside the designed
frequency range of the bandgap. Unlike conventional approaches, novel locally resonant
metamaterials have recently employed mechanisms such as multiphysics coupling, nonlin-
ear dynamics, wave trapping and conversion, and topological features to manipulate wave
attenuation or waveguides.

Concerning the elastic wave propagation in structural components, two main aspects of
the research are being pursued: wave attenuation and waveguiding. Here, we briefly
discuss the recent thrusts in these two aspects, focusing on flexural wave propagation.

Wave attenuation in structural mechanics involves mitigating traveling waves or stand-
ing waves in structural components. Conventional methods include tuned mass dampers
[42], nonlinear vibration absorbers [49], electromechanical shunting [50], and multiple dy-
namical vibration absorbers [51]. With the progress of locally resonant metamaterials,
wave mitigation has shifted from single frequency or narrow band into bandgap or broad-
band mitigation. The early research in this direction covers simple theoretical models, i.e.,
the lumped parameter model of diatomic lattice chain [52], to continuum elastic systems
as metamaterials, i.e., beams and plates with identical local resonators [40].

Following the track towards broadband and flexibility of metamaterials, recent endeavors,
as shown in Figure 1.17, have applied coupling effects such as electromechanical coupling
or nonlinear dynamics in the locally resonant metamaterial. Two main mechanisms are
applied for electromechanical coupling effects: piezoelectric coupling and electromagnetic
coupling. Compared with electromagnetic coupling, piezoelectric coupling has the advan-
tage of high power density and ease of integration. Thus, piezoelectric coupled metama-
terials have gained much attention since the last decade [40, 45, 53, 54]. Among these,
Sugino et al. [55, 45, 46] have contributed a series of research work on the piezoelectric
coupled locally resonant metamaterials. As shown in Figure 1.17 (a), Sugino et al. [45]
have replaced the local resonator with a piezoelectric coupled circuit, so-called synthetic
impedance circuit, to create an equivalent impedance/transfer function in the electrical
domain, which reflects the effect of a single degree of freedom oscillator in the mechan-
ical domain. By programming the analog circuit, different equivalent ”local resonators”
can be achieved in an electrical manner, which releases the potential of electromechanical
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Figure 1.17: Metamaterials for wave attenuation. (a) Programmable bandgap by synthetic impedance
circuit (Adapted from Ref. [45]); (b) Merging bandgaps from mechanical and electrical domains (Adapted
from Ref. [46]); (c) Nonlinear metamaterial by bistable local resonators (Adapted from Ref. [47]); (d)
Nonlinear metamaterial plate for elastic and acoustic wave attenuation (Adapted from Ref. [48]).

coupling in wave attenuation and waveguides. Different bandgap ranges can be realized
by tuning the electrically induced mass or stiffness, as discussed in Section 1.2.3.

Based on this work, Sugino et al. [46] combine this idea with the original locally resonant
metamaterial beam [55]. Conventionally, multiple local resonant bandgaps are often real-
ized by different groups of resonators with different resonant frequencies [56] or the same
local resonators but with multiple degrees of freedom [57]. Instead of complex designs
of local resonators, electromechanical coupling offers a convenient and tunable method
for broadening the original mechanical bandgap. As shown in Figure 1.17 (b), by tuning
the electrically induced bandgap, a merging effect of the electrically induced bandgap
and the original mechanical bandgap can be achieved, which significantly broadens the
overall bandgap range from elastic wave attenuation. And due to the tunability of the
coupling circuits, the electrically induced bandgap also preserves its ability for shifting as
shown in Figure 1.17 (a), which further offers more flexibility for the frequency range of
propagating wave outside the original design bandgap range.

Similarly to electromechanical coupling, nonlinearity can also enable novel wave control
mechanisms. The study of nonlinear dynamics dates back to the early 19th century when
Poincaré first studied the three-body problem in celestial dynamical systems [58], which
inspired the work of Duffing and Van der Pol for their contribution to nonlinear structural
dynamics with the well known Duffing equation [59] and Van der Pol equation [60]. For
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the single resonator level, there exists extensive research on how the nonlinearities can
interact with the structural dynamics, i.e., the coupling with mode shapes. Unlike linear
dynamical systems, nonlinear dynamical systems essentially couple multiple coordinates of
the system under different excitation levels, leading to the so-called harmonic generations
and chaotic motions for energy transfer and exchange [61]. These characteristics are
particularly useful for wave attenuation and are recently introduced into locally resonant
metamaterials [62, 47, 48, 63, 64].

As shown in Figure 1.17 (a), Xia et al. [47] proposed a nonlinear bistable metamaterial
beam for broadband wave attenuation. This paper introduces the cubic nonlinearity by a
magnet-repulsive force, which enables nonlinear reaction forces to be applied to the host
cantilever beam. Under relatively high input excitation, the bistable bifurcation of local
resonators causes multiple branches of bandgaps, which broaden the bandgap with the
stiffening effect of local resonators. It should be noted that the nonlinearity phenomena
are usually amplitude-dependent, which means the motion of the traveling wave in the
host system and the vibration of the local resonators also rely on the input amplitudes.
For example, higher harmonic waves may exist except for the fundamental frequency of
the traveling wave in the dynamical system, which forms the typical periodic waveform
for nonlinear periodic motions. Further increase of the input amplitude could also lead to
chaotic motions of nonlinear local resonators, as shown in Figure 1.17 (b), where multiple
frequency components are mixed, and limit cycles can not be distinguished anymore. As
suggested by Fang et al. [48], the chaotic motion of local resonators leads to the so-called
chaotic bandgap for local resonant metamaterials beyond the attainable ranges induced
by hysteresis range of the nonlinear local resonators. The application of nonlinearities
in metamaterials spans from static [65] to dynamical systems [66] and differs in forms
such as nonlinear stiffness [47], nonlinear damping [67], vibro-impact [68], and contact
dynamics [69], which open novel opportunities for nonlinear metamaterials to reach the
wave attenuation ranges beyond the conventional linear limits.

Wave guiding as the second application of metamaterials features multiple wave manip-
ulation functions such as negative refraction, focusing, trapping, steering, and lensing [70].
Adding auxiliary local resonators can alter the effective medium along the wave propaga-
tion direction, stimulating wave guides to change directions. Figure 1.18 lists a few typical
waveguide metamaterials. Colombi et al. [71] proposed a geophysical scale study of the
graded metamaterial indicated in Figure 1.18 (a). It can be seen that by gradual change
of the rod length, different resonant frequencies can form a gradual change of impedance
to trap the incoming waveguide from the left side and convert the surface wave into a bulk
wave from the right side. Compared with the classical local resonant metamaterials with
identical local resonators, the graded design offers a broader bandgap due to the gradual
change of resonant frequency, which is known as the rainbow trapping effect originated
from electromagnetism [72] and further in acoustics [73]. With the graded design, differ-
ent frequency components can be trapped and localized at different positions of the local
resonators, which behaves like a mechanical filter both in frequency and spatial domain.
Drawing by this founding, further investigations have raised in Rayleigh and Love wave
guiding [74, 37, 75] and energy harvesting [38, 76, 54].

Different from the graded design mentioned above, Figure 1.18 (b) and (c) feature an-
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Figure 1.18: Metamaterials for waveguiding. Graded metamaterial for wave trapping and conversion
(Adapted from Ref. [71]); (b) Topological edge states for wave focusing (Adapted from Ref. [77]); (c)
Topological edge waves with a graded design (Adapted from Ref. [78]); (d) Conformal graded metama-
terial for wave guides (Adapted from Ref. [79]).

other class of method for waveguides in locally resonant metamaterials, which involves
the topological invariant of these systems. Compared with the periodic arrangement
of photonic-like lattices, the quasi-periodic lattice has gained enormous attention with
the findings in quasicrystals [80]. By manipulating the symmetry in space, quasiperiodic
structures enable the topological effects such as quantum spin Hall effect and quantum val-
ley Hall effect, which extend the periodic arrangements with the so-called defect-immune
topological interface modes [77, 78].

Figure 1.18 (b) shows a typical configuration of a quasiperiodic topological metamaterial,
where the position of the local resonators no longer follows a fixed lattice constant but
with a quasiperiodic pattern [77], where the periodic arrangement can be regarded as a
particular case of a trivial quasiperiodic arrangement. The interest of this topic lies in
the rich spectral properties, such as edge states, which can be regarded as low dimen-
sional projections from the higher dimensions described by the quasiperiodicity and their
invariance determined associated with the nontrivial bandgaps. In Figure 1.18 (b), Pu et
al. [77] studied Rayleigh-like edge modes spanning the nontrivial gaps of a finite cluster
of resonators. By tuning the quasiperiodic phase, they have shown that these edge modes
can be used for wave pumping by transferring the elastic energy from one boundary to
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the opposite.

In Figure 1.18 (b), the symmetry breaking happens with spin-orbit interactions, which
leads to the quantum spin Hall effect. In Figure 1.18 (c), De Ponti et al. [78] leveraged
the quantum valley Hall effect with the breaking of space inversion symmetry, which
permits easier applications of wave controls. This study utilizes a tetrarchical lattice
with a graded design, which possesses tunable topological states with graded arrays of
masses within each unit cell. By doing so, they realized different topological edge waves
with different frequency inputs, which can precisely direct the elastic wave and energy to
the desired position of the structure, which could be a potential candidate for vibration
isolation, energy harvesting, and lossless signal transport for sensing applications.

The aforementioned mechanical systems for wave attenuation or wave guides rely on the
periodic or quasiperiodic arrangements of unit cells, where the bandgaps are formed, lead-
ing to the opening of dispersion curves and non-intersecting dispersion surfaces. However,
periodic-like arrangements are not necessary conditions to forbid wave propagation. Re-
cent studies suggest that it is possible to have non-intersecting dispersion surfaces that
are not separated by a bandgap [79]. Thus, attenuation is also possible in the absence of
a bandgap. In Figure 1.18 (d), Dorn and Kochmann [79] realized a conformal mapped
graded metamaterial with a non-periodic design. By the scaled conformal mapping, a
nonperiodic arrangement can also support non-intersecting dispersion surfaces where wave
propagation is forbidden. According to the adiabatic theorem, high-frequency waves can-
not propagate along trajectories with significant changes in unit cell size [81]. This idea
inspires the design with grading and thus leads to the forbidden region in the spatial-
frequency plot in Figure 1.18 (d), where no wave propagation can exist around the outer
range of the transformed graded metamaterial where the unit size is relatively large.
Except for this example of non-periodic metamaterial for wave guiding, there also exist
other studies, such as aperiodic [82] and disordered [83] metamaterials for more novel
mechanisms on elastic waveguiding.

Research gap and open challenges

The extensive research over the past decade on wave attenuation and wave guiding via
mechanical systems, especially mechanical metamaterials, demonstrate the remarkable
progress made in this direction. However, some open questions and challenges also need
to be tackled. Given the broad frequency range of ambient vibration, designing a me-
chanical system that can be tuned with external control or by itself to fit the frequency
range still remains a prominent challenge. Considering the existing solution of electrome-
chanical coupling or nonlinear designs, the coupling effect or nonlinear effect within the
mechanical system should be boosted for more effective wave attenuation and waveguid-
ing. Furthermore, novel theoretical methods and numerical tools should be developed,
given these coupling or nonlinear dynamics problems are often difficult or time-consuming
for commercial software and existing numerical tools. Last but not least, to control and
manipulate elastic waves for low-frequency, the devices need to be scaled but with limited
size from practical perspectives when considering the local resonant or Bragg scattering
mechanisms. Thus, novel mechanisms, such as non-periodic or effective media designs,
besides conventional ones, should be investigated for structural and mechanical applica-
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Figure 1.19: Metamaterials for energy harvesting. (a) Graded metamaterial for energy harvesting
(Adapted from Ref. [85]); (b) Nonlinear bistable lattice (Adapted from Ref. [86]); (c) Topological graded
metamaterial (Adapted from Ref. [87]); (d) Piezoelectric metamaterial plate (Adapted from Ref. [53]).

tions.

1.3.2 Mechanical Systems for Energy Harvesting and Sensing

Mechanical systems under loads, such as harmonic, broadband, and random excitation,
can present dynamical responses. By means of electromechanical and electromagnetic
coupling materials, the mechanical energy can be further utilized for energy harvesting
to power wireless sensor nodes or signal sensing to collect vibrational or environmental
data, which makes use of renewable energy sources and saves the need for conventional
chemical batteries. Owing to their outstanding abilities to manipulate elastic waves and
guide mechanical energy, mechanical metamaterials have been applied in these domains
since the last decade [40]. In order to adapt to this new trend, there have been develop-
ments in the relative fields such as electrical interface circuits [23], dynamics methods to
increase mechanical energy density and bandwidth [84], and novel mechanisms to convert
vibrations and waves into digital signals. To demonstrate the application of mechanical
systems in energy conversion, two areas are predominantly leveraged: energy harvesting
and signal sensing.

Energy harvesting has a long history that dates back to the last century when electro-
magnetism enabled the invention of the generator, which unleashed the potential energy
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with hydroelectric power generation. Different from electromagnetic power generation,
the application of piezoelectric materials for energy harvesting began in the later 90s last
century [88] with the development of semiconductors and power electronics. However,
the piezoelectric energy harvesting devices remained in low-degree-of-freedom mechanical
systems in early 2000, which employed mechanical systems such as cantilever beams [21]
and nonlinear bistable beams [89]. Since the last decade, the application of metamaterials
for energy harvesting has gained significant attention due to the wave-manipulating abil-
ities of metamaterials beyond conventional mechanical systems. As shown in Figure 1.19
(a), De Ponti et al. [38] have introduced the graded metamaterial, which was originally
used for broadband wave attenuation into piezoelectric energy harvesting considering the
rainbow energy trapping ability, which slows down the group velocity of the traveling flex-
ural wave and enables longer interaction time with the local resonators to harvest more
mechanical energy. Compared to the early studies to utilize the identical local resonators
[40], the graded design makes full use of all local resonators by trapping the wave energy
at different frequencies. In contrast, for the prior case, only the first few resonators can be
used for energy harvesting since the wave is forbidden to travel inside the metamaterial.

Based on a similar idea, this separation of frequency concept is further expanded into
topological metamaterials as shown in Figure 1.19 (c), Chaplain et al. [87] combined
the quasiperiodic metamaterial discussed in Figure 1.18 (b) with the graded design and
achieved topological rainbow trapping effect, which supports multiple, simultaneous, topo-
logically protected edge states. Therefore, the multiple edge modes can be used to localize
elastic energy at the position of a particular local resonator separated by different fre-
quency ranges, which enables higher energy density for more harvested power, given the
stronger localization effect.

These studies indicate that the two main research targets for piezoelectric energy har-
vesting are (1) Higher harvested power and (2) Broader bandwidth. For the graded
metamaterials, the multiple resonant frequencies and slow wave mechanism lead to broad
bandwidth and higher harvested power. While the application of topological edge modes
further increases the harvested power [87]. Alternatively, we can also turn to nonlinear
dynamics, which also gain favor in energy harvesting, considering the hysteresis char-
acteristic of some nonlinearities, such as the bistability and multi-stabilities induced by
magnetic forces [90].

As shown in Figure 1.19 (b), Hwang and Arrieta [86] demonstrated a nonlinear bistable lat-
tice for input-independent piezoelectric energy harvesting. The bistable lattice is achieved
by buckled beams with magnets attached to transfer the mechanical energy and introduce
nonlinearities. Given the cascaded potential wells with different unit cells, a quasi-static
or dynamic load on one side of the structure will lead to a soliton wave [61] transmission
to the other side. Thus, the mechanical energy can be harvested with the piezoelectric
transducers attached to the buckled beams. To further increase the harvested power,
they deliberately induced defects for a particular nonlinear oscillator, raising the breather
mode localized around the defect position and significantly boosting the harvested power.
Compared with conventional nonlinear energy harvesting solutions, this study employed
a nonlinear lattice chain to extend the possibilities of novel wave propagation and control
mechanisms, which is not limited to the hysteresis range of a single degree of freedom
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(a) (b)

Figure 1.20: Metamaterials for signal sensing. (a) Bistable beam for switching (Adapted from Ref.
[92]); (b) Bistable metamaterial for binary memory (Adapted from Ref. [93]).

nonlinear harvester. Further studies from the same group also reveal the frequency con-
version mechanism with solitons [91] in a similar setup, in which both low-to-high and
high-to-low frequency interactions have been observed. This frequency-independent char-
acteristic of the nonlinear lattice chain significantly broadens the bandwidth for energy
harvesting, demonstrating the advantage of nonlinear phenomena in piezoelectric energy
harvesting.

The aforementioned studies of mechanical systems for energy harvesting mainly focus on
mechanical design and wave manipulation to increase the bandwidth or energy density of
mechanical harvesters. However, the mechanical vibrations have an AC (alternating cur-
rent) form, while different from the DC (direct current) form power supply for an electrical
load such as a microcontroller. This neglect of power conversion is actually an essential
challenge for energy harvesting with mechanical systems like metamaterials discussed in
this thesis. Consider a case when the piezoelectric voltage is around 1 V. It seems the
power calculation can be easily delivered by the square of the voltage amplitude over
the load resistance. However, when the simplest AC-DC circuit, a full bridge rectifier,
is applied for power conversion, this voltage turns out to be insufficient to overcome the
forward voltage drop of the two Schottky diodes, thus leading to zero harvested power
in practical scenarios. This gap between wave dynamics and power electronics should be
addressed by considering both domains together in an application-oriented manner. An
early effort in this direction is shown in Figure 1.19 (d), Chen et al. [53] utilized the SECE
circuit reviewed in Section 1.2.2 to convert the mechanical vibration into DC voltage. In
this study, the harvested power is derived and measured considering the electrically in-
duced damping and stiffness, thus leading to the absorption of the elastic energy into
electricity. Further studies in this direction also features the graded metamaterial com-
bined with piezoelectric interface circuits for milliwatt DC harvested power [54], which
will be discussed in detail in Section 2.

Signal sensing, in principle, is also an energy conversion process like energy harvest-
ing. However, the difference lies in the information accompanied by the energy flow in
the sensing system. For mechanical systems, different forms of signals exist according
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to the motion of the system, including static deformation and vibrations (wave propaga-
tion). Conventional methods [94] of measuring signals from mechanical systems include
strain gauges, optical fibers, accelerometers, and laser Doppler vibrometers. With the
recent progress in wave propagation and dynamics, novel mechanisms appear as potential
supplements for these conventional signal measuring and processing techniques.

Through the analogy of a MOSFET, Bilal et al. [92] proposed a bistable metamaterial
beam as an elastic MOSFET in Figure 1.20 (a). The essential idea behind this is to
utilize an external magnetic field to shift the bandgap range of the metamaterial beam by
shifting the resonance frequency of the nonlinear local resonators with additional stiffness.
Once the bandgap is shifted, some portion of the originally non-propagating frequency
will be propagating frequency, which supports the wave traveling from the “Source” to
the “Drain” side. Thus, an elastic MOSFET is formed and can be controlled with an ex-
ternal voltage applied to the coils. This analogy with mechanical systems enables elastic
wave sensing in the simplest situation, where the on and off represent the propagation
and non-propagation waves like an electrically controlled switch. The tunability enabled
by nonlinearities offers rich dynamical responses that can be used for sensing. As shown
in Figure 1.20 (b), Chen et al. [93] demonstrated a bistable plate that consists of multiple
bistable elements with snap-through bistabilities [65]. The two stable states of a nonlinear
unit form a digital bit with on and off states described in Figure 1.20 (a). The authors
designed an array of these mechanical elements, which forms a 2-D programmable plate,
of which each unit is fully elastic and can be reversibly cycled until the system is repro-
grammed. Thus, a mechanical bit-map can be achieved and programmed like a hard disk
to record the applied deformation upon the loading surface.

The above two examples mainly focus on signal sensing with mechanical systems but
with an electrical analogy. Mechanical systems for sensing also exist, but they focus on
circuit and system designs. Gao et al. [95] proposed a self-sensing bidirectional energy
conversion circuit, which not only can harvest the mechanical energy but can sense the
vibration displacement by multiple short-term inductor-capacitor charge transfers during
a vibration cycle. This study indicates the potential to combine multifunctions in a single
electromechanical coupling system and power itself through the mechanical energy flows
into the system, which shields light on multifunctional mechanical systems’ design and
realization.

Research gap and open challenges

The literature reviewed for energy harvesting and signal sensing in mechanical systems
covers both the conversion of mechanical energy into electrical power or signals. Thus,
they can be regarded as the same energy conversion process but with different purposes.
Regardless of the purpose, the essential consideration is to view the system as a whole,
accounting for the coupling effects from both domains. This has raised an important
challenge: Most research focuses on one side of the story, which may lead to infeasible
designs from an application perspective. The advantages of mechanical metamaterials or
nonlinear dynamics should be integrated into energy harvesting or signal sensing functions,
which requires novel modeling methods and co-designs of both domains. Furthermore,
with the trend of the Internet of Things, there are more opportunities to utilize wave
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manipulations or nonlinearities to achieve multifunctionality. This includes considering
the rich dynamics inherent in these mechanical systems, which may inspire not only
passive functions like wave attenuation, energy harvesting, and sensing but also active
functions for actuating and active controls towards smarter and more intelligent systems.

1.3.3 Mechanical Systems for Active Control and Actuation

The application of mechanical systems not only lies in passive functions such as wave
manipulation and energy harvesting or sensing but also in active manners. For pas-
sive mechanical systems, wave propagation follows the rules of causality and reciprocity,
which limit the effective operating bandwidth of these devices. Furthermore, mechanical
or electrical damping strongly influences the efficiency of passive systems, particularly
resonator-based metamaterials.

To mitigate these limits, the active mechanical systems have been extensively studied over
the last decade, allowing the breaking of causality, passivity, and reciprocity [96, 97]. The
active mechanical systems include non-passivity, nonlinearity, and time dependence, gen-
erally realized by coupling with piezoelectric materials, electromagnetic materials, and
electrical circuits and motors. Take an example in Figure 1.21 (a), Wang et al. [98]
proposed a spatiotemporal modulated by an external magnetic field with a linear elas-
tic beam based on magnetically tunable resonators. By additional modulated stiffness
through external magnetic reaction forces, multiple harmonics and asymmetric dispersion
curves can be generated with respect to the spatial domain, yielding non-reciprocal wave
transmission as shown in Figure 1.21 (a).

Besides spatiotemporal modulation, activity can also be introduced as gain and loss into
the mechanical system. For example, external circuit actuation can enable asymmetric
deformations along the two sides of a sensing position, which introduces shear stress. In
Figure 1.21 (b), Chen et al. demonstrated [99] the so-called odd elasticity through this ac-
tive control, allowing for unidirectional amplification and attenuation of wave propagation
through the metamaterial beam.

The scope of active mechanical systems also includes the applications of nonlinear struc-
tures. As shown in the previous literature, nonlinear oscillators have broader bandwidth
advantage when the system presents the hysteresis. However, this effect also leads to a
problem when considering the bifurcation, which includes the solution with lower displace-
ment amplitudes unfavorable for energy harvesting. Thus, active control is required to
maintain the high amplitude orbit. Figure 1.21 (c) shows a classical active control method
proposed by Yu et al. [100]. By shifting the linear stiffness of the nonlinear harvester,
i.e., through buckling intensity or magnetic coupling force, the range of the hysteresis is
shifted to a higher frequency, making the original state at low amplitude orbit unstable
and forcing it to jump up to the high energy orbit. After shifting back to the original
stiffness, the oscillator can operate at high amplitude orbits, leading to more harvested
power. It can be seen that through active control, the stability of the mechanical sys-
tem can be tuned at different bifurcation levels. By cascading these bifurcated nonlinear
oscillators, nonreciprocal wave transmission can also be realized [101].
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(a) (b)
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Figure 1.21: Metamaterials for active control and actuation. (a) Nonreciprocal wave through time
modulated stiffness (Adapted from Ref. [98]); (b) Active metamaterials with odd elasticity (Adapted
from Ref. [99]); (c) Orbit jumps for nonlinear oscillators (Adapted from Ref. [100]); (d) Nonlinear work
generating limit cycles power locomotion (Adapted from Ref. [102]).

By combining odd elasticity and nonlinear dynamics mentioned in Figure 1.21 (b) and
(c), Brandenbourger et al. [102] created a nonlinear robot driven by a unit cell with the
mechanism of odd elasticity, where interaction forces between basic constituents are not
constrained to be the gradient of a potential. Hence, by taking the system along a cycle,
work is generated. By stability analysis, the nonlinear coupling forces between unit cells
of the robot lead to work-generating limit cycles that allow it to roll autonomously with its
deformation. This demonstrates how active mechanical systems and stabilities can create
self-constrained motion beyond the conventional mechanism for actuating and driving.

Research gap and open challenges

All of the above works reveal the potential of active mechanical systems in controlling
wave propagation and structural dynamics, serving as counterparts to the passive sys-
tems discussed previously. This research track, which seeks to combine wave dynamics
with active coupling methods, is still in its infancy. On the one hand, the potential
of the underlying mechanisms originating from optics, electromagnetism, and quantum
mechanics is not fully revealed in elastic wave propagation and dynamics. Properly guid-
ing the energy flows in these active systems could lead to self-powered, self-sensed, and
self-controlled autonomous structures and systems. On the other hand, existing active
mechanical systems heavily depend on external devices like digital signal processors, am-
plifiers, and data acquisition devices, which impede their practical application. Thus,
integrating power electronics with mechanical structures should be explored, significantly
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boosting the compactness and functionalities of these systems. This integration is a step
towards the ultimate goal of autonomous systems that leverage elastic waves for energy
harvesting, vibration damping, or dynamics control.

1.4 Thesis Objectives

This dissertation aims to further expand the theoretical methods and practical applica-
tions of mechanical systems, especially mechanical metamaterials, with electromechanical
coupling designs and nonlinear dynamics to tackle the open challenges anticipated in
Section 1.1 and further detailed in Section 1.3. To this end, this work proposes mul-
tifunctional mechanical systems to guide elastic wave propagation and the energy flows
within the underlying systems. The term ”guide” refers to functions such as attenuat-
ing waves, focusing, harvesting, dissipating, or utilizing the energy flows carried by wave
propagation. Within this framework, the multifunctions of interest are those realized by
electromechanical coupling mechanisms and nonlinearities with low-frequency vibrations.
These aspects are further elaborated in the three detailed objectives of this thesis:

• Deep fusion of power electronics-based interface circuits with structural dynamics-
based mechanical systems for multiple functions.

• Dynamics modeling for electromechanical coupling systems. This includes illus-
trating electrically induced dynamics and their effects through energy conversion
processes within the systems.

• Expanding the application of nonlinearities to waveguiding effects, developing the-
oretical methods and practical systems for novel waveguiding mechanisms.

A previously developed AC-DC piezoelectric interface circuit is integrated into a graded
metamaterial to leverage frequency separation and slow wave effects for broadband and
high-capability energy harvesting, while retaining its original wave attenuation function,
to fulfill the first objective. This approach simultaneously realizes wave control and energy
flow to the electrical domain.

In line with the second goal, electromechanical dynamics are studied in a cubic nonlin-
ear oscillator system. The mechanisms to control nonlinear stabilities with circuits are
revealed through the dynamics modeling of interface circuits and the oscillator using the
multiple time scales method. This objective involves reversely boosting the harvested
energy back to the mechanical systems for dynamics control, offering a self-contained
strategy to control energy flow and dynamics in mechanical systems.

The last objective extends the second objective into a continuum nonlinear metamaterial
system; the amplitude-dependent bandgap and modal dissipation abilities are studied
using an advanced numerical harmonic balance method in the frequency domain. This
objective explores how nonlinearities within the systems enable novel energy dissipation
and transfer mechanisms beyond their linear counterparts.
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1.5 Thesis Outline

The thesis is structured in five chapters containing journal papers produced by the author
during the doctoral studies and combined in a comprehensive flow.

In line with the first objective, Chapter 2 presents a comprehensive analysis and realiza-
tion of a graded metamaterial-based piezoelectric energy harvesting system. This system
combines a graded metamaterial targeting lower frequency vibrations with a self-powered
version of the SECE circuit based on power electronics discussed in 4.2. This work takes
advantage of graded metamaterials with broad bandwidth and slow wave phenomena,
integrating them with an advanced piezoelectric AC-DC interface circuit for improved en-
ergy harvesting performance. The proposed system is modeled using a lumped parameter
model and numerical simulations to calculate the theoretical harvested power. The wave
field amplification and dispersion relationship are verified both theoretically and exper-
imentally. Alongside the original wave attenuation function within the bandgap range,
this work extends the energy harvesting range and capability through mechanical and
electrical designs, achieving a milliwatt DC power output for the first time. This chapter
serves as the initial step in the deep fusion of power electronics and wave dynamics to
control wave propagation and energy flow in a mechanical metamaterial system, laying
the foundation for further in-depth modeling and control of electromechanical dynamics.
This work is published in Energy Conversion and Management [54].

Drawing from the second objective, the attention in Chapter 3 shifts toward circuit
solutions for dynamics control in nonlinear energy harvesting systems, complementing
Chapter 2 and focuses on vibration control with the harvested energy. This chapter
studies the cubic nonlinearity induced by dipole magnets due to its hysteresis characteris-
tic for broader bandwidth in monostable, bistable, and multistable systems. Operations in
high-energy orbits with larger displacement amplitudes are preferred for higher harvested
power. A circuit solution with a switched-mode piezoelectric interface circuit is proposed
to carry out orbit jumps from low-energy orbits to high-energy orbits. The electrical part is
based on the cutting-edge switched-mode bidirectional energy conversion circuit (BECC)
proposed by the author in [30], enabling time-sharing dual functions of energy harvest-
ing and vibration excitation. The mechanical part features a monostable/bistable energy
harvester as a single-degree-of-freedom nonlinear oscillator. Through impedance analysis
of the equivalent circuit and the multiple time scales method, the electromechanical dy-
namical response in the time domain is revealed in both autonomous and nonautonomous
cases. In particular, the influence of negative and positive electrically induced damping
is analyzed in this nonlinear system for dynamics control of orbit jumps. Finally, experi-
ments are performed to validate the full-hysteresis-range orbit jumps with the nonlinear
energy harvester, resulting in a nine-fold increase in harvested power. The proposed so-
lution refrains from using extra mechanical or electrical energy sources for orbit jumps,
leading to the first self-contained solution for simultaneous energy harvesting and orbit
jumps in nonlinear piezoelectric energy harvesting. This work enhances the practical
utility of nonlinear energy harvesting technologies toward engineering applications and is
published in Mechanical Systems and Signal Processing [103].

Delving into the investigation of multiple nonlinear oscillators, Chapter 4 presents a
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nonlinear damped metamaterial that combines a linear host cantilever beam with period-
ically distributed inertia amplifiers as nonlinear local resonators. The nonlinearity studied
in this chapter features the geometric nonlinearity induced by the geometry of the inertia
amplifiers, causing an amplitude-dependent nonlinear damping effect. Through the im-
plementation of both modal superposition and numerical harmonic balance methods with
alternating frequency time and numerical continuation techniques, a numerical method
in the frequency domain is established for the analyses of finite nonlinear metamaterial
systems. For the particular nonlinear damped metamaterial studied, the results show that
the bandgap of the nonlinear metamaterial is both amplitude-dependent and broadened.
Furthermore, the nonlinear interaction between the local resonators and the mode shapes
of the host beam is discussed, leading to efficient modal frequency dissipation. The theo-
retical results are validated experimentally. By embedding the nonlinear damping effect
into locally resonant metamaterials, wideband and shock wave attenuation are achieved,
opening new possibilities for versatile metamaterials with novel nonlinear wave propaga-
tion and control mechanisms. This work is published in Mechanical Systems and Signal
Processing [67].

In Chapter 5, a summary of the main findings and contributions of this dissertation is
provided, followed by outlooks and perspectives on future developments of this research.
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Key Findings

• Broadband and high capability design targets are achieved under low frequencies.

• The DC power output of the proposed design is evaluated with an integrated model.

• Spatial frequency separation and slow waves in the design are analyzed in detail.

• A near-milliwatt DC power output is realized with metamaterials for the first time.

General comments and link to the next chapter

This study fulfills the first objective of the thesis (see Section 1.4) by integrating the power
electronics-based circuit with the locally resonant metamaterials for multiple functions:
energy harvesting (50 ∼ 150 Hz) and vibration attenuation (50 ∼ 300 Hz). This study
realized milliwatt DC power output from the proposed graded metamaterial-based energy
harvesting system.
Moreover, this chapter offers a bridge between traditional passive and linear mechanical
systems to active and nonlinear mechanical or metamaterial-based systems, as in the case
of Chapters 3 and 4.

47



Chapter 2. Graded Metamaterial for Piezoelectric Energy Harvesting

Abstract

This work proposes a graded metamaterial-based energy harvester integrating the piezo-
electric energy harvesting function targeting low-frequency ambient vibrations (¡100 Hz).
The harvester combines a graded metamaterial with beam-like resonators, piezoelectric
patches, and a self-powered interface circuit for broadband and high-capability energy
harvesting. Firstly, an integrated lumped parameter model is derived from both the me-
chanical and the electrical sides to determine the power performance of the proposed
design. Secondly, thorough numerical simulations are carried out to optimise both the
grading profile and wave field amplification, as well as to highlight the effects of spatial-
frequency separation and the slow-wave phenomenon on energy harvesting performance
and efficiency. Finally, experiments with realistic vibration sources validate the theo-
retical and numerical results from the mechanical and electrical sides. Particularly, the
harvested power of the proposed design yields a five-fold increase with respect to con-
ventional harvesting solutions based on single cantilever harvesters. Our results reveal
that by bridging the advantages of graded metamaterials with the design targets of piezo-
electric energy harvesting, the proposed design shows significant potential for realizing
self-powered Internet of Things devices.

2.1 Introduction

Energy harvesting has received considerable attention over the last two decades mainly
in the context of transitioning toward the Internet of Things (IoT) architectures with
milliwatt-level sensor nodes [25]. The exploration of renewable energy sources not only
relates to academic advances, but embraces significant social and economic values [104–
106]. Since vibration energy harvesting (VEH) leverages one of the most ubiquitous and
accessible energy sources, this research field has tremendous potential to replace conven-
tional, limited-life, chemical batteries for energy-efficient IoT devices. Among different
energy transduction methods [107], piezoelectric transduction is commonly used owing
to its high power density and ease of integration in the design of compact energy har-
vesters. Through the so-called direct and reverse piezoelectric effect [108], an external
force applied on piezoelectric materials can be converted into an electrical voltage across
the material’s electrodes and vice versa. As the block diagram shown in Figure 2.1, a
piezoelectric energy harvesting (PEH) system can commonly be attained by attaching
piezoelectric transducers on a mechanical transformer under the excitation of an ambient
vibration source. The generated AC (alternating current) voltage can then be regulated
with a power conditioning interface circuit into a DC (direct current) voltage [25]. Irre-
spective of the specific mechanical design, transducer, and interface circuit chosen, the
two primary design targets for PEH systems are:

1. The high-capability target : to increase the harvested power at resonance;

2. The broadband target : to increase the off-resonance harvested power, i.e., to broaden
the harvesting bandwidth.

Many studies have investigated these two targets for PEH systems from the mechanical
and the electrical standpoints. To achieve the high-capability target (1), mechanical solu-
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Figure 2.1: Block diagram of a piezoelectric energy harvesting (PEH) IoT system with its integrated
model and design targets.

tions include an increase in the number of active materials, or a decrease of the equivalent
mechanical stiffness [109–112]. All mechanical solutions yield an increased electrome-
chanical coupling coefficient, which results in a stronger energy harvesting capability
[113]. Without altering the mechanical structure, advanced interface circuits [23, 114]
can also enhance the energy harvesting capability thanks to the increased impedance
matching ability from the electrical side [115]. For fulfilling the broadband design target,
most research efforts stem from the mechanical engineering community with a variety
of available options, namely combinations of multiple vibrators with different resonant
frequencies [116–118] and introduction of nonlinear dynamics in the vibrator [119–122].
Nevertheless, in strong coupling systems, the interface circuits can also contribute to the
broadband target by additional electrically induced stiffness with phase-variable (PV)
interface circuits [123, 84]. It is important to note that both mechanical and electrical
designs play a synergistic role in the two design targets of PEH systems. The mechan-
ical and electrical design integration is quickly becoming quintessential as piezoelectric
harvesters are increasingly incorporated into metamaterial-based structures for enhanced
energy harvesting [40, 124, 125].

Engineered materials can be mainly categorized into Bragg scattering phononic crystals
[126] and locally resonant metamaterials [5]. When aiming to harvest mechanical energy
from low frequencies to fit the scenarios of IoT devices, the relatively long wavelength
of low-frequency ambient vibrations renders the use of Bragg scattering structures ineffi-
cient. It is well known that locally resonant metamaterials can surpass the size limitation
of Bragg scattering systems, and generate sub-wavelength bandgaps leveraging local res-
onance mechanisms [127]. Sugino et al. [55, 128] pointed out that the utility in using
locally resonant metamaterials to enhance energy harvesting lies in their unique proper-
ties to slow down the propagation of elastic waves and focus the mechanical energy into
the local resonators within or close to the frequency range of a bandgap. Therefore, the
high-capability target of PEH can be naturally addressed using metamaterials. Li et al.
[129] proposed a piezoelectric cantilever-based metamaterial for simultaneous vibration
isolation and energy harvesting. Chen et al. [35] also realized the same dual-function with
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a membrane-type metamaterial and further increased the output power with double-layer
resonators.

Despite the high-capability PEH by locally resonant metamaterials, the harvested power
is noticeable only close to the bandgap frequency [40], hence in a relatively narrow band.
Therefore, research efforts have also investigated multifunctional metamaterials for tack-
ling the broadband target [40]. Hwang and Arrieta [86] adopted nonlinear resonators and
realized an input-independent metamaterial to broaden the energy harvesting bandwidth.
Without resorting to nonlinear dynamics, De Ponti et al. [38, 76, 130] explored the rain-
bow trapping phenomena [72, 131, 36] and realized graded metamaterials with simple and
inherent broadband design. It can be seen that the research on enhanced energy harvest-
ing with metamaterials mainly stems from the mechanical side. In contrast, the efforts
from the electrical side for PEH with metamaterials are quite deficient. As shown in
Figure 2.1, considerations regarding AC-DC interface circuits and IoT devices are essen-
tial parts of holistically vibration-powered IoT devices. It still remains an open question
how to transfer the advantages of metamaterials mentioned above into electromechani-
cally integrated PEH systems and address the power consumption of IoT devices under
low-frequency vibrations.

Building on the recent published graded metamaterials by De Ponti et al. [38, 76, 130], we
re-engineer and optimize a graded metamaterial-based energy harvester. For conciseness,
this is referred to as ”graded-harvester” hereafter. Different from previous results focusing
on wave propagation under relatively high frequency ranges (>1 kHz) with absorbing
boundary conditions, the proposed graded-harvester employs a clamped-free boundary
condition to fit the practical PEH scenarios, which is capable to reach low frequencies
and amplify the wave field, thus rendering operation under typical ambient vibration
feasible (<100 Hz). Compared to the commonly used resistors as loads for PEH with
metamaterials, the electrical part of the graded-harvester utilizes a self-powered interface
circuit able to rectify the power produced by piezoelectric patches and provide a usable
DC power supply for IoT devices. By combining the graded metamaterial and the AC-DC
interface circuit through an integrated lumped model, the energy harvesting performance
of the graded-harvester can be determined for the first time. The two design targets of
PEH are thoroughly discussed with theoretical, numerical, and experimental analyses.

Section 2.1 introduces the technological background and the proposed design. Section
2.2 proposes an integrated model to calculate the harvested power and demonstrates the
broadband energy harvesting ability of the design. Section 2.3 further discusses the wave
propagation in the graded metamaterial for the high-capability energy harvesting target.
Finally, Section 2.4 shows experimental results for validating the design.

2.2 Theoretical Analysis

In order to investigate the performance of energy harvesting systems, research efforts
have been dedicated to theoretical [21] and numerical methods [38] to determine the
harvested power and the bandwidth. Unlike the wave propagation at high frequencies
typical of acoustic metamaterials satisfying the assumptions of traveling waves in a long
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Figure 2.2: Illustrations of the graded metamaterial-based energy harvester and its theoretical model.
(a) shows the flexural wave propagating in the graded metamaterial under base excitation in the z
direction. The enlarged view shows the configuration of piezoelectric parasitic beams. (b) shows the
model schematic corresponding to (a). (c) illustrates the xz cross-section of the structure depicted in (a).
(d) displays the detailed equivalent parameter model of each piezoelectric parasitic beam.

structure when compared to the wavelength [127], a quasi-standing wave dominates the
dynamic response of the finite structure under low-frequency vibrations [55]. From the
electrical side, without the assumption of pure resistive loads for energy harvesting [38],
the equivalent impedance of the AC-DC interface circuit should be considered [21]. In
addition, the nonlinear coupling of interface circuits with mechanical structures [132] often
renders the numerical simulation difficult due to the intensive computation and memory
requirements. For these reasons, a simplified integrated model combining mechanical and
electrical lumped parameters is developed in this paper. The flow chart of the integrated
model used in this section is shown in Figure 2.1. The limited complexity of such a model,
enables us to evaluate the energy harvesting performance of the graded-harvester with
the chosen interface circuit.

2.2.1 Graded Metamaterial and Circuit Topology

We base our design on previous work by De Ponti et al. [76, 38], which exploited a graded
metamaterial and slow waves to enhance the harvested power. Figure 2.2 (a) shows the
proposed design, which consists of a host cantilever beam and an array of parasitic beams
with tip masses. The host beam of length L, width b, bending stiffness EI, and mass
per length m is excited by base excitation wb(t) in z direction to generate a flexural wave
traveling along the x direction. R pairs of parasitic beams of length Lr and width br are
symmetrically distributed at positions xr along the host beam to minimize the torsional
motion of the host beam. Identical tip masses and piezoelectric patches are attached to
each pair of parasitic beams.

The graded design is achieved by gently increasing the length of each pair of parasitic
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beams. As shown in Figure 2.2 (a) and (c), a wave generated by a sinusoidal base exci-
tation undergoes a significant reduction of the wavelength along the host beam. At the
location of the 5th pair whose resonant frequency matches the excitation frequency, the
traveling wave generated by this example vanishes with wave length and group velocity
reductions. On the one hand, the low speed extends the interaction time between the
parasitic beams with the traveling wave inside the graded array. On the other hand,
it locally boosts the vibration amplitude to fulfill the high-capability energy harvesting
target. At the same time, when compared against the non-graded metamaterial-based
energy harvesters [55], the effective energy harvesting bandwidth can also be increased
due to the spatial frequency separation, quintessential in rainbow devices [72, 36]. By
combining the contributions of different pairs of parasitic beams located at increasing
distances, the broadband ability can also be achieved.

In order to transform the mechanical energy confined inside the metamaterial into elec-
tricity, piezoelectric patches are mounted on the parasitic beams. Conventionally, the
bulk of research on metamaterial energy harvesting is restricted to the use of resistors as
loads of the piezoelectric patches to measure an AC output power [76, 37]. However, this
choice is not well suited to the DC power supply demand of IoT devices. Several studies
have explored AC-DC interface circuits in PEH systems for this purpose. The Standard
Energy Harvesting (SEH) circuit is the most commonly used, which only utilizes a bridge
rectifier. In order to boost the energy harvesting capability, more advanced interface cir-
cuits [28, 133, 27] have utilized LC resonance for regulating the phase difference between
piezoelectric voltage and current.In this paper, the Self-Powered Synchronized Electrical
Charge Extraction (SP-SECE) [114] is chosen as the interface circuit since it does not
need any external driving signal for the switches and it is load-independent. As will be
demonstrated later, we can partially decouple the nonlinear behavior of the electrome-
chanical PEH system induced by the chosen interface circuit, which depends on different
load and input amplitude conditions.

Figure 2.2 (d) shows the circuit topology of SP-SECE. The electrical part of the piezoelec-
tric transducer can be regarded as a clamped capacitor Cp for each pair of piezoelectric
patches in series and a parallel current source ieq whose value is proportional to the par-
asitic beam’s tip velocity u̇r. By neglecting the leakage resistance, the voltage across
the piezoelectric transducer can be represented by vp. With the electromechanical force-
voltage coupling coefficient αr, the reaction force 2F = αrvp from the piezoelectric patch
is evenly distributed at each parasitic resonator. Besides a full bridge rectifier, the SP-
SECE circuit also features a buck-boost converter. Nevertheless, unlike the approach
adopted for conventional buck-boost converters in power electronics [134], which follow
the Pulse Width Modulation (PWM) controlled method, the switching cycle of SP-SECE
follows the mechanical vibration cycles at the current and velocity crossing zero point
for self-powered synchronized switching actions. The switching actions are generated by
three branches in Figure 2.2 (d): the first is an envelope detector consisting of a discharge
resistor R1, D1, and C1; the second is a voltage comparator by an off-the-shelf PNP tran-
sistor T1, and the third is a switching path formed by a NPN transistor T2 and an inductor
Li.

In this paper, the two piezoelectric patches of each pair of parasitic beams are connected

52



2.2. Theoretical Analysis

in series with the interface circuit so it can easily overcome the voltage threshold induced
by the bridge rectifier and the switching path under low-amplitude vibrations. In order to
evaluate the energy harvesting performance of the graded-harvester, an integrated model
is built in the following section from the mechanical and electrical sides.

2.2.2 Equivalent Lumped Parameters

With reference to the flow chart of the integrated model in Figure 2.1, a modal analysis
method is implemented in order to derive the lumped parameters of the proposed design
from the mechanical side, as shown in the schematic in Figure 2.2 (b). The schematic
consists of a host cantilever beam and periodically distributed parasitic resonators cor-
responding to the host beam and parasitic beams in Figure 2.2 (a), respectively. Two
identical parasitic beams of each pair are attached to the same position of the host beam,
generating a joint resonance effect. In order to derive the lumped parameters of the
resonators considering the additional stiffness introduced by piezoelectric patches, each
parasitic beam can be represented as a partially covered piezoelectric cantilever beam
with tip mass under a Single Degree Of Freedom (SDOF) system assumption [135], where
the first flexural vibration mode is taken into account.

The SDOF model of a parasitic resonator for a piezoelectric parasitic beam in Figure
2.2 (b) can be represented with the PEH model in Figure 2.2 (d). Under given base
excitation wb on the clamped side of the host beam, the relative transverse displacement
at xr of the host beam can be regarded as w(xr). The absolute displacement of the SDOF
parasitic resonator at xr is uAr(t) = wb(t) + w(xr, t) + ur(t), as shown in Figure 2.2 (d).
Therefore, a parasitic beam with piezoelectric patches can be represented with a SDOF
energy harvester under base excitation with acceleration ẅabs = ẅb + ẅ. The equivalent
massMr, stiffnessKmr, damping coefficientDmr, and the equivalent force-voltage coupling
coefficient αr can be formulated as:

Mr =
1

ψ2
r (Lr)

; Kmr =
ω2
r

ψ2
r (Lr)

;

Dmr =
2ζrωr

ψ2
r (Lr)

; αr =
βr

ψr (Lr)

(2.1)

where ψr is the first order mode shape of the beam section without piezoelectric layer [135]
in the rth pair of parasitic beams. ζr, βr and ωr describe the damping ratio, the coupling
related factor and the first order resonance frequency of the rth beams, respectively.

The first-order resonance frequency ωr can be determined by solving the characteristic
equation of the rth pair of parasitic beams. Along with the boundary conditions, the
mode shape ψr and the coupling related factor βr are computed. It should be noted that
the derived lumped parameters are effective only at the beam’s tip. The reaction force at
the root of the beam derived from the lumped parameters is slightly different from that
derived from the analytical model [135]. However, by properly choosing a relatively large
tip mass, these parameters are still valid for calculating the reaction force at the root of
the beam [39].
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Additionally, we include the electrical side considering the lumped parameters of the
interface circuit as shown in Figure 2.1. We employ a general impedance analysis method
[21] to determine the lumped parameters, which relies on the computation of the first
order electrically induced damping and stiffness coefficients: De and Ke. Figure 2.3 (a)
shows the waveform of the SP-SECE interface circuit, including its piezoelectric voltage vp,
current waveform ieq, and the voltage vcl of C1 (also the emitter voltage of T1). In Figure
2.3, φ ∈ [0, π/2] describes the positive switching phase lag and Voc is the nominal open-
circuit voltage depending on the relative displacement amplitude of a parasitic resonator.
The operation of SP-SECE consists of four phases from P1 to P4 as shown in Figure 2.3
(a) and (b):

1. P1: an open circuit phase between the end of the last switching phase P3 and the
current crossing zero point;

2. P2: a switching delay phase, denoted by phase lag φ, due to the conduction of the
switching path;
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3. P3: a switching phase to transfer the charge from Cp to Li;

4. P4: a freewheeling phase to transfer the energy in Li into the storage capacitor Cs

through the freewheeling diode D2.

Based on these four steps, the equivalent impedance Ze of SP-SECE interface circuit can
be derived with impedance analysis (detailed in Appendix 2.A). The electrically induced
damping Der and stiffness Ker of each parasitic resonator in the rth pair can be derived
based on the electromechanical analogy in this coupling system, namely:

Der = α2
rRe/2, Ker = −α2

rωXe/2. (2.2)

When the system operates at frequency ω, the real part Re and the imaginary part Xe of
Ze form functions of φ, whose relationship is illustrated in the two-dimensional impedance
plane depicted in Figure 2.3 (b). The figure shows the equivalent impedance of SECE
(special case of PV-SECE [123] when φ = 0) and SP-SECE (special case of PV-SECE
when φ > 0). Compared with SEH, the real part Re of SECE or SP-SECE is larger, which
means it has a stronger impedance matching ability to achieve a higher power output.
By assuming Voc > 10(VD + VBE), the difference of Re between SP-SECE and SECE is
less than 5%. Therefore, we can approximate the equivalent impedance of SP-SECE by
that of SECE and remove the dependency on input amplitude under the relatively large
Voc condition. Consequently, different from the SEH case, the Der and Ker of SP-SECE
are independent of the load and input amplitude conditions, which decouple the system
with invariant electrically induced components for the proposed metamaterial for energy
harvesting.

2.2.3 Integrated Model

As shown in Figure 2.1, by combining the lumped parameters determined mechanically
and electrically, each piezoelectric parasitic beam can be represented by a SDOF parasitic
resonator with the SP-SECE interface circuit. Therefore, the governing equation for each
parasitic resonator can be formulated as:

Mrür(t) +Dru̇r(t) +Krur(t) = −Mr

(
∂2w(xr, t)

∂t2
+ ẅb(t)

)
, (2.3)

where Kr = Kmr + Ker and Dr = Dmr + Der contain the combined effect of the me-
chanical and electrical induced stiffness and damping, respectively. As stated previously,
the electrically induced components are determined by the chosen interface circuit. For
SP-SECE, Der is positive, which means it absorbs mechanical energy and converts it into
electricity. In order to evaluate the energy harvesting performance of the proposed design,
the displacement amplitude Ur of the r

th pair parasitic resonators shall be determined.

By adding the reaction forces of each pair of parasitic resonators onto the host beam, the
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governing equation of the host beam can be expressed as:

EI
∂4w

∂x4
+m

∂2w

∂t2
= −mẅb(t)+

2
R∑

r=1

Krur(t)δ (x− xr) + 2
R∑

r=1

Dru̇r(t)δ (x− xr) ,

(2.4)

where δ represents the Dirac function. The integrated model of the graded-harvester is
then represented by Eq. 2.3 and Eq. 2.4.

Ur can be solved by modal analysis method with the electrically induced components from
the SP-SECE interface circuit (detailed in Appendix 2.A). Furthermore, the magnitude
of the piezoelectric current of the rth pair of parasitic resonators in series can be expressed
as [21]:

Ieqr = αrωUr. (2.5)

Taking into account the rectifier loss, switching loss, and freewheeling loss [22] of the
SP-SECE interface circuit under the relatively large Voc assumption, the harvested power
for each pair of parasitic resonators can be formulated as:

Pr =
I2eqrEh

2∆E
Re = ηh

I2eqr
2
Re, (2.6)

where ∆E and Eh represent the total extracted energy and the harvested energy in one
cycle. The ratio between ∆E and Eh is denoted as the harvesting efficiency ηh:

ηh =
Eh

∆E
=

|γ| Ṽs
Ṽs + ṼD

(
1− ṼF

)
, (2.7)

where γ, Ṽs, ṼD, and ṼF describe the flipping factor of the SP-SECE interface circuit,
the Voc normalized Vs, VD and VF , respectively. Consequently, the harvested power is a
percentage of the extracted power. All the parameters in Eq. 2.6 are constant under the
specific base excitation condition, except the harvesting efficiency ηh. Strictly speaking,
the harvested power also changes with the load condition, which influences Ṽs. However,
this dependency can be significantly weakened after the conduction of the freewheeling
diode D2 [22].

As a case study, the theoretical harvested power, computed using the integrated model
described above, for different pairs of parasitic beams is plotted as a gray line in Figure
2.6 with the parameters from Table 2.1. For the harvested power in single resonant
energy harvesters [21], the bandwidth usually refers to the −3 dB bandwidth. For the
graded-harvester, there is no standard criterion to define the harvested power bandwidth.
However, it can be seen that inside the graded area, there are multiple harvested power
peaks corresponding to the resonance frequencies of different pairs of parasitic beams in
the range from 60 Hz to 160 Hz. Therefore, the broadband energy harvesting ability of
the graded-harvester is guaranteed.
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2.3 Numerical Analysis

The grading design of the metamaterial not only broadens the energy harvesting band-
width. It also affects the dispersion relationship and the wave field propagation, which
further influences the energy harvesting ability of the designed graded-harvester. This
section investigates wave propagation within the graded metamaterial using numerical
simulations (FEM) and demonstrates the broadband and high-capability energy harvest-
ing characteristic of the graded-harvester.

2.3.1 Grading Profile

In order to evaluate the harvesting ability in the bandgap range, it is necessary to inves-
tigate the role of different grading profiles. As shown in Figure 2.4, the spatial-frequency
analyses of three grading profiles for the parasitic beams are simulated in the frequency
domain with COMSOL Multiphysics. The lengths of different pairs of parasitic beams
distributed at the same positions on the host beam follow the cube-root profile, linear pro-
file, and cubic profile, respectively. The three different grading profiles can be expressed
as a function of the positions of different parasitic beams:

Lr = axpr + b, (2.8)

where p = 1/3, 1, 3 represents the cube-root, linear, and cubic profiles, respectively. By
fixing the length of parasitic beam pair L1 and L15, parameter a and b can be deter-
mined. As shown in Figure 2.4, the cubic-root, linear, and cubic profiles exhibit the same
bandgap ranges but different spatial-frequency separation curves1 where the wave prop-

1It should be noted that the grading discussed here concerns the lengths rather than the resonance fre-
quencies of parasitic beams determined by Eq. 2.1. Therefore the final spatial-frequency separation curves
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Figure 2.5: The dispersion relationship of the graded-harvester. The curves represent the numerical
dispersion relationships of the A0 Lamb mode (black dashed lines) of the host beam, the non-graded (red
dashed lines) metamaterial, and the graded (blue lines) metamaterial, respectively. For experimental
wave numbers of the graded metamaterial, the wave that propagates outside the grading frequency range
is indicated by gray circles; the wave that propagates within the grading frequency range is indicated by
color circles. In the grading frequency range, the real and imaginary parts of each complex wave number
are labeled with the same color scale with respect to the amplitude of the imaginary wave number.

agation vanishes, as indicated with the green dashed line, black dashed line, and gray
dashed line, respectively. Compared with the linear or cubic profiles as shown in Figure
2.4 (e) and (f), the cubic-root one shown in Figure 2.4 (d) enables more localized modes
at the beginning of the bandgap range due to the increased number of longer parasitic
beams [37]. This creates a stronger bandgap and suggests a higher energy density, ideal
for boosting energy harvesting, and it is thus chosen for the proposed design.

2.3.2 Numerical Results

The dispersion relationship provides a general and fundamental description of the wave
propagation characteristics of linear metamaterials. It leads to a better understanding
of how the propagating wave could enable higher energy harvesting ability spanning the
grading frequency range [36]. Based, therefore, on the cubic-root grading profile, we
discuss wave propagation in the graded metamaterial by dispersion analysis. Due to the
out-of-plane base excitation, traveling flexural waves (A0) in the host beam are dominant
versus longitudinal and torsional waves, or higher-order Lamb waves. Limited by the
length of the host beam, the commonly used two-dimensional Fourier transform (2D-FFT)

indicated with dashed lines in Figure 2.4 (a), (b), and (c) do not have the same shapes corresponding to
their grading profile functions.
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[136] can not give a high-resolution dispersion relationship at low-frequency vibrations.
As an alternative, we further herein adopt the Inhomogeneous Wave Correlation (IWC)
method [137], which allows for accurate characterization of the dispersion relationship
over short measurement distances. The wave number is calculated by the maximized
correlation between a theoretical inhomogeneous running wave and the spatial response
from measurements or simulations.

Figure 2.5 shows the numerical dispersion curves of the A0 Lamb mode, a non-graded
metamaterial, and the graded metamaterial from frequency domain analysis with COM-
SOL Multiphysics. Compared to the graded metamaterial, the non-graded metamaterial
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simulated here represents the commonly used periodic design [55] with the same parasitic
beam length equal to L1. The different structures are excited with a constant accelera-
tion field. The numerical dispersion curves are computed via the IWC method, using the
simulated frequency-domain velocity responses spaced at 1mm intervals across the host
beam. For the dispersion curves of the graded metamaterial, shown in blue lines, the wave
propagates as a A0 Lamb mode with no dissipation outside the bandgap range. Inside
the bandgap range indicated by the gray shadow (starts from the resonant frequency of
the 1st pair of parasitic beams at 154 Hz to 317 Hz), most of the real wave numbers are
zero, which means there is no wave propagation in this frequency range. Furthermore,
the positive imaginary wave numbers indicate the exponential decay of traveling waves
due to the local resonant effect [138].

Besides the bandgap creation described above, the graded design introduces an additional
gap, which is indicated via a green shadow (the grading frequency range from the resonant
frequency of the 15th pair of parasitic beams at 66 Hz to 154 Hz). For the real wave
numbers, the non-vanishing values become larger as the frequency increases. Rather than
propagating through the metamaterial as in the non-graded case, the waves slow down at
the positions of local resonators with group velocity and wavelength reduction. This slow-
wave phenomenon can also be seen from the imaginary wave numbers. The imaginary
wave numbers are more prominent in the graded range than in the non-graded case, which
also explains the exponential decay of wave propagation with the graded design. The slow
waves enable longer interaction with the local resonators, which leads to the amplification
of the wave fields.

We introduce the amplification factor of the wave field in local resonators as a metric
of the energy transfer capability from the metamaterials to local resonators. We firstly
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define the relative velocity of a local resonator as the velocity difference between its tip
and root positions of a parasitic beam: u̇′r = u̇r − ẇ (xr). Then the amplification factor
can be expressed as the ratio of the relative velocity amplitude of a local resonator to
the velocity amplitude at its root position on the host beam: U̇ ′

r/Ẇ (xr). Figure 2.6 (a)
shows the simulated amplification factors of each pair of parasitic beams at their resonance
frequencies using COMSOL time domain simulations. It is observed that the amplification
factor of the graded metamaterial increases with the length of the parasitic beams, except
for a drop at the 15th parasitic beam due to the wave leakage at the beginning of the
bandgap and the lack of additional resonators. The trend of the amplification curve follows
that of the harvested power curve in the graded frequency range. This amplification of the
wave field shows the potential to harvest mechanical energy with the graded metamaterial
efficiently.

With the wave field amplification by the graded metamaterial, we further calculate the
energy harvesting efficiency of the graded-harvester. From the perspective of energy flow
[23, 139] shown in Figure 2.1, the energy transformation process of the graded-harvester
contains three steps:

1. The mechanical energy inside the graded metamaterial is efficiently transferred to
local resonators as mechanical transformers. The efficiency of this step is defined as
ηm;

2. The mechanical energy in local resonators is converted into the electrical extracted
energy with piezoelectric transducers. The efficiency of this step is defined as ηe;

3. By considering the piezoelectric transducer and the interface circuit as a whole, the
electrical extracted energy is further converted into the net energy harvesting energy
in the storage considering different losses. The efficiency of this step is ηh in Eq.
2.7.

In order to determine the total energy harvesting efficiency η = ηmηeηh, we firstly simulate
ηm of each pair of parasitic beams. From energy conservation, the work done by the
external load is finally consumed by the damping effect of the graded-harvester. We use
an isotropic mechanical damping coefficient 0.001 for the graded metamaterial and the
electrically induced damping Der for each pair of parasitic beams. Therefore, ηm can be
simulated by the ratio between the dissipation energy of each pair of parasitic beams and
the total dissipation energy of the graded-harvester. Then, the transferred mechanical
energy is converted into electrical energy with the efficiency ηe = Der/Dr. By considering
the electrical losses in the interface circuit, the total numerical energy harvesting efficiency
η is shown in Figure 2.7. The efficiency of the 8th parasitic beam at Ṽs = 1 reaches the
peak value at its resonance frequency, after which the efficiency drops to zero due to the
spatial frequency separation mentioned above. Compared to the one-pair case indicated
with the blue line, the η of the 8th parasitic beam increased 160% due to the wave field
amplification by the graded metamaterial. This kind of relay of different parasitic beams
forms the envelope surface of the total efficiency η, which maintains a high level in the
grading frequency range and serves the high-capability energy harvesting target.
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Figure 2.8: Experimental setup.

Table 2.1: Parameters in Experiment

Graded Metamaterial based Energy Harvester

Host Beam
Size 1000×30×2 (mm3) Material Aluminum

Parasitic Beam
Size Lr×10×2 (mm3) Material Aluminum
Lr = 21.6 3

√
xr − 101.3 (mm), xr = 310 : 20 : 590 (mm)

Tip Mass
Size 10×10×10 (mm3) Material Steel

Piezoelectric Patch
Size 40×7×0.8 (mm3) Material PZT
d31 -60 pC/N Cp 19.6 nF

Interface Circuit
Diodes SS14 (VD = 0.5 V) Li 10 mH
MOSFETs XN4601 (VBE = 0.5 V) Cs 4.7 µF
Rectifier MB6S (VF = 1 V) γ -0.63

2.4 Experiment

Finally, both the broadband and high-capability energy harvesting of the designed graded-
harvester are validated experimentally. From the mechanical side, the broadband energy
harvesting induced by the graded metamaterial design is investigated via transmissibility
and spatial-frequency analysis. Additionally, the high-capability energy harvesting is
demonstrated by means of the experimental dispersion relationship and the amplification
factor. From the electrical side, the practical energy harvesting performance of the graded-
harvester is evaluated by comparison to a beam with only one pair of parasitic beams fixed
to the host beam.

2.4.1 Setup

Figure 2.8 shows the experimental setup. The graded metamaterial was fabricated out
of one aluminum plate by water-jet cutting. Two identical tip masses and one piezoelec-
tric patch are attached to each parasitic beam. The graded metamaterial is then hung
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Figure 2.10: Comparison of transmissibilities. The three curves show the theoretical, numerical, and
experimental tip transmissibility, respectively.

vertically by two ropes to maintain stability. One end of the graded metamaterial with
shorter parasitic beams is clamped to a shaker (LDS V406) for base excitation resulting in
a clamped-free boundary condition. The two piezoelectric patches of one pair of parasitic
beams are connected in series. Because the base excitation is symmetric, the antisymmet-
ric modes of the pair of parasitic beams are not excited [130]. This means each pair is free
from out-of-phase vibration and charge cancellation. Therefore, it is feasible to configure
two piezoelectric patches of one pair of parasitic beams in series. The piezoelectric voltage
is connected to the SP-SECE interface circuit for energy harvesting. The parameters of
the graded-harvester are shown in Tab. 2.1. These mechanical and electrical parameters
were chosen to realize the energy harvesting function of the graded-harvester, considering
mainly off-the-shelf, easily customizable (printed circuit board), and inexpensive compo-
nents. The shaker is triggered simultaneously with a Polytec 3D scanning laser Doppler
vibrometer (SLDV), which records the 3D velocity field at the center-axial points on the
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voltage vp and the storage voltage Vs under 1MΩ load condition.

host beam with 5 mm spacing and the tip points of parasitic beams in the time domain
through repeated acquisitions.

2.4.2 Experimental Results

Figure 2.9 (a) and (b) show the spatial-frequency separation of the graded metamaterial
from numerical simulation and experimental data. The numerical simulation setup is iden-
tical to the procedure discussed in Section 2.3. In the experiment, the beam was excited
with a broadband white noise signal. The experimental spatial-frequency was obtained
from the Fourier transformed time-domain velocity responses of the center-axial points on
the host beam. The bandgap range of the experimental data shows good agreement with
the numerical simulation. Inside the graded bandgap area, the velocity amplitude and the
wavelength decrease in agreement with Figure 2.9 (a), until it vanishes as shown with the
green dashed lines in correspondence with the positions of the local parasitic beams. As
stated before, this spatial-frequency separation enables the broadband energy harvesting
target. From the bandgap perspective, Figure 2.10 shows the tip transmissibility under
open circuit condition of the graded metamaterial. The results displayed are from the
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theoretical model derived from Section 2.2, the numerical simulation corresponding to
Section 2.3 with piezoelectric patches attached, and the experimental data. The isotropic
damping coefficient used for the mechanical structure in the theoretical model and simu-
lation is 0.001. Compared to the non-graded metamaterial, no closed form equation exists
that governs the bandgap range of graded metamaterials. Therefore, −20 dB is regarded
as the threshold below which the transmissibility is considered to reflect the bandgap [37].
It can be seen that the three transmissibility curves mutually agree, which validates the
theoretical model proposed in Section 2.2. The difference of the numerical and theoretical
curves versus the experimental curve is mainly due to the plastic cover of the piezoelec-
tric patches, which differs from the homogeneous piezoelectric material property used in
theoretical analysis and simulations.

Additionally, the experimental dispersion relationship of the graded metamaterial is in-
dicated with gray and color circles in Figure 2.5. The experimental wave numbers were
obtained by the IWC method with the Fourier transformed time-domain velocity re-
sponses of the center-axial points on the host beam under a 30-350 Hz broadband sweep.
They indicate good agreement with the numerical dispersion curves. Inside the grading
frequency range, the real and imaginary parts of an experimental wave number at each
frequency are shown with the same color. These non-zero wave numbers further lead
to the experimental amplification factor of the graded metamaterial in Figure 2.6 (a).
The experimental amplification factors displayed in Figure 2.6 (a) were calculated by the
definition in Section 2.3 with the experimental time-domain velocity responses under har-
monic base excitation at the resonance frequencies of different parasitic beams. Compared
with the one-pair cases of parasitic beam pairs L1, L8, L13, and L15 shown as blue dots,
the amplification factors of the graded metamaterial are larger, indicating more efficient
energy transformation from the host beam to the local resonators under the same input
conditions. Figure 2.6 (b) and (c) show an example of the tip velocity responses from the
8th pair of parasitic beams and its one-pair case under their resonant frequencies. It can
be seen that not only the amplitude U̇8 is larger than its one-pair case. The amplification
ratio also outperforms its corresponding one-pair case.

Figure 2.11 illustrates a practical example of the harvested power from the graded meta-
material with the theoretical harvested power curves. Under 0.1 N harmonic input base
excitation at the resonance frequency of the 8th pair of parasitic beams and its corre-
sponding one-pair case, the experimental harvested power was measured with the output
voltage under different loads switched by an electromagnetic relay. It can be seen that all
four harvested power curves quickly reach a stable output after a certain load threshold to
conduct the bridge rectifier and the freewheeling diode, which shows the load-independent
characteristic of the SP-SECE interface circuit. The theoretical harvested power curves
indicated with dashed lines agree with the experimental harvested power curves. The dif-
ference is mainly due to the loss of the envelope detector. The drop of the experimental
power curve of the 8th pair of parasitic beams under large load resistance is induced by
the parameter loss of the storage capacitor Cs under high voltages. Compared with the
one-pair case, the maximum harvested power is enhanced by 489%. The experimental en-
ergy harvesting efficiency is defined as the ratio of the harvested power from the parasitic
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Table 2.2: Comparison with Existing Works

Reference Transducer Size Frequency Power Load

Li et al.,
2017 [129]

PVDF 35× 35× 1 mm3 170 Hz 0.5µW 1000 kΩ

Chen et al.,
2019 [35]

PVDF 45× 45× 2 mm3 348 Hz 1.25µW 200 kΩ

Hwang and Arrieta,
2018 [86]

PVDF 225× 64× 0.25 mm3 Input
independent

32µW 100 kΩ

De Ponti et al.,
2020 [76]

PZT (250 ∼ 650)× 5× 5 mm3 2000 ∼ 5000 Hz
70µW
@ 2050 Hz

6.8 kΩ

This work PZT Lr × 10× 2 mm3 60 ∼ 160 Hz
600µW
@ 91 Hz

Load
independent

beams to the base excitation RMS power:

ηexp =
Pr

1
T

∫
T
fin (t) ẇb (t) dt

, (2.9)

where fin and ẇb represent the harmonic input force and the base velocity. The ex-
perimental efficiencies for the 8th pair of parasitic beams and its one-pair case are 26%
and 14%, respectively, which shows the high-capability energy harvesting of the proposed
design. They also agree with the numerical results shown in Figure 2.7. Broadband en-
ergy harvesting can also be naturally realized by varying the different harvesting parasitic
beam pairs. Figure 2.11 (b) shows the experimental waveform of the piezoelectric voltage
vp and the storage voltage Vs under 1 MΩ load of the 8th pair of parasitic beams and
its one-pair case. It can be seen that the piezoelectric voltage of the 8th pair parasitic
beams is higher due to the wave field amplification from the graded metamaterial, and
the storage voltage is also higher.

2.5 Discussion

Locally resonant metamaterials fit the scenario of utilizing low-frequency vibrations for
self-powered IoT devices. With reference to statistic studies [140], we discuss the PEH per-
formance of the proposed graded-harvester with respect to existing metamaterial-based
PEH harvesters as benchmark models. The PEH performance of these harvesters are
summarized in Table 2.2, where the chosen transducer type (polyvinylidene difluoride
(PVDF) or lead zirconate titanate (PZT)), resonator size, operating frequency, harvested
power, and load condition of each harvester are listed in detail. Despite different power
performances, all solutions listed provide higher efficiency when compared to conventional
energy harvesters because they leverage the local resonant effect. As shown in the table,
conventional locally resonant metamaterials (Li et al. [129] and Chen et al. [35]) can
achieve low-frequency PEH, however, their energy harvesting bandwidth is relatively nar-
row. By exploiting the nonlinear dynamics or graded designs, the operating frequency2

2For multifunction metamaterials, there is no standard definition of the energy harvesting bandwidth.
Therefore we use the operating frequency range as a replacement.
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can be broadened with multifunction metamaterials, as presented by Hwang and Arrieta
[86] and De Ponti et al. [76]. Building on these pioneering solutions, the graded-harvester
presented here not only achieves near-milliwatt power output to accommodate the power
demand of low-power consumption IoT devices, but also broadens the operating frequency
for low-frequency PEH. Furthermore, its load independence characteristic provides stable
output power from heavy to light load conditions. This allows tackling different opera-
tional conditions of IoT devices [141]. Given the simplicity, the robust underlying physics,
the inherently broadband and high-capability designs, the proposed graded-harvester has
great potential to power sensors or microcontrollers and realize self-powered IoT devices.

2.6 Conclusion

Based on the idea of graded metamaterials, this paper proposes a graded metamaterial-
based energy harvester for broadband and high-capability piezoelectric energy harvesting
focusing on ambient vibrations (<100 Hz). The broadband energy harvesting target has
been inherently satisfied by the spatial-frequency separation of the graded metamaterial
design with an efficient grading profile. Furthermore, the high capability energy harvesting
target has been investigated by dispersion analysis of low-frequency wave propagation
to reveal the slow wave phenomena and the wave field amplification mechanism of the
graded metamaterial. By combining the two advantages of the graded metamaterial
with the two main goals for piezoelectric energy harvesting, the power performance and
the energy harvesting efficiency of the graded-harvester are thoroughly discussed with
theoretical, numerical, and experimental analyses. Finally, experiments were carried out
to validate the performance of the graded-harvester. It is shown that coupling of the
graded metamaterial with the self-powered interface circuit results in a five-fold increase
of the harvested power with respect to the conventional harvesting solution commonly
adopted in IoT devices. Therefore our proposed design opens up new potential for self-
sustainable IoT devices.
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2.A Appendix

2.A.1 Equivalent Impedance of the SP-SECE Interface Circuit

In phase P3 as shown in Figure 2.3, the Li-Cp resonance should be introduced at the ieq
crossing zero point by conducting the switching path with T2. Nevertheless, the cascaded
connection of T1 and T2 renders the conduction of T2 dependent on the conduction of T1
to enable a nonzero base current. In order to conduct T1, its base voltage (the bridge-
rectified piezoelectric voltage with forward voltage drop VF ) should be lower than its
emitter voltage Vc1 by VD + VBE (the sum of the forward voltage drop of D1 and the
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base-emitter voltage of T1). In other words, vp should also have the same voltage drop
to conduct T1. Therefore, the phase delay φ between the switching instant and current
zero-crossing instant is calculated as:

φ = arccos

(
1− VD + VBE

Voc

)
, (2.10)

Assuming that each bias-flip action takes much less time than a vibration cycle, the
piezoelectric voltage vp can be formulated by the following piece-wise equation:

vp(t) = Voc×

{
cosφ− cos(ωt), φ ≤ ωt < π + φ;

− cosφ− cos(ωt), π + φ ≤ ωt < 2π + φ.
(2.11)

Through a Fourier analysis, the fundamental harmonic of vp can be derived based on the
piecewise expressions in (2.11). The fundamental component of vp is denoted as vp,f [21].
Based on harmonic analysis, the dynamics of SP-SECE can be formulated in terms of
equivalent impedance, which is obtained in the frequency domain as follows:

Ze =
1

ωCp

[
2

π
(1 + cos 2φ− j sin 2φ)− j

]
. (2.12)

2.A.2 Displacement Amplitude of the Parasitic Resonators

In order to solve the governing equations representing the graded-harvester, the solution
of the host beam deflection is obtained with the separation of variables as w (x, t) =
N∑

n=1

ϕn(x)ηn(t), where ϕn and ηn represent the mode shape and modal coordinate of the

nth mode, respectively. By substituting this latter into Eq. 2.4, applying the orthogonality
relationships for ϕm, and assuming harmonic excitation and solutions [55], the relative
displacement amplitude of rth pair of parasitic resonators can be expressed as:

Ur =

ω2Wb + ω2
N∑

n=1

Hnϕn (xr)

(1 +Ker/kmr)ω2
r + j2 (1 +Der/Dmr) ζrωrω − ω2

, (2.13)

where Wb and Hn represent the amplitude of the harmonic base excitation and the nth

mode modal amplitude, respectively.

Then, by plugging Eq. 2.13 into the modal form of Eq. 2.4, the governing equation can
be simplified as:

(
ω2
m − ω2

) Hm

mL
− ω2

N∑
n=1

R∑
r=1

M̂rCrϕm (xr)ϕn (xr)Hn = Qm (2.14)

where M̂r = 2Mr/ (mL) is the normalized equivalent mass of rth pair of parasitic res-
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onators. The coefficient Cr and the modal force item Qm can be expressed as:

Cr = 1 +
ω2

(1 +Ker/kmr)ω2
r + j2 (1 +Der/Dmr) ζrωrω − ω2

,

Qm = Wbω
2

(
R∑

r=1

M̂rCrϕm (xr) +
1

L

∫ L

0

ϕm(x)dx

)
.

(2.15)

By writing Eq. 2.14 into matrix form and accounting for the contributions of all N
modes together, the modal amplitude Hn can be solved by matrix inversion. Finally, by
substituting Hn back into Eq. 2.13, Ur can be solved.
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Chapter 3

Circuit Solution for Controlling

Nonlinear Dynamics

Paper Details
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text to adapt the original paper to the format of the thesis and improve readability.

Author and Co-authors Contributions

The author of this thesis proposed the conceptualization of the circuit solution for orbit
jump in nonlinear piezoelectric energy harvesting systems. He also took charge of the
theoretical analyses by electrical impedance modeling and the nonlinear time-domain
simulations by multiple time scales method. Dr. J. Wang and Prof. Dr. G. Hu contributed
to the experiments. Prof. Dr. W.H. Liao, Prof. Dr. J. Liang, and Dr. A. Colombi
provided overall supervision and guidance.

Key Findings

• A self-contained solution for time-sharing orbit jump and energy harvesting in non-
linear piezoelectric energy harvesting by using a switched-mode circuit.

• Vibration energy is harvested and accumulated for later vibration exciting, such
that to achieve vibration in the high-energy orbit.

70

https://doi.org/10.1016/j.ymssp.2023.110601
https://creativecommons.org/licenses/by-nc-nd/4.0/


• Phase evolution by multi-scale method, which reveals the mechanism of orbit jump,
is theoretically studied.

• The harvested power yields a nine-fold increase after attaining the high-energy orbit
compared with that in the low-energy orbit.

General comments and link to the next chapter

This chapter introduces the reader to the realm of nonlinear dynamics and active control
to fulfill the second objective of this thesis (see Section 1.4). It initiates the investigation of
the electromechanical dynamics of nonlinear piezoelectric harvester and proposes a circuit
solution of energy harvesting and vibration actuating for self-contained orbit jumps.
In addition, the preliminary results herein unveil the promising potential of nonlinear
oscillators in dynamics control, hence laying the foundations for further in-depth research
on nonlinear metamaterials to follow in Chapter 4.
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Abstract

Nonlinearity has enabled energy harvesting to advance towards higher power output and
broader bandwidth in monostable, bistable, and multistable systems. However, operating
in the preferable high-energy orbit (HEO) rather than the low-energy orbit (LEO) for
making such advancement has restricted their applications. Based on a monostable non-
linear system, this paper proposes a self-contained solution for time-sharing orbit jump
and energy harvesting. The joint dynamics of an electromechanical assembly consisting
of a nonlinear energy harvester and a switched-mode piezoelectric interface circuit for
high-capability energy harvesting is studied. The proposed solution is carried out by
utilizing a cutting-edge switched-mode bidirectional energy conversion circuit (BECC),
which enables time-sharing dual functions of energy harvesting and vibration exciting. A
theoretical model is established based on impedance analysis and multiple time scales
method to analyze the stability, frequency response, and phase evolution of the au-
tonomous and nonautonomous nonlinear energy harvesting systems. In particular, the
detailed dynamics for the orbit jumps with the vibration exciting mode of BECC are
studied. Experiments are performed to validate the full-hysteresis-range orbit jumps with
the monostable nonlinear energy harvester. The harvested power after orbit jumps yields
a nine-fold increase, compensating for the energy consumption under vibration exciting
mode quickly. The proposed solution also refrains the system from extra mechanical or
electrical energy sources for orbit jumps, which leads to the first self-contained solution for
simultaneous energy harvesting and orbit jump in nonlinear piezoelectric energy harvest-
ing. This work enhances the practical utility of nonlinear energy harvesting technologies
toward engineering applications.

3.1 Introduction

Energy harvesting has been widely investigated over the last two decades as a potential
solution for powering wireless sensor nodes in Internet of Things (IoT) applications. It
enables the system to collect and convert energy, which opens up opportunities for self-
sustaining systems [142]. According to application scenarios, different technologies may
target solar energy, thermal energy, or vibration energy [143]. Among them, vibration
energy harvesting draws massive attention due to its easy accessibility in the ambient
environment. The most investigated electromechanical transduction mechanisms include
the piezoelectric, electromagnetic, and electrostatic ones [144].

This paper focuses on piezoelectric energy harvesting (PEH) as a result of its high power
density and compatibility in small-scale systems. Previous efforts have been made to
improve power output and broaden the bandwidth of energy harvesters [145].

For one thing, mechanically, multi-resonance [54] and frequency-self-tuning [146] struc-
tures were developed to create a resonance condition for broadening the effective energy
harvesting bandwidth. However, their power density and overall capability are inferior,
compared with the nonlinear mechanical design [147]. To form a nonlinear energy har-
vester, attractive or repulsive forces, asymmetric geometry, and post-buckling configura-
tion are usually utilized [148]. The caused nonlinearity expands the working bandwidth
and may increase the power output, owing to the hardening or softening effects. Never-
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theless, at the same time, the consequent hysteresis creates multiple root branches where
the high-energy orbit (HEO) and the low-energy orbit (LEO) coincide [149]. For the
objective of energy harvesting, the oscillation on HEO with a much higher power output
is preferable. The studies of orbit jump in the energy harvesting field started by Erturk
et al. [26], Sebald et al. [150], and Masuda et al. [151] in the early 2010s by methods
of external impacts by hands, high voltage excitation with piezoelectric actuators, and
negative resistance, respectively. Since then, different methods have been proposed for
this target. The majority of the orbit jump methods utilize the system parameter tuning
or perturbation strategies to force or perturb the oscillator out of its original LEO and
seek the path to the HEO in the phase space, including negative impedance [152, 153],
load perturbation [154], stiffness modulation [155], buckle level modulation [156, 157].
Meanwhile, other methods enable extra energy injected into the oscillator, which also fa-
cilitates the orbit jumps, including energy transfer by projectile impact [158], piezoelectric
voltage excitation [159], magnetic plucking with bistable energy harvesters [160], attrac-
tor selection [161], sliding mode control methods [162, 163], and excitation tuning [100].
These methods were analytically and experimentally demonstrated, but these solutions
are still tough to be implemented outside the laboratory since most of them rely on extra
devices or energy sources to adjust their states. In addition, the energy or control cost
of tuning the parameter may outweigh the overall outcome. In general, there are two
common issues for carrying out these existing methods.

• An extra energy source, which is capable of intensive mechanical drive output, is
required.

• An intensive energy injection, if introduced at an improper phase, may induce much
negative work and reduces the actuating efficiency.

Therefore, more controllable, self-contained, and efficient energy injection methods for
orbit jumps are still in demand to practically enhance the nonlinear energy harvester
performance and implement the energy harvester in the field.

For another, electrically, many piezoelectric interface circuits are proposed. The linear
AC energy harvesting circuit of a pure resistive load has reactive power under some
phase ranges [21]. To better improve the power factor, more advanced nonlinear AC-
DC circuits, required by most electronic devices, were developed. The standard energy
harvesting circuit utilizes the rectifier and smoothing capacitor to output a DC voltage
to the load [164]. Afterward, different charge manipulation approaches were employed to
increase the power output further. The parallel or series synchronized switch harvesting
on inductor (SSHI) circuits flips the piezoelectric voltage at displacement extreme over an
inductor. They enlarge the harvested power by several folds [27, 165]. The synchronized
electric charge extraction (SECE) circuit enhances the power output and has a load-
independent feature [166]. Combining the SSHI and SECE concepts created the double
synchronized switch harvesting circuit, which allows control of the extraction process
and increase of voltage [167]. The synchronized triple bias-flip (S3BF) circuit [168] is
proposed to reduce the switching loss and increase the voltage level by introducing three
successive voltage bias-flips during each voltage-flip process. Based on this circuit, Zhao
et al. [23, 30] proposed the bidirectional energy conversion circuit (BECC) by removing
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the bridge rectifier. The BECC enables the dual functions of energy harvesting and
vibration exciting by using the same circuit in a time-sharing manner. Compared with the
applications in linear energy harvesting systems, some recent works have investigated these
interface circuits with nonlinear energy harvesters to explore the joint dynamics [169–171].
Their results showed that the circuit might further extend the systems’ bandwidth and
increase the power output [145]. But how to ensure a vibration in the HEO in the inherent
hysteresis range has not been addressed. As for the S3BF circuit, its interaction with a
nonlinear energy harvester is not well-studied yet.

Although many efforts have been taken to enhance the power output and broaden the
bandwidth of energy harvesters, general modeling methods covering both mechanical
dynamics and electrically induced dynamics are quite deficient. Besides, present orbit
jumps heavily rely on extra intensive mechanical or electrical energy sources, which is
not realistic in practical applications. This work uses an impedance model and multiple
time scales method to investigate the joint dynamics of a monostable energy harvester
connected with the BECC circuit. Based on the dual functions of this circuit, this research
proposes an efficient vibration exciting strategy for orbit jumps to enhance the harvested
power and bandwidth for nonlinear energy harvester.

This paper is organized as follows. Following the introduction, the integration of the
monostable energy harvester and BECC is presented in Section 3.2. The equivalent
impedance model and electrically induced parameters are defined. In Section 3.3, the
dynamics of the integrated system are investigated. Firstly, the stability analysis of an
autonomous case is studied to reveal the effects of different operation modes on the dy-
namics of the nonlinear harvester. Next, the nonautonomous systems’ frequency response
and state-space phase evolution are performed with a multiple time scales method. The
detailed steps for orbit jump from low-energy orbits to high-energy orbits are analyzed.
Section 3.4 presents the experimental results for orbit jumps of the nonlinear energy har-
vesting system with BECC. An energy evaluation is conducted to quantify the overall
energy consumption during orbit jumps. Section 3.5 discusses the extension of this orbit
jump solution further to a bistable energy harvesting system. Finally, the conclusions are
drawn in Section 3.6.

3.2 System Overview

3.2.1 Nonlinear PEH System using BECC

As Figure 3.1 shows, a nonlinear piezoelectric energy harvester is considered. The non-
linearity is introduced by the repelling force of two opposite magnets. A monostable
oscillator is achieved by tuning the distance between magnets. The BECC interface cir-
cuit, to be explained in the Subsection 3.2.2, is connected with the piezoelectric energy
harvester. The equations of motion for the integrated system can be represented as [21]:{

Mẍ+ Cẋ+Kx−K1x+K2x
3 + αevp = Bf cos (ωt)

αeẋ− Cpv̇p − ip = 0
(3.1)
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Figure 3.1: System overview of a nonlinear piezoelectric energy harvester with the bidirectional energy
conversion circuit (BECC).

where M , C, and K are equivalent mass, damping, and stiffness of the cantilever beam,
while K1 and K2 denote the coefficients of the nonlinear stiffness caused by magnets,
respectively. αe is the force-voltage factor in the electromechanical coupling. The shaker
delivers a harmonic base excitation with an amplitude Bf and frequency ω. Cp is the
clamped capacitance of the piezoelectric patch. The displacement of the equivalent mass
is denoted by x, and vp denotes the voltage of the piezoelectric element. ip represents
the current flowing through the interface circuit. In the circuit, Cb bears dual functions
of voltage bias-flip and energy storage. An inductor L with an equivalent series resis-
tance (ESR) r facilitates the charge manipulation together with the diode and MOSFET
network. System parameters are summarized in Table 3.1.

3.2.2 System Characterization

To quantify the electrically induced dynamics by BECC, we first formulate Ze the electrical
equivalent impedance of the Cp and BECC combination. The current flowing through the
Cp and BECC combination is indicated as follows:

ih (t) = αeẋ(t), (3.2)

where ih is a periodic current with the possibility of higher-order harmonics due to the
presence of cubic nonlinearity in (3.1). For a linear energy harvester, ih only contains the
fundamental harmonic, and voltage flips occur at current crossing zero points (displace-
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ment extremes). While cubic nonlinear energy harvesters span from periodic to chaotic
oscillations, these high-order harmonics and chaotic oscillations may induce multiple volt-
age flips in one fundamental oscillation cycle. To prevent these behaviors, we employ a
switch resting time after each voltage flip and assume weak nonlinearity in the system
for periodic solutions. Therefore voltage vp could still have a first-order resonant period,
which can be formulated with a piecewise equation as follows:

vp (t) =


1

Cp

∫ t

0

ih(t)dt− VM , 0 ≤ t <
π

ω
;

VM − 1

Cp

∫ t

π
ω

ih(t)dt,
π

ω
≤ t <

2π

ω
,

(3.3)

where VM is the final voltage after the M th bias-flip actions in each synchronized instant
[30]. It can be expressed as a function of the bias voltage Vb and the open-circuit voltage
Voc according to the equations for energy harvesting modes and vibration exciting modes
of BECC [30]. With the definition of the open-circuit voltage as the voltage accumulation
on the clamped capacitor Cp during a quarter of a vibration cycle, Voc reads:

Voc =
1

2Cp

∫ π
ω

0

ih(t)dt. (3.4)

In (3.3), VM < 0 corresponds to energy harvesting modes, and VM > 0 corresponds to
vibration exciting modes. Different M number indicates the bias-flip action times. In
this paper, we choose M = 3 and realize the S3BF energy harvesting mode and S3BF
vibration exciting mode of BECC. These two modes are simply referred to as the energy
harvesting (EH) mode and the vibration exciting (VE) mode of BECC. Figure 3.2 (a)
and (c) show the voltage and current waveform under the EH and VE modes of BECC.
The switching sequence which controls different MOSFETs in Figure 3.1 is referenced in
[30]. The enlarged view in Figure 3.2 (b) and (d) illustrate the intermediate voltages at
a falling edge and a rising edge, which are influenced by the flipping factor γ ∈ (−1, 0)
[30]. Under EH mode, the piezoelectric voltage vp is in-phase with the oscillator velocity
ẋ (also with piezoelectric current ih), which indicates the energy flow from the mechanical
structure into the interface circuit. In contrast, the out-of-phase condition happens under
VE mode. It should be noted that vp is a piecewise and continuous function with respect
to the oscillator velocity ẋ. The piezoelectric coupling force αevp is also a piecewise
and continuous force, which does not have a high degree of smoothness. However, here
we employ the first-order assumption to avoid the tedious expansion and focus on weak
nonlinear monostable systems. A complete solution that addresses higher-order harmonics
induced by circuits will be discussed in future work.

By studying the magnitude and phase relation between the fundamental harmonic of
vp and ih, we can formulate the equivalent impedance of the clamped capacitor Cp and
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BECC combination in the frequency domain [172] as follows:

Ze(jω) =
Vp,f (jω)

Ih(jω)
=

1

ωCp

[
4

π

(
1− ṼM

)
− j

]
, (3.5)

where Vp,f is the magnitude of the fundamental harmonic of vp. ṼM is the Voc normalized
final voltage after flipping. According to the electromechanical analogy, the electrical
impedance can be represented by mechanical parameters as follows [21]:

Ce = α2
e Re{Ze}

Ke = −ωα2
e Im{Ze},

(3.6)

where Ce and Ke are the electrically induced damping and stiffness. Ke is a constant
value since the imaginary part of Ze is constant, which represents the added stiffness from
Cp. On the other hand, the tuning range of Ce depends on the load condition of BECC
determined by the intermediate voltages [23]. The electrically induced damping range for
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EH mode is given as follows:{
Ce ∈ R+

∣∣∣∣4α2
e(1− γ)

ωπCp

≤ Ce ≤
4α2

e(3− 3γ)

ωπCp(1 + γ)

}
. (3.7)

It can be seen that under the fundamental harmonic assumption, the dependence of Ce

on the oscillator velocity is canceled. In EH mode, Ce is positive, which indicates that
the nonlinear oscillator is damped for energy harvesting purposes. The stored energy in
the bias/storage capacitor can be used for vibration-exciting propose. Therefore, with the
maximum bias voltage vb,max = 2Voc(1− γ)/(1 + γ) [23], the range of Ce under VE mode
reads: {

Ce ∈ R−
∣∣∣∣−4α2

e(3γ
4 − 5γ3 + 8γ2 − 7γ + 1)

ωπCp(1 + γ)2(γ2 − γ + 1)
≤ Ce < 0

}
. (3.8)

In VE mode, Ce is negative. Therefore, adding Ce to mechanical damping C reduces
the total damping for higher vibration amplitudes. It could even form a gross effect of
negative damping corresponding to an actuation force, which excites the oscillator from
a quiescent state [30].

3.3 Time-sharing Orbit Jumps

In order to facilitate the nonlinear oscillator to reach the HEO for more harvested energy,
the main idea is to perturb the oscillator into the basin of attractions for HEOs, regardless
of the method used. Therefore, stability analysis and state-space evaluation are necessary
to reveal the mechanism of orbit jumps and the influence of the proposed orbit jump
solution by the time-sharing operations of BECC.

3.3.1 Autonomous Case

We first analyze the stability of the nonlinear oscillator without external excitation force,
which forms an autonomous system with the equation of motion:

Mẍ+ Cẋ+Kx−K1x+K3x
3 +Kex+ Ceẋ = 0, (3.9)

where the electrically induced Ce and Ke can be determined with (3.6) to (3.8). By
writing (3.9) into state-space form, this nonlinear oscillator can be represented as follows:{

ẋ = y,

ẏ = −ω2
0x− k3x

3 − cy,
(3.10)

where y represents the velocity of the oscillator. ω2
0 = (K +Ke −K1)/M , k3 = K3/M ,

c = (C + Ce)/M are the mass M normalized gross effect of linear stiffness, nonlinear
cubic stiffness, and the gross effect of linear damping, respectively. Since ω2

0 is a constant
parameter above zero, this nonlinear oscillator is a monostable nonlinear oscillator with
a fixed point xp at the origin. The linearization of the dynamics around the fixed point

78



3.3. Time-sharing Orbit Jumps

xx

Ce

Ce=0 Ce=-CCe>0 Ce<-C

Re(λ)

Im(λ)
λ1(Ce)

λ2(Ce)

Re(λ)

Im(λ)
λ1(Ce)

λ2(Ce)

Re(λ)

Im(λ)
λ1(Ce)

λ2(Ce)

Re(λ)

Im(λ)
λ1(Ce)

λ2(Ce)

.

Figure 3.3: Four different phase portraits correspond to different Ce with the eigenvalues depending on
Ce.

can be determined by the Jacobian matrix:

J =

[
0 1

−ω2
0 − k3x

2 −c

]
. (3.11)

By substituting x = xp = 0, we obtain the eigenvalues:

λ1,2(Ce) = − c
2
±
√
c2 − 4ω2

0

2
. (3.12)

Assuming 4ω2
0 > c2, the eigenvalues are a pair of complex conjugates. The sign of their

real parts is determined by the sign of c. Therefore, the linearized dynamics around the
fixed point also depend on the sign of the real part of the eigenvalues. When c = 0, the
two eigenvalues are purely imaginary, indicating that a two-dimensional center manifold
will be determined around the origin. However, different from the nonlinear stiffness K3

dependent center manifold, which features a Hopf bifurcation with limit cycles on one side
of the origin [149]. There is no limit cycle on either side of the bifurcation point when
the damping Ce is chosen as a dependent parameter.

Figure 3.3 illustrates four different phase portraits from time-domain integration corre-
sponding to four Ce cases. Ce = 0 corresponds to the original nonlinear oscillator without
BECC, whose phase portrait is a stable spiral with its original damping C. Under EH
mode, the total damping C +Ce becomes larger; therefore, the phase portrait also shows
a stable spiral but decays faster to the origin. When Ce = −C for VE mode, the origin
becomes a nonlinear center. This is a special case of a degenerate Hopf bifurcation, where
the eigenvalues have purely imaginary parts. As Ce further decreases when Ce < −C,
the real parts of eigenvalues become positive. This corresponds to an unstable spiral such
that a self-excited oscillator is formed to achieve higher vibration amplitudes.
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3.3.2 Nonautonomous Case

Besides the autonomous stability analysis, we also explore the frequency response of this
nonlinear energy harvester under an external periodic driving force around the primary
resonance of the nonlinear oscillator. With the assumptions of weak damping, nonlinear
reaction force, and weak external force, the governing equation of the nonlinear oscillator
with BECC can be written as follows:

ẍ+ cẋ+ ω2
0x+ k3x

3 = bf cos (ωt) , (3.13)

where bf = Bf/M is the mass normalized force amplitude, and ω is the base excitation
frequency. Note that an analytical approximation for (3.13) takes the following form:

x(t) = a (t) cos [ωt+ φ (t)] +O (ε) , (3.14)

where a(t) and φ(t) are slowly time-varying real-valued amplitude and phase. This solu-
tion can be constructed with asymptotic series through the multiple time scales method
[173]. The detailed derivation of the slow flows is documented in Appendix. 3.A. The
state space governing equations of them are given as:

da

dt
= −ac

2
− bf

2ω
sinφ,

dφ

dt
=
ω2
0 − ω2

2ω
+

3k3a
2

8ω
− bf

2ωa
cosφ.

(3.15)

The two derivatives describe the slow flows of the amplitude and phase. Under a steady
state, the fixed points or the amplitudes and phase can be obtained by equating the
right-hand side to zero as follows:

ac

2
= − bf

2ω
sinφ,

a (ω2 − ω2
0)

2ω
− 3k3a

3

8ω
= − bf

2ω
cosφ.

(3.16)

Squaring and adding the two equations in (3.16) yields the frequency response function
of the nonlinear energy harvester:

a

bf
=

1√
c2ω2 +

(
ω2 − ω2

0 − 3
4
k3a2

)2 . (3.17)

Alternatively, (3.13) can also be solved by using the harmonic balance method [84]. The
expression of the solution has the same form as (3.17) with first-order harmonic assump-
tion. The steady-state displacement amplitude of the nonlinear energy harvester is shown
in Figure 3.4. It can be seen that, due to the cubic nonlinear stiffness, the frequency
response has a hardening effect with the presence of a hysteresis range. The two stable
fixed points from (3.16) and an unstable fixed point give rise to the upper and lower
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branches, which forms the hysteresis range between the two gray dash lines in Figure 3.4.

In order to quantify the influence of electrically induced damping Ce on the hysteresis
range of the nonlinear harvester, the two critical frequency ωu and ωd for up and down
orbit jumps can be determined by imposing the derivative dω/da = 0 in (3.17). Under
the weak damping assumption [174], the two critical frequencies read:

ωu = ω0

[
1 +

1

2

(
3

2

)4/3(k3b2f
ω6
0

)1/3
]
, (3.18)

ωd =
ω0√
2

[
1 +

(
1 +

3k3b
2
f

ω4
0c

2

)1/2
]1/2

. (3.19)

It can be seen that ωu does not depend on the damping coefficient while ωd does. This
dependence on damping leads to the decrease of ωd from an open-circuit case to an energy
harvesting case due to a more significant gross effect of total damping c as shown in Figure
3.4. Therefore, orbit jumps from low-energy orbits to high-energy orbits take effect in the
hysteresis range of a nonlinear harvester under EH mode indicated by the red shaded area
in Figure 3.4.

When a slowly varying parameter Ce is introduced, the frequency-domain analysis based
on the steady-state assumption in (3.16), like harmonic balance, are no longer applicable.
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Thus, in this paper, we utilize the state-space equations in (3.32) to better illustrate the
influence of varying electrically induced damping Ce with a periodic harmonic excitation
force. The stability of the fixed points and solution branches of the nonlinear oscillator
can be determined by the Jacobian of the slow flows in (3.32) as follows:

J =

 − c
2

a
(

ω2−ω2
0

2ω
− 3k3a2

8ω

)
− 1

a

(
ω2−ω2

0

2ω
− 9k3a2

8ω

)
− c

2

 . (3.20)

The eigenvalues of the Jacobian can be solved as follows:

λ1,2 = − c
2
±

√(
σε
2ω

− 3k3a2

8ω

)(
9k3a2

8ω
− σε

2ω

)
, (3.21)

where σε = ω2−ω2
0. For EH mode, the gross effect of damping c < 0. The stability of three
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branches in the hysteresis range indicated with a1, a2, and a3 in Figure 3.4 are determined
by their eigenvalues. Taking an example, where ω = 2π7 (rad/s), the two stable fixed
points a1 and a3 both have a pair of complex conjugate eigenvalues with negative real
parts, which create stable spirals. Another unstable fixed point a2 has a negative and
a positive real eigenvalue, which forms a saddle point. As shown in Figure 3.5 (a), this
saddle point associates a stable manifold Ws and an unstable manifold Wu, which are
tangent to the corresponding eigenvectors. The stable manifold Ws partitions the phase
portrait into two regions, which are the basins of attraction of the stable fixed points a1
and a3. Different initial conditions attract the trajectories to either a1 (high-energy orbit)
or a3 (low-energy orbit).

Taking two different initial conditions indicated with yellow stars in Figure 3.5 (a), on
both sides of the stable manifoldWs, they finally rest in different energy orbits. As shown
with the time evolution of their (x, ẋ) phase portraits in Figure 3.5 (b), the light blue
trajectory for HEO corresponds to the initial condition lies inside the region surrounded
by the stable manifold. Therefore, orbit jumps from LEO to HEO equals to shift and
tune the (a, φ) phase portrait of the oscillators such that by VE mode of BECC, they can
finally be attracted to the high-energy orbit or the a1 fixed point.

For VE mode, the two stable fixed points a1 and a3 in EH mode become unstable if
c < 0 is satisfied. If we also assume a small absolute value of negative Ce, a2 will still
remain a saddle point. The two unstable spirals and the saddle node are enclosed by red
trajectories in Figure 3.6 (a). We first take the initial conditions for LEOs and carry on
the orbit jump process. Figure 3.6 (a) shows their phase evolution under different circuit
modes. The three steps for orbit jumps labeled with numbers are elaborated as follows:

1 The oscillator is first attracted to the fixed point for LEO, and the circuit is initially
in EH mode to harvest energy with a positive Ce. The trajectories for this step
are stable spirals. All the trajectories attracted to LEO have the same a and φ at
steady states. The (x, ẋ) time evolution for energy harvesting at the LEO is shown
with blue curves in Figure 3.6 (b).

2 The circuit is switched to VE mode with negative Ce for vibration exciting. The
oscillator first leaves the unstable fixed point in the (a, φ) phase portrait in a reverse
spiral manner. When trajectories meet the saddle point, they will be first attracted
and then repelled by the saddle point into higher displacement amplitudes. The
(x, ẋ) time evolution for vibration exciting is shown with red curves in Figure 3.6
(b).

3 The circuit is switched back to EH mode. The trajectories right now lie in the
basin of attraction for the HEO. Therefore, they finally rest in the HEO for more
harvested energy. The (x, ẋ) time evolution in energy harvesting at the HEO is
shown with light blue curves in Figure 3.6 (b).

By closely observing the (x, ẋ) time evolution of orbit jump in Figure 3.6 (c), the dis-
placement envelop depicted by the red curve under the VE mode becomes almost periodic,
which is similar to a beat. This is actually due to the phase shift in the (a, φ) phase por-
trait. At the beginning of vibration exciting, the trajectory slowly leaves the unstable
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fixed point in an unstable spiral manner, during which the displacement amplitude be-
gins to grow. After several cycles, the saddle point attracts and repels the trajectory with
the stable and unstable manifolds. During this period, there exist a few cycles of increase
and decrease of displacement amplitude, which forms the beating waveform. However, the
envelope of the displacement always has an increasing trend due to the negative damping
effect. After repelled by the saddle node, the displacement amplitude of the oscillator is
amplified and lies in the basin of attraction for the HEO. Therefore, switching the circuit
back to EH mode allows the trajectory to be easily attracted to another stable fixed point.

Figure 3.7 shows the evolution of Ce with respect to time and the basin of attractions
with different initial conditions. For the EH mode of BECC, as shown in Figure 3.7 (a),
Ce maintains a constant positive value which corresponds to a certain load condition for
energy harvesting. For the transition from EH to VE mode, Ce turns from a positive to a
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negative value starting from 6s to 10s. A smooth transition is applied to avoid undesired
numerical instability in the simulations. It can be seen from Figure 3.7 (a) that, for EH
mode, the basin of attractions for HEO is surrounded by the stable manifold Ws. While
with the phase manipulation by VE mode, the basin of attractions for HEO is extended
to all initial conditions in Figure 3.7 (b). The above discussions of the basin of attractions
are based on the ideal model that the system does not have time delays. However, in real
applications, the laser vibrometer and microcontroller, which form a feedback control loop,
may introduce small time delays. The time delay may affect the behavior of a nonlinear
energy harvester and its orbit jump. Thus, it is necessary to investigate the effect of time
delay in the energy harvesting system. A delay time td is therefore introduced to the
piezoelectric voltage vp in (3.3) as follows:

vdp (t) =


1

Cp

∫ t

β
ω

ihdt− VM , β ≤ ωt < π + β;

VM − 1

Cp

∫ t

π+β
ω

ihdt, π + β ≤ ωt < 2π + β,

(3.22)

where β = ωtd represents a delay phase satisfying 0 < β < π/2. Following the same
procedures mentioned in Subsection 3.2.2. The equivalent impedance of BECC with a
delay time reads:

Zd
e (jω, β) =

4

πωCp

[
cos β

(
cos β − ṼM

)
+ j

(
sin β − sin β cos β − π

4

)]
.

(3.23)

With the presence of the time delay, the absolute value of the real part of Zd
e becomes

smaller compared with that in (3.5). Therefore, the absolute value of the electrically
induced damping Ce also becomes smaller. It not only reduces the gross effect of damping
c and harvested power but also decreases the effect of vibration exciting in VE mode.
Take a bias voltage vb = 2Voc as an example. The basin of attractions corresponding to
different delay times are illustrated in Figure 3.7 (b) to (d). It can be seen that some initial
conditions achieved HEO from LEO with no time delay turn back to LEO eventually in
Figure 3.7 (c). This phenomenon is more prominent in Figure 3.7 (d) when td = 8 ms.
Therefore, a larger bias voltage is needed to increase the electrically induced damping and
achieve full-hysteresis-range orbit jumps under the same delay time.

3.4 Experiment

In Figure 3.4, the frequency response function of the nonlinear harvester has a hysteresis
region between 6.7 Hz and 7.8 Hz. This wide span makes the nonlinear system surpass
the linear system in terms of bandwidth. However, there is a premise for making the
broadband effect. Because of the dual roots within this hysteresis region, one in LEO and
the other in HEO, orbit jump capability is necessary to ensure a high power output. The
BECC provides a flexible control to manipulate the energy flow between the mechanical
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Table 3.1: System parameters

Harvester geometry:

Cantilever (mm3) 90×10×1 Material Copper
Magnet (mm3) 10×10×10 Material Neodymium
Piezoelectric patch (mm3) 56×7×0.2 Material PZT
Center-to-center distance of dipole magnets (mm): 32.3

Mechanical parameters:

M (g) 8.9 C (Ns/m) 0.011
K (N/m) 52.6 K1 (N/m) 41.46
K2 (kN/m3) 226.7 Bf (mN) 8.9

Electrical parameters:

αe (mN/V) 0.127 γ −0.38
Cp (nF) 35.31 L (mH) 47
r (Ω) 45.2 Cb (µF) 47
Rp (kΩ) 870 MOSFET ZVN(P)4424
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Figure 3.8: Experimental setup and the orbit jump setup. The blue and red shadow lines indicate the
energy flows for energy harvesting and vibration exciting. (a) Energy harvesting at LEO with low output
power; (b) Orbit jump with vibration exciting mode; (c) Energy harvesting at HEO with high output
power.

and electrical ends. With the help of the vibration exciting mode provided by BECC, it is
possible to realize the orbit jump using the same switched-mode energy harvesting circuit.
This section validates this self-contained time-sharing orbit jump and energy harvesting
solution.

3.4.1 Setup

The experimental setup is illustrated in Figure 3.8. A personal computer (PC) controls the
base excitation of the energy harvester through a shaker system (APS420, SPEKTRA).
A constant base excitation inertial force Bf = 8.9 mN is applied to the clamped end of
the cantilevered harvester under a constant acceleration magnitude of 1 m/s2. A laser
Doppler vibrometer (OFV-552/5000, Polytec) monitors the tip displacement and velocity
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of the oscillator. It sends the information to the PC and a microcontroller (MSP430G2553,
Texas Instrument) as an interrupt signal for synchronizing the BECC switch controls. The
piezoelectric patch is connected with BECC following a bias/storage capacitor Cb of 47 µF
for both energy harvesting and vibration exciting functions. An oscilloscope (HDO6104A,
Teledyne) tracks the operation waveform of this nonlinear energy harvesting system. The
detailed geometric, mechanical, and electrical parameters of this monostable energy har-
vester are listed in Table 3.1. The orbit jump setup is also explained in Figure 3.8. As
the system is entrained on LEO, as shown in Figure 3.8 (a), the energy harvester collects
energy from the vibration source and stores the energy in the bias/storage capacitor at
a low rate. As the bias voltage in capacitor Cb reaches 30 V, The BECC is switched
to vibration exciting mode. The stored energy is now boosted back into the mechanical
structure to amplify the mechanical vibration, as illustrated in Figure 3.8 (b). When the
oscillator gradually reaches HEO, BECC is switched back to energy harvesting mode. As
a result, the system stabilizes on HEO and realizes higher power output, as shown in
Figure 3.8 (c).

3.4.2 Results

With the setup and proposed working mechanism, orbit jumps at different base excitation
frequencies are carried out experimentally. One of the experimental trials is shown in
Figure 3.9. The magnitude and frequency of the sinusoidal base excitation are 1 m/s2

and 7 Hz, respectively. The frequency falls in the hysteresis region of the nonlinear
oscillator. The red curves note that BECC is under the vibration exciting mode, while
the blue curves represent the energy harvesting mode. Two vertical gray planes indicate
the mode-transition instants. As we can see from the figure, in the first segment, the
system stays at LEO to collect energy at a low rate. At 1.6 s, the vibration exciting
mode of BECC is turned on by the microcontroller on the PCB board of BECC. The
vibration-exciting actions send energy back from the bias/storage capacitor Cb to the
oscillator to provoke large oscillations. Accordingly, the oscillator vibration amplitude
grows gradually and jumps over HEO by the saddle node. Afterward, the BECC is
switched back to the energy harvesting mode. The system remains on HEO and harnesses
energy at a larger power. During the vibration exciting process, the system experiences
the oscillation patterns mentioned above in Figure 3.6, as the projected displacement
trajectory shows. The gradual increase of displacement amplitude due to the unstable
spiral and the saddle node together accounts for the success of orbit jumps. A video clip
(Orbitjump.mp4) recording the orbit jumps of the energy harvester is attached with the
paper.

In one of our previous conference papers [175], it has been shown that the VE mode of
BECC can realize orbit jumps by utilizing the energy stored in the bias/storage capacitor.
Here we take a detailed evaluation of energy consumption and recovery. As mentioned
above, the piezoelectric voltage is captured and shown in Figure 3.10 for an orbit jump
trial. The peak voltage for the EH mode has been amplified several times after the orbit
jump. During vibration exciting, the exciting voltage gradually decreases with voltage
drop on the bias/storage capacitor. The enlarged views show the nonlinear oscillator’s
detailed voltage and velocity waveform for VE and EH modes, respectively. The out-of-
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Figure 3.9: A trial of experimental orbit jump in a monostable nonlinear energy harvester with BECC.
The curves represent the displacement and velocity (x, ẋ) phase evolution over time. The orbit-jump
segment under VE mode is illustrated in red within two vertical gray planes, which indicate the mode
transitions.

phase and the in-phase relationships between piezoelectric voltage and velocity correspond
to the energy flow from the electrical to the mechanical domain and reverse directions,
respectively, in the nonlinear harvesting system. The energy flow directions agree with
the voltage drop and rise across Cb under different operation modes.

The energy gain and loss of the bias/storage capacitor Cb are studied to evaluate the
energy consumption of orbit jumps. In the whole orbit-jumping process, the energy is
consumed in the microcontroller for switching control, vibration excitation, and also in
dissipation in parasitic resistance. Neglecting the minor expenditure in the microcontroller
[23], the energy consumption for the orbit jump can be calculated as follows:

EV E =
1

2
Cb

(
V 2
bf − V 2

af

)
≈ 11.2 mJ, (3.24)

where Vbf , Vaf represent the voltage before and after the exciting action on Cb. Vbf is
pre-charged to 29 V in this case, and Vaf is measured to be 19.1 V. Given that Cb =
47 µF, the circuit consumes about 1.09 mW average power for the vibration exciting
propose during the orbit jump process. It should be noted that the energy consumed
from Cb will be partially dissipated by the equivalent series resistance of the inductive
branch in the bias-flip actions. Thus, the net injected energy from electrical to mechanical
domain is smaller than that is extracted from the storage capacitor Cb. By considering
the exciting efficiency of the VE mode of BECC [172], the actual average power for
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vibration exciting is around 0.16 mW. The detailed electrical performance, energy flow
analysis, and efficiency under different operation modes were documented in [30, 172].
After orbit jumps, the energy consumed will be charged back with a higher harvested
power on HEO. In the absence of a load, the average charging rate of the bias/storage
capacitor is regarded as the power output. Before the orbit jumps, the harvested power
is 0.011 mW. On HEO, after orbit jumps, the harvested power has been boosted for 9.1
times to 0.1 mW. Under this rate, the consumed energy by the vibration exciting action
will be recovered in about 2 minutes. A detailed charging curve as shown in Figure 3.11
also indicates a large slope and harvested power after orbit jump (by hand) around 10
s. Considering the size of the transducer, there is room further to optimize the system
power output and recovery time. The independence of external devices and the compact
dual functions of high-capability energy harvesting and vibration excitation demonstrate
the advantages of the proposed self-contained solution for time-sharing energy harvesting
and orbit jumps. Besides the base excitation at 7 Hz, multiple experimental trials are
performed under different base excitation frequencies in the hysteresis region. Successful
orbit jumps are observed between 6.7 Hz to 7.8 Hz, covering the entire hysteresis band in
EH-mode operation. Without utilizing extra mechanical or electrical energy sources for
vibration excitation, compared with existing studies in literature [26, 153], the proposed
self-contained solution realizes the orbit jumps within the full hysteresis range under EH-
mode.

3.5 Discussions

In this paper, a monostable nonlinear system is conducted by tuning the distance between
the dipole magnets, which expands the bandwidth and increases the output power of the
harvester. Besides, other nonlinear systems such as bistable, tristable, and multistable
types are extensively explored for similar advantages [147]. However, it is a general
case where these nonlinear systems may be trapped in one of its multiple potential wells
or randomly transited among wells, which reduces the controllability of orbit jumps.
Attempts are carried out with a bistable energy harvester to investigate the feasibility
of the proposed orbit jump solution regarding preceding systems. By decreasing the
distance between the two repelling magnets such that making K −K1 < 0, the original
single potential well bifurcates into two. Under certain excitation and initial conditions,
the bistable harvester can present complex motions [149].

• The interwell oscillation. In this case, the vibrator overcomes the energy barrier of
potential wells and travels between two wells. It is referred to as the HEO vibration.

• The intrawell oscillation. In this case, the system is trapped in one of its potential
wells.

• The chaotic motion. The oscillator randomly vibrates without a deterministic path.

In case the system does not vibrate on HEO, the BECC activates the VE mode to carry
out an orbit jump.

In the experiments, the chaotic motion is mostly observed. The system firstly vibrates
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Figure 3.10: Piezoelectric voltage in the experiment, which corresponds to the orbit jump process
described in Figure 3.9. The enlarged views show the experimental piezoelectric voltage in VE mode
(red) and EH mode (blue), respectively.

chaotically under a sinusoidal base excitation of 5.4 Hz, as shown in Figure 3.12. Then,
the oscillator is excited under VE mode for 5.9 s, whose phase portrait is illustrated in
red. Afterward, the harvester jumps to HEO, forming the interwell oscillation. Unlike
the monostable case, the motion of the bistable oscillator under VE mode does not share
the same phase evolution as that in the monostable case, whose phase portrait is shown
in Figure 3.9. The first reason is that the intrinsic chaotic motion of a bistable oscillator
makes it hard to predict and control the trajectory of a nonlinear oscillator; The second
is that the aperiodic motion violates the periodic assumption for calculating the electrical
equivalent impedance. Thus the quantitative methods are inappropriate for orbit jumps
of bistable energy harvesters with chaotic motions. However, for those bistable energy
harvesters whose periodic motions still dominate the dynamics, the methods proposed
in this work are still valid. As a result, the VE mode can only realize orbit jumps
around ωu, where the energy barrier is relatively low. The success of orbit jumps is thus
considered the consequence of an abrupt voltage stimulus by the vibration exciting of
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Figure 3.12: A trial of experimental orbit jump in a bistable nonlinear energy harvester with BECC.
The curves represent the phase evolution of the displacement and velocity pair (x, ẋ) over time. The
orbit-jump segment under VE mode is illustrated in red within two vertical gray planes, which indicate
the mode transitions.

BECC under the low energy barrier cases between LEO and HEO. It is believed that an
abrupt high voltage excitation is preferable for orbit jumps of a chaotic system [159]. For
other tristable and multistable energy harvesters whose potential barriers are believed to
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be minor [147], high-voltage stimuli would be a constructive option. The proposed dual
functions of BECC might inspire more efficient energy injection concepts for orbit-jump
solutions with nonlinear energy harvesters.

3.6 Conclusion

In summary, this work integrated a nonlinear piezoelectric energy harvesting with the
bidirectional energy conversion circuit (BECC) to realize a time-sharing orbit jump and
energy harvesting solution. Based on BECC, we first demonstrated the dual functions of
energy harvesting and vibration exciting using a BECC without extra energy sources and
actuators. Then, the ranges of electrically induced parameters under different operation
modes were studied with impedance analysis. Furthermore, the stability analysis, fre-
quency response, and state-space phase evolution of the autonomous and nonautonomous
systems were performed to analyze the influence of BECC over the dynamics of a non-
linear oscillator. Particularly, the detailed steps for the time-sharing orbit jump from
low-energy orbit to high-energy orbit using BECC were studied. We highlighted the ef-
fects of the unstable spiral and saddle node within the nonlinear system. From a practical
perspective, the effect of switch time delay on the basin of attractions has also been dis-
cussed. Finally, experiments were carried out to validate the feasibility and capability of
the proposed orbit jump solution over the entire hysteresis range of the nonlinear energy
harvester. The energy evaluation showed that the system’s output power yields a nine-
fold increase in the high-energy orbit. The application in a bistable energy harvesting
system also showed the versatility of this solution. This time-sharing orbit jump solution
could facilitate the practical applications of nonlinear energy harvesters. It provides an
effective method to attain high-capability piezoelectric energy harvesting on high-energy
orbits without the need for extra energy sources and actuators.
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3.A Appendix

The solution of Eq. 3.14 can be constructed with asymptotic series through the multiple
time scales method [173] as:

x = x0(τ, T ) + εx1(τ, T ) + · · · , (3.25)

where the fast and slow time variables are defined as τ = t and T = εt. Compared with
the harmonic balance or direct time-domain integration methods, the multiple time scales
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method can not only solve transient response given fast dynamics in a nonlinear system,
but also increases the numerical stability and efficiency by decomposing the system into
different time scales and integrating with different time steps [173]. This method partic-
ularly fits the nonlinear energy harvester and orbit jump solution proposed in this paper.
The time derivatives of (3.25) read:{

d
dt

= ∂
∂τ

+ ε ∂
∂T

+ · · · = D0 + εD1 + · · · ,
d2

dt2
= D2

0 + 2εD0D1 + ε2D2
1 + · · · . (3.26)

A frequency detuning parameter σ for the external force is given as follows:

ω2
0 = ω2 + εσ. (3.27)

By substituting (3.25) into (3.13), one can collect the ε0 and ε1 items as follows:
D2

0x0 + ω2x0 =0,

D2
0x1 + ω2x1 =− σ∗x0 − 2D0D1x0 − c∗D0x0 − k∗3x

3
0

+ b∗f cos(ωτ),

(3.28)

where σ∗ = σ/ε, c∗ = c/ε, k∗3 = k3/ε, and b∗f = bf/ε are the ε-scaled parameters for
nonlinear analysis.

The general solution for the first component of (3.25) can be written as follows:

x0 = A(T )ejωτ + Ā(T )e−jωτ , (3.29)

where A and Ā represent complex conjugates. By substituting (3.29) into the second
equation of (3.28), the result is:

D2
0x1 + ω2x1 = STejωτ − k∗3A

3e3jωτ + cc, (3.30)

where ST and cc represent the secular term and the complex conjugate. On setting the
source of the secular terms to zero, it gives:

2jωD1A+ σ∗A+ jc∗Aω + 3k∗3A
2Ā− 1

2
b∗f = 0. (3.31)

By defining the derivative of amplitude dA/dt = εD1A and introducing the polar form of
A = aejφ/2, (3.31) can be separated into real and imaginary parts for the slow flow of A
as follows:

da

dt
= −ac

2
− bf

2ω
sinφ,

dφ

dt
=
ω2
0 − ω2

2ω
+

3k3a
2

8ω
− bf

2ωa
cosφ.

(3.32)
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Key Findings

• A nonlinear metamaterial attenuates vibration beyond the bandgap range of the
linear counterparts.

• Nonlinear dispersion and frequency response by homogenization and harmonic bal-
ance methods.

95

https://doi.org/10.1016/j.ymssp.2023.111079
https://creativecommons.org/licenses/by/4.0/


Chapter 4. Nonlinear Metamaterial for Elastic Wave Control

• Nonlinear damping effect enables efficient modal frequency dissipation.

• Experiments validate the broadening of bandgap and modal frequency dissipation.

General comments and link to the next chapter

By showing the design of the nonlinear damped metamaterial and its effectiveness in
broader bandgap and modal dissipation ability and shock wave attenuation,
this chapter completes the third objective (see Section 1.4) of the thesis on the base
of nonlinear dynamics of single oscillators studied in Chapter 3. Moreover, this work
proposes the numerical harmonic balance method with mode superpositions to solve the
nonlinear frequency response for finite beam-based nonlinear metamaterial systems, which
offers theoretical tools to solve nonlinear metamaterials with generic nonlinearities.
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Abstract

In this paper, we incorporate the effect of nonlinear damping with the concept of locally
resonant metamaterials to enable vibration attenuation beyond the conventional bandgap
range. The proposed design combines a linear host cantilever beam and periodically
distributed inertia amplifiers as nonlinear local resonators. The geometric nonlinearity
induced by the inertia amplifiers causes an amplitude-dependent nonlinear damping ef-
fect. Through the implementation of both modal superposition and numerical harmonic
methods with Alternating Frequency Time and numerical continuation techniques, the
finite nonlinear metamaterial is accurately modeled. The resulting nonlinear frequency
response reveals the bandgap is both amplitude-dependent and broadened. Furthermore,
the nonlinear interaction between the local resonators and the mode shapes of the host
beam is discussed, which leads to efficient modal frequency dissipation ability. The theo-
retical results are validated experimentally. By embedding the nonlinear damping effect
into locally resonant metamaterials, wideband and shock wave attenuation of the pro-
posed metamaterial is achieved, which opens new possibilities for versatile metamaterials
beyond the conventional bandgap ranges of their linear counterparts.

4.1 Introduction

Mechanical vibrations are commonly encountered when dealing with civil infrastructures,
industrial environments, vehicles, and more in general engineering applications. Their
detrimental effects often lead to structural and operational failures and harm to human
bodies. Therefore, vibration attenuation has received enormous attention from both re-
search and industries. The commonly used vibration control methods include damping
enhancement, stiffness tuning, and vibration mitigation by auxiliary attachments. These
can be grouped into passive, semi-passive, and active methods [176]. Because of their
easy application, passive and semi-passive methods are particularly suitable for vibration
mitigation of the host structures without complex control systems. These methods can
be distinguished based on the nature of their dynamic properties as follows:

1. Single linear attachment, e.g., tuned mass damper [177] and piezoelectric shunting
[50];

2. Single nonlinear attachment, e.g., nonlinear energy sinks [49] and nonlinear damping
[178];

3. Multiple linear attachments, e.g., multiple tuned mass dampers [51], and linear
locally resonant metamaterials [5];

4. Multiple nonlinear attachments, e.g., nonlinear metamaterials [179].

When it comes to vibration suppression for the host structure, either the energy is ef-
ficiently transferred to the auxiliary attachments or the energy is prevented from prop-
agating through the host structure, thus yielding a low transmissibility on the receiver
side. Conventionally, attachments could be mechanical resonators [177, 180] or piezoelec-
tric transducers with electrical shunting circuits [50, 145]. They can either transfer and
dissipate the energy from the host structure or shift the resonance of the host structure
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by additional stiffness and mass to avoid resonances.

However, due to their inherently linear nature, their effective bandwidth is narrow. In
contrast, nonlinear attachments can interact with linear host structures in a broadband
fashion. In certain conditions, this nonlinear interaction leads to a unidirectional energy
flow from the linear structure to the nonlinear attachments. In the context of nonlinear
energy sinks [61], this is referred to as nonlinear energy transfer. In addition, the nonlinear
reaction forces induced by nonlinear stiffness [84, 181], damping [178], or vibro-impact [68]
essentially couple the separated modes of the linear host structure and result in energy
transfer, redistribution, and efficient dissipation among different structural modes [182].

When moving from single attachments to multiple attachments, the challenge lies in how
to design and optimize multiple attachments or resonators to effectively attenuate the vi-
bration of the host structure, which normally has multiple vibration modes. From a modal
analysis point of view, attenuation at modal frequencies forms the guideline for design-
ing different tuned mass dampers [51]. From a wave propagation perspective, vibration
modes are attributed to reflections from the domain boundaries. Therefore, to effectively
suppress vibration modes, the propagation of the traveling wave from one end of the host
structure to the other must be prohibited for certain frequency ranges. This is synony-
mous with the design of bandgaps in locally resonant metamaterials [5]. Through the
proper tuning of mechanical parameters, the propagating wave can be gradually trapped
[71, 183], redirected [77, 78, 75], or absorbed [54, 184] with periodically distributed lo-
cal resonators attached on the host structure, resulting in zero group velocities and low
transmissions.

The recent endeavors to introduce nonlinearities through multiple nonlinear attachments
have combined the advantages of locally resonant metamaterials and nonlinear dynam-
ics. This has stimulated the emergence of novel concepts in the context of structural
dynamics, such as harmonic generations [48], chaotic bands [185], and broadband vibra-
tion attenuation [47, 186]. However, owing to the challenges of relatively high degrees of
freedom in metamaterials and complex dynamics from nonlinear attachments, theoretical
and experimental realizations in this area have been incomplete until recent years. From a
theoretical perspective, the high number of degrees of freedom, different nonlinear forms,
and intensities of nonlinearities pose difficulties to reach an accurate solution. Com-
pared to the numerical integration method, conventional analytical low-order methods
such as harmonic balance methods [185, 48, 47, 187] and perturbation methods [64, 63]
fail to converge when the nonlinearities presented are strong, even without accounting
branch bifurcations due to stability issues [188]. In addition, these analytical methods,
which work for close-form polynomial nonlinearities such as cubic stiffness [185, 47] and
quadratic damping [187], are often insufficient for more general nonlinearities such as
non-smooth nonlinear damping studied in this paper and piece-wise nonlinear forces.
Theoretical advances are further complicated because standard Bloch-Floquet theory is
limited in its usability. This popular method cannot reveal the modal interactions of
multiple nonlinear attachments in a finite metamaterial, or frequency coupling related to
broadband excitation. From an experimental perspective, nonlinear metamaterials need
to be designed, fabricated, and tested from the resonator level to the metamaterial level
to confirm the proposed nonlinear effect in practical manners, which requires repeatable
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and slow sampling with the increase deviation of the nonlinearity of the system from its
linear state [185, 48, 47, 186]. In addition, the amplitude-dependent response and the
nonlinear coupling in nonlinear metamaterials also open new possibilities that need to be
studied for vibration attenuation or energy exchange beyond the frequency range of the
linear bandgap [185, 48]. From an ideology perspective, the effects of general nonlineari-
ties in conventional low degree of freedom systems such as nonlinear vibration absorbers
[49] have been well studied and documented. Their practical applications and accurate
modeling methods in nonlinear metamaterials [48, 186], rather than conceptual verifica-
tion of the known effects, are of great importance toward broader studies and engineering
applications.

Based on our previous published conference paper [189], we present modeling methods for
Euler-Bernoulli beam-based nonlinear metamaterials with general local nonlinearities and
investigate a novel nonlinear damped metamaterial for wideband vibration attenuation
and modal dissipation with a practical design of the nonlinear local resonators. With
the goal of designing and solving real nonlinear metamaterial systems, we establish all
the analyses on practical experimental parameters. We utilize a dispersion analysis and a
modal analysis method with a numerical harmonic balance method to solve the amplitude-
dependent response of this nonlinear metamaterial. Through the Alternating Frequency
Time (AFT) and numerical continuation techniques, we can handle more general nonlin-
earities with the possibility of harmonic generations for weak to strong nonlinear scenarios.
In addition, the nonlinear modal coupling is discussed to demonstrate the nonlinear inter-
action between the local resonators and the mode shapes of the host beam, which leads to
efficient modal energy dissipation ability beyond the study of the conventional bandgaps.
Based on the theoretical analysis, a nonlinear metamaterial is designed to incorporate
the geometric nonlinear damping effect induced by the inertia amplifiers. The nonlinear
frequency response of a single nonlinear resonator and the transmissibility of the nonlin-
ear metamaterial are measured experimentally. The theoretical and experimental results
not only validate the methods for solving the amplitude-dependent responses of the pro-
posed nonlinear metamaterial but also give insights into the mechanisms for wideband
attenuation combining nonlinear bandgap and modal frequency dissipation, which opens
new possibilities for versatile metamaterials surpassing the limit of their linear bandgap
ranges.

4.2 Theoretical Analysis

The proposed nonlinear metamaterial is shown in Figure 4.2, which illustrates a semi-
infinite case in the x-direction of the nonlinear metamaterial consisting of a host beam
and inertia amplifiers as nonlinear local resonators. Before analyzing the nonlinear meta-
material, we first revisit the nonlinear dynamics of the rotational inertia amplifier proposed
by Van Damme et al. [190]. As shown in Figure 4.1, the inertia amplifier consists of two
identical disks with mass m0 on the top and bottom and four beams as connections that
are tilted with angle θ. The tilted beams lead to a coupled translation-rotation motion of
the top disk and simultaneously deliver a longitudinal spring stiffness k0. The rotational
spring stiffness is considered to be small compared to the longitudinal spring stiffness,
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Figure 4.1: The schematic and top view of a rotational inertia amplifier.

which can be ensured by sufficiently thin connector points.

The nonlinearity is induced by the coupling of the translational motion of the bottom
and the rotational motion of the top disk. The relative displacement of the top disk with
respect to the bottom disk is denoted as wr. And the rotation angle of the top disk is
denoted as β. In Figure 4.1, the top view shows the projected deformation of a connected
beam, while the chord length in the top view of Figure 4.1 changes from

√
l2 − d2 to√

l2 − (d− wr)2. For small wr, the top disk’s rotation angle β is defined as:

β =

√
l2 − (d− wr)2 −

√
l2 − d2

R
(4.1)

where R is the radius of the disk. The angular velocity can be written as:

β̇ =
ẇr

R

d− wr√
l2 − (d− wr)2

. (4.2)

where l = d/ cos θ. The kinetic energy of the top disk can be defined as T = m0|ẇr|2/2 +
I0|β̇|2/2, where I0 = m0R

2/2 represents the moment of inertia of the rotating disk. Its
potential energy is V = k0w

2
r/2. Using the Lagrangian L = T −V , its equation of motion

can be formulated as:

F = −mẅ0 =
d

dt

(
∂L

∂ẇr

)
− ∂L

∂wr

= mẅr + c|ẇr|ẇr + kwr,

(4.3)

where F = −mẅ0 is the harmonic base excitation force applied on the bottom disk with
the displacement and displacement amplitude denoted as w0 and W0, respectively. By
substituting Eq. 4.2 into Eq. 4.3, the equivalent mass m, damping c, and stiffness k can
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be determined as:

m = m0 +
m0

2

(
1 +

(1− ε)2

A

)
c =

m0

2d

(
1− ε

A
+

(1− ε)3

A2

)
k = k0

A =
1

cos2 θ
− (1− ε)2,

(4.4)

where ε = wr/d represents the strain along the translational direction. Under small strain
ε condition, the Taylor series of the velocity β̇ reads:

β̇ (ε) =
ẇr

R

[
1

tan θ
+

ε

tan θ sin2 θ
+

3

2

ε2

tan3 θ sin2 θ

]
. (4.5)

Due to the nonlinear geometric constraint between displacement and rotation angle, β̇ (ε)
not only linearly depends on ẇr with the 0-th order term, the second, third, and high
order terms with respect to ε also play important roles under sufficiently small θ cases.
However, by assuming the strain ε no more than 2.5%, we can calculate the smallest
θ = 30◦ that makes the second, third, and higher order terms 10 times smaller than the
0-th order coefficient in Eq. 4.5.

In this case, the 0-th order term with respect to ε of Eq. 4.5, together with the small
strain ε condition, can be used to simplify the equivalent parameters in Eq. 4.4:

m = m0 +
m0

2 sin2 θ
, c =

m0

2d

cos2 θ

sin4 θ
, k = k0, (4.6)

where k is the spring constant depending on the connections between two disks. From
the expression of m, the dynamically added mass due to the top disk is m0/2 sin

2 θ with
the amplification factor α = 1/ sin2 θ. A nonlinear damping effect emerges from the
expression of c due to the geometric nonlinear coupling between ẇr and β̇. This nonlinear
damping force c|ẇr|ẇr, also known as the drag force [191], has an absolute form with
respect to the velocity, which can be cataloged into non-smooth nonlinearities. This
enables the amplitude-dependent frequency response and amplitude-dependent bandgaps
in nonlinear metamaterials [63].

By assuming a fundamental harmonic solution for wr = Wr sin(wt) with Wr representing
the displacement amplitude, we can determine a nonlinear correspondence to the linear
viscous damping coefficient, an equivalent damping coefficient ceq = c|ẇr| that increases
with the base excitation force. By treating the absolute value with sign function, Eq. 4.3
can be written as:

mẅr + c · sign(ẇr)ẇ
2
r + kwr = −mẅ0, (4.7)

where sign(ẇr) is an even square wave with its leading harmonic 4 cos(ωt)/π. Substituting
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Figure 4.2: A semi-infinite schematic of the nonlinear metamaterial with lattice constant a. The incident
wave w0 in z direction is applied at the origin x = 0.

the solutions into Eq. 4.7, and balancing the first order harmonic, yields:((
k −mω2

)2
+ (3cωWr/π · ω)2

)
W 2

r =
(
ω2mW0

)2
, (4.8)

Observing the above equation, the equivalent nonlinear damping reads:

ceq = 3cωWr/π, (4.9)

where Wr is given as:

Wr =
ω2mW0√

(k −mω2)2 + 9c2ω4W 2
r /π

2
. (4.10)

It can be seen that ceq is a function of frequency ω and the base excitation amplitude
W0. To illustrate the nonlinear effects of the described nonlinear resonator in the proposed
locally resonant metamaterial, we use the practical parameters in Table 4.1 for the analyses
in the following subsections. The frequency ranges presented in the following figures are
normalized with respect to the linear resonant frequency of the inertia amplifiers at 210.7
Hz.

4.2.1 Nonlinear Dispersion Relationship

The dispersion relationship provides a general and fundamental description of the wave
propagation characteristics of metamaterials. Unlike linear metamaterials, nonlinear
metamaterials give rise to amplitude-dependent dispersion relationships [192, 34], which
leads to a better understanding of how the nonlinearity could enable rich dynamics in
metamaterials.

We herein discuss the dispersion relationship for flexural waves traveling in the proposed
nonlinear metamaterial, where the nonlinearity stems from the resonator’s amplitude-
dependent damping. This mechanism is much less investigated than amplitude-dependent
stiffness changes. As shown in Figure 4.2, the lattice constant of j-th unit cell is a. The
linear density of the host beam is ρ0 = ρbh, where ρ, b, and h represent the density, width,
and height of the host beam, respectively. The bottom disk with mass m0 of the inertia
amplifier is fixed on the beam. It is coupled with an equivalent massm by a linear spring k
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Figure 4.3: The frequency response function, equivalent damping, and dispersion curves under different
acceleration amplitudes. (a) and (b): The amplitude and phase of the frequency response function of a
local resonator. The enlarged view in (a) shows the shift of the resonant frequency indicated with a red
backbone curve; (c) The equivalent damping of a local resonator; (d) and (e): The real and imaginary
wave number of the nonlinear metamaterial.

and a nonlinear damper c. An incident wave w0 = W0 sin(ωt+ φ) in z direction is applied
at the boundary x = 0 of the beam, where W0 is the amplitude of the incident wave.
Rather than using a complex-valued frequency and real-valued wavenumber [62], we adopt
a real-valued frequency and allow for complex-valued wavenumbers, which is suitable for
forced harmonic cases [193, 194] and gives insight in the attenuation of propagating waves
[195, 137].

With reference to the parameters from Table 4.1, we can obtain the dispersion curve of
the A0 Lamb mode of the host beam by Euler-Bernoulli beam theory as shown with the
red dash line in Figure 4.3 (d). The flexural wavelength of the host beam is inversely
proportional to the wave number with 2π, which is approximately 35 cm at the linear res-
onant frequency of the inertia amplifiers. Since the lattice constant is sufficiently smaller
than the wavelength under low-frequency vibrations around this frequency range, the
wave profile between two adjacent unit cells can be approximated by a smooth function
by neglecting the near-field scattering around the inertia amplifiers. Thus, we can utilize
the averaging technique from the homogenization method [34] and transform the concen-
trated reaction force of the local resonator to a uniformly distributed force f(x, t) applied
evenly with lattice constant a. The governing equations of the nonlinear metamaterial
are given as:

D0
∂4w (x, t)

∂x4
+ ρ0

∂2w (x, t)

∂t2
= −f(x, t)

m(ẅr + ẅ) = −kwr − c|ẇr|ẇr

m0ẅ +m(ẅr + ẅ) = af(x, t)

, (4.11)
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where D0 = EI is the flexural rigidity of the host beam. w is the transverse displacement
at beam position x. And wr is the relative displacement of the local resonator at the
same beam position. By adopting the effective medium theory [196], Eq. 4.11 can be
transferred into: 

D0
∂4w

∂x4
+ (ρ0 +

m0 +m

a
)
∂2w

∂t2
+
m

a

∂2wr

∂t2
= 0

m
∂2

∂t2
(wr + w) + kwr + c|ẇr|ẇr = 0

. (4.12)

By neglecting the higher harmonic generations, we can replace the nonlinear damping
force c|ẇr|ẇr with an equivalent damping force ceqẇr and only consider the fundamental
harmonic traveling wave w = Wei(ωt−kx). The dispersion relationship for the metamaterial
beam can be derived from Eq. 4.12 as:

k(ω) =

[(
ρ0 +

m0

a
+

k + iceqω

a(ω2
r − ω2 + iceqω/m)

)
ω2

D0

] 1
4

, (4.13)

where ωr is the linear resonant frequency of the inertia amplifier. Therefore, the effective
mass density for the proposed metamaterial beam reads:

ρe =
1

a

(
ρ0a+m0 +

k + iceqω

ω2
r − ω2 + iceqω/m

)
. (4.14)

If ceq = 0, the effective mass density and the dispersion for a metamaterial beam recover
to its classical linear and undamped case [55]; if ceq = constant, then it represents a linear
damped case [193]; if ceq(ω,W0) is a function of frequency ω and excitation amplitude W0

as shown in Eq. 4.9, then this indicates a nonlinear damping case induced by the inertia
amplifiers.

From a practical perspective, we prescribe a certain acceleration amplitude A0 as excita-
tion. Therefore, the equivalent damping ceq is frequency and acceleration dependent. By
solving Eq. 4.8, an equivalent local resonator with Frequency Response Function Λ can
be achieved, together with Eq. 4.13. The results are shown in Figure 4.3 under different
acceleration amplitudes. The effect of the increasing damping can clearly be seen by a
reduction of the resonator’s amplitude and a shift to lower eigenfrequencies (Figure 4.3
(a)), as well as the decrease of the phase slope (Figure 4.3 (b)).

By prescribing a sufficiently small A0, the results of a linear metamaterial beam can be
recovered as black curves in Figure 4.3. With the increase of A0, the resonant frequency
slightly shifts to a lower frequency due to the increase of equivalent damping ceq as shown
by the backbone curve in Figure 4.3 (a). In Figure 4.3 (c), the equivalent damping (ceq)
reaches the maximum at the linear resonant frequency ωr.

For undamped linear metamaterials, ρe is real-valued. The bandgap is formed when
ρe < 0, and hence the wave number k(ω) is complex-valued. This convenient criterion
gives the classical bandgap range [55]. However, when it comes to damped metamaterials,
ρe and k(ω) are always complex-valued, making the bandgap definition unpractical. In this
paper, we define the bandgap range as the frequency range in which the transmissibility of
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Figure 4.4: The model of the nonlinear metamaterial with finite length and clamped-free boundary
condition. The enlarged view shows the displacement components for the absolute transverse displace-
ment amplitude wAj of the nonlinear local resonator at xj along the host beam.

a traveling wave along a unit length is reduced by more than -20 dB, which is commonly
used as a threshold for vibration attenuation. Therefore, with the assumption of the
fundamental harmonic traveling wave, the bandgap range ωBG reads:{

ωBG ∈ R | 20 log10 e−| Im(k(ω))| < −20
}
. (4.15)

The dispersion curves for the proposed nonlinear metamaterial are shown in Figure 4.3
(d) and (e). With the increase of A0, the real and imaginary parts of k(ω) become
smoother than in the linear case. This is caused by the gradual increase of the damping
effect from the local resonators, as shown in Figure 4.3 (c). For the real part of k(ω)
in Figure 4.3 (d), the real wave number becomes smaller with the increase of A0, which
bends its in-phase branches from an infinite value to a finite value and thus leads to
less attenuation. This degeneration of the dispersion curve also gives rise to the partial
wave number bandgap beyond which the wave propagation is forbidden [197, 194]. The
spatial decay of the traveling wave can be observed from the imaginary part of k(ω)
in Figure 4.3 (e). An increase of A0 not only reduces the resonant frequencies of local
resonators for lower beginning frequencies of bandgaps but broadens their bandwidth,
which consequentially broadens the bandgap range of the nonlinear metamaterial. Due
to the nonlinear damping, the nonlinear bandgap range is broader than its corresponding
linear case. It should be noted that this broadening effect comes with a slight bandgap
degeneration. Further increase of A0 could reversely reduce the bandgap range if a certain
attenuation level is desired.

4.2.2 Nonlinear Frequency Response

Unlike the nonlinear dispersion relationship mentioned above, the infinite long beam as-
sumption practically does not hold due to boundary reflections under low-frequency vibra-
tions. Modal frequencies of the entire structure induced by boundary conditions interact
with the nonlinear local resonators. Therefore, in this part, we discuss the frequency
response of the proposed nonlinear metamaterial with a finite length by modal analysis
and consider the higher harmonics through the harmonic balance method.

As shown in Figure 4.4, we consider a clamped-free cantilever beam with length L = 0.6

105



Chapter 4. Nonlinear Metamaterial for Elastic Wave Control

m and in total S = 8 inertia amplifiers periodically distributed along the beam from
x1 = 0.14 m to x9 = 0.56 m. In this paper, we focus on the out-of-plane flexural wave
propagation rather than the in-plane wave propagation of the host beam. In order to
suppress the undesired in-plane modes, the inertia amplifiers are designed with four beams
as connections to the bottom disk attached on the host beam to symmetrically distribute
the reaction forces. However, mode conversion could happen at the crossings of dispersion
curves when asymmetry or chirality are involved with three beams as connections [198].
The detailed parameters of the cantilever beam are listed in Table. 4.1. The absolute
transverse displacement, wAj (t), of the j-th nonlinear resonator at xj along the host beam
is defined as:

wAj (t) = wb (t) + w (xj, t) + wrj (t) , (4.16)

where wb (t) is the base excitation displacement at the clamp side and wrj (t) is the relative
displacement of j-the nonlinear resonator. The equation of motion of each nonlinear local
resonator can be formulated as follows:

mj

(
∂2w

∂t2
+ ẅb + ẅrj

)
+ cj|ẇrj|ẇrj + kjwrj = 0, (4.17)

where mj, cj and kj are determined by Eq. 4.6. By adding the reaction forces of each
nonlinear resonator onto the host beam, the governing equation of the host beam can be
expressed as:

D0
∂4w

∂x4
+ ρ0

∂2w

∂t2
= −ρ0ẅb+

S∑
j=1

(kjwrj + cj|ẇrj|ẇrj) δ (x− xj) ,
(4.18)

where δ represents the Dirac function. We here modify ρ0 = ρbh + m0/a to take into
account the inertia force of the bottom disks. The nonlinear metamaterial is then repre-
sented by Eq. 4.17 and Eq. 4.18.

Assume the total mass of local resonators is much smaller than the mass of the host
beam and linear vibration modes dominate the response of the system so that the non-
linearities induced by the nonlinear damping effect can be treated as perturbations to the
underlying linear Euler-Bernoulli equation of host beam [199, 47]. Compared with the
conventional finite element method (FEM), the modal superposition method takes advan-
tage of reduced order modeling, effectively reducing the problem’s dimension [200]. Thus,
the approximated solution of the displacement of the host beam is found by combining
the harmonic balance and modal superposition methods, defined as:

w (x, t) =
N∑
i=1

ηi(t)ϕi(x), (4.19)

ηi(t) =
H∑

h=−H

η̂i(h)e
ihωt, (4.20)
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where N and H are the number of modes and harmonics order considered. ϕi(x) is the
i-th order mode shape of the host beam with its natural frequency ωi. The modal weight
ηi(t) is expanded as Fourier series for higher harmonic generations due to the nonlinear
reaction forces in the system, where □̂ represents the complex Fourier coefficient.

By applying the boundary conditions of the clamped-free host beam, substituting the
ansatz of the solutions, and applying orthogonality [55, 47] (detailed in Appendix 4.A),
the second-order differential equations Eq. 4.17 and Eq. 4.18 can be written into matrix
form with the dimension of N + S as:

Mü+Ku+ Fnl(u̇) = Fex(t), (4.21)

where u =
[
η1η2 · · · ηNwr1wr2 · · ·wrS

]⊺
describes the modal weights and relative dis-

placements of the nonlinear local resonators.

For the linear part of Eq. 4.21, the detailed form of the mass matrix M and the linear
stiffness matrix K are given as:

M =

[
M11 M12

M21 M22

]
, K =

[
K11 0
0 K22

]
, (4.22)

where M11 is a N ×N matrix with the entries: mmn = δmn+
∑S

j=1mjϕm(xj)ϕn(xj); M12

is a N × S matrix with the entries: mmq = mqϕm(xq); M21 is a S × N matrix with the
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entries: mpn = mpϕn(xp); M22 is a S × S matrix with the entries: mpq = δpqmp; K11 is a
N ×N diagonal matrix with the entries: kmn = δmnω

2
m; K22 is a S × S diagonal matrix

with the entries: kpq = δpqkrp; The applied external force Fex with N + S items can be
expanded as:

Fex = [q1 · · · qi · · · qN
−m1ẅb · · · −mjẅb · · · −mSẅb]

⊺,
(4.23)

where qi is the modal force defined in Appendix 4.A.

For the nonlinear part, the nonlinear force Fnl(u̇) can be expressed as:

Fnl(u̇) = CN|u̇|u̇, CN =

[
0 0
0 C22

]
, (4.24)

where CN represents the nonlinear damping coefficient matrix. C22 is a S × S diagonal
matrix with the entries: Cpq = δpqcrp.

By treating the relative displacements of the nonlinear resonators also as Fourier series
and substituting the ansatz of u(t): u(û, t) into Eq. 4.21, we can form the residual
function r̂(û, ω) by using the harmonic balance method up to the truncation order H:

r̂(û, ω) =
(
∇2 ⊗ ω2M+∇0 ⊗K

)
û

+ F̂nl(û, ω)− F̂ex(ω) = 0,
(4.25)

where ∇ = diag[−iH, . . . , iH] is a diagonal matrix of dimension 2H + 1. Eq. 4.25 shows
that the linear internal and external forces are decoupled for different harmonic indices
k except for the nonlinear forces F̂nl. With M , K, and F̂ex given, the linear parts of Eq.
4.25 can be easily solved, which represents the conventional linear metamaterials setup
[55]. The primary challenge is to determine the Fourier coefficients of the nonlinear forces.

Since Fnl is a C1 continuous nonlinear function without a high degree of smoothness, con-
ventionally, it requires tedious expansions of closed-form expression up to high truncation
orders in the frequency domain for convergence. While in the time domain, the nonlinear
forces are easy to calculate with the available state histories of the system. By taking
the advantages of the two domains, Alternating Frequency–Time (AFT) [201] resolves
the Fourier coefficients of the nonlinear force by performing Fourier transforms in the
frequency domain with the nonlinear forces evaluated in the time domain as:

F̂nl ≈ F̂AFT
nl = F

[
Fnl

(
F−1 [ω∇û]

)]
, (4.26)

where F denotes the discrete Fourier transform. By taking sufficient sampling points, the
inverse Fourier transform F−1 [ω∇û] gives the generalized velocities in the time domain,
which are used to generate the nonlinear forces at the sampling instants. Finally, the
discrete Fourier transform approximates the Fourier coefficients for the nonlinear force.

Based on the work by Krack and Gross [202], the nonlinear frequency response of the
proposed nonlinear metamaterial within the frequency range [ωs, ωe] can be solved by
balancing the residual function Eq. 4.25 with unknown Fourier coefficients through a nu-
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merical Newton method. Compared with the direct time domain integration method, the
harmonic balance method has an outstanding convergence rate due to the prior periodic
ansatz of solutions. In addition, the harmonic balance method does not have the transient
evolution of the time domain integration. Thus, it does not need a criterion for periodic
behavior that stands for the steady state. Nevertheless, Eq. 4.21 can still be solved by
the time-domain Runge-Kutta method as a reference with the state-space form:

ż = Bz+C|ż|ż+D, (4.27)

where

z =

[
u
u̇

]
, B =

[
0 I

−M−1K 0

]
,

C =

[
0 0
0 −M−1CN

]
, D =

[
0

M−1Fex

]
.

(4.28)

It should be noted that the positions of local resonators could influence the condition
number [203] of matrix M in Eq. 4.22, which measures how sensitive the computed New-
ton step is with respect to errors in the iteration of the unknown Fourier coefficients in
Eq. 4.25. If the local resonators are placed close to the nodes of mode shapes, which
increases the condition number, convergence failures could happen in both harmonic bal-
ance and time-domain integration. Therefore, we use the linear solutions at the beginning
frequency ωs as the scaling matrix σ:

σ = diag
(∣∣∣(−ω2

sM+K
)−1

Fex

∣∣∣) . (4.29)
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σ is also known as the Jacobi preconditioner [203], the scaled unknowns are σ−1u with the
similar order of magnitude, which reduces the condition number of the iteration problem
and increases the convergence.

An isotropic damping ratio 0.005 is used for the host beam and local resonators to avoid
numerical instability. The results of tip transmissibilities of the nonlinear metamaterial
are shown in Figure 4.5. The linear case is realized by prescribing a small base excita-
tion acceleration ẅb. The finite element method [204] utilizes one-dimensional two-node
Euler-Bernoulli beam elements. The element mass and stiffness matrices are modified to
introduce the relative displacement wrj of the local resonators, thus enabling the iner-
tia and reaction forces at the nodes of the resonators’ positions. In Figure 4.5(a), the
transmissibility from the modal superposition method agrees with that from the FEM
method, which means the modal superposition method proposed in Eq. 4.19 is sufficient.
For the nonlinear case, the transmissibilities under different base excitations are solved
by the harmonic balance method with harmonic order H = 11. Since the modal weight ηi
not only contains the fundamental harmonic, the third and higher harmonic generations
may occur. Thus, we take an example of the third harmonic generation at the free tip of
the host beam. The ratio between the displacement amplitude of the third harmonic and
that of the first-order harmonic is given as Q31:

Q31 =

∣∣∣∣∣
∑N

i=1 η̂i (3)ϕi (L)∑N
i=1 η̂i (1)ϕi (L)

∣∣∣∣∣ . (4.30)

By varying the base excitation acceleration ẅb ∈ (0, 40g], the third harmonic generation
ratio Q31 is illustrated in Figure 4.6. Besides the third harmonic generation at the lin-
ear resonant frequency ωr, the third harmonics also appear at the modal frequencies of
the nonlinear metamaterial due to the coupling with nonlinear local resonators. This
phenomenon points to the modal energy transfer from low to high frequency, which has
been proven useful for modal response attenuation [61]. With the increase of the base
excitation, the ratio of the third harmonic becomes larger. However, the strongest third
harmonic ratio is no more than 2.5% under ẅb = 40g, which means the linear vibration
modes still dominate the dynamics of the host beam. In Figure 4.5, we only show the
results of the fundamental harmonic induced bandgap since the generated harmonics are
much higher than the region of interest near the linear resonant frequency ωr.

Similar to the dispersion analysis in Section 4.2.1, the bandgap in Figure 4.5 (a) to (c)
is gradually broadened due to the increase of nonlinear damping with the increase of
excitation level. To maintain consistency, we modify the definition of the attenuation
range of the bandgap with the actual length L rather than the unit length of the host
beam in Eq. 4.15. Regarding the bandgap range defined by −20 dB attenuation, the lower
bound gradually shifts to a lower frequency and agrees with the range of the dispersion
analysis. For the bandgap’s upper bound, there’s a deviation between the result from
frequency responses and that from dispersion analysis. This deviation is mainly caused
by the number of the local resonators [55] and the boundary conditions of the host beam.
When the nonlinearity is weak, the solutions of both methods will converge by adding
unit cells [189]. However, when nonlinearity is relatively strong, the interactions among
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nonlinear resonators themselves and with mode shapes of the host beam can not be
neglected, which emphasizes the importance of frequency response analysis of a finite beam
model. The spatial frequency analysis in Figure 4.5 (d) to (f) shows the overall dynamic
response of the metamaterial beam. It can be seen that the attenuation range starts
from the first local resonator at position x = 0.14m. As nonlinear damping increases, the
bandgap becomes less marked [205].

Besides the bandgap, the harmonic balance method also yields the limit cycles of nonlinear
local resonators at the fundamental resonant frequency ωr under base excitation ẅb = 20g,
shown in Figure 4.7. The results from the harmonic balance method synthesized from
H = 11 harmonic orders show good agreement with time domain integrations. From the
1st to 8th local resonator, the relative displacement and velocity amplitude decrease with
the attenuation of the traveling flexural wave. With the increase of vibration amplitudes,
the limit cycles indicate more nonlinearities due to the amplitude-dependent nonlinear
damping forces Fnl. Thus, the bandgap broadening effect near the resonant frequency ωr

is mainly due to the nonlinear damping effect of the resonators that are located near the
clamped side of the host beam.

4.2.3 Nonlinear Modal Dissipation

It is well-known that locally resonant metamaterials can create a bandgap for vibration
mitigation of the host structure due to the spatial evanescent wave propagation starting
from the resonance frequency of the local resonators [5]. On the other hand, nonlinear
vibration absorbers have also been proven useful considering their broadband vibration

111



Chapter 4. Nonlinear Metamaterial for Elastic Wave Control

0

5

10

0

0.4

0.8

c e
q 
(N

sm
-1
)

-1.5

0

1.5

10-3

Tr
an

sm
is

si
bi

lit
ie

s

Normalized frequency

(a)

bandgap

10-4

10-1

102

(b)

(c)

(d)

Local resonator index j
∠
Λ

|Λ
|(

m
/N

)
j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8

freeclamped
host beam

0.8 0.9 1 1.1 1.2 1.3 1.4

-20 dB
modal dissipation

Linear
Nonlinear local resonators

Nonlinear
Bandgap range

modal 
dissipation

Modal frequency
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Equivalent damping of local resonators.

mitigation ranges, which facilitate the redistribution of vibration energy over multiple
vibration modes of the host structure and result in an efficient modal dissipative capacity

112



4.2. Theoretical Analysis

of the host structure [61]. In this part, we discuss the nonlinear modal dissipation in
the proposed nonlinear metamaterial, which leads to the further broadening effect of the
vibration attenuation range.

To investigate the nonlinear modal dissipation in the proposed metamaterial, we first look
closely at the frequency response of the nonlinear local resonators. With the formulations
in Sect. 4.2.2, the fundamental harmonic Frequency Response Function Λj for each local
resonator can be written as:

Λj =
Wrj

ω2mj (Wb +W )
=

1

kj − ω2mj + iωceq
, (4.31)

where Wrj and W are the fundamental harmonic amplitude of wrj and w. The definition
of equivalent damping ceq in Eq. 4.9 can be applied here to demonstrate the effect of
nonlinear damping from the local resonators with their fundamental harmonics calculated
from the harmonic balance method.

The frequency response of each nonlinear local resonator and their equivalent damp-
ing is shown in Figure 4.8 under ẅb = 20g. The bandgap formed around the resonant
frequency of the local resonators gives the main vibration attenuation range of the non-
linear metamaterial. Within the bandgap range, the frequency responses of the nonlinear
local resonators differ from those of the linear resonators, demonstrating the effect of
amplitude-dependent nonlinear damping. With the right-going flexural wave, the non-
linear resonators close to the base excitation point present stronger equivalent damping
ceq compared with those near the free tip of the host beam. This can be observed by
the gradual transitions from the red curves with a larger ceq to the blue curves with a
smaller ceq in Figure 4.8 (d). This nonlinear bandgap induced by nonlinear damping forms
the first vibration attenuation range of the proposed nonlinear metamaterial due to the
spatial decay of wave propagation and is also broadened by the nonlinear damping effect.

Different from the bandgap range where the right propagating wave is eventually attenu-
ated, the influence of reflections, in other words, the modes of the host beam, dominate the
dynamical response of the metamaterial beam outside the bandgap range. These modes
are not only coupled with each other, but they also interact with nonlinear resonators,
which leads to nonlinear modal dissipation in this metamaterial beam. As shown in Fig-
ure 4.8 (a), the transmissibilities at the modal frequencies indicated with red dash lines
are much lower than its corresponding linear case, which means the mechanical energy is
redistributed among different modal frequencies of the host beam and the nonlinear local
resonators for efficient modal energy dissipation by different modes and nonlinear damping
effect. For a damped linear resonator, the damping effect flattens the slope change of its
phase around its resonant frequency, as shown with the gray curve in Figure 4.8 (c). For
a nonlinear local resonator attached to a finite-length beam, the equivalent damping ceq is
determined by its velocity amplitude and the amplitudes of modal excitations. Therefore,
there are multiple slope changes due to the modal frequency excitation from the move-
ment of the host beam. As shown in Figure 4.8 (c), local slope changes of phase curves
can be observed corresponding to modal frequencies. The increase of nonlinear damping
around modal frequencies can also be observed via ceq in Figure 4.8 (d). In particular,
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those resonators near the middle part and free end of the host beam contribute signifi-
cantly to vibration attenuation at modal frequencies, which forms a contrast within the
bandgap range that only the resonators near the vibration source are more effective. This
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nonlinear modal dissipation features a second mechanism besides the nonlinear bandgap
and further broadens the range for vibration attenuation at modal frequencies.

In order to validate the efficient modal dissipation capability, we utilize the numerical
time-domain integration in Eq. 4.27 with different modal velocities as initial conditions.
The total kinetic energy T (t) of the system can be represented with the kinetic energy of
the host beam and that of the local resonators as:

T (t) =
1

2

∫ L

0

ρ0

(
∂w

∂t

)2

dx+
S∑

j=1

1

2
mjẇ

2
rj. (4.32)

The total potential energy of the system V (t) is represented by the strain energy of the
host beam and the elastic energy of the local resonators:

V (t) =
1

2

∫ L

0

D0

(
∂2w

∂x2

)2

dx+
S∑

j=1

1

2
kjw

2
rj. (4.33)

Let γ(t) denote the ratio of the instantaneous total energy T (t)+V (t) to the input energy
T (t0) + V (t0) induced by initial condition:

γ(t) =
T (t) + V (t)

T (t0) + V (t0)
, (4.34)

where γ(t) describes how fast the initial energy is dissipated due to the linear and nonlinear
damping effect in metamaterials. By following the definition of linear oscillators, we use
t∗ to denote the time needed for the total energy drops by a factor of e−1 of its initial
value, which indicates the linear damping coefficient by a time inverse [68].

The results in Figure 4.9 (a) show three initial modal velocities that mimic weak to strong
impact conditions of the proposed nonlinear metamaterial. The total energy of the three
cases decays at different rates along the time evolution. Under strong impact conditions,
the whole nonlinear metamaterial’s energy decays faster than in the other two cases, which
indicates a stronger modal dissipation ability by the nonlinear damping effect. Due to
the local resonators, the modal frequencies of the metamaterial beam are altered. By
solving the eigenvalue problem of the underlying linear system in Eq. 4.21, the modal
frequencies of the local resonant metamaterial beam are indicated with gray dash lines
in Figure 4.9 (b). Compared to the small initial impact case, the wavelet transforms of
the strong impact case demonstrate stronger modal coupling with the modal frequencies.
This modal coupling not only originates from the nondiagonal characteristic of the mass
matrix for the underlying linear system in Eq. 4.22, but the nonlinear reaction forces
further facilitate this coupling by mixing the states of the local resonators with the modal
coordinates. For the strong impact case, more higher modal frequency components can
be observed. This effect can be understood as low-frequency to high-frequency nonlinear
energy transfer resulting for faster energy dissipation of the host system [61]. The modal
dissipation ability of the proposed nonlinear metamaterial helps the redistribution of
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Table 4.1: Parameters in Experiment

Nonlinear Damping induced Metamaterial

Host Beam
Size 600×40×12 (mm3) Material Versatile Plastic
Density 980 (Kg/m3) E 1.53 (GPa)

Nonlinear Local Resonator
Material Versatile Plastic R 20 (mm)
d 40 (mm) θ 35◦

m0 3.53 (g) k0 15.5 (kN/m)
ωr 2π×210.7 (rad/s) xj = 140 : 60 : 560 (mm)

Nonlinear metamaterial

Laser point

(from vibrometer)

Clamped side

Shaker

w
b

Accelerometers

θ
d

2R

Interia amplifier

Figure 4.10: Experimental setup.

the energy into nonlinear local resonators and higher vibration modes, which shows the
potential application of this nonlinear metamaterial for shock wave attenuation.

4.3 Experiments

The observed theoretical bandgap broadening effect and nonlinear modal dissipation are
verified experimentally. We first verify the nonlinear frequency response of the inertia
amplifiers as local resonators for the metamaterial. Then, the nonlinear transmissibilities
of the metamaterial are recorded under different base excitation conditions.

4.3.1 Setup

Figure 4.10 shows the experimental setup. The nonlinear metamaterial is made of versatile
plastic and consists of a 0.6-meter host beam and a series of nonlinear local resonators
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Figure 4.12: Experimental and theoretical transmissibilities of the nonlinear metamaterial under dif-
ferent base excitation voltages V0 and accelerations ẅb.

spaced 60 mm apart. The prototype is printed with Selective Laser Sintering 3D printing
(EOSINT P760) in one piece. The parameters of the nonlinear metamaterial are shown
in Tab. 4.1. To maintain stability during excitation, the nonlinear metamaterial is then
hung vertically. One end of the metamaterial is clamped to a shaker (VE-5120) for
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base excitation, resulting in a clamped-free boundary condition. A Polytec laser Doppler
vibrometer (LDV) is used to record the out-of-plane velocity field at any point along the
structure, such as the clamped and free end of the host beam. The data is acquired in
the time domain through repeated acquisitions.

4.3.2 Experimental Results

Before the experiments on the nonlinear metamaterial shown in Figure 4.10, we first
validate the nonlinear damping effect of an individual inertia amplifier. As shown in
the enlarged view in Figure 4.10, we chose a tilted angle of 35◦. The 3D-printed inertia
amplifier is fixed to the shaker. In order to observe the nonlinear damping effect, a slow
sweep signal with a rate of 0.1 Hz/s ranging from 180 Hz to 230 Hz is applied to the
base of the nonlinear local resonator at a constant excitation force. Time domain velocity
responses at different points on the top disk and excitation base of the resonator are
recorded with the LDV.

The resonator’s experimental and theoretical nonlinear frequency response is illustrated in
Figure 4.11 with different base accelerations from 0.15 g to 9 g. The theoretical results are
obtained using Eq. 4.3 by the harmonic balance method mentioned in Section 4.2.2, which
show good agreement with experimental results. It can be seen that the resonant frequency
of the resonator slightly shifts to a lower frequency with the increase of excitation force,
which indicates an increase of the nonlinear damping effect studied previously, and a
stiffness reduction that has also been observed in [190]. Therefore, we employed a cubic
fitting of the stiffness versus the displacement amplitude Wr of the resonator, which
returns the linear stiffness k0 when Wr is small. A linear damping ratio ζ0 = 0.005
is also applied here. The nonlinear damping effect becomes prominent under large base
accelerations, reducing the amplitude of its frequency response function and broadening its
bandwidth. This amplitude-dependent nonlinear damping can also be observed from the
phase angle of the frequency response Figure 4.11 (b). The slope of the phase transition
around resonances is smaller under large excitation, which qualifies the theoretical model
discussed in Section 4.2.1.

Once the nonlinear damping effect on the single resonator level has been identified, the
transmissibilities of the nonlinear metamaterial, combining the base beam and sequential
resonators, are shown in Figure 4.12. We excite the platform where the clamped side
of the host beam is mounted at constant excitation force (controlled by the excitation
voltage V0 of the amplifier). As in the previous experiment, sweep signals slowly varying
from 100 Hz to 350 Hz at 0.1 Hz/s are applied.

Due to the influence of modal responses on the excitation base, the experimental trans-
missibility of the host beam is calculated as the tip velocity of the host beam normalized
by the input acceleration. It is further nondimensionalized with the excitation frequency.
The theoretical transmissibility takes the same form as explained in Section 4.2.2. We
use two theoretical cases (ẅb = 0.1 g and ẅb = 40 g) to indicate the effective range of
the nonlinear metamaterial and compare these with the experimental results. It can be
seen that the general trend and bandgap range of the experimental and theoretical results
agree, which validates the analyses in Section 4.2.
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Figure 4.13: Experimental shock wave attenuation of the nonlinear metamaterial under different impact
voltages V0. (a) Experimental setup of the nonlinear metamaterial with the laser scanning points and
the profile of the input impact signal; (b) Experimental energy decay rates of the nonlinear metamaterial
under different impact intensities; (c) Experimental wavelet transforms of the velocities ẇrj of the first
two nonlinear local resonators for the two different impact cases.

By closely checking the enlarged views enclosed in red dashed squares, we can observe the
bandgap broadening effect and the nonlinear energy transfer at modal frequencies. Under
large excitation levels, the bandgap is broadened not only due to the nonlinear damping
effect, but also the shifting of the stiffness of nonlinear local resonators. It should be
noted that the bandgap degenerating effect is not obvious since the selected θ in the
experiments is not small. Furthermore, the modal frequency peak around normalized
frequency 0.9 gradually splits into two smaller peaks with the increase of the excitation
level, highlighting the effect of the nonlinear damping.

To further demonstrate the nonlinear modal coupling and dissipation ability of the non-
linear metamaterial beyond its bandgap range, experimental impacts have been applied
at the clamped side of the nonlinear metamaterial. The experimental setup is shown in
Figure 4.13 (a), multiple laser scanning points are defined at the front and back sides
of the nonlinear metamaterial to measure the velocity responses of the nonlinear local
resonators and the host beam under different impact intensities. For each measurement
of the out-of-plane velocity, a repeatable raised cosine pulse signal, with a bandwidth for
modal frequencies lower than 1000 Hz, is excited by the shaker at the clamped side of the
nonlinear metamaterial. The scanning points distributed along the host beam are spaced
20 mm apart.

The time evolution of the energy decay rates γ(t) under different impact intensities are
calculated with Eq. 4.32 to Eq. 4.34, in which the displacement and its derivative versus
beam length are acquired by numerical integration of the velocity response and finite
difference method, respectively. In Figure 4.13 (b), a stronger impact not only leads to
faster energy dissipation of the system but also suggests energy redistribution to high
frequency modes of the nonlinear metamaterial, which agrees with the modal dissipation
ability studied in Section 4.2.3. By closely checking the wavelet transforms of the first
two nonlinear local resonators in Figure 4.13 (c), there exist more frequency components
correspond to higher modal frequencies for the strong impact case, which indicates the
modal coupling ability of the nonlinear metamaterial for efficient energy redistribution of
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the host beam for shock wave and impact attenuation.

4.4 Conclusion

This paper presents a practical, tunable nonlinear resonator based on the nonlinear damp-
ing effect induced by rotational inertia amplifiers. This resonator is used to create a non-
linear metamaterial for broadband vibration attenuation, combining a broader bandgap
and general modal vibration dissipation within the host structure. Revisiting the non-
linear damping effect mechanism, we establish the nonlinear dispersion relationships for
a semi-infinite nonlinear metamaterial case. More importantly, with respect to practical
applications, the nonlinear frequency response of a finite structure is studied with modal
analysis and Alternating Frequency Time (AFT) multiple harmonic balance methods for
general nonlinearities in nonlinear metamaterials. The theoretical results reveal that the
bandgap is broadened with the increase of excitation level. Especially, the nonlinear inter-
actions between the local resonators and the mode shapes of the host beam lead to efficient
modal frequency dissipation ability in the proposed metamaterial. Finally, experiments
were carried out with both the single nonlinear resonator level and the full metamaterial
system. The experimental results validate both the nonlinear bandgap and modal dissi-
pation as mechanisms for broadband and shock wave attenuation. By incorporating the
effect of nonlinearity with the concept of conventional locally resonant metamaterials, our
findings enable new possibilities for vibration attenuation beyond the conventional linear
bandgap range.
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4.A Appendix

The mass-normalized shape function of the host beam with clamped-free boundary con-
dition can be shown as:

ϕi(x) =
1√
ρ0L

[
cos

(
λix

L

)
− cosh

(
λix

L

)
+

(
sinλi − sinhλi
cosλi + coshλi

)(
sin

(
λix

L

)
− sinh

(
λix

L

))]
,

i = 1, 2, . . . , N

(4.35)

where λi is the positive eigenvalue of the characteristic equation read as:

cosλi coshλi + 1 = 0. (4.36)
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By substituting Eq. 4.19 into Eq. 4.18, applying the orthogonality conditions with ϕs(x),
and integrating over the span of the host beam, Eq. 4.18 is transformed into:

η̈i + ω2
i ηi −

S∑
j=1

(kjwrj + cj|ẇrj|ẇrj)ϕi(xj)

= −ρ0ẅb

∫ x=L

x=0

ϕi(x)dx,

(4.37)

where ωi is the natural frequency of the i-th mode of the host beam. Follow the same
procedure to substitute Eq. 4.19 into Eq. 4.17, it gives:

mj

(
N∑
i=1

η̈iϕi(xj) + ẅrj

)
+ cj|ẇrj|ẇrj

+ kjwrj = −mjẅb.

(4.38)

The nonlinear reaction forces induced by the local resonators that are applied on the host
beam can be represented by Eq. 4.38. Therefore, Eq. 4.37 can be rewrite as:

η̈i + ω2
i ηi +

S∑
j=1

mjϕi (xj)
N∑
i=1

η̈iϕi (xj)

+
S∑

j=1

mjẅrjϕi (xj) = qi, r = 1, 2, . . . , N

(4.39)

where

qi = −ẅb

(∫ x=L

x=0

ρ0ϕi(x)dx+
S∑

j=1

mjϕi (xj)

)
. (4.40)

By combining Eq. 4.38 and Eq. 4.39, the matrix form equations of the nonlinear meta-
material can be achieved.
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Chapter 5

Conclusions and Perspectives

The following concluding chapter provides a summary of the main findings achieved in
this thesis and of the research questions and challenges addressed. Moreover, it offers
insights into possible future developments of the presented research.

5.1 Conclusions

The research conducted in this dissertation aims to extend the applications of mechani-
cal systems to guide wave and energy for low-frequency vibrations relevant to the elastic
domain, first by revealing the mechanisms to guide elastic waves with locally resonant
metamaterials or nonlinear dynamics and then by disclosing the potential of energy con-
version in these systems for energy harvesting and dynamics control.

The thesis begins with an overarching theoretical introduction to wave propagation in
elastic bodies and locally resonant metamaterials, electromechanical coupled piezoelectric
systems, and their integration to form multifunctional metamaterials. Emphasizing elas-
tic wave propagation and equivalent impedance analysis, electromechanical coupling in
mechanical systems is investigated for its effects on the dispersion relationship governing
elastic wave transmission through periodic media. The theoretical framework concludes
by describing the potential functions of electromechanical coupled or nonlinear mechanical
systems, leading to the next section, the state of the art. Here, a comprehensive review
of groundbreaking mechanical systems for elastic wave attenuation, guiding, energy har-
vesting, signal sensing, active control, and actuating through different mechanisms is
presented while highlighting the main challenges to be tackled.

The first part of the dissertation (Chapter 2) focuses on piezoelectric energy harvesting
with the graded locally resonant metamaterial, which preserves its original bandgap for
the attenuation of low-frequency vibrations. To this end, the design combines a beam-
based graded metamaterial with the self-powered synchronized electric charge extraction
circuit, which converts the alternating piezoelectric voltage into direct current power for
IoT devices. The proposed metamaterial-based energy harvesting system seeks to over-
come some of the challenges raised in the Introduction for practical applications of locally
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resonant metamaterials: (i) the electromechanical codesign is mostly omitted in existing
research, (ii) practical AC-DC conversion circuits are needed for harvesting DC power
rather than AC voltage.
Conventional metamaterial-based energy harvesting studies mainly consider how to ma-
nipulate elastic waves but give little attention to the design targets of the energy har-
vesting system, which features both bandwidth and maximum harvested power. Due to
the nature of conventional metamaterials, those studied applied identical single degree
of freedom local resonators or wave lensing, focusing only on particular frequencies, i.e.,
the beginning frequency of the bandgap. To overcome this, in this part of the thesis,
a graded design is investigated to employ its multiple resonances for broadband energy
harvesting and wave trapping at different positions. Additionally, rather than a simple
bridge rectifier or resistor, this study takes advantage of power electronics, which utilizes
synchronized switching and buck-boost topology to decouple the energy flow from the
piezoelectric clamped capacitor to the load of the circuit. This not only enables higher
energy harvesting efficiency compared with bridge rectifiers but also leads to load inde-
pendence, meaning the output power remains the same under different load conditions
for various IoT device tasks. Further to these general considerations, several detailed
conclusions can be drawn:

• The graded locally resonant metamaterial experiences a 20 dB transmission from
50 Hz to 300 Hz and an energy harvesting range from 50 Hz to 150 Hz, which
broadens the energy harvesting range compared to its non-graded counterpart. This
is achieved by gradually increasing the beam length of local resonators, forming
a smooth impedance transition for elastic wave propagation to be trapped and
amplified at the desired position and frequency.

• Under 0.1 N harmonic excitation at 90 Hz, the harvested power is up to 0.6 mW
across all load conditions. Compared with the conventional cantilever beam-based
energy harvesting solution, the harvested power of this work yields a four-fold in-
crease. The gross effect of the harvested power from multiple local resonators is
over 1 mW, which is already usable to power IoT devices.

• The equivalent impedance method employed in this work offers possibilities to trans-
form the electrical components into their mechanical analogies, allowing the elec-
tromechanical coupling effect and the electrical harvested power to be calculated
theoretically.

Based on the size and bandgap frequency range of the graded metamaterial, the primary
applications are placed in the domains of vibration attenuation and energy harvesting for
rotational machines operating at low frequencies, such as motors, generators, turbines,
and pumps. By appropriately scaling the metamaterial system, different energy harvesting
frequency ranges can also be achieved. These rotational machines typically operate with
vibration accelerations ranging from 0.1 g to 5 g, providing a feasible input force for the
graded metamaterial-based energy harvesting system to achieve milliwatt-level output
power. This power level is sufficient to power microcontrollers with Bluetooth functions,
which have low power consumption in sleep modes (around microwatts) and milliwatt-
level consumption in active modes [206].
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Despite the promising perspectives of the graded metamaterial-based energy harvesting
system, the limitations of the study presented must be considered. The outcomes of this
work are based on the linearization of the piezoelectric interface circuits, which gener-
ally work for weakly coupled electromechanical systems. However, the nonlinearities from
MOSFET switching and diodes should be considered, as they form a nonlinear metamate-
rial system and could enable more novel wave and energy control mechanisms. The studies
of nonlinear dynamics in electromechanical coupled systems and nonlinear metamaterial
systems are further discussed in Chapter 3 and 4.

In the second part of the thesis (Chapters 3), the focus shifts to utilizing the harvested
energy from mechanical systems. Thanks to the bidirectional energy conversion channels
provided by the piezoelectric coupling transducers, it is possible to control dynamics with-
out the need for external energy sources. Conventional piezoelectric actuation requires an
external signal generator and power amplifier, typically realized through inverter designs.
However, in this work, we present an energy-harvesting and vibration-actuating solution
with a single piece of piezoelectric interface circuit developed by the author of the thesis
previously. Its application in nonlinear energy harvesting systems addresses two major
challenges: (i) the need for external devices to control dynamics or wave propagation and
(ii) the integration and control of dynamics in nonlinear systems.

The outcomes of the first part of this dissertation prove that electromechanical coupling
can introduce electrically induced damping and stiffness in the mechanical domain. This
insight inspires dynamic control in nonlinear energy harvesting systems, where tuning
electrical damping and stiffness can adjust the steady state represented by the fixed points
to a certain degree. For example, negative damping or driven force from the actuation of
the piezoelectric interface circuit can shift the stable states in nonlinear systems, offering
an advantage for piezoelectric energy harvesting where high amplitude states are preferred.
Using the multiple time scale method, we have analyzed the orbit jumps in these systems
for autonomous and non-autonomous cases, revealing the mechanism of dynamic control
with this bidirectional energy conversion circuit. The theoretical results are validated
experimentally in both monostable and bistable systems, demonstrating the effectiveness
and compactness of the proposed energy harvesting and dynamic control solution. From
this chapter, the following conclusions can be drawn:

• The piezoelectric energy harvesting and vibration actuating functions are realized
with the same interface circuit, offering a self-contained orbit jump and dynamic
control solution for nonlinear energy harvesters.

• The harvested power yields a nine-fold increase after the orbit jump, quickly com-
pensating for the power consumption of the orbit jump process.

• The multiple time scale and stability analysis demonstrate the orbit jump process,
revealing the role of unstable spirals and saddle-node bifurcation with negative elec-
trically induced damping.

The promising findings of this study reveal the complexity of nonlinear dynamics and
its novel applications in vibration control. However, a complementary investigation of
high-dimensional nonlinear dynamical systems, such as nonlinear metamaterials, is still
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needed, given the potential for novel wave propagation and control mechanisms.

Chapter 4 presents a comprehensive study of a nonlinear damped metamaterial, which
applies the concept of nonlinear dynamics for vibration control to locally resonant meta-
materials. Compared with linear locally resonant metamaterials, nonlinear ones offer
amplitude-dependent responses, providing flexibility and the ability to tune wave propaga-
tion with different input excitation conditions. This work revisits the geometry nonlinear
damping effect from the deformation relationship of the local resonators. Its application
to locally resonant metamaterials leads to nonlinear dispersion relationships in the infinite
beam cases. To address the nonlinear frequency response in finite nonlinear metamaterial
cases, the author has developed a numerical harmonic balance-based model that can han-
dle generic nonlinear reaction forces applied to a linear substrate system with boundary
conditions, such as a cantilever Euler-Bernoulli beam studied in this work. In addition
to the bandgap of the nonlinear metamaterial, the nonlinear coupling of local resonators
and mode shapes is discussed, revealing the vibration attenuation capability beyond the
bandgap range. To validate the theoretical findings, experiments are first conducted at
the nonlinear local resonator level and then at the whole nonlinear metamaterial system
level. The bandgap broadening effects, nonlinear modal dissipation, and shock wave at-
tenuation have been verified experimentally. Overall, the following conclusions can be
drawn:

• The locally resonant bandgap has been broadened due to the nonlinear damping
effect from the local resonators.

• Besides the bandgap range, the nonlinear effect also induces modal coupling with
the mode shapes of the host beam, further facilitating energy redistribution in the
substrate beam for stronger modal dissipation.

• The nonlinear effect is amplitude-dependent, making the nonlinear damped metama-
terial particularly suitable for dampening impact or shock wave propagation along
the host beam, as demonstrated by theoretical and experimental results.

• The proposed numerical harmonic balance-based modeling methods can handle
generic forms of nonlinearities and bifurcation issues with hysteresis through nu-
merical continuation techniques, providing a generic approach to solving nonlinear
metamaterials in the frequency domain.

The investigations conducted in this chapter reveal an important limitation: these theo-
retical methods are based on harmonic excitation and low-dimensional systems. If non-
periodic excitation or higher dimensions are involved, the current formulation may face
challenges in both theoretical formulation and computation time. Therefore, exploring
extensions with random processes and high-fidelity parallel computing is necessary for
addressing nonlinear wave propagation problems in large-scale models.

5.2 Research Contributions and Outlooks

The present research addresses the field of elastic wave propagation and energy conversion
in mechanical systems, where manifold designs and physical phenomena well-established
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Figure 5.1: Research contribution and research works of the author (The works presented in this
dissertation are labeled in red). The mechanical domain: Linear piezoelectric energy harvester [33];
Nonlinear dynamics tuning and orbit jump (Chapter 3) [84, 103]; Graded metamaterials for energy
harvesting (Chapter 2) [54]; Nonlinear damped metamaterials for wideband vibration attention (Chapter
4) [67]. The electrical domain: Bidirectional energy conversion circuit (used in Chapter 3) [30]; Series
synchronized triple bias-flip circuit [23]; Equivalent impedance electromechanical models (used in Chapter
2) [33, 172]. The cyber domain: Vibration-powered IoT sensor node [207].

in other domains (e.g., electromagnetism, acoustics, or power electronics) have yet to
be fully explored. The research contributions and relevant work by the author of this
thesis are illustrated in Figure 5.1. Understanding the joint dynamics and effectively
managing the relationship between (energy) supply and (information) demand is crucial
for guiding waves in mechanical systems and realizing self-powered IoT systems. The
following sections outline my rationale, persistence, and interdisciplinary efforts toward
achieving this research goal from three main aspects:

The graded metamaterial-based energy harvesting system presented in 2 has demonstrated
the potential to power IoT sensor nodes and replace conventional chemical batteries with
artificially fabricated metamaterials and piezoelectric interface circuits. This requires cou-
pling of mechanics, dynamics, and electronics principles. In this chapter, the author has
demonstrated such a fusion through electrically induced damping and stiffness proper-
ties and investigated their impact on wave propagation through these coupled systems.
Considering different AC-DC interface circuits, the impedance matching abilities and the
joint dynamics of the electromechanical system have been discussed. Based on the under-
standing of the joint dynamics of piezoelectric energy harvesting systems [33], the author
has extended the results into high-degree-of-freedom mechanical metamaterial systems.
By incorporating the interface circuit into a graded locally resonant metamaterial, the au-
thor studied wave propagation phenomena such as wave-flied amplification and frequency
separation in this electromechanical system. Through the codesign of the mechanical do-
main, the author realized near-milliwatt DC power output from a single resonator within
a local resonant metamaterial for low-frequency vibrations for the first time [54].

The energy conversion circuit connects the mechanical structures with the electronic de-
vice to control the energy flow in the coupled system. Given the flexibility of power
electronics and embedded systems, direct and inverse energy flows can be controlled quan-
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titatively through charge (energy) manipulations in a two-way coupled electromechanical
system. Thus, the source and load can be switched to achieve multifunctions, i.e., en-
ergy harvesting and vibration actuating, without external energy input devices. Based on
the dynamic models of KEH systems, the author has further made in-depth theoretical
studies and practical explorations about multifunctional interface circuit methods, and
their applications in nonlinear systems to manipulate energy flows with circuits in Chap-
ter 3. By tuning the phase between voltage (force) and current (velocity) with different
MOSFETs switching paths, programmable electrically induced damping and stiffness can
be realized. On the one hand, by increasing the positive electrically induced damping,
the author has designed a novel interface circuit that can achieve high-capability energy
harvesting [23]. Conversely, negative damping has also been realized intuitively in energy
harvesting systems by the harvested energy [30]. The source’s information can also be
extrapolated with the system’s energy flow based on the energy level and duration. One
of the author’s previous works also features a transient-motion-powered IoT platform for
motion tracking [207].

Parallel with the fundamental concepts, dynamic modeling, performance improvement,
and engineering applications of electromechanical coupling systems mentioned above, the
author has also studied the nonlinear dynamics for systems with power conditioning cir-
cuits or locally resonant nonlinear metamaterials. Based on the dynamic modeling of
electromechanical systems, the author has introduced nonlinearity in dynamical systems
for broadband energy harvesting owing to the induced hysteresis characteristic. The con-
tent presented in Chapter 3 has studied the dynamics of nonlinear energy harvesting
systems with power conditioning circuits [84]. Particularly, to maintain a high energy
orbit for more harvested energy, the author has provided a new efficient way with a bidi-
rectional energy conversion circuit to control the nonlinear stability of the system with
its own harvested energy [103]. Such unprecedented low-powered solutions promote the
investigation of electromechanical coupling nonlinear dynamics. Besides the dynamics
modeling for nonlinear energy harvesting systems, the author has firstly introduced the
advanced numerical harmonic balance and continuation methods into the research field of
nonlinear metamaterials in Chapter 4, which is regarded as challenging to model due to
the need for analytical tools. By developing a customized reduced order modal superposi-
tion method with numerical harmonic balance and continuations, the author has verified
the nonlinear bandgap and modal dissipation ability theoretically and experimentally [67].

Based on the the research work conducted in this dissertation, the potential outlooks for
further investigation are listed as follows:

1: Deep fusion of power electronics with structural dynamics

The application of power electronics in mechanical structures has been introduced previ-
ously, for example, in electrical motors. However, most existing research only considers
shunting circuits, while the potential of power electronics is not fully released. This first
outlook focuses on the possibility of leveraging power electronics to create multifunctional
interface circuits for small-scale IoT sensor nodes. These circuits will guide energy flow
for efficient energy harvesting, sensing, control, and actuation, serving the purpose of
multifunctional electromechanical coupling systems.
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2: Complex dynamics modeling for mechanical systems

The circuit solution is only the initial step toward the fusion of power electronics with
structural dynamics. This outlook aims to explore novel models for interfacing electrome-
chanical dynamics, especially under complex conditions like nonlinear reaction forces from
mechanical structures or interface circuits. The goal is to explore nonlinear wave propaga-
tion and control issues toward accurate modeling of frequency or time domain responses
of these coupled systems.

3: Applications for Internet of Things

Based on the previous theoretical investigations, self-power electromechanical systems
can be realized for monitoring the structural health like buildings, bridges, wind turbines,
and generators where ambient vibration is pervasive, which will integrate three core areas:
mechanics, electronics, and information technology. These practical applicable systems
aim to overcome current limitations in structural health monitoring by combining energy
harvesting, which gathers energy from low-frequency mechanical vibrations, with signal
processing, which interprets those vibration signals to detect potential structural damages.
This direction has significant potential for both academia and industry. By harnessing
low-frequency vibrations from the environment, such as those from traffic or machine
vibrations, the integrated systems could continuously monitor the health of structures
without the need for external power, making it more sustainable.

These considerations represent a natural extension of the study presented in the disserta-
tion. The content and anticipated outcomes of these further research directions aim not
only to fulfill the goals mentioned above but also to demonstrate how wave and energy dy-
namics in mechanical (and electromechanical) systems can lead to the development of self-
powered, self-sensing, and self-aware devices with significant scientific and economic value.
(1) For the mechanical domain, investigation of complex dynamics in coupled systems will
enhance modeling methods and optimal designs beyond the conventional energy conver-
sion context.; (2) For the electrical domain, the potential of power electronics interface
circuits can be fully realized for multifunctional applications, including dynamics sensing,
mechanical-to-electrical energy conversion, and vice versa, electrical-to-mechanical motion
control; (3) For the cyber domain, data-driven models and intelligent IoT applications
can be seamlessly integrated for structural health monitoring and decision-making. For
broader society, the content and expected results will not only provide sustainable and
resilient energy solutions for scientific and industrial applications but also offer potential
improvements in daily life and reshape our approach to energy utilization.
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Nomenclature

Abbreviations

AC Alternating Current

AFT Alternating Frequency Time

BECC Bidirectional Energy Conversion Circuit

DC Direct Current

DCM Discontinuous Conduction Mode

EH Energy Harvesting

ESR Equivalent Series Resistance

FEM Finite Element Method

HEO High Energy Orbit

IoT Internet of Things

IWC Inhomogeneous Wave Correlation

LEO Low Energy Orbit

MOSFET Metal Oxide Semiconductor Field Effect Transistor

PCB Printed Circuit Board

PEH Piezoelectric Energy Harvesting

PV Phase Variable

PVDF Polyvinylidene Fluoride

PWM Pulse Width Modulation

PZT Piezoelectric Zirconate Titanate

S3BF Synchronized Tripe Bias Flip

SDOF Single Degree Of Freedom
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NOMENCLATURE

SECE Synchronized Electrical Charge Extraction

SEH Standard Energy Harvesting

SLDV Scanning Laser Doppler Vibrometer

SP Self Powered

SSHI Synchronized Switching Harvesting on Inductor

VE Vibration Exciting

VEH Vibration Energy Harvesting
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