
Diss. ETH No. 30368

Hardware-Software
Co-Design for

Energy-Efficient Neural
Network Inference at the

Extreme Edge

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES
(Dr. sc. ETH Zurich)

presented by

MORITZ LEO RUDOLF SCHERER

MSc ETH EEIT, ETH Zurich
born on 01.08.1996

accepted on the recommendation of

Prof. Dr. Luca Benini, examiner
Prof. Dr. Maurizio Martina, co-examiner

2024

Acknowledgments

There are many people I have to thank looking back on the past four
years leading up to this dissertation.

First of all, my advisor Luca Benini, who has supported me through-
out this journey and helped bring shape to novel ideas and refine my
efforts; your guidance has inspired me to keep improving and challenge
preconceived notions. In the same spirit, I would like to thank my first
mentor Michele Magno, who took a chance on the SmartAid project
Kiran, Paula, and I pitched to him in 2018, and who has supported
me ever since.

Thanks go to the entire IIS staff. Frank, whose unparalleled tech-
nical expertise has left a lasting impression on me. The DZ team,
Alfonso, Beat, and Zerun: your aid throughout my journey has been
vital. Hansjörg, who has helped me from my very early days at IIS,
and whose ingenuity in debugging electronics has saved me countless
hours. Christoph, Adam, and Mateo, who keep the infrastructure
running, maintaining the foundation for the research we do.

I would like to dedicate thanks to my ‘metamates‘, Barbara, Chiao,
Jorge, Warren, Reid, Ziyun, Syed, Kleber, Sai, Zhao, Korina, Andrew,
Matt, Leslie, Lyle, and Dimitri, who have welcomed me as a research
intern for half a year, helped me overcome technical challenges, and
ensured I felt welcome throughout my stay. I will never forget this
unique experience. Special thanks go to Jorge, who enabled this in-
ternship, and took care of me throughout it.

iii

iv

Next, I would like to acknowledge my colleagues. My original ETZ
officemates, Florian, whose Swabian flair brought light to mundane
work days, Samuel and Matheus, Maxim, and Andreas; the chal-
lenging pandemic years would not have been the same without you.
My new officemates, Philip, Jannis, Viviane, and Lorenzo, and OAT-
mates, Tim, Alfio, Marco, Yichao, Luca, Thorir, and Matteo who
helped make the office feel alive, and with whom I have spent many
working hours in the coffee corner.

Xia, Nils, and Michael whom I shared many meals with in our very
own WR, the weekly restaurant; I cannot imagine a better group of
people to share a hot pot.

Georg, whose unique sense of humor has entertained me throughout
the years, and whose analytical mind has propelled our collaborations
to technical maturity, starting from my own Master’s thesis.

Manuel and Arpan, who worked tirelessly on the Siracusa project
with me even when circumstances were suboptimal; your efforts made
dealing with the challenges much easier.

Luka and Victor, who have helped grow Deeploy, not only through
great technical contributions but also by being excellent teammates.
Francesco, whose patience with me is unmatched: thanks for your
advice, paper reviews, and frequent off-topic conversation throughout
the years.

To Alfio, whose technical leadership in the Kraken tapeout has been
foundational for large parts of this thesis: I have learned more from
working with you than any book could teach, and you have been a
valued friend on this journey.

Last but not least, thanks go to my family, who have supported me
throughout my studies, and my friends Tom, Noelle, Michael, and
Aitana who stuck with me through the hard times; thank you.

Abstract

Since the breakthrough success of AlexNet in the ILSVRC image
recognition challenge in 2012, Deep Neural Networks (DNNs), and
in particular Convolutional Neural Networks (CNNs), have become
the standard algorithms for a wide range of data processing appli-
cations, including image processing, biomedical applications, Natural
Language Processing (NLP) and many others. Advances in hardware
technology, neural network architectures, and the increasing availabil-
ity of training data have led to the rapid growth of DNN model sizes
and, in turn, complexity.

While many recent Machine Learning (ML) algorithms require
mastodontic computing capabilities and are increasingly run on
datacenter-scale remote servers, small-scale DNNs have proven
themselves helpful in processing highly domain-specific sensor data,
leading to the emergence of the TinyML paradigm.

Under the TinyML paradigm, ML algorithms are deployed on
resource-constrained embedded devices like Microntrollers (MCUs),
which are typically integrated closely with sensors, such that data
can be processed locally, without communication with the outside
world. The goal of TinyML platforms is to process highly specialized
DNN inference under real-time constraints while consuming power
in the order of a few milliwatts and working with on-chip memory
of at most a few megabytes. While such TinyML systems can
achieve orders of magnitude of improvements in terms of energy
efficiency and processing latency, the spartan compute capabilities
and severely limited on-chip memory of MCU-class devices require

v

vi

careful co-optimization of ML algorithms, computer architecture,
and low-level deployment software.

In this thesis, we follow a holistic approach to designing highly energy-
efficient TinyML systems. First, we present novel approaches opti-
mize DNNs for TinyML applications, focusing on minimizing mem-
ory and compute requirements while retaining high accuracy. Next,
we implement hardware accelerators for energy-efficient DNNs infer-
ence. Finally, we study the problem of automatic deployment of
large-scale, complex DNNs, and design software tools to generate low-
level performance- optimized code for heterogeneous System-on-chips
(SoCs).

The first part of this thesis focuses on applications and quantiza-
tion algorithms for ML-based time-series processing on MCUs. We
study several sensor-driven TinyML applications, ranging from ges-
ture recognition to keyword spotting. We develop broadly applicable
techniques to adapt state-of-the-art ML algorithms for energy-efficient
real-time inference in severely compute- and memory-constrained em-
bedded devices.

Starting from circuit-level computer arithmetic optimizations, this
thesis’s second part focuses on designing a highly energy-efficient yet
flexible Ternary Neural Network (TNN) accelerator called CUTIE. We
complement this accelerator with a study of ternary DNN quantiza-
tion algorithms and propose quantization strategies that optimally
leverage CUTIE’s architectural features, achieving the highest re-
ported energy-efficiency of any fully digital TNN accelerator reported
in literature.

We further present Temporal Convolutional Network (TCN) exten-
sions for CUTIE, which enable the processing of time-series sensor
data with the accelerator and the integration of the design into a
RISC-V SoC in 22 nm FDX technology, called Kraken. We bench-
mark the deployment of a TCN for Dynamic Vision Sensor (DVS)
gesture recognition on the produced Application-specific Integrated
Circuit (ASIC), achieving the lowest per-gesture inference energy re-
ported in literature.

vii

In the final part, we move from algorithmic optimizations for TinyML
applications to automatic DNN deployment code generation for het-
erogeneous SoCs. We design and implement a DNN deployment
tool, Deeploy, which calculates optimal tiling strategies for comput-
ing systems using software-managed memories and generates opti-
mized platform-specific code to execute modern large-scale DNNs on
memory-constrained embedded SoCs.

Zusammenfassung

Seit dem durchschlagenden Erfolg von AlexNet bei dem ILSVRC-
Wettbewerb im Jahr 2012 sind Deep Neural Networks (DNNs), insbe-
sondere Convolutional Neural Networks (CNNs), zu den Standardal-
gorithmen für eine breite Palette von Datenverarbeitungsanwendun-
gen geworden, einschließlich Bildverarbeitung, biomedizinischen An-
wendungen, Natural Language Processing (NLP) und vielen anderen.
Fortschritte in der Hardwaretechnologie, der Architektur neuronaler
Netze und die zunehmende Verfügbarkeit von Trainingsdaten haben
zu einem schnellen Wachstum der Grösse und somit der Komplexität
von DNN-Modellen geführt.

Während viele neuere Machine Learning (ML)-Algorithmen masto-
dontische Rechenkapazitäten erfordern und zunehmend auf Grossrech-
nern verarbeitet werden, haben sich kleine DNNs bei der Verarbeitung
anwendungsspezifischer Sensordaten als nützlich erwiesen, was zum
Aufkommen des TinyML-Paradigmas geführt hat.

Unter dem TinyML-Paradigma werden ML-Algorithmen auf ressour-
cenbeschränkten eingebetteten Systemen wie Microntrollers (MCUs)
eingesetzt, die typischerweise eng mit Sensoren gekoppelt sind, sodass
Daten lokal verarbeitet werden können, ohne mit der Außenwelt zu
kommunizieren. Das Ziel von TinyML-Plattformen ist es, hochspe-
zialisierte DNN-Inferenz unter Echtzeitbedingungen zu ermöglichen,
während sie nur wenige Milliwatt an Leistung verbrauchen und mit
einem On-Chip-Arbeitsspeicher von höchstens einigen Megabytes aus-
kommen. Obwohl solche TinyML-Systeme Grössenordnungen an Ver-
besserungen hinsichtlich Energieeffizienz und Verarbeitungslatenz er-

ix

x

reichen können, erfordern die spartanischen Rechenkapazitäten und
der stark begrenzte On-Chip-Speicher von MCUs eine sorgfältige Co-
optimierung von ML-Algorithmen, Computerarchitektur und Compi-
lern.

In dieser Dissertation verfolgen wir einen ganzheitlichen Ansatz zur
Gestaltung energieeffizienter TinyML-Systeme. Zuerst stellen wir neu-
artige Ansätze vor, um DNNs für TinyML-Anwendungen zu opti-
mieren, wobei wir uns auf die Minimierung von Speicher- und Re-
chenanforderungen konzentrieren, während wir eine hohe Genauigkeit
beibehalten. Anschließend implementieren wir Hardwarebeschleuniger
für energieeffiziente DNNs-Inferenz. Abschließend untersuchen wir das
Problem der automatischen Bereitstellung von grossangelegten, kom-
plexen DNNs und entwerfen Softwaretools zur Generierung von lei-
stungsoptimiertem Code für heterogene System-on-chips (SoCs).

Der erste Teil dieser Dissertation konzentriert sich auf Anwendungen
und Quantisierungsalgorithmen für ML-basierte Verarbeitung von
Zeitreihen auf MCUs. Wir untersuchen mehrere sensorgetriebene
TinyML-Anwendungen, von Gestenerkennung bis hin zu Keyword-
Erkennung. Wir entwickeln breit anwendbare Methoden, um moderne
ML-Algorithmen für energieeffiziente Echtzeit-Inferenz in stark
rechen- und speicherbeschränkten Embedded-Geräten anzupassen.

Ausgehend von Computerarithmetikoptimierungen auf der Schal-
tungsebene konzentriert sich der zweite Teil dieser Dissertation auf
die Entwicklung eines hochgradig energieeffizienten, aber dennoch
flexiblen Ternary Neural Network (TNN)-Hardwarebeschleunigers
namens CUTIE. Wir ergänzen diesen Hardwarebeschleuniger durch
eine Studie über ternäre DNN-Quantisierungsalgorithmen und
schlagen Quantisierungsstrategien vor, die die architektonischen
Merkmale von CUTIE optimal nutzen, wodurch die höchste berich-
tete Energieeffizienz eines vollständig digitalen TNN-Beschleunigers
in der Literatur erreicht wird.

Wir präsentieren darüber hinaus Temporal Convolutional Network
(TCN)-Erweiterungen für CUTIE, die es ermöglichen, Zeitreihen-
Sensordaten mit dem Hardwarebeschleuniger zu verarbeiten und
das Design in einem RISC-V SoC in 22 nm FDX-Technologie,
genannt Kraken, zu integrieren. Wir messen die Implementation

xi

eines TCN für Dynamic Vision Sensor (DVS)-Gestenerkennung auf
dem produzierten Application-specific Integrated Circuit (ASIC) und
erreichen dabei die niedrigste pro-Geste-Inferenzenergie, die bisher in
der Literatur berichtet wurde.

Im letzten Teil wechseln wir von algorithmischen Optimierungen für
TinyML-Anwendungen zur automatischen DNN-Codegenerierung
für heterogene SoCs. Wir entwerfen und implementieren ein
DNN-Codegenerierungstool, Deeploy, das optimale Strategien
zur Aufteilung der Netzwerkberechnung für Rechensysteme
mit softwareverwalteten Speichern berechnet und optimierten
plattformspezifischen Code generiert, um moderne umfangreiche
DNNs auf speicherbeschränkten Embedded-SoCs auszuführen.

xii

In reference to IEEE copyrighted material which is used with permission

in this thesis, the IEEE does not endorse any of ETH Zurich’s products or

services. Internal or personal use of this material is permitted. If interested in

reprinting/republishing IEEE copyrighted material for advertising or promotional

purposes or for creating new collective works for resale or redistribution,

please go to http://www.ieee.org/publications_standards/publications/

rights/rights_link.html to learn how to obtain a License from RightsLink. If

applicable, University Microfilms and/or ProQuest Library, or the Archives of

Canada may supply single copies of the dissertation.

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Machine Learning on the Extreme Edge: TinyML . . . 3
1.3 Outline . 9
1.4 Contributions . 10
1.5 List of Publications . 11

2 Applications and Quantization Algorithms for
TinyML 15
2.1 TinyRadarNN: Combining Spatial and Temporal CNNs 17

2.1.1 Introduction 17
2.1.2 Related Work 20
2.1.3 Background . 22
2.1.4 Low Power Short Range Radar and Dataset . . 25
2.1.5 Energy-Efficient and High Accuracy Gesture

Recognition Algorithm 27
2.1.6 Results and Discussion 33
2.1.7 Conclusion . 43

2.2 WaveFormer: Long Sequence Transformers for Edge
Devices . 45
2.2.1 Introduction 45
2.2.2 Related Work 47
2.2.3 WaveFormer 49
2.2.4 Quantization Algorithm 52
2.2.5 Deployment . 54

xiii

xiv CONTENTS

2.2.6 Experimental Results 54
2.2.7 Conclusion . 60

3 CUTIE: Completely Unrolled Ternary Inference En-
gine 61
3.1 Introduction . 62
3.2 Related Work . 65

3.2.1 Aggressively Quantized Neural Networks 65
3.2.2 DNN Hardware Accelerators 68

3.3 System Architecture 69
3.3.1 High-level Data Path 69
3.3.2 Parametrization 71
3.3.3 Principle of Operation 72
3.3.4 Input Encoding 78
3.3.5 Exemplary Instantiations of CUTIE 79

3.4 Implementation . 81
3.4.1 Interface Design 81
3.4.2 Dimensioning 83
3.4.3 Implementation Metrics 83

3.5 Results and Discussion 85
3.5.1 Quantized Network Training 85
3.5.2 Evaluation Setup 87
3.5.3 Experimental Results 88
3.5.4 Comparison of Quantization Strategies 91
3.5.5 Exploiting Feature Map Smoothness 93
3.5.6 Comparison of Binary and Ternary Neural Net-

works . 94
3.5.7 Comparison with the State-of-the-Art 94

3.6 Conclusion . 96

4 TCN Extensions for CUTIE 97
4.1 Introduction . 98
4.2 SoC Implementation 99
4.3 CUTIE Design . 100
4.4 TCN Extensions . 101
4.5 TCN-CUTIE Implementation 103
4.6 Kraken Physical Implementation 105
4.7 Evaluation . 105

CONTENTS xv

4.8 Comparison with State-of-the-Art 109
4.9 Conclusion . 111
4.10 Outlook . 111

5 Deeploy: Automatic DNN Deployment for TinyML
SoCs 113
5.1 Introduction . 114
5.2 Related Work . 117

5.2.1 Small Foundation Models 117
5.2.2 Quantized Transformer Models 118
5.2.3 Neural Network Deployment for Extreme Edge

Devices . 119
5.3 Deeploy . 120

5.3.1 Data Structures 122
5.3.2 Frontend . 122
5.3.3 Midend . 125
5.3.4 Backend . 128

5.4 TinyStories Llama Model 131
5.4.1 Prompting Phase 132
5.4.2 Generation Phase 132
5.4.3 Quantization Setup 133

5.5 Deployment Platform 133
5.5.1 Siracusa . 134
5.5.2 Deeploy Integration 135
5.5.3 Deployment Setup 137

5.6 Results . 139
5.6.1 Quantization Results 139
5.6.2 Deployment Evaluation Setup 142
5.6.3 Microbenchmarking Results 143
5.6.4 Compiler Evaluation 144
5.6.5 End-to-end Deployment Results 144
5.6.6 Deployment Overheads 146
5.6.7 Comparison with tinyML Compilers 146
5.6.8 Comparison with the State-of-the-art 149

5.7 Conclusion . 150

6 Conclusion 151
6.1 Main Results . 151

xvi CONTENTS

6.2 Future Work and Outlook 153

Acronyms 155

Bibliography 159

Curriculum Vitae 199

Chapter 1

Introduction

1.1 Motivation

In recent years, Deep Neural Networks (DNNs), especially Convolu-
tional Neural Networks (CNNs), have positioned themselves as the
cornerstone algorithms across a multitude of data processing applica-
tions, spanning image processing, biomedical fields, Natural Language
Processing (NLP), and many more. Significant advancements in hard-
ware technology have propelled this surge in adoption, the evolution
of neural network architectures, and the burgeoning availability of
training data, contributing to the exponential growth in the size and
complexity of DNN models.

The widespread integration of DNNs into mainstream technology has
been primarily facilitated by breakthroughs in Graphics Processing
Unit (GPU) technology. The seminal AlexNet, often regarded as
the catalyst for the current explosion in Machine Learning (ML) re-
search [1], demonstrated the potential of leveraging multiple General-
Purpose Graphics Processing Units (GPGPUs) for neural network
computation. This milestone has shifted the focus of DNN research
towards harnessing the power of datacenter-class compute clusters to
scale models up to billions of parameters.

1

2 CHAPTER 1. INTRODUCTION

10s Mbit/s

100s kbit/s

High Bandwidth
Low Energy Cost

H
ig

h
 E

n
e
rg

y
 C

o
st

Lo
w

 B
a
n
d
w

id
th

Cloud Processing

TinyML On-Device Processing

System ResponseSensor Data Acquisition

H
ig

h
 La

te
n
cy

Off-Board

On-Board

10s kbit/s Realtime Response

Figure 1.1: Comparison of cloud-based processing (red) and TinyML
on-device processing (green); the TinyML approach minimizes energy
consumption and latency for realtime, sensor-driven applications.

Simultaneously, research into network topologies has been comple-
mented by algorithmic optimizations such as quantization and prun-
ing. These optimizations, coupled with their demands for complex
dataflow and non-standard computer arithmetic, have paved the way
for developing novel hardware accelerators designed to effectively cap-
italize on these complexity-reduction techniques [2–4].

Adding to this, the slowdown in Moore’s law [5] and the halt of Den-
nard scaling [6] emphasize the increasing need for specialized accelera-
tion of DNN workloads. This need has become a critical research area
and a practical requirement for further advancing DNN technologies.
This trend is evident in the ongoing efforts of nearly all major tech
companies, who are actively developing custom hardware accelerators
for datacenter-scale processing of DNN workloads in cloud environ-
ments [2, 7].

In contrast to centralized deployment schemes, the emerging field of
TinyML aims to empower the processing of neural networks at the
local level directly on the device where data originates [3, 8]. Con-

1.2. TINYML 3

sequently, TinyML’s DNN inference faces much more stringent con-
straints, including limited hardware resources, stringent power con-
sumption limitations, and the imperative for minimal processing la-
tency. However, the promise of TinyML extends beyond these chal-
lenges, as it stands to become a pivotal enabler of groundbreaking
applications far surpassing the capabilities of current systems. One
compelling example is the evolution of Virtual Reality (VR) and Aug-
mented Reality (AR) technologies [9], which demand substantial ad-
vancements in DNN inference energy efficiency and accuracy of con-
current real-time algorithms that transform gestures, speech, and user
gaze into actionable information [9–11]. A comparison between the
cloud-based processing approach and on-device processing is shown in
Figure 1.1.

The challenges presented to the burgeoning field of TinyML motivate
and demand innovation across the deep learning technology stack,
including hardware accelerators, System-on-chip (SoC) architectures,
DNN quantization & deployment software, and DNN architectures.

1.2 Machine Learning on the Extreme
Edge: TinyML

TinyML represents the intersection of ML algorithms and ultra-low-
power embedded systems, aiming to bring the advanced information
extraction capabilities of DNNs to the very edge of the technology
frontier onto the smallest and often battery-powered devices such as
wearables, sensors, and various Internet of Things (IoT) devices [12].
The resource constraints of this class of devices require meticulous
optimization to achieve tasks previously thought impractical for such
challenging environments [13].

At its core, TinyML is about overcoming the limitations imposed by
the minimal computational resources, limited memory in the order of
kilo- or few megabytes, and stringent power constraints of Micron-
trollers (MCUs) and other low-power devices [3, 8]. It involves not
only the downsizing of existing ML models without significant loss
in accuracy [10, 14] but also the development of new algorithms and

4 CHAPTER 1. INTRODUCTION

techniques specifically designed for this scale [15]. Combining these
approaches enables the deployment of intelligent functions directly on
MCU-class devices, reducing the need for constant internet connec-
tivity and thus addressing concerns related to data privacy, security,
and latency.

Some key applications of TinyML include the processing of sensor data
like audio, low-resolution images, and accelerometer data close to their
source; as such, DNNs for TinyML applications can be much more op-
timized for their specific sensors and deployment environments than
their datacenter-scale counterparts. Translating these constrained de-
ployment scenarios into lower DNN complexity is paramount to meet-
ing the hardware constraints of TinyML systems, as smaller models
directly translate to lower inference latency and higher energy effi-
ciency, enabling longer battery life on sensor nodes.

Besides DNN architecture optimization, one of the essential design
methods for TinyML is quantization, which aggressively reduces the
memory footprint of DNN models by representing operands and in-
termediate results using fewer bits. This translates to a significantly
reduced memory footprint of DNNs, which addresses the memory con-
straint.

Quantization for TinyML systems

Neural Network (NN) models have proven themselves highly resilient
to errors introduced by approximate computing techniques where in-
termediate results and network parameters are rounded to fit within
a single byte without any retraining in a process called Post-Training
Quantization (PTQ) [15, 16]. The compression of network parame-
ters and activations to 8 bit significantly reduces their memory load
compared to their single floating point precision equivalents.

However, quantizing DNNs to perform inference with sub-byte
operands requires a more sophisticated approach than PTQ, as
it often leads to significant degradation in model accuracy if not
carefully managed [15, 17]. Techniques such as Quantization-Aware
Training (QAT) come into play here, where the quantization process
is integrated into the training phase itself [16, 18]. This method

1.2. TINYML 5

allows the model to learn the quantization noise during training,
making it more robust to the precision loss. Additionally, advanced
techniques like mixed precision training [19], where different parts
of the model use different quantization levels. Custom quantization
schemes tailored to the specific characteristics of the model and its
application domain can further mitigate the accuracy loss.

Dedicated accelerators can leverage more aggressive sub-byte quan-
tization to achieve massive improvements in energy efficiency and
throughput [20] due to a significant reduction in circuit complexity.
For example, while a 32 bit integer product requires a large number of
hardware adders to be performed in a single cycle, a binary product
only requires a single XOR gate [21].

RISC-V SoCs for TinyML

With the introduction of the RISC-V Instruction Set Architecture
(ISA) [22] and the open-source hardware movement, the playing field
for exploring trade-offs in computer architecture, especially for MCU-
class devices, has rapidly increased [23]. The RISC-V ISA, is designed
with support for extensions in mind. This design space has been ex-
plored in recent years to develop application-optimized yet general-
purpose cores. Notably, the xPULP ISA extension family adds sup-
port for low-cost hardware optimizations for Digital Signal Processing
(DSP) and ML applications, like integer Single Instruction Multiple
Data (SIMD) support, hardware loops, and post-load increment in-
structions [20].

However, while ISA extensions help to reduce the number of instruc-
tions required per operation, their potential is ultimately limited by
Flynn’s bottleneck [24], referring to the fact that every executed in-
struction must be fetched and decoded, which forms a ceiling on the
achievable number of operations per cycle and achievable energy effi-
ciency in processor architectures. Accelerators have found their way
into most state-of-the-art TinyML systems as a natural extension of
core-based processing [12] to address this fundamental constraint of
all common computers.

6 CHAPTER 1. INTRODUCTION

Hardware Accelerators for TinyML

Hardware accelerators for tinyML applications present a unique set of
challenges and considerations, ranging from the design of their data
path to the integration within an SoC. However, overcoming these
challenges can afford significant improvements in throughput and en-
ergy efficiency over conventional core-based processing and allows the
exploration of algorithms that might be unfeasible or inefficient on
general-purpose computers [25].

A fundamental trade-off in accelerator design is flexibility versus ef-
ficiency; generally, the more specialized the accelerator is for a par-
ticular task or algorithm, the higher its efficiency, but the lower its
flexibility. This means that while a highly specialized accelerator can
perform specific operations with exceptional speed and low power con-
sumption, it may not be adaptable to different algorithms or tasks
without significant redesign, rendering it obsolete. Conversely, a more
flexible accelerator, capable of handling various tasks, may not achieve
the same level of operational efficiency for any single task compared
to its specialized counterpart. This trade-off is critical in the context
of tinyML, where the specific requirements of an application must be
carefully balanced against the inherent resource constraints of extreme
edge devices.

This trade-off applies to virtually all design aspects of accelerators,
but the most significant impact is usually found on their lowest level,
where ML accelerators mainly compute matrix products [4,9,26]. The
design space for datapath architectures implementing matrix multi-
plications is vast; it encompasses a wide range of architectural choices,
from the arrangement of processing elements to data storage and
retrieval methods. These choices significantly impact the accelera-
tor’s performance, energy efficiency, and silicon area usage. For in-
stance, some designs opt for a systolic array architecture that effi-
ciently handles data flow for matrix operations, enhancing parallelism
and reducing memory access latency at significant energy cost spent
on data movement through the array [27]. Other approaches to op-
timizing datapath efficiency include In-Memory Computing (IMC),
where operations are performed directly in on-chip Static Random
Access Memory (SRAM) macros rather than digital compute units.

1.2. TINYML 7

Additionally, the choice between on-chip versus off-chip memory, the
strategy for data reuse and caching, and the precision of computation
(e.g., floating-point versus fixed-point arithmetic) further diversify the
design space.

To make full use of the optimization opportunities of deeply special-
ized hardware accelerators while maintaining support for novel DNN
architectures, relying on a single accelerator or compute engine is of-
ten not sufficient; integrating multiple accelerators on a single SoC is
an approach that aims to overcome this issue. However, heterogeneity
in SoC designs introduces further challenges for TinyML.

Heterogeneous SoCs for TinyML

Traditional MCUs are not designed for high-performance comput-
ing, focusing instead on rich peripherals and simple, low-power cores
that allow them to interact with their environment. In contrast, the
tinyML paradigm encourages the design of High-Performance Com-
puting (HPC) inspired systems, favoring multi-core compute clus-
ters [28, 29] and dedicated hardware accelerators [25, 26, 30] over sin-
gle core systems. This approach centers around the utilization of
multi-core processors for general computational tasks, complemented
by dedicated hardware accelerators specifically designed for Artifi-
cial Intelligence (AI) and machine learning workloads, such as Neural
Processing Units (NPUs) in a single Application-specific Integrated
Circuit (ASIC).

Leveraging synergies between multi-core clusters and hardware accel-
erators enables highly efficient processing of DNNs. Multi-core com-
pute clusters can handle various tasks with parallel processing ca-
pabilities. At the same time, hardware accelerators are optimized for
high-speed, low-power execution of specific computations, such as ma-
trix multiplications or convolutions in various quantization schemes.

Adopting such a dual approach mitigates the limitations of relying
solely on general-purpose computing or specialized acceleration, of-
fering a versatile platform that can adeptly meet the computational
demands of advanced AI algorithms. It aligns well with the con-
straints of extreme edge computing, where efficient use of power is

8 CHAPTER 1. INTRODUCTION

paramount. However, optimizing DNNs for such heterogeneous com-
puting architectures requires sophisticated software tools, as the ab-
sence of Memory-Management Units (MMUs) and Operating Systems
(OSs) in MCUs requires software solutions that are capable of splitting
workloads into chunks that fit within the tight memory constraints of
MCUs [3].

NN Deployment on Heterogeneous SoCs

While DNNs have traditionally been trained and executed on GPG-
PUs, where compute and memory resources can be scaled arbitrarily,
and MMUs and OSs take over low-level hardware management tasks,
model deployment for TinyML requires an entirely different approach,
as these management tasks must be handled in software.

To exploit the compute engines of heterogeneous SoCs, deployment
tools must not only generate code for executing optimized low-level
compute kernels but also orchestrate overlapping memory transfers
between various hierarchy levels [3] and calculate an execution sched-
ule to achieve low data marshaling overheads and high compute uti-
lization.

Overcoming these challenges is paramount to enabling efficient model
execution on baremetal hardware. However, to manage state-of-the-
art networks, deployment tools must also account for the memory
constraints of targeted devices; this is especially challenging, as mod-
ern edge AI MCUs feature multiple memory levels [3, 31], requiring
operator tiling, which must account for geometrical and performance
constraints. Generating code for such platforms typically requires a
static memory allocation strategy, which implements the tiling strat-
egy to guarantee correct inference on the device.

This thesis studies the TinyML technology stack holistically, address-
ing end-to-end energy efficiency challenges from the modeling, quan-
tization, deployment, and acceleration angles.

1.3. OUTLINE 9

1.3 Outline

Applications and Quantization
Algorithms for TinyML

Chapter 2

CUTIE: Completely Unrolled
Ternary Inference Engine

Chapter 3

Deeploy: Automatic DNN
Deployment for TinyML SoCs

Chapter 5

Conclusion
Chapter 6

TCN Extensions for CUTIE
Chapter 4

Introduction
Chapter 1

Figure 1.2: Block diagram of this thesis’ structure

In the following, we outline this thesis, as shown in Figure 1.2.
The content presented throughout this thesis has already been
peer-reviewed and published in conference proceedings and journal
papers.

Chapter 2

The second chapter introduces two different TinyML applications
for extracting high-level information from noisy sensor data, gesture
recognition, and keyword spotting. It discusses approaches based on
Temporal Convolutional Network (TCN) and Transformer networks.
Both applications implement 8 bit quantization, and deployment flows
for extreme edge devices. The presented implementations are mea-
sured on their target platforms, achieving state-of-the-art energy effi-
ciency and accuracy for their respective tasks.

Chapter 3

This chapter introduces the CUTIE accelerator and discusses its key
design characteristics. The accelerators are synthesized and imple-
mented in a prototype backend flow in GlobalFoundries 22 nm technol-
ogy, which is used to gather post-layout power simulation estimates.

10 CHAPTER 1. INTRODUCTION

It further demonstrates the impact of quantization and sparsity on
CUTIE’s energy efficiency.

Chapter 4

The fourth chapter introduces TCN extensions for CUTIE, introduced
in Chapter 3, to enable support for networks similar to those described
in Chapter 2. Furthermore, the silicon implementation of the extended
accelerator within the Kraken SoC in GlobalFoundries 22 nm technol-
ogy is discussed, and end-to-end measurements on the fabricated ASIC
are presented.

Chapter 5

The fifth chapter introduces Deeploy, a bottom-up compiler for hetero-
geneous TinyML SoCs, like the SoC presented in Chapter 4, to enable
state-of-the-art TinyML DNNs like the ones introduced in Chapter 2.
Through the deployment of a complex decoder-only Transformer net-
work on the Siracusa SoC, Deeploy’s flexibility and adaptability are
demonstrated, leading to leading-edge energy efficiency and through-
put of a Small Language Model (SLM) on an extreme edge device.

Chapter 6

Chapter six summarizes this thesis and offers an outlook on future
challenges and opportunities for TinyML devices and algorithms.

1.4 Contributions

The main contributions of this thesis, as well as the related publica-
tions, are summarized as follows:

1. The training of a novel mixed CNN and TCN model for gesture
recognition, its quantization, and deployment on a state-of-the-
art RISC-V multi-core TinyML system and measurements of the
power consumption on the device (Chapter 2.1, [32]).

2. The design, quantization, and deployment of a linear trans-
former model for audio recognition on an off-the-shelf ARM

1.5. LIST OF PUBLICATIONS 11

microcontroller, achieving above state-of-the-art word recogni-
tion accuracy and real-time inference on the 96 MHz MCU. On-
device power measurements complete the study (Chapter 2.2,
[33]).

3. The design of an ultra-low energy-per-inference digital accel-
erator for Ternary Neural Networks (TNNs), CUTIE, as well
as an exploration of quantization schemes for TNNs and their
impact on adder tree activity in the accelerator. It is demon-
strated that the accelerator’s design approach of maximizing
architecture parallelism and focusing on ternary over binary val-
ues optimizes energy efficiency. Furthermore, post-layout silicon
estimates of the accelerator are provided (Chapter 3, [34]).

4. The design and implementation of TCN extensions for the
CUTIE accelerator, as well as a silicon implementation of
the design in GlobalFoundries 22 nm technology. Silicon
measurements of the fabricated device improve on the
post-layout estimates, achieving 1 POp/J in a wholly digital
design (Chapter 4, [35]).

5. The design and implementation of a novel compiler, Deeploy, for
DNNs on TinyML devices. Deeploy solves the tiling and static
memory allocation problems for large neural networks deployed
on MCUs with multiple memory hierarchy levels in a single con-
straint program and generates low-level C code supporting the
integration of user-provided kernels. We also present an in-depth
study on end-to-end performance and power consumption for
autoregressive transformer inference on a heterogeneous multi-
core system (Chapter 5, [36]).

1.5 List of Publications

Most of the material covered in this thesis has been published in the
following conference and journal papers:

[32] M. Scherer, M. Magno, J. Erb, P. Mayer, M. Eggimann, and L. Benini,
“TinyRadarNN: Combining Spatial and Temporal Convolutional Neural
Networks for Embedded Gesture Recognition With Short Range Radars,”

12 CHAPTER 1. INTRODUCTION

IEEE Internet of Things Journal, vol. 8, no. 13, pp. 10 336–10 346, Jul.
2021

[33] M. Scherer, C. Cioflan, M. Magno, and L. Benini, “Work In Progress: Linear
Transformers for TinyML,” in 2024 Design, Automation & Test in Europe
Conference & Exhibition (DATE), Mar. 2024

[34] M. Scherer, G. Rutishauser, L. Cavigelli, and L. Benini, “CUTIE: Be-
yond PetaOp/s/W Ternary DNN Inference Acceleration With Better-Than-
Binary Energy Efficiency,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 41, no. 4, pp. 1020–1033, Apr. 2022

[35] M. Scherer, A. D. Mauro, T. Fischer, G. Rutishauser, and L. Benini,
“TCN-CUTIE: A 1,036-TOp/s/W, 2.72-µJ/Inference, 12.2-mW All-Digital
Ternary Accelerator in 22-nm FDX Technology,” IEEE Micro, vol. 43,
no. 1, pp. 42–48, Jan. 2023

[36] M. Scherer, L. Macan, V. Jung, P. Wiese, A. Burrello, F. Conti, and
L. Benini, “Deeploy: Enabling Energy-Efficient Deployment of Small Lan-
guage Models On Heterogeneous Microcontrollers,” Mar. 2024, under Re-
view at IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems (TCAD)

Further publications by the author that are not or only partially cov-
ered in this thesis:

[37] M. Scherer, K. Menachery, and M. Magno, “SmartAid: A Low-Power Smart
Hearing Aid For Stutterers,” in 2019 IEEE Sensors Applications Sympo-
sium (SAS), Mar. 2019, pp. 1–6

[38] A. Di Mauro, M. Scherer, J. F. Mas, B. Bougenot, M. Magno, and
L. Benini, “FlyDVS: An Event-Driven Wireless Ultra-Low Power Visual
Sensor Node,” in 2021 Design, Automation & Test in Europe Conference
& Exhibition (DATE), Feb. 2021, pp. 1851–1854

[39] M. Scherer, P. Mayer, A. di Mauro, M. Magno, and L. Benini, “Towards
Always-on Event-based Cameras for Long-lasting Battery-operated Smart
Sensor Nodes,” in 2021 IEEE International Instrumentation and Measure-
ment Technology Conference (I2MTC), May 2021, pp. 1–6

[40] A. Burrello, M. Scherer, M. Zanghieri, F. Conti, and L. Benini, “A Micro-
controller is All You Need: Enabling Transformer Execution on Low-Power
IoT Endnodes,” in 2021 IEEE International Conference on Omni-Layer
Intelligent Systems (COINS), Aug. 2021, pp. 1–6

[41] A. Burrello, F. B. Morghet, M. Scherer, S. Benatti, L. Benini, E. Macii,
M. Poncino, and D. J. Pagliari, “Bioformers: Embedding Transformers for
Ultra-Low Power sEMG-based Gesture Recognition,” in 2022 Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE), Mar. 2022,
pp. 1443–1448

1.5. LIST OF PUBLICATIONS 13

[42] A. Di Mauro, M. Scherer, D. Rossi, and L. Benini, “Kraken: A Direct
Event/Frame-Based Multi-sensor Fusion SoC for Ultra-Efficient Visual Pro-
cessing in Nano-UAVs,” in 2022 IEEE Hot Chips 34 Symposium (HCS),
Aug. 2022, pp. 1–19

[43] M. Scherer, A. Di Mauro, G. Rutishauser, T. Fischer, and L. Benini, “A
1036 TOp/s/W, 12.2 mW, 2.72 µJ/Inference All Digital TNN Accelerator
in 22 nm FDX Technology for TinyML Applications,” in 2022 IEEE Sym-
posium in Low-Power and High-Speed Chips (COOL CHIPS), Apr. 2022,
pp. 1–3

[44] M. Scherer, F. Sidler, M. Rogenmoser, M. Magno, and L. Benini, “WideVi-
sion: A Low-Power, Multi-Protocol Wireless Vision Platform for Distributed
Surveillance,” in 2022 18th International Conference on Wireless and Mo-
bile Computing, Networking and Communications (WiMob), Oct. 2022, pp.
394–399

[45] P. Busia, A. Cossettini, T. M. Ingolfsson, S. Benatti, A. Burrello,
M. Scherer, M. A. Scrugli, P. Meloni, and L. Benini, “EEGformer:
Transformer-Based Epilepsy Detection on Raw EEG Traces for
Low-Channel-Count Wearable Continuous Monitoring Devices,” in 2022
IEEE Biomedical Circuits and Systems Conference (BioCAS), Oct. 2022,
pp. 640–644

[46] G. Rutishauser, M. Scherer, T. Fischer, and L. Benini, “Ternarized TCN
for µJ/Inference Gesture Recognition from DVS Event Frames,” in 2022
Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2022, pp. 736–741

[47] M. Scherer, M. Eggimann, A. D. Mauro, A. S. Prasad, F. Conti, D. Rossi,
J. T. Gómez, Z. Li, S. S. Sarwar, Z. Wang et al., “Siracusa: A Low-Power
On-Sensor RISC-V SoC for Extended Reality Visual Processing in 16nm
CMOS,” in ESSCIRC 2023- IEEE 49th European Solid State Circuits Con-
ference (ESSCIRC), Sep. 2023, pp. 217–220

[48] G. Rutishauser, M. Scherer, T. Fischer, and L. Benini, “7 µJ/Inference
End-to-End Gesture Recognition from Dynamic Vision Sensor Data Us-
ing Ternarized Hybrid Convolutional Neural Networks,” Future Generation
Computer Systems, vol. 149, pp. 717–731, Dec. 2023

[49] A. Mattei, M. Scherer, C. Cioflan, M. Magno, and L. Benini, “Securing
Tiny Transformer-based Computer Vision Models: Evaluating Real-World
Patch Attacks,” in 9th World Forum on the Internet of Things (WF-IoT
2023), 2023

[50] G. Islamoglu, M. Scherer, G. Paulin, T. Fischer, V. J. Jung, A. Garofalo,
and L. Benini, “ITA: An Energy-Efficient Attention and Softmax Accelera-
tor for Quantized Transformers,” in 2023 IEEE/ACM International Sym-
posium on Low Power Electronics and Design (ISLPED), Aug. 2023, pp.
1–6

14 CHAPTER 1. INTRODUCTION

[30] A. S. Prasad, M. Scherer, F. Conti, D. Rossi, A. Di Mauro, M. Eggimann,
J. T. Gómez, Z. Li, S. S. Sarwar, Z. Wang et al., “Siracusa: A 16 nm
Heterogenous RISC-V SoC for Extended Reality with At-MRAM Neural
Engine,” ArXiv, no. arXiv:2312.14750, Dec. 2023, accepted for publication
at IEEE Journal of Solid-State Circuits

[51] P. Busia, A. Cossettini, T. M. Ingolfsson, S. Benatti, A. Burrello, V. J. B.
Jung, M. Scherer, M. A. Scrugli, A. Bernini, P. Ducouret et al., “Reducing
False Alarms in Wearable Seizure Detection with EEGformer: A Compact
Transformer Model for MCUs,” IEEE Transactions on Biomedical Circuits
and Systems, pp. 1–13, 2024

[52] V. J. B. Jung, A. Burrello, M. Scherer, F. Conti, and L. Benini, “Optimizing
the Deployment of Tiny Transformers on Low-Power MCUs,” ArXiv, no.
arXiv:2404.02945, Apr. 2024, manuscript submitted for review at IEEE
Transactions on Computers

[53] V. Potocnik, A. D. Mauro, C. Leitner, M. Scherer, G. Rutishauser, L. Lam-
berti, and L. Benini, “Kraken: An Open-Source RISC-V SoC for Ultra-Low
Power Multi-Modal Perception,” ArXiv, Apr. 2024

Chapter 2

Applications and
Quantization
Algorithms for TinyML

In this chapter, we focus on sensor-driven, time series classification
TinyML applications and methodologies for DNN size reduction,
quantization, and deployment on extreme edge devices, achieving
state-of-the-art accuracy, throughput, and energy efficiency.

The problem of time-series classification is pervasive in TinyML ap-
plications, as most sensors used in embedded devices produce low-
dimensional time series, like audio, radar, or accelerometer data. The
approaches described in this chapter, TCNs and Transformers, are
shown to be adaptable to the TinyML domain.

Section 2.1 introduces a dual-stage algorithm for classifying gestures
from radar data consisting of a per-frame CNN and a per-sequence
TCN. Using this dual approach of extracting spatial features from
a CNN and temporal features from a TCN not only minimizes the
model’s memory footprint, compressing it to 92 kB, but outperforms
larger, traditional autoregressive models like Long Short-Term Mem-

15

16 CHAPTER 2. TINYML ALGORITHMS

orys (LSTMs). We demonstrated end-to-end deployment and integra-
tion with the sensor on the GAP8 MCU, achieving real-time prediction
in a power envelope of only 21 mW. We further collected and open-
sourced a dataset collected for this work, which contains 11 gestures
classes from 26 subjects.

Section 2.2 proposes a quantization and deployment methodology to
enable the use of linear attention on off-the-shelf low-power low-cost
32-bit MCUs. As a use case of this methodology, we present the
WaveFormer, a 130 KB neural network based on a linear attention
architecture that achieves a new state-of-the-art accuracy of 99.45 %
on the Google Speech 35 V2 dataset. We further demonstrate the 8-
bit quantization and embedded deployment of the WaveFormer on the
Apollo 4, an ARM Cortex-M4 platform, achieving a latency of 741 ms,
adequate for real-time operation, as well as an energy consumption of
just 8.7 mJ per inference.

Section 2.1 has been published in a slightly different form in IEEE
Internet of Things Journal (IOTJ)1 and contains minor modifications.
Section 2.2 has been adapted from a publication at the 2024 Design,
Automation & Test in Europe Conference & Exhibition Conference
(DATE)2, and contains further explanations on deployment results
and quantization methodology.

1© 2021 IEEE. Reprinted, with permission, from M. Scherer, M. Magno,
J. Erb, P. Mayer, M. Eggimann, and L. Benini, “TinyRadarNN: Combining Spatial
and Temporal Convolutional Neural Networks for Embedded Gesture Recognition
With Short Range Radars,” IEEE Internet of Things Journal, vol. 8, no. 13, pp.
10 336–10 346, Jul. 2021

2© 2024 IEEE. Reprinted, with permission, from M. Scherer, C. Cioflan,
M. Magno, and L. Benini, “Work In Progress: Linear Transformers for TinyML,”
in 2024 Design, Automation & Test in Europe Conference & Exhibition (DATE),
Mar. 2024

2.1. TINYRADARNN 17

2.1 TinyRadarNN: Combining Spatial
and Temporal CNNs

2.1.1 Introduction

Human-computer Interface (HCI) and Human activity recognition
(HAR) systems provide a plethora of attractive application scenar-
ios with a wide array of solutions, strategies, and technologies [54,55].
Hand gestures are one of the most natural ways for people to interact,
control and engage with devices and machines in the IoT paradigm
[56]. For this reason it is not surprising that one of the emerging tech-
nologies in the context of wearable devices is gesture recognition [57].
Traditionally, the approaches for capturing human gestures are based
on image data or direct measurements of movement, i.e. by using mo-
tion sensors [57–59]. The main types of sensors used in literature are
cameras with and without depth perception, force-sensitive resistors,
capacitive elements and accelerometers to measure the movement of
the subject directly [60]. While these approaches have been shown
to work well in controlled settings, robustness remains a challenge
in real-world application scenarios. Image-based approaches have to
deal with well-known environmental challenges like subject occlusion
and variability in brightness, contrast, exposure and other parameters
[61]. Another drawback of image-based solutions is the comparatively
high power consumption, with commercial sensors like the Kinect sen-
sors having power consumptions in the order of watts [62]. Wearable
systems using motion-based sensing are much less affected by environ-
mental variability and typically use significantly less power, but are
more difficult to adapt to differences in user physique and behaviour.
Approaches based on Wi-Fi have also been studied. On single subjects
they have been shown to achieve high accuracy [59, 63], but are gen-
erally restricted to coarse or full-body gestures, due to the low spatial
resolution, signal strength and susceptibility to electromagnetic inter-
ference and multi-path reflections [64–66].

A very promising, novel sensing technology for hand gesture recogni-
tion is based on high frequency and short-range pulsed RADAR sen-
sors [67]. RADAR technology can leverage the advantages of image-
based recognition with reduced challenges from environmental vari-

18 CHAPTER 2. TINYML ALGORITHMS

ability. The electromagnetic RADAR waves can propagate through
matter, such that it can potentially record responses even if placed be-
hind clothing. Furthermore, recently proposed designs based on novel
sensor implementations can fit within a low power budget [67], com-
patible with the constraints of wearable devices. However, achieving
RADAR-based gesture recognition on the highly constrained comput-
ing platforms available on wearables remains an open challenge.

Battery-operated wearable devices for the Internet of Things, espe-
cially those used for machine learning and data mining applications,
typically host an ARM Cortex-M or RISC-V based microcontroller,
which can achieve power consumption in the order of a few milli-
watts and computational speeds in the order of hundreds of MOp/s
[68–71], while offering memory storage of at most a few megabytes.
Fitting within these limited computational resources to run machine
learning algorithms especially for high-bandwidth sensors, such as im-
agers or RADARs, remains challenging [72, 73]. Recently, several re-
search efforts have started to focus on specialized hardware to run
machine learning algorithms, and in particular neural networks on
power-constrained devices [72, 74–76]. Parallel architectures leverag-
ing near-threshold operation and multi-core clusters, enabling signifi-
cant increases in energy efficiency, have been explored in recent years
with different application workloads [77] and low-power systems [29].

The main state-of-the-art approaches to machine learning-based time-
sequence modelling for gesture recognition are Hidden Markov Mod-
els (HMM) [78] and LSTM [79] networks, which both use an internal
state to model the temporal evolution of the signal. In recent years
especially, Artificial Neural Networkss (ANNs) have seen a rapid in-
crease in popularity, with most recent works relying on LSTM-based
approaches [80,81]. The recently proposed RADAR sensing platform
Soli, jointly developed by Infineon and Google, has been studied in
different works, most prominently by Wang et al. [82]. They pro-
pose an LSTM model that achieves an accuracy of above 90% over 11
classes.

In contrast to the state-based modelling of the input signal, TCNs are
stateless in the sense that their computation model does not depend
on the input. This means that they can compute sequential outputs in

2.1. TINYRADARNN 19

parallel, unlike LSTMs or HMMs [83]. Furthermore, since they only
use stateless layers, TCNs use significantly less memory for buffering
feature maps compared to LSTMs, defusing the memory bottleneck on
embedded platforms. TCNs have increasingly been adopted in many
application scenarios where the classification of data is heavily linked
to its temporal properties, for example, biomedical data [84] or audio
data [85].

This Subsection proposes a novel embedded, highly accurate tempo-
ral convolutional neural network architecture, optimized for low-power
microcontrollers. The proposed model achieves both a memory foot-
print of less than 100 KB, as well as achieving a per-sequence inference
accuracy of around 86.6% for 11 challenging gesture classes, trained
on a multi-user dataset, and 92.4% for a single-user dataset. We
exploit a novel, low-power short-range A1 RADAR sensors from Ac-
coneer3 to acquire two rich and diverse datasets, one for a single user
and one for a total of 26 users, each containing 11 gestures. Further,
we leverage a multi-core RISC-V based embedded processor taking
advantage of the emerging parallel ultra-low power (PULP) comput-
ing paradigm to enable the execution of complex algorithmic flows
on power-constrained devices. Similar to Soli, possible deployment
scenarios for the algorithm and processing platform include smart de-
vices like smartphones4 and smart thermostats5 and even wearables
with small form factor like smartwatches and hearing aids [29]. Due
to the small footprint of less than 30 mm2, the RADAR sensor can be
easily integrated into most wearable devices [86].

We show that highly-accurate, real-time hand gesture recognition
within a power budget of around 120 mW, including the sensor and
processing consumption, is possible with the proposed sensor and com-
puting platform. Experimental evaluations with a working prototype
demonstrate both the power consumption and the high accuracy and
are presented in this Section.

The main contribution of this Section can be summarized as follows:

3https://www.acconeer.com/products
4https://ai.googleblog.com/2020/03/soli-radar-based-perception-and.html
5https://www.gearbrain.com/new-google-nest-hub-soli-2649744781.html

20 CHAPTER 2. TINYML ALGORITHMS

• Design and implementation of a TCN network architecture op-
timized for low-power hand gesture recognition on microcon-
trollers, achieving state-of-the-art accuracy with a total memory
footprint of less than 512 KB.

• Acquistion and labeling of an open-source gesture recognition
dataset featuring 11 challenging, fine-grained hand gestures
recorded with the low-power Acconeer A1 pulsed RADAR
sensor to provide a baseline dataset for future research.

• Implementation of the proposed model in a novel parallel RISC-
V based microcontroller, featuring 8 specialized parallel cores for
processing and 512 KB of on-chip memory. The novel, power-
optimized architecture of the processors enables a full-system
power consumption below 100 mW in full active mode.

• Evaluation of the benefits of the algorithm in terms of accuracy,
energy efficiency and inference speed, showing that the processor
consumes only 21 mW, which is orders of magnitude less power
for real-time prediction compared to the state-of-the-art, at a
comparable level of accuracy.

2.1.2 Related Work

Hand gesture recognition is a widely investigated field. However, it
is difficult to put all the research into context, as there are many
different categories of hand gestures, which vary in complexity. Also,
depending on the number of modelled gestures, the sensor used, and
how well diversified the studied dataset is, accuracies vary greatly. In
this Subsection we review RADAR based approaches which are most
directly comparable with our work. We refer the interested reader to
[64,87–92] for image-based, inertial and RF-based gesture recognition.

RADAR-based gesture recognition

Some research has been conducted to exploit RADAR systems or radio
signals to predict hand gestures. The approaches vary in terms of the
application scenario, as well as accuracy and power efficiency. Differ-
ent models without explicit sequence modelling have been employed
in the past, a sample of which is discussed here. Kim et al. use pulsed

2.1. TINYRADARNN 21

radio signals to determine static hand gestures by analysing the dif-
ferences between reflected waveforms with the help of a 1D CNN. Ac-
curacies of over 90% are achieved for American Sign Language (ASL)
hand signs using a CNN and micro-Doppler signatures [93]. In their
feasibility analysis, Kim and Toomajian use deep convolutional neural
networks to classify ten hand-gestures using micro-doppler signatures
from a pulsed RADAR. Their offline prediction algorithm reaches an
accuracy of 85.6% on a single participant [94]. Using a similar ap-
proach based on micro-doppler signatures and a Frequency-Modulated
Continuous Wave (FMCW) RADAR, Sun et al. showed that infer-
ence accuracy of over 90% on a nine gesture dataset recorded from a
stationary RADAR for driving-related gestures is possible [95].

Different works have used combinations of LSTM cells or Hidden
Markov Models combined with different pre-processing strategies and
convolutional layers to classify both coarse- and fine-grained gestures
with the help of time-sequence modelling. Hazra et al. present a
FMCW-based system which is trained to recognize eight gestures,
reaching an accuracy of over 94% [96]. Targeting embedded, low-
power applications, Lien et al. developed a high-frequency short-
range RADAR specifically for the purpose of hand-gesture recogni-
tion, called Soli. They implement a neural network to classify four
hand gestures. Their final implementation uses a random forest clas-
sifier on those features with an optional bayesian filter of the random
forest output. They use four micro-gestures, which they call ”vir-
tual button” (pinch index), ”virtual slider” (sliding with index finger
over thumb), ”horizontal swipe” and ”vertical swipe”. On those four
gestures, they achieve a per-sample accuracy of 78.22% and a per-
sequence accuracy of 92.10% for the bayesian filtered random forest
output [67]. Choi et al. used the Soli sensor and a self-recorded 10
gesture dataset featuring ten participants to train an LSTM-based
neural network. They achieve an accuracy of over 98% using a GPU
for inference computation [97]. Using the Soli sensor, Wang et al. pro-
pose a machine learning model to infer the hand motions contained in
the RADAR signal, based on an ANN network containing both con-
volutional layers and LSTM cells. They employ a fine-grained eleven
gesture dataset recorded using the Soli sensor. While their approach
shows a high average statistical accuracy of 87.17%, their proposed

22 CHAPTER 2. TINYML ALGORITHMS

model uses more than 600 MB of memory which is several orders of
magnitude more than most low-power microcontrollers offer. More-
over, the Soli sensors are consuming more than 300 mW of power,
which will drain any reasonably sized battery for a wearable device in
a few minutes of use [82].

While it has been shown that TCNs can outperform LSTMs for action
segmentation tasks both in terms of accuracy and inference speed
[83, 98], the use of TCNs for gesture recognition remains a relatively
unexplored field of research. However, one work by Luo et al. indicates
that classical 2D-TCNs can perform equally well and even outperform
approaches based on LSTM cells and HMMs for gesture recognition
tasks [99].

2.1.3 Background

Range Frequency Doppler Map

Feature maps based on the Fourier transform of the time axis, like the
Range Frequency Doppler Map (RFDM), similarly to micro-Doppler
signatures, have been proven to be effective for machine learning ap-
plications in previous research on gesture recognition [94–97, 100]. It
relies on the Doppler effect, which quantifies the shift of frequency in
a signal that is reflected from a moving object. This shift of the fre-
quency is correlated to the velocity of the object in the direction of the
sensor. In order to detect changes in velocity, the I/Q signal is Fourier
transformed into the frequency space, where changes in frequency can
be observed. In order to detect the movement of objects in front of
the sensor, multiple sweeps (i.e. time steps) are joined together and
the time signal is Fourier transformed for each range point. As the
sampled signal from each sweep S(t, r) is time and range discrete the
Discrete Fourier Transform (DFT) is used. The transformed feature
map S(f, r) can be calculated according to the following equation:

S(f, r) =

T∑
t=0

S(t, r)e−
2πift

T

2.1. TINYRADARNN 23

Figure 2.1: Range-Frequency Doppler Map for an example record-
ing. The width and height dimensions correspond to the temporal
frequency and the sampling range, respectively.

Where T is the total number of sample points per recorded distance
point. We only consider the absolute values of this function. An
example RFDM is shown in Figure 2.1.

Temporal Convolutional Networks

Temporal Convolutional Networks are a modelling approach for time
series using dilated 1D-convolutional neural networks, proposed by
Lea et al. [98], which has been used for a multitude of tasks, but
very prominently in speech modelling [101, 102] and general human
action recognition [103]. The basis of TCNs are causal, dilated 1D-
convolutions. Causal refers to the fact that for the prediction of any
time step no future inputs are considered. Thus, the support pixel
of the kernel is always chosen to be the last pixel. This is needed in
a real-time prediction scenario, as in that case only the current and

24 CHAPTER 2. TINYML ALGORITHMS

Figure 2.2: Layer structure of the TCN. Each input time step is one
1D vector that is generated by flattening the 2D CNN’s output. The
dilation factors used in the network are 1, 2 and 4. The kernel size
for all convolutional filters in the TCN is 2.

past data values are available at prediction time. To weigh past data
for sequence predicition, TCNs employ dilated convolutions over the
temporal dimension. By increasing the dilation factor for consecutive
layers the receptive field can be increased rapidly and very long ef-
fective memory of the network can be achieved. Figure 2.2 shows the
data flow of the TCN. The input data for the TCN are the flattened,
1D outputs of a 2D-CNN.

Naturally, the TCN produces one output per time step. In the follow-
ing, we will refer to metrics considering each individual time step as

2.1. TINYRADARNN 25

per-frame and to metrics considering the time step and all previous
time steps modelled in the TCN as per-sequence.

2.1.4 Low Power Short Range Radar and Dataset

This Subsection describes the properties of the Acconeer low power
short-range RADAR sensor that was used and the parameters of the
datasets that were acquired using the sensor.

Short Range RADAR for Gesture Recognition

The RADAR devices used are novel short-range pulsed Radio De-
tection and Ranging (RADAR) from Acconeer, pulsed with 60 GHz.
These low power devices use only one transmitter and receiver which
reduces the power consumption to tens of Milliwatts. The data re-
turned by these sensors are sampled values of the I/Q signals. The
RADAR sensor is configured to continuously emit pulses at a fixed fre-
quency of fsweep, called RADAR Repetition Frequency (RRF). The
time interval between two pulses is called RADAR Repetition Interval
(RRI).

Let t = 0 be the time at which the sensor sends out a pulse. Assuming
that the transmitter and receiver are at the same position, i.e. being
the same antenna, the response received at t + 2∆t corresponds to
the reflection echo of an object located at a distance of d = c

2∆t from
the emitter/receiver, where ∆t is the time-of-flight of the pulse to the
location of the object.
By regularly sampling the signal received after sending a pulse, a
sweep vector containing reflections of objects at different distances
can be computed. The distance resolution ∆d of the Acconeer sensor
amounts to 0.483 mm, which corresponds to a time-of-flight of 1.6 ns.

Dataset Specification and Acquistion

To train and evaluate the sensor for hand gesture recognition, two
datasets were gathered: One 5-gesture dataset and two 11-gesture
datasets.6 The 11-gesture data set features the same gestures as Wang

6The 5G and 11G datasets and code for feature extraction are available for
research purposes at https://tinyradar.ethz.ch

26 CHAPTER 2. TINYML ALGORITHMS

Figure 2.3: Overview of the gestures used in the dataset by Wang et
al. [82]. The eleven gestures contain fine-grained gestures like ”Finger
Slide”, as well as coarser gestures like ”Push” or ”Pull”.

et al. [82] and the 5-gesture dataset uses a subset of the same 11 ges-
tures, consisting of the ”Finger Slide”, ”Slow Swipe”, ”Push”, ”Pull”
and ”Palm Tilt” gestures. Using the same gestures as Wang et al. [82]
allows for an effective comparison. All eleven gestures are depicted in
Figure 2.3.

The 11-gesture dataset uses two Acconeer sensors with a sweep rate
of 160 Hz each, while the 5-gesture dataset uses a single sensor with a
sweep rate of 256 Hz. Participants were shown Figure 2.3, the approx-
imate height, 20 cm above the sensor board, at which to perform the
gesture, but were given minimal instructions on how to perform the
gestures. The gestures were performed in sitting position, without
any additional inclination. The recording setup was not systemati-
cally varied between different persons and recordings. The 11-gesture
dataset contains a total of 45 recording sessions of 26 different individ-
uals, out of which 20 recordings are recorded from the same person
to evaluate single-user accuracy, while the other 25 recordings are
each recorded from different individuals. Subsets of the 11-gesture
dataset are used to evaluate single user (SU) performance and multi-
user (MU) performance. For the single-user dataset, the aforemen-
tioned 20 recordings from one single individual are used. For the
multi-user dataset, one recording of the same individual is merged

2.1. TINYRADARNN 27

Table 2.1: Overview of the parameters used to record the dataset
Parameters 5-G 11-G (SU) 11-G (MU)
Sweep frequency 256 Hz 160 Hz 160 Hz
Sensors 1 2 2
Gestures 5 11 11
Recording length 3 s ≤ 3 s ≤ 3 s
of different people 1 1 26
Instances per Session 50 7 7
Sessions per recording 10 5 5
Recordings 1 20 26
Instances per gesture 500 710 910
Instances per person 2500 7700 35
Total Instances 2500 7700 10010
Sweep ranges 10 – 30 cm 7 – 30 cm 7 – 30 cm
Sensor modules used XR111 XR112 XR112

with the remaining 25 recordings of different individuals, which re-
sults in a dataset of 26 recordings of 26 different individuals. Thus,
the multi-user and single-user datasets overlap by one recording of
one individual.

A complete overview of the dataset parameters can be found in Table
2.1.

2.1.5 Energy-Efficient and High Accuracy Gesture
Recognition Algorithm

One of the major contributions of this Section is the proposal of a
model to accurately classify hand gestures recorded with a short-range
RADAR sensor. The proposed model enables the reduction of mem-
ory and computational resources, which pose the biggest challenge
for the deployment of a model for small embedded devices such as
microcontrollers.

The constraints for peak memory use and throughput were chosen to
work with microcontrollers like the ARM Cortex-M7 series and RISC-
V based devices with a power budget in the order of tens of milliwatts.

28 CHAPTER 2. TINYML ALGORITHMS

These microprocessors are very memory-constrained, usually offering
below 512 KB of memory, and achieve optimal operating conditions
when using 8-Bit quantization for the activations and 16- or 8-Bit
quantization for the weights [104].

Preprocessing

Since the dataset consists of periodic samples of distance sweep vec-
tors, we chose to use the well-known approach of stacking a number
TW of sweep vectors into one feature map window of raw data, which
is called a frame. For the proposed network, the number of sweep vec-
tors was chosen to be 32. This corresponds to a total time resolution
of 200 ms per frame for 11-G datasets and 125 ms for the 5-G dataset.
These frames are then processed by normalizing them and computing
their RFDM. While the 2D range-frequency spectrum contains a real
and an imaginary component, only the absolute value of each bin is
used, since the phase component of the spectral representation, while
having the same number of values as the magnitude, did not add any
significant improvement to the overall inference accuracy.

Neural Network Design

For the 11-G dataset, the input feature map size is 492 × 32 × 2
values, as each sensor contributes one channel, the number of time
steps considered are 32 and the number of range points per sweep is
492. Even when compressing each value to 8 bit, the total required
buffer memory for each frame amounts to 246 KB. For successful
time-sequence modelling, the information of multiple frames needs to
be stored and processed. Using the raw frame for multiple time steps
would lead to buffer space requirements in the order of megabytes,
which is not available in commercial microcontrollers.

To solve this issue, the proposed model is based on a combination
of a 2D CNN and a 1D TCN, which are designed to separate the
spatial-temporal modelling problem into two parts; a short-term, spa-
tial modelling problem, which captures little temporal information
and can be solved on the level of individual frames, and a sequence
modelling problem which can be solved on the level of extracted fea-

2.1. TINYRADARNN 29

Figure 2.4: Overview of the processing algorithm. The raw I/Q sensor
data is first processed by applying a Fourier transform, after which
features are extracted from the frequency maps by processing them
using a 2D CNN. The results of the feature extraction stage are flat-
tened and five time steps are processed using a dilated TCN network.

tures from the first network. The overall data flow is depicted in
Figure 2.4.

Spatial and Short-Term Temporal Modelling

Spatial and short-term temporal modelling can be seen as the task of
extracting spatial and short-term temporal information from a single
frame of RADAR data into a 1D feature vector containing spatial
features that can be accurately classified with a sequence modelling
algorithm. This approach compresses each frame by a factor of 82×,
which allows the extracted features to be stored on the low-memory
microcontrollers for multiple time steps, which is required for accurate
time-sequence prediction. The proposed network for spatial feature
extraction is depicted in Figure 2.5.

Since the width direction of the data frames corresponds to the spatial
dimension, i.e. the distance from the sensor and the height direction
corresponds to the temporal dimension of the frame, the frame width
is considerably greater than the frame height. Since the distance

30 CHAPTER 2. TINYML ALGORITHMS

Figure 2.5: Layer structure of the 2D CNN. Each Convolutional layer
is followed by a ReLU activation.

sampling is chosen to be very fine-grained, wide kernels are used, both
for pooling and convolutions. The layer parameters are shown in Table
2.2. The total required buffer memory size for inference for algorithms
using a static allocation of memory is given by the maximum of the
sum of the buffer space required for the input and output feature map
of any layer. For the proposed network, the total required buffer size is
reached in the first layer and amounts to (492·32·2+98·10·16)·8 Bit =
368 KB.

Long-Term Temporal Modelling

The features computed by the 2D CNN are processed further with
a TCN. The TCN uses an exponentially increasing dilation factor to
combine features from different time steps into a single feature vector
which can then be passed to a classifier consisting of fully-connected
layers. For the proposed network, five time steps are considered by
the TCN, i.e. five consecutive output feature vectors of the 2D CNN
are used as the input of the TCN. This corresponds to a total effec-

2.1. TINYRADARNN 31

Table 2.2: Layer architecture of the 2D CNN
Layer Input Output Kernel Padding
2D Conv 32×492×2 32×492×16 3×5 Same
Max Pooling 32×492×16 10×98×16 3×5 Valid
2D Conv 10×98×16 10×98×32 3×5 Same
Max Pooling 10×98×32 3×19×32 3×5 Valid
1D Conv 3×19×32 3×19×64 1×7 Same
Max Pooling 3×19×64 3×2×64 1×7 Valid
Flatten 3×2×64 384 - -

tive time window of 1 s for the 11-G datasets and 0.625 s for the 5-G
dataset. The overall TCN structure, taking into account the expo-
nential dilation steps, is depicted in Figure 2.2.

Each TCN filter in the TCN consists of residual blocks, each consisting
of one depthwise convolution layer followed by a ReLU [105] activa-
tion, the result of which is then added to the original input. This is
slightly different from the original definition of residual blocks in Lea
et al. [98], as normalization layers, dropout layers and one depthwise
convolutional layer are removed to save memory space and execution
time. A graphical comparison of the residual blocks as proposed by
Lea et al. can be seen in Figures 2.1.5 and 2.1.5.

To reduce dimensionality, the output of the 2D CNN is filtered with a
1D Convolution which compresses the number of channels by a factor
of 12×. The compressed features are then collected for a total of
five time steps before being passed to the dilated network. For the
final output classification, the output of the dilated network is passed
to three fully-connected layers. The resulting network structure is
described in Table 2.3.

Training Setup

Both the 2D CNN as well as the TCN were implemented using the
Keras/Tensorflow framework. The RFDM features were extracted
from the dataset and saved before training. Both network parts were
trained together, using a batch size of 128 for a total of 100 epochs.

32 CHAPTER 2. TINYML ALGORITHMS

Figure 2.6: Comparison of the TCN residual blocks. The proposed
network blocks (right) require a factor 2× less computations and mem-
ory than the original blocks (left), due to using only one convolutional
layer instead of 2.

Table 2.3: Layer architecture of the TCN
Layer Input Output Kernel Dilation
Causal 1D Convolution 5×384 5×32 1 -
Causal 1D Convolution 5×32 5×32 2 1
Adding Layer 5×32 5×32 - -
Causal 1D Convolution 5×32 5×32 2 2
Adding Layer 5×32 5×32 - -
Causal 1D Convolution 5×32 5×32 2 4
Adding Layer 5×32 5×32 - -
Fully connected 5×32 5×64 - -
Fully connected 5×64 5×32 - -
Fully connected 5×32 5×11 - -

2.1. TINYRADARNN 33

The optimizer chosen for training is Adam [106]. Both 5-fold cross-
validation (CV5) and leave-one-user-out cross-validation (LOOCV)
training runs were performed and are shown in the results Subsection
(Subsection 2.1.6).

2.1.6 Results and Discussion

We evaluated the proposed model and its implementation on embed-
ded hardware in terms of power consumption and inference perfor-
mance on the system-scale. In particular, we present the test setup
and the evaluation of the proposed model in terms of accuracy, mem-
ory and computational requirements in the first subsubsections, com-
paring different features and processing alternatives, while we present
an evaluation of the implementation on a novel RISC-V-based parallel
processor in a later subsubsection.

Experimental Setup

The GAP8 from Greenwaves Technologies7 is an off-the-shelf RISC-
V-based multicore embedded microcontroller developed for IoT appli-
cations. At its heart, the GAP8 features one RISC-V microcontroller
and an octa-core RISC-V processor cluster with support for special-
ized DSP instructions, derived from the PULP open-source project
[77]. The GAP8 memory architecture features two levels of on-chip
memory hierarchy, containing 512 KB of L2 memory and 64 KB of L1
memory.

Figure 2.7 shows the hardware test setup, using evaluation boards
for the GAP8 and A111 RADAR sensor, connected with an ARM
Cortex-M4 evaluation board, which is used to broadcast the data to
both a connected PC and the GAP8.

The trained model was deployed onto the GAP8 with the AutoTiler
tool8, which generates C Code optimized for parallel execution of the
model on the hardware platform.

7https://greenwaves-technologies.com/ai processor gap8/
8 https://greenwaves-technologies.com/manuals/BUILD/AUTOTILER/html/index.html

34 CHAPTER 2. TINYML ALGORITHMS

Figure 2.7: Picture of the hardware setup used to evaluate the system.
The central board is a STM32L4 development board used to interface
the RADAR sensor board (right) with the GAP8 development board
(left).

2.1. TINYRADARNN 35

Table 2.4: Per-frame and per-sequence inference accuracy of the full
algorithm on the respective test/validation set
Metric Per-Frame Per-Sequence
5-G SU-CV5 93.83% 95.00%
11-G SU-CV5 89.52% 92.39%
11-G MU-CV5 81.52% 86.64%
11-G MU-LOOCV 73.66% 78.85%

Accuracy of the Algorithm

The inference accuracy of the algorithm can be discussed both in
terms of per-frame accuracy, i.e. considering every frame for only one
time step or in terms of per-sequence accuracy, i.e. the prediction
for each frame taking into account the prediction for the individual
frame at all time steps. To fairly compare results on the same dataset
and frame definition, the per-frame metric is preferable, since it al-
lows to accurately compare different approaches and the impact of
sequence modelling versus single-frame processing. For comparing to
other datasets and frame definitions, the per-sequence accuracy is the
preferable metric, since it levels out the impact of using frames with
higher time resolution and represents more accurately how the net-
work behaves in a practical setting. The final results for the proposed
network, both in terms of per-frame and per-sequence accuracy are
shown in Table 2.4.

For the following paragraphs, the per-frame accuracy is used to discuss
the impact of changes in architecture and pre-processing, while the
per-sequence accuracy is used to compare to other research.

Evaluation of Pre-Processing Methods

To increase classification performance, different pre-extracted features
were evaluated in combination with the features extracted by the con-
volutional neural network. The pre-extracted features are the signal
energy, both for the Signal-over-Range (SOR) as well as the Signal-
over-Time (SOT), the signal variation for the SOR and SOT and
the centre of mass, which measures the intensity of the signal over

36 CHAPTER 2. TINYML ALGORITHMS

Table 2.5: Overview of the size of different input features
Feature Data Format 5-G 11-G
Raw I/Q Signal TW × RP × 2 26496 62976
Signal Variation 2D (TW-1) × RP × 2 25668 61008
RFDM TW × RP 13248 31488
Signal Energy SOR RP 414 492
Signal Energy SOT TW 32 32
Signal Variation SOR RP 414 492
Signal Variation SOT TW 32 32
Centre of mass TW × 3 96 96

the range of the sensor. An important consideration for embedded
systems is the size of the feature maps since memory is the most
common bottleneck for neural network implementations on microcon-
trollers and similar devices. An overview of the number of values per
feature with respect to the number of sampling windows TW and the
number of range points RP can be found in Table 2.5.

Due to the splitting of the data into windows containing both spa-
tial and temporal information, an evaluation of the preprocessing and
pre-extracted feature performance using the 2D CNN and a fully-
connected layer to estimate the feature quality can be given. Using
this setup, the per-frame training accuracy results in Table 2.6 were
achieved.

The RFDM features provide the best baseline in terms of pre-
processed feature maps, both in terms of memory efficiency as well as
classification performance. The raw data shows similar performance
as the RFDM in the case of a single-frame model, which makes it
important to consider as using the raw data needs no pre-processing,
while all other features do. However, the required energy to calculate
the RFDM features is around 34× less than what is used for
one inference of the 2D-CNN, so the impact of pre-processing on
energy efficiency is negligible. To further increase the accuracy,
combinations of the RFDM with signal energy, variation and centre
of mass were also studied. The per-frame performance of the RFDM
features combined with other features can be seen in Table 2.7.

2.1. TINYRADARNN 37

Table 2.6: Overview of the per-frame performance of different features
for the 2D-CNN
Feature Combination 5-G SU-CV5 11-G MU-CV5
Raw I/Q Signal 90.35% 69.09%
Signal Variation 2D 89.93% 65.32%
RFDM 91.08% 69.37%
Signal Energy SOR & SOT 70.25% 51.90%
Signal Energy SOR 65.67% 49.95%
Signal Energy SOT 64.40% 40.72%
Signal Variation SOR 38.10% 17.92%
Signal Variation SOT 20.92% 10.57%
Centre of mass 47.56% 33.81%

Table 2.7: Overview of the 2D-CNN per-frame network performance
with combined features
Feature Combination 5-G SU-CV5 11-G MU-CV5
RFDM baseline 91.08% 69.37%
RFDM & signal variation 2D 91.05% 71.93%
RFDM & signal energy SOR 90.99% 70.24%
RFDM & signal variation
SOR

91.08% 69.16%

RFDM & centre of mass 91.34% 70.35%
RFDM & signal variation
SOT

76.93% 59.33%

RFDM & signal energy SOT 91.20% 70.33%

38 CHAPTER 2. TINYML ALGORITHMS

Table 2.8: Overview of the averaged per-frame accuracy of the whole
network with combined features
Feature Combination 5-G SU-CV5 11-G MU-CV5
Raw I/Q Signal 91.90% 76.91%
RFDM 93.83% 81.52%
RFDM & signal variation 2D 92.75% 78.84%
RFDM & signal energy SOR 93.22% 80.92%
RFDM & centre of mass 91.81% 78.45%
RFDM & signal energy SOT 93.38% 78.99%

As already shown in the evaluation of pre-processing methods, the
added features do not increase accuracy by a significant margin, which
substantiates the choice not to add them for the proposed network.

Hyperparameter Tuning of the TCN

The performance of the network with the added TCN was evaluated
against the performance of the 2D CNN alone. As explained in Sub-
section 2.1.5, the number of TCN filters is independent of the rest of
the network and can be tuned to fit the constraints of the applica-
tion and target hardware. To find the optimal operating point for the
number of filters, the correlation between the number of filters and
the increase in accuracy was evaluated for the 11 gesture dataset and
is shown in Figure 2.8.

As can be seen in the graph, the classification accuracy plateaus after
32 TCN filters. The averaged per-frame accuracy for different selec-
tions of features using 32 TCN filters and five time steps can be seen
in Table 2.8.

As previously discussed in the evaluation of the pre-processing meth-
ods, adding manually extracted features does not positively impact
the overall accuracy of the network.

Further, for all combinations of features, especially with respect to
the 11 gesture multi-user dataset, the TCN improves the per-frame
accuracy of the overall network by a significant margin.

2.1. TINYRADARNN 39

Figure 2.8: Classification performance vs. number of TCN filters
on the 11-G dataset, using 5-fold cross-validation (blue) and leave-
one-out cross-validation (grey). Even with exponential scaling of the
number of filters, the accuracy stagnates after around 32 filters.

40 CHAPTER 2. TINYML ALGORITHMS

Table 2.9: Per-frame test accuracy of the whole network for different
sequence modelling approaches using 32 filters
Time steps 5 10 20
LSTM, 32 filters 79.24% 79.69% 80.71%
LSTM, 128 filters 79.29% 80.23% 81.77%
Original TCN, 32 filters 80.50% 80.46% 81.49%
Original TCN, 128 filters 80.55% 80.26% 82.09%
Proposed TCN, 32 filters 80.13% 80.17% 81.45%
Proposed TCN, 128 filters 80.79% 81.32% 82.79%

Table 2.10: Number of parameters required for sequence modelling
using LSTM vs. TCN broken down by number of filters
Filters 32 64 96 128
LSTM 25.4k 99.8k 223.5k 396.3k
Original TCN 12.4k 49.6k 111.2k 197.4k
Proposed TCN 6.2k 24.8k 55.6k 98.7k

Comparison to LSTM-based Networks

The proposed model’s time-sequence modelling network using custom
TCN layers was also evaluated against a modelling approach based on
LSTMs as proposed by Schmidhuber et al. [79] and a network using
standard TCN layers.

The performance for all three alternatives was evaluated using the
same number of filters and time steps. The per-frame test accuracies
for 32 and 128 filters are shown in Table 2.9.

The number of time steps beyond five does not significantly increase
the inference performance of the network neither for the TCN version
nor for the LSTM version. Besides accuracy, the focus for embedded
deployment is always on network size. Table 2.10 shows the number
of parameters for 32 and 128 filters. Note that the number of time
steps does not impact the number of parameters.

The number of parameters for the TCN-based implementations is
much lower than the number of parameters required for the LSTM-

2.1. TINYRADARNN 41

Figure 2.9: Overview of the microprocessor’s energy efficiency while
running the algorithm vs. its cluster frequency. To achieve real-time
operation, at least 100 MHz are required.

based implementations. Taking into account the superior accuracy,
smaller memory footprint achieved with the TCN-based implemen-
tations, the TCN models perform better by all evaluated metrics.
Furthermore, using the proposed TCN variant, the number of param-
eters for the sequence modelling part can be reduced by a factor of
4× compared to LSTM-based variants.

Experimental Results

The proposed algorithm, as explained in Subsection 2.1.5, was im-
plemented and evaluated on a GAPuino evaluation board and power
measurements were taken for both the microcontroller as well as the
RADAR sensor. The overall number of weights of the model is split
between the 2D CNN, requiring 22’368 weights and the TCN, requir-
ing 22’917 weights. Using 16 bit quantization and considering the im-
plementation overheads, the network requires just under 92 KB on the
GAP8. In terms of operations, the 2D CNN dominates the overall al-
gorithm, taking up more than 99% of the overall computations, which
total around 42 MOps per inference, taking a total of 5.8 MCycles per
inference on the GAP8.

An overview of the energy consumption with respect to operating
frequency is given in Figure 2.9.

42 CHAPTER 2. TINYML ALGORITHMS

Table 2.11: Energy breakdown of the algorithm on GAP8 at 100 MHz
Algorithm
step

Energy per Frame Cycles MACs

FFT 0.12 mJ 176 · 103 -
2D CNN 4.07 mJ 5′100 · 103 20′470 · 103

TCN 0.32 mJ 458 · 103 256 · 103

Dense 0.006 mJ 86 · 103 22 · 103

Full Network 4.52 mJ 5′820 · 103 20′750 · 103

Table 2.12: Power consumption of the RADAR sensor development
board at different sweep frequencies
Sweep frequency Power consumption Samples
100 Hz 80 mW 300
160 Hz 95 mW 480
256 Hz 144 mW 768

For the system to work in real-time at 5 Hz prediction rate, includ-
ing the sampling of the RADAR sensor and execution of the algo-
rithm, the cluster frequency should be chosen to be at least 100 MHz.
This leads to an average power consumption of 21 mW of the GAP8
microcontroller measured during 2 inference/sleep cycles, with peak
power consumption of 98 mW while running the inference. An overall
breakdown of operations, energy and cycles per inference at a clock
frequency of 100 MHz using 8 cores is shown in Table 2.11.

To consider the overall system performance, the power consumption of
the RADAR sensor has to be taken into account. Measuring the power
consumption of the development board results in an upper bound,
shown in Table 2.12.

Taking into account the power consumption for the RADAR sensors,
we arrive at a system-level power consumption of around 200 mW
when using two RADAR sensors at 160 Hz, and 115 mW when using
one RADAR sensor at 160 Hz.

2.1. TINYRADARNN 43

Table 2.13: Comparison with previous work
Metric Soli This work
Model size 689 MB 91 KB
Single sensor power consumption 300 mW 95 mW
Total sensor power consumption 300 mW 190 mW
Network inference power − 21 mW
11-G SU Accuracy 94.5% 92.39%
11-G MU-CV5 Accuracy - 86.64%
11-G MU-LOOCV Accuracy 88.27% 78.85%
Number of different users 10 26

Comparison to Previous Work

A direct comparison is most directly possible with previous work in
Wang et al. [82] since we use the same set of gestures and evaluation
metrics. In Table 2.13 we compare our results with those reported by
Wang et al. All accuracies are reported per-sequence, as the definition
of frames is different in [82].

The direct comparison shows that our proposed network performs
comparably accurately, if slightly worse, in all but leave-one-subject-
out cross-validation, to the network proposed by [82]. Nonetheless,
our network size is smaller by a factor of 7’500× and our power con-
sumption is lower by several orders of magnitudes, as [82] use a GPU
for inference, which operates at tens to hundreds of Watts of power
consumption.

2.1.7 Conclusion

We presented a high-accuracy and low-power hand-gesture recogni-
tion model combining a TCN and CNN model to achieve accuracy
and low memory footprint. The model targets data processing with
short-range RADAR. We further proposed a hand-gesture recognition
system that uses low-power RADAR sensors from Acconeer combined
with a GAP8 Parallel Ultra-Low-Power processor and can be bat-
tery operated. Two large datasets with 11 challenging hand-gestures
performed by 26 different people containing a total of 20’210 gesture

44 CHAPTER 2. TINYML ALGORITHMS

instances were recorded, on which the proposed algorithm reaches an
accuracy of up to 92.4%. The model size is only 92 kB and the imple-
mentation in GAP8 shows that live-prediction is feasible with a power
consumption of the prediction network of only 21 mW. The results
show the effectiveness and potential of RADAR-based hand-gesture
recognition for embedded devices, as well as the network design, using
the TCN approach. Further, we provide all necessary data and code
to train the TinyRadarNN on tinyradar.ethz.ch.

2.2. WAVEFORMER 45

2.2 WaveFormer: Long Sequence Trans-
formers for Edge Devices

2.2.1 Introduction

Following the success of CNNs in the early 2010s, DNNs have be-
come the standard approach for many machine learning applications,
especially time-series processing [107]. While CNNs set records in
statistical accuracy, they have recently been challenged by a newly
emerging type of DNN architecture, the transformer [108]. The trans-
former was initially designed for use in NLP, but its main novelty, the
attention mechanism, has proved helpful in various applications. Con-
sequently, public benchmarks on open-source datasets are dominated
by transformer network architectures in Automatic Speech Recogni-
tion (ASR) [109], speech separation [110], or environmental sound
classification [111].

In parallel with this development, the increasing demand for machine
learning at the edge has led to the cloud computing paradigm being
challenged: most data centers are not equipped to process the amount
of raw data generated by billions of devices fast enough, and battery-
operated devices are not able to sustain the power needed to stream
data continuously to the cloud for months or years without recharging
[72]. Furthermore, energy and latency issues in cloud processing are
compounded by privacy and safety concerns [112]. One solution to
this dilemma is to perform machine learning inference directly on
edge devices with limited memory and computational resources – an
approach often referred to as TinyML.

The main requirement of TinyML, low inference latency enabling
real-time computation, needs to be weighed against the constraints
of MCUs, namely limited computational power, limited storage, and
memory, typically in the order of hundreds of kilobytes, and the lim-
ited available energy in the context of always-on, battery-operated
devices. The new generation of edge computing-focused MCUs are
also able to process sub-word data efficiently by exploiting special-
ized SIMD ISA extensions, which help compensate for the low core

46 CHAPTER 2. TINYML ALGORITHMS

frequency of such devices and improve the energy efficiency of com-
putation.

While research on TinyML systems has made significant progress in
the past, the main class of networks studied remains CNNs. The
attention layer is the main bottleneck preventing transformers’ adop-
tion for embedded time-series processing. The memory and compu-
tational requirements of the implementation of the conventional at-
tention mechanism scale quadratically with the input length severely
limiting the ability to process long sequences of data. A solution to
this bottleneck is the use of alternative forms of attention [113–116].
While some of these works use heuristic approaches to reduce the
complexity of the attention matrix [115], most rely on random feature
maps to approximate the softmax kernel [113, 114, 116], without the
costly explicit calculation of the attention matrix. The latter class of
attention is typically referred to as linear attention.

This Section introduces the necessary building blocks to train and
quantize full transformer models for deployment on MCUs with a
power budget in the order of milliwatts. As a concrete high-impact
application, this Section proposes the WaveFormer, an accurate and
lightweight transformer-based neural network. Experimental evalu-
ation shows that the WaveFormer model improves on the state-of-
the-art in Keyword Spotting (KWS) datasets, namely the 12 and 35
class Google Speech Commands (GSC) datasets [117].

In detail, the main contributions of the Section are as follows:

• We introduce the WaveFormer, a neural network architecture
that uses linear attention and processes raw audio data,
achieving a new state-of-the-art accuracy of 98.8 % and 99.1 %
on the GSC 12 and 35 class V2 dataset while requiring only
130 KParameters and 19 MOp per inference.

• We present a novel quantization methodology for neural
networks that contain linear attention layers, which enables
hardware-friendly integer quantization of linear attention
networks. We apply this algorithm to the proposed network,
demonstrating quantized inference without loss of statistical
accuracy.

2.2. WAVEFORMER 47

• We present hardware latency and power measurements of the
quantized and deployed network on an Ambiq Apollo 4 Cortex-
M4 microcontroller, achieving 741 ms of latency, enabling real-
time operation, and energy consumption of 8.7 mJ per inference.

• We achieve 2.5 × lower memory and 4.7× lower computation
requirements compared to the CNN-based state-of-the-art net-
work on GSC 12 class dataset, as well as 8.5× lower memory
and 4.2× lower computation requirements over the transformer-
based state-of-the-art model on GSC 35 class dataset.

2.2.2 Related Work

As discussed in Section 2.2.1, time series classification tasks, such as
keyword spotting, can largely benefit from the attention mechanism
of transformer models. In the following, we briefly overview some of
the most important works related to transformer models and keyword
spotting in recent years.

Attention Mechanisms

The attention mechanism, as used in transformer literature, was in-
troduced in Vaswani et al. [108], and refers to an operator that uses
three tensor inputs, q(uery), k(ey), and v(alue), and produces a sin-
gle tensor output. Each input tensor has a sequence length dimension
S and an embedding dimension E, and is projected to an inner di-
mension D, using three trainable projections. The full dot-product
attention mechanism is given by Equation 2.1.

Q = qWquery K = kWkey V = vWvalue

Attention(Q,K,V)
.
= A×V

.
= SoftMax

over rows

(
Q×KT

√
D

)
×V

(2.1)

The major bottleneck of this conventional attention mechanism is the
computation of the A×V product, requiring O

(
S2 ·D

)
operations,

where S refers to the sequence length, and D represents the inner
dimension of the attention layer.

48 CHAPTER 2. TINYML ALGORITHMS

As an alternative to conventional attention, several works [113, 116]
have proposed forms of linear attention, which, at its core, replaces
the quadratic computation cost in sequence length of conventional
attention with quadratic computation cost in the inner dimension,
requiring O

(
S ·D2

)
operations. Linear attention algorithms rely on

applying the kernel trick with random feature maps Φ over the Q
and K matrices to avoid calculating the softmax activation over the
attention matrix A. A possible formulation of the linear attention
mechanism for each row i of the output matrix is given in Equation 2.2.

Attention(Q,K,V) [i] ≈
∑N

j=1 Φ (Qi)
T × (Φ (Kj) ×Vj)∑N

j=1 Φ (Qi)
T × Φ (Kj)

(2.2)

While linear attention mechanisms do not offer any [113] or only
asymptotical [116] equivalence with conventional attention, their com-
putational complexity characteristics make them an exciting option
for on-sensor applications like audio processing, where S >> D if
practical approaches can be found to achieve competitive accuracy.

TinyML for Keyword Spotting

Keyword Spotting is one of the most well-studied problems for
TinyML systems, given its real-time, confidential near-sensor
computation requirements. Early work by Zhang et al. [118]
studied different recurrent, convolutional, and mixed neural network
architectures, which establish a baseline for accuracy on the GSC and
which drove further efforts towards efficient inference on MCUs [119].
Significant improvements were later achieved through the use of
ResNet-based networks [120, 121], at the expense of increasing the
models’ memory and computational requirements.

More recently, transformer networks have been proposed [122, 123].
The transformers and convolutional networks for KWS share a com-
mon pre-processing approach, in which short-term spectrograms are
stacked along the time dimension, resulting in a two-dimensional rep-
resentation of the evolution of the short-term frequency spectrum.
Because audio data tends to require sequence lengths in the order of

2.2. WAVEFORMER 49

thousands but only one sampling dimension per microphone, conven-
tional attention operations are too computationally intensive to be
applied. This Section demonstrates how leveraging linear attention
enables processing raw, uncompressed waveform data, significantly in-
creases accuracy on keyword spotting tasks, and minimizes hardware
requirements.

Transformer Quantization

An integral aspect of TinyML research is the quantization of neural
networks to 8 or fewer bits. The basis of most quantization algorithms
is PACT [16], which introduced trainable parameters for the clipping
bounds of each tensor. Several works have extended the PACT al-
gorithm, mainly focusing on the training convergence characteristics
and initialization strategies of the clipping parameters [18,124,125].

While quantization algorithms for traditional CNNs are well stud-
ied [16, 18], 8-bit and mixed precision quantization algorithms, down
to 2 bits [126], for standard Transformers have only recently been pro-
posed [127–131]. To the best of the authors’ knowledge, there is no
previous work on quantized linear attention.

The proposed method in this Section achieves performance beyond the
current state-of-the-art on embedded devices by training and quantiz-
ing a linear attention-based transformer model that operates on raw
waveform data rather than pre-processed spectrogram windows. Our
proposed network achieves an accuracy of 98.8 % and 99.1 % on the
12 and 35 class GSC V2 datasets and decreases model size and num-
ber of computations by 2.5× and 4.7× compared to state-of-the-art
networks. We further present a novel, robust quantization method-
ology for linear attention networks, enabling efficient deployment to
energy-efficient edge devices without loss of accuracy.

2.2.3 WaveFormer

One of the main contributions of this Section is the design of
a KWS network, the WaveFormer. In contrast to other CNN- and
transformer-based neural architectures for KWS [122, 123], the
WaveFormer uses raw audio waveforms. To reduce the feature space,

50 CHAPTER 2. TINYML ALGORITHMS

D
W

 C
on

v
s=

2
D

W
 C

on
v

s=
4

PW
 C

on
v

PW
 C

on
v

Re
sh

ap
e

Tr
an

sp
os

e
Re

sh
ap

e
Tr

an
sp

os
e

Convolutional Linear Cross-Attention (CLCA)

WaveFormer Encoder

PW
 C

on
v

G
EL

U

PW
 C

on
v

+

D
ro

po
ut

Point-wise Feed-Forward (PWFF)

D
en

se
 C

on
v

s
=

2

Re
LU

Li
ne

ar
At

te
nt

io
n

Re
sh

ap
e

Tr
an

sp
os

e

PW
 C

on
v

+

PW
 C

on
v

Figure 2.10: Overview of the encoder used in the WaveFormer. Each
depthwise convolution uses a kernel size of 5, and each dense con-
volution uses a kernel size of 2. Shapes of intermediate tensors are
annotated above the connecting arrows. H, S, E, and D represent the
number of heads, sequence length, embedding dimension, and inner
dimension, respectively.

the WaveFormer compresses the sequence length in each encoder
block, reducing temporal resolution incrementally. This allows our
model to learn a larger feature space, resulting in higher accuracy.
To apply attention-based algorithms to long sequences found in
audio recordings within the constraints on memory and computation
imposed by embedded machine learning, the WaveFormer uses linear
attention [113,116].

Architecture

The main building block of the WaveFormer architecture is the Con-
volutional Linear Cross-Attention (CLCA) module. The CLCA im-
plements Multi-Head Cross-attention [132] by using a convolutional
projection for Q and a shared convolutional projection to compute the
K and V matrices. Each convolutional projection consists of a depth-
wise convolution followed by a pointwise convolution. The depthwise
convolution uses a configurable stride, which is used to reduce the
sequence length. We found that adding a residual connection with a
pointwise convolution between the downsampling depthwise convolu-
tion of the Q tensor and the output of the linear attention operator
increases training stability. Following popular transformer literature

2.2. WAVEFORMER 51

[108, 122, 123], we use a pointwise feed-forward module in sequence
with the attention block. Finally, we found that a second residual
connection with a strided dense convolution added to the output of
the feed-forward layers increases the network’s accuracy.

The configuration of hyperparameters used in our encoders is as fol-
lows: We use depthwise convolutions with a kernel size of 5 and a
stride of 2 for the Q projection and a stride of 4 for the K,V pro-
jection, as our experiments showed that decreasing the stride of the
K,V projection does not increase the accuracy of the network. In each
attention block, we project the inputs to 2 heads, with an internal di-
mension that scales proportionally with the embedding dimension.
The feature map activation function in the linear attention used in
this Section, Φ, is a ReLU activation, similar to the generalized linear
attention activation proposed in [113]. All feed-forward layers’ [108]
hidden dimension is equal to 2 · E, and we apply the commonly used
GELU [133] activation. The dropout probability in the encoder is cho-
sen as 0.1, as proposed in [108]. A block diagram of the WaveFormer
encoder is shown in Figure 2.10.

Similar to KWT, LeTR, and other ViT-inspired architectures for con-
ventional transformers [122,123,134], the full WaveFormer consists of
repeated encoder modules. Each encoder module downsamples the
sequence length and optionally expands the embedding dimension.
Afterward, the feature tensor is averaged over the sequence dimen-
sion. The resulting vector is passed into a dense classifier, project-
ing the embedding dimension to the final classification label vector.
The WaveFormer model configuration used throughout this Section
consists of 9 sequential encoders with configuration as shown in Ta-
ble 2.14.

Preprocessing

We resample the input of training, validation, and test inputs from
16.384 kHz to 8.192 kHz, shortening the sequence length. Since each
sample in the GSC dataset is a one-second recording, the resulting
input sequence length is 8192. We further apply random data aug-
mentation in the form of polarity inversion (p = 0.8), Gaussian noise
(p = 0.01), gain (p = 0.3), and reverb (p = 0.6) on the training

52 CHAPTER 2. TINYML ALGORITHMS

Table 2.14: Model architecture
Layer Type Emb. Dim. Seq. Len. Head Dim. MLP Dim.
Encoder 1 8192 4 8
Encoder 4 4096 4 16
Encoder 8 2048 8 16
Encoder 8 1024 8 32
Encoder 16 512 16 32
Encoder 16 256 16 64
Encoder 32 128 32 64
Encoder 32 64 32 128
Encoder 64 32 32 128
Sequence
Avg. Pool-
ing

64 16 - -

Dense Layer 64 1 - -

dataset. Finally, we quantize all inputs by scaling them linearly to
the (−128, 127) range, rounding to the nearest integer, and dividing
by 128.

2.2.4 Quantization Algorithm

This section introduces a general linear quantization scheme for trans-
former models using linear attention layers to perform all tensor op-
erations in integer arithmetic. For all operators in the network ex-
cept linear attention and GELU activations, we use the TQT algo-
rithm [18]. For GELU activations, we use the algorithm proposed
in [128]. Building on this framework, we propose a novel quantization
algorithm for linear attention focusing on the numerical stability of
the division operator.

Quantized Linear Attention

As introduced in Section 2.2.2, the linear attention operator requires
three fundamental operations, namely matrix multiplication, addi-
tion, and division. In this Section, we target only matrix multipli-

2.2. WAVEFORMER 53

cations to be performed in 8-bit integer arithmetic since they form
the bulk of computations in linear attention. In contrast, we do not
perform the division operation with 8-bit integers but 32-bit integers,
as most ISAs do not feature SIMD division extensions, and low pre-
cision division is numerically unstable. Our algorithmic contributions
can be broken down into two core ideas: stabilization of the division
operator and minimization of denominator rounding errors, which we
introduce and motivate in this section.

Stabilization of Division

One core issue of performing divisions in integer arithmetic is avoiding
division by zero. A common way to address this issue is adding a
numerically small constant µ to the denominator, guaranteeing that
the denominator is greater than zero. For our quantization algorithm,
we have to take special care that the numerical value of µ is at least
as large as the quantum of the denominator; otherwise, it will be
rounded to zero, and division by zero might still occur. To this end,
we introduce an integer parameter η, which acts as a scaling factor.
As a quantization constraint, we enforce that η · µ is larger than the
denominator’s quantum, resulting in Equation 2.3.

Attention(Q,K,V) [i] ≈
η ·

∑N
j=1 Φ (Qi)

T × (Φ (Kj) ×Vj)

η ·
∑N

j=1 Φ (Qi)
T × Φ (Kj) + η · µ

(2.3)

Denominator Rounding Error

A second issue of division is non-linear sensitivity to rounding errors in
the denominator. While errors in the numerator of the division affect
the output error linearly, rounding errors in the denominator for val-
ues close to zero affect the output error dramatically. To address the
problem of asymmetric error sensitivity in the division operator dur-
ing quantization, we apply percentile-based clipping to determine the
initial clipping bound values of all quantized tensors. Initializing the
clipping bounds based on a lower and upper percentile of the distri-
bution, rather than the minimum and maximum, limits the dynamic
range of quantized values and suppresses outliers. This increases the
resolution of values closer to zero, which reduces the rounding error for

54 CHAPTER 2. TINYML ALGORITHMS

such values. Conversely, this clipping strategy increases the rounding
errors of large values. Still, since they affect the output error of the
division operator much less, percentile-based clipping increases the
overall accuracy of quantized linear attention.

2.2.5 Deployment

To deploy networks to off-the-shelf microcontrollers, we developed
DumpO, an extensible neural network deployment toolchain that tar-
gets microcontrollers. DumpO generates C code, which manages in-
termediate buffer memory and calls optimized kernel implementations
of individual layers. Wherever possible, we used open-source CMSIS-
NN [104] kernels and we used a custom kernel for GELU activations
which implements the I-BERT [128] algorithm. Furthermore, we in-
tegrated a kernel for the quantized division described in Section 2.2.4.

As the deployment platform, we target the ARM Cortex-M4-based
Apollo 4 microcontroller9. The Apollo 4 microcontroller supports core
clock frequencies of 96 MHz and 192 MHz. It features three memory
domains, of which two are SRAM-based and one is MRAM-based.
The larger SRAM-based domain, the shared SRAM, features a total
of 1 MB of memory, while the smaller domain, the TCM memory,
features 384 kB. The MRAM features 2 MB of memory. To optimize
execution speed on the microcontroller, we set up the linker to deploy
the stack and heap on the TCM memory, which requires a single cycle
for memory accesses. All code, model weights, and other data are
stored in the MRAM and shared SRAM. The memories’ access time
is reduced with a hardware cache, which allows single-cycle access on
hit. The cache miss penalty for the MRAM and SRAM regions are
11 and 7 cycles, respectively.

2.2.6 Experimental Results

Training Setup and Results

We performed all training experiments with a constant setup, de-
scribed in this section. For both the 12 and 35 class problems, we

9https://ambiq.com/apollo4/

2.2. WAVEFORMER 55

T
ab

le
2.

15
:

C
om

p
ar

is
on

of
th

e
W

av
eF

o
rm

er
m

o
d

el
w

it
h

st
a
te

-o
f-

th
e-

a
rt

n
et

w
o
rk

s.
B

es
t

re
su

lt
s

h
ig

h
-

li
gh

te
d

.
M

o
d

el
M

o
d

el
M

o
d

el
S

iz
e

O
p

s
p

er
T

o
p

-1
A

cc
.

T
o
p

-1
A

cc
.

N
am

e
T

y
p

e
[P

ar
a
m

s]
In

fe
re

n
ce

G
S

C
-1

2
-V

2
G

S
C

-3
5
-V

2
C

E
N

et
-G

C
N

-6
[1

35
]

G
ra

p
h

C
N

N
2
8

k
2.

6
M

9
5
.2

%
-

C
E

N
et

-G
C

N
-2

4
[1

3
5]

G
ra

p
h

C
N

N
5
6

k
9.

1
M

9
6
.5

%
-

C
E

N
et

-G
C

N
-4

0
[1

3
5]

G
ra

p
h

C
N

N
7
2

k
16

.8
M

9
6
.8

%
-

C
on

v
M

ix
er

[1
36

]
C

N
N

11
9

k
22

.2
M

9
8
.2

%
-

B
C

-R
es

N
et

-1
[1

21
]

C
N

N
9

k
3.

1
M

9
6
.9

%
-

B
C

-R
es

N
et

-8
[1

21
]

C
N

N
32

1
k

89
.1

M
9
8
.7

%
-

K
W

T
-1

[1
2
2]

T
ra

n
sf

o
rm

er
60

7
k

53
.8

M
9
8
.1

%
9
7
.0

%
K

W
T

-3
[1

2
2]

T
ra

n
sf

o
rm

er
53

60
k

52
6.

3
M

9
8
.6

%
9
7
.7

%
L

eT
R

-1
28

s
[1

2
3]

T
ra

n
sf

o
rm

er
40

4
k

40
.4

M
-

9
7
.9

%
L

eT
R

-2
56

[1
23

]
T

ra
n

sf
o
rm

er
11

10
k

80
.7

M
-

9
8
.2

%
A

S
T

-T
in

y
[1

37
]

T
ra

n
sf

o
rm

er
58

00
k

78
2.

2
M

9
8
.1

%
9
7
.7

%
A

tt
en

ti
on

R
N

N
[1

3
8]

A
tt

en
ti

o
n

&
L

S
T

M
20

2
k

-
9
6
.9

%
9
3
.9

%
W

a
v
e
F
o
rm

e
r

(T
h
is

w
o
rk

)
L

in
ea

r
T

ra
n

sf
or

m
er

13
0

k
19

.0
M

9
8
.8

%
9
9
.1

%

56 CHAPTER 2. TINYML ALGORITHMS

0

2

4

6

8

10

12

14

25 50 75 100 125 150 175 200

Er
ro

r P
er

ce
nt

ag
e

Epoch

GSC 12 Training Error CurveGSC 35 Training Error Curve

25

Validation Error
Training Error

Validation Error
Training Error

50 75 100 125 150 175 200
Epoch

1

1.5

2

2.5

3

150 175 200

1.9 %
0.1 %

Figure 2.11: Plot of error rate curves for training and validation of the
35 class and 12 class model. Notably, the training-validation margin
is much larger for the 35 class model, indicating better generalization.

train the model for 200 epochs using the Adam optimizer, with an
initial learning rate of 2 × 10−3 with cosine-annealing learning rate
scheduling. For the 12 class problem, we rebalance the class dis-
tribution for train, validation, and test sets using standard settings
[121, 139]. Further, we average 20 training runs with different rebal-
ancing split seeding. Since the datasets for the 35 class problem are
fixed, we average four training runs with different seeds. For both
problems, we use the train-validation-test split proposed in [117]. No-
tably, we evaluate the test accuracy on the standard test sets offered
by the Google Speech Commands v2 dataset.

Using this setup, we measure an average accuracy of 99.1 % on the 35
class problem and 98.8 % on the 12 class problem. We also calculate
the standard deviation for our experiments, achieving 0.114 for the 12
class problem, and 0.185 for the 35 class problem.

Unlike related work, we achieved higher accuracy on the 35 class prob-
lem. This is mainly due to two key reasons; first, we do not use

2.2. WAVEFORMER 57

spectrogram compression on the input waveforms, which allows us
to preserve a much richer feature space, which allows much better
discrimination in the downstream network. Moreover, due to the re-
balancing of the 12 class dataset, which discards most of the dataset,
the 35 class dataset contains significantly more training data, enabling
better network generalization, as shown by the training loss curves in
Figure 2.11. To verify this hypothesis, we trained our proposed model
on the 12 class problem without rebalancing the training set, thus the
learning stage benefits from the same data as the 35 class problem,
but with fewer categories. At the same time, the validation and test
set maintain the sample per class balance as other works [121, 139],
therefore ensuring a fair comparison with our method. In this ex-
periment, we achieved an average accuracy of 99.7%, matching the
results on the 35 class problem and outperforming existing work by 1
percentage point.

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Va
lid

at
io

n
Lo

ss

Epoch

Max-Min Clipping
Percentile Clipping

Start weight and activation quantization Start division quantization

Figure 2.12: Validation loss curve of the 30 epoch quantization-aware
training of a 12 class model. After an initial increase in loss, the
percentile clipping quantization strategy recovers, while the max-min
clipping strategy diverges once divisions are quantized.

58 CHAPTER 2. TINYML ALGORITHMS

Quantization

We used the Quantlib library10 for all quantization experiments.
Quantlib allows the import of a pre-trained network and the
replacement of standard PyTorch layers with layers that implement
fake-quantization algorithms and supports the export of fully inte-
gerized networks in a customized ONNX format. We extended the
library to support percentile-based clipping initialization. Similarly,
we extended the library with support for I-BERT quantization [128]
of GELU layers. We used the library’s implementation of the
TQT [18] algorithm to train the clipping bounds for all layers.

We retrained the full-precision models with the Quantlib quantization-
aware layer set for 30 epochs to achieve quantization-aware finetun-
ing. We used an initial learning rate of 5×10−4 with cosine annealing
scheduling. We start quantizing all convolutions, linear layers, and ac-
tivations except for GELU after the first epoch and the quantization
of GELU and Division layers after 27 epochs. We used the origi-
nal train-validation-test split of the GSC V2 dataset and the same
seed used for training for all quantization and retraining purposes.
Furthermore, we disabled all dropout layers and kept the same data
augmentation as during training.

Figure 2.12 shows the quantization training curves of a 12 class model,
using the percentile-clipping-based strategy described in 2.2.4 and the
default max-min-clipping strategy proposed in the original PACT pa-
per [16]. While both clipping strategies expose an initial drop in
accuracy after the first epoch, the clipping strategy converges to the
original full-precision accuracy after a few epochs. In contrast, the
initial decrease in accuracy for the max-min strategy is much more
significant, and the network does not recover. The retrained, quan-
tized 12 and 35 class networks using the percentile strategy achieve an
accuracy of 98.7 %, and 99.2 % on the test dataset, closely matching
their unquantized versions.

10https://github.com/pulp-platform/quantlib

2.2. WAVEFORMER 59

Deployment Results

The generated implementation requires only 223 kB of Read-only
memory for 152 kB of weights and 71 kB of program code and
other overheads. Furthermore, the implementation requires 197 kB
of Read/Write memory for intermediate buffers. On the Apollo
4 running at 192 MHz, one inference requires 142.3 MCycles for
19.8 MOp, leading to a compute intensity of 0.14 Op/Cycle and
an inference latency of 741 ms for sequences of length 8192, while
consuming an average of 11.7 mW. Since each input corresponds to a
1 s recording, this is sufficient for real-time operation with an energy
cost of 8.7 mJ per inference.

Comparison with State-of-the-art

A comparison of our work with other networks on the GSC dataset
is shown in Table 2.15. Notably, our proposed model achieves the
highest absolute Top-1 accuracy reported in the literature for models
of any type, both on the 12 class and the 35 class problem. The most
closely comparable models for the 12 class problem in terms of ac-
curacy, the BC-ResNet-8 [121] and KWT-3 [122] achieve 98.7 % and
98.6 % of accuracy on the test set, 0.1 and 0.2 percentage points less
than our model. Comparing these models in terms of model size and
number of operations, critical metrics for embedded machine learn-
ing, we find that our model uses 2.5× and 41× less parameters and
4.7× and 27.7× fewer operations per inference than the most accurate
models reported in literature, BC-ResNet-8 and KWT-3 [121, 122].
Compared against the state-of-the-art for the 35 class problem, LeTR-
256 [123], we achieve a 0.9 percentage point improvement in terms of
accuracy, as well as a reduction in model size and number of opera-
tions of 8.5× and 4.2×. As mentioned in Section 2.2.6, we attribute
these improvements to two key factors; Firstly, unlike all other mod-
els reported in literature, we do not use compressed spectrogram data
but instead process raw waveforms, enabling deliberate and controlled
compression of the model’s feature space. Secondly, we use a novel
form of linear attention, allowing us to efficiently process long se-
quences within the stringent memory and computational constraints
of a microcontroller.

60 CHAPTER 2. TINYML ALGORITHMS

2.2.7 Conclusion

This Section presents a novel keyword spotting network architecture
based on linear attention. We show that our model, which, in con-
trast to other state-of-the-art keyword spotting models, does not com-
press raw data before computation, outperforms the state-of-the-art
in terms of accuracy by 0.1 and 0.8 percentage points while at the
same time reducing the number of parameters by 2.5×, and the num-
ber of operations by 4.7×. We further propose a novel quantization
scheme for linear attention layers and demonstrate quantization with-
out loss of accuracy, enabling the use of the proposed network on
resource-constrained embedded devices.

Chapter 3

CUTIE: Completely
Unrolled Ternary
Inference Engine

This Chapter presents a 3.1 POp/J fully digital hardware accelera-
tor for ternary neural networks. CUTIE, the Completely Unrolled
Ternary Inference Engine, focuses on minimizing non-computational
energy and switching activity so that dynamic power spent on stor-
ing (locally or globally) intermediate results is minimized. This is
achieved by 1) a data path architecture completely unrolled in the
feature map and filter dimensions to reduce switching activity by fa-
voring silencing over iterative computation and maximizing data re-
use, 2) targeting ternary neural networks which, in contrast to binary
NNs, allow for sparse weights which reduce switching activity, and 3)
introducing an optimized training method for higher sparsity of the
filter weights, resulting in a further reduction of the switching activity.
Compared with state-of-the-art accelerators, CUTIE achieves greater
or equal accuracy while decreasing the overall core inference energy
cost by a factor of 4.8×–21×.

61

62 CHAPTER 3. THE CUTIE ACCELERATOR

The following sections have been published in a slightly different form
in the IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems1.

3.1 Introduction

Since the breakthrough success of AlexNet in the ILSVRC image
recognition challenge in 2012 [1], CNNs have become the standard
algorithms for many machine learning applications, especially in
the fields of audio and image processing. Supported by advances
in both hardware technology and neural network architectures,
dedicated ASIC hardware accelerators for inference have become
increasingly commonplace, both in datacenter-scale applications as
well as in consumer devices [140]. With the increasing demand to
bring machine learning to IoT devices and sensor nodes at the very
edge, the de facto default paradigm of cloud computing is being
challenged. Neither are most data centers able to process the sheer
amount of data generated by billions of sensor nodes nor can typical
edge devices afford to send their raw sensor data to data centers for
further processing, given their very limited power budget [72]. One
solution to this dilemma is to increase the processing capabilities
of each sensor node to enable it to only send extracted, highly
compressed information over power-intensive wireless communication
interfaces or to act as an autonomous system.

However, the general-purpose microcontrollers typically employed in
these IoT devices are ill-suited to the computationally intensive task
of DNN inference, placing severe limitations on the achievable energy
efficiency. While great strides in terms of energy efficiency have been
made with specialized microcontrollers [77], some applications still re-
quire lower power consumption than what can be achieved with using
32-bit weights and activations in DNN inference. A popular approach
to reducing the power consumption for neural network computations

1© 2021 IEEE. Reprinted, with permission, from M. Scherer, G. Rutishauser,
L. Cavigelli, and L. Benini, “CUTIE: Beyond PetaOp/s/W Ternary DNN Inference
Acceleration With Better-Than-Binary Energy Efficiency,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 41, no. 4, pp.
1020–1033, Apr. 2022.

3.1. INTRODUCTION 63

is the quantization of network parameters (weights) and intermedi-
ate results (activations). Quantized inference at a bit-width of 8 bits
has been shown to offer equivalent statistical accuracy while allow-
ing for significant savings in computation energy as well as reducing
the requirements for working memory space, memory bandwidth, and
storage by a factor of 4 compared to traditional 32-bit data formats
[15,141–143].

Pushing along the reduced bit-width direction, recently several meth-
ods to train neural networks with binary and ternary weights and
activations have been proposed [144–149], allowing for an even more
significant decrease in the amount of memory required to run infer-
ence. In the context of neural networks, binary values refer to the set
{-1, +1} and ternary values refer to the set {-1, 0, 1} [144,150]. These
methods have also been used to convert complex state-of-the-art mod-
els to their Binary Neural Network (BNN) or TNN form. While this
extreme quantization incurs sizeable losses in accuracy compared to
the full-precision baselines, such networks have been shown to work
well enough for many applications and the accuracy gap has been
reducing quite rapidly over time [151–153].

Although quantization of networks does not affect the total number
of operations for inference, it reduces the complexity of the required
multipliers and adders, which leads to much lower energy consumption
per operation. For binary networks, a multiplier can be implemented
by a single XNOR-gate [21]. Further, the number of bit accesses
per loaded value is minimized, which not only reduces the memory
footprint but also the required wiring and memory access energy.

While BNNs in particular are fairly well-suited to run on modern
general-purpose computing platforms, to take full advantage of the
potential energy savings enabled by aggressively quantized, special-
ized, digital, low-power hardware accelerators have been developed
[21, 27, 154, 155]. Concurrently to the research in digital neural net-
work accelerators, analog accelerators that compute in-memory, as
well as mixed-signal, have been explored [26, 156, 157]. While mixed-
signal and in-memory designs hold the promise of higher energy ef-
ficiency than purely digital designs under nominal conditions, their
higher sensitivity to process and noise variations, coupled with the

64 CHAPTER 3. THE CUTIE ACCELERATOR

necessity of interfacing with the digital world, are open challenges to
achieve their full potential in energy efficiency [158].

Even though both analog and digital accelerators extract immense
performance gains from the reduced complexity of each operation,
there is still untapped potential to further increase efficiency. Most
state-of-the-art binary accelerators use arrays of multipliers with large
adder trees to perform the multiply-and-popcount operation [21, 26,
155, 159], which induces a large amount of switching activity in the
adder tree, even when only a single input node is toggled. Adding
to this, even state-of-the-art binary accelerators spend between 30%
to 70% of their energy budget on data transfers from memories to
compute units and vice-versa [26,155]. This hurts efficiency consider-
ably since time and energy spent on moving data from memories to
compute units are not used to compute results. Taking these consid-
erations into account, two major opportunities for optimization are to
reduce switching activity in the compute units, especially the adder
trees, and to reduce the amount of data transfer energy.

In this Chapter, we explore three key ideas to increase the core ef-
ficiency of digital low-bit-width neural network accelerator architec-
tures: first, unrolling of the data-path architecture with respect to the
feature map and filter dimensions leading to lower data transfer over-
heads and reduced switching activity compared to designs that im-
plement iterative computations. Second, focusing on TNNs instead of
BNNs thereby capitalizing on sparsity to statistically decrease switch-
ing activity in unrolled compute units. Third, optimizing the quan-
tization strategy of TNNs resulting in sparser networks that can be
leveraged with an unrolled architecture. We combine these ideas in
CUTIE, the Completely Unrolled Ternary Inference Engine.

Our contributions to the growing field of energy-optimized aggres-
sively quantized neural network accelerators are as follows:

1. We present the design and implementation of a novel accelerator
architecture, which minimizes data movement energy spending
by unrolling the compute architecture in the feature map and
filter dimensions, demonstrating that non-computational energy
spending can be reduced to less than 10% of the overall energy
budget (Section 3.5.3).

3.2. RELATED WORK 65

2. We demonstrate that by unrolling each compute unit completely
and adjusting the quantization strategy, we directly exploit spar-
sity, minimizing switching activity in multipliers and adders, re-
ducing the inference energy cost of ternarized networks by 36%
with respect to their binarized variants (Section 3.5.4).

3. We present analysis results, showing that the proposed archi-
tecture achieves up to 589 TOp/s/W in an IoT-suitable 22 nm
technology and up to 3.1 POp/s/W in an advanced 7 nm tech-
nology, outperforming the state-of-the-art in digital, as well as
analog in-memory BNN accelerators, by a factor of 4.8× in terms
of energy per inference at iso-accuracy (Section 3.5.7).

This Chapter is organized as follows: in Section 3.2, previous work
in the field of neural network hardware accelerators and aggressively
quantized neural networks is discussed. In Section 3.3, we introduce
the proposed accelerator architecture. Section 3.4 details the imple-
mentation of the architecture in the GlobalFoundries 22 nm FDX and
TSMC 7 nm FF technologies. In Section 3.5, the implementation
results are presented and discussed, by comparing with previously
published accelerators. Finally, Section 3.6 concludes this Chapter,
summarizing the results.

3.2 Related Work

In the past few years, considerable research effort has been devoted
to developing task-specific hardware architectures that enable both
faster neural network inference as well as a reduction in energy per
inference. A wide range of approaches to increase the energy-efficiency
of accelerators have been studied, from architectural and device-level
optimizations to sophisticated co-optimization of the neural network
and the hardware platform.

3.2.1 Aggressively Quantized Neural Networks

On the algorithmic side, one of the main recent research directions
has been quantization, i.e. representing model weights and interme-
diate activations in lower arithmetic precision. It has been known

66 CHAPTER 3. THE CUTIE ACCELERATOR

for some time that quantization of network weights to 5 bits and
less is possible without a loss in accuracy in comparison to a 32-
bit floating-point baseline model [15, 141, 142]. Further quantization
of network weights to binary or ternary precision usually results in a
small drop in accuracy, but precision is still adequate for many appli-
cations [147,148,160,161]. Extending the approach of extreme quanti-
zation to intermediate activations, fully binarized and fully ternarized
networks have been proposed [144,150]. These types of networks per-
form very well on easier tasks such as 10-class classification on the
well-established MNIST dataset [162], and efforts have been taken to
improve their performance with novel training approaches [163, 164].
Nevertheless, on more challenging tasks such as classification on the
ILSVRC’12 dataset, they are still significantly less accurate than their
full-precision counterparts [145,146,149,152,165–167]. Figure 3.1 de-
picts the accuracy gap between previously published, strongly quan-
tized neural networks, their full-precision equivalents with identical
architectures and the state-of-the-art full-precision networks on image
classification tasks of increasing difficulty. On higher difficulty tasks,
the gap between quantized networks and their full-precision equiva-
lents grows larger. Furthermore, the gap between the full-precision
architectures from which the quantized networks are derived and the
overall state-of-the-art results reported in literature grows with task
difficulty, indicating a prevalent focus in research activity on easier
tasks and simple networks.

Taking all of this into account, BNNs and TNNs provide a unique
and interesting operating point for embedded devices, since they are
by definition aggressively compressed, allowing for deep model ar-
chitectures to be deployed to highly memory-constrained low-power
embedded devices.

The core idea of binarization and ternarization of neural networks has
been applied in numerous efforts, some of which also study the impact
of the quantization strategy on the sparsity of ternary weight networks
[148,176–178]. While these previous efforts focus on the impact of the
choice of quantization threshold and regularization, we evaluate the
impact of quantization order, rather than threshold or regularization.
Further, we study the effect of sparsity on the energy-efficiency of the
proposed accelerator architecture.

3.2. RELATED WORK 67

MNIST CIFAR-10 ILSVRC2012
Dataset

0%

20%

40%

60%

80%

100%

A
cc

ur
ac

y

FP
TWN
BWN
TNN
BNN

[168][147][147][162][169] [170]
[171][171][162][172] [173]

[174][174]

[175][145]

Figure 3.1: Comparison of state-of-the-art accuracy of highly quan-
tized neural networks of different precisions. FP: state-of-the-art
in unquantized/full-precision neural networks, BWN/TWN: bina-
ry/ternary weight networks, BNN/TNN: fully binarized/ternarized
neural networks. For the quantized network categories, the accuracy
of the corresponding unquantized baseline networks is shown greyed
out. As task difficulty is increased, a) the performance gap between
the quantized networks and the full-precision baselines increases, and
b) the gap between the unquantized baselines from which the quan-
tized architectures are derived and the full-precision state-of-the-art
widens.

68 CHAPTER 3. THE CUTIE ACCELERATOR

3.2.2 DNN Hardware Accelerators

While the first hardware accelerators used for neural networks were
general-purpose GPUs, there has been a steady trend pointing towards
specialized hardware acceleration in machine learning in the past few
years [179–182]. Substantial research efforts have focused on explor-
ing efficient architectures for networks using activations and weights
with byte-precision or greater, [7,27,183] different digital ASIC imple-
mentations for binary weight networks and BNNs have been proposed
[21, 143, 154, 155, 184, 185]. Some works have tackled analog ASIC
implementations of TNN accelerators, [156,186], but very few digital
implementations for TNN accelerators have been published [187,188].

At the heart of every digital neural network accelerator lie the process-
ing elements, which typically compute Multiply-Accumulate (MAC)
operations. An important distinction between different architectures,
besides the supported precision of their processing elements, lies in the
way they schedule computations [179]. Most state-of-the-art architec-
tures can be categorized into systolic arrays [4,27,156,184], which are
flexible in how their processing elements are used, or output-stationary
designs, which assign each output channel to one processing element
[155,159,179]. Both approaches trade-off lower area for lower through-
put and increased data transfer energy by using iterative decompo-
sition since partial results need to be stored and either weights or
feature map data need to be reloaded. The alternative to iterative
decomposition pursued in our approach, i.e. fully parallelizing the
kernel-activation dot-products, is not only generally possible for con-
volutional neural networks, but also promises to be more efficient by
increasing data-reuse and parallelism.

The state-of-the-art performance in terms of energy per operation
for digital BNN and TNN accelerators is reported in Moons et al.
[155] and Andri et al. [21], achieving peak efficiencies of around
230 TOp/s/W for 1-bit operations, as well as Knag et al. [159], re-
porting up to 617 TOp/s/W. The state-of-the-art for ternary neural
networks is found in Jain et al. [156], achieving around 130 TOp/s/W
for ternary operations.

3.3. SYSTEM ARCHITECTURE 69

In this work, we move beyond the state-of-the-art in highly quantized
acceleration engines by implementing a completely unrolled data path.
We show that by unrolling the data path, sparsity in TNNs is nat-
urally exploited to reduce the required energy per operation without
any additional overhead, unlike previous works [183,189–191]. To cap-
italize on this effect, we introduce modifications to existing quantiza-
tion strategies for TNNs, which are able to extract 53% more sparsity
at iso-accuracy than by sparsity-unaware methods. Lastly, our work
shows that ternary accelerators can significantly outperform binary
accelerators both in terms of energy efficiency as well as statistical
accuracy.

3.3 System Architecture

This Section introduces the proposed system architecture. First, we
present the data path and principle of operation and explain the levels
of data re-use that the architecture enables, then we discuss consider-
ations for lowering the overall power consumption. Finally, we present
the supported functionality.

3.3.1 High-level Data Path

Figure 3.2 shows a high-level block diagram of the accelerator archi-
tecture. It is optimized for the energy-efficient layer-wise execution
of neural networks. This is achieved first and foremost by a flat de-
sign hierarchy; each output feature map is computed channel-wise
by dedicated compute units, called Output Channel Compute Unit
(OCU). Each OCU is coupled with a private memory block for weight
buffering, which minimizes addressing and multiplexing overheads for
weight memory accesses, reducing the amount of energy spent on data
transfers. The feature map storage buffers are shared between all
OCUs to maximize the re-use of loaded activation data, which again
aims to decrease the data transfer energy.

To exploit the high rate of data re-use possible with CNNs, the design
uses a tile buffer, which produces tiles, i.e. square windows, of the
input feature map in a sliding window manner. These windows are
then broadcast to the pipelined OCUs.

70 CHAPTER 3. THE CUTIE ACCELERATOR

O
U

T
P

U
T

 C
H

A
N

N
E

L
C

O
M

P
U

T
E

 U
N

IT

SOC INTERFACE

S
T

A
G

E
 0

B
U

F
F

E
R

 A

WEIGHT
BUFFER

T
IL

E
B

U
F

F
E

R

D
E

C
O

M
P

R
.

K
E

R
N

E
L

 W
IN

D
O

W
S

W
E

IG
H

T
M

E
M

O
R

Y

W
E

IG
H

T
M

E
M

O
R

Y

S
T

A
G

E
 P

-1 (1)

B
U

F
F

E
R

 B

W
R

R
D

0
1

1

W
R

IT
E

A
R

B
IT

R
A

T
IO

N
 L

O
G

IC

DOUBLE-BUFFERED
FEATURE MAP MEMORY

2
×

N
O

/P

2
×

N
O

C
O

M
P

R
.

S
IN

G
L

E
 P

IX
E

L
S

8
/5

×
N

O

2
×

K
2

×
N

I

8
/5

×
N

I
×

L
×

K
2

(14.75
kb

it)

DECOMPR.

S
IZ

E
 P

E
R

 B
A

N
K

:

8
/5

×
N

O
×

N
I

×
L

×
K

2
(1.89

M
b

it)
T

O
T

A
L

 S
IZ

E
:

W
E

IG
H

T
 B

U
F

F
E

R
 S

IZ
E

:

8
/5

×
K

×
N

I

W
R

R
D

W
R

R
D

(128)

(256)

(2304)

IN
P

U
T

 IM
G

T
A

R
G

E
T

 P
O

R
T

DECOMPR.

WEIGHT
BUFFER

O
U

T
P

U
T

 C
H

A
N

N
E

L
C

O
M

P
U

T
E

 U
N

IT

W
E

IG
H

T
S

T
A

R
G

E
T

P
O

R
T

W
E

IG
H

T
 M

E
M

O
R

IE
S

E
N

D
 O

F
 IN

F
E

R
E

N
C

E
IN

T
E

R
R

U
P

T
R

E
Q

U
E

S
T

 L
IN

E

C
E

N
T

R
A

L
C

O
N

T
R

O
L

L
O

G
IC

1

3-P
IX

E
L

 S
E

G
M

E
N

T
S

K
(3)

N
I (128)

N
O

/P
(64)

N
O

/P
(64)

(104)

8
/5

×
N

I /W
S

N
O

/P
(64)

2
×

N
I

×
K

2
×

2
(4.6

kb
it)

(208)

(104)

8
/5

×
N

I /W
S

(104)

8
/5

×
N

I /W
S

N
O

/P
(64)

(104)

8
/5

×
N

I /W
S

B
A

N
K

 M

....

WR

RD

B
A

N
K

 2

WR

RD

B
A

N
K

 1

WR

RD

8
/5

×
N

O
8

/5
×

K
×

N
i

R
E

A
D

3 P
IX

E
L

S

W
R

IT
E

1 P
IX

E
L

8/5
×

W
im

g ×
H

im
g ×

m
ax

(N
I ,N

O
)

/(K
×

P
)

(34.95
kb

it)
B

ank S
ize:

M
=

K
×

P
(6)

104

104

P
 (2)

P
ip

elin
e

S
tages

P
-1 (1)

P
ip

elin
e

R
egisters

0

F
igu

re
3.2:

D
ata-p

ath
sch

em
atic

v
iew

of
th

e
accelerator

core
an

d
its

em
b

ed
d

in
g

in
to

a
n

S
o
C

-level
sy

stem
.

T
h

e
d

ia
gra

m
sh

ow
s

th
e

u
n

rolled
com

p
u

te
arch

itectu
re

an
d

en
co

d
in

g/d
eco

d
in

g
b

lo
ck

s,
a
s

w
ell

a
s

th
e

w
eig

h
t

a
n

d
featu

re
m

ap
m

em
ories

an
d

tile
b

u
ff

er
m

o
d

u
le.

3.3. SYSTEM ARCHITECTURE 71

An important aspect of aggressively quantized and mixed-precision
accelerator design is choosing a proper compression scheme for its
values. Since ternary values encode log2(3) ≈ 1.585 bits per symbol,
the most straight-forward compression approach would require 2 bits
of memory per value, leaving one of the four possible codewords un-
used. To reduce this overhead, values are stored 5 at a time, using
8 bits leading to 1.6 bits per symbol. The compression scheme used for
this representation is taken from a recent work by Muller et al. [192].
To transition between the compressed representation and the stan-
dard 2’s complement representation, compression and decompression
banks are used with feature map and weight memories.

Figure 3.2 shows the pipeline arrangement of the OCUs. A key feature
of the architecture is that an output channel computation is entirely
performed on a single OCU. All OCUs need to receive input activa-
tion layers: the broadcast of input activations to OCUs is pipelined
and the OCUs are grouped in stages. This pipeline fulfils multiple
purposes: from a functional perspective, it allows to silence the in-
put to clusters of compute units, which reduces switching activity
during the execution of layers with fewer output channels than the
maximum. Concerning the physical implementation of the design,
pipelining helps to reduce fanout, which further reduces the overall
power consumption of the design. It also reduces the propagation
delay introduced by physical delays due to long wires.

3.3.2 Parametrization

The CUTIE architecture is parametrizable at compile time to support
a large variety of design points. An overview of the design parameters
is shown in Table 3.1. Besides the parameters in Table 3.1, the design’s
feature map memories and weight memories can be implemented using
either Standard Cell Memorys (SCMs) or SRAMs. CUTIE is designed
to support arbitrary odd square kernel sizes K, pipeline depths P ,
input channel numbers NI and output channel numbers NO which
directly dictate the dimensioning of the compute core, but also of
the feature map memories and the tile buffer. The OCU, as shown
in Figure 3.4, consists of a compute core and a latch-based weight
buffer that is designed to hold two kernels for the computation of one

72 CHAPTER 3. THE CUTIE ACCELERATOR

Table 3.1: Design parameters of CUTIE
Parameter Description

NI Maximum number of channels of input feature map
NO Maximum number of channels of output feature

map
K Maximum kernel width and height
IW Maximum width of input feature map
IH Maximum height of input feature map
L Maximum number of layers in the queue
P Number of pipeline stages
WS Number of memory words per pixel

output channel, which amounts to 4 × K2 × NI bits. The feature
map memories are designed to support the concurrent loading of K
full pixels as well as the granular saving of NO

P ternary values. For
these reasons, the word width of the feature map memories is chosen
to be NO

P ternary values. To further allow for concurrent write and
read accesses of up to K pixels, two feature map memories, each with
P ×K feature map memory banks, are implemented.

3.3.3 Principle of Operation

The accelerator core processes neural networks layer-wise. To enable
layer-wise execution, networks have to be compiled and mapped to
the core instruction set. The compilation process achieves two main
goals: first, the networks’ pooling layers are merged with the con-
volutional layers to produce fused convolutional layers. Second, the
networks’ convolutional layers’ biases, batch normalization layers, and
activation functions are combined to produce two thresholds that are
used to ternarize intermediate results, similar to constant expression
folding for BNNs [185]. After compilation, each layer consists of a
convolutional layer with ternary weights, followed by optional pooling
functions and finally, an activation function using two thresholds that
ternarizes the result. To map the network to the accelerator, each
layer’s weights are stored consecutively in the weight memories, the
thresholds are stored consecutively in the OCUs’ Threshold FIFO and

3.3. SYSTEM ARCHITECTURE 73

Weight loading
Feature map loading
Compute Unit activity
Writeback activity

Weight transfer
Layer meta-information
Feature map transfer

SoC Scheduling

CUTIE Scheduling

End of Inference Event

Weight loading phase Pre-loading phase Execution phase

t

Execution phase(s)

...

Setup phase Low-Power Mode

...

Wakeup Phase

Figure 3.3: Scheduling diagram of the accelerator core and SoC in-
terface. The first two phases are needed to set up the first layer after
reset, every other loading phase overlaps with an execution phase,
which reduces the latency for scheduling a new layer to a single cycle.
The host system can be put in a low-power mode while the accelerator
core computes the network since all layer information is saved inside
the core’s memories.

74 CHAPTER 3. THE CUTIE ACCELERATOR

the meta-information like input width, stride, kernel size, padding,
and so on are stored in the layer FIFO. All FIFOs, controllers and
scheduling modules combined make up 2% of the total area.

The accelerator is designed to pre-buffer the weights for a full net-
work during its setup phase and re-use the stored weights for multiple
executions on different feature maps. Once at least one layer’s meta-
information is stored and the start signal is asserted, the accelerator’s
controllers schedule the execution of each layer in two phases; first,
the weights for one layer are loaded into their respective buffers in the
OCUs, then the layer is executed, i.e. every sliding window’s result
is computed and written back to the feature map memory. The load-
ing of weights into the OCUs for the next layer and the computation
of the current layer can overlap, leading to a single, fully concurrent
execution phase after buffering the first set of weights, as shown in
Figure 3.3. Once all layers have been executed, the end of inference
signal is asserted, signalling to the host controller that the results are
valid and the accelerator is ready for the next feature map input.

The module responsible for managing the loading and release of sliding
windows is the tile buffer. The tile buffer consists of a memory array
that stores K lines of pixel values implemented with standard cell
latches. Feature maps are stored in a (H×W×C)-aligned fashion in
the feature map memory. To avoid load stalls and efficiently feed data
to the compute core, up to K adjacent pixels at a time are read from
the feature map memory. The load address is computed to always
target the leftmost pixel of a window.

The scheduling algorithm for the release of the windows keeps track
of the central pixel of the next-to-be scheduled window. This can
be used to enable padding: for layers where padding is active, the
scheduler starts the central pixel at the top left corner and zero-pads
the undefined edges of the activation window. In case of no padding,
the scheduler starts the central pixel to the lower-right of the padded
starting position. For all but the first layer in a network, the weight
loading and computation phases overlap such that the weights for the
next layer are pre-loaded to eliminate additional loading latency.

The OCUs form the compute core of the accelerator. Figure 3.4 shows
the block diagram of a single OCU. Each OCU contains two weight

3.3. SYSTEM ARCHITECTURE 75

0
M

A
X

/
A

V
G

[0
]

[1
]

[0
]

[1
]

[0
]

[1
]

P
O

P
C

O
U

N
T

 1

L
A

T
C

H
-B

A
S

E
D

 W
E

IG
H

T
 B

U
F

F
E

R

F
IF

O

-

P
O

O
L

IN
G

 U
N

IT

2 2 2 22 2

2 2 2

T
E

R
N

A
R

Y
 M

U
L

T
IP

L
Y

-A
C

C
U

M
U

L
A

T
E

1

1

1

1

1

1

11 11

1
2

P
O

P
C

O
U

N
T

 -
1

0 1

1 0

F
IF

O32

><

[1
5:

0]

[3
1:

16
]

[1
]

[0
]

T
H

R
E

S
H

O
L

D
IN

G

3 * 3 * 128 = 1152
Ternary Multipliers

16

1
2

b
->

1
6

b

16

1

2

2
×

K
2

×
N

I

(2
30

4)

2
×

K
2

×
N

I
(2

30
4)

3
2

T
H

R
E

S
H

O
L

D
S

 F
R

O
M

 C
E

N
T

R
A

L
 M

E
M

O
R

Y

A
C

T
IV

A
T

IO
N

S
 F

R
O

M
 T

IL
E

 B
U

F
F

E
R

R
E

S
U

L
T

S
 T

O
 F

E
A

T
U

R
E

 M
A

P
 M

E
M

O
R

Y

F
ig

u
re

3.
4:

B
lo

ck
d

ia
g
ra

m
o
f

th
e

co
m

p
u

te
u

n
it

s
fo

r
th

e
d

es
ig

n
p

o
in

t
K

=
3
,
N

I
=

N
O

=
1
2
8
,

sh
ow

in
g

th
e

d
u

al
in

n
er

w
ei

g
h
t

b
u

ff
er

s
(1

),
u

se
d

fo
r

d
ou

b
le

b
u

ff
er

in
g

to
av

oi
d

lo
a
d

st
a
ll

in
g
,

th
e

O
C

U
(2

),
in

cl
u

d
in

g
th

e
co

m
p

le
te

ly
u

n
ro

ll
ed

m
u

lt
ip

ly
/a

d
d

tr
ee

,
co

m
p

u
ti

n
g

1
'1

5
2

m
u

lt
ip

ly
-a

cc
u

m
u

la
te

o
p

er
a
ti

o
n

s
in

a
si

n
g
le

cy
cl

e,
th

e
p

o
ol

in
g

b
lo

ck
,

w
h

ic
h

en
ab

le
s

m
ax

an
d

av
er

ag
e

p
o
ol

in
g

a
n

d
th

e
th

re
sh

o
ld

in
g

m
o
d

u
le

u
se

d
to

te
rn

a
ri

ze
in

te
rm

ed
ia

te
re

su
lt

s.
N

ot
a
b

ly
,

th
e

m
u

lt
ip

li
er

a
n

d
p

o
p

co
u

n
ts

a
re

fu
ll

y
co

m
b

in
a
ti

o
n

a
l

a
n

d
n

o
t

p
ip

el
in

ed
,

w
h

ic
h

a
d

d
s

to
th

e
en

er
g
y

effi
ci

en
cy

o
f

th
e

co
m

p
u

te
co

re
.

76 CHAPTER 3. THE CUTIE ACCELERATOR

buffers, each of which is sized to hold all the kernel weights of one
layer. Having two buffers allows executing the current layer while
also loading the next layer’s weights. The actual computations are
done in the ternary multipliers, each of which computes one product
of a single weight and activation. While the input trits are encoded in
the standard two’s complement format, the result of this computation
is encoded differently, i.e. the encoding is given by f :

f(x) =

 2′b10 x = 1
2′b01 x = −1
2′b00 x = 0

This encoding allows calculating the sum of all multiplications by
counting the number of ones in the MSB and subtracting the number
of ones in the LSB of all results, which is done in the popcount mod-
ules. The resulting value is stored as an intermediate result, either
for further processing with the pooling module or as input for the
threshold decider. The threshold decider compares the intermediate
values against two programmable thresholds and returns a ternary
value, depending on the result of the comparison. Notably, the OCU
is almost exclusively combinational, requiring only one cycle of la-
tency for non-pooling layers. Registers are only used to silence the
pooling unit and in the pooling unit itself to keep a running record of
the current pooling window. Since every compute unit computes one
output channel pixel at a time, there are no partial sums that have
to be written back.2 However, to support pooling, each compute unit
is equipped with a FIFO, a register, and an Add/Max ALU. In the
case of max pooling, every newly computed value is compared to a
previously computed maximum value for the window. In the case of
average pooling, values are simply summed and the thresholds that
are computed offline are scaled up accordingly. Figure 3.5 shows an
example of the load & store schedule for pooling operations.

Low-power optimizations have been made on all levels of the de-
sign, spanning from the algorithmic design of the neural networks
over the system architecture down to the choice of memory cells.

2Which is a major difference from systolic arrays as well as output stationary
designs!

3.3. SYSTEM ARCHITECTURE 77

Figure 3.5: Example of pooling buffer scheduling for 9×9 feature maps
applying 3 × 3 pooling. The feature map is traversed left- to-right,
top-to-bottom. Blue pixels are stored in the pooling unit’s register,
yellow pixels are stored in the pooling unit’s FIFO for later use and
green pixels are loaded from the pooling unit’s FIFO and compared
to the current value. Best viewed in color.

78 CHAPTER 3. THE CUTIE ACCELERATOR

1 for w in range(featuremap_width):

2 for h in range(featuremap_height):

3 for co in range(output channels):

4 for ci in range(input channels):

5 for kw in range(kernel width):

6 for kh in range(kernel height):

7 out fm[w][h][co] += in fm[w+kw][h+kh][ci]

8 * kernel[kw][kh][ci][co]

Listing 3.1: Loop unrolling of convolutional layers implemented in
the CUTIE architecture. The highlighted lines 3-8 are computed in
parallel in a single shot, in combinational logic. Each OCU computes
one output pixel channel value, i.e. each OCU computes one instance
of the third loop.

Unlike most state-of-the-art architectures which use either systolic
arrays or output-stationary scheduling approaches with iterative de-
composition [27, 155, 156, 159, 179, 184, 185], the CUTIE architecture
unrolls the compute architecture fully with respect to weight buffering
and output pixel computation, such that no storing of partial results
is necessary; each output channel value is computed in a single cycle,
as shown in Listing 3.1. The proposed design loads each data item
exactly once and reduces overheads in multiplexing by clock gating
unused modules. This applies to both the system level, with pipeline
stages of the compute core that can be silenced, as well as to the mod-
ule level, where the pooling module can be clock gated. To reduce
both leakage and access energy, the feature map and weight memories
can be implemented with standard cell latches, which are clock-gated
down to the level of individual words. Generally, all flip-flops and
latches in the design are clock-gated to reduce power consumption
due to clock activity.

3.3.4 Input Encoding

To run real-world networks on the accelerator, the integer-valued in-
put data has to be encoded with ternary values. We designed a novel
ternary thermometer encoding based on the binary thermometer en-
coding [193]. The binary thermometer encoding is an encoding func-

3.3. SYSTEM ARCHITECTURE 79

tion f , that maps an integer between 0 and M to a binary vector with
M entries.

f : NM → BM

x 7→ f(x)

f(x)i =

{
1 i < x

−1 i ≥ x

The ternary thermometer encoding is an encoding function g that
maps an integer between 0 and 2M to a ternary vector of size M.

g : N2M → BM

x 7→ g(x)

g(x)i = sgn(x−M) · f(|x−M |)i + 1

2

The ternary thermometer encoding makes use of the additional value
in the ternary number set with respect to the set of binary numbers
and can encode inputs that are twice the size for a binary vector of
a given size. The introduction of 0s in the encoding scheme further
helps to reduce toggling activity in the compute units, lowering the
average energy cost per operation. As an example, for M = 128,
and x = 110 the binary thermometer encoding produces [1]

110
[−1]

18
,

whereas the ternary thermometer encoding produces [−1]
18

[0]
110

.

3.3.5 Exemplary Instantiations of CUTIE

The architecture of CUTIE is highly parametric. In the following, we
present two practical embodiments of the general architecture, which
we will then push to full implementation. The instantiations of the
accelerator presented in this Section can process convolutions with
a kernel of size 3 × 3 or smaller, using a stride between (1,1) and
(3,3) with independent striding for the width and height dimension.
It further supports average pooling and maximum pooling. Both no
padding and full zero-padding, i.e. padding value of size 1 on every
edge of feature maps, are supported. Depending on the requirements

80 CHAPTER 3. THE CUTIE ACCELERATOR

of the application, the feature map memory size and weight memory
size should be configured to store the largest expected feature map
and network. For the sake of evaluating the architecture, we chose to
implement one version that supports feature maps up to a size of 32×
32 pixels for both the current input feature map and the output feature
map using SCMs and another version supporting sizes up to 160×120
feature map pixels using SRAMs. The supported feature map memory
size does not restrict the functionality, since feature maps that do
not fit within the memory can be processed in tiles. Assuming the
feature maps need to be transfered from and to an external DRAM
memory which requires 20 pJ/Bit, several orders of magnitude more
energy than accessing internal memory, the critical goal is to minimize
the amount of data transfered from and to external memory. To
achieve that, we propose to adopt the depth-first computing schedule
described in [194].

To estimate the energy cost of processing the feature map in tiles
and to compare the layer-first and depth-first strategies on CUTIE,
we compute the number of processed tiles per layer, the number of
tiles that need to be transfered over the chip’s I/O and the number
of weight kernels that need to be switched for both the depth-first
as well as the layer-first strategies. We assume a network consist-
ing of eight convolutional layers using 3×3 kernels and 128 input and
output channels. Using these results and simulated energy costs for
computations and memory transfers, we compute the additional cost
when processing large feature maps layer- and depth-wise. For large
frames, the cost is clearly dominated by the external memory ac-
cess energy. Table 3.4 shows an exploration over different frame sizes
starting from 32×32 for which no tiling is required and extending to
64×64 and 96×96 that require significant external memory transfer.
We find that by minimizing the feature map movement, the depth-
first strategy consumes significantly less than the layer-first strategy
for practical cases.

While the CUTIE core is designed to be integrated with a host proces-
sor, one key idea to reduce system-level energy consumption realized
in the architecture is the autonomous operation of the accelerator
core. The control implementation allows the accelerator to compute a
complete network without interaction with the host. In the presented

3.4. IMPLEMENTATION 81

version, the weight memories, the layer FIFO, and threshold FIFOs
are designed to store up to eight full layers, which can be scheduled
one after another without any further input. In general, the number
of layers can be freely configured, at the cost of additional FIFO and
weight memory.

Besides offering support for standard convolutional layers, the archi-
tecture can be used for depthwise convolutional layers by using weight
kernels where each kernel is all zeros except for one channel. Further,
it can be used for ternary dense layers with input size smaller or equal
to 3×3×128 = 1'152 and output size smaller or equal to 128 by map-
ping all dense layer matrix weights to the 3× 3× 128 weight buffer of
an OCU.

3.4 Implementation

This Section discusses the implementation of the CUTIE accelerator
architecture. The results from physical layouts in a 22 nm technology,
one using SCMs and another using SRAMs, and from synthesis in a
7 nm technology are presented and discussed.

3.4.1 Interface Design

The interface of the accelerator consists of a layer instruction queue
and read/write interfaces to the feature map and weight memories.
The interface is designed to allow integration into a SoC design target-
ing near-sensor processing. In this context, a pre-processing module
could be connected to a sensor interface, with a host processor only
managing the initial setup and off-chip communication. This setup
consists of writing the weights into their respective weight memories
and pre-loading the layer instructions into the instruction queue. In
the actual execution phase, i.e. once data is loaded continuously, the
accelerator is designed to autonomously execute the layer instructions
without needing any further input besides the input feature maps and
return only a highly-compressed feature map or even final labels. The
end of computation is signalled by a single-bit interrupt to the host.

82 CHAPTER 3. THE CUTIE ACCELERATOR

Table 3.2: Estimated energy consumption of a network consisting of
8 convolutional layer without pooling for tiled computation of large
feature maps on a GF 22 SCM implementation including I/O and
external DRAM

Depth-first Layer-first
32×32 7.3 µJ 7.3 µJ
Bit accesses from or to external

memory
209 kB 209 kB

Feature map transfer energy 4.2 µJ 4.2 µJ
Weight memory transfer energy 0.3 µJ 0.3 µJ
Computational energy 2.8 µJ 2.8 µJ

64×64 277 µJ 1069 µJ
Bits moved from or to external

memory
12.6 MB 52.8 MB

Feature map transfer energy 252 µJ 1057 µJ
Weight memory transfer energy 2.5 µJ 0.3 µJ
Computational energy 22.5 µJ 11.5 µJ

96×96 3734.5 µJ 6030.3 µJ
Bit accesses from or to external

memory
179.3 MB 300.1 MB

Feature map transfer energy 3586 µJ 6002 µJ
Weight memory transfer energy 14.5 µJ 0.3 µJ
Computational energy 134 µJ 28 µJ

3.4. IMPLEMENTATION 83

3.4.2 Dimensioning

The CUTIE architecture is not architecturally constrained to support
a certain number of input/output channels, i.e. it can be parame-
terized to support an arbitrary amount of channels. Since it can be
synthesized with support for any number of channels and feature map
sizes, the proposed implementation was designed to optimize the ac-
curacy vs. energy efficiency trade-off for the CIFAR-10 dataset. To
this end, the compute units were synthesized and routed for different
channel numbers to evaluate the impact of channel number on the
energy efficiency of individual compute units and by extension, the
whole accelerator. The estimations were performed for 64, 128, 256,
and 512 channels. To estimate the energy efficiency of the individ-
ual implementations, a post-layout power simulation was performed,
using randomly generated activations and weights. This experiment
was repeated and averaged over 300 cycles, i.e. 300 independently ran-
domly generated weight tensors and feature maps were used. Further,
post-synthesis simulation estimations for the energy cost of memory
accesses, encoding & decoding, and the buffering of activations and
weights were added. The estimations for the resulting accelerator-level
energy efficiency are shown in Figure 3.6. Since these estimations were
made using a post-layout power simulation of a single OCU, they take
into account the wiring overheads introduced by following the com-
pletely unrolled compute architecture. One of the main drivers for
lower efficiency in the designs with more channels is the decrease in
layout density and an increase in wiring overheads. While energy ef-
ficiency per operation does not directly imply energy per inference, it
is a strong indicator of system-level efficiency.

3.4.3 Implementation Metrics

The accelerator design was implemented with a full backend flow in
GlobalFoundries 22 nm FDX and synthesized in TSMC 7 nm tech-
nology. The first of two implementations based on GlobalFoundries
22 nm FDX was synthesized using SRAMs supplied with 0.8 V for fea-
ture map and weight memories and 8 track standard cells operating
at 0.65 V. The second of the GF 22 nm implementations uses SCM-
based feature map and weight memories as well as 8 track standard

84 CHAPTER 3. THE CUTIE ACCELERATOR

64 128 256 512
Number of channels

0

100

200

300

400

TO
p/

s/
W

Figure 3.6: Estimation of accelerator-level energy efficiency using data
from the simulation of single OCUs, assuming SCM-based memories.
Feature maps and weights were drawn from a uniform random distri-
butions. There is a peak in energy efficiency at 128 channels before
falling off for increasing channel numbers.

cells for its logic cells, all supplied with 0.65 V. The TSMC 7 nm im-
plementation similarly uses SCM-based memories to allow for voltage
scaling. The post-synthesis timing reports show that the GF 22 nm
implementations should be able to operate at up to 250 MHz. We
chose to run both the SCM as well as the SRAM implementation
at a very conservative frequency of 66 MHz. Since we did not run
a full backend implementation of the 7 nm version, we chose to esti-
mate the performance at the same clock frequency and voltage as the
22 nm versions. The total area required by the design is 7.5 mm2 for
both 22 nm implementations and approximately 1.2 mm2 at a layout
density of 0.75 for the 7 nm implementation. The reason for both
GF 22 nm implementations requiring the same amount of area is due
to the larger memories supported in the SRAM implementation, as
explained in Section 3.3.5. A breakdown of the area usage in the
SCM-based 22 nm implementation is shown in Figure 3.7.

For the GF 22 nm implementations, the sequential and memory cells
take up around 80% of the overall design’s area, while the clock buffers
and inverters constitute only a very small amount of the total area.
This characteristic is due to the choice of using latch-based buffers for
a lot of the design and clocking the accelerator at a comparatively low
frequency, while also extensively making use of clock-gating at every

3.5. RESULTS AND DISCUSSION 85

SCM Combinational Sequential
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

A
re

a
in

m
m

2

Figure 3.7: Breakdown of the area usage of the SCM implementation
of the accelerator core in 22 nm technology. The majority of the area
is used by the standard cell memories, which are used to store fea-
ture maps and weight kernels. Clock area is negligibly small, due to
deliberate low clock speeds and hierarchical clock gating

level of the design’s hierarchy. Note that even though the area of the
design is storage-dominated, power and energy are not, which is one
of the key reasons for the extreme energy efficiency of CUTIE.

3.5 Results and Discussion

This Section discusses the evaluation results of the proposed acceler-
ator design. First, we discuss the design and training of the network
that is used to evaluate the accelerator’s performance. Next, we dis-
cuss the general evaluation setup. Finally, we present the implemen-
tation and performance metrics and compare our design to previous
work.

3.5.1 Quantized Network Training

The accelerator was evaluated using a binarized and a ternarized ver-
sion of a neural network, using the binary thermometer encoding and
the ternary thermometer encoding for input encoding. The network
architecture is shown in Table 3.3.

Each convolutional layer is followed by a batch normalization layer
and a Hardtanh activation [195] layer. For the quantized versions

86 CHAPTER 3. THE CUTIE ACCELERATOR

Table 3.3: Layer architecture of the tested CNN
Layer Input Dim Op Kernel Padding
2D Convolution 126×32×32 297 MOp 3×3 (1,1)
2D Convolution 128×32×32 302 MOp 3×3 (1,1)
2D Convolution 128×32×32 302 MOp 3×3 (1,1)
Max Pooling 128×32×32 - 2×2 (0,0)
2D Convolution 128×16×16 75.5 MOp 3×3 (1,1)
2D Convolution 128×16×16 75.5 MOp 3×3 (1,1)
Max Pooling 128×16×16 - 2×2 (0,0)
2D Convolution 128×8×8 18.9 MOp 3×3 (1,1)
2D Convolution 128×8×8 18.9 MOp 3×3 (1,1)
Max Pooling 128×8×8 - 2×2 (0,0)
2D Convolution 128×4×4 4.7 MOp 3×3 (1,1)
Avg Pooling 128×4×4 - 4×4 (0,0)
Fully connected 128 2.6 KOp - -
Total - 1.1 GOp - -

of the network, the activation layer is followed by a ternarization
layer. The preceding convolutional layer, batch normalization layer
and Hardtanh activation layer are merged into a single Fused Convo-
lution layer. Any succeeding pooling layers are then merged as well.
The reason for using Hardtanh activations over, for example, the more
popular ReLU activation which is also usually used in BNNs is the
inclusion of all three ternary values in the range of the function. We
further found that the Hardtanh activation converged much more re-
liably than the ReLU activation for the experiments we ran. We
have tested networks with depthwise-separable convolutions in place
of standard convolutions but have found that accuracy decreases sub-
stantially when ternarizing these networks, which is in line with the
results in [167]. Further, depthwise-separable convolutions require
twice the feature map data movement, while performing fewer oper-
ations overall. Since CUTIE’s architecture greatly reduces the cost
of the elementary multiply and add operations, the cost of accessing
local buffers is relatively high. Hence, layers that have been optimized
in a traditional setting to minimize the number of operations are not
guaranteed to be energy efficient.

3.5. RESULTS AND DISCUSSION 87

The approach for training the networks taken in this work is based
on the INQ algorithm [163]. Training is done in full-precision for a
certain number of epochs, after which a pre-defined ratio of all weights
are quantized according to a quantization schedule. These two steps
are iterated until all weights are quantized. One degree of freedom in
this algorithm is the order in which the weights are quantized, called
the quantization strategy. We evaluated three quantization strategies
for their impact on accuracy, and sparsity, which is linked to energy
efficiency for execution on the proposed architecture. The strategies
evaluated in this work are the following:

• Magnitude: Weights are sorted in descending order by their
absolute value

• Magnitude-Inverse: Weights are sorted in ascending order by
their absolute value

• Zig-Zag: Weights are sorted by taking the remaining smallest
and largest values one after another.

For both the ternarized and binarized versions, the weights were
quantized using the quantization schedule shown in Figure 3.8. The
CIFAR-10 dataset was used for training and the CIFAR-10 test data
set was used for all evaluations. The network was trained using the
ADAM optimizer [106] over a total of 200 epochs.

3.5.2 Evaluation Setup

In addition to the quantized network, a testbench was implemented
to simulate the cycle-accurate behavior of the accelerator core. The
testbench generates all necessary signals to load all weights and fea-
ture maps into the accelerator core and load the layer instructions
into the layer FIFO. The 22 nm implementations were simulated us-
ing annotated switching activities from their respective post-layout
netlist to simulate the average power consumption of the acceler-
ator core, including memories, during the execution of each layer.
Analogously, the 7 nm implementation was simulated using its post-
synthesis netlist. For power simulation purposes, each layer was run
separately from the rest of the network. This guarantees that each
loading phase is associated with its layer, which is required to properly

88 CHAPTER 3. THE CUTIE ACCELERATOR

0 25 50 75 100 125 150 175 200
Epoch number

0.0

0.2

0.4

0.6

0.8

1.0

Q
ua

nt
iz

at
io

n
ra

tio

Weight quantization schedule
Feature map quantization schedule

Figure 3.8: Quantization schedule for the presented network. Weights
and feature map pixels are quantized separately, using different sched-
ules. The weight quantization schedule uses a decaying step size,
which starts at 20%, decreases to 10% and finishes with 5% of all
weights.

estimate the energy consumption of a layer. For throughput and effi-
ciency calculations, the following formula for the number of operations
in convolutional layers is used:

Γ = 2 · IW · IH ·K ·K ·NI ·NO

where K corresponds to the side length of the convolutional kernel, IW
and IH are the output features maps’ width and height, and NI & NO

are the input and output channel number, respectively. Γ corresponds
to the number of additions and multiplications required to compute
each output pixel, i.e. operations for pooling and activations are not
considered. Furthermore, the runtime of each layer is measured be-
tween the loading of the layer instruction and the write operation for
the last output feature map pixel.

3.5.3 Experimental Results

The energy per operation for the 22 nm implementation using different
quantization strategies is shown in Figure 3.11. The energy efficiency
scales almost linearly with the sparsity of the executed network. This

3.5. RESULTS AND DISCUSSION 89

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Clock

Sequential

SCM

Combinational

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Power Consumption Relative to Total Power

Leakage

Dynamic

Figure 3.9: Power breakdown of the accelerator core implementation
in 22 nm technology with SCM-based feature map and weight mem-
ories, running the Magnitude-Inverse trained ternary network. The
overall power is clearly dominated by combinational cells, where over
90% of the total power is spent.

trend can be explained by zeros in the adder trees leading to nodes
not toggling, which results in lower overall activity.

A breakdown of power consumption by cell type, as well as by dy-
namic and leakage power is shown in Figure 3.9. The static power
consumption makes up 4.6% of the overall power consumption in the
22 nm implementation, most of which stems from the SCMs. No-
tably, the power consumption is dominated by combinational cells
which underlines the effectiveness of the architecture, since this im-
plies most energy is spent in computations, rather than memory ac-
cesses or transfers.

The analysis of the per-layer energy efficiency for both binary and
ternary neural networks reveals a sharp peak in the first layer, which
can be explained with the structural properties of the thermometer
encoding, i.e. the first feature map contains 66.3% zeros on average.
Furthermore, with the decreasing number of operations in deeper lay-
ers, the energy cost of loading the weights increase in proportion to

90 CHAPTER 3. THE CUTIE ACCELERATOR

Multiplier Popcount
0.0

0.1

0.2

0.3

0.4

0.5
A

ve
ra

ge
sw

itc
hi

ng
pr

ob
ab

ili
ty CUTIE - TNN

CUTIE - BNN
Iterative Model - TNN
Iterative Model - BNN

Figure 3.10: Overview of the switching probabilities at the multiplier
and adder tree input nodes respectively, smaller is better. For the
binary case, toggling in the multipliers directly translates to switching
activity in the adder trees, while for the ternary case the sparsity of
the network reduces switching activity at the adder tree input nodes
by ≈ 2×. Moreover, the smoothness of feature maps is exploited by
unrolling the compute units, which is reflected in a ≈ 3× smaller
switching probability compared to an iteratively decomposed model.
Best viewed in color.

the energy cost of computations, which explains the decreasing energy
efficiency in deeper layers.

The binary thermometer encoding and ternary thermometer encoding
were compared for their use with the ternarized network version. The
results show that the ternary thermometer encoding provides a small
increase between 0.5% and 1.5% in test accuracy, while energy effi-
ciency is kept within 2% of the binary thermometer. Further, the drop
in accuracy between the 32-bit full-precision version and the ternary
version can be reduced to as little as 3%.

Finally, the ternary network trained with the Magnitude-Inverse quan-
tization strategy using the ternary thermometer encoding was evalu-

3.5. RESULTS AND DISCUSSION 91

1 2 3 4 5 6 7 8
Layer number

0

100

200

300

400

500

600

TO
p/

s/
W

Ternary Neural Network, Magnitude Inverse
Ternary Neural Network, Zig-Zag
Ternary Neural Network, Magnitude
Binary Neural Network, Magnitude Inverse
Binary Neural Network, Zig-Zag
Binary Neural Network, Magnitude

Figure 3.11: Energy efficiency simulation results on the CIFAR-10
test dataset for the binarized & ternarized networks comparing the
different quantization strategies using the GF 22 nm post-layout power
simulation data. Notably, the energy efficiency per operation increases
with increasing sparsity of the weight kernels as shown in table 3.4.

ated on the post-synthesis netlist of the 7 nm implementation, achiev-
ing a peak energy efficiency of 3140 TOp/s/W in the first layer and
an average efficiency of 2100 TOp/s/W.

3.5.4 Comparison of Quantization Strategies

An overview of test accuracy and sparsity for all tested strategies is
given for the binarized and ternarized versions in Table 3.4.

The energy per inference for the most efficient ternary version in 22 nm
adds up to 2.8 µJ, the energy per inference for the best binary ver-
sion to about 4.4 µJ. These results allow three observations: first,
the quantization strategy not only impacts the accuracy of the re-
sulting network but also the distribution of weights - the number of
zeros for the Magnitude-Inverse strategy is more than 8x higher than
for Magnitude, at comparable accuracy. The second observation is
that energy efficiency increases significantly for very sparse networks.
The Magnitude-Inverse strategy trains a network that runs 36% more
efficiently than the one trained with Magnitude for the ternary case.
Lastly, the results imply that the optimal quantization strategy might
be different for the binary and ternary case. Most importantly, for all

92 CHAPTER 3. THE CUTIE ACCELERATOR

Table 3.4: Impact of quantization strategy on test accuracy and spar-
sity for binarized & ternarized networks on the CIFAR-10 dataset
evaluated in the 22 nm SCM implementation

Accuracy Weighty Sparsity Avg. TOp/s/W

Full-
Precision

91% - -

Ternary, TT∗

Magnitude 86.5% 7.4% 260 TOp/s/W

Magnitude-
Inverse

87.4% 60.7% 392 TOp/s/W

Zig-Zag 88.1% 49.1% 345 TOp/s/W

Ternary, BT∗

Magnitude 85.9% 6.9% 262 TOp/s/W

Magnitude-
Inverse

86.8% 60.8% 399 TOp/s/W

Zig-Zag 86.6% 49.2% 342 TOp/s/W

Binary

Magnitude 83.3% 0% 240 TOp/s/W

Magnitude-
Inverse

80.1% 0% 248 TOp/s/W

Zig-Zag 82.8% 0% 229 TOp/s/W
∗ BT: Binary Thermometer
∗ TT: Ternary Thermometer

3.5. RESULTS AND DISCUSSION 93

training experiments we have run, we have found that ternary neu-
ral networks consistently outperform their binary counterparts on the
CUTIE architecture by a considerable margin, both in terms of ac-
curacy, with 5% higher test accuracy, as well as in terms of energy
efficiency, with 36% lower energy per inference.

3.5.5 Exploiting Feature Map Smoothness

By fully unrolling the compute units with respect to the feature map
channels and weights, we reduce switching activity in the adder tree
of the compute units by an average of 66.6% with respect to archi-
tectures that use an output-stationary approach and iterative decom-
position. Iteratively decomposed architectures require the accelerator
to compute partial results on partial feature maps and weight kernels.
The typical approach to implement this is tiling the feature map and
weight kernels in the input channel direction, and switch the weight
and feature map tiles every cycle. This leads to much higher switching
activity.

In the ternary case, an input node of the adder tree switches when
the corresponding weight value is non-zero and the feature map value
changes. Calculating the mean number of value switches between
neighboring pixels, we found that the binary feature map pixels have
an average Hamming distance of 44 out of 256 bit and the ternary
feature map pixels have an average pixel-to-pixel Hamming distance
of 33 out of 256 bit following the 3-ary encoding of CUTIE. It exploits
this fact by keeping the weights fixed for the execution of a full layer,
which eliminates switching activity due to changing the weight tile
while a previous feature map tile is scheduled. To quantify this effect,
we analyzed the switching activity of the presented network trained
with all quantization strategies on an output-stationary iterative ar-
chitecture model, taking into account the network weights as well.
Figure 3.10 shows the occurring switching activity for CUTIE versus
a model with 2× iterative decomposition for the binary Magnitude
and ternary Magnitude-Inverse trained networks.

94 CHAPTER 3. THE CUTIE ACCELERATOR

3.5.6 Comparison of Binary and Ternary Neural
Networks

Since the set of ternary values includes the set of binary values, a
superficial comparison between binary and ternary neural networks
on the proposed accelerator architecture is fairly straight-forward, as
binary neural networks can be run on the accelerator as-is. To fairly
compare, however, it is important to discount certain contributions
that only appear because the accelerator core supports ternary oper-
ations. Most importantly, the overhead in memory storage, accesses,
encoding, and decoding should be subtracted, as well as the energy
spent in the second popcount module. To apply these considerations
on the architecture, the following simplifications are made:

• The power used for memory accesses is divided by 1.6.

• The power used in the popcounts of the compute units is halved.

• The power used for encoding and decoding is subtracted.

While these reductions do not account for all differences between the
ternary and a binary implementation of the accelerator, they give a
reasonably close estimate, considering that the power spent in pop-
counts, memories and encoding & decoding modules accounts for
around 80% of the total power budget. Adding up the reductions,
an average of around 30% should be subtracted from the measured
values of the GF 22 nm SCM implementation to get an estimate for
the energy efficiency of a purely binary version of the accelerator.
Even including this discount factor into all calculations, the energy of
the binary neural network would be reduced to around 3 µJ, which is
slightly higher than the ternary version. Taking into account that the
achieved accuracy for the ternary neural network comes in at around
88% while the binary version achieves around 83%, the ternary imple-
mentation is both more energy-efficient and more accurate in terms
of test accuracy than the binary version.

3.5.7 Comparison with the State-of-the-Art

A comparison of our design with similar accelerators cores is shown
in Table 3.5. The implementation in TSMC 7 nm technology outper-

3.5. RESULTS AND DISCUSSION 95

T
a
b

le
3.

5:
C

o
m

p
ar

is
on

o
f

th
e

p
ro

p
os

ed
ar

ch
it

ec
tu

re
to

st
a
te

-o
f-

th
e-

a
rt

a
cc

el
er

a
to

rs
[2

1
]

[1
55

]
[2

6]
[1

59
]

[1
5
6
]

T
h
is

w
o
rk

C
o
m

p
u

ta
ti

o
n

M
et

h
o
d

d
ig

it
al

d
ig

it
a
l

m
ix

ed
d

ig
it

a
l

an
a
lo

g
d

ig
it

a
l

d
ig

it
a
l

d
ig

it
a
l

W
ei

gh
t

P
re

ci
si

o
n

b
in

a
ry

b
in

a
ry

b
in

ar
y

b
in

a
ry

te
rn

a
ry

te
rn

a
ry

te
rn

a
ry

te
rn

a
ry

A
ct

iv
at

io
n

P
re

ci
si

on
b

in
a
ry

b
in

a
ry

b
in

ar
y

b
in

a
ry

te
rn

a
ry

te
rn

a
ry

te
rn

a
ry

te
rn

a
ry

M
em

or
y

Im
p

le
m

en
ta

-
ti

o
n

S
C

M
S

R
A

M
S

R
A

M
S

C
M

S
R

A
M

S
R

A
M

S
C

M
S

C
M

T
ec

h
n

ol
og

y
2
2

n
m

28
n

m
2
8

n
m

10
n

m
32

n
m

2
2

n
m

2
2

n
m

7
n

m
C

or
e

A
re

a
[m

m
2
]

0.
7

1
.4

5.
76

0
.3
9

1
.9

6
7
.5

7
.5

1.
2b

C
or

e
V

ol
ta

g
e

[V
]

0.
4

0.
66

0
.6

0
.3
7

-
0
.6

5
0
.6

5
0
.6

5
P

ea
k

T
h

ro
u

g
h

p
u

t
[T

O
p

/
s]

0.
3

2
.8

-
1
6
0

1
1
4

1
6

1
6

1
6

P
ea

k
C

or
e

E
n

er
g
y

E
f-

fi
ci

en
cy

[T
O

p
/
s/

W
]

22
3

2
30

-
6
17

-
4
5
7

5
8
9

3
’1
4
0

A
ve

ra
ge

C
o
re

E
n

er
g
y

E
ffi

ci
en

cy
[T

O
p

/s
/
W

]
36

1
45

77
2

6
17

1
2
7

3
0
5

3
9
2

2
’1
0
0

A
cc

u
ra

cy
on

C
IF

A
R

-
10

87
%

86
%

85
.6

%
8
6%

a
-

8
8
%

8
8
%

8
8
%

E
n

er
gy

p
er

In
fe

re
n

ce
on

C
IF

A
R

-1
0

[µ
J
]

(e
x
cl

.
I/

O
)

1.
3–

7.
3

13
.8

6
2.

61
3
.2

-
3
.6

2
.8

0
.5
2

a
:
u
se
s
sa
m
e
n
et
w
o
rk

a
s
[1
5
5
]
b
:
ex

p
ec
te
d
v
a
lu
e
a
t
0
.7
5
ce
ll
la
y
o
u
t
d
en

si
ty

96 CHAPTER 3. THE CUTIE ACCELERATOR

forms even the most efficient digital binary accelerator design, imple-
mented in comparable Intel 10 nm technology as reported by Knag
et al. [159], by a factor of at least 3.4× in terms of energy efficiency
per operation and 5.9× in terms of energy per inference as well as the
most efficient mixed-signal design as reported by Bankman et al. [26],
requiring a factor of 4.8× less energy per inference.

For a fairer comparison to other state-of-the-art accelerators, we also
report post-layout simulation results in GF 22 nm technology, which
similarly outperforms comparable implementations as reported in
Moons et al. [155] by a factor 2.5×, both in terms of peak efficiency
as well as average efficiency per operation. The more practical
comparison between the energy per inference on the same data
set reveals that our design outperforms all other designs by an
even larger margin, i.e. by at least 4.8×, while even increasing the
inference accuracy with respect to all other designs. However, our
design is less efficient in terms of throughput per area compared to
other state-of-the-art designs. This is a deliberate design choice,
which is due to the unrolled architecture of CUTIE.

3.6 Conclusion

In this work, we have presented three key ideas to increase the core
efficiency of ultra-low bit-width neural network accelerators and eval-
uated their impact in terms of energy per operation by combining
them in an accelerator architecture called CUTIE. The key ideas are:
1) completely unrolling the data path with respect to all feature map
and filter dimensions to reduce data transfer cost and switching ac-
tivity by making use of spatial feature map smoothness, 2) moving
the focus from binary neural networks to ternary neural networks to
capitalize on the inherent sparsity and 3) tuning training methods
to increase sparsity in neural networks at iso-accuracy. Their com-
bined effect boosts the core efficiency of digital binary and ternary
accelerator architectures and contribute to what is to the best of our
knowledge the first digital accelerator to surpass POp/s/W energy
efficiency for neural network inference.

Chapter 4

TCN Extensions for
CUTIE

In this Chapter, we introduce a novel processing scheme alongside
minor hardware modifications for TCN networks on the CUTIE accel-
erator introduced in Chapter 3. The design achieves 5.5 µJ/Inference,
12.2 mW, 8000 Inference/s at 0.5 V for a Dynamic Vision Sensor
(DVS) based TCN, and an accuracy of 94.5 % and 2.72 µJ/Inference,
12.2 mW, 3200 Inference/s at 0.5 V for a non-trivial 9-layer, 96
channels-per-layer convolutional network with CIFAR-10 accuracy
of 86 %. The peak energy efficiency is 1 POp/J outperforming the
state-of-the-art silicon-proven TinyML quantized accelerators by
1.67× while achieving competitive accuracy.

The following sections have been published in a slightly different form
in the IEEE Micro journal1.

1© 2022 IEEE. Reprinted, with permission, from M. Scherer, A. D. Mauro,
T. Fischer, G. Rutishauser, and L. Benini, “TCN-CUTIE: A 1,036-TOp/s/W,
2.72-µJ/Inference, 12.2-mW All-Digital Ternary Accelerator in 22-nm FDX Tech-
nology,” IEEE Micro, vol. 43, no. 1, pp. 42–48, Jan. 2023.

97

98 CHAPTER 4. TCN EXTENSIONS FOR CUTIE

4.1 Introduction

Advances in ML research in recent years have enabled a new direc-
tion of research within the field of embedded systems, called TinyML,
targeting the execution of non-trivial ML tasks within the strict con-
straints of low-power (mW) embedded devices. TinyML is becoming
increasingly pervasive with applications including wearable computer
vision, gesture recognition, and many more. The key challenges in
TinyML are energy efficiency at a few mW of power while ensuring
accurate and fast inference. Specialized TinyML accelerators tackle
both challenges by providing high throughput at low power, but often
they do so by compromising accuracy or by specializing on a single
network topology, with no flexibility. We present a flexible and accu-
rate TinyML architecture, integrating CUTIE, a highly configurable
TNN accelerator based on a fully unrolled compute architecture [34]
within the Kraken RISC-V SoC.

While CUTIE, as presented in Chapter 3, is highly efficient at pro-
cessing single static images, it lacks support for processing temporal
data. However, at the extreme edge, information is typically extracted
from the temporal evolution of sensor data, as shown in Chapter 2.
To adapt CUTIE to the requirements of extreme edge time-series pro-
cessing, we introduce a novel, lightweight TCN extension within the
CUTIE architecture. At their core, TCNs consist of dilated convolu-
tions, which are calculated over the input sequence’s time dimension.
This allows TCN networks to model the evolution of temporal dy-
namics without the training and inference challenges posed by Recur-
rent Neural Networks (RNNs) while using several orders of magnitude
fewer parameters than Transformers, making them ideal for an ultra-
high-efficiency accelerator like CUTIE. In this chapter, we show how
mixed CNN and TCN networks similar to TinyRadarNN described in
Section 2.1 are mapped on the extended TCN-CUTIE accelerator to
achieve state-of-the-art energy efficiency, by studying the implemen-
tation of a gesture recognition network trained on Dynamic Vision
Sensor (DVS) data.

More specifically, we present the deployment and power measurements
of the DVS neural network architecture exploiting our novel TCN
extensions, which achieves an accuracy of 94.5% at an energy cost of

4.2. SOC IMPLEMENTATION 99

5.5 µJ per inference, performing gesture recognition from a DVS. To
the best of our knowledge, we are the first to demonstrate a peak core
energy efficiency beyond 1 PetaOp/s/W for neural network inference
in an all-digital and flexible platform, measured on a fabricated SoC.

4.2 SoC Implementation

Logarithmic Interconnect

1MB L2 SRAM

Act. Memory

Wt. Memory

8 Interleaved Banks

μ-

PA
D

FR
A

M
E

RI5CY
Core

ACCEL 2

Control Port

CUTIE

CDC

CDC CDC

SOC DOMAIN

EHWPE DOMAIN

CLUSTER

A
PB

VDD,EHWPE VDD,CLUS

CLOCK GATING
POWER GATING

PE
RI

PH
S I/O

On-Chip
Periphs

(OCUs)
Compute Units

CLUSTER DOMAIN

PWR
CTRL

DMA

Figure 4.1: Block diagram of Kraken, including the three switchable
power domains and always-on SoC domain. The CUTIE accelerator
is integrated with a control port connected to the APB and a data
port connected to the high-bandwidth logarithmic interconnect. The
Cluster and Accel 2 IPs are not discussed in this Chapter.

The Kraken SoC is a RISC-V-based microcontroller based on the
Pulpissimo SoC [196]. A RI5CY core [77] serves as the fabric con-
troller (FC), coordinating the operation of the other subsystems. For
parallel signal processing tasks, it contains an 8-core PULP cluster of
RISC-V cores. Kraken has an extensive set of peripherals for off-chip
communication. They are implemented as µDMA [197] extensions,
freeing the FC from most management duties. On-chip peripherals
include an event unit for interrupt mapping, a RISC-V-compliant de-
bug unit for JTAG control of the chip and a power controller. 4
Frequency-Locked Loop (FLL) modules provide independently run-
time configurable clocks to the µDMA peripherals, the SoC domain,

100 CHAPTER 4. TCN EXTENSIONS FOR CUTIE

the accelerator (EHWPE) domain, and the PULP cluster. Kraken has
three core supply rails and four core power domains. The SoC, cluster
and EHWPE domains each have a separate supply. Kraken features
task-specific accelerators: In the following sections, we focus on the
TNN inference engine, its integration, and silicon measurements. The
accelerators share their supply voltage, but each is located in its power
domain and can be power-gated individually to minimize current draw
by idle system components. A block diagram of the SoC architecture
is shown in Figure 4.1.

4.3 CUTIE Design

The Completely Unrolled Ternary Inference Engine (CUTIE), is
a highly configurable CNN accelerator architecture for completely
ternarized neural networks, introduced in [34]. In contrast to systolic
arrays, CUTIE uses a completely unrolled compute architecture,
which means that one OCU is allocated for every output channel,
making the computation output-stationary. Further, each OCU
includes weight buffers, minimizing weight data movement. Each
OCU processes a full activation window per cycle, without pipelining
in the compute units, making the architecture also input-stationary.
To fully exploit all opportunities for data reuse in CNNs, a linebuffer
designed to eliminate data access stalling is added. Thanks to this
highly parallel design, CUTIE fully exploits data reuse at all levels
and minimizes data movement. In addition, ternary weights and
activations enable the exploitation of zero values to translate sparsity
into reduced toggling in the compute units. Thus, minimized data
movement and switching activity are the cornerstones of CUTIE’s
efficiency.

In this Chapter, we extend the CUTIE TNN accelerator to support
hybrid 2D-CNN & 1D-TCN networks. As demonstrated in [46], the
combination of low precision, i.e. ternarized, CNN and TCN achieved
superior accuracy in classifying time-distributed data like streams of
events produced by event-based sensors, like DVS cameras. Data
produced by such sensors are characterized by a high level of unstruc-
tured sparsity and exhibit both short and long temporal dynamics. A

4.4. TCN EXTENSIONS 101

hybrid CNN-TCN approach allows fine-tuning the network capabili-
ties to achieve the highest accuracy when processing event streams.
Specifically, the CNN captures the spatial dependency among neigh-
boring events, that cluster in specific regions of the input feature map,
as well as short temporal dependency among events belonging to con-
secutive time steps; an event happening in the scene tends to persist
over multiple time steps. The 1D TCN extracts longer temporal de-
pendencies among features distributed across the entire sample time
window. 1D-TCNs use dilated convolutions [98], meaning feature map
data is accessed in a strided fashion. The extensions required to sup-
port 1D-TCNs efficiently are twofold: 1) We designed a TCN memory,
enabling dilated feature map data access without stalling, 2) We im-
plemented a scheduling algorithm that maps 1D dilated convolutions
to 2D undilated convolutions, which make use of CUTIE’s efficient
compute architecture.

4.4 TCN Extensions

192

160

480

480

1728

Output Channel
Compute Unit

W
ei

gh
t

Bu
ff

er

48

D
ec

om
pr

.

Output Channel
Compute Unit

W
ei

gh
t

Bu
ff

er

48

D
ec

om
pr

.

24

D Q D Q D Q...

TCN Memory

160

480

Co
m

pr
.

Activation Memory

TCN Memory

48

Weight Memory

48

Weight Memory

Li
ne

Bu
ff

er
D

ec
om

pr
.

TCN-CUTIE

D
at

a
To

/F
ro

m
 S

oC

Output Channel Compute Unit

Weights

Activations

Σ

Po
ol
in
g

Th
re
sh
ol
d

-

2

14
2

2

17
28

 M
ul

ts

24-to-3
Mux

Figure 4.2: Block diagram of the 96-channel CUTIE implementation
with TCN extensions, showing the completely unrolled data path.
The insets show the flip-flop based TCN memory and the OCU, which
processes an entire convolution window per cycle. Notably, the OCU
uses a single pipeline stage.

102 CHAPTER 4. TCN EXTENSIONS FOR CUTIE

To support hybrid 2D-CNN & 1D-TCN networks, CUTIE has to be
extended with a small memory, the TCN memory, that can hold the
1D feature vectors that are extracted by each inference of a 2D-CNN.
The TCN memory enables the execution of hybrid 2D-CNN & 1D-
TCN networks, as well as pure 1D processing. The output of the
TCN memory has the same size as the activation memory, which is
achieved by multiplexing three time steps according to the address of
the first required pixel. In the Kraken SoC, the TCN memory was
dimensioned to hold a total of 24 feature vectors, corresponding to
a memory size of only 576 bytes. Nevertheless, 24 time steps are
sufficient to cover a long receptive window even at high framerates: if
the 2D CNN takes as input 15 stacked frames captured at a rate of
300 FPS (5− 10× the speed of most ordinary cameras), the resulting
receptive time window for a TCN covering 24 time steps is still 1.2 s.
Due to its small size, we implemented the TCN memory/ as a flip-flop-
based shift register to reduce leakage power. A block diagram of the
CUTIE TNN accelerator with the proposed TCN memory extension
is shown in Figure 4.2.

The second extension we introduce to the CUTIE accelerator is the
mapping of 1D dilated convolutions. Dilated 1D convolutions with a
kernel length N and dilation factor D of an input x with a kernel w can
be described by their mathematical definition, shown in Equation 4.1:

(w ⋆ x)[n] =

N∑
k=1

x̃[n− (k − 1) ·D] · w[N − k] (4.1)

where

x̃[n] =

{
x[n], n ≥ 0

0, else

is the causally padded input vector x. The main advantage of dilated
convolutions over undilated ones lies in their ability to reach a longer
receptive field in fewer layers. In a TCN with N = 3 and Di = 2i,
where Di denotes the i-th layer’s kernel dilation, the receptive field
fk in layer k can be calculated as

fk = 1 +

k∑
i=0

(N − 1) × 2i

4.5. TCN-CUTIE IMPLEMENTATION 103

. The receptive field increases exponentially with the number of lay-
ers, decreasing the number of layers needed to cover a given number
of input steps. For the 24 input steps supported by TCN-CUTIE,
the number of layers is reduced from 12 for undilated convolutions
to 5 with exponentially increasing dilations. In a direct implementa-
tion, the elements of x̃ are not accessed contiguously, instead, they
are accessed with a stride of D. Due to the specialized memory hier-
archy of CUTIE, non-contiguous or strided accesses lead to stalling,
decreasing efficiency. To avoid this, we reformulate equation 4.1 as a
2D correlation:

(w ⋆ x)[n] =

N∑
k=1

z[N − k,mod(n,D)] · w[N − k]

where

z[n,m] = x̃[n ·D + m]

A visual representation of this mapping is shown in Figure 4.3. To
form the dense 2D feature map, the 1D vector is wrapped around after
D elements. Further, zero padding (shown in white in Figure 4.3) is
applied on the edges to implement the causality required by TCNs as
well as the correct start- and endpoint of the convolution. To respect
the hardware constraints of CUTIE, i.e. weight kernels having size
3×3, the 1D weight kernel is projected into the middle column of the
2D weight kernel, while all other elements in the weight kernels are
set to zero. This mapping ensures that the kernel dot product is only
computed over a single column and the column elements are dilated
by the dilation factor D. Since this mapping is fully equivalent to a
2D convolutional layer and all transforms necessary can be computed
offline and require no data marshalling, it fully and efficiently reuses
the CUTIE architecture with minor hardware overhead.

4.5 TCN-CUTIE Implementation

Thanks to its highly configurable nature, the CUTIE architecture can
be adapted to many application scenarios. In the Kraken SoC, we
dimensioned the memories for feature map sizes of up to 64×64 pixels

104 CHAPTER 4. TCN EXTENSIONS FOR CUTIE

x2 x5x4x1 x7 x8x3 x6 x9

w1 w2

0

w1

w2

x2x1 x3

x5x4 x6

x7 x8 x9

0

0

0

0

0

y1 y3y2 y4 y6y5

0

Figure 4.3: Example mapping of a dilated 1D convolution to an undi-
lated 2D convolution for D = 3, N = 2

with up to 96 channels. We designed the TCN memory to hold a
total of 24 time steps. Since CUTIE’s throughput per cycle is enor-
mous due to the high degree of parallelism, we used relaxed timing
constraints during synthesis, to enable extensive instantiation of low-
leakage library cells. The CUTIE TNN accelerator’s clock can be
hierarchically clock-gated to minimize idle switching activity in idle
OCUs when network layers have a small number of output channels.
Inference can be triggered via a configuration register or an interrupt
line from I/O peripherals, enabling autonomous data preparation and
inference without intervention from the FC. After inference has con-
cluded, CUTIE asserts an interrupt which is used to wake up the
FC.

4.6. KRAKEN PHYSICAL IMPLEMENTATION 105

4.6 Kraken Physical Implementation

The Kraken chip has been designed and manufactured in Global-
Foundries 22nm technology, the total die area is 9 mm2. The three
Kraken subsystems are implemented as independent clock and power
domains. Both the general-purpose RISC-V-based accelerator and the
EHWPE domain can be entirely power-gated to reduce their leakage
consumption when not in use. The chip can operate in a wide sup-
ply voltage range, i.e., from 0.5 V to 0.9 V. The chip host a total
of 88 pads, 46 of which can be used either as GPIO or as an alter-
nate function, i.e., as one of the signals of each IO peripherals, in an
all-to-all muxing scheme. Figure 4.4 shows an annotated floorplan
of the Kraken SoC, including the SoC Domain, Cluster, Accelerator
2, as well as CUTIE. The CUTIE accelerator occupies 2.96 mm2 of
area. In the CUTIE layout, the area occupied by memory macros
composing the internal buffers, and digital logic are highlighted. The
memories including weight buffers in the OCUs take up 60% of the
total die area of CUTIE, while the rest is used by the compute units.
The additional TCN memory which holds the sequence samples was
implemented in SCM and has a negligible impact of less than 1% on
area.

4.7 Evaluation

To benchmark the accelerator’s performance against similar state-of-
the-art designs, we measure the execution of a ternarized 9-layer (8
CONV layers, 1 FC classifier) CIFAR-10 network as used in [34, 155,
159] with 96 instead of 128 channels. This network achieves an accu-
racy of 86% on CIFAR-10, which is on par with the binarized version
using 128 layers used in [155, 159]. Similarly, we execute the hybrid
2D-CNN & 1D-TCN network proposed in [46], consisting of 5 2D-CNN
layers and 4 1D-TCN layers that process 5 time steps. This network
achieves an accuracy of 94.5% on the 12-class DVS 128 dataset.

To evaluate the power consumption of CUTIE, we measured the cur-
rent drawn by the Kraken ASIC on an ASIC tester, while running the
deployed networks on CUTIE using pre-selected inputs which were
randomly drawn from the respective validation set of the datasets

106 CHAPTER 4. TCN EXTENSIONS FOR CUTIE

CUTIECUTIEACCEL 2ACCEL 2

SoC DomainSoC Domain ClusterCluster

Output Channel
Compute Units
Output Channel
Compute Units

Linebuffer

Weight
Memory
Weight
Memory

Activation MemoryActivation Memory

2 mm

1
.5

 m
m

3 mm

3
 m

m

TCNTCN

Figure 4.4: Die micrograph of the Kraken SoC. The top floorplan
shows the four power domains, including SoC, Cluster, Accel 2 and
CUTIE. The bottom floorplan shows the layout of modules within
CUTIE.

4.7. EVALUATION 107

0.5 0.6 0.7 0.8 0.9
Voltage [V]

4

6

8

En
er

gy
 p

er
 In

fe
re

nc
e

[u
J]

Energy per Inference [uJ]

4000

6000

8000

10000

12000

In
fe

re
nc

es
 p

er
 S

ec
on

d

Inferences per Second

0.5 0.6 0.7 0.8 0.9
Voltage [V]

6

8

10

12

14

En
er

gy
 p

er
 In

fe
re

nc
e

[u
J] Energy per Inference [uJ]

10000

15000

20000

25000

30000

In
fe

re
nc

es
 p

er
 S

ec
on

d

Inferences per Second

Figure 4.5: Energy per inference and inferences per second for the
CIFAR-10 (upper) and DVS (lower) networks plotted against voltage
using the maximum stable frequency at each corner. All data was
recorded at 25°C.

108 CHAPTER 4. TCN EXTENSIONS FOR CUTIE

0.5 0.6 0.7 0.8 0.9
Voltage [V]

200

400

600

800

1000

Ef
fic

ie
nc

y
[T

Op
/s

/W
]

Efficiency

10

20

30

40

50

Pe
rfo

rm
an

ce
 [T

Op
s/

s]
Performance

Figure 4.6: Peak energy efficiency and throughput plotted against
voltage. One MAC operation corresponds to 2 Ops. Data is calcu-
lated at the maximal frequency for each voltage corner. All data was
recorded at 25°C.

4.8. COMPARISON WITH STATE-OF-THE-ART 109

used for training. The presented power consumption numbers of the
CUTIE accelerator include its memories, but do not include chip I/O
energy. All measurements were performed at room temperature. We
profiled the accelerator’s performance at 25C over a range of 0.5 V -
0.9 V. Below 0.5 V, the integrated SRAM macros start exhibiting bit
errors. In terms of efficiency, we find that the 0.5 V operating corner,
operating at 54 MHz achieves the lowest energy per inference of 2.72 µJ
and 5.5 µJ at an average throughput of 5.4 TOp/s and 1.2 TOp/s for
the CIFAR-10 and DVS networks, with a peak energy efficiency in
the first layer of the CIFAR-10 network of 1036 TOp/s/W and peak
throughput of 14.9 TOp/s. The operating corner using 0.9 V achieves
the highest peak throughput of 51.7 TOp/s, but a lower peak energy
efficiency of 318 TOp/s/W. Figure 4.5 shows plots for throughput and
energy per inference against voltage for the CIFAR-10 and DVS net-
works. Figure 4.6 shows the peak energy efficiency per operation and
throughput versus voltage for the first layer of the CIFAR-10 network.

4.8 Comparison with State-of-the-Art

Table 4.1 shows a comparison of CUTIE on the Kraken SoC with
state-of-the-art highly quantized digital convolutional network accel-
erators. CUTIE achieves a peak throughput of 56 TOp/s and a peak
energy efficiency of 1036 TOp/s/W, surpassing the highest reported
efficiency in the literature: a BNN accelerator manufactured in a more
advanced technology node [159]. As demonstrated in [34] by the use
of post-layout simulation of a larger configuration of CUTIE, the high
energy efficiency of CUTIE can be explained mainly by two design
characteristics: The source of CUTIE’s efficiency is the minimization
of data movement, which limits the efficiency of comparable accelera-
tors. This is achieved by the fully unrolled architecture, which mini-
mizes the number of accesses to each data item. Secondly, the simple
ternary processing elements and the use of very wide addition trees
leverages sparsity in ternary data indirectly. This is shown in [34],
where ternarized networks with very sparse activations and weights
reduce the inference energy cost on CUTIE by 36%. In this Chapter,
we improve on these characteristics by optimizations in the front- and
backend design flow, as well as using a smaller CUTIE configuration.

110 CHAPTER 4. TCN EXTENSIONS FOR CUTIE

Table 4.1: Comparison of CUTIE with SoA highly quantized digital
accelerators. All listed papers use the CIFAR-10 dataset and 9-layer
CNN, however, this Chapter uses 96 channels instead of 128.

Characteristics [155] [159] This work

Computation Method digital digital digital
Weight Precision binary binary ternary
Activation Precision binary binary ternary
Technology 28 nm 10 nm 22 nm
Dataset CIFAR-10 CIFAR-10 CIFAR-10
Accuracy 86% 86% 86%
Energy per Inference 13.86 µJ 3.2 µJ 2.72 µJ
Core Area [mm2] 1.4 0.39 2.96
Voltage [V] 0.65 0.37 0.75 0.5 0.9
Throughput [TOp/s] 2.8 3.4 163 16 56
Peak Core Energy Effi-
ciency [TOp/s/W]

230 617 269 1036 446

To evaluate our TCN extensions we compare our design with tra-
ditional TCN accelerators, as well as with Spiking Neural Network
(SNN) accelerators, which purportedly are more energy efficient for
sparse, event-based time-series data like DVS.

Although there are no standard benchmarks or datasets for TCNs, we
can compare the average energy efficiency over an inference for state-
of-the-art designs. In [198], the authors propose a TCN accelerator de-
sign for continuous, ultra-low-power keyword spotting. While running
64 inferences of a 1.5 MOp/inference network per second, they achieve
an average power consumption between 5 µW and 15 µW, leading to
average energy efficiency of 6.4 TOp/s/W to 19.2 TOp/s/W, measured
by post-synthesis simulation. In direct comparison, our measured av-
erage energy cost per operation on the DVS network is around 5 -
15× lower.

Even when comparing the performance of the TCN extensions with
state-of-the-art SNN accelerators on the DVS 128 dataset, our imple-
mentation meets the best reported accuracy using TNNs in literature,
a network deployed on the IBM Truenorth platform, which achieves a

4.9. CONCLUSION 111

statistical accuracy of 94.6%, just 0.1% better than our ternary TCN,
while requiring 3250× more energy per inference [199] than our design.

When comparing with a modern Intel 14 nm accelerator implemen-
tation, the measured energy per inference of 5.5 µJ beats the best
reported energy efficiency on a similar DVS and EMG dataset, an
SNN running on the Intel Loihi platform and achieving an accuracy
of 96.0%, by a factor of 63.4× [200].

4.9 Conclusion

We presented the CUTIE implementation in the Kraken SoC and
evaluated its performance. By exploiting minimized data movement
and switching activity coupled with aggressive voltage scaling, we
achieve a peak efficiency of 1036 TOp/s/W, surpassing the SoA in
ultra-low-energy CNN inference by a factor of 1.67×. Similarly, the
implemented TCN extensions are demonstrated to surpass the energy
efficiency of the state-of-the-art by a factor of 5×.

4.10 Outlook

While we studied applications for TCN-CUTIE using DVS camera
data in this chapter, we believe that most TinyML use-case could
leverage our approach of mixed CNN and TCN networks. Further
research could study applications in the audio domain, or in appli-
cations using accelerometer data. Recent studies have also shown
the applicability of TCNs in biomedical applications [201,202], where
mapping to TCN-CUTIE might also be explored to achieve higher
energy efficiency in battery-powered devices.

Chapter 5

Deeploy: Automatic
DNN Deployment for
TinyML SoCs

In this chapter, we demonstrate high-efficiency end-to-end SLM de-
ployment on a Siracusa, a multicore RISC-V (RV32) MCU augmented
with ML instruction extensions and a hardware NPU, N-EUREKA.
To automate the exploration of the constrained, multi-dimensional
memory vs. computation tradeoffs involved in aggressive SLM de-
ployment on heterogeneous (multicore+NPU) resources, we introduce
Deeploy, a novel DNN compiler, which generates highly-optimized
C code requiring minimal runtime support. We demonstrate that
Deeploy generates end-to-end code for executing SLMs, fully exploit-
ing the RV32 cores’ instruction extensions and the NPU: We achieve
leading-edge energy and throughput of 490 µJ/Token, at 340 Token/s
for an SLM trained on the TinyStories dataset, running for the first
time on an MCU-class device without external memory.

113

114 CHAPTER 5. DEEPLOY

The following sections are adapted from a manuscript currently under
review at the International Conference on Compilers, Architectures,
and Synthesis for Embedded Systems1.

5.1 Introduction

Following the success of Foundation Models (FMs) in NLP [203,204],
an increasing number of fields are starting to formulate and adapt
FMs for high dimensional sensor data that has traditionally been chal-
lenging to process, like decoding neural data [205, 206], or training
embodied AI agents [207, 208], which may incorporate multi-modal
sensor inputs.

Operating directly on sensory data and in a cyber-physical loop may
lead to solving many outstanding challenges in fields such as brain-
machine interfaces [206] and miniaturized robotics [208]. However,
to materialize this promise, models of this class need to be embod-
ied in physical devices as Embodied Foundation Models (EFMs),
and they must cope with the strict constraints in terms of compute
throughput, power consumption, and footprint typical of edge de-
vices. Unlike datacenter-scale systems, which collect and aggregate
sensor data over sharded resources for high-throughput processing,
embodied AI systems must process sensor data with extremely low
latency and memory capacity under tight power constraints. This is
particularly challenging for the smallest class of AI-oriented comput-
ers: so-called “TinyML” devices operating at the extreme edge, based
on microcontroller-class devices without complex operating systems
or MMUs, relying on user-level software to implement low-level hard-
ware management functionalities. Despite many recent successes with
previous-generation DNNs, the emergence of the TinyML paradigm
for EFMs faces the dual challenge of reducing FMs to a manageable
size and enabling their deployment on tiny devices.

1M. Scherer, L. Macan, V. Jung, P. Wiese, A. Burrello, F. Conti, and L. Benini,
“Deeploy: Enabling Energy-Efficient Deployment of Small Language Models On
Heterogeneous Microcontrollers,” Mar. 2024, under Review at IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems (TCAD)

5.1. INTRODUCTION 115

A first concrete step in this direction is the recent introduction of
SLMs: FMs with tens to a few hundred million, rather than several
billion parameters [209,210]. While most currently available FMs are
focused on processing natural language at a proof-of-concept scale,
the effort towards embedded multi-modal sensor inputs with small-
scale, application-specific FMs offers a highly promising path for the
development of this novel class of models. Much like what happened
with the initial emergence of Deep Learning [211], the evolution of
advanced TinyML applications based on EFMs is currently prevented
by the lack of suitable targets for deployment of these models and,
even more, of deployment frameworks that enable utilizing existing
specialized hardware to its full capabilities.

Deploying tiny EFMs requires overcoming several challenges specific
to the TinyML domain. Large-scale AI inference systems typically
employ heterogeneous computer architectures composed by a con-
ventional host (e.g., an x86 processor) and a very large throughput-
oriented accelerator (e.g., H100 [212], TPU [2]), which is fully ex-
ploited only at large batch sizes. Conversely, TinyML is used for
latency-sensitive applications focusing on real-time inference with-
out batching. As a consequence, TinyML AI inference typically em-
ploys much more specialized accelerator architectures [25, 30], lead-
ing to more complex mapping and optimization challenges for DNN
deployment. Furthermore, TinyML’s strict constraints on energy ef-
ficiency and microcontroller-class computer architecture typically re-
quire platform-specific optimization, including memory-aware tiling,
static memory allocation, and latency-hiding Direct Memory Access
(DMA) scheduling, which require advanced compiler support to scale
to complex DNNs like FMs. While several compilers have limited
support for user-defined kernels [213, 214], configuring and extend-
ing them requires expert knowledge, and their top-down compilation
approach often clashes with loosely coupled accelerators. Moreover,
mainstream compilers do not address the strict memory constraints
in extreme-edge devices.

In this chapter, we aim to remove the first barrier towards developing
EFM suited for deployment on TinyML platforms: the lack of deploy-
ment frameworks that enable their efficient execution. We demon-
strate, to the best of our knowledge, the first end-to-end tool flow to

116 CHAPTER 5. DEEPLOY

deploy EFMs on heterogeneous microcontroller-class systems. Specif-
ically, we demonstrate the end-to-end deployment of a TinyStories-
class [209] network on Siracusa, an advanced microcontroller in TSMC
16 nm technology featuring embedded non-volatile memory (MRAM)
and two heterogeneous compute engines, namely, an octa-core RV32
compute cluster with instruction extensions for ML and a multi-mode
CNN NPU, N-Eureka [30]. We present the tooling and algorithms
integrated within our deployment framework, Deeploy.

The contributions of this chapter are as follows:

• We describe Deeploy, a customizable, domain-specific compiler
designed for generating bare metal code fitting the memory
constraints of extreme edge devices. Deeploy supports all
the key computational primitives needed for the execution of
Transformer-based EFMs on heterogeneous extreme edge SoCs
through its bottom-up compilation approach, which allows
applying advanced code optimization on expert-optimized
kernel templates. We further introduce a novel algorithm for
solving the tiling and static memory allocation problems for
multi-level software-managed caches and its integration into
Deeploy.

• We benchmark common Transformer encoder layer configura-
tions, demonstrating that code generated by Deeploy maximizes
engine utilization in heterogeneous, multi-accelerator SoCs. We
achieve data marshaling overheads of just 9 % for large work-
loads with high arithmetic intensity executing on the cluster
cores and NPU collaboratively thanks to efficient data move-
ment acceleration and low-overhead offloading mechanisms.

• As a concrete large-scale end-to-end use-case of Deeploy and its
adaptability to heterogeneous hardware platforms, we demon-
strate for the first time the deployment of a TinyStories-class
SLM on Siracusa, a state-of-the-art heterogeneous MCU.
While using on-chip memory only, we achieve a throughput
of 340 Token/s at an energy cost of 490 µJ for autoregressive
inference. We show that using the flexible deployment flow
enabled by Deeploy for the same SLM allows us to implement
multi-layer KV caching using on-chip memory only, improving

5.2. RELATED WORK 117

token throughput by 26× compared to inference without
caches.

The rest of this chapter is organized as follows: in Section 5.2, previous
work in quantized neural networks, small language models, and neural
network deployment for extreme edge devices is introduced and dis-
cussed. Section 5.3 introduces Deeploy and discusses its deployment
flow for Transformers. Section 5.4 discusses the SLM architecture
used in this Chapter and the approach to mapping it on Siracusa.
In Section 5.5, we present the Siracusa MCU platform. Section 5.6
presents and discusses the end-to-end deployment results, comparing
them to the state-of-the-art. Finally, Section 5.7 concludes this chap-
ter, summarizing the results and contributions.

5.2 Related Work

This Section gives an overview of the state-of-the-art on EFMs, focus-
ing on developments towards improvements in energy efficiency and
model size and tools to deploy DNNs on extreme edge devices.

5.2.1 Small Foundation Models

Recently, the development of decoder-only Large Language Models
(LLMs) such as Llama [203], and Mixtral [215], and their associated
ML pipelines led to a new model type: the Foundation Model (FM).

FMs are pre-trained LLMs, which can be fine-tuned for downstream
tasks at a fraction of the cost of pre-training, making them partic-
ularly relevant for domain specialization. These models have shown
remarkable success in generating coherent and contextually relevant
outputs, much above the capabilities of more traditional architecture
like RNNs. However, LLMs often contain several billion parameters,
requiring GiB of storage space, making them incompatible with ex-
treme edge inference.

Addressing this gap, the emerging field of SLMs has gained significant
traction in the last year. The aim of SLMs is to compact LLMs
down to tens to hundreds of MiB [209, 210], mirroring the evolution
of compression of CNNs [15] over the past decade.

118 CHAPTER 5. DEEPLOY

This paradigm shift towards compact FMs is particularly interesting
for TinyML applications. Incorporating smaller FMs, like SLMs, into
embedded devices may enable a new wave of intelligent, responsive,
and autonomous devices built on EFMs. Such systems could bridge
the gap between human-understandable inputs such as text and per-
forming high-level planning and low-level control tasks [216] and make
such advanced capabilities available at the edge, embodied in robots,
appliances, and wearable devices.

In this Chapter, we contribute to the growing field of SLM and EFM
research and aim to lay the foundation for truly embedded SLMs by
providing a foundational deployment flow that supports a wide range
of FMs, from autoregressive decoder-only ones to encoder-only ones.

5.2.2 Quantized Transformer Models

Neural network quantization has been an active field of research for
the past decade, as the promises of reduced parameter storage and
higher compute efficiency on reduced-precision operands drive the de-
velopment of increasingly aggressive quantization methods [13,15].

Improvements in energy efficiency are significant when switching from
floating-point point computation to integer arithmetic [17, 128] due
to the reduced hardware complexity required to implement the fun-
damental operations using integer arithmetic. One commonly used
approach to quantize DNNs is QAT, where the model is trained to
overcome quantization effects that occur when using lower-precision
values for weights and activations [16, 18]. However, QAT often re-
quires computationally expensive retraining of the model and access to
representative datasets, which are not readily available. PTQ methods
can be applied to quantize models without retraining while conserving
full-precision accuracy [217, 218]. Especially in the domain of FMs,
PTQ has been successfully applied [219, 220] to reduce the computa-
tional cost of quantization. In this Chapter, we apply state-of-the-art
PTQ on a publicly available pretrained SLM to achieve quantized
inference without loss of accuracy, a prerequisite for energy-efficient
inference on extreme edge devices.

5.2. RELATED WORK 119

5.2.3 Neural Network Deployment for Extreme
Edge Devices

Building on the trends of model quantization and compression, as well
as research into more computationally efficient DNNs [221], DNN in-
ference on mobile and embedded devices has become a flourishing
field of research [25, 30, 222]. While model deployment on mobile
devices like smartphones follows similar approaches to server-scale
deployment, relying on the ample compute- and memory resources,
hardware-managed caches, and operating systems to carry out task
scheduling available to this class of devices, deeply embedded devices
face much more severe constraints in deployment. This is especially
true for the new generation of MCU-class devices focusing on AI appli-
cations. In contrast to their predecessors, these MCUs feature multi-
core compute clusters, DNN accelerators, and on-chip memory of up
to 10 MiB, split into multiple software-managed memory hierarchy
levels [25,28,30].

To optimally leverage the compute capabilities of such complex sys-
tems, network deployment must simultaneously optimize the execu-
tion schedule and tiling of operators and orchestrate overlapping mem-
ory transfers using DMAs to achieve low data marshaling overheads
and high compute utilization. While modern top-down compilers like
MLIR and TVM [213,214] allow integration of most common ISAs and
accelerator APIs, their focus is not on meeting the stringent memory
constraints of this class of TinyML devices. Prior work like Dory [3],
CoSa [31], and others [223, 224] have addressed these challenges for
CNNs by focusing on operator tiling to fit the target’s memory con-
straints. However, these approaches assume a single-cluster memory
hierarchy, with undivided memory at each level, and a simple life-
time model for network tensors, which are fundamentally stateless
across inference rounds. These simplifying assumptions do not hold
for complex heterogeneous multi-accelerator hardware and advanced
SLM networks [225,226].

Moving beyond these prior works, we propose a novel constraint pro-
gramming algorithm that enables co-optimizing tiling and memory
allocation, which overcomes the limitations of previous approaches by

120 CHAPTER 5. DEEPLOY

supporting data flows with complex lifetimes (e.g. KV caching) as
required by EFMs.

5.3 Deeploy

In this Section, we provide an overview of the Deeploy compilation
flow. In contrast to most state-of-the-art compilers for DNNs, which
lower DNN representations top-down into predefined primitives that
need to be implemented by each backend [8,213,214], Deeploy employs
a bottom-up compilation approach, where the compiler implements
networks by composing user-provided C kernels, extending them with
code generation passes to implement tiling and memory allocation.
This bottom-up approach to compilation provides three key advan-
tages: first, it supports reusing hand-optimized kernel libraries com-
monly available for most ISAs and accelerators. Second, it can be
easily extended to support highly customized non-standard compute
platforms, including heterogeneous SoCs featuring multiple accelera-
tors for which a low-level compiler backend may not exist. Third, it
allows easy integration of novel operators found in emerging Trans-
former architectures without invasive modifications to the deployment
flow.

Deeploy is organized in three building blocks; the Frontend validates
and transforms the graph representation into a representation that
suits the platform and assigns kernel templates to each operator. The
Midend performs all tiling and static memory allocation computa-
tions, guaranteeing that the computed program schedule may execute
without unscheduled runtime memory spills. Finally, the Backend
uses the optimized graph representation generated in the Frontend ,
and the generated tiling schedule and memory allocation map gen-
erated in the Midend to create executable code through a series of
code generation passes. All deployment targets share the same execu-
tion flow, and Deeploy uses a configurable platform abstraction, the
Deployment Platform, which allows it to steer operators’ mapping,
optimization, and lowering according to the platform’s configuration.
An overview of the Deeploy execution flow is shown in Figure 5.1.

5.3. DEEPLOY 121

D
e
p

lo
y
m

e
n

t
P

la
tf

o
rm

K
er

n
el

S
el

ec
ti
on

Ac
ce

le
ra

to
r

As
si
gn

m
en

t

O
p
e
ra

to
r

In
se

rt
io

n

O
pe

ra
to

r

Fu
si

on

T
il
e
 C

o
n

s
tr

a
in

t
F
lo

w

S
ta

ti
c
 M

e
m

o
ry

 A
ll
o
c
a
ti

o
n

L
o
w

 L
e
v
e
l
C

 C
o
d

e
 G

e
n

e
ra

ti
o
n

In
p
u
t

Ti
le

W
e
ig

h
t

Ti
le

O
u
tp

u
t

Ti
le

In
p

u
t_

L
1
 =

 L
1
A

re
n

a
P

tr
 +

 5
0
0
0
;

W
e
ig

h
t_

L
1
 =

 L
1
A

re
n

a
P

tr
 +

 8
0
0
0
;

O
u

tp
u

t_
L
1
 =

 L
1
A

re
n

a
P

tr
;

O
p

e
ra

to
r(

In
p

u
t_

L
1
,

W
e
ig

h
t_

L
1
,

O
u

tp
u

t_
L
1
);

D
M

A
_T

ra
n
sf

e
r(

In
p
u
t_

L1
,
In

p
u
t_

L2
);

D
M

A
_T

ra
n
sf

e
r(

W
e
ig

h
t_

L1
,
W

e
ig

h
t_

L2
);

D
M

A
_T

ra
n
sf

e
r(

O
u
tp

u
t_

L2
,
O

u
tp

u
t_

L1
);

......

Li
fe

ti
m

e

Memory

1
2

3

5
4

X

L
o
w

e
ri

n
g

 P
a
s
s
e
s

T
il
e
 C

o
n

s
tr

a
in

ts

K
e
rn

e
l
Te

m
p

la
te

s
C

o
d

e
 G

e
n

e
ra

ti
o
n

 P
a
s
s
e
s

M
e
m

o
ry

 M
o
d

e
l

Fr
o
n
te
n
d

M
id
e
n
d

B
a
c
k
e
n
d

F
ig

u
re

5.
1:

O
ve

rv
ie

w
of

th
e

D
ee

p
lo

y
E

x
ec

u
ti

on
F

lo
w

.
S

te
p

s
1○

a
n

d
st

ep
s

2○
a
re

p
a
rt

o
f

th
e
F
ro
n
te
n
d

.
In

th
e

fi
rs

t
st

ep
,

th
e

g
ra

p
h

is
m

o
d

ifi
ed

b
y

fu
si

n
g

a
n

d
in

se
rt

in
g

p
la

tf
o
rm

-s
p

ec
ifi

c
o
p

er
a
to

rs
,

fo
r

ex
a
m

p
le

,
tr

an
sp

o
si

ti
on

o
p

er
at

o
rs

,
to

m
at

ch
d

a
ta

la
yo

u
t

re
q
u

ir
em

en
ts

.
In

th
e

se
co

n
d

st
ep

,
d

a
ta

ty
p

es
fo

r
ev

er
y

te
n

so
r

ar
e

in
fe

rr
ed

,
th

e
ac

ce
le

ra
to

r
ta

rg
et

is
ch

os
en

,
an

d
k
er

n
el

te
m

p
la

te
s

a
re

se
le

ct
ed

.
T

h
e

fi
rs

t
st

ep
in

th
e
M
id
en

d
,

st
ep

3○
,

is
th

e
T

il
e

C
on

st
ra

in
t

F
lo

w
,

w
h

ic
h

co
m

p
u

te
s

ge
o
m

et
ri

ca
l

co
n

st
ra

in
ts

fo
r

th
e

ti
le

si
ze

s
o
f

ea
ch

te
n

so
r,

a
d

d
in

g
th

em
to

a
C

P
.

T
h

e
re

su
lt

in
g

te
n

so
r

si
ze

va
ri

a
b

le
s

a
re

tr
a
n

sl
a
te

d
in

to
a

2
D

b
in

p
a
ck

in
g

p
ro

b
le

m
in

st
ep

4○
.

T
h

e
so

lu
ti

on
of

th
e

co
-c

on
st

ra
in

ed
ti

li
n

g
a
n

d
st

a
ti

c
m

em
o
ry

a
ll

o
ca

ti
o
n

p
ro

b
le

m
is

co
m

p
u

te
d

b
y

th
e

O
R

T
o
o
ls

C
P

-S
A

T
so

lv
er

a
n

d
fi

n
a
ll

y
p

ro
ce

ss
ed

in
st

ep
5○

in
th

e
B
a
ck
en

d
.

S
te

p
5○

ge
n

er
at

es
p

la
tf

o
rm

-s
p

ec
ifi

c
C

C
o
d

e
ex

p
lo

it
in

g
D

M
A

tr
a
n

sf
er

s.
E

a
ch

st
ep

o
f

th
e

ex
ec

u
ti

o
n

fl
ow

is
h

ig
h

ly
co

n
fi

g
u

ra
b

le
th

ro
u

g
h

th
e
D
ep
lo
ym

en
t
P
la
tf
o
rm

ob
je

ct
.

122 CHAPTER 5. DEEPLOY

5.3.1 Data Structures

Deeploy distinguishes between three types of buffers: Variable
Buffers, Transient Buffers, and Constant Buffers. Variable
Buffers represent tensors that contain data that is not constant
at compile-time, i.e., network inputs, outputs, and intermediate
activations. Constant Buffers represent compile-time constant data
used in inference, i.e., network weights and other network parameters.
Lastly, Transient Buffers represent scratchpad memory locations for
kernel execution, e.g., im2col buffers for convolution kernels [20,104],
or reorder buffers for efficient transposition kernels. Typically, the
amount of space used in Transient Buffers depends on the operator’s
parametrization, distinguishing them from Variable Buffers. In
contrast to simpler DNN topologies, EFMs employ data structures
that require advanced allocation strategies, such as the KV caches
of autoregressive SLMs, as they have more complex buffer lifetime
requirements than intermediate tensors found in CNNs. Addressing
these constraints requires a more sophisticated management of the
buffers’ lifetime and memory allocation than in other deployment
tools targeting extreme edge devices [3, 31].

The distinction between global and local section buffers is relevant
for code generation; global objects are allocated as global C variables,
while local objects are only accessible in the inference code. As such,
global variables are alive throughout an inference execution, while lo-
cal variables are allocated and deallocated as the network’s execution
schedule requires.

5.3.2 Frontend

Deeploy’s Frontend is designed around ingesting quantized Open Neu-
ral Network Exchange (ONNX) graphs produced by DNN and Trans-
former quantization tools like Quantlib [227]. Deeploy implements
a configurable lowering pass system based on pattern matching of
ONNX graphs to enable efficient and customizable graph-lowering
strategies. Each lowering pass consists of a user-defined replacement
function and a source pattern, which describes the sub-graph that
should be replaced. Using the replacement function, each lowering
pass uses the matched sub-graph to generate a target pattern, which

5.3. DEEPLOY 123

replaces the source pattern. Using this system, the first processing
step in the Frontend is transforming the input graph into a custom,
platform-specific ONNX dialect using lowering passes provided by the
Deployment Platform. The user further defines operator mappings be-
tween custom operators and the engines available in the target plat-
form to control the code generation on the level of individual opera-
tors.

Common TinyML kernel libraries like CMSIS-NN and PULP-NN [20,
104] offer kernels for fused linear operators and activations, which can
be lowered into by matching pairs of linear operators and quantiza-
tion operators. Besides operator fusion optimization passes, Deeploy
also supports the minimization and insertion of data marshaling op-
erators like transpositions to match the data layout requirements of
kernel libraries. An example of such an operator insertion pass is
adding transpositions operators to optimize the data layout of the B
matrix for General Matrix Multiplication (GEMM) kernels of type
Y = αAB + βC for better data access locality.

The second step after transforming the input graph into the platform-
specific dialect in the Frontend is parsing, during which every operator
in the network is analyzed to construct an initial context of buffers
used in the network’s execution, and Type Inference & Kernel Se-
lection where every buffer in the context is assigned a type. The
types used in Deeploy correspond to standard C types (e.g., int8 t,
float32) or custom data types, depending on the kernels used by the
Deployment Platform. To guarantee a valid type assignment, Deeploy
propagates type information top-to-bottom. The user must only pro-
vide the input types for every graph’s input tensor to achieve this;
then, using this information, Deeploy matches the input types of each
operator with one of the kernel signatures provided by the Deployment
Platform.

The final result of the Frontend is an assignment of low-level kernel
templates to every operator in the lowered platform-specific ONNX,
which satisfies the type constraints imposed by the network’s opera-
tors.

124 CHAPTER 5. DEEPLOY

1
0

0
0

0
0

0
1

1
1

0
0

1
0

0
0

1
0

1
0

0
0

0
1

0
0

0
0

0
1

0
0

0
1

1
0

C
1

C
2

C
3

C
4

C
5

C
6

A
C

0
0

0
1

0
1

0
0

0
1

1
0

0
0

0
1

0
0

1
1

1
0

0
0

1
0

0
0

0
1

0
0

1
0

1
0

C
4

C
3

C
1

C
2

C
5

C
6

A
'

C
'

C
o
o
rd

in
a
te

 Tra
n

s
fo

rm
 (C

T
)

Adjacency

M
atrix

Te
n

s
o
r

G
ra

p
h

Memory C
o
n

s
tra

in
t P

ro
g

ra
m

 S
o
lu

tio
nC
4

C
P

 S
o
lv

e
r

w
ith

 C
T

C
P

 S
o
lv

e
r

w
ith

o
u

t C
T

1
2

3
4

5

Memory

Life
tim

e

C
4

M
e
m

o
ry

 L
o
a
d

M
e
m

o
ry

 L
o
a
d

C
1

C
2

C
3

C
5

C
4

C
6

1

23

4

5

F
igu

re
5
.2

:
E

x
am

p
le

of
th

e
co-op

tim
ization

of
tilin

g
an

d
static

m
em

o
ry

a
llo

ca
tio

n
a
lg

o
rith

m
fo

r
o
n

e
m

em
ory

level
in

D
eep

loy.
F

irst,
th

e
lifetim

e
of

each
ten

sor
in

th
e

grap
h

is
ca

lcu
la

ted
u

n
d

er
th

e
ex

ecu
tion

sch
ed

u
le

sh
ow

n
on

th
e

left.
N

ex
t,

th
e

m
em

ory
sch

ed
u

ler
con

stru
cts

a
n

a
d

ja
cen

cy
m

a
trix

o
f

th
e

ten
sor

g
rap

h
an

d
ex

tracts
th

e
cost

vector
from

th
e

tile
con

strain
t

fl
ow

sh
ow

n
in

th
e

m
id

d
le.

F
in

a
lly,

D
eep

loy
a
p

p
lies

a
co

ord
in

ate
tran

sform
w

ith
in

th
e

C
P

.
O

n
th

e
righ

t-h
an

d
sid

e,
th

e
2
D

b
in

p
a
ck

in
g

so
lu

tio
n

is
p

resen
ted

w
ith

th
e

n
aive

solu
tion

on
top

,
an

d
th

e
solu

tion
fou

n
d

b
y

D
eep

loy
is

sh
ow

n
b

elow
.

5.3. DEEPLOY 125

5.3.3 Midend

The second stage of Deeploy’s execution flow, the Midend , receives
the platform-specific ONNX graph and the kernel assignment for each
operator from the Frontend . The Midend ’s purpose is to perform all
optimization operations required to generate low-level optimized C
code for the target platform in the Backend . The Midend is divided
into two optimization steps: Memory Level Annotation and Tiling &
Memory Scheduling . To model the CP used to compute the tiling and
static memory allocation solution, Deeploy uses Google’s ORTools.

Memory Level Annotation

The memory level annotation step annotates every buffer in the com-
pilation context with a memory hierarchy level. The motivation for
defining the storage location of every tensor is to model code gen-
eration constraints closely to the hardware; most embedded systems
designed for TinyML applications use multiple memory or cache lev-
els [25,30] to optimize the trade-off between storage density and mem-
ory access latency. While Deeploy supports the tiling of buffers, di-
rectly assigning buffers’ memory levels to lower cache levels can lead to
performance improvements. When targetting accelerators that would
otherwise be limited by the available bandwidth towards higher-level
caches, controlling memory allocation has a significant performance
impact [30].

Tiling

The second processing step in the Midend is Tiling & Memory
Scheduling . For every kernel template chosen in the Frontend , the
target platform must specify a Tile Constraint (TC). The TC models
the geometric and platform-specific constraints for tiling an operator.
For a tiling solution to be correct, all geometric constraints must
hold. For example, the spatial dimensions of a softmax activation’s
output tile must be the same as its input tile’s dimensions. As
such, geometric constraints do not depend on the implementation
of an operator. While it is possible to tile large tensor operators
down to single instructions when targeting processor cores, the same
does not hold for accelerators. Specifying TCs and platform-specific

126 CHAPTER 5. DEEPLOY

constraints on a per-kernel basis is especially important for handling
the tiling problem for loosely-coupled accelerators since they
typically only support specific dimensions to be tiled, owing to their
specialized datapaths [25,30].

Similarly to the Type Inference & Kernel Selection flow, the Tile Con-
straint Flow (TCF) is applied top-to-bottom through the execution
schedule of the network, adding the geometric and platform-specific
tile constraints of every operator to the CP. Furthermore, the TCF
adds one symbolic variable per dimension per tensor in the network
to the CP and a symbolic variable for every tensor, representing its
size as the product of all dimension variables. Using this formulation,
the solution of the CP represents the size of the largest tile.

Memory Scheduling

After the geometrical constraints of every mapped kernel template in
the network are collected and added to the CP, Deeploy’s memory
scheduler calculates the lifetime of every tensor in the network over
the user-provided execution schedule of the ONNX graph as shown in
Figure 5.2. As previously mentioned, this is an essential step for au-
toregressive Transformers that must accommodate short-lived tensors
(e.g., intermediate activations, residuals) and long-lived buffers (such
as KV caches).

Deeploy’s memory scheduler computes a tiling path using the De-
ployment Platform’s memory hierarchy model to assign a sequence of
memory transfers through the different memory levels. Using the cal-
culated lifetimes and the tensor’s size variable computed before, the
memory scheduler models the problem of computing a static mem-
ory allocation schedule as a 2D bin packing problem [225,228], where
the horizontal axis represents lifetime, and the vertical axis represents
memory address space.

Similar to other state-of-the-art algorithms [225], Deeploy’s schedul-
ing CP works with Tetris scheduling introduced in TetriSched [229],
where memory buffers are scheduled one after another, adding to the
maximum load of each of their lifetime’s bins. To solve the tiling and
allocation problem in a single shot, the memory allocation of each

5.3. DEEPLOY 127

buffer is coupled to the tiling solution, which requires expressing the
order in which they are scheduled within the CP as well.

The first step to modeling the memory allocation problem is to pick
a random schedule of memory buffers and compute the adjacency
matrix A of the tensor graph. We collect the memory size of each
buffer, represented as an integer variable of the CP, in a cost vector
C. For any permutation matrix P , A′ = P × A × PT is a valid
adjacency matrix with associated cost vector C ′ = P × C. A valid
N ×N permutation matrix can be expressed as:

pi,j ∈ [0, 1] ∀i, j ∈ [0, N − 1]

N−1∑
i=0

pi,j = 1 ∀j ∈ [0, N − 1]

N−1∑
i=0

pj,i = 1 ∀j ∈ [0, N − 1]

Next, the total memory load is computed iteratively using A′ &C ′:
since we use Tetris scheduling, we add each buffer’s memory size to
the size of the last scheduled buffer whose lifetime overlaps. We use a
vector of intermediate variables containing one entry for each buffer,
H, representing the memory load in the lifetime region of each buffer.
The vector H is computed as follows:

H0 = 0

Hj = maxi=0...j−1 (A′[j, i] ·Hi) + C ′
j

The total worst-case memory load for all execution steps is then com-
puted as memory load = maxi=0...N (Hi).

In contrast to other static memory schedule algorithms, which fo-
cus on calculating an optimal solution for memory blocks of fixed
size, our algorithm combines the constraints on tile sizes and memory
layout calculation into a single CP; this allows Deeploy to simultane-
ously optimize static memory allocation as well as tile sizing to control
memory use during the entire inference process, which is critical to
matching the memory constraints of extreme-edge SoCs with the com-
plex buffer lifetime requirements of Transformers. An overview of the

128 CHAPTER 5. DEEPLOY

co-constrained tiling and static memory allocation algorithm is shown
in Figure 5.2.

5.3.4 Backend

Every kernel template picked in the Frontend is assigned a list of code
generation passes by the Deployment Platform. Each code generation
pass operates on a code segment, starting from the original kernel tem-
plate, and may add to or modify its code segment. Besides enabling
integration of custom passes, Deeploy offers standard code generation
passes required for generating correct code, e.g., memory allocation
and deallocation generation, which inserts calls to heap-based alloca-
tors or sets pointers to predefined memory locations calculated during
Tiling & Memory Scheduling .

An essential set of code generation passes is centered around gener-
ating closures for code segments. In the context of Deeploy, closure
generation consists of three parts: the closure function itself, which
encapsulates a code segment; the closure environment, which contains
every free variable used within the code segment and must be passed
to the closure function; and the closure invocation, which is either an
offloading function or a call to the closure function.

Deeploy implements closures as standard C functions by generating a
function call around the target code segment and passing the closure
environment as a struct pointer. Deeploy captures the relevant free
variable expressions by analyzing the Abstract Syntax Tree (AST)
of the underlying code segment using the Mako templating library
[230]; since the function signature of the kernel template is known to
Deeploy, it can extract arguments used in the kernel template that
refer to local buffers, and pass them to the closure using an argument
struct. During code generation, the closure generation pass hoists
the closure function definition into the global context, inserts code
for constructing the argument struct and returns the function call
to the hoisted closure as the new code segment for subsequent code
generation passes.

An important application for Deeploy’s closures is to facilitate op-
erator offloading, which is required for programming processor-based

5.3. DEEPLOY 129

Global Definitions

Kernel Signature

Kernel Replacement

Kernel Template

Cluster Offloading

Figure 5.3: Bottom-up offloading closure generation for a GEMV ker-
nel. All arguments that refer to non-global Variable Buffers or Con-
stant Buffers are captured and used to generate a closure struct type-
def and a closure function that unpacks the argument struct and calls
the original kernel. Finally, the kernel template is replaced with a
function pi cl team fork, which takes the newly generated closure as
an argument and offloads its execution to all eight cluster cores.

130 CHAPTER 5. DEEPLOY

R
M

S
 N

o
rm

S
e
lf-A

tte
n

tio
n

R
M

S
 N

o
rm

F
e
e
d

-F
o
rw

a
rd8

x

111

22

3

QKV

Decoder Layer

L
in

e
a
r

N
P

U
 / C

lu
s
te

r O
p

e
ra

to
rs

G
E
M

M
A

d
d

C
lu

s
te

r-o
n

ly
 O

p
e
ra

to
rs

S
o
ftm

a
x

H
a
rd

s
w

is
h

N
o
n
-lin

e
a
r O

p
e
ra

to
rs

C
o
n

c
a
t

D
a
ta

 M
a
rs

h
a
llin

g

F
igu

re
5
.4

:
O

verv
iew

of
th

e
L

lam
a

m
o
d

el
d

ep
loyed

in
th

is
ch

ap
ter.

T
h

e
eig

h
t

d
eco

d
er

layers
o
f

th
e

m
o
d

el
are

sh
ow

n
on

th
e

left
an

d
con

sist
of

an
R
M
S
N
o
rm

-
S
elf-A

tten
tio

n
-
R
M
S
N
o
rm

-
F
eed

-F
o
rw

a
rd

layer
sta

ck
.

In
p

u
t

1 ○
in

th
e

self-atten
tion

in
set

corresp
on

d
s

to
th

e
to

k
en

in
p

u
t.

In
p

u
t

2 ○
co

rresp
o
n

d
s

to
th

e
ro

tation
al

em
b

ed
d

in
g

u
sed

in
L

lam
a

m
o
d

els.
In

p
u

t
3 ○

are
th

e
K
V

ca
ch

e
in

p
u

ts
u

sed
d

u
rin

g
a
u

toregressive
in

feren
ce.

N
otab

ly,
d

u
rin

g
au

toregressive
in

feren
ce,

th
e

n
ew

row
o
f

th
e
K

a
n

d
V

m
a
trices

com
p

u
ted

on
th

e
in

p
u

t
token

are
ap

p
en

d
ed

to
th

e
K
V

cach
e.

5.4. TINYSTORIES LLAMA MODEL 131

accelerators like compute clusters or loosely-coupled, memory-mapped
accelerators like NPUs. An example of closure generation for operator
offloading to the octa-core cluster is shown in Figure 5.3.

Tiling code generation is implemented as a pass as well. Deeploy
supports DMA engines and uses them in tiling code generation to
move tiles between different memory hierarchy levels according to the
tiling solution computed in Tiling & Memory Scheduling . To hide the
latency of DMA transfers, Deeploy can configure tiling for operators
to use double-buffering, which constrains the tiling solution to reserve
twice the required space for every input- and output tile. During code
generation, Deeploy schedules data fetching and writeback to occur
in parallel with kernel execution to minimize latency.

5.4 TinyStories Llama Model

As a concrete example of our deployment flow for next-generation
EFMs, we quantize and deploy an SLM on a heterogeneous MCU,
Siracusa, introduced in Section 5.5. We chose a Llama2 model pre-
trained on the tinyStories dataset [209] from HuggingFace2, with a
hidden size dm = 64, h = 16 parallel attention heads, N = 8 layers
and an intermediate size dff = 256 for the feed-forward layer. The
model architecture is shown in Figure 5.4. Note that, however, any
SLM fitting the memory constraints of the target platform can be
deployed with the same flow.

Like all other decoder-based language models, the Llama model we use
in this Chapter has two fundamental inference modes, which we refer
to as autoregressive inference mode and parallel inference mode, and
generates its response in two distinct phases, the prompting phase and
generation phase; the prompting phase ingests the initial sequence of
user input tokens, whereas the generation phase generates the model’s
output tokens autoregressively.

2https://huggingface.co/Maykeye/TinyLLama-v0

132 CHAPTER 5. DEEPLOY

5.4.1 Prompting Phase

Inferences follow a two-pass regime: First, the text input is translated
into a sequence of tokens, typically referred to as the prompt. The
prompt can have an arbitrary sequence length Sp, up to the size of
the context window of the model.

In the first pass of the model, the prompt is processed to produce
the first output token. Since all tokens of the prompt are available ab
initio, the decoder can process them in a parallel single-shot fashion by
applying causal-masking of the attention matrix [108]. This first pass
generates the first token output and the K and V matrices, which may
be reused in the subsequent generation phase. This process parallels
the function of encoder layers used in the first Transformer models
[108].

5.4.2 Generation Phase

In the generation phase of the inference process, output tokens are
generated one at a time using the previous token outputs as the
model’s input. While every step of the generation phase may use
the same parallel inference mode described in the previous Section,
doing so would require recomputing all previous tokens’ K and V
submatrices. Therefore, the K and V matrices of previous inference
steps are typically cached in memory to avoid the quadratic cost of
recomputing them [108].

As the parallel inference mode and autoregressive inference mode re-
quire different trade-offs in memory allocation for KV caching and
storage of intermediate results we deploy them using separate ONNX
models which reflect these trade-offs: For the parallel inference mode
we export an ONNX model with a single input and output for the
token sequence and outputs for the computed KV submatrices which
are stored for the next generation phase. For the autoregressive infer-
ence mode, we use an ONNX model that additionally requires cached
KV submatrices. While computing outputs using KV caches is sig-
nificantly more efficient regarding the absolute number of operations,
loading and storing the KV caches induces significant data movement,

5.5. DEPLOYMENT PLATFORM 133

and the smaller operator dimensions make the generation phase much
more challenging to accelerate.

5.4.3 Quantization Setup

To quantize the SLM for deployment on extreme edge devices with
integer-focused SIMD processors and DNN accelerators, we used
QuantLib [227] with the Trained Quantization Thresholds (TQT)
algorithm for PTQ [18]. QuantLib inserts requantization layers after
operators which results in higher bitwidth outputs. Furthermore, it
harmonizes scaling factors for operators like addition and concate-
nation and replaces various operators with their quantization-aware
equivalents. Following this, we use a single token to execute PTQ
over three inference epochs. Initially, we collect statistics to initialize
the clipping bound for all activations and weights. At the end of
the second epoch, we quantize all linear operations, and in the final
epoch, we quantize non-linear operations, including Softmax and
RMSNorm. Subsequently, the model is projected to the integer
domain and exported as an ONNX graph. To leverage the advanced
hardware support for SIMD operations in the PULP Cluster and
Siracusa’s NPU, N-Eureka, we chose to quantize all activations and
weights used in matrix multiplication to 8 bit integer precision. We
use I-BERT’s approximation for Softmax [128] and the Hardswish
approximation for Swish activations [221]. Moreover, we perform
all divisions in RMSNorm [231] layers with 32 bit numerators and
denominators to preserve accuracy.

5.5 Deployment Platform

This Section introduces the hardware platform used in this Chapter
as a deployment target to deploy the SLM introduced in Section 5.4
and goes over the NPU-specific Deployment Platform implementation
in Deeploy.

134 CHAPTER 5. DEEPLOY

5.5.1 Siracusa

Siracusa [30], is a low-power, heterogeneous RISC-V MCU imple-
mented in TSMC 16 nm technology, which is the multi-accelerator
SoC targetted in this Chapter. Siracusa is designed for efficient AI
inference, which can leverage its dedicated NPU, N-Eureka, and gen-
eralistic DSP tasks, which can exploit both dedicated XpulpNN ISA
extensions [20] enabling SIMD processing of low-precision integers,
as well as an accelerator cluster of eight RISC-V cores which enable
Single Program Multiple Data (SPMD) processing.

To enable single-latency access from cluster cores to the L1 Tightly-
coupled Data Memory (TCDM), all cores and the 16 L1 memory
banks are connected through a TCDM interconnect using one 32-bit
port each, granting a total memory bandwidth of 256 bit/cycle to the
compute cluster. The cluster’s TCDM memory banks are also accessi-
ble from the N-Eureka accelerator using 9-bank wide, 288 bit accesses.
To manage contention on accesses to the single-ported memory banks,
Siracusa integrates a lightweight, programmable access arbiter, which
allows the set the maximum number of stall cycles for the accelerator;
if accesses from the core-side interconnect cause accelerator access to
stall for the programmed number of cycles, the arbiter will stall core
accesses and grant it to N-Eureka.

The N-Eureka accelerator uses a mixed-weight-precision bit-serial dat-
apath, which is optimized for executing dense 3×3, depthwise 3×3,
and dense 1×1 convolution operations with 8 bit activations and 2 bit
to 8 bit convolution weights [30]. To support the bit-serial nature of
the datapath, N-Eureka requires its weights to be stored in a non-
standard bit-interleaved data format, which requires offline transpo-
sition, padding, and bit shuffling of CNN weight tensors. N-Eureka
is designed as an output-stationary accelerator, opting to cache small
input tiles and streaming weights. To execute operations larger than
its internal buffers, it integrates a hardware tiler with a programmable
number of tiles and strides between dimensions and fixed tile sizes that
match the buffer sizes. To increase the available memory bandwidth
for N-Eureka’s weights and minimize off-chip access to fetch weights,
the cluster integrates a Neural Memory Subsystem (NMS), which
contains two dedicated 4 MiB memory subsystems, implemented in

5.5. DEPLOYMENT PLATFORM 135

SRAM and Magnetoresistive Random Access Memory (MRAM) tech-
nology respectively, which are designed to hold weights for the N-
Eureka accelerator and are attached through a dedicated 256 bit/cycle
weight data port.

The compute cluster and N-Eureka are located in a shared clock do-
main, the heterogeneous cluster, which communicates with the rest of
the SoC, mainly consisting of a controller core, 2 MiB L2 memory, and
peripherals, through a 64 bit wide Advanced eXtensible Interface Bus
(AXI) bus, which can be used by a DMA integrated within the cluster,
to transfer data between the L1 and L2 memories autonomously.

While Siracusa is equipped with significant computing capabilities
through two dedicated accelerators and sizeable on-chip memory, de-
ploying an advanced neural network on this device is a challenging
problem. While weight storage for layers that can be executed on
N-Eureka is plentiful, all other layers’ activation, weight, and output
tensors must be tiled to fit within 256 KiB of L1 memory. Further-
more, memory transfers between L2 and L1 should be orchestrated
using the DMA to minimize stalling.

5.5.2 Deeploy Integration

We address the deployment challenges posed by Siracusa’s heterogene-
ity through an augmented Deployment Platform model. This subsec-
tion gives an overview of the additions implemented to use Deeploy for
deploying SLMs on Siracusa and, more generally, of the modifications
needed to support a generic new platform in our deployment tool.

As Deeploy’s core primitives are optimized kernels, we chose the
PULP-NN [20] kernel library, which integrates parallel kernels
as well as single-core implementations, as our target for utilizing
the octa-core cluster. The PULP-NN kernels focus on efficient
implementations of fused linear and quantization layers. We support
fused layers through lowering passes that match the supported
operator combinations and merge them in the Frontend of Deeploy.
We further added fused linear operator TCs, which add kernel-specific
constraints besides providing general geometric constraints.

136 CHAPTER 5. DEEPLOY

DMA

32 Bit Logarithmic Interconnect Branch

6
4
 B

it
 A

X
I

In
te

rc
o
n

n
e
ct

L2
2 MiB

SRAM
4 MiB

MRAM
4 MiB

I/O

DMA

R
V

32

R
V

32

R
V

32

R
V

32

R
V

32

R
V

32

R
V

32

R
V

32

MMMMMMMMMMMMMM

16 Bank Interleaved L1 256 KiB

N-EUREKA

288 bit

256 bitNeural Memory
Subsystem

Octa-Core Cluster

3
2
 B

it
 L

2
 I

n
te

rc
o
n

n
e
c
t

Accelerator-Router Branch

RV32

L
1
 A

c
c
e
s
s
 A

rb
it

e
r

NPU

Figure 5.5: Overview of the Siracusa SoC featuring its DSP-enhanced
octa-core RISC-V cluster and host controller (red), NPU (orange),
complex memory hierarchy with two levels of scratchpad memory and
a Neural Memory Subsystem (blue), two arbitrated interconnects to-
wards the L1 memory and an AXI interconnect (green), and periph-
erals such as the cluster DMA and chip-level I/O (purple).

5.5. DEPLOYMENT PLATFORM 137

We implement function offloading to both the NPU and the octa-core
compute cluster in Siracusa using the closure system, as detailed in
Section 5.3.4.

The N-Eureka accelerator provides greater compute capabilities than
the octa-core cluster for CNN operators, achieving a peak throughput
in the range of hundreds of GOp/s for pointwise and 3×3 convolu-
tions. Even though SLMs do not employ these types of operations,
we add a custom linear layer to pointwise convolution lowering pass
that converts GEMM operators with compile-time constant weight
matrices into pointwise convolutions. This method allows us to de-
ploy all linear layers in Transformer models, as shown in Figure 5.4,
on the NPU.

For this lowering pass, we consider GEMM operation of type Y =
αAB + βC, where Q are appropriately integer-quantized numbers:

A ∈ QM×N B ∈ QN×O C ∈ QM×O Y ∈ QM×O

Similarly, we define the pointwise convolution operator as Y = A ⊗
B + C, with the same dimension definition used in PyTorch:

A ∈ QH×W×Cin B ∈ QCout×1×1×Cin

C ∈ QH×W×Cout Y ∈ QH×W×Cout

We map the dimensions of the pointwise convolution to those of a
GEMM operation by setting H := 1, W := M , Cin := N , and
Cout := O. For this mapping to succeed, the C operand in the GEMM
operation must be reducible to a dimension of [1 × O], i.e., all rows
in the matrix are identical.

Lastly, we annotate all pointwise convolution weights previously trans-
formed from the GEMM operators to be allocated in the NMS, allow-
ing the accelerator to leverage its significantly larger bandwidth.

5.5.3 Deployment Setup

As explained in Section 5.4, the dual inference modes of decoder-only
models require different deployment strategies, as the autoregressive

138 CHAPTER 5. DEEPLOY

T
a
b

le
5
.1

:
C

om
p

iler
p

erform
an

ce
m

etrics
for

th
e

128th
au

toregressive
in

feren
ce

step
u

sin
g

th
e
N
P
U

w
ith

N
M
S
D
ep
lo
ym

en
t

scen
ario

w
ith

vary
in

g
n
u

m
b

ers
of

d
eco

d
er

layers
N

u
m

b
er

of
d

eco
d

er
layers

1
2

3
4

5
6

7
8

N
u

m
b

er
of

op
erators

32
64

96
128

1
6
0

1
9
2

2
2
4

2
5
6

D
eep

loy
com

p
ilation

tim
e

[s]
1

2.65
5.17

7.9
2

1
1
.7

2
1
6
.9

2
2
.2

5
2
8

T
ex

t
section

size
[k

B
]

42.4
61.8

84.4
105.7

1
2
8
.1

1
5
0
.1

1
7
1
.5

1
9
4
.8

D
ata

section
size

[k
B

]
(in

p
u

t
an

d
ou

tp
u

t
b

u
ff

ers)
10.4

18.6
26.8

35.0
4
3
.2

5
1
.4

5
9
.5

6
7
.7

D
ata

section
size

[k
B

]
(req

u
an

tization
p

ara
m

eters)
7.0

15.3
23.6

31.9
4
0
.2

4
8
.5

5
7
.8

6
6
.1

W
eigh

t
m

em
ory

section
size

[k
B

]
(p

oin
t-

w
ise

con
volu

tion
p

aram
eters)

64
128

192
256

3
2
0

3
8
4

4
4
8

5
1
2

5.6. RESULTS 139

inference mode requires significant memory for KV caching. We de-
ploy two model prototypes to accommodate this difference, one for
autoregressive inference mode and one for parallel inference mode.

The autoregressive inference mode model uses additional network in-
puts corresponding to the previous sequences’ KV caches. Other than
that, the deployment setup between both models is equal. We allocate
all graph inputs and outputs as global Variable Buffers in Siracusa’s
L2 memory, and annotate all local Variable Buffers modeling interme-
diate tensors in L2 as well. In deployment scenarios that use Siracusa’s
NMS, we allocate all linear layer weights in the NMS but use L2 for
all activations.

Unless stated differently, all network operators are executed on the
cluster and use Deeploy’s TCF to generate tiled inference code, which
orchestrates transfers of input, weight, and output tensors between
the L2 memory and the L1 memory. For operators executed on the
NPU, weights are stored in the NMS in their entirety and ingested
by the accelerator without moving them into L1 first, leveraging the
increased available bandwidth from the NMS.

5.6 Results

This section discusses the measurement results of deploying the TinyS-
tories SLM on Siracusa and benchmarking results of general Trans-
former layers. First, we present the quantized model’s accuracy re-
sults. Next, we discuss the setup used to measure performance results
on Siracusa. Finally, we present our benchmarking and end-to-end
silicon measurements.

5.6.1 Quantization Results

We consider the average accuracy in a zero-shot setting to evalu-
ate our quantized model on various tasks. We consider the Hel-
laswag [232], OpenBookQA [233], WinoGrande [234], ARC-Easy and
ARC-Challange [235], BoolQ [236], and PIQA [237] datasets and use
the Language Model Evaluation Harness [238]. The comparative re-
sults, displayed in Table 5.2, clearly indicate that our quantized model

140 CHAPTER 5. DEEPLOY

104

105

106

107

C
y
cl

e
s

1 2 4 8 16 32 64 128 256

Sequence Length

1 2 4 8 16 32 64 128 256

Single-core Octa-core NPU w/o NMS NPU w/ NMS

2.1x 6.2x

25x

200

300
400

Linear Layer Benchmark

Figure 5.6: Performance results for linear layer operators offloaded on
N-Eureka using Deeploy code generation. The highlighted inset shows
that the NMS’ added storage and bandwidth leads to performance
gains of up to 2.1× in memory-bound operator configurations. In
large linear layer configurations, the speedup achieved by the NPU
is 25× compared to the octa-core implementation, and another 1.6×
when using the NMS for weights.

5.6. RESULTS 141

1 2 4 8 1632 1 2 4 8 1632 1 2 4 8 1632
0.0

0.2

0.4

0.6

0.8

1.0

C
y
cl

e
s

[M
ill

io
n
s]

Sequence Length

Parallel Inference Mode Benchmark

Octa-Core NPU w/o NMS NPU w/ NMS

Data Marshaling

Activations Softmax & RMSNorm

Cluster GEMM NPU GEMM

Figure 5.7: Cycle breakdown of parallel inference in the studied SLM.
Due to the larger contribution of operations from matrix multipli-
cations using the NMS performance of offloaded GEMM operators
increases by 17.8×, and end-end-performance improves by 61 % for
sequence length 32 while maintaining low overheads of only 9 %, even
when fully leveraging both the cluster and NPU.

142 CHAPTER 5. DEEPLOY

Table 5.2: Comparison of Average Accuracy
Model Type Avg Accuracy (%)
TinyLlama-5M BF16 31.59 ± 1.09
TinyLlama-5M INT8 PTQ 32.15 ± 1.11
TinyStories-GPT2-3M FP32 32.29 ± 1.11
TinyStories-3M FP32 32.61 ± 1.10
TinyStories-8M FP32 36.79 ± 1.13
TinyStories-33M FP32 35.63 ± 1.13
GPT-Neo 125M FP32 40.39 ± 1.15
MobileLLM 125M FP32 47.00
TinyLlama-1.1B-Chat-
v0.4

FP32 49.41 ± 1.23

maintains its accuracy, even showing a slight increase compared to the
standard full-precision baseline model.

To give an idea of the accuracy levels achieved by other SLMs with
similar complexity, we also include accuracy results in Table 5.2 for
different TinyStories model [209] and a variant using the GPT-2 ar-
chitecture3, GPT-NEO [239], MobileLLM [240], as well as the signif-
icantly larger TinyLlama [210].

5.6.2 Deployment Evaluation Setup

To evaluate the model’s performance in autoregressive mode and for
causally masked parallel inference, we measure each inference step
individually with code generated by Deeploy. We start from empty
KV caches for causally masked parallel inference and process N input
tokens simultaneously. We start from the KV caches of the previ-
ous inference step for all experiments in autoregressive mode. While
Deeploy supports longer sequences, we follow the convention set by
Eldan et al. and limit the context window to 256 tokens [209]. To
calculate the average throughput and energy per token, we take the
average over all 256 inference steps.

3https://huggingface.co/calum/tinystories-gpt2-3M

5.6. RESULTS 143

We report all power numbers measured on a Siracusa prototype board
using a Keysight N6715C DC, supplying all operating voltages and
measuring current. We perform all experiments under nominal con-
ditions, i.e., 0.8 V supply voltage and 360 MHz operating frequency
of the cluster domain. We measure power consumption for every in-
ference by averaging the power consumption of the model run in a
continuous loop.

We measure four distinct deployment scenarios: In the first scenario,
Single Core Deployment , we only generate code using a single RISC-V
core. In the second scenario, Octa-Core Deployment , we generate code
using all eight RISC-V cores of the cluster without using the NPU.
In the third scenario, NPU without NMS Deployment , we generate
code using all eight RISC-V cores and N-Eureka without offloading
weights to the NMS. In the last scenario, NPU with NMS Deployment ,
we generate code using all eight RISC-V cores and N-Eureka with
the NMS. We use the Siracusa Deployment Platform in Deeploy to
generate code for all scenarios.

5.6.3 Microbenchmarking Results

To validate our approach of offloading GEMM operators on N-Eureka,
we first measure the performance of N-Eureka and the RISC-V clus-
ter on GEMM kernels. Specifically, we study the performance of the
Q, K, and V projections in the attention layer and linear layer per-
formance in feed-forward layers for different sequence lengths S in
parallel inference mode. For the Llama model we study in this chap-
ter, these projections use dimensions 256 → 64 and 64 → 256. Our
measurements are shown in Figure 5.6.

Transitioning from single-core to octa-core cluster execution, we mea-
sure a performance improvement of 6.2×, thanks to the low-overhead
parallelization on the cluster cores. Transforming the linear layer
operators into pointwise convolutions, as explained in Section 5.5.2,
enables execution on the NPU, which reduces latency by 25× com-
pared to the octa-core implementation due to the NPU’s significant
compute resources for convolution operations. Furthermore, we re-
duce data movement by allocating the convolution weights to the
NPU’s NMS, increasing the effective memory bandwidth available to

144 CHAPTER 5. DEEPLOY

N-Eureka. These optimizations improve performance, especially on
memory-bound tasks, like linear layers in attention blocks with low
sequence length, by 2.1× compared to NPU execution without the
NMS.

We further profile the execution performance of a representative en-
coder layer as commonly found in non-regressive Transformer mod-
els. For our benchmarking, we chose a configuration with hidden size
dm = 64 and h = 16 parallel attention heads and an intermediate
size dff = 256, paralleling the decoder layer in Figure 5.4. We mea-
sure an increase in throughput of 17.8× when leveraging the NPU to
compute linear layers, improving end-to-end performance for encoder
layers by 61 %. We further quantify the overheads due to tiling and
data marshaling overheads, measuring an end-to-end overhead of only
9 %.

5.6.4 Compiler Evaluation

To study the scalability of our code generation approach, we break
down the SLM network, measuring compiler metrics for varying net-
work depth. For each configuration, we profile code size, constant
data size, and input- and output buffer size for a single inference step
in NPU with NMS Deployment , namely the 128th autoregressive in-
ference step. We generate all code with Deeploy and compile the
resulting C Code using clang-15. Our results are shown in Table 5.1.

We notice that while code size grows proportionally to the number of
operators in the workload, the total size of the binary is dominated
by weight storage in the NMS. We further see that while compilation
time grows superlinearly with the number of operators in the network,
the maximum compilation time of 28 s does not pose a bottleneck for
practical purposes.

5.6.5 End-to-end Deployment Results

We thoroughly evaluate the SLM deployed on Siracusa by benchmark-
ing the two operating phases required to execute SLM, namely the
prompting phase and the generation phase.

5.6. RESULTS 145

Table 5.3: Cumulative latency and energy for a 256-step inference of
the SLM on Siracusa using the NPU with NMS

Parallel
Inference

Autoregressive
Inference

Speedup &
Energy Reduction

Ratio
Latency [s] 17.6 0.75 23 × faster
Energy [mJ] 3193 125 26 × more efficient

Table 5.3 displays the cumulative runtime and energy for executing a
256-step inference in parallel mode and in autoregressive mode, where
KV caching is used. The autoregressive mode outperforms the paral-
lel mode, achieving a 23× speedup and a 26× improvement in energy
efficiency. These improvements directly result from avoiding the costly
recomputation of KV matrices. Averaging the autoregressive infer-
ence mode’s cumulative latency and energy over 256 steps, we achieve
an average throughput of 340 token/s at an average energy cost of
490 µJ/token.

Since the autoregressive mode maximizes the data reuse across the
whole inference process, this mode can be considered both during the
prompting and generation phases detailed in Section 5.4. However,
this strategy leads to sub-optimal results as running in parallel mode
for the prompting phase enables better utilization of the NPU without
excessive recomputation of KV matrices, as tokens are not fed back
in this phase.

The parallel inference mode’s performance for the SLMs studied in
this work follows the trend of the benchmark shown in Figure 5.7.
While we benchmark the end-to-end performance of decoder-only
models in this work, the results in Figure 5.7 also apply to
encoder-based transformer models, as the parallel inference mode
is equivalent to encoder layer execution in such networks. In
autoregressive mode the speedup achieved by employing the NPU is
only 19 %, which can be attributed to the mode’s smaller operator
sizing, leading to stalling of the accelerator due to reconfiguration
overheads. Additionally, the average proportion of time spent for
data marshaling is 40 % for the autoregressive versus just 14 %

146 CHAPTER 5. DEEPLOY

for the parallel modes, underlining the memory access intensity
inherent to KV caching, which drastically reduces the number of
computations leading to reduced arithmetic intensity. A detailed
analysis of runtime and breakdown of operator intensity for
end-to-end autoregressive inference is shown in Figure 5.8 plots 1○
and 2○.

5.6.6 Deployment Overheads

An important metric for the quality of generated code is the utilization
of the system’s compute engines. To profile the quality of our code,
we measured the overheads incurred by Deeploy for each autoregres-
sive inference step in NPU without NMS Deployment and NPU with
NMS Deployment , shown in Figure 5.8, plot 3○. The main differ-
ence between the two scenarios is whether Siracusa’s NMS is used for
compile-time constant GEMM weights. While the reduction in over-
heads decreases from 33 % to 7 % with increasing sequence lengths and
arithmetic intensity, the weight memory drastically reduces the rela-
tive time spent on data movement in the first steps of inference. This
reduction of overheads is a crucial advantage of the bottom-up com-
pilation approach employed by Deeploy; while other compilers might
not consider low-level architectural features like memory hierarchy or
only expose a simplified model, Deeploy allows complete control over
memory allocation and code generation to leverage knowledge of the
target architecture fully.

5.6.7 Comparison with tinyML Compilers

While we designed Deeploy to deploy state-of-the-art and emerging
SLMs, we also report results on more classical CNN and ANN work-
loads, as defined in the MLPerf tiny benchmark [241]. We compare
Deeploy with the state-of-the-art open-source Dory tool [3] using the
same open-source CNN kernels for PULP MCUs [20] we used in this
work. To ensure a fair, compiler-focused comparison, we do not use
the NMS or the NPUs of Siracusa. In this mode, both compilers
only deploy cluster kernels with equivalent memory constraints. As
a third data point, we add measurements of Deeploy-generated code
on Siracusa when using the NMS and NPU. Our results are shown in

5.6. RESULTS 147

A
u
to

re
g
re

ss
iv

e
 I
n
fe

re
n
ce

A
u
to

re
g
re

ss
iv

e
 S

te
p

A
u
to

re
g
re

ss
iv

e
 S

te
p

O
ct

a
-C

o
re

N
P
U

 w
/o

 N
M

S
N

P
U

 w
/

N
M

S

0
.7

0

0
.6

5

0
.7

5

0
.8

0

0
.8

5

70
k

Cy
cl

es

0
3

2
6

4
9

6
1

2
8

1
6

0
1

9
2

2
2

4
2

5
6

Cycles [Millions]

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

1
.6

O
ct

a
-C

o
re

N
P
U

 w
/o

 N
M

S
N

P
U

 w
/

N
M

S

1
2
4
8

16
32
64 128 256

1
2
4
8

16
32
64 128 256

1
2
4
8

16
32
64 128 256

D
a
ta

 M
a
rs

h
a
lin

g
C

lu
st

e
r

G
E
M

M
N

P
U

 G
E
M

M
A

ct
iv

a
ti

o
n
s

S
o
ft

m
a
x
 &

 R
M

S
N

o
rm

1
2

N
P
U

 w
/o

 N
M

S

N
P
U

 w
/

N
M

S

O
v
e
rh

e
a
d
 R

e
d
u
ct

io
n

3

Data Marshaling [%]

0
32

64
96

12
8

16
0

19
2

22
4

25
6

32
%

0
%

34
%

36
%

38
%

40
%

42
%

44
%

46
%

48
%

F
ig

u
re

5.
8:

P
er

fo
rm

an
ce

re
su

lt
s

of
en

d
-t

o-
en

d
au

to
re

gr
es

si
v
e

in
fe

re
n

ce
.

P
lo

t
1○

sh
ow

s
th

e
ru

n
ti

m
e

o
f

ea
ch

au
to

re
gr

es
si

ve
in

fe
re

n
ce

st
ep

in
th

re
e

sc
en

ar
io

s
co

rr
es

p
on

d
in

g
to

O
ct
a
-C

o
re

D
ep
lo
ym

en
t,

N
P
U

w
it
h
o
u
t

N
M
S
D
ep
lo
ym

en
t,

a
n

d
N
P
U

w
it
h
N
M
S
D
ep
lo
ym

en
t.

T
h

e
p

lo
t

sh
ow

s
th

a
t

a
u

to
re

g
re

ss
iv

e
in

fe
re

n
ce

o
n

S
ir

a
cu

sa
is

h
ig

h
ly

m
em

or
y
-b

ou
n

d
in

al
l

sc
en

a
ri

o
s,

w
h

ic
h

is
d

u
e

to
th

e
tr

a
n

sf
er

o
f

K
V

ca
ch

es
b

et
w

ee
n

L
2

an
d

L
1;

N
P
U

w
it
h
N
M
S
D
ep
lo
ym

en
t

re
d

u
ce

s
th

e
ru

n
ti

m
e

o
f

ev
er

y
st

ep
b
y

a
p

p
ro

x
im

a
te

ly
7
0

kc
y
cl

es
si

n
ce

w
ei

g
h
ts

a
re

st
or

ed
u

n
ti

le
d

in
th

e
N

M
S

,
re

d
u

ci
n

g
th

e
re

q
u

ir
ed

L
2

-
L

1
d

a
ta

tr
a
n

sf
er

s.
T

h
e

se
co

n
d

p
lo

t
2○

sh
ow

s
a

b
re

a
k
d

ow
n

of
th

e
ru

n
ti

m
e

in
th

e
d

iff
er

en
t

op
er

at
o
rs

of
th

e
n

et
w

o
rk

a
n

d
d

a
ta

m
a
rs

h
a
li

n
g

ov
er

h
ea

d
s.

E
v
id

en
tl

y,
th

e
h

ig
h

er
co

m
p

u
te

th
ro

u
gh

p
u

t
of

N
-E

u
re
ka

is
u

n
u

se
d

d
u

e
to

th
e

ov
er

a
ll

m
em

o
ry

-
b

ou
n

d
ed

n
es

s.
F

in
a
ll

y,
p

lo
t

3○
sh

ow
s

th
a
t

th
e

d
at

a
m

ov
em

en
t

ov
er

h
ea

d
re

d
u

ct
io

n
a
ff

o
rd

ed
b
y

th
e

N
M

S
d

ec
re

as
es

w
it

h
in

cr
ea

si
n

g
se

q
u

en
ce

le
n

gt
h

s
as

th
e

ov
er

h
ea

d
of

tr
a
n

sf
er

ri
n

g
K

V
ca

ch
es

in
cr

ea
se

s.

148 CHAPTER 5. DEEPLOY

T
a
b

le
5.4:

L
aten

cy
resu

lts
of

D
ory

an
d

D
eep

loy
on

th
e

M
L

P
erf

T
in

y
b

en
ch

m
a
rk

,
ru

n
n

in
g

o
n

S
ira

cu
sa

at
a

clo
ck

freq
u

en
cy

of
360

M
H

z.

B
en

ch
m

ark
S

iracu
sa

w
/o

N
P

U
D

ory
S

iracu
sa

w
/
o

N
P

U
D

eep
loy

S
ira

cu
sa

w
/

N
P

U
D

eep
loy

D
S

-C
N

N
1.4

m
s

1
.4

m
s

0
.3

9
m

s
M

ob
ileN

etv
1

5.6
m

s
5
.6

m
s

0
.6

9
m

s
R

esN
et

3.7
m

s
3
.7

m
s

0
.6

0
m

s
T

oy
A

d
m

os
0.24

m
s

0
.2

4
m

s
0
.1

1
m

s

5.6. RESULTS 149

Table 5.4. We find that Deeploy generates code with an equivalent
latency of Dory up to 1 % of variation, underlining that even though
Deeploy chooses a more general compilation approach than Dory, it
does not incur any performance penalties.

5.6.8 Comparison with the State-of-the-art

Currently, most efforts on EFM deployment target models with more
than a billion parameters on high-end Microprocessors (MPUs) and
embedded processors such as the I.MX95 or NVIDIA Orin or mo-
bile phone chips, featuring multi-GiB external memories and multi-W
power envelopes [242, 243]. Even though our performance and effi-
ciency are extremely competitive, quantitative comparisons against
these deployments would be unfair in our favor as we target much
smaller SLMs.

Considering SLMs in the 100s million parameters range, we compare
our implementation on Siracusa with another small-scale Llama model
for edge devices, MobileLLM, by Liu et al. [240]. Liu et al. deploy a
125 MParameter SLM on an iPhone 13 featuring an A15 Bionic chip
in 5 nm technology using the highly optimized Metal Performance
Shaders (MPS) backend for Apple devices, achieving a throughput of
64 Token/s. While their paper does not profile the exact energy con-
sumption of their models during inference, Liu et al. optimistically
estimate the energy consumption of their setup with 12.5 mJ per to-
ken. Compared to this estimate, our implementation uses 26× less
energy per token while achieving 5× more throughput, for a total
130× higher energy efficiency. When normalizing throughput with
the number of operations per token of their network, we find that
they achieve an equivalent of 4800 TinyStories Llama tokens per sec-
ond. Under this estimate, our end-to-end energy efficiency on Siracusa
implemented in an older 16 nm TSMC technology node is 1.7× higher.

A comparison with a similar-scale (10s million parameters) model
as ours is possible against the llama2.c [244] implementation of the
TinyStories-15M model on a Samsung Galaxy Watch 4, demonstrated
to achieve 22.1 Token/s [245] using an Exynos W920 dual-core ARM
Cortex-A55 processor [246]. Neglecting the power consumption of Dy-
namic Random Access Memory (DRAM) accesses, only considering a

150 CHAPTER 5. DEEPLOY

power consumption of 300 mW per core in Samsung 5 nm technol-
ogy [247], we estimate the power consumption during inference as
600 mW. Under this assumption, the Galaxy Watch 4 achieves an en-
ergy efficiency of 27 mJ per token, 55× lower than ours. Normalizing
for operations per token, our energy efficiency is 13.4× greater, even
though the Exynos W920 is implemented in an advanced Samsung
5 nm technology node.

5.7 Conclusion

In this Chapter, we presented Deeploy, a novel compiler for DNNs
allowing broad customizability of deployment flows. We presented
the integration of Siracusa, a heterogeneous RISC-V SoC featuring
an octa-core compute cluster and an NPU. We demonstrate the de-
ployment of a SLM trained on the TinyStories dataset on Siracusa,
achieving a state-of-the-art throughput of 340 Token/s at an average
energy cost of 490 µJ per token in autoregressive inference mode by
efficiently leveraging on-chip KV caching.

We further analyzed in detail the efficiency of our generated code via
microbenchmarks, achieving data marshaling overheads of only 9 %
on Transformer encoder layers, even when fully utilizing both cluster
cores and NPU collaboratively.

Lastly, we demonstrated that while data marshaling overheads are
significant in the autoregressive inference mode, the energy savings
compared to executing the generation phase of SLM in parallel mode
outweigh this drawback, reducing the energy cost per token by 26×
while increasing throughput by 23×.

In future work, we plan to leverage Deeploy’s flexibility to support
emerging computer architecture innovations, such as multi-accelerator
SoCs integrating Compute-In Memory (CIM) macros. Furthermore,
we’ll investigate approaches to address the data movement challenges
posed by the autoregressive inference mode more effectively.

Chapter 6

Conclusion

This chapter summarizes the contributions presented in the previous
chapters, concluding this thesis.

6.1 Main Results

Radar-based Gesture Recognition for Extreme Edge
Devices

We presented a dual-stage algorithm for classifying gestures from
radar data consisting of a per-frame CNN and a per-sequence TCN.
Using this dual approach of extracting spatial features from a CNN
and temporal features from a TCN not only minimizes the model’s
memory footprint, compressing it to 92 kB but outperforms larger, tra-
ditional autoregressive models like LSTMs. We demonstrated end-to-
end deployment and integration with the sensor on the GAP8 MCU,
achieving real-time prediction in a power envelope of only 21 mW.

151

152 CHAPTER 6. CONCLUSION

Linear Transformers for Embedded Keyword Spot-
ting

We introduced a novel neural network architecture based on linear At-
tention, the WaveFormer, which enables long-sequence Transformer
inference on TinyML-class devices. We demonstrated that the ar-
chitecture outperforms the state-of-the-art networks based on spec-
trogram analysis by ingesting raw waveforms, achieving 98.8 % and
99.1 % accuracy on the Google Speech V2 12 and 35 class datasets
while requiring 2.5,× fewer operations and 4.7× less parameters. We
further described a quantization algorithm for this network and de-
ployed the network on an ARM microcontroller, achieving real-time
inference performance at a power consumption of 11.7 mW.

Energy-efficient Acceleration of TNNs

We presented CUTIE, a fully ternary CNN accelerator focusing on
minimizing non-computational energy and switching activity so that
dynamic power spent on storing intermediate results is minimized. We
demonstrate the end-to-end energy efficiency impact of CUTIE’s un-
rolled datapath architecture, the reduced switching activity in adder
trees due to sparsity in TNNs, and optimized sparsity-aware training
methods. Overall, CUTIE and its TCN extensions achieve a peak
energy efficiency of 1036 TOp/J, outperforming the state-of-the-art
silicon-proven TinyML quantized accelerators by 1.67× while achiev-
ing competitive accuracy.

Deployment Algorithms for Heterogeneous SoCs

We addressed the challenges of DNN deployment on heterogeneous
tinyML SoCs with Deeploy, a bottom-up compiler, allowing user-
provided kernel libraries to be integrated. We demonstrate end-to-end
deployment of an autoregressive SLM for the first time on a MCU us-
ing on-chip memory only by using Deeploy’s novel single shot tiling

6.2. FUTURE WORK AND OUTLOOK 153

and static memory allocation algorithm, achieving leading-edge en-
ergy efficiency of 490 µJ/Token, at 340 Token/s.

6.2 Future Work and Outlook

In this Section, we give an overview of possible continuations of the
work done in this thesis based on the results presented. At the end of
this Section, we provide an outlook and conclude this thesis.

Aggressive Quantization Techniques for Attention

While CUTIE provides state-of-the-art energy efficiency and the train-
ing and quantization methods presented in this thesis allow for train-
ing ternary CNNs, they are not immediately applicable to the Atten-
tion mechanism in Transformers. Exploring aggressive quantization
for Attention could enable significant energy savings in Transformers,
which are paramount to drive adoption of this class of networks in
TinyML devices.

Foundation Models for the Extreme Edge

The prevailing trend in the ML community is pointing towards FMs,
but the TinyML research community has not yet adapted them. The
reasons for this technology gap are manifold, but an important reason
is that current-generation FMs use billions of parameters and inherit
their model structure from NLP. Studying FMs from the perspective
of TinyML, considering sensor-driven, application-specific input en-
coding and aggressively reducing their size could facilitate adoption
and, in turn, drive software and hardware specialization to unlock
improvements in inference energy efficiency.

154 CHAPTER 6. CONCLUSION

Automatic Compiler Tuning for Heterogeneous
SoCs

Deeploy enables exploration of DNN deployment strategies on het-
erogeneous SoCs. Still, it works in a feed-forward operating mode,
which limits the practical feasibility of exploring the exponential op-
erator mapping design space. Especially when scaling TinyML SoCs
to multiple accelerators, a broader set of optimization techniques and
exploration methods are needed to generate optimal code.

Outlook

In the next step, we aim at extending Deeploy with support for CIM
accelerators and multi-cluster systems and improve the tools’ map-
ping and scheduling optimization methods. We further believe that
by exploring ternary-weighted Transformers and Foundation Models,
we can enable accelerator performance on a similar level to CUTIE,
enabling a new approach for Foundation Models for the extreme edge.

Acronyms

AI Artificial Intelligence

ANN Artificial Neural Networks

AR Augmented Reality

ASIC Application-specific Integrated Circuit

ASR Automatic Speech Recognition

AST Abstract Syntax Tree

AXI Advanced eXtensible Interface Bus

BNN Binary Neural Network

CIM Compute-In Memory

CLCA Convolutional Linear Cross-Attention

CNN Convolutional Neural Network

CP Constraint Program

DFT Discrete Fourier Transform

DMA Direct Memory Access

DNN Deep Neural Network

DRAM Dynamic Random Access Memory

155

156 ACRONYMS

DSP Digital Signal Processing

DVS Dynamic Vision Sensor

EFM Embodied Foundation Model

FC fabric controller

FLL Frequency-Locked Loop

FM Foundation Model

FMCW Frequency-Modulated Continuous Wave

GEMM General Matrix Multiplication

GPGPU General-Purpose Graphics Processing Unit

GPU Graphics Processing Unit

GSC Google Speech Commands

HAR Human activity recognition

HCI Human-computer Interface

HMM Hidden Markov Models

HPC High-Performance Computing

IMC In-Memory Computing

IoT Internet of Things

ISA Instruction Set Architecture

KWS Keyword Spotting

LLM Large Language Model

LSTM Long Short-Term Memory

157

MAC Multiply-Accumulate

MCU Microntroller

ML Machine Learning

MMU Memory-Management Unit

MPS Metal Performance Shaders

MPU Microprocessor

MRAM Magnetoresistive Random Access Memory

NLP Natural Language Processing

NMS Neural Memory Subsystem

NN Neural Network

NPU Neural Processing Unit

OCU Output Channel Compute Unit

ONNX Open Neural Network Exchange

OS Operating System

PTQ Post-Training Quantization

QAT Quantization-Aware Training

RADAR Radio Detection and Ranging

RFDM Range Frequency Doppler Map

RNN Recurrent Neural Network

RRF RADAR Repetition Frequency

RRI RADAR Repetition Interval

SCM Standard Cell Memory

158 ACRONYMS

SIMD Single Instruction Multiple Data

SLM Small Language Model

SNN Spiking Neural Network

SoC System-on-chip

SOR Signal-over-Range

SOT Signal-over-Time

SPMD Single Program Multiple Data

SRAM Static Random Access Memory

TC Tile Constraint

TCDM Tightly-coupled Data Memory

TCF Tile Constraint Flow

TCN Temporal Convolutional Network

TNN Ternary Neural Network

TQT Trained Quantization Thresholds

VR Virtual Reality

Bibliography

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Clas-
sification with Deep Convolutional Neural Networks,” in Ad-
vances in Neural Information Processing Systems, vol. 25. Cur-
ran Associates, Inc., 2012.

[2] N. Jouppi, G. Kurian, S. Li, P. Ma, R. Nagarajan, L. Nai,
N. Patil, S. Subramanian, A. Swing, B. Towles et al., “TPU
v4: An Optically Reconfigurable Supercomputer for Machine
Learning with Hardware Support for Embeddings,” in Proceed-
ings of the 50th Annual International Symposium on Computer
Architecture, ser. ISCA ’23. New York, NY, USA: Association
for Computing Machinery, Jun. 2023, pp. 1–14.

[3] A. Burrello, A. Garofalo, N. Bruschi, G. Tagliavini, D. Rossi,
and F. Conti, “DORY: Automatic End-to-End Deployment of
Real-World DNNs on Low-Cost IoT MCUs,” IEEE Transac-
tions on Computers, vol. 70, no. 8, pp. 1253–1268, Aug. 2021,
[TLDR] This work proposes DORY (Deployment Oriented to
memoRY) – an automatic tool to deploy DNNs on low cost
MCUs with typically less than 1MB of on-chip SRAM mem-
ory and releases all the developments – the DORY framework,
the optimized backend kernels, and the related heuristics – as
open-source software.

[4] F. Conti, L. Cavigelli, G. Paulin, I. Susmelj, and L. Benini,
“CHIPMUNK : A Systolically Scalable 0.9 mm2, 3.08
Gop/s/mW @ 1.2 mW Accelerator for Near-Sensor Recurrent

159

160 BIBLIOGRAPHY

Neural Network Inference,” 2018 IEEE Custom Integrated Cir-
cuits Conference (CICC), pp. 1–4, Apr. 2018, [TLDR] CHIP-
MUNK, a small (<1mm2) hardware accelerator for Long-Short
Term Memory RNNs in UMC 65 nm technology capable to op-
erate at a measured peak efficiency up to 3.08Gop/s/mW at 1.24
mW peak power, can achieve real-time phoneme extraction on a
demanding RNN topology proposed in [1], consuming less than
13 mW of average power.

[5] G. E. Moore, “Progress in Digital Integrated Electronics,” IEEE
Solid-State Circuits Society Newsletter, vol. 11, no. 3, pp. 36–
37, Sep. 2006, [TLDR] The complexity of integrated circuits
is discussed, their manufacture, production, and deployment is
identified, and trends to their future deployment are addressed.

[6] R. Dennard, F. Gaensslen, H.-N. Yu, V. Rideout, E. Bassous,
and A. LeBlanc, “Design of Ion-Implanted MOSFET’s with
Very Small Physical Dimensions,” IEEE Journal of Solid-State
Circuits, vol. 9, no. 5, pp. 256–268, Oct. 1974, [TLDR] This
paper considers the design, fabrication, and characterization of
very small Mosfet switching devices suitable for digital inte-
grated circuits, using dimensions of the order of 1 /spl mu/.

[7] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal,
R. Bajwa, S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-
Datacenter Performance Analysis of a Tensor Processing Unit,”
in Proceedings of the 44th Annual International Symposium on
Computer Architecture, ser. ISCA ’17. New York, NY, USA:
Association for Computing Machinery, Jun. 2017, pp. 1–12.

[8] R. David, J. Duke, A. Jain, V. Janapa Reddi, N. Jeffries, J. Li,
N. Kreeger, I. Nappier, M. Natraj, T. Wang et al., “TensorFlow
Lite Micro: Embedded Machine Learning for TinyML Systems,”
Proceedings of Machine Learning and Systems, vol. 3, pp. 800–
811, Mar. 2021.

[9] M. Abrash, “Creating the Future: Augmented Reality, the next
Human-Machine Interface,” in 2021 IEEE International Elec-
tron Devices Meeting (IEDM), Dec. 2021, pp. 1–11.

BIBLIOGRAPHY 161

[10] S. Han, B. Liu, R. Cabezas, C. D. Twigg, P. Zhang, J. Petkau,
T.-H. Yu, C.-J. Tai, M. Akbay, Z. Wang et al., “MEgAtrack:
Monochrome Egocentric Articulated Hand-Tracking for Virtual
Reality,” ACM Transactions on Graphics, vol. 39, no. 4, pp.
87:87:1–87:87:13, Aug. 2020.

[11] L. Chen, Y. Li, X. Bai, X. Wang, Y. Hu, M. Song, L. Xie,
Y. Yan, and E. Yin, “Real-time Gaze Tracking with Head-eye
Coordination for Head-mounted Displays,” in 2022 IEEE In-
ternational Symposium on Mixed and Augmented Reality (IS-
MAR), Oct. 2022, pp. 82–91.

[12] P. P. Ray, “A Review on TinyML: State-of-the-Art and
Prospects,” Journal of King Saud University - Computer and
Information Sciences, vol. 34, no. 4, pp. 1595–1623, Apr. 2022.

[13] N. Tekin, A. Aris, A. Acar, S. Uluagac, and V. C. Gungor,
“A Review of on-Device Machine Learning for IoT: An Energy
Perspective,” Ad Hoc Networks, vol. 153, p. 103348, Feb. 2024.

[14] J. Lin, W.-M. Chen, Y. Lin, J. Cohn, C. Gan, and S. Han,
“MCUnet: Tiny Deep Learning on IoT Devices,” in Proceed-
ings of the 34th International Conference on Neural Informa-
tion Processing Systems, ser. NIPS ’20. Red Hook, NY, USA:
Curran Associates Inc., Dec. 2020, pp. 11 711–11 722.

[15] S. Han, H. Mao, and W. J. Dally, “Deep Compression: Com-
pressing Deep Neural Network with Pruning, Trained Quantiza-
tion and Huffman Coding,” in 4th International Conference on
Learning Representations, ICLR 2016, San Juan, Puerto Rico,
May 2-4, 2016, Conference Track Proceedings, Y. Bengio and
Y. LeCun, Eds., 2016.

[16] J. Choi, Z. Wang, S. Venkataramani, P. Chuang, V. Srinivasan,
and K. Gopalakrishnan, “PACT: Parameterized Clipping Ac-
tivation for Quantized Neural Networks,” ArXiv, Feb. 2018,
[TLDR] It is shown, for the first time, that both weights and
activations can be quantized to 4-bits of precision while still
achieving accuracy comparable to full precision networks across
a range of popular models and datasets.

162 BIBLIOGRAPHY

[17] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and
K. Keutzer, “A Survey of Quantization Methods for Efficient
Neural Network Inference,” in Low-Power Computer Vision.
Chapman and Hall/CRC, 2022.

[18] S. Jain, A. Gural, M. Wu, and C. Dick, “Trained Quantization
Thresholds for Accurate and Efficient Fixed-Point Inference of
Deep Neural Networks,” Proceedings of Machine Learning and
Systems, vol. 2, pp. 112–128, Mar. 2020.

[19] G. Rutishauser, F. Conti, and L. Benini, “Free Bits: Latency
Optimization of Mixed-Precision Quantized Neural Networks on
the Edge,” in 2023 IEEE 5th International Conference on Ar-
tificial Intelligence Circuits and Systems (AICAS), Jun. 2023,
pp. 1–5.

[20] A. Garofalo, G. Tagliavini, F. Conti, D. Rossi, and L. Benini,
“XpulpNN: Accelerating Quantized Neural Networks on RISC-
V Processors Through ISA Extensions,” in 2020 Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE),
Mar. 2020, pp. 186–191.

[21] R. Andri, G. Karunaratne, L. Cavigelli, and L. Benini, “Chew-
BaccaNN: A Flexible 223 TOPS/W BNN Accelerator,” 2021
IEEE International Symposium on Circuits and Systems (IS-
CAS), pp. 1–5, May 2021, [TLDR] ChewBaccaNN is presented,
a 0.7 mm2 sized binary convolutional neural network (CNN)
accelerator designed in GlobalFoundries 22 nm technology that
can perform CIFAR-10 inference at 86.8% accuracy and per-
form inference on a binarized ResNet-18 trained with 8-bases
Group-Net to achieve a 67.5% Top-1 accuracy.

[22] A. S. Waterman, “Design of the RISC-V Instruction Set Archi-
tecture,” Ph.D. dissertation, University of California, Berkeley,
United States – California, 2016.

[23] E. Cui, T. Li, and Q. Wei, “RISC-V Instruction Set Architecture
Extensions: A Survey,” IEEE Access, vol. 11, pp. 24 696–24 711,
2023.

BIBLIOGRAPHY 163

[24] M. J. Flynn, “Some Computer Organizations and Their Effec-
tiveness,” IEEE Transactions on Computers, vol. 21, no. 9, pp.
948–960, Sep. 1972.

[25] K. Ueyoshi, I. A. Papistas, P. Houshmand, G. M. Sarda, V. Jain,
M. Shi, Q. Zheng, S. Giraldo, P. Vrancx, J. Doevenspeck et al.,
“DIANA: An End-to-End Energy-Efficient Digital and ANAlog
Hybrid Neural Network SoC,” in 2022 IEEE International Solid-
State Circuits Conference (ISSCC), vol. 65, Feb. 2022, pp. 1–3.

[26] D. Bankman, L. Yang, B. Moons, M. Verhelst, and B. Murmann,
“An Always-On 3.8 µJ/86% CIFAR-10 Mixed-Signal Binary
CNN Processor With All Memory on Chip in 28-nm CMOS,”
IEEE Journal of Solid-State Circuits, vol. 54, no. 1, pp. 158–172,
Jan. 2019.

[27] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An
Energy-Efficient Reconfigurable Accelerator for Deep Convolu-
tional Neural Networks,” IEEE Journal of Solid-State Circuits,
vol. 52, no. 1, pp. 127–138, Jan. 2017.

[28] E. Flamand, D. Rossi, F. Conti, I. Loi, A. Pullini, F. Roten-
berg, and L. Benini, “GAP-8: A RISC-V SoC for AI at the
Edge of the IoT,” in 2018 IEEE 29th International Conference
on Application-specific Systems, Architectures and Processors
(ASAP), Jul. 2018, pp. 1–4.

[29] M. Eggimann, S. Mach, M. Magno, and L. Benini, “A RISC-V
Based Open Hardware Platform for Always-On Wearable Smart
Sensing,” in 2019 IEEE 8th International Workshop on Ad-
vances in Sensors and Interfaces (IWASI), Jun. 2019, pp. 169–
174.

[30] A. S. Prasad, M. Scherer, F. Conti, D. Rossi, A. Di Mauro,
M. Eggimann, J. T. Gómez, Z. Li, S. S. Sarwar, Z. Wang
et al., “Siracusa: A 16 nm Heterogenous RISC-V SoC for Ex-
tended Reality with At-MRAM Neural Engine,” ArXiv, no.
arXiv:2312.14750, Dec. 2023, accepted for publication at IEEE
Journal of Solid-State Circuits.

164 BIBLIOGRAPHY

[31] Q. Huang, M. Kang, G. Dinh, T. Norell, A. Kalaiah, J. Dem-
mel, J. Wawrzynek, and Y. S. Shao, “CoSA: Scheduling
by Constrained Optimization for Spatial Accelerators,” 2021
ACM/IEEE 48th Annual International Symposium on Com-
puter Architecture (ISCA), pp. 554–566, Jun. 2021, [TLDR]
CoSA leverages the regularities in DNN operators and hardware
to formulate the DNN scheduling space into a mixed-integer pro-
gramming (MIP) problem with algorithmic and architectural
constraints, which can be solved to automatically generate a
highly efficient schedule in one shot.

[32] M. Scherer, M. Magno, J. Erb, P. Mayer, M. Eggimann, and
L. Benini, “TinyRadarNN: Combining Spatial and Temporal
Convolutional Neural Networks for Embedded Gesture Recogni-
tion With Short Range Radars,” IEEE Internet of Things Jour-
nal, vol. 8, no. 13, pp. 10 336–10 346, Jul. 2021.

[33] M. Scherer, C. Cioflan, M. Magno, and L. Benini, “Work In
Progress: Linear Transformers for TinyML,” in 2024 Design,
Automation & Test in Europe Conference & Exhibition (DATE),
Mar. 2024.

[34] M. Scherer, G. Rutishauser, L. Cavigelli, and L. Benini,
“CUTIE: Beyond PetaOp/s/W Ternary DNN Inference Ac-
celeration With Better-Than-Binary Energy Efficiency,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 41, no. 4, pp. 1020–1033, Apr. 2022.

[35] M. Scherer, A. D. Mauro, T. Fischer, G. Rutishauser,
and L. Benini, “TCN-CUTIE: A 1,036-TOp/s/W, 2.72-
µJ/Inference, 12.2-mW All-Digital Ternary Accelerator in 22-
nm FDX Technology,” IEEE Micro, vol. 43, no. 1, pp. 42–48,
Jan. 2023.

[36] M. Scherer, L. Macan, V. Jung, P. Wiese, A. Burrello, F. Conti,
and L. Benini, “Deeploy: Enabling Energy-Efficient Deployment
of Small Language Models On Heterogeneous Microcontrollers,”
Mar. 2024, under Review at IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems (TCAD).

BIBLIOGRAPHY 165

[37] M. Scherer, K. Menachery, and M. Magno, “SmartAid: A Low-
Power Smart Hearing Aid For Stutterers,” in 2019 IEEE Sen-
sors Applications Symposium (SAS), Mar. 2019, pp. 1–6.

[38] A. Di Mauro, M. Scherer, J. F. Mas, B. Bougenot, M. Magno,
and L. Benini, “FlyDVS: An Event-Driven Wireless Ultra-Low
Power Visual Sensor Node,” in 2021 Design, Automation &
Test in Europe Conference & Exhibition (DATE), Feb. 2021,
pp. 1851–1854.

[39] M. Scherer, P. Mayer, A. di Mauro, M. Magno, and L. Benini,
“Towards Always-on Event-based Cameras for Long-lasting
Battery-operated Smart Sensor Nodes,” in 2021 IEEE Inter-
national Instrumentation and Measurement Technology Confer-
ence (I2MTC), May 2021, pp. 1–6.

[40] A. Burrello, M. Scherer, M. Zanghieri, F. Conti, and L. Benini,
“A Microcontroller is All You Need: Enabling Transformer Ex-
ecution on Low-Power IoT Endnodes,” in 2021 IEEE Interna-
tional Conference on Omni-Layer Intelligent Systems (COINS),
Aug. 2021, pp. 1–6.

[41] A. Burrello, F. B. Morghet, M. Scherer, S. Benatti, L. Benini,
E. Macii, M. Poncino, and D. J. Pagliari, “Bioformers: Embed-
ding Transformers for Ultra-Low Power sEMG-based Gesture
Recognition,” in 2022 Design, Automation & Test in Europe
Conference & Exhibition (DATE), Mar. 2022, pp. 1443–1448.

[42] A. Di Mauro, M. Scherer, D. Rossi, and L. Benini, “Kraken: A
Direct Event/Frame-Based Multi-sensor Fusion SoC for Ultra-
Efficient Visual Processing in Nano-UAVs,” in 2022 IEEE Hot
Chips 34 Symposium (HCS), Aug. 2022, pp. 1–19.

[43] M. Scherer, A. Di Mauro, G. Rutishauser, T. Fischer, and
L. Benini, “A 1036 TOp/s/W, 12.2 mW, 2.72 µJ/Inference All
Digital TNN Accelerator in 22 nm FDX Technology for TinyML
Applications,” in 2022 IEEE Symposium in Low-Power and
High-Speed Chips (COOL CHIPS), Apr. 2022, pp. 1–3.

[44] M. Scherer, F. Sidler, M. Rogenmoser, M. Magno, and L. Benini,
“WideVision: A Low-Power, Multi-Protocol Wireless Vision

166 BIBLIOGRAPHY

Platform for Distributed Surveillance,” in 2022 18th Interna-
tional Conference on Wireless and Mobile Computing, Network-
ing and Communications (WiMob), Oct. 2022, pp. 394–399.

[45] P. Busia, A. Cossettini, T. M. Ingolfsson, S. Benatti, A. Burrello,
M. Scherer, M. A. Scrugli, P. Meloni, and L. Benini, “EEG-
former: Transformer-Based Epilepsy Detection on Raw EEG
Traces for Low-Channel-Count Wearable Continuous Monitor-
ing Devices,” in 2022 IEEE Biomedical Circuits and Systems
Conference (BioCAS), Oct. 2022, pp. 640–644.

[46] G. Rutishauser, M. Scherer, T. Fischer, and L. Benini, “Ternar-
ized TCN for µJ/Inference Gesture Recognition from DVS
Event Frames,” in 2022 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2022, pp. 736–741.

[47] M. Scherer, M. Eggimann, A. D. Mauro, A. S. Prasad, F. Conti,
D. Rossi, J. T. Gómez, Z. Li, S. S. Sarwar, Z. Wang et al., “Sira-
cusa: A Low-Power On-Sensor RISC-V SoC for Extended Real-
ity Visual Processing in 16nm CMOS,” in ESSCIRC 2023- IEEE
49th European Solid State Circuits Conference (ESSCIRC), Sep.
2023, pp. 217–220.

[48] G. Rutishauser, M. Scherer, T. Fischer, and L. Benini, “7
µJ/Inference End-to-End Gesture Recognition from Dynamic
Vision Sensor Data Using Ternarized Hybrid Convolutional
Neural Networks,” Future Generation Computer Systems, vol.
149, pp. 717–731, Dec. 2023.

[49] A. Mattei, M. Scherer, C. Cioflan, M. Magno, and L. Benini,
“Securing Tiny Transformer-based Computer Vision Models:
Evaluating Real-World Patch Attacks,” in 9th World Forum on
the Internet of Things (WF-IoT 2023), 2023.

[50] G. Islamoglu, M. Scherer, G. Paulin, T. Fischer, V. J. Jung,
A. Garofalo, and L. Benini, “ITA: An Energy-Efficient Atten-
tion and Softmax Accelerator for Quantized Transformers,” in
2023 IEEE/ACM International Symposium on Low Power Elec-
tronics and Design (ISLPED), Aug. 2023, pp. 1–6.

BIBLIOGRAPHY 167

[51] P. Busia, A. Cossettini, T. M. Ingolfsson, S. Benatti, A. Burrello,
V. J. B. Jung, M. Scherer, M. A. Scrugli, A. Bernini, P. Ducouret
et al., “Reducing False Alarms in Wearable Seizure Detection
with EEGformer: A Compact Transformer Model for MCUs,”
IEEE Transactions on Biomedical Circuits and Systems, pp. 1–
13, 2024.

[52] V. J. B. Jung, A. Burrello, M. Scherer, F. Conti, and
L. Benini, “Optimizing the Deployment of Tiny Transformers
on Low-Power MCUs,” ArXiv, no. arXiv:2404.02945, Apr. 2024,
manuscript submitted for review at IEEE Transactions on Com-
puters.

[53] V. Potocnik, A. D. Mauro, C. Leitner, M. Scherer,
G. Rutishauser, L. Lamberti, and L. Benini, “Kraken: An Open-
Source RISC-V SoC for Ultra-Low Power Multi-Modal Percep-
tion,” ArXiv, Apr. 2024.

[54] F. Naujoks, Y. Forster, K. Wiedemann, and A. Neukum, “A
Human-Machine Interface for Cooperative Highly Automated
Driving,” in Advances in Human Aspects of Transportation,
N. A. Stanton, S. Landry, G. Di Bucchianico, and A. Valli-
celli, Eds. Cham: Springer International Publishing, 2017, pp.
585–595.

[55] Q. Li, R. Gravina, Y. Li, S. H. Alsamhi, F. Sun, and G. Fortino,
“Multi-User Activity Recognition: Challenges and Opportuni-
ties,” Information Fusion, vol. 63, pp. 121–135, Nov. 2020.

[56] Y. Zhang, Y. Chen, H. Yu, X. Yang, and W. Lu, “Learning
Effective Spatial–Temporal Features for sEMG Armband-Based
Gesture Recognition,” IEEE Internet of Things Journal, vol. 7,
no. 8, pp. 6979–6992, Aug. 2020.

[57] J. Wu and R. Jafari, “Orientation Independent Activity/Ges-
ture Recognition Using Wearable Motion Sensors,” IEEE Inter-
net of Things Journal, vol. 6, no. 2, pp. 1427–1437, Apr. 2019.

[58] R. Xu, S. Zhou, and W. J. Li, “MEMS Accelerometer Based
Nonspecific-User Hand Gesture Recognition,” IEEE Sensors
Journal, vol. 12, no. 5, pp. 1166–1173, May 2012.

168 BIBLIOGRAPHY

[59] A. Dementyev and J. A. Paradiso, “WristFlex: Low-Power Ges-
ture Input with Wrist-Worn Pressure Sensors,” in Proceedings
of the 27th Annual ACM Symposium on User Interface Soft-
ware and Technology, ser. UIST ’14. New York, NY, USA:
Association for Computing Machinery, Oct. 2014, pp. 161–166.

[60] A. Bandini and J. Zariffa, “Analysis of the Hands in Egocentric
Vision: A Survey,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 45, no. 6, pp. 6846–6866, Jun. 2023.

[61] S. S. Rautaray and A. Agrawal, “Vision Based Hand Gesture
Recognition for Human Computer Interaction: A Survey,” Ar-
tificial Intelligence Review, vol. 43, no. 1, pp. 1–54, Jan. 2015.

[62] P. Fankhauser, M. Bloesch, D. Rodriguez, R. Kaestner, M. Hut-
ter, and R. Siegwart, “Kinect v2 for Mobile Robot Navigation:
Evaluation and Modeling,” in 2015 International Conference on
Advanced Robotics (ICAR). IEEE, Sep. 2015, pp. 388–394.

[63] Y. Zhang and C. Harrison, “Tomo: Wearable, Low-Cost Elec-
trical Impedance Tomography for Hand Gesture Recognition,”
in Proceedings of the 28th Annual ACM Symposium on User
Interface Software & Technology, ser. UIST ’15. New York,
NY, USA: Association for Computing Machinery, Nov. 2015,
pp. 167–173.

[64] J. Yang, H. Zou, Y. Zhou, and L. Xie, “Learning Gestures From
WiFi: A Siamese Recurrent Convolutional Architecture,” IEEE
Internet of Things Journal, vol. 6, no. 6, pp. 10 763–10 772, Dec.
2019.

[65] J. Wang, L. Zhang, C. Wang, X. Ma, Q. Gao, and B. Lin,
“Device-Free Human Gesture Recognition With Generative Ad-
versarial Networks,” IEEE Internet of Things Journal, vol. 7,
no. 8, pp. 7678–7688, Aug. 2020.

[66] F. Adib, Z. Kabelac, D. Katabi, and R. C. Miller, “3D Track-
ing Via Body Radio Reflections,” in Proceedings of the 11th
USENIX Conference on Networked Systems Design and Imple-
mentation, ser. NSDI’14. USA: USENIX Association, Apr.
2014, pp. 317–329.

BIBLIOGRAPHY 169

[67] J. Lien, N. Gillian, M. E. Karagozler, P. Amihood, C. Schwesig,
E. Olson, H. Raja, and I. Poupyrev, “Soli: Ubiquitous Gesture
Sensing with Millimeter Wave Radar,” ACM Transactions on
Graphics, vol. 35, no. 4, pp. 1–19, Jul. 2016, [TLDR] It is demon-
strated that Soli can be used for robust gesture recognition and
can track gestures with sub-millimeter accuracy, running at over
10,000 frames per second on embedded hardware.

[68] A. Rahimi, P. Kanerva, and J. M. Rabaey, “A Robust and
Energy-Efficient Classifier Using Brain-Inspired Hyperdimen-
sional Computing,” in Proceedings of the 2016 International
Symposium on Low Power Electronics and Design, ser. ISLPED
’16. New York, NY, USA: Association for Computing Machin-
ery, Aug. 2016, pp. 64–69.

[69] M. Magno, M. Pritz, P. Mayer, and L. Benini, “DeepEmote: To-
wards Multi-Layer Neural Networks in a Low Power Wearable
Multi-Sensors Bracelet,” in 2017 7th IEEE International Work-
shop on Advances in Sensors and Interfaces (IWASI), Jun. 2017,
pp. 32–37.

[70] C. Savaglio, P. Gerace, G. Di Fatta, and G. Fortino, “Data Min-
ing at the IoT Edge,” in 2019 28th International Conference on
Computer Communication and Networks (ICCCN), Jul. 2019,
pp. 1–6.

[71] G. Fortino, S. Galzarano, R. Gravina, and W. Li, “A Framework
for Collaborative Computing and Multi-Sensor Data Fusion in
Body Sensor Networks,” Information Fusion, vol. 22, pp. 50–70,
Mar. 2015.

[72] J. Chen and X. Ran, “Deep Learning With Edge Computing:
A Review,” Proceedings of the IEEE, vol. 107, no. 8, pp. 1655–
1674, Aug. 2019.

[73] F. Samie, L. Bauer, and J. Henkel, “From Cloud Down to
Things: An Overview of Machine Learning in Internet of
Things,” IEEE Internet of Things Journal, vol. 6, no. 3, pp.
4921–4934, Jun. 2019.

170 BIBLIOGRAPHY

[74] S. Deng, H. Zhao, W. Fang, J. Yin, S. Dustdar, and A. Y.
Zomaya, “Edge Intelligence: The Confluence of Edge Comput-
ing and Artificial Intelligence,” IEEE Internet of Things Jour-
nal, vol. 7, no. 8, pp. 7457–7469, Aug. 2020, [TLDR] The former
focuses on providing more optimal solutions to key problems in
edge computing with the help of popular and effective AI tech-
nologies while the latter studies how to carry out the entire pro-
cess of building AI models, i.e., model training and inference,
on the edge.

[75] L. Cavigelli, P. Degen, and L. Benini, “CBinfer: Change-Based
Inference for Convolutional Neural Networks on Video Data,”
Proceedings of the 11th International Conference on Distributed
Smart Cameras, pp. 1–8, Sep. 2017, [TLDR] A novel algorithm
is proposed and evaluated for change-based evaluation of CNNs
for video data recorded with a static camera setting, exploit-
ing the spatio-temporal sparsity of pixel changes to achieve an
average speed-up of 8.6x over a cuDNN baseline on a realistic
benchmark.

[76] L. Cavigelli and L. Benini, “Origami: A 803-GOp/s/W Convo-
lutional Network Accelerator,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 27, no. 11, pp. 2461–
2475, Nov. 2017.

[77] M. Gautschi, P. D. Schiavone, A. Traber, I. Loi, A. Pullini,
D. Rossi, E. Flamand, F. K. Gürkaynak, and L. Benini, “Near-
Threshold RISC-V Core With DSP Extensions for Scalable IoT
Endpoint Devices,” IEEE Transactions on Very Large Scale In-
tegration (VLSI) Systems, vol. 25, no. 10, pp. 2700–2713, Oct.
2017.

[78] L. Rabiner and B. Juang, “An Introduction to Hidden Markov
Models,” IEEE ASSP Magazine, vol. 3, no. 1, pp. 4–16, Jan.
1986.

[79] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,”
Neural Computation, vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[80] S. Mitra and T. Acharya, “Gesture Recognition: A Survey,”
IEEE Transactions on Systems, Man, and Cybernetics, Part C

BIBLIOGRAPHY 171

(Applications and Reviews), vol. 37, no. 3, pp. 311–324, May
2007.

[81] A. K. H. Al-Saedi and A. H. H. Al-Asadi, “Survey of Hand
Gesture Recognition Systems,” Journal of Physics: Conference
Series, vol. 1294, no. 4, p. 042003, Sep. 2019.

[82] S. Wang, J. Song, J. Lien, I. Poupyrev, and O. Hilliges, “In-
teracting with Soli: Exploring Fine-Grained Dynamic Gesture
Recognition in the Radio-Frequency Spectrum,” in Proceedings
of the 29th Annual Symposium on User Interface Software and
Technology, ser. UIST ’16. New York, NY, USA: Association
for Computing Machinery, Oct. 2016, pp. 851–860.

[83] S. Bai, J. Z. Kolter, and V. Koltun, “An Empirical Evaluation
of Generic Convolutional and Recurrent Networks for Sequence
Modeling,” ArXiv, Mar. 2018, [TLDR] A systematic evaluation
of generic convolutional and recurrent architectures for sequence
modeling concludes that the common association between se-
quence modeling and recurrent networks should be reconsid-
ered, and convolutionals should be regarded as a natural start-
ing point for sequence modeled tasks.

[84] D. Jarrett, J. Yoon, and M. van der Schaar, “Dynamic Predic-
tion in Clinical Survival Analysis Using Temporal Convolutional
Networks,” IEEE Journal of Biomedical and Health Informat-
ics, vol. 24, no. 2, pp. 424–436, Feb. 2020.

[85] E. P. MatthewDavies and S. Bock, “Temporal Convolutional
Networks for Musical Audio Beat Tracking,” 2019 27th Euro-
pean Signal Processing Conference (EUSIPCO), pp. 1–5, Sep.
2019, [TLDR] Three highly promising attributes of TCNs for
music analysis are demonstrated, namely: they achieve state-of-
the-art performance on a wide range of existing beat tracking
datasets, they are well suited to parallelisation and thus can be
trained efficiently even on very large training data, and they
require a small number of weights.

[86] S. Ahmed, K. D. Kallu, S. Ahmed, and S. H. Cho, “Hand Ges-
tures Recognition Using Radar Sensors for Human-Computer-

172 BIBLIOGRAPHY

Interaction: A Review,” Remote Sensing, vol. 13, no. 3, p. 527,
Jan. 2021.

[87] J. Wan, G. Guo, and S. Z. Li, “Explore Efficient Local Fea-
tures from RGB-D Data for One-Shot Learning Gesture Recog-
nition,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 38, no. 8, pp. 1626–1639, Aug. 2016.

[88] D. Wu, L. Pigou, P.-J. Kindermans, N. D.-H. Le, L. Shao,
J. Dambre, and J.-M. Odobez, “Deep Dynamic Neural Net-
works for Multimodal Gesture Segmentation and Recognition,”
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 38, no. 8, pp. 1583–1597, Aug. 2016.

[89] A. D. Calin, “Gesture Recognition on Kinect Time Series Data
Using Dynamic Time Warping and Hidden Markov Models,” in
2016 18th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing (SYNASC), Sep. 2016, pp.
264–271.

[90] S. Ji, W. Xu, M. Yang, and K. Yu, “3D Convolutional Neural
Networks for Human Action Recognition,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 35, no. 1,
pp. 221–231, Jan. 2013.

[91] O. Koller, N. C. Camgoz, H. Ney, and R. Bowden, “Weakly
Supervised Learning with Multi-Stream CNN-LSTM-HMMs
to Discover Sequential Parallelism in Sign Language Videos,”
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 42, no. 9, pp. 2306–2320, Sep. 2020.

[92] B. Kellogg, V. Talla, and S. Gollakota, “Bringing Gesture
Recognition to All Devices,” in 11th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 14),
2014, pp. 303–316.

[93] S. Y. Kim, H. G. Han, J. W. Kim, S. Lee, and T. W. Kim, “A
Hand Gesture Recognition Sensor Using Reflected Impulses,”
IEEE Sensors Journal, vol. 17, no. 10, pp. 2975–2976, May 2017.

[94] Y. Kim and B. Toomajian, “Hand Gesture Recognition Us-
ing Micro-Doppler Signatures With Convolutional Neural Net-

BIBLIOGRAPHY 173

work,” IEEE Access, vol. 4, pp. 7125–7130, 2016, [TLDR] The
feasibility of recognizing human hand gestures using micro-
Doppler signatures measured by Doppler radar with a deep
convolutional neural network (DCNN) is investigated and the
classification accuracy is found to be 85.6%.

[95] Y. Sun, T. Fei, S. Gao, and N. Pohl, “Automatic Radar-based
Gesture Detection and Classification via a Region-based Deep
Convolutional Neural Network,” in ICASSP 2019 - 2019 IEEE
International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), May 2019, pp. 4300–4304.

[96] S. Hazra and A. Santra, “Radar Gesture Recognition System in
Presence of Interference using Self-Attention Neural Network,”
in 2019 18th IEEE International Conference On Machine Learn-
ing And Applications (ICMLA), Dec. 2019, pp. 1409–1414.

[97] J.-W. Choi, S.-J. Ryu, and J.-H. Kim, “Short-Range Radar
Based Real-Time Hand Gesture Recognition Using LSTM En-
coder,” IEEE Access, vol. 7, pp. 33 610–33 618, 2019, [TLDR]
A hand gesture recognition system for a real-time application
of HCI using 60 GHz frequency-modulated continuous wave
(FMCW) radar, Soli, developed by Google is proposed.

[98] C. Lea, M. D. Flynn, R. Vidal, A. Reiter, and G. D. Hager,
“Temporal Convolutional Networks for Action Segmentation
and Detection,” in 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). IEEE Computer Society,
Jul. 2017, pp. 1003–1012.

[99] F. Luo, S. Poslad, and E. Bodanese, “Temporal Convolutional
Networks for Multiperson Activity Recognition Using a 2-D LI-
DAR,” IEEE Internet of Things Journal, vol. 7, no. 8, pp. 7432–
7442, Aug. 2020, [TLDR] This work clustered raw LIDAR data
and classified the clusters into human and nonhuman classes
in order to recognize humans in a scenario and built two neu-
ral networks, including a long short-term memory network and
a temporal convolutional network (TCN) to classify trajectory
samples into 15 activity classes collected from a kitchen.

174 BIBLIOGRAPHY

[100] Y. Sun, T. Fei, F. Schliep, and N. Pohl, “Gesture Classifica-
tion with Handcrafted Micro-Doppler Features using a FMCW
Radar,” in 2018 IEEE MTT-S International Conference on Mi-
crowaves for Intelligent Mobility (ICMIM), Apr. 2018, pp. 1–4.

[101] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu,
“WaveNet: A Generative Model for Raw Audio,” in Proceedings
of the 9th ISCA Workshop on Speech Synthesis Workshop (SSW
9), 2016, pp. 125–125.

[102] A. Pandey and D. Wang, “TCNN: Temporal Convolutional Neu-
ral Network for Real-time Speech Enhancement in the Time
Domain,” in ICASSP 2019 - 2019 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP),
May 2019, pp. 6875–6879.

[103] T. S. Kim and A. Reiter, “Interpretable 3D Human Action
Analysis with Temporal Convolutional Networks,” 2017 IEEE
Conference on Computer Vision and Pattern Recognition Work-
shops (CVPRW), pp. 1623–1631, Jul. 2017, [TLDR] This work
proposes to use a new class of models known as Temporal Con-
volutional Neural Networks (TCN) for 3D human action recog-
nition, and aims to take a step towards a spatio-temporal model
that is easier to understand, explain and interpret.

[104] L. Lai, N. Suda, and V. Chandra, “CMSIS-NN: Efficient Neu-
ral Network Kernels for Arm Cortex-M CPUs,” ArXiv, no.
arXiv:1801.06601, Jan. 2018.

[105] R. H. R. Hahnloser, R. Sarpeshkar, M. A. Mahowald, R. J. Dou-
glas, and H. S. Seung, “Digital Selection and Analogue Ampli-
fication Coexist in a Cortex-Inspired Silicon Circuit,” Nature,
vol. 405, no. 6789, pp. 947–951, Jun. 2000.

[106] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Op-
timization,” in 3rd International Conference on Learning Rep-
resentations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, Y. Bengio and Y. LeCun, Eds.,
2015.

BIBLIOGRAPHY 175

[107] G. Bontempi, S. Ben Taieb, and Y.-A. Le Borgne, “Machine
Learning Strategies for Time Series Forecasting,” in Business
Intelligence: Second European Summer School, eBISS 2012,
Brussels, Belgium, July 15-21, 2012, Tutorial Lectures, ser. Lec-
ture Notes in Business Information Processing, M.-A. Aufaure
and E. Zimányi, Eds. Berlin, Heidelberg: Springer, 2013, pp.
62–77.

[108] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. ukasz Kaiser, and I. Polosukhin, “Attention is All you
Need,” in Advances in Neural Information Processing Systems,
vol. 30. Curran Associates, Inc., 2017.

[109] Y. Zhang, J. Qin, D. S. Park, W. Han, C.-C. Chiu, R. Pang,
Q. V. Le, and Y. Wu, “Pushing the Limits of Semi-Supervised
Learning for Automatic Speech Recognition,” ArXiv, no.
arXiv:2010.10504, Jul. 2022, comment: 11 pages, 3 figures, 5
tables. Accepted to NeurIPS SAS 2020 Workshop; v2: minor
errors corrected.

[110] S. Zhao and B. Ma, “MossFormer: Pushing the Performance
Limit of Monaural Speech Separation using Gated Single-
Head Transformer with Convolution-Augmented Joint Self-
Attentions,” in ICASSP 2023 - 2023 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP),
Feb. 2023, comment: 5 pages, 3 figures, accepted by ICASSP
2023.

[111] A. Gazneli, G. Zimerman, T. Ridnik, G. Sharir, and A. Noy,
“End-to-End Audio Strikes Back: Boosting Augmentations To-
wards An Efficient Audio Classification Network,” ArXiv, no.
arXiv:2204.11479, Jul. 2022.

[112] S. Kumar, P. Tiwari, and M. Zymbler, “Internet of Things Is a
Revolutionary Approach for Future Technology Enhancement:
A Review,” Journal of Big Data, vol. 6, no. 1, p. 111, Dec. 2019.

[113] A. Katharopoulos, A. Vyas, N. Pappas, and F. Fleuret, “Trans-
formers Are RNNs: Fast Autoregressive Transformers with Lin-
ear Attention,” in Proceedings of the 37th International Confer-

176 BIBLIOGRAPHY

ence on Machine Learning, ser. ICML’20, vol. 119. JMLR.org,
Jul. 2020, pp. 5156–5165.

[114] N. Kitaev, L. Kaiser, and A. Levskaya, “Reformer: The Ef-
ficient Transformer,” in International Conference on Learning
Representations, Sep. 2019.

[115] S. Wang, B. Z. Li, M. Khabsa, H. Fang, and H. Ma, “Lin-
former: Self-Attention with Linear Complexity,” ArXiv, no.
arXiv:2006.04768, Jun. 2020.

[116] K. M. Choromanski, V. Likhosherstov, D. Dohan, X. Song,
A. Gane, T. Sarlos, P. Hawkins, J. Q. Davis, A. Mohiuddin,
L. Kaiser et al., “Rethinking Attention with Performers,” in In-
ternational Conference on Learning Representations, Feb. 2022.

[117] P. Warden, “Speech Commands: A Dataset for Limited-
Vocabulary Speech Recognition,” ArXiv, Apr. 2018, [TLDR]
An audio dataset of spoken words designed to help train and
evaluate keyword spotting systems and suggests a methodology
for reproducible and comparable accuracy metrics for this task.

[118] Y. Zhang, N. Suda, L. Lai, and V. Chandra, “Hello Edge: Key-
word Spotting on Microcontrollers,” ArXiv, Nov. 2017, [TLDR]
It is shown that it is possible to optimize these neural network
architectures to fit within the memory and compute constraints
of microcontrollers without sacrificing accuracy, and the depth-
wise separable convolutional neural network (DS-CNN) is ex-
plored and compared against other neural network architecture.

[119] P. M. Sørensen, B. Epp, and T. May, “A Depthwise Separa-
ble Convolutional Neural Network for Keyword Spotting on an
Embedded System,” EURASIP Journal on Audio, Speech, and
Music Processing, vol. 2020, no. 1, p. 10, Jun. 2020.

[120] S. Choi, S. Seo, B. Shin, H. Byun, M. Kersner, B. Kim, D. Kim,
and S. Ha, “Temporal Convolution for Real-Time Keyword
Spotting on Mobile Devices,” in Interspeech 2019. ISCA, Sep.
2019, pp. 3372–3376, [TLDR] A temporal convolution for real-
time KWS on mobile devices that exploits temporal convolu-
tions with a compact ResNet architecture and achieves more

BIBLIOGRAPHY 177

than \textbf{385x} speedup on Google Pixel 1 and surpass the
accuracy compared to the state-of-the-art model.

[121] B. Kim, S. Chang, J. Lee, and D. Sung, “Broadcasted Residual
Learning for Efficient Keyword Spotting,” in Interspeech 2021.
ISCA, Aug. 2021, pp. 4538–4542, [TLDR] This work presents a
broadcasted residual learning method to achieve high accuracy
with small model size and computational load, and proposes a
novel network architecture, Broadcasting-residual network (BC-
ResNet), based on broadcasting residual learning and describes
how to scale up the model according to the target device’s re-
sources.

[122] A. Berg, M. O’Connor, and M. T. Cruz, “Keyword Transformer:
A Self-Attention Model for Keyword Spotting,” in Interspeech
2021. ISCA, Aug. 2021, pp. 4249–4253, [TLDR] The Key-
word Transformer (KWT), a fully self-attentional architecture
that exceeds state-of-the-art performance across multiple tasks
without any pre-training or additional data, is introduced.

[123] K. Ding, M. Zong, J. Li, and B. Li, “LETR: A Lightweight and
Efficient Transformer for Keyword Spotting,” in ICASSP 2022
- 2022 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), May 2022, pp. 7987–7991.

[124] R. Banner, Y. Nahshan, and D. Soudry, “Post Training
4-Bit Quantization of Convolutional Networks for Rapid-
Deployment,” in Proceedings of the 33rd International Confer-
ence on Neural Information Processing Systems. Red Hook,
NY, USA: Curran Associates Inc., Dec. 2019, pp. 7950–7958.

[125] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “HAQ:
Hardware-Aware Automated Quantization With Mixed Pre-
cision,” 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 8604–8612, Jun. 2019,
[TLDR] The Hardware-Aware Automated Quantization (HAQ)
framework is introduced which leverages the reinforcement
learning to automatically determine the quantization policy, and
takes the hardware accelerator’s feedback in the design loop to
generate direct feedback signals to the RL agent.

178 BIBLIOGRAPHY

[126] Z. Liu, B. Oguz, A. Pappu, L. Xiao, S. Yih, M. Li, R. Krish-
namoorthi, and Y. Mehdad, “BiT: Robustly Binarized Multi-
Distilled Transformer,” Advances in Neural Information Pro-
cessing Systems, vol. 35, pp. 14 303–14 316, 2022.

[127] G. Prato, E. Charlaix, and M. Rezagholizadeh, “Fully Quan-
tized Transformer for Machine Translation,” in Findings of
the Association for Computational Linguistics: EMNLP 2020,
T. Cohn, Y. He, and Y. Liu, Eds. Online: Association for
Computational Linguistics, Nov. 2020, pp. 1–14.

[128] S. Kim, A. Gholami, Z. Yao, M. W. Mahoney, and K. Keutzer,
“I-BERT: Integer-only BERT Quantization,” in Proceedings
of the 38th International Conference on Machine Learning.
PMLR, Jul. 2021, pp. 5506–5518.

[129] H. Bai, W. Zhang, L. Hou, L. Shang, J. Jin, X. Jiang, Q. Liu,
M. Lyu, and I. King, “BinaryBERT: Pushing the Limit of BERT
Quantization,” in Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th Interna-
tional Joint Conference on Natural Language Processing (Vol-
ume 1: Long Papers), C. Zong, F. Xia, W. Li, and R. Navigli,
Eds. Online: Association for Computational Linguistics, Aug.
2021, pp. 4334–4348.

[130] O. Zafrir, G. Boudoukh, P. Izsak, and M. Wasserblat,
“Q8BERT: Quantized 8Bit BERT,” in 2019 Fifth Workshop on
Energy Efficient Machine Learning and Cognitive Computing -
NeurIPS Edition (EMC2-NIPS). IEEE Computer Society, Dec.
2019, pp. 36–39.

[131] C. Zhao, T. Hua, Y. Shen, Q. Lou, and H. Jin, “Automatic
Mixed-Precision Quantization Search of BERT,” Proceedings of
the Thirtieth International Joint Conference on Artificial Intel-
ligence, pp. 3427–3433, Aug. 2021, [TLDR] This paper proposes
an automatic mixed-precision quantization framework designed
for BERT that can conduct quantization and pruning simulta-
neously, and leverages Differentiable Neural Architecture Search
to assign scale and precision for parameters in each sub-group

BIBLIOGRAPHY 179

automatically, and at the same pruning out redundant groups
of parameters.

[132] H. Lin, X. Cheng, X. Wu, and D. Shen, “CAT: Cross Attention
in Vision Transformer,” in 2022 IEEE International Conference
on Multimedia and Expo (ICME). IEEE Computer Society,
Jul. 2022, pp. 1–6.

[133] D. Hendrycks and K. Gimpel, “Gaussian Error Linear Units
(GELUs),” ArXiv, no. arXiv:1606.08415, Jun. 2023, comment:
Trimmed version of 2016 draft.

[134] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn,
X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold,
S. Gelly et al., “An Image is Worth 16x16 Words: Transformers
for Image Recognition at Scale,” in International Conference on
Learning Representations, Oct. 2020.

[135] X. Chen, S. Yin, D. Song, P. Ouyang, L. Liu, and S. Wei, “Small-
Footprint Keyword Spotting with Graph Convolutional Net-
work,” 2019 IEEE Automatic Speech Recognition and Under-
standing Workshop (ASRU), pp. 539–546, Dec. 2019, [TLDR]
This study proposes a novel context-aware and compact archi-
tecture for keyword spotting task based on residual connection
and bottleneck structure, and designs a compact and efficient
network for KWS task.

[136] D. Ng, Y. Chen, B. Tian, Q. Fu, and E. S. Chng, “Convmixer:
Feature Interactive Convolution with Curriculum Learning for
Small Footprint and Noisy Far-Field Keyword Spotting,” in
ICASSP 2022 - 2022 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), May 2022, pp.
3603–3607.

[137] Y. Gong, Y.-A. Chung, and J. Glass, “AST: Audio Spectro-
gram Transformer,” Interspeech 2021, pp. 571–575, Aug. 2021,
[TLDR] The Audio Spectrogram Transformer is introduced, the
first convolution-free, purely attention-based model for audio
classification, which achieves new state-of-the-art results on var-
ious audio classification benchmarks.

180 BIBLIOGRAPHY

[138] D. C. de Andrade, S. Leo, M. Viana, and C. Bernkopf, “A Neu-
ral Attention Model for Speech Command Recognition,” ArXiv,
Aug. 2018, [TLDR] A convolutional recurrent network with at-
tention for speech command recognition that establishes a new
state-of-the-art accuracy of 94.1% and allows inspecting what
regions of the audio were taken into consideration by the net-
work when outputting a given category.

[139] O. Rybakov, N. Kononenko, N. Subrahmanya, M. Visontai, and
S. Laurenzo, “Streaming Keyword Spotting on Mobile Devices,”
Interspeech 2020, pp. 2277–2281, Oct. 2020, [TLDR] A Ten-
sorflow/Keras based library is designed which allows automatic
conversion of non-streaming models to streaming ones with min-
imum effort and also explores novel KWS models with multi-
head attention which reduce the classification error over the
state-of-art by 10% on Google speech commands data sets V2.

[140] A. Reuther, P. Michaleas, M. Jones, V. Gadepally, S. Samsi,
and J. Kepner, “Survey and Benchmarking of Machine Learn-
ing Accelerators,” 2019 IEEE High Performance Extreme Com-
puting Conference (HPEC), pp. 1–9, Sep. 2019, [TLDR] This
paper surveys the current state of processors and accelerators
that have been publicly announced with performance and power
consumption numbers, and selects and benchmark two commer-
cially available low size, weight, and power (SWaP) accelerators
as these processors are the most interesting for embedded and
mobile machine learning inference applications that are most
applicable to the DoD and other SWaP constrained users.

[141] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning Both
Weights and Connections for Efficient Neural Networks,” in Pro-
ceedings of the 28th International Conference on Neural Infor-
mation Processing Systems - Volume 1, ser. NIPS’15. Cam-
bridge, MA, USA: MIT Press, Dec. 2015, pp. 1135–1143.

[142] F. Iandola, M. W. Moskewicz, K. Ashraf, S. Han, W. Dally,
and K. Keutzer, “SqueezeNet: AlexNet-Level Accuracy with
50x Fewer Parameters and <1MB Model Size,” ArXiv, Feb.
2016, [TLDR] This work proposes a small DNN architecture
called SqueezeNet, which achieves AlexNet-level accuracy on

BIBLIOGRAPHY 181

ImageNet with 50x fewer parameters and is able to compress to
less than 0.5MB (510x smaller than AlexNet).

[143] L. Cavigelli, G. Rutishauser, and L. Benini, “EBPC: Extended
Bit-Plane Compression for Deep Neural Network Inference and
Training Accelerators,” IEEE Journal on Emerging and Se-
lected Topics in Circuits and Systems, vol. 9, no. 4, pp. 723–
734, Dec. 2019, [TLDR] This work introduces and evaluates a
novel, hardware-friendly, and lossless compression scheme for
the feature maps present within convolutional neural networks,
and achieves compression factors for gradient map compression
during training that are even better than for inference.

[144] M. Courbariaux, Y. Bengio, and J.-P. David, “BinaryConnect:
Training Deep Neural Networks with Binary Weights During
Propagations,” in Proceedings of the 28th International Confer-
ence on Neural Information Processing Systems - Volume 2, ser.
NIPS’15. Cambridge, MA, USA: MIT Press, Dec. 2015, pp.
3123–3131.

[145] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-
Net: ImageNet Classification Using Binary Convolutional Neu-
ral Networks,” in Computer Vision – ECCV 2016, B. Leibe,
J. Matas, N. Sebe, and M. Welling, Eds. Cham: Springer
International Publishing, 2016, pp. 525–542.

[146] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Ben-
gio, “Binarized Neural Networks,” in Proceedings of the 30th In-
ternational Conference on Neural Information Processing Sys-
tems, ser. NIPS’16. Red Hook, NY, USA: Curran Associates
Inc., Dec. 2016, pp. 4114–4122.

[147] B. Liu, F. Li, X. Wang, B. Zhang, and J. Yan, “Ternary Weight
Networks,” in ICASSP 2023 - 2023 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP),
Jun. 2023, pp. 1–5.

[148] C. Zhu, S. Han, H. Mao, and W. J. Dally, “Trained Ternary
Quantization,” in 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net, 2017.

182 BIBLIOGRAPHY

[149] X. Lin, C. Zhao, and W. Pan, “Towards Accurate Binary Con-
volutional Neural Network,” in Proceedings of the 31st Interna-
tional Conference on Neural Information Processing Systems,
ser. NIPS’17. Red Hook, NY, USA: Curran Associates Inc.,
Dec. 2017, pp. 344–352.

[150] H. Alemdar, V. Leroy, A. Prost-Boucle, and F. Petrot, “Ternary
Neural Networks for Resource-Efficient AI Applications,” 2017
International Joint Conference on Neural Networks (IJCNN),
pp. 2547–2554, May 2017, [TLDR] This paper proposes ternary
neural networks (TNNs) in order to make deep learning more
resource-efficient, and designs a purpose-built hardware archi-
tecture for TNNs and implements it on FPGA and ASIC.

[151] H. Qin, R. Gong, X. Liu, X. Bai, J. Song, and N. Sebe, “Binary
Neural Networks: A Survey,” Pattern Recognition, vol. 105, p.
107281, Sep. 2020.

[152] A. Mishra, E. Nurvitadhi, J. J. Cook, and D. Marr, “WRPN:
Wide Reduced-Precision Networks,” in International Confer-
ence on Learning Representations, Feb. 2018.

[153] J. Choi, P. I.-J. Chuang, Z. Wang, S. Venkataramani, V. Srini-
vasan, and K. Gopalakrishnan, “Bridging the Accuracy Gap
for 2-bit Quantized Neural Networks (QNN),” ArXiv, no.
arXiv:1807.06964, Jul. 2018, comment: arXiv admin note: sub-
stantial text overlap with arXiv:1805.06085.

[154] R. Andri, L. Cavigelli, D. Rossi, and L. Benini, “YodaNN:
An Ultra-Low Power Convolutional Neural Network Accelera-
tor Based on Binary Weights,” in 2016 IEEE Computer Society
Annual Symposium on VLSI (ISVLSI), Jul. 2016, pp. 236–241.

[155] B. Moons, D. Bankman, L. Yang, B. Murmann, and M. Ver-
helst, “BinarEye: An Always-on Energy-Accuracy-Scalable Bi-
nary CNN Processor with All Memory on Chip in 28nm Cmos,”
in 2018 IEEE Custom Integrated Circuits Conference (CICC),
Apr. 2018, pp. 1–4.

[156] S. Jain, S. K. Gupta, and A. Raghunathan, “TiM-DNN:
Ternary In-Memory Accelerator for Deep Neural Networks,”

BIBLIOGRAPHY 183

IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems, vol. 28, no. 7, pp. 1567–1577, Jul. 2020, [TLDR] TIM-
DNN, a programmable in-memory accelerator that is specifi-
cally designed to execute ternary DNNs, is proposed and evalu-
ated across a suite of state-of-the-art DNN benchmarks includ-
ing both deep convolutional and recurrent neural networks.

[157] H. Valavi, P. J. Ramadge, E. Nestler, and N. Verma, “A 64-
Tile 2.4-Mb In-Memory-Computing CNN Accelerator Employ-
ing Charge-Domain Compute,” IEEE Journal of Solid-State
Circuits, vol. 54, no. 6, pp. 1789–1799, Jun. 2019, [TLDR] This
paper addresses data movement via an in-memory-computing
accelerator that employs charged-domain mixed-signal opera-
tion for enhancing compute SNR and, thus, scalability in large-
scale matrix-vector multiplications.

[158] M. Klachko, M. R. Mahmoodi, and D. B. Strukov, “Improv-
ing Noise Tolerance of Mixed-Signal Neural Networks,” in In-
ternational Joint Conference on Neural Networks, IJCNN 2019
Budapest, Hungary, July 14-19, 2019. IEEE, 2019, pp. 1–8.

[159] P. C. Knag, G. K. Chen, H. E. Sumbul, R. Kumar, S. K. Hsu,
A. Agarwal, M. Kar, S. Kim, M. A. Anders, H. Kaul et al.,
“A 617-TOPS/W All-Digital Binary Neural Network Acceler-
ator in 10-nm FinFET CMOS,” IEEE Journal of Solid-State
Circuits, vol. 56, no. 4, pp. 1082–1092, Apr. 2021, [TLDR] The
bit-serial binary operation allows for bit-accurate operation and
high DNN accuracy that multibit analog compute-in-memory
designs struggle to attain and provides favorable energy trade-
offs compared with small-integer digital DNN accelerators.

[160] Q. Hu, P. Wang, and J. Cheng, “From Hashing to CNNs: Train-
ing Binary Weight Networks via Hashing,” in Proceedings of
the Thirty-Second AAAI Conference on Artificial Intelligence,
(AAAI-18), the 30th Innovative Applications of Artificial In-
telligence (IAAI-18), and the 8th AAAI Symposium on Educa-
tional Advances in Artificial Intelligence (EAAI-18), New Or-
leans, Louisiana, USA, February 2-7, 2018, S. A. McIlraith and
K. Q. Weinberger, Eds. AAAI Press, 2018, pp. 3247–3254.

184 BIBLIOGRAPHY

[161] G. Cerutti, R. Andri, L. Cavigelli, E. Farella, M. Magno, and
L. Benini, “Sound Event Detection with Binary Neural Net-
works on Tightly Power-Constrained IoT Devices,” in Proceed-
ings of the ACM/IEEE International Symposium on Low Power
Electronics and Design, ser. ISLPED ’20. New York, NY, USA:
Association for Computing Machinery, Aug. 2020, pp. 19–24.

[162] L. Deng, P. Jiao, J. Pei, Z. Wu, and G. Li, “GXNOR-Net:
Training Deep Neural Networks with Ternary Weights and Ac-
tivations Without Full-Precision Memory Under a Unified Dis-
cretization Framework,” Neural Networks, vol. 100, pp. 49–58,
2018.

[163] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen, “Incremen-
tal Network Quantization: Towards Lossless CNNs with Low-
precision Weights,” in 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net, 2017.

[164] A. Bulat and G. Tzimiropoulos, “XNOR-Net++: Improved Bi-
nary Neural Networks,” in 30th British Machine Vision Con-
ference 2019, BMVC 2019, Cardiff, UK, September 9-12, 2019.
BMVA Press, 2019, p. 62.

[165] S. Zhou, Z. Ni, X. Zhou, H. Wen, Y. Wu, and Y. Zou, “DoReFa-
Net: Training Low Bitwidth Convolutional Neural Networks
with Low Bitwidth Gradients,” ArXiv, Jun. 2016, [TLDR]
DoReFa-Net, a method to train convolutional neural networks
that have low bitwidth weights and activations using low bit
width parameter gradients, is proposed and can achieve compa-
rable prediction accuracy as 32-bit counterparts.

[166] B. Zhuang, C. Shen, M. Tan, L. Liu, and I. Reid, “Structured
Binary Neural Networks for Accurate Image Classification and
Semantic Segmentation,” in 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). IEEE
Computer Society, Jun. 2019, pp. 413–422.

[167] H. Phan, D. Huynh, Y. He, M. Savvides, and Z. Shen, “MoBi-
Net: A Mobile Binary Network for Image Classification,” 2020
IEEE Winter Conference on Applications of Computer Vision

BIBLIOGRAPHY 185

(WACV), pp. 3442–3451, Mar. 2020, [TLDR] A novel neural
network architecture, namely MoBi- Net - Mobile Binary Net-
work in which skip connections are manipulated to prevent infor-
mation loss and vanishing gradient, thus facilitate the training
process and results in an effectively small model while keeping
the accuracy comparable to existing ones.

[168] A. Byerly, T. Kalganova, and I. Dear, “A Branching and Merg-
ing Convolutional Network with Homogeneous Filter Capsules,”
ArXiv, Jan. 2020, [TLDR] A convolutional neural network de-
sign with additional branches after certain convolutions so that
it can extract features with differing effective receptive fields
and levels of abstraction establishes a new state of the art for
the MNIST dataset with an accuracy of 99.84%.

[169] X. Sun, S. Yin, X. Peng, R. Liu, J.-s. Seo, and S. Yu, “Xnor-
RRAM: A Scalable and Parallel Resistive Synaptic Architecture
for Binary Neural Networks,” in 2018 Design, Automation &
Test in Europe Conference & Exhibition (DATE), Mar. 2018,
pp. 1423–1428.

[170] A. Kolesnikov, L. Beyer, X. Zhai, J. Puigcerver, J. Yung,
S. Gelly, and N. Houlsby, “Big Transfer (BiT): General Visual
Representation Learning,” in Computer Vision – ECCV 2020,
A. Vedaldi, H. Bischof, T. Brox, and J.-M. Frahm, Eds. Cham:
Springer International Publishing, 2020, pp. 491–507.

[171] P. Yin, S. Zhang, J. Lyu, S. Osher, Y. Qi, and J. Xin, “Bi-
naryRelax: A Relaxation Approach for Training Deep Neural
Networks with Quantized Weights,” SIAM Journal on Imaging
Sciences, vol. 11, no. 4, pp. 2205–2223, Jan. 2018, [TLDR] Bi-
naryRelax is proposed, a simple two-phase algorithm for train-
ing deep neural networks with quantized weights that relax the
hard constraint into a continuous regularizer via Moreau enve-
lope, which turns out to be the squared Euclidean distance to
the set of quantization weights.

[172] S. Darabi, M. Belbahri, M. Courbariaux, and V. Nia, “BNN+:
Improved Binary Network Training,” ArXiv, Sep. 2018, [TLDR]
An improved binary training method is proposed, by intro-

186 BIBLIOGRAPHY

ducing a new regularization function that encourages training
weights around binary values and introducing an improved ap-
proximation of the derivative of the $sign$ activation function
in the backward computation.

[173] H. Touvron, A. Vedaldi, M. Douze, and H. J’egou, “Fixing the
Train-Test Resolution Discrepancy: FixEfficientNet,” ArXiv,
Mar. 2020, [TLDR] This strategy is advantageously combined
with recent training recipes from the literature and significantly
outperforms the initial architecture with the same number of pa-
rameters, and establishes the new state of the art for ImageNet
with a single crop.

[174] L. Cavigelli and L. Benini, “RPR: Random Partition Relaxation
for Training; Binary and Ternary Weight Neural Networks,”
ArXiv, Jan. 2020, [TLDR] Random Partition Relaxation (RPR)
is presented, a method for strong quantization of neural net-
works weight to binary (+1/-1) and ternary (+1/0/1) values
and an SGD-based training method that can be integrated into
existing frameworks.

[175] M. Spallanzani, L. Cavigelli, G. P. Leonardi, M. Bertogna,
and L. Benini, “Additive Noise Annealing and Approximation
Properties of Quantized Neural Networks,” ArXiv, May 2019,
[TLDR] A novel gradient-based training algorithm for quantized
neural networks that generalizes the straight-through estimator,
acting on noise applied to the network’s parameters, showing
state-of-the-art performance on AlexNet and MobileNetV2 for
ternary networks.

[176] J. Faraone, N. Fraser, G. Gambardella, M. Blott, and P. H. W.
Leong, “Compressing Low Precision Deep Neural Networks Us-
ing Sparsity-Induced Regularization in Ternary Networks,” in
Neural Information Processing, D. Liu, S. Xie, Y. Li, D. Zhao,
and E.-S. M. El-Alfy, Eds. Cham: Springer International Pub-
lishing, 2017, pp. 393–404.

[177] A. Marban, D. Becking, S. Wiedemann, and W. Samek,
“Learning Sparse & Ternary Neural Networks with Entropy-
Constrained Trained Ternarization (EC2T),” 2020 IEEE/CVF

BIBLIOGRAPHY 187

Conference on Computer Vision and Pattern Recognition Work-
shops (CVPRW), pp. 3105–3113, Jun. 2020, [TLDR] Entropy-
Constrained Trained Ternarization (EC2T), a general frame-
work to create sparse and ternary neural networks which are
efficient in terms of storage and computation, is proposed and
validated in CIFAR-10, CIFar-100, and ImageNet datasets.

[178] R. Ding, T.-W. Chin, Z. Liu, and D. Marculescu, “Regularizing
Activation Distribution for Training Binarized Deep Networks,”
2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 11 400–11 409, Jun. 2019, [TLDR] The
experiments show that the distribution loss can consistently im-
prove the accuracy of BNNs without losing their energy benefits
and equipped with the proposed regularization, BNN training
is shown to be robust to the selection of hyper-parameters in-
cluding optimizer and learning rate.

[179] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient Pro-
cessing of Deep Neural Networks: A Tutorial and Survey,” Pro-
ceedings of the IEEE, vol. 105, no. 12, pp. 2295–2329, Dec. 2017.

[180] L. Cavigelli, M. Magno, and L. Benini, “Accelerating Real-Time
Embedded Scene Labeling with Convolutional Networks,” in
2015 52nd ACM/EDAC/IEEE Design Automation Conference
(DAC), Jun. 2015, pp. 1–6.

[181] Y. Chen, Y. Xie, L. Song, F. Chen, and T. Tang, “A Survey
of Accelerator Architectures for Deep Neural Networks,” Engi-
neering, vol. 6, no. 3, pp. 264–274, Mar. 2020.

[182] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill,
M. Liu, D. Lo, S. Alkalay, M. Haselman, L. Adams, M. Ghandi
et al., “A Configurable Cloud-Scale DNN Processor for Real-
Time AI,” in 2018 ACM/IEEE 45th Annual International Sym-
posium on Computer Architecture (ISCA), Jun. 2018, pp. 1–14.

[183] B. Moons and M. Verhelst, “A 0.3–2.6 TOPS/W Precision-
Scalable Processor for Real-Time Large-Scale Convnets,” 2016
IEEE Symposium on VLSI Circuits (VLSI-Circuits), pp. 1–2,
Jun. 2016, [TLDR] A low-power precision-scalable processor for
ConvNets or convolutional neural networks (CNN) is imple-

188 BIBLIOGRAPHY

mented in a 40nm technology and is the first to both exploit the
sparsity of convolutions and to implement dynamic precision-
scalability enabling supply- and energy scaling.

[184] R. Andri, L. Cavigelli, D. Rossi, and L. Benini, “Hyperdrive:
A Multi-Chip Systolically Scalable Binary-Weight CNN Infer-
ence Engine,” IEEE Journal on Emerging and Selected Topics
in Circuits and Systems, vol. 9, no. 2, pp. 309–322, Jun. 2019.

[185] A. D. Mauro, F. Conti, P. D. Schiavone, D. Rossi, and L. Benini,
“Always-On 674µW@4GOP/s Error Resilient Binary Neural
Networks With Aggressive SRAM Voltage Scaling on a 22-nm
IoT End-Node,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 67, no. 11, pp. 3905–3918, Nov. 2020.

[186] S. Okumura, M. Yabuuchi, K. Hijioka, and K. Nose, “A
Ternary Based Bit Scalable, 8.80 TOPS/W CNN accelerator
with Many-core Processing-in-memory Architecture with 896K
synapses/mm2,” in 2019 Symposium on VLSI Technology, Jun.
2019, pp. C248–C249.

[187] K. Ando, K. Ueyoshi, K. Orimo, H. Yonekawa, S. Sato, H. Naka-
hara, M. Ikebe, T. Asai, S. Takamaeda-Yamazaki, T. Kuroda
et al., “BRein Memory: A 13-Layer 4.2 K Neuron/0.8 M
Synapse Binary/Ternary Reconfigurable in-Memory Deep Neu-
ral Network Accelerator in 65 nm CMOS,” 2017 Symposium
on VLSI Circuits, pp. C24–C25, Jun. 2017, [TLDR] A versatile
reconfigurable accelerator for binary/ternary deep neural net-
works (DNNs) is presented, which features a massively parallel
in-memory processing architecture and stores varieties of bina-
ry/ Sternary DNNs with a maximum of 13 layers, 4.2 K neurons,
and 0.8 M synapses on chip.

[188] A. Ardakani, Z. Ji, S. C. Smithson, B. Meyer, and W. Gross,
“Learning Recurrent Binary/Ternary Weights,” ArXiv, Sep.
2018, [TLDR] A method that can learn binary and ternary
weights during the training phase to facilitate hardware imple-
mentations of RNNs is introduced, which replaces all multiply-
accumulate operations by simple accumulations, bringing signif-

BIBLIOGRAPHY 189

icant benefits to custom hardware in terms of silicon area and
power consumption.

[189] S. Sen and A. Raghunathan, “Approximate Computing for Long
Short Term Memory (LSTM) Neural Networks,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 37, no. 11, pp. 2266–2276, Nov. 2018.

[190] X. Zhou, Z. Du, S. Zhang, L. Zhang, H. Lan, S. Liu, L. Li,
Q. Guo, T. Chen, and Y. Chen, “Addressing Sparsity in Deep
Neural Networks,” IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, vol. 38, no. 10, pp.
1858–1871, Oct. 2019.

[191] Z. Yuan, Y. Liu, J. Yue, Y. Yang, J. Wang, X. Feng, J. Zhao,
X. Li, and H. Yang, “STICKER: An Energy-Efficient Multi-
Sparsity Compatible Accelerator for Convolutional Neural Net-
works in 65-nm CMOS,” IEEE Journal of Solid-State Circuits,
vol. 55, no. 2, pp. 465–477, Feb. 2020, [TLDR] Three new fea-
tures are proposed in this article to support wide sparsity dis-
tribution efficiently and include a multi-sparsity-compatible set-
associative convolution processing element (PE) array, designed
to efficiently carry out convolution operations under different
sparsity modes.

[192] O. Muller, A. Prost-Boucle, A. Bourge, and F. Pétrot, “Effi-
cient Decompression of Binary Encoded Balanced Ternary Se-
quences,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 27, no. 8, pp. 1962–1966, Aug. 2019.

[193] J. Buckman, A. Roy, C. Raffel, and I. Goodfellow, “Thermome-
ter Encoding: One Hot Way To Resist Adversarial Examples,”
in International Conference on Learning Representations, Feb.
2018.

[194] K. Goetschalckx and M. Verhelst, “Breaking High-Resolution
CNN Bandwidth Barriers With Enhanced Depth-First Execu-
tion,” IEEE Journal on Emerging and Selected Topics in Cir-
cuits and Systems, vol. 9, no. 2, pp. 323–331, Jun. 2019.

190 BIBLIOGRAPHY

[195] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu,
and P. P. Kuksa, “Natural Language Processing (Almost) from
Scratch,” Journal of Machine Learning Research, 2011.

[196] P. D. Schiavone, D. Rossi, A. Pullini, A. Di Mauro, F. Conti, and
L. Benini, “Quentin: An Ultra-Low-Power PULPissimo SoC in
22nm FDX,” in 2018 IEEE SOI-3D-Subthreshold Microelectron-
ics Technology Unified Conference (S3S), Oct. 2018, pp. 1–3.

[197] A. Pullini, D. Rossi, G. Haugou, and L. Benini, “µDMA: An
autonomous I/O subsystem for IoT end-nodes,” in 2017 27th
International Symposium on Power and Timing Modeling, Op-
timization and Simulation (PATMOS), Sep. 2017, pp. 1–8.

[198] J. S. P. Giraldo, V. Jain, and M. Verhelst, “Efficient Execution
of Temporal Convolutional Networks for Embedded Keyword
Spotting,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 29, no. 12, pp. 2220–2228, Dec. 2021.

[199] A. Amir, B. Taba, D. Berg, T. Melano, J. McKinstry,
C. Di Nolfo, T. Nayak, A. Andreopoulos, G. Garreau, M. Men-
doza et al., “A Low Power, Fully Event-Based Gesture Recog-
nition System,” in 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Jul. 2017, pp. 7388–7397.

[200] E. Ceolini, C. Frenkel, S. B. Shrestha, G. Taverni, L. Khacef,
M. Payvand, and E. Donati, “Hand-Gesture Recognition Based
on EMG and Event-Based Camera Sensor Fusion: A Bench-
mark in Neuromorphic Computing,” Frontiers in Neuroscience,
vol. 14, 2020.

[201] T. M. Ingolfsson, M. Hersche, X. Wang, N. Kobayashi, L. Cav-
igelli, and L. Benini, “EEG-TCNet: An Accurate Temporal
Convolutional Network for Embedded Motor-Imagery Brain–
Machine Interfaces,” in 2020 IEEE International Conference on
Systems, Man, and Cybernetics (SMC), Oct. 2020, pp. 2958–
2965.

[202] M. Zanghieri, S. Benatti, A. Burrello, V. J. Kartsch Morinigo,
R. Meattini, G. Palli, C. Melchiorri, and L. Benini, “sEMG-
based Regression of Hand Kinematics with Temporal Convolu-

BIBLIOGRAPHY 191

tional Networks on a Low-Power Edge Microcontroller,” in 2021
IEEE International Conference on Omni-Layer Intelligent Sys-
tems (COINS), Aug. 2021, pp. 1–6.

[203] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi,
Y. Babaei, N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale
et al., “Llama 2: Open Foundation and Fine-Tuned Chat Mod-
els,” ArXiv, no. arXiv:2307.09288, Jul. 2023.

[204] G. Team, R. Anil, S. Borgeaud, Y. Wu, J.-B. Alayrac, J. Yu,
R. Soricut, J. Schalkwyk, A. M. Dai, A. Hauth et al., “Gemini:
A Family of Highly Capable Multimodal Models,” ArXiv, no.
arXiv:2312.11805, Dec. 2023.

[205] Y. Chen, K. Ren, K. Song, Y. Wang, Y. Wang, D. Li, and L. Qiu,
“EEGFormer: Towards Transferable and Interpretable Large-
Scale EEG Foundation Model,” ArXiv, no. arXiv:2401.10278,
Jan. 2024, comment: A preprint version of an ongoing work.

[206] C. Wang, V. Subramaniam, A. U. Yaari, G. Kreiman, B. Katz,
I. Cases, and A. Barbu, “BrainBERT: Self-Supervised Represen-
tation Learning for Intracranial Recordings,” in The Eleventh
International Conference on Learning Representations, Sep.
2022.

[207] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes,
B. David, C. Finn, K. Gopalakrishnan, K. Hausman, A. Her-
zog et al., “Do As I Can, Not As I Say: Grounding Language
in Robotic Affordances,” in Conference on Robot Learning, Apr.
2022, [TLDR] This work proposes to provide real-world ground-
ing by means of pretrained skills, which are used to constrain the
model to propose natural language actions that are both feasible
and contextually appropriate, and shows how low-level skills can
be combined with large language models so that the language
model provides high-level knowledge about the procedures for
performing complex and temporally extended instructions.

[208] D. Driess, F. Xia, M. S. M. Sajjadi, C. Lynch, A. Chowd-
hery, B. Ichter, A. Wahid, J. Tompson, Q. Vuong, T. Yu
et al., “PaLM-E: An Embodied Multimodal Language Model,”
in Proceedings of the 40th International Conference on Machine

192 BIBLIOGRAPHY

Learning, ser. ICML’23, vol. 202. JMLR.org, Jul. 2023, pp.
8469–8488.

[209] R. Eldan and Y. Li, “TinyStories: How Small Can Language
Models Be and Still Speak Coherent English?” ArXiv, no.
arXiv:2305.07759, May 2023.

[210] P. Zhang, G. Zeng, T. Wang, and W. Lu, “TinyL-
lama: An Open-Source Small Language Model,” ArXiv, no.
arXiv:2401.02385, Jan. 2024, comment: Technical Report.

[211] Y. LeCun, “Deep Learning Hardware: Past, Present, and Fu-
ture,” in 2019 IEEE International Solid-State Circuits Confer-
ence - (ISSCC), Feb. 2019, pp. 12–19.

[212] J. Choquette, “NVIDIA Hopper H100 GPU: Scaling Perfor-
mance,” IEEE Micro, vol. 43, no. 3, pp. 9–17, May 2023.

[213] C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis,
J. Pienaar, R. Riddle, T. Shpeisman, N. Vasilache, and O. Zi-
nenko, “MLIR: Scaling Compiler Infrastructure for Domain Spe-
cific Computation,” in 2021 IEEE/ACM International Sympo-
sium on Code Generation and Optimization (CGO), Feb. 2021,
pp. 2–14.

[214] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, M. Cowan,
H. Shen, L. Wang, Y. Hu, L. Ceze et al., “TVM: An Automated
End-to-End Optimizing Compiler for Deep Learning,” in Pro-
ceedings of the 13th USENIX Conference on Operating Systems
Design and Implementation, ser. OSDI’18. USA: USENIX As-
sociation, Oct. 2018, pp. 579–594.

[215] A. Q. Jiang, A. Sablayrolles, A. Roux, A. Mensch, B. Savary,
C. Bamford, D. S. Chaplot, D. de las Casas, E. B.
Hanna, F. Bressand et al., “Mixtral of Experts,” ArXiv, no.
arXiv:2401.04088, Jan. 2024, comment: See more details at
https://mistral.ai/news/mixtral-of-experts/.

[216] R. Firoozi, J. Tucker, S. Tian, A. Majumdar, J. Sun, W. Liu,
Y. Zhu, S. Song, A. Kapoor, K. Hausman et al., “Foundation
Models in Robotics: Applications, Challenges, and the Future,”
ArXiv, no. arXiv:2312.07843, Dec. 2023.

BIBLIOGRAPHY 193

[217] Y. Li, R. Gong, X. Tan, Y. Yang, P. Hu, Q. Zhang, F. Yu,
W. Wang, and S. Gu, “BRECQ: Pushing the Limit of Post-
Training Quantization by Block Reconstruction,” in Interna-
tional Conference on Learning Representations, Oct. 2020.

[218] E. Frantar and D. Alistarh, “Optimal Brain Compression: A
Framework for Accurate Post-Training Quantization and Prun-
ing,” in Advances in Neural Information Processing Systems,
Oct. 2022.

[219] G. Xiao, J. Lin, M. Seznec, H. Wu, J. Demouth, and S. Han,
“SmoothQuant: Accurate and Efficient Post-Training Quanti-
zation for Large Language Models,” in Proceedings of the 40th
International Conference on Machine Learning. PMLR, Jul.
2023, pp. 38 087–38 099.

[220] Y. Jeon, C. Lee, K. Park, and H.-y. Kim, “A Frustratingly Easy
Post-Training Quantization Scheme for LLMs,” in Proceedings
of the 2023 Conference on Empirical Methods in Natural Lan-
guage Processing, H. Bouamor, J. Pino, and K. Bali, Eds. Sin-
gapore: Association for Computational Linguistics, Dec. 2023,
pp. 14 446–14 461.

[221] A. Howard, M. Sandler, B. Chen, W. Wang, L.-C. Chen, M. Tan,
G. Chu, V. Vasudevan, Y. Zhu, R. Pang et al., “Searching for
MobileNetV3,” in 2019 IEEE/CVF International Conference
on Computer Vision (ICCV). IEEE Computer Society, Oct.
2019, pp. 1314–1324.

[222] J. Lin, W.-M. Chen, H. Cai, C. Gan, and S. Han, “Memory-
efficient Patch-based Inference for Tiny Deep Learning,” in Ad-
vances in Neural Information Processing Systems, vol. 34. Cur-
ran Associates, Inc., 2021, pp. 2346–2358.

[223] F. Svoboda, J. Fernandez-Marques, E. Liberis, and N. D. Lane,
“Deep Learning on Microcontrollers: A Study on Deployment
Costs and Challenges,” in Proceedings of the 2nd European
Workshop on Machine Learning and Systems, ser. EuroMLSys
’22. New York, NY, USA: Association for Computing Machin-
ery, Apr. 2022, pp. 54–63.

194 BIBLIOGRAPHY

[224] S. S. Saha, S. S. Sandha, and M. Srivastava, “Machine Learning
for Microcontroller-Class Hardware: A Review,” IEEE Sensors
Journal, vol. 22, no. 22, pp. 21 362–21 390, Nov. 2022.

[225] M. Maas, U. Beaugnon, A. Chauhan, and B. Ilbeyi, “TelaMal-
loc: Efficient On-Chip Memory Allocation for Production Ma-
chine Learning Accelerators,” in Proceedings of the 28th ACM
International Conference on Architectural Support for Program-
ming Languages and Operating Systems, Volume 1, ser. ASP-
LOS 2023. New York, NY, USA: Association for Computing
Machinery, Dec. 2022, pp. 123–137.

[226] M. D. Moffitt, “MiniMalloc: A Lightweight Memory Allocator
for Hardware-Accelerated Machine Learning,” in Proceedings of
the 28th ACM International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, Vol-
ume 4, ser. ASPLOS ’23. New York, NY, USA: Association for
Computing Machinery, Feb. 2024, pp. 238–252.

[227] M. Spallanzani, G. Rutishauser, M. Scherer, A. Burrello,
F. Conti, and L. Benini, “QuantLab: A Modular Framework for
Training and Deploying Mixed-Precision NNs,” TinyML Sum-
mit, 2022.

[228] F. Angiolini, L. Benini, and A. Caprara, “An Efficient Profile-
based Algorithm for Scratchpad Memory Partitioning,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 24, no. 11, pp. 1660–1676, Nov. 2005.

[229] A. Tumanov, T. Zhu, J. W. Park, M. A. Kozuch, M. Harchol-
Balter, and G. R. Ganger, “TetriSched: Global Rescheduling
with Adaptive Plan-Ahead in Dynamic Heterogeneous Clus-
ters,” in Proceedings of the Eleventh European Conference on
Computer Systems, ser. EuroSys ’16. New York, NY, USA:
Association for Computing Machinery, Apr. 2016, pp. 1–16.

[230] “Mako Templates for Python,”
https://github.com/sqlalchemy/mako/releases.

BIBLIOGRAPHY 195

[231] B. Zhang and R. Sennrich, “Root Mean Square Layer Normal-
ization,” in Advances in Neural Information Processing Systems,
vol. 32. Curran Associates, Inc., 2019.

[232] R. Zellers, A. Holtzman, Y. Bisk, A. Farhadi, and Y. Choi,
“HellaSwag: Can a Machine Really Finish Your Sentence?” in
Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics. Florence, Italy: Association for
Computational Linguistics, 2019, pp. 4791–4800, [TLDR] The
construction of HellaSwag, a new challenge dataset, and its re-
sulting difficulty, sheds light on the inner workings of deep pre-
trained models, and suggests a new path forward for NLP re-
search, in which benchmarks co-evolve with the evolving state-
of-the-art in an adversarial way, so as to present ever-harder
challenges.

[233] T. Mihaylov, P. Clark, T. Khot, and A. Sabharwal, “Can a
Suit of Armor Conduct Electricity? A New Dataset for Open
Book Question Answering,” in Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language Processing.
Brussels, Belgium: Association for Computational Linguistics,
2018, pp. 2381–2391, [TLDR] A new kind of question answer-
ing dataset, OpenBookQA, modeled after open book exams for
assessing human understanding of a subject, and oracle experi-
ments designed to circumvent the knowledge retrieval bottleneck
demonstrate the value of both the open book and additional
facts.

[234] K. Sakaguchi, R. L. Bras, C. Bhagavatula, and Y. Choi, “Wino-
Grande: An Adversarial Winograd Schema Challenge at Scale,”
Communications of the ACM, vol. 64, no. 9, pp. 99–106, Aug.
2021.

[235] P. Clark, I. Cowhey, O. Etzioni, T. Khot, A. Sabharwal,
C. Schoenick, and O. Tafjord, “Think you have Solved Question
Answering? Try ARC, the AI2 Reasoning Challenge,” ArXiv,
no. arXiv:1803.05457, Mar. 2018.

[236] C. Clark, K. Lee, M.-W. Chang, T. Kwiatkowski, M. Collins,
and K. Toutanova, “BoolQ: Exploring the Surprising Diffi-

196 BIBLIOGRAPHY

culty of Natural Yes/No Questions,” in Proceedings of the 2019
Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), J. Burstein, C. Doran, and
T. Solorio, Eds. Minneapolis, Minnesota: Association for Com-
putational Linguistics, Jun. 2019, pp. 2924–2936.

[237] Y. Bisk, R. Zellers, R. Le Bras, J. Gao, and Y. Choi, “PIQA:
Reasoning about Physical Commonsense in Natural Language,”
Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 34, no. 05, pp. 7432–7439, Apr. 2020, [TLDR] The task of
physical commonsense reasoning and a corresponding bench-
mark dataset Physical Interaction: Question Answering or
PIQA are introduced and analysis about the dimensions of
knowledge that existing models lack are provided, which offers
significant opportunities for future research.

[238] L. Sutawika, L. Gao, H. Schoelkopf, S. Biderman, J. Tow, B. Ab-
basi, b. fattori, C. Lovering, farzanehnakhaee70, J. Phang et al.,
“A Framework for Few-shot Language Model Evaluation,” Zen-
odo, Dec. 2023.

[239] S. Black, S. Biderman, E. Hallahan, Q. Anthony, L. Gao,
L. Golding, H. He, C. Leahy, K. McDonell, J. Phang et al.,
“GPT-NeoX-20B: An Open-Source Autoregressive Language
Model,” in Proceedings of BigScience Episode #5 – Workshop
on Challenges & Perspectives in Creating Large Language Mod-
els, A. Fan, S. Ilic, T. Wolf, and M. Gallé, Eds. virtual+Dublin:
Association for Computational Linguistics, May 2022, pp. 95–
136.

[240] Z. Liu, C. Zhao, F. Iandola, C. Lai, Y. Tian, I. Fedorov,
Y. Xiong, E. Chang, Y. Shi, R. Krishnamoorthi et al., “Mo-
bileLLM: Optimizing Sub-billion Parameter Language Models
for On-Device Use Cases,” ArXiv, no. arXiv:2402.14905, Feb.
2024.

[241] C. Banbury, V. J. Reddi, P. Torelli, J. Holleman, N. Jeffries,
C. Kiraly, P. Montino, D. Kanter, S. Ahmed, D. Pau et al.,
“MLPerf Tiny Benchmark,” Aug. 2021.

BIBLIOGRAPHY 197

[242] E. Ruedas, “LLM Pipelines: Seamless Integration on Embedded
Devices,” Virtual Event, Mar. 2024.

[243] X. Chu, L. Qiao, X. Lin, S. Xu, Y. Yang, Y. Hu, F. Wei,
X. Zhang, B. Zhang, X. Wei et al., “MobileVLM : A Fast,
Strong and Open Vision Language Assistant for Mobile De-
vices,” ArXiv, no. arXiv:2312.16886, Dec. 2023, comment: Tech
Report.

[244] A. Karpathy, “Llama2.c,” Mar. 2024.

[245] Joey (e/λ) [@shxf0072], “@karpathy llama2.c running on galaxy
watch 4 https://t.co/sMPCZM3WE4,” Dec. 2023.

[246] iFixit, “Samsung Galaxy Watch4 and Watch4 Classic Tear-
down,” https://url.zip/4befa14, Sep. 2021.

[247] A. Frumusanu, “The Snapdragon 888 vs The Exynos
2100: Cortex-X1 & 5nm - Who Does It Better?”
https://www.anandtech.com/show/16463/snapdragon-888-
vs-exynos-2100-galaxy-s21-ultra, Feb. 2021.

Curriculum Vitae

Moritz Scherer was born on August 1, 1996 and grew up in Germany
and Switzerland. He received his BSc and MSc in “Electrical Engi-
neering and Information Technology” from ETH Zurich, Switzerland
in 2018 and 2020, respectively. In 2020, he joined the Integrated
Systems Laboratory of ETH Zurich as a PhD candidate under the
supervision of Prof. Dr. Luca Benini. His research interests include
algorithm design, computer architecture, and hardware acceleration
of deep learning applications.

199

	Introduction
	Motivation
	Machine Learning on the Extreme Edge: TinyML
	Outline
	Contributions
	List of Publications

	Applications and Quantization Algorithms for TinyML
	TinyRadarNN: Combining Spatial and Temporal CNNs
	Introduction
	Related Work
	Background
	Low Power Short Range Radar and Dataset
	Energy-Efficient and High Accuracy Gesture Recognition Algorithm
	Results and Discussion
	Conclusion

	WaveFormer: Long Sequence Transformers for Edge Devices
	Introduction
	Related Work
	WaveFormer
	Quantization Algorithm
	Deployment
	Experimental Results
	Conclusion

	CUTIE: Completely Unrolled Ternary Inference Engine
	Introduction
	Related Work
	Aggressively Quantized Neural Networks
	DNN Hardware Accelerators

	System Architecture
	High-level Data Path
	Parametrization
	Principle of Operation
	Input Encoding
	Exemplary Instantiations of CUTIE

	Implementation
	Interface Design
	Dimensioning
	Implementation Metrics

	Results and Discussion
	Quantized Network Training
	Evaluation Setup
	Experimental Results
	Comparison of Quantization Strategies
	Exploiting Feature Map Smoothness
	Comparison of Binary and Ternary Neural Networks
	Comparison with the State-of-the-Art

	Conclusion

	TCN Extensions for CUTIE
	Introduction
	SoC Implementation
	CUTIE Design
	TCN Extensions
	TCN-CUTIE Implementation
	Kraken Physical Implementation
	Evaluation
	Comparison with State-of-the-Art
	Conclusion
	Outlook

	Deeploy: Automatic DNN Deployment for TinyML SoCs
	Introduction
	Related Work
	Small Foundation Models
	Quantized Transformer Models
	Neural Network Deployment for Extreme Edge Devices

	Deeploy
	Data Structures
	Frontend
	Midend
	Backend

	TinyStories Llama Model
	Prompting Phase
	Generation Phase
	Quantization Setup

	Deployment Platform
	Siracusa
	Deeploy Integration
	Deployment Setup

	Results
	Quantization Results
	Deployment Evaluation Setup
	Microbenchmarking Results
	Compiler Evaluation
	End-to-end Deployment Results
	Deployment Overheads
	Comparison with tinyML Compilers
	Comparison with the State-of-the-art

	Conclusion

	Conclusion
	Main Results
	Future Work and Outlook

	Acronyms
	Bibliography
	Curriculum Vitae

