
diss . eth no. 30484

P R I N C I P L E D D R A M S E C U R I T Y
A G A I N S T R O W H A M M E R AT TA C K S

A thesis submitted to attain the degree of

D O C T O R O F S C I E N C E S
(Dr. sc. ETH Zurich)

presented by

M I C H E L E M A R A Z Z I
M.Sc. in Biomedical Engineering, Politecnico di Milano

born on 02.05.1993

accepted on the recommendation of

Prof. Dr. Kaveh Razavi
Prof. Dr. Moinuddin Qureshi

Prof. Dr. Jung Ho Ahn

2024



Michele Marazzi: Principled DRAM Security against Rowhammer Attacks, ©
2024

Diss. ETH No. 30484

TIK-Schriftenreihe-Nr. 218



To my family, my partner, and my friends.





A B S T R A C T

The security of a system is fractioned into the guarantees of the multiple
hardware devices that it relies on. DRAM is pivotal to today’s systems,
yet its guarantees against sophisticated Rowhammer attacks are uncertain
and undisclosed. Instead, the industry’s answer to Rowhammer has been
security-by-obscurity, quickly proven to be a failure by researchers. It is
therefore unclear if, differently from these results, in-DRAM mitigations
can provide security against Rowhammer once designed with principled
security guarantees. Designing in-DRAM Rowhammer mitigations is com-
plex due to the devices’ synchronous nature and rigorous timings. As well,
their scalability towards the possible worsening of Rowhammer in future
devices is a crucial factor. On top of these challenges, DRAM vendors do not
disclose the internal architecture of their devices, making the deployability
of mitigations uncertain and their design based on assumptions. Mean-
while, the first high-end RISC-V CPU recently became available; however,
no existing research has studied the feasibility of Rowhammer on this new
emerging architecture.

In this thesis, we demonstrate that the RISC-V ecosystem is also affected
by Rowhammer by triggering bit flips on this architecture for the first time.
While DRAM vendors have failed to secure DDR4 devices with TRR, we
prove that this is possible with our principled in-DRAM Rowhammer miti-
gation. As future devices might suffer from low Rowhammer thresholds
and a high blast radius, we modify the internal DRAM architecture to
protect against such cases. Our design is based on the collaboration with
a minor DRAM vendor and the existing literature, and as such, its appli-
cability to commodity devices is unclear. Therefore, to fill the long-lasting
gap between industry and research, we image and reverse engineer DRAM
devices from the three major vendors.

v





S O M M A R I O

La sicurezza di un sistema è frazionata nelle garanzie dei molteplici dis-
positivi hardware su cui si basa. La memoria DRAM è fondamentale per i
sistemi odierni, tuttavia le sue garanzie contro sofisticati attacchi Rowham-
mer sono incerte e non rese pubbliche. Invece, la risposta dell’industria
a Rowhammer è stata la sicurezza tramite segretezza, rapidamente di-
mostrata essere un fallimento dai ricercatori. È quindi incerto se, diversa-
mente da questi risultati, le protezioni in-DRAM possano fornire sicurezza
contro Rowhammer una volta che esse siano progettate con un approccio
alla sicurezza basato su principi. Progettare protezioni in-DRAM contro
Rowhammer è complesso a causa della natura sincrona dei dispositivi e
dei loro specifici tempi di operazione. Inoltre, la loro scalabilitá rispetto ad
un possibile peggioramento della vulnerabilitá Rowhammer è un fattore
cruciale. Sfortunatamente, i produttori di DRAM non rendono pubblica
l’architettura interna dei loro dispositivi. Questo comporta che i design
delle protezioni siano basate su ipotesi, e rende incerta la possibilitá di
implementarle. Recentemente, la prima CPU RISC-V di fascia alta è diven-
tata disponibile; tuttavia, nessuno studio ha fin ora valutato la fattibilitá di
Rowhammer su questa nuova architettura.

In questa tesi, dimostriamo che anche l’ecosistema RISC-V è affetto da
Rowhammer, generando bit flips su questa architettura per la prima volta.
Sebbene i produttori di DRAM non siano riusciti a mettere in sicurezza i
dispositivi DDR4 con TRR, dimostriamo che ció è possibile con la nostra
protezione per Rowhammer basata su principi. Poichè i futuri dispositivi
potranno essere molto piú vulnerabili a Rowhammer, abbiamo modificato
l’architettura interna della DRAM per proteggere contro tali casi. Il nostro
design è basato sulla collaborazione con un produttore di DRAM minore
e sulla letteratura esistente. Perció, la sua applicabilitá a dispositivi piú
comuni non è chiara. Per colmare il divario tra l’industria e la ricerca, fac-
ciamo ingegneria inversa di dispositivi DRAM dei tre principali produttori
dopo averne acquisito immagini.

vii





P U B L I C AT I O N S

I base this dissertation on the papers published in workshop and conference
proceedings here presented.

ProTRR: Principled yet optimal in-DRAM target row refresh

Michele Marazzi, Patrick Jattke, Flavien Solt, Kaveh Razavi.

43rd IEEE Symposium on Security and Privacy (SP 2022), San Francisco,
CA, USA, May 22–26, 2022.
In this work, I designed ProTRR and ProMG, and performed most
of the evaluation. I wrote most of the paper and produced all of the
figures.

REGA: Scalable Rowhammer Mitigation with Refresh-Generating
Activations

Michele Marazzi, Flavien Solt, Patrick Jattke, Kubo Takashi, Kaveh
Razavi.

44th IEEE Symposium on Security and Privacy (SP 2023), San Francisco,
CA, USA, May 21–25, 2023.
In this work, I designed REGA and performed most of the evaluation.
I wrote most of the paper and produced all of the figures.

HiFi-DRAM: Enabling High-fidelity DRAM Research by Uncover-
ing Sense Amplifiers with IC Imaging

Michele Marazzi, Tristan Sachsenweger, Flavien Solt, Peng Zeng, Kubo
Takashi, Maksym Yarema, Kaveh Razavi.

51st IEEE/ACM International Symposium on Computer Architecture (ISCA),
Buenos Aires, Argentina, June 29 - July 3, 2024.
In this work, I designed the project scope and performed most of the
evaluation. I wrote most of the paper and produced all of the figures.

ix



RISC-H: Rowhammer Attacks on RISC-V

Michele Marazzi, Kaveh Razavi.

4th Workshop on DRAM Security (DRAMSec) co-located with ISCA 2024,
Buenos Aires, Argentina, June 29, 2024.
In this work, I designed and implemented the experiments, and
performed the evaluation. I wrote the paper and produced all of the
figures.

x



The publications listed in what follows have been part of my research as
PhD student, however they are not included in this dissertation.

PayRide: Secure Transport e-Ticketing with Untrusted Smartphone
Location

Michele Marazzi, Patrick Jattke, Jason Zibung, Kaveh Razavi.

21st Conference on Detection of Intrusions and Malware & Vulnerability
Assessment (DIMVA 2024), Lausanne, Switzerland, July 17-19, 2024.
In this work, I designed and verified PayRide, and performed some of
the evaluation for FreeRide. I wrote most of the paper and produced
all of the figures.

ZenHammer: Rowhammer Attacks on AMD Zen-based Platforms

Patrick Jattke, Max Wipfli, Flavien Solt, Michele Marazzi, Kaveh
Razavi.

33rd USENIX Security Symposium (USENIX Security 2024), Philadel-
phia, PA, USA, August 14-16, 2024.

BLASTER: Characterizing the Blast Radius of Rowhammer

Zhenrong Lang, Patrick Jattke, Michele Marazzi, Kaveh Razavi.

3rd Workshop on DRAM Security (DRAMSec) co-located with ISCA 2023,
Online, June 17, 2023.

xi





A C K N O W L E D G M E N T S

Deciding to start a PhD is hard. It requires the motivation and passion to
extend your studies beyond a Master’s degree, along with the readiness
to push the boundaries of science and create new knowledge. I have been
lucky in this, thanks to my family, who raised me in an environment that
encouraged cultivating my passions and taught me the joy of learning and
the value of hard work. Successfully completing a PhD is an achievement
that is very hard to accomplish without the support of many great people.
This support can take many forms, such as excellent advisory, help with
projects, and strong psychological encouragement. I have been very lucky
in this regard as well, having been granted all of these.

For these reasons, I would like to thank all the people who, directly or
indirectly, helped me reach this achievement.

First, I would like to thank my entire family. My grandmothers, who
endured my absence from home but were always ready to prepare amazing
Italian meals during the holidays. My parents, who taught me the impor-
tance of learning and hard work, supported me throughout my studies,
encouraged me to always do my best, and were always there for me through
difficult times. My brother, who was the first to suggest that I pursue a
PhD, helped me navigate the complex world of universities, and always
pushed me to achieve something greater. We share great memories. My girl-
friend and adventure companion, who never stopped supporting me when
I struggled, always understood my needs during intense work periods, and
never ceased to provide love and care. Thanks to all of you —– this journey
would have been impossible without your guidance, support, and love.

I would like to thank all my friends from Modena, with whom I have,
unfortunately, spent less time than I would have liked, but who were always
there for me during tough times. In particular, Enrico Giuliani, Alberto
Barchi, and Giulia Guaitoli. I would also like to thank my friends from
Zurich, with whom I also wish I had spent more time. In particular, Rémy
Mercenier and Emiliano Casalini, with whom I shared a great deal of time
on bouldering walls.

xiii



I would also like to thank the teachers who, in my younger years, distilled
in me the joy of learning and doing things properly: Roberto Zanasi, Anna
Maria Prandini, and Giovanna Ghittoni.

Then, I must thank my amazing supervisor, Kaveh Razavi. Kaveh has
been the perfect advisor. He understood and envisioned projects related to
complex topics that would have long term impact. He took the time to teach
me a lot: how to do research, how to write papers, what matters and what
not. He also taught me how to present my work in a comprehensible way,
and importantly, how to enjoy these moments. Regardless of how many
times I knocked on his door (we count these on a per-hour basis), he always
found time to discuss things with me.

I am also deeply grateful to the entire COMSEC team, who provided me
with great psychological support, invaluable help with projects, and who
shared and understood the difficult moments. Special thanks to Flavien
Solt, for his partnership in maintaining an impressively messy office, bad
jokes, and crazy rants, but also great scientific discussions. To Patrick Jattke,
for his ever-positive outlook and invaluable help in writing papers (very)
late into the night —– it was great to attend our first conference together. To
Finn de Ridder, for our open-minded yet critical discussions. To Katharina
Ceesay-Seitz, for bringing more sanity to the group and for her amazing
cakes. To Johannes Wikner, for his insights into the complexities of CPUs
and the time we spent bouldering. To Silvan Niederer and Sandro Rüegge,
for their bright observations and the energy they brought to the group. And
to Carmine Rizzi and Jiahui Xu, who, despite being from a different group,
were always ready to chat and have fun with us.

Thanks to Maksym Yarema for his clear explanations of imaging tech-
nologies. I would also like to thank the students who contributed to some
of my projects: Tristan Ballantyne and Jason Zibung. Special thanks to Kubo
Takashi, who offered immense help in understanding the intricate details
of DRAM internal architecture and always provided a perfect balance of
politeness and clarity in his explanations.

I would like to thank Stefan Saroiu for his contributions, both direct and
indirect, to the world of Rowhammer mitigations, as well as for his interest
and feedback on my work. I am also grateful to Moinuddin Qureshi and
Jung Ho Ahn for their valuable discussions and feedback on my research.
Thanks to Christophe Deleuze for organizing CSAW ARC Europe, which
provided an excellent opportunity to share and discuss ideas. Thanks to
Ralf Sasse for his input on Tamarin and Peng Zeng for her assistance with

xiv



xv

imaging chips. Thanks to Mariano Graziano for advising me to have my
first meeting with Kaveh, and to Beat Futterknecht for his amazing support
to both me and the COMSEC group. Thanks as well to Edoardo Talotti for
his help with the organization of internal systems.

Finally, a special thanks goes to ETH Zurich for providing an amazing
environment, from its top-notch infrastructure to the incredible resources
available to us.

Thank you all.





C O N T E N T S

1 introduction 1

2 risc-h 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Reverse Engineering of DRAM Functions . . . . . . . . . . . . 12

2.5 Maximizing the Activation Rate . . . . . . . . . . . . . . . . . 13

2.6 Enforcing Memory Requests Order . . . . . . . . . . . . . . . . 16

2.7 RISC-H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 protrr 21

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Refresh Management in DDR5 . . . . . . . . . . . . . . . . . . 28

3.5 FEINTING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.6 PROTRR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.9 Security Analysis of Existing Schemes . . . . . . . . . . . . . . 56

3.10 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.12 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 rega 67

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Background and Motivation . . . . . . . . . . . . . . . . . . . . 71

xvii



xviii contents

4.3 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 Accurate Modeling of DRAM . . . . . . . . . . . . . . . . . . . 79

4.6 REGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.7 Impact of REGA on tRAS . . . . . . . . . . . . . . . . . . . . . 91

4.8 REGAm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.9 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.10 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.12 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5 hifi-dram 115

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.3 Overview and Challenges . . . . . . . . . . . . . . . . . . . . . 121

5.4 Image Acquisition and Post Processing . . . . . . . . . . . . . 123

5.5 Circuits Reverse Engineering . . . . . . . . . . . . . . . . . . . 129

5.6 Evaluation of Existing DRAM Research . . . . . . . . . . . . . 134

5.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.9 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6 conclusion and outlook 149

bibliography 153

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153



1
I N T R O D U C T I O N

The security of systems necessarily relies on the guarantees of the underly-
ing hardware. Most systems are modular to some degree, allowing the use
of a complex variety of hardware devices in a scalable way. That is, a system
can be configured based on the required performance, power limitations, or
available budget. This modularity has enabled different manufacturers to
focus on specific hardware parts, like CPUs or memory components, as long
as their products follow shared standards. Furthermore, this division has
resulted in specialized manufacturers who are able to push technological
improvements year by year. As a consequence, device security guarantees
have to be entrusted to the manufacturers, losing the possibility of a global
system security overview.

In the age of globalization, manufacturers are incentivized to create cheap
and high-performance products, often leaving security guarantees uncertain
and undisclosed. This raises many questions. Are these hardware devices
affected by security weaknesses? What is the difficulty of patching possible
security vulnerabilities? Do companies acknowledge or know about the
existence of these vulnerabilities? In this thesis, we first focus on the security
of DRAM, and we seek to answer the following question:

Leading Research Question: Can DRAM be made secure against
Rowhammer and in a scalable way?

On the security of DRAM. DRAM is a widely used type of main memory
in computing systems. It allows systems to rely on large and fast mem-
ory at a cheap price. To achieve this, DRAM relies on storing memory on
capacitors and exploiting a highly hierarchical internal architecture based
on rows and columns. Because of the nature of capacitors, the stored data
is slowly lost due to charge leakage. The possible memory corruption is
avoided by periodically restoring charge in the entire device. Unfortunately,
the push for denser cheap memory has resulted in the DRAM vulnerabil-
ity known as Rowhammer. With Rowhammer, the capacitors leakage of
victim rows is increased by accessing nearby data in aggressor rows. When

1



2 introduction

data is read enough times, known as the Rowhammer threshold, bit flips
occur in victim rows that are within a blast radius from the aggressor row.
Currently, the blast radius is estimated to be ±2 rows, but it is expected
to increase. Rowhammer breaks the expected guarantees of isolation of
DRAM, and as the data of aggressor and victim rows can belong to differ-
ent security domains, this has severe security repercussions. For example,
unprivileged software can cause bit flips in kernel memory, leading to
privilege escalation.

Rowhammer was initially found by Intel in 2012 [1, 2] on DDR3 devices
and later made public by researchers in 2014 [3]. However, a very similar
effect is discussed in patents already in 2002 [4]. In response, DRAM
vendors marketed DDR4 as Rowhammer-free, without any disclosure of the
deployed mitigations. Researchers showed that this security-by-obscurity
approach was a failure [5, 6]. The deployed mitigations, that became known
as Target Row Refresh (TRR), were identified as insecure and could be
bypassed by using complex attack patterns [7]. Because attacks on DDR4

devices require complex and high-performance memory controllers and
CPUs, researchers’ efforts have mostly been focused on generating bit flips
from Intel [5, 7–10] and AMD devices [11].

Meanwhile, the first RISC-V high-end CPU became recently available,
supporting DDR4 DIMMs for the first time. Our first research question
is the feasibility of Rowhammer on RISC-V systems. No study exists yet,
and it is therefore unclear if it is possible to perform Rowhammer on this
architecture, or if the success of Rowhammer requires complex and mature
devices. Unlike Intel and AMD CPUs, which have benefited from years of
design improvements, RISC-V CPUs are in their early stages.

Research Question 1. Is the RISC-V ecosystem affected by Rowhammer?

We answer this question with RISC-H in Chapter 2, demonstrating
Rowhammer bit flips triggered by a RISC-V CPU for the first time. RISC-H
is the result of complex analysis on the memory subsystem of the RISC-V
CPU. In particular, we identify a memory bottleneck that makes Rowham-
mer attacks unsuccessful. After we carefully characterize it, we are able
to generate specific Rowhammer patterns that achieve the required high
performance. Then, we discover that ordering the attack patterns by fencing
or pointer chasing is too expensive on this CPU, prohibiting successful
Rowhammer attacks. Such ordering is a requirement for the success of the
attack and further makes the RISC-V CPU appear safe. Instead, we devise a



introduction 3

novel method to order memory requests that is based on surgically inserted
delays. With RISC-H, we show that the RISC-V ecosystem is also affected
by Rowhammer, urging for the deployment of secure mitigations.

Most of the literature has focused on mitigations designed for the memory
controller. However, Rowhammer is a DRAM problem and there is no
indication that the division and fragmentation between CPU and DRAM
vendors is an approach that would result in security against Rowhammer.
Further, the undisclosed DRAM internals and security guarantees make the
design and deployment of CPU-based mitigations a challenge. Our next
research question examines whether DRAM can be secured with an in-
DRAM Rowhammer mitigation based on the current technology. Currently,
DRAM vendors rely on TRR mitigations that have been exposed as insecure
by researchers. We seek to understand if TRR is flawed by design, or if it
can be designed in a secure way. Moreover, given the recent DDR5 protocol,
we study the possible security enhancement provided by the new standard.

Research Question 2. Can TRR provide security in current and future
DRAM devices?

In Chapter 3, we present our Rowhammer mitigation ProTRR. We demon-
strate that it is possible to implement TRR in a secure way already on DDR4

devices. Then, we show that the recent RFM addition on DDR5 [12] allows
us to strongly enhance device security. Through mathematical proofs, we
design ProTRR to be secure and optimal in terms of counters for a given
Rowhammer threshold. We further prove what is the optimal attack that a
malicious user can perform against ProTRR. Our results are valid for cases
where perfect counting is used, such as in the latest DDR5 standard that
includes PRAC [13].

Due to the synchronous nature of DRAM, the mitigative actions of TRR
are periodic. As we showed in our work, this can become a challenge for
ProTRR in case future devices become highly vulnerable. In particular,
the current trend for Rowhammer indicates the possibility that future
technologies will have extremely low Rowhammer thresholds and high
blast radiuses. With our third research question, we seek to understand
if the internal DRAM architecture can be modified to accommodate a
Rowhammer mitigation with security against high degrees of Rowhammer
vulnerability.



4 introduction

Research Question 3. Is it possible to secure DRAM with an in-DRAM
Rowhammer mitigation that scales with the increase of the blast diameter
and Rowhammer vulnarability?

We show that this is possible with our mitigation REGA in Chapter 4.
By designing a new internal DRAM architecture, we are able to provide
security against Rowhammer even for thresholds under 1 K and the blast
radius up to 4. We designed REGA to perform refreshes in parallel to
row activations, therefore eliminating the periodicity constrain of TRR
mechanisms. REGA does not require expensive counters, and instead relies
on the addition of new sense amplifiers in the circuitry that multiplex
shared DRAM elements. We verify the feasibility and reliability of our
architecture through analog electric simulations. Because no reliable DRAM
model exists, we collaborated with a DRAM vendor (Zentel Japan) to design
a new one that is modern and reliable (REM), which we further open source.
REM is the first accurate modern DRAM model available for research. With
REM, we discover that the literature on DRAM architecture appears to be
outdated. First, the only other modern DRAM model available is severely
optimistic about its electrical values. Second, the circuitry used on real
chips by Zentel Japan includes an overdriving component not considered
in research.

We designed REGA based on the collaboration with a minor DRAM
vendor, but its applicability to commodity vendors remains unclear. With
our fourth question, we therefore wish to understand how REGA and
previous DRAM research relate to modern commodity devices.

Research Question 4. Is current DRAM research applicable and accurate
on real modern DDR4 and DDR5 devices?

In Chapter 5, with our work HiFi-DRAM, we image and reverse engineer
DDR4 and DDR5 devices from the three major DRAM vendors. By analyz-
ing ten years of research, we discover fundamental inaccuracies that have
been shared across DRAM research. First, the commonly assumed DRAM
circuitry has been replaced in half of the studied chips. Second, no existing
analog DRAM model correctly captures the devices characteristics. Third,
the overhead estimations presented in papers are often severely inaccurate.
We make all our extracted data open source in the hope of enabling more
rigorous future DRAM research.



introduction 5

By answering all these research questions, we demonstrate that a princi-
pled approach to DRAM security is fundamental to mitigate Rowhammer
and to reliably study its feasibility. With careful characterization, we were
able to trigger Rowhammer bit flips on a novel architecture that would
otherwise appear secure. Then, by following rigorous security principles,
we designed mitigations even for technologies considered flawed, such as
TRR on DDR4, and expanded DRAM security into the long-term future.
Moreover, the accuracy of DRAM research and its viability was severely
weakened by questions that research had previously left unanswered. By
reverse engineering modern DRAM devices, we were able to fill that void
and to enable more accurate research in the future.





2
R I S C - H : R O W H A M M E R AT TA C K S O N R I S C - V

The first high-end RISC-V CPU with DDR4 support has been released
just a few months ago. There are currently no Rowhammer studies on
RISC-V devices and it is unclear whether it is possible to compromise
systems on these newer architectures. With RISC-H, we aim to fill this
gap by overcoming a number of challenges: first, the DRAM functions
of the memory controller are not disclosed, which we reverse engineer
via the bank-conflict side channel. Second, we discover that hammering
many rows achieves a significantly low activation throughput, making
Rowhammer unsuccessful. We determine that this low performance is
caused by a contention in the memory subsystem when aggressor rows
share certain physical address bits and slow ordering instructions. To
address this challenge, we leverage different column addresses to reduce
contention, and we rely on a novel approach for ordering memory accesses
by inserting surgical delays in the access patterns. Combining these insights,
our new Rowhammer attack, called RISC-H, can trigger the first DDR4 bit
flips from a RISC-V CPU. These results show that the RISC-V ecosystem
is similarly affected by Rowhammer and further highlights the need for
effective mitigations.

2.1 introduction

Rowhammer on modern DRAM has mostly been successful on high-end
complex CPUs from Intel [5, 7–10] and AMD [11]. These mature products,
resulting from years of improvements, render instruction execution fast and
the memory controllers complex. RISC-V CPUs are comparably in their
early stage and it is unclear whether it is possible to trigger Rowhammer
bit flips from these platforms. Our results on the first RISC-V processor
with DDR4 support [14] shows a very low activation throughput as well
as expensive ordering instructions, impeding Rowhammer attacks. This
paper shows how the careful selection of physical addresses and the inser-
tion of surgical delays for ordering allows ordered activations with high
throughput, enabling the first successful Rowhammer attack on RISC-V.

7



8 risc-h

DRAM functions. Rowhammer causes disturbance errors on victim rows
that are in close proximity of an attacker row. Memory controllers map
physical addresses to DRAM banks and rows using proprietary functions,
exploiting DRAM parallelism to increase performance. Hence, the success
of a Rowhammer attack relies on reverse engineering these functions. In
RISC-H, we use the bank-conflict side channel [15] to reverse engineer the
bank and row functions. We discover that our target RISC-V CPU employs
a linear mapping instead of the common XOR-based functions of Intel and
AMD CPUs for bank addressing [11, 15].

Activation throughput. A key aspect for a successful Rowhammer attacks
is a high activation rate generated by the memory controller to both induce
bit flips and to bypass deployed mitigations [8, 11, 16, 17]. On the Sophon
CPU [14], we discover that subsequent accesses to certain memory accesses
are surprisingly slow. Our characterization shows that this is caused by
a contention in the memory subsystem when memory addresses share
columns bits. Consequently, we are able to increase the memory activation
rate by distributing subsequent memory requests among different columns.

Memory ordering. Memory requests are reordered by the memory con-
troller to reduce the number of generated activations. First, this lowers the
effective activation throughput, required for Rowhammer. Second, DDR4

devices deploy Target Row Refresh (TRR) as a Rowhammer mitigation [5, 6,
18, 19], which can be bypassed by activating aggressor rows in complex pat-
terns [5, 7]. To prevent the memory controller from reodering these patterns
and making them ineffective, researchers employ fencing instructions [7] or
pointer chasing [9]. We show that both these options significantly reduce
the activation rate on the RISC-V CPU. Instead, we devise a novel approach
to order memory requests. We make the key observation that memory
ordering can be achieved by carefully delaying the requests. By exploiting
the row buffer hit as a side channel, we are able to identify the right amount
of delay, which we induce via NOP instructions.

We combine our insights to build RISC-H, the first Rowhammer attack
on RISC-V. RISC-H is able to obtain 841 bit flips in 6 h of fuzzing on a
supported DIMM. These bit flips are highly repeatable (on average, 74% of
the times), enabling reliable Rowhammer exploitation.

Contributions. The following summarizes our contributions:

1. We reverse engineer the proprietary DRAM functions of the Sophon
memory controller.



2.2 background 9

2. We identify, characterize, and describe how to avoid a new memory
bottleneck that severely slows down the activation rate.

3. We devise and demonstrate a novel method to efficiently order mem-
ory requests by surgically-inserted delays.

4. We demonstrate Rowhammer bit flips on RISC-V for the first time.

2.2 background

In this section, we introduce DRAM (§2.2.1), Rowhammer (§2.2.2), and
Rowhammer-required CPU primitives (§2.2.3).

2.2.1 DRAM

DRAM devices are used as main memory in current high-end comput-
ing systems. These devices provides fast, dense and cheap memory. The
DDRx protocol [20] describes how the CPU memory controller (MC) can
access DRAM, with chips typically mounted on Dual In-line Memory Mod-
ules (DIMMs, Fig. 2.1). Currently, the majority of DIMMs are DDR4 devices,
with the new DDR5 standard [12] being released a few years ago.

DRAM Hierarchy. The MC needs to respect a logical hierarchy to access
memory. Internally in a DRAM chip, memory is obtained as densely packed
capacitors distributed across different DRAM banks [21, 22]. Each bank
has multiple rows, and each row has many data columns. When the MC
accesses memory, it needs to specify the bank, the row and the column
associated to the data. Prior to accessing the specific column, the MC needs
to issue an activation (ACT) to the row [23]. Each bank can only have one
row activated at a time. To deactivate an active row in a bank, the MC
issues a precharge (PRE). Once the row has been activated, the MC can
finally read or write data by specifying a column. Further reads/writes to
columns of an activated row do not require additional activations and are
described as row buffer hits. Due to the internal DRAM circuitry, activating
and precharging rows is slow. For this reason, MCs will typically try to
optimize the order of generated memory requests such that ACTs and PREs
are reduced. This reordering is done by using a memory request buffer.

DRAM Capacitors. DRAM is based on capacitors, which are elements capa-
ble of storing charge. A single capacitor allows to encode a single bit of data
via the stored charge. Due to the manufacturing capabilities of integrated



10 risc-h

����

���������

������
�������������

��
�����
��

�����

���������

	�������������

���������

�����
���

���

����� �

�

Fig. 2.1: DRAM Architecture and Rowhammer. Memory is organized in many
rows in different banks. A row ACT (1) causes disturbance to nearby
data (2).

circuits (ICs), these capacitors are extremely small and compact [21]. This
compactness is kept by the highly hierarchical internal structure, which
enables memory chips with large addressability and cheap price. Because
capacitors leak charge, MCs need to send a refresh command (REF) every
tREFi (7.8 us on DDR4) such that the DRAM chip has time to restore rows
to their full values. An entire chip is fully restored after 8192 refreshes
(tREFW, 64 ms on DDR4). Without these refreshes, stored data would get
corrupted.

2.2.2 Rowhammer

The highly-packed capacitors require very dense circuitry to provide the
market with cheaply-produced memory. Unfortunately, such IC scaling has
come with drawbacks in terms of memory reliability. In 2014, researchers
demonstrated that aggressor-row activations can have an effect on nearby
victim-rows on DDR3 devices [3]. The effect, known as Rowhammer, causes
an increased charge leakage that can corrupt victim data without directly
accessing it. To trigger Rowhammer, aggressor rows that are physically
nearby a victim row are activated repeatedly for a large number of times,
known as Rowhammer threshold (e.g., 50 K), before the victim row is refreshed
by a REF command. This vulnerability has been subsequently exploited in
many different ways from different attack vectors [9, 10, 24–27] and deeply
characterized [17, 28–34]. As a response, DRAM vendors have deployed
Rowhammer mitigations known as Target Row Refresh (TRR) on DDR4

devices. TRR implements Rowhammer detection mechanisms, which are
followed by the refresh of the victim row [5, 6]. On DDR4 devices, TRR



2.3 overview 11

has been shown to be flawed when advance row activation patterns are
used [7]. Research efforts have provided industry many different Rowham-
mer mitigations based on alternative approaches [16, 22, 23, 35–44].

2.2.3 CPU Primitives

To reliably perform Rowhammer on DDR4 devices from different vendors,
researchers have relied on two key CPU primitives. First, the activation rate
(i.e., how many ACTs per second the MC issues) is maximized [8, 11, 16, 17].
Second, the aggressor rows that are activated are based on complex patterns
to bypass TRR [6, 7]. To ensure the row activation order, researchers either
used pointer chasing or CPU fencing instructions [7, 9, 11].

2.3 overview

With our research, we aim to successfully flip DRAM bits via Rowhammer
on a RISC-V CPU for the first time. To achieve this goal, we face multiple
challenges.

First, the MC maps physical addresses to specific banks and rows in a way
that is not disclosed. This mapping is fundamental to perform Rowhammer,
as the aggressor and victim rows need to be placed in physical proximity.

Challenge 1. Reverse engineer the MC DRAM functions to link physical
addresses to DRAM addresses.

We solve challenge 1 in Section 2.4 by using the bank conflict side chan-
nel [15]. For this purpose, we implemented a multi-thread counter to
measure time.

A high activation rate by the MC is a key Rowhammer primitive. We seek
to understand if the RISC-V CPU is capable of generating a high activation
throughput while allowing for complex row activations patterns.

Challenge 2. Maximize the DRAM activation rate (i.e., ACT/s) without
losing aggressors pattern generality.

We address this challenge in Section 2.5. We identify a memory bottleneck
that substantially slows down the ACTs rate. In particular, subsequent
memory accesses that share particular bits of the physical address create



12 risc-h

Processor Cores DRAM

Vendor Sophon Vendor T-Head Vendor X
Model SG2042 Model C920 Memory 8 GB
Memory DDR4 Frequency 2GHz Total Banks 16

System Cache 64MB L2 cache 1MB Rows/Bank 64 K
Core Clusters 16 Cores/clusters 4 Production Yr. 2018

Tbl. 2.1: Hardware used in RISC-H.

contention on the memory subsystem. By distributing temporally-close
memory accesses across different columns, we are able to heavily increase
the activation throughput.

The last challenge is to keep a high row activation rate without losing
control over the order of row activations. As the RISC-V CPU might not be
as complex as Intel and AMD counterparts, we identified that fencing and
other common ways to hold activation order intact have a huge toll on the
activation throughput.

Challenge 3. Maintain the order of row activations, without relying on
fencing or pointer chasing.

We assume that the MC scheduling policy is based on some variation
of the First-Ready First-Come-First-Serve (FR-FCFS) strategies as these are
considered standard [45–48], and we solve challenge 3 by carefully delaying
memory requests, forcing activation ordering. By exploiting the row hit as a
side channel, we prove that our approach is keeping the intended activation
order.

By combining all these aspects, we are able to produce Rowhammer bit
flips in a fast and reproducible way, obtaining 841 bit flips in 6 hours of
fuzzing on a supported DIMM.

2.4 reverse engineering of dram functions

We report the configuration of our system in Tbl. 2.1. We use the well-known
bank conflict side channel to determine the DRAM functions [15, 49, 50].
As this is a timing side channel, we require an accurate and precise method
to measure time. RISC-V provides an instruction called rdcycle, which is
supposed to return the number of cycles executed by the CPU. However,



2.5 maximizing the activation rate 13

�� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

�� �� �� �� �� � � � � � � � � � �

���
����

����
�����


��
	����������		�������

�����


Fig. 2.2: Reverse engineered DRAM Functions. The memory controller applies
a linear mapping of the bits 6, 14, 15, and 16 to the DRAM banks.

the RISC-V instruction rdcycle returns a constant value on our system. We
build a counting thread, similar to previous work [51], obtaining a timer
resolution of 4.85 ns.

Results. We use the recently released tool AMDRE [11] to reverse engineer
the DRAM functions allocating a GiB super page. We adapt AMDRE to rely
on shared memory as a counter and to use the RISC-V fence instruction.
Further, we modify it to use average instead of the minimum and to use
more repetitions to reduce noise. We report the results in Fig. 2.2. In the
RISC-V CPU under evaluation, the mapping functions are linear. This differs
from the complex XOR-based functions reported for Intel and AMD [11, 15].
We identify column bits by exploiting the row buffer hit, accessing couples
of addresses of the same bank where one bit differs. We categorize the bit
as column if the access is fast and classify the remaining as rows bits.

2.5 maximizing the activation rate

A key aspect of successful Rowhammer bit flips is a high ACT rate generated
by the memory controller. Given the DDR4 standard, the minimum time
between different ACTs to the same bank is given by tRC [20] which for our
system is 46.5 ns. We seek to understand if the RISC-V CPU is capable of
generating such a high amount of activations per second.

Baseline performance. To evaluate the activation throughput of the CPU,
we measure the time to access an array of 256 different rows that target the
same bank. The rows are different, hence we do not require pointer chasing
or fencing to avoid memory requests reordering. Such reordering would
inflate the throughput by reducing the number of activations, exploiting
row buffer hits. We discover that the average access time per row is severely
slow, around 210 ns. We repeat the experiment to understand if there is
a dependency to the number of accessed rows. The access time saturates
to 210 ns with a high number of accessed rows, while it is slightly faster



14 risc-h

������������
������

��������������
��
��

�

	����������������
������������


� �� 
�� 
�� 
�� 

� 
��
��������������������

 �
�­

��
��

�

���������������� �������������������������������

�
��

���
���
���

Fig. 2.3: Histogram of access times. We report the row access time for couple of
random addresses and for addresses that differ only for the row index.

(180 ns/ACT) when very few rows are accessed (e.g., 12 rows). All these
values are much higher than the tRC of the system, making a Rowhammer
attack unlikely to succeed.

We speculate that the design of the CPU might not be as optimized
as for Intel and AMD devices, resulting in contention on a particular
microarchitectural resource. Specifically, we formulate the hypothesis that
this contention is address-dependent, for example, due to accessing internal
cache blocks, other sub-blocks, or due to the internal MC design. We
devise the following experiments to investigate this effect, in which we use
contiguous memory obtained from a GiB super page.

Identifying the memory bottleneck — first experiment. Our aim is to
identify if two subsequent memory requests have resource contention,
and if this contention can be avoided by varying their addresses. To this
end, we first generate addresses that only differ for the row index. Given
the previous results, we expect their combined access time to result in a
bank conflict. We show the results in Fig. 2.3, which further includes the
histogram of the bank-conflict side channel previously used. Surprisingly,
the access time of different rows is always slower than the bank-conflict time.
Note that the access time is slightly lower than in the previous experiment
(160 ns compared to 180 ns), as we directly dereference registers for a more
controlled experiment instead of accessing an array in a loop.

Identifying the memory bottleneck — second experiment. The results
from AMDRE are generated by using random couples of addresses. These
random couples cause bank conflicts, yet their access time is faster than our
experiment. Therefore, as we are now using almost identical addresses, we
wish to see if particular parts of them are causing contention that increases
the slowdown. In what follows, instead of changing only the row index,



2.5 maximizing the activation rate 15

�
�
�
�
�
��
��
��
��
��
��
��
��
��
��

��
�
��
��
��
��
���

��
�

��

�

�	
	�

��
��
���

�
�
��
��
��

�� � � � �� �� �� �� �� �� �� �� �� ��
�
�		��������
��������

��
��
���
���
���
���
���
���
���
���
���

��
��
�
�

��
��

��
��
�

�����
���
	���������
�
�����

��
�	������
	���������
�

Fig. 2.4: Time access experiment. We access two addresses (A1, A2), where A1 =
base⊕ b1 and A2 = base⊕ b2, and we report the row access time.

we vary each address bit at the time. Starting from a base address, we
measure the combined access time of two addresses, A1 and A2, where
A1 = base ⊕ b1 and A2 = base ⊕ b2. We test all combinations of b1 and
b2 between b0 − b29, and report the results in Fig. 2.4. From the results
we identify three categories of access speed: (i) fast, (ii) semi-slow, and
(iii) slow. Semi-slow timings correspond to the bank-conflict found during
the DRAM function reverse engineering. Instead, slow timings correspond
to the “extra” slow access.

Address dependency of the bottleneck. By flipping a bank bit (e.g., b14)
only in one address, we would expect the timing to be always fast, as A1
and A2 would target different banks. Instead, in many of the combinations
the access time is slow. By varying bits between b7 − b13, different bank
accesses result (as expected) in fast memory accesses. By varying row
bits (e.g., b19) and any bit between b7 − b13, we obtain the expected bank
conflict timing. We conclude that subsequent accesses of addresses with
identical bits b7 − b13 are severely slowed down. Coincidentally, these bits
correspond to the column bits of a row. We now investigate how many
different columns, in an access loop, are required to obtain a high ACT rate.

Columns dependency. We distribute from 1 to 128 different columns to
256 different rows accessed in a loop. For each setup, we report the average
access time per row in Fig. 2.5. After a few columns, the access time saturates
close to the protocol limit (tRC). For simplicity, in the remainder of the paper,



16 risc-h

�����������������
�
��
��
���
�
�
���

��
�
�

��
��
��
	�
��

��� ���
� ��������������

�������
�����
��� ��
 ����� � 
 � �� �� �� �
 ��

Fig. 2.5: Average access time when using different columns. Pointer chasing
(Ptr) access time is severely slower compared to Array access (Array).
When multiple columns are used, the access time of Array becomes close
to tRC.

we will always linearly distribute the columns of accessed memory region
across all possibilities (i.e., 128). The reader should note that this is required
independently from the accessed rows (i.e., if the pattern is accessing the
same row or different ones).

2.6 enforcing memory requests order

We now analyze the impact of enforcing memory requests order on the
activation rate.

Effect of memory requests reordering. MCs try to reduce activations by re-
ordering memory requests that would target the same row. For Rowhammer
attacks, this has two damaging effects. First, the effective ACT throughput
will be reduced, as rows will be kept open longer than required. Second,
state-of-the-art Rowhammer patterns are complex and require precise or-
dering of aggressor rows to fool the deployed TRR mechanisms [11]. If
requests are reordered, these pattern would get scrambled, reducing the
possibility of Rowhammer success.

Speed of pointer chasing and fence. The two main ways to order mem-
ory requests is to use pointer chasing and the fence instruction. We now
evaluate their speed on our RISC-V CPU, by measuring the average access
time of 256 addresses. Accesses divided by fence have an average speed of
210 ns/ACT, regardless of the number of columns used. Pointer chasing
increases its speed when temporally-close accesses are distributed among
different columns, however, the access is still severely slow saturating at
around 145 ns/ACT (Fig. 2.5).



2.6 enforcing memory requests order 17

�����

���������
���� �������� ���� ���� ����

���� �������� �������� ����

����

����

�����
���� ���� ���� ����

�������������


�����
����


�����
����


�����
����

����
����


�����


����� 
�����

�������������������������

��������������������������������

Fig. 2.6: Memory requests ordering. In the first case, no ordering is enforced
and different memory requests are merged in single activations. In the
second case, delayed memory requests induce multiple activations.

In Section 2.5, we observed that the system is capable of reaching high
access speed (55 ns/ACT). Therefore, we cannot rely on fence and pointer
chasing as strategies for preserving the order of memory requests. With our
novel delayed memory requests, we now demonstrate how it is possible to
reach high speed while ensuring ordering.

2.6.1 Memory ordering via delayed accesses

We assume the MC scheduling policy to be based on a variation of First-
Ready First-Come First-Serve (FR-FCFS), as these are considered standard
strategies [45–48]. When these policies are employed, the memory request
buffer will be used to batch requests that go to the same rows, incrementing
row hit and decreasing the number of ACTs (Fig. 2.6) [45].

We aim to enforce memory ordering by delaying memory requests. If
the request buffer does not (yet) contain requests that can be merged, it
should eventually perform the activation. Likewise, if a request has been in
the queue for a long time (i.e., old request), it should be prioritized over
new memory requests to avoid starvation [46]. We explain this concept
in Fig. 2.6.

We perform our technique by placing NOPs in between the different
requests. As the CPU does not expose any relevant performance counters
(e.g., issued activations), we must rely on a carefully crafted experiment to
validate our method and to understand for how long the requests should
be delayed for.



18 risc-h

���

������������������������� �������������������������

���
�������
���������
	�
�

��
��
��
��

� �� ��� ��� ��� ��� ���
�	
�������������

���� �� ��� ��� ��� ��� ����

��

��

��

��

�
��
��
��


�

��
� 	

�­
�
��
��
��


�

��
� 	

�­

�������������������� ��������������������

���
�������
���������
	�

Fig. 2.7: Delayed access experiment. We measure 3 ACTs (A,B,C) and compare
it to 3 requests that can be sped-up by reordering (A,B,A). When enough
NOPs are inserted, the MC does not reorder accesses anymore. We repeat
the experiment with 16 different rows compared to the access pattern
(A,B)×8.

NOPs-delayed requests experiment. An access pattern with 3 different
rows (e.g., A-B-C) forces the MC to issue 3 ACTs. Instead, a pattern that
targets the same row twice (e.g., A-B-A) allows the MC to reorder requests,
resulting in only 2 ACTs and a row buffer hit. We perform an experiment
to measure this difference. In Fig. 2.7, we report the average time per
memory request of the two cases. The pattern A-B-A is evidently faster
due to memory reordering. If our hypothesis is correct, the pattern A-B-A

should generate 3 ACTs when memory requests are delayed long enough.
We interleave the accesses with a varying number of NOPs, from 0 to 300,
and report the results in Fig. 2.7. When around 220 NOPs are inserted, the
pattern A-B-A starts behaving as expected.

Now, we generalize the experiment and measure the effect when multiple
reordering are possible, as this is the typical Rowhammer case. We repeat
the experiment by accessing 16 different rows (e.g., A-B-C-D...) compared
to eight times the couple A-B. As previously found, around 220 NOPs the
behavior converges to the expected timing (Fig. 2.7).

Finally, we evaluate the overhead of our technique. Repeating the experi-
ment of Fig. 2.5, we measure the average access time for a loop of different



2.7 risc-h 19

rows with 220 NOPs interleaved. The result is an average slow down of
only 3 ns per access, which shows that our new ordering technique has very
low overhead and is viable to perform Rowhammer on the RISC-V CPU.

2.7 risc-h

We combine all the previous observations and results to perform Rowham-
mer on the first high-end RISC-V CPU. We now explain the setup and the
results.

Setup. We allocate 1 GiB of memory as transparent huge pages (2 MiB)
and verify that all the pages result in bank conflict. This is expected, as
the highest bank bit is the 16th (i.e., lower than 2 MiB, Fig. 2.2). Then, we
initialize the 1 GiB of memory with 32 different row patterns of 8 bytes,
selected by hashing the memory address. This allows faster execution times
compared to the performance toll of using randomized memory to check
for bit flips. The patterns are based on classic repetitions of 0xAA, 0xEE, 0x00,
0xFF, and variations.

We perform Rowhammer by generating non-uniform patterns, as they
represent state-of-the-art [7, 11]. We do not use Blacksmith as a dependency
(asmjit) is not yet ported to RISC-V, but instead rely on our own implemen-
tation called RISC-H. All memory requests are interleaved by 220 NOPs
and linearly distributed across 128 columns. We fuzz each pattern for a
duration of 4× tREFW. After fuzzing, we check for bit flips for only the
addresses that correspond to the same targeted bank and whose rows are
nearby the aggressors. This further improves the performance of RISC-H.
Once we identify a bit flip, we test its repeatability by testing the same
pattern 10 times for double the time. We further test hammering by using
fence, pointer chasing, and without any ordering. All the experiments take
place in a controlled environment at 23

◦ C.

Results. We discover that on the tested DIMM, we are able to trigger bit
flips with double-sided patterns (i.e., frequency-based patterns are not
necessary) of which we report the results. With our complete approach to
RISC-H, we obtain 841 unique bit flips in only 6 h of fuzzing. The first bit
flip occurs within one minute after the fuzzing is started (i.e., after data
has been initialized to DRAM). Bit flips have a high repeatability, with an
average success rate of 7.4 out of 10 times.



20 risc-h

We confirm that we did not obtain bit flips when the ordering was absent
(i.e., no NOPs), or when it was enforced by fence or by pointer chasing. In
conclusion, our delayed-request ordering is necessary to get Rowhammer
bit flips on the CPU.

Limitations and future work. We evaluated RISC-H only on one DIMM.
This is due to the extremely limited memory support provided by the CPU.
We tested 85 DDR4 DIMMs present in our lab, of which only one resulted
in the system booting. We tried to clone the SPD values of the working
DIMM to different modules with the same timings and geometry, and we
further tried 22 SODIMMs connected via an adapter. Unfortunately, this
also did not result in booting. Future studies should assess RISC-H on
multiple devices in case the DIMM support will be extended.

2.8 conclusion

With RISC-H, we proved that Rowhammer bit flips are possible on the
first high-end RISC-V CPU. To perform Rowhammer, we had to overcome
multiple challenges. First, we identified the undisclosed DRAM functions
by exploiting the bank-conflict side channel. Then, we discovered a memory
bottleneck related to the address of subsequent memory requests, which
made the ACT rate insufficient to trigger bit flips. As a solution, we dis-
tributed the activations across the many row columns. Lastly, we devised a
novel technique to enforce memory requests order with high performance.
By carefully delaying accesses with NOP instructions, we enforce row acti-
vations without relying on slow fence instructions or pointer chasing. To
the best of our knowledge, we are the first to demonstrate bit flips on a
RISC-V CPU.



3
P R O T R R : P R I N C I P L E D Y E T O P T I M A L I N - D R A M TA R G E T
R O W R E F R E S H

The DRAM substrate is becoming increasingly more vulnerable to Rowham-
mer as we move to smaller technology nodes. We introduce PROTRR, the
first principled in-DRAM Target Row Refresh mitigation with formal se-
curity guarantees and low bounds on overhead. Unlike existing proposals
that require changes to the memory controllers, the in-DRAM nature of
PROTRR enables its seamless integration. However, this means that PROTRR
must respect the synchronous nature of the DRAM protocol, which limits
the number of DRAM rows that can be protected at any given time. To
overcome this challenge, PROTRR proactively refreshes each row that is most
likely to observe bit flips in the future. While this strategy catches the rows
that are hammered the most, some others may still fly under the radar. We
use this observation to construct FEINTING, a new Rowhammer attack that
we formally prove to be optimal in this setting. We then configure PROTRR
to be secure against FEINTING. To achieve this, PROTRR should keep track
of accesses to each row, which is prohibitively expensive to implement in
hardware. Instead, PROTRR uses a new frequent item counting scheme
that leverages FEINTING to provide a provably optimal yet flexible trade-off
between the tolerated DRAM vulnerability, the number of counters, and the
number of additional refreshes. Our extensive evaluation using an ASIC im-
plementation of PROTRR and cycle-accurate simulation shows that PROTRR
can provide principled protection for current and future DRAM technolo-
gies with a negligible performance, power, and area impact. PROTRR is fully
compatible with DDR4 and the new Refresh Management (RFM) extension
in DDR5.

3.1 introduction

Despite numerous mitigation attempts under Target Row Refresh (TRR),
Rowhammer is still an unsolved problem in practice [5–7], threatening
systems security in many different scenarios [9, 24, 25, 49, 52–58]. Existing
proposals attempt to mitigate Rowhammer in the memory controller [3, 41,

21



22 protrr

42, 59–61], but CPU vendors have little incentive to introduce expensive
mitigations for a problem in the products of DRAM vendors. The natural
place to fix Rowhammer is inside DRAM itself, but mitigations with strong
security guarantees are currently lacking.

We present PROTRR, the first principled in-DRAM Rowhammer mitiga-
tion that is secure against FEINTING, a novel Rowhammer attack that we
mathematically prove to be optimal. PROTRR uses the bounds given by
FEINTING in the design of a new frequent item counting scheme, called
PROMG (Proactive Misra-Gries), with a provably optimal yet flexible trade-
off between the number of required counters and additional refreshes.
Our extensive evaluation of PROTRR using an ASIC implementation and
cycle-accurate simulation shows the feasibility of principled in-DRAM
Rowhammer protection for current and future DRAM technologies.

Rowhammer. In their seminal work, Kim et al. [3] showed that by repeat-
edly activating a DRAM row (i.e., aggressor), it is possible to flip bits in its
adjacent rows (i.e., victims) before these rows have a chance to be refreshed
as part of the background DRAM refresh operation. This effect is present
in most DDR3 devices and has only worsened in DDR4 devices deployed
on more recent systems [5–7, 17]. In essence, Rowhammer is compromising
the isolation of data on DRAM. A plethora of attacks followed, showing
that it is possible to abuse these bit flips to escalate privileges [24, 55, 56],
compromise browsers [9, 52–54], break into co-located virtual machines
in the cloud [25, 49], and even attack servers over the network [57, 58].
These attacks highlight the urgent need for strong mitigations against
Rowhammer.

Mitigations. Originally, two practical countermeasures were believed to
stop Rowhammer: doubling the DRAM’s refresh rate and error-correcting
code (ECC) DRAM. Unfortunately, neither can fully protect systems [16,
62]. There are also proposals to mitigate Rowhammer in software [16, 56,
63, 64], but these solutions have security and performance issues [52, 55,
65]. To mitigate Rowhammer in hardware, previous work mostly proposes
to modify the memory controller to detect potential aggressors and refresh
their victims [3, 41, 42, 59, 61]. Unfortunately, due to their substantial cost,
CPU vendors are reluctant to deploy these mitigations given the promise of
Rowhammer-free devices by the DRAM vendors [66, 67]. However, without
carefully analyzing the security implications of performing TRRs inside
DRAM, there will be gaps in the protection, as evident in recent work [5–



3.1 introduction 23

7, 9, 41]. These gaps will only worsen with the increasing Rowhammer
vulnerability in newer DRAM generations with smaller technology nodes.

FEINTING. In this paper, we advocate for a principled approach for design-
ing secure in-DRAM mitigations. In-DRAM mitigations allow for seamless
system integration, but they need to strictly adhere to the synchronous
DRAM timing specifications defined in the DDRx standard [12, 20]. For
example, a DRAM refresh command cannot suddenly take longer when the
system is under attack. This means that any in-DRAM mitigation can only
protect a handful of victim rows at any given point in time. Consequently,
even with an ideal in-DRAM TRR scheme that always protects rows that
are hammered the most, an attacker can use decoy rows to slowly increase
the number of times a victim is hammered without it ever being subject
to the mitigation. We use this observation to construct FEINTING, a novel
Rowhammer attack that we mathematically prove to be optimal against an
ideal in-DRAM mitigation. FEINTING enables us to calculate strict bounds
on the degree of Rowhammer vulnerability that can be tolerated on any
compliant DDR4 device and future DDR5 devices that use Refresh Man-
agement (RFM), a new extension that is primarily introduced in the DDR5

standard to address Rowhammer [12]. To the best of our knowledge, this is
the first work to define and calculate these crucial bounds.

PROTRR. Counting the activations of each row for an ideal in-DRAM
mitigation is too expensive to implement in hardware. Existing frequent
item counting schemes can reduce the number of necessary counters when
frequent items need to be identified over an arbitrary sequence of row
activations [41]. Unfortunately, these schemes are unsuitable for in-DRAM
TRR which needs to proactively protect target rows based on the informa-
tion that is available at short intervals. We develop Principled yet Optimal
Target Row Refresh (PROTRR), a new in-DRAM Rowhammer mitigation
that we prove is both secure and optimal in this setting. PROTRR makes
use of a new frequent item counting scheme, called PROMG, that adapts
FEINTING to right-size Misra-Gries summaries [68] for secure in-DRAM
operation. Our calculations show that the insights from FEINTING enable
PROTRR to significantly reduce the required number of counters with slight
changes to the Rowhammer tolerance. This property provides PROTRR
with an unprecedented flexibility: depending on the degree of Rowhammer
vulnerability, a DRAM vendor can decide how to balance the number of
counters and in-DRAM refreshes for keeping its DRAM devices secure. Fur-
thermore, we provide a proof that PROTRR is optimal in terms of counters
and the required refreshes at any given configuration; fixing the number of



24 protrr

refreshes, any in-DRAM mitigation that uses fewer counters than PROTRR
will be vulnerable to Rowhammer. Similarly, fixing the number of counters,
any in-DRAM mitigation that uses fewer refreshes will also be vulnerable.

Our extensive evaluation using an ASIC implementation and cycle-
accurate simulation shows that PROTRR provides principled protection with
a negligible performance, area, and power impact. For example, PROTRR
can protect a DDR5 device where bits flip after only 3,200 activations, with
less than 0.2% performance overhead, while increasing the area by 1.78%
and energy consumption of DRAM by 2.35%.

Contributions. We make the following contributions:

1. The construction of FEINTING and a mathematical proof of its optimal-
ity against an ideal in-DRAM TRR.

2. The design of PROTRR, a principled in-DRAM TRR that is secure
against FEINTING while providing a provably-optimal yet flexible
trade-off between the required counters and refreshes.

3. A comprehensive evaluation of PROTRR using (i) an ASIC imple-
mentation in a popular 12 nm technology for measuring its area and
power requirements in DDR4 and DDR5 devices, and (ii) cycle-accu-
rate simulation for measuring its performance overhead when using
the recently introduced RFM extension in DDR5.

3.2 background

We briefly discuss the architecture and operation of a DRAM device (§3.2.1)
before discussing the Rowhammer vulnerability (§3.2.2). We then introduce
the current proposals for mitigating Rowhammer and discuss their limita-
tions (§3.2.3). We kindly refer the reader to Tbl. 3.4 (Appendix 3.12) for a
summary of all symbols introduced in this and following sections.

3.2.1 DRAM architecture

The architecture of DRAM and its basic operation is depicted in Fig. 3.1. Like
most memory devices, a principal abstraction in DRAM is the association
of data with its address. A DRAM address traverses a hierarchy, starting
with a channel and continuing to a specific connected DRAM device. Once
a device is selected, the data address is further used to identify a rank
and then a specific bank within that rank (Fig. 3.1a). Each bank is a matrix



3.2 background 25

a) b)

Rank 1 Bank 1

BankN

......

DRAM

e)
x+1

x-1

x

D
ecoder

A
ddress

c) Bank active d) Bank in precharge Bank active

Fig. 3.1: DRAM architecture and relevant DRAM operations. (a) the rank/bank
hierarchy in a DRAM device, (b) row addressing after rank/bank selec-
tion, (c) activating a row X + 1 in a bank using ACT to bring its content
to the row buffer, (d) deactivating the row in the row buffer using PRE,
(e) activating another row X− 1. Repeated activation of rows X + 1 and
X− 1 can potentially trigger Rowhammer bit flips in row X.

of cells that stores information using a capacitor (Fig. 3.1b). When data
has to be read or written, its associated row has to be activated using
the DRAM ACTIVATE (ACT) command, which connects the row to the row
buffer (Fig. 3.1c), making the bank active. To deactivate a bank, the DRAM
PRECHARGE (PRE) command is used. The memory controller can decide when
to send the PRE command based on a policy. With a closed-page policy,
the memory controller sends the PRE command right after or with the
DRAM access. In contrast, with an open-page policy, the memory controller
can delay the PRE command. Internally and transparently to the outside
world, banks can further be divided into subarrays [69]. Each subarray
has its own local row buffer, which is connected to the bank’s row buffer.
Subarrays allow for parallelization of certain DRAM operations such as
the REFRESH (REF) command. Because of the physical nature of capacitors,
their charge constantly leaks. To preserve their value, the CPU’s memory
controller periodically sends REF commands to DRAM, which triggers an
internal refresh mechanism. Each issued REF only covers a fraction of the
addresses. The JEDEC DRAM standard requires each row to be refreshed
at least once in a tREFW and the memory controller to issue REFs at intervals
defined by tREFI [12, 20]. As an example, if tREFW equals 64 ms and tREFI

equals 7.8125 µs, the memory controller needs to send a total of 8192 REF

commands in a tREFW.



26 protrr

3.2.2 Rowhammer

Thanks to continuous improvements in process technology, we observe an
increased DRAM chip density each year. Unfortunately, this comes at a
reliability cost [70]. As DRAM rows get closer to each other, their electrical
isolation gets compromised. Rowhammer is an attack based on repeated
row activations [3] that causes cells in nearby rows to leak charge and
eventually change their stored values (i.e., bits flip). The row with repeated
activations is commonly referred to as the aggressor row. The repeated
activations of an aggressor row affect its neighboring rows, which are
commonly referred to as victim rows. A variant of this attack where a victim
row is sandwiched between two aggressor rows, known as double-sided
Rowhammer, is depicted in Fig. 3.1c-e. Recently, it has been shown that
an aggressor row can influence victims that are two rows apart from the
aggressor [71]. This means that in certain DRAM devices, an aggressor can
have a blast diameter (B) of 4, affecting up to four victim rows.

Seaborn [24] showed for the first time that Rowhammer bit flips could
severely compromise security by building a native privilege-escalation
exploit. Plenty of other attacks followed [15, 72–78], where researchers
showed that it is possible to use these bit flips to compromise browsers [52–
54], cloud virtual machines [25, 49], mobile phones [55, 56] and even remote
machines over the network [57, 58].

3.2.3 Rowhammer mitigations

In response to these attacks, many solutions have attempted to mitigate
Rowhammer in software or hardware. The ones implemented in software,
usually inside the operating system’s kernel, try to detect aggressor accesses
and refresh their victims [16], isolating sensitive data from bit flips [56, 63,
64], or using certain pages to store sensitive information [79]. Unfortunately,
these solutions require adoption by operating systems, which has not hap-
pened to date. They are also often vulnerable to more advanced attacks [26,
55, 65].

At the hardware level, Rowhammer can be mitigated either in the CPU’s
memory controller or inside the DRAM itself. Over the years, there have
been many proposals by academia to modify the memory controller to
detect aggressor rows either deterministically [41, 42, 59, 60, 80] or proba-
bilistically [3, 60] and to refresh their victims under the Target Row Refresh



3.3 threat model 27

(TRR) scheme. Except for a low-cost solution that was briefly adopted by
Intel [3, 5, 81], the remaining ones require extensive modifications to the
CPU’s memory controller with non-trivial area or performance overhead.
As a result, they have not seen any adoption [5]. It is unlikely that all CPU
vendors will deploy an expensive mitigation to fix a problem that is in
the products of DRAM vendors. Perhaps, the only enabled mitigation in
the CPU is the memory controller-based Error-Correction Code (ECC) in
server systems. This covers only a fraction of existing computer systems
that use DRAM, and even then, ECC does not provide an adequate level of
protection against Rowhammer attacks [10, 62].

Rowhammer is a DRAM vulnerability, and arguably the best place to
address it is inside the DRAM itself. In fact, this is exactly what DRAM
vendors have done [66, 67]. Unfortunately, these in-DRAM TRR mitigations
are undocumented and lack formal security guarantees. Recent work shows
that there are indeed gaps in currently deployed mitigations and slight
changes to existing Rowhammer patterns result in bit flips to resurface [5–7].
The only existing academic work on in-DRAM TRR [82] similarly suffers
from slightly more advanced patterns [41]. Hence, we urgently need an
in-DRAM TRR mechanism with formal security guarantees. In this paper,
we show not only that this is possible, but it can be done in a way that is
optimal in terms of the number of required counters and the introduced
refresh overhead.

3.3 threat model

We consider a DRAM device that is affected by the Rowhammer vulnerabil-
ity. At the time of this writing, Rowhammer is present in all recent DRAM
technologies [7, 17]. We assume that bits start to flip after Rthresh cumulative
accesses to aggressor rows and that each aggressor row can influence up to
B victim rows. We assume an adversary that is capable of sending requests
to the DRAM device either through local code execution [10, 24–26, 49, 55,
56], from the Web [9, 52–54], or even over the network [57, 58] through a
CPU that deploys a memory controller that is compliant with the respective
DRAM standard [12, 20]. The aim of the adversary is to craft an access
pattern that triggers Rowhammer bit flips to compromise the system by
ensuring that a victim is hammered at least Rthresh times. Our mitigation
should provide a formal guarantee that no row can be hammered Rthresh
times before it is protected by TRR.



28 protrr

Time

RAAIMT

Bank is blocked

R
A

A
(b

an
k 

1)
REF REF RFM

RAAMMT

Fig. 3.2: RFM example. Activations are sent to the same bank, increasing RAA. At
each REF, RAA is decremented by RAAIMT. Once the RAA reaches RAAMMT, the
bank does not accept any ACTs anymore. In this case, issuing a RFM can
reduce the counter by RAAIMT to unblock it before the next REF, which
will also reduce the RAA counter value.

3.4 refresh management in ddr5

Recent (LP)DDR4 devices internally perform TRRs on potential victim
rows, whenever they receive REF commands [5]. In theory, it is possible to
perform TRRs during the execution of other DRAM commands such as ACT

or read/write. However, as these commands are latency-critical, it would
adversely affect the performance. As such, the REF is shared between regular
refreshes and TRRs. Consequently, TRRs are scarcely performed and can
only refresh a limited number of rows each time. Performing multiple TRRs
overloads the REF command, and moving to smaller technology nodes with
increasing Rowhammer vulnerability [17] only exacerbates this problem.
As a remedy, the DDR5 standard [12] introduces a new DRAM command
called Refresh Management (RFM) that provides additional time for TRRs.

RFM mechanisms. An RFM command either targets the same bank address
in each bankgroup (RFMsb) or all banks (RFMab). Each bank has a counter
called Rolling Accumulated ACT (RAA) that tracks the number of received ACTs.
Once RAA reaches a maximum value defined as RAA Maximum Manage-
ment Threshold (RAAMMT), no more ACTs are accepted by the bank until the
RAA counter is decremented. There are two possibilities to decrement this
counter: RFM and REF commands. Every time an RFM is received, the target
banks’ RAA is reduced by the value set in the Initial Management Thresh-
old (RAAIMT). Instead, REF reduces RAA either by 0.5× or 1× of the RAAIMT,
depending on the value of the MR59 OP[7:6] DRAM register. Fig. 3.2 sum-
marizes these concepts with an example. In the current DDR5 standard,
valid values for RAAIMT range from 32 to 80, in steps of 8. Since the RFM

command can be postponed by the memory controller, in practice RAAIMT

defines the average number of activations received by a bank before an RFM



3.5 feinting 29

is issued. Instead, RAAMMT = m× RAAIMT defines the maximum number of
activations before an RFM or a REF must be issued, where m is an integer
between 3 and 6 set by the DRAM. This gives the memory controller flexi-
bility for scheduling RFM and REF commands as long as a bank’s RAA count
remains below RAAMMT.

3.5 feinting

As stated in Section 3.2, the design of a secure and working in-DRAM TRR
is still an open problem. The operations of such a mitigation are fundamen-
tally different from those implemented inside the memory controller. In
particular, (i) the points at which TRRs can be performed in a tREFW are
limited, and (ii) only a small number of rows can be refreshed at each point.

In other words, performing in-DRAM TRR means occasionally refreshing
a bounded number of rows. Therefore, to successfully protect against
Rowhammer, the mitigation has to use the available TRRs effectively. Given
these conditions, the only way to implement a secure mitigation is to
proactively refresh rows. To provide deterministic guarantees, a proactive
TRR scheme must keep track of row activations. This can be achieved by
storing a list of victims or aggressors. Additionally, we define a Rowhammer
mitigation to be proactive if (i) rows are refreshed without using a fixed
hammering threshold, and (ii) the TRR mechanism is triggered periodically.
In a proactive mitigation, every time the mechanism is triggered (TRR event),
the most hammered V victim rows (TRR volume) are refreshed. Because
this happens periodically, we consider two consecutive TRR events to be
interleaved by T activations (interval).

In this section, we consider an ideal TRR scheme, TRRideal , which has a
hammer counter for each victim row. The victim row’s counter increases
every time one of its aggressor rows is activated, TRRed or refreshed by the
regular REF. The victim row’s counter is reset to zero every time the victim
row is activated, TRRed, or refreshed by the regular REF. For clarity, we
define REFI as the refresh where a specific row is regularly refreshed (i.e.,
not TRRed). In Section 3.6, we show how we can relax these requirements
to build an in-DRAM TRR scheme that is both counter- and TRR-optimal
while providing the same guarantees as TRRideal .



30 protrr

3.5.1 Security analysis of TRRideal

Any proactive TRR mitigation can protect up to a specific degree of
Rowhammer vulnerability (Rthresh). In an ideal proactive mitigation with
unlimited counters, this limit depends on V, T and B. Selecting V and T (B
is technology-dependent), there exists a maximum count (Hammermax) that
a victim row can reach before getting refreshed either by REFI or TRR.

Definition 1 (Victim hammering). A victim row x̃ is hammered each time one
of its aggressor rows r̃ is activated (i.e., x̃ is one of the B/2 rows on each side of
r̃). We denote by x(α) the hammer count of row x̃ after the α-th ACT of the attack.
x(α) becomes zero every time x̃ is subject to REFI , TRR, or an activation.

Definition 2 (Rowhammer attack). We define a Rowhammer attack A on a
victim x̃, as a finite sequence of Lattk activations to a bank’s rows. A is successful
against x̃ iff ∃α ≥ 1 | x(α) ≥ Rthresh. We denote by A the set of all attacks, which
is the set of finite sequences over J1, NrowsK, with Nrows being the number of rows
in a bank.

Definition 3 (Optimal Rowhammer attack). For a given (V, T, B, mitigation),
we define Hammermax = maxA max1≤x≤Nrows maxα≥1[x(α)]. An attack A ∈
A is optimal against a victim x̃ iff A reaches Hammermax.

Following, we express the security requirement for TRRideal :

Requirement (Security of TRRideal). For a given DRAM technology (B, Rthresh)
and configuration (V, T), TRRideal is secure if Hammermax < Rthresh.

Identifying Hammermax corresponds to finding the optimal Rowhammer
attack against the mitigation. In what follows, we present and prove the best
attack against TRRideal .

Assumptions. In our analysis, (i) we consider a memory controller with
a closed-page policy (i.e., no bank collisions are required to induce a
PRECHARGE); (ii) if during a TRR event, more than V rows have the same
highest count, we consider an attacker that is able to influence which are re-
freshed; (iii) we assume an attacker that knows when the rows are refreshed
by the REFI — including the victim x̃. These assumptions constitute the
worst possible conditions for the defender.

Without TRR, all the activations in a tREFW (LtREFW) can be used against
the victim. However, this approach would quickly fail against a proactive



3.5 feinting 31

mitigation: the mechanism would refresh the victim at the first TRR event,
as the victim row would have the highest count. We will demonstrate that
by using a specific activation pattern, the TRR event will never refresh the
target victim before its REFI . Moreover, we will show how this pattern can
be used to build the best possible attack against TRRideal , which we refer to
as FEINTING1.

Decoy rows. Given a target victim row x̃, the attacker aims at activating
the aggressor rows while protecting the victim from refreshes. During a
TRR event, the only case where x̃ is not refreshed is if there are at least V
different victim rows (decoys) with a greater or equal hammer count. When
this happens, we say that the victim “survives” the TRR event.

Definition 4 (Conditions for victim survival). A victim row x̃ is not refreshed
during a TRR event, after activation α, iff there exist V distinct rows d̃1...d̃V , each
different from x̃, such that minj[dj(α)] ≥ x(α). We refer to the rows d̃1..d̃V as

“decoys”.

Every time a victim is hammered, its counter is incremented by one.
Given Definition 4, it follows that decoy rows must be incremented con-
currently. Unfortunately for the attacker, when decoys are refreshed, their
counters reset to zero and become lower than the victim’s count. At the
next event, different decoys will have to be higher or equal to the victim
count for the victim to survives again. Generally, to survive n TRR events, a
victim needs a total of n×V decoys. Note that each time an aggressor row
is activated, it influences up to B victim rows. That is, for a single aggressor
row activation, B decoys are hammered and their counters increase by one.

Problem formalization. This condition creates an optimization problem:
before a TRR event, part of the activations should be used to hammer
the victim and the remaining to hammer the decoy rows. However, if too
many activations target the victim, the decoys cannot protect it from being
refreshed. On the opposite, if just a few activations hammer the victim, it
will reach a lower hammer count than possible since the extra activations
used for the decoys are “wasted” (i.e., not used against the victim). Hence,
the number of decoys and their hammer count should be minimized. We
formalize this problem as follows: Considering all activations in an attack
(Lattk), then Lattk − k activations must be used to build and maintain a set of
decoys. The remaining k activations can be used for hammering the victim row and
thus should be maximized.

1 FEINTING refers to maneuvers that distract or mislead the opponent.



32 protrr

Activations are tracked with ProTRR
+ FEINTING-GHOST

Counters are refreshed periodically 
+ FEINTING-SPLIT

Section V

Appendices

Section VI

RFMs are postponed
+ FEINTING-POSTPONING RFM

Refreshes are postponed
+ FEINTING-POSTPONING REFS

Subarrays parallelism
+ FEINTING-SUBARRAYS

• DDR4: FEINTING 
Basic support

• DDR5: FEINTING-LITE/MEDIUM, FEINTING

Fe
in

tin
g 

  r
efi

ne
m

en
ts

 

Fig. 3.3: Overview of FEINTING variations. The final attack is a combination of
the listed refinements, depending on the DDR technology.

We solve this problem by answering the following questions:

1. What is the optimal hammer [optimal distribution]
ratio between the different rows?

2. How many times should the rows [optimal intensity]
be hammered in each step?

3. How many TRR events should [optimal duration]
the attack last?

Answering these questions will lead us to the FEINTING attack. We start
by obtaining FEINTING for DDR4 devices before adapting it to handle
RFM on DDR5. In Section 3.6, we will adapt FEINTING to securely design
PROTRR, and we will discuss how FEINTING can be further refined to handle
protocol optimizations such as REF and RFM postponing, and certain DRAM
architectural optimizations such as subarray parallelism (Appendix 3.12:
§3.12.1, §3.12.2, and §3.12.3). Fig. 3.3 provides a summary of these different
FEINTING variations.

3.5.2 FEINTING on DDR4

We consider an attack that lasts n TRR events (intervals). In the last TRR
event, the victim can be refreshed (as the attack ends), so no further decoy
is needed. Thus the minimum number of rows hammered in the attack
is DT = (n− 1)× V + 1, i.e. (n− 1)× V decoy rows plus the victim row.



3.5 feinting 33

Generalizing, the victim row can be seen as the last decoy that is refreshed.
We refer by D(α) to the number of decoy rows that have not been refreshed
yet before the activation α. We define d̃i as the i-th decoy, and αi as the
moment it is refreshed.

Theorem 1 (Optimal distribution and intensity). For a generic TRR event i ∈
J1, nK happening after activation αi, with D(αi) decoys (d̃1...d̃DT−(i−1)×V), an at-
tack A can only be optimal if all decoys’ hammer count (d1(αi)...dDT−(i−1)×V(αi))
is the same.

I Intuition. To maximize k (the activations that hammer the victim),
we must minimize the total activations used to hammer decoys during
the attack. Decoys should not be hammered more than the victim be-
cause this is unnecessary for the victim to survive. Likewise, a decoy
that is hammered insufficient times is useless for the victim’s survival.
Practically, this translates to steps in which all the decoys and the vic-
tim increase their hammer counts together and in unison, as shown in
Fig. 3.4.

I Proof. First, we prove that no decoy should be refreshed with a hammer
count higher than the victim x̃. We consider any TRR event i, after an
activation αi, in which a decoy d̃i is refreshed. We define ∆ as the difference
of hammer counts between decoy and victim: di(αi) = y + ∆ for x(αi) = y.
Given Definition 4, the victim already survives if di(αi) = x(αi). This means
that ∆ hammerings are wasted by not spreading them equally over all
remaining D(αi) rows. In other words, the victim can survive with a count
of x(αi) = y + ∆

D(αi)
, which creates a better attack.

Similarly, we now prove that it is not optimal to have decoys hammered
less than the one refreshed at the TRR event. We consider any TRR event
i (after activation αi) in which a decoy d̃i is refreshed. In this case, ∆ is
the difference of hammer counts between a lower decoy (d̃l) and d̃i, with
di(αi) = y + ∆ for dl(αi) = y. Decoy d̃i is refreshed with an excess of
hammer counts: x̃ would have already survived with di(αi) = xi(αi) =

y + ∆′, where ∆′ = ∆×(D(αi)−1)
D(αi)

. The extra hammers (∆− ∆′) are wasted, as
they could have been used to hammer decoy dl , which has to be hammered
to make the victim survive in a future interval. Concluding, the optimal
distribution and intensity minimizes the difference between all decoys and
the victim by hammering them in steps and in each step, in unison.



34 protrr

Algorithm 3.1: The pseudocode for FEINTING on DDR4.

1 nr_intervals = 8192

2 A_T = nr_intervals*166 // T=166

3 nr_decoys = nr_intervals*V

4 aggressors = GetDifferentRows(nr_decoys/B)

5 for ACT = 1 ; ACT ≤ A_T ; ACT++ do

6 ACTIVATE GetLeastActivated(aggressors)

7 if ACT%T is 0 then // TRR event

// remove the TRRed aggressors

8 RemoveHighest(aggressors, V/B)

+1

+1
+1

+1
+1

+1

...

TRR
event
(V=2)

Activated aggressorDecoys Target victim

+1

+1
+1

+1

+1

...

R
ow

s
in
th
e
ba

nk

+1

+1

+1

+1

...

+1

+T

...

+T
DN

Refreshed

Feinting progression

Fig. 3.4: FEINTING strategy. As the attack progresses, decoys get refreshed. In the
last round, only the target victim (DN) is left to be refreshed and all the
activations are used against that victim, hammering it T times.

Theorem 2 (Optimal duration). Given n TRR events happening in a tREFW, an
attack A is optimal if, given A, DT = (n− 1)×V + 1 and Lattk = LtREFW .

I Intuition. The last intervals of two attacks of different lengths are
equivalent. In the last interval, in both cases, only one row survives
(the victim), while in the previous interval, there were V + 1 rows alive
(the decoys and the victim), and so on. In other words, the longer
attack extends the shorter attack by more intervals. An attacker can use
these extra intervals to hammer the victim and the necessary decoys.
As a result, using a fewer number of intervals only leads to a lower
Hammermax.

I Proof. Independently from the attack duration, the victim is refreshed
after the last interval. Thus, according to Theorem 1 attacks of lengths n1



3.5 feinting 35

1.4M 1.2M 1.0M 0.8M 0.6M 0.4M 0.2M 0
0

4k

8k

12k

16k

#
 D

ec
oy

s

0

0.4k

0.8k

1.2k

1.6k

H
am

m
er

s

Decoys alive 2
4
6
8

1k

1.2k

1.4k

1.6kT

AT

AT/2
AT/4

# ACTs remaining

Fig. 3.5: Different durations of FEINTING. Example for DDR4, {V; B} = 2.

and n2 (with n1 < n2) will share the same pattern for the corresponding
last interval. As such, they will also share the previous intervals (i.e., n1 − 1
and n2 − 1) and so on, until the first n2 − n1 intervals of the longer attack.
We now prove that having n2 − n1 ≥ 1 is beneficial for the attack of length
n2.

Consider an attack that requires D(1)
T rows hammered and lasts n in-

tervals. Adding one interval at the beginning results in hammering each
row by ∆ε = B×T

D(1)
T +V

more and consequently must have V more decoys.

However, because B× T > V, it is beneficial for the attack to have this extra
interval. Generally, for j intervals added, the victim row is increased by
∆εtot(j) = ∑

φ=j−1
φ=0

B×T
DT−φ×V , where DT = D(1)

T + j× V. Thus, the optimal
duration of an attack is the maximum number of activations in a tREFW (i.e.,
LtREFW), from which follows Lattk = LtREFW . This covers all n TRR events
in a tREFW, which means having DT = (n− 1)×V + 1 decoys. Note that for
simplicity, we consider that the available B× T hammering in each interval
can be used flexibly for any victim without loss of generality. In reality,
when D(α) < B (last interval(s)), rows are hammered at maximum T times
per interval which is what is considered for all the plots, evaluation, and
calculations.

FEINTING. To summarize, the optimal attack (FEINTING) is an attack that
starts immediately after the victim row has been refreshed internally. The
attack lasts a tREFW (for a total of LtREFW activations), where D(α) rows are
alternately hammered once. As TRR events happen, D(α) decreases, up to
having only the victim row in the last interval. The number of aggressors
needed is DT

B , each associated with unique B decoys. Algorithm 3.1 presents
the implementation of FEINTING according to these three theorems, and
Fig. 3.5 shows how the increased duration of the attack allows for a higher



36 protrr

2000 4000 6000 8000

2000
4000
6000
8000

10000
12000
14000

0

1

10

100

1000

zoom on
the last 34

intervals

Refresh interval

H
am

m
er

 c
ou

nt

D
ec

oy
 ID

8170 8180 8190
Refresh interval

Victim row

Refreshed rows

Not hammered
anymore

Fig. 3.6: Impact of FEINTING against TRRideal . Decoys’ hammer count over time.
After a decoy has been refreshed, it is never hammered again.

Hammermax. Fig. 3.6 shows the hammer count of the victim in FEINTING

over one tREFW.

Number of TRR events. In DDR4, a REF is sent every tREFI and may trigger
a TRR event [5]. The distance d identifies after how many REFs one triggers a
TRR event. This means that the total number of TRR events is 8192

d regardless
of the number of activations used in a tREFW. In contrast, DDR5 introduces
the new RFM command (Section 3.4), which, depending on the number of
activations, allows for a higher number of TRR events. Next, we look at the
impact of RFM on FEINTING.

3.5.3 FEINTING on DDR5

We adapt the previous theorems to DDR5 devices. In DDR5, TRR events
happen for both REF and RFM. For this reason, while keeping the previous
definitions, we specify T as follows. We define TREF as the number of
activations between two refreshes that perform TRR, and TRFM as RAAMMT

(=RAAIMT×m). We first consider a simple memory controller that generates
RFM commands every RAAIMT activations (i.e., m = 1). Later, in Section 3.5.4,
we relax this assumption to consider postponing RFMs (i.e., m > 1).

TRR events on DDR5. We calculate the minimum number of possible
TRR events generated on a DDR5 device during a tREFW. This leads to
the minimum number of decoys needed to perform FEINTING. Per DDR5

standard [12], a register in the device indicates whether every REF or every
second REF, a TRR happens (i.e., d = 1 or 2). For simplicity, we denote
by REFTRR the REFs that do TRRs. Depending on d there are 8192 or 4096
REFTRRs in a tREFW. These are the minimum numbers of TRR events that



3.5 feinting 37

REF REF REFa) TRFM

REF REF REFb)

RFM RFM RFM
REF REF REFc)

RFM RFM
ACTs used

RFM RFMRFMRFM
Skipped ACTs

Fig. 3.7: Different FEINTING strategies on DDR5. a) FEINTING-Lite, b) FEINTING-
Medium, and c) FEINTING.

happen in a tREFW, without including RFMs. With FEINTING-Lite, we show
how an attacker can perform FEINTING without ever inducing an RFM.

FEINTING-Lite. In DDR5, tREFW is 32 ms by default, which leads to TREF =
83 (d = 1). Instead, the maximum value of TRFM is 80. For FEINTING-
Lite and the other variants to be introduced later, we always consider
an optimized memory controller that does not send an RFM if the next
command is a REFTRR. For this reason, TRFM activations can always be sent
between two REFTRR without causing an RFM: as the RAA counter becomes
RAAMMT, it is immediately set to zero with a REFTRR. The FEINTING attack is
reproducible without variations by skipping TREF − TRFM activations every
REFTRR (Fig. 3.7a): we refer to such attack as FEINTING-Lite. Because we
have already proven FEINTING to be optimal, this is the optimal attack if no
RFM command is triggered.

FEINTING-Medium. If multiple blocks of TRFM activations can fit between
two REFTRR, it is straightforward to prove that FEINTING-Lite can be im-
proved by using the complete TREF − (TREF mod TRFM) activations between
two REFTRR. TREF can be segmented into blocks of TRFM activations as
shown in Fig. 3.7b. These additional blocks increase the number of intervals
used for the attack in a tREFW. In the case of FEINTING-Lite, exactly 8192 (or
4096) intervals are used for the attack, each of TRFM activations. In FEINTING-
Medium, each additional block performs TRFM activations and requires V
(additional) decoys: exactly as if FEINTING-Lite lasted longer. Because of
Theorem 2, this strategy improves the attack. In FEINTING-Medium, between
two REFTRR, the remaining (TREF mod TRFM) extra activations are skipped.
FEINTING-Medium is the optimal attack if the remaining extra activations
are not used. In the last step, we analyze if it can ever be beneficial for the
attacker to use these extra activations.



38 protrr

0.1M0.2M0.3M0.4M0.5M0.6M

#
 D

ec
oy

s

H
am

m
er

s

Decoys left
Feinting Feinting-medium Feinting-lite

1
3
5
7

270

310

350

# ACTs remaining

300

200

100

40k

30k

20k

10k

00

Decoys left: medium Decoys left: lite

T

Fig. 3.8: Different FEINTING strategies for DDR5. Example for {V; B} = 2.

FEINTING. Starting from FEINTING-Medium, we evaluate if the attack can be
improved by causing some extra RFMs using the remaining extra activations
(TREF mod TRFM) between two REFTRR. There is a cost attached when using
these extra activations: every extra RFM triggered increases the number of
decoys needed by V. The attacker needs to use activations to hammer these
additional decoys. Unfortunately, these additional decoys are less impactful
than the others since they add fewer activations to the attack. This leads to
the following question:

Considering "FEINTING-Medium", when is it optimal for an attacker to use the
extra activations that cause RFM?

Theorem 3 (Optimal number of extra RFMs). If using extra activations ceases
to be beneficial for an attacker, then it can never become beneficial again in the same
attack.

Corollary. If using extra activations at the beginning of the attack is not useful,
then it will never be.

I Intuition. Extra activations will trigger more TRR events, requiring
more decoys to be hammered during the attack. As time passes, these
decoys must be hammered (Theorem 1) until they are finally refreshed
by the extra RFM. This can be seen as an expense for the attacker. From
an attacker’s point of view, it is less expensive to trigger the extra RFM

earlier, so that the accumulated cost of hammering these decoys is lower.

I Proof. For simplicity, let us assume that only one full TRFM fits between
two REFTRR. We consider two cases that are identical up to REFTRR interval



3.5 feinting 39

i− 1 with victim count x(αi−1) = y. Case (1): the attacker uses ε = TREF −
TRFM extra activations in the interval i. Case (2): the attacker skips interval
i as using extra activations is not useful, and then, in the next interval i + 1,
these ε activations become useful and are used for the attack. We now prove
that case (2) is impossible. We start by evaluating the victim hammer count
in the two cases, summing the different contributions:

x(1)(αi+1) = y + TRFM×B
D(αi)+V + ε×B

D(αi)
+ TRFM×B

D(αi)−V

x(2)(αi+1) = y + TRFM×B
D(αi)+V + TRFM×B

D(αi)
+ ε×B

D(αi)−V

We can evaluate when x(1)(αi+1) > x(2)(αi+1). This results in TRFM > ε
which is always true. Therefore, case (2) can never be more optimal than case
(1). This means that is not possible that using the extra activations ceases
to be useful in one interval and becomes useful again in a later interval.
Likewise, if case (1) was not useful, case (2) would also not be useful. By
induction, it cannot become useful in the future: if i is not useful and i + 1 is
not useful, i + 2 will also not be useful, and so on. Concluding, the attacker
can calculate when to stop inducing extra RFMs, deriving the best possible
FEINTING. Fig. 3.8 shows the effectiveness of different FEINTING strategies on
DDR5. These results show that while FEINTING-Medium improves the attack
compared to FEINTING-Lite, in the case of {V; B} = 2 the improvement of
the last optimization does not result in a higher Hammermax.

3.5.4 FEINTING on DDR5 with RFM postponing

More sophisticated memory controllers may issue RFM commands irregu-
larly, i.e., not always precisely after RAAIMT activations. However, it must
never be after TRFM = m × RAAIMT (i.e., RAAMMT) activations. In case that
TRFM > TREF, FEINTING can be improved if we assume that the attacker can
influence the scheduling of RFM commands. The idea is to leverage extra
activations gained by postponing RFMs to build blocks of RAAIMT activa-
tions. This causes the RAA counter to increase quickly, and at some point,
the memory controller will have to issue multiple, previously postponed
RFM commands. It is optimal for the attacker if the LtREFW activations are
equally distributed over intervals of size RAAIMT, similarly as for FEINTING-
Medium. In the last few intervals, postponed RFMs can be sent after the
tREFW, as such, allowing the attacker to further increase the count of the



40 protrr

decoys (needed for REFs) and victim in these intervals without causing RFMs.
Furthermore, in this setting, the attacker requires fewer decoys since fewer
RFMs are issued during the attack. We refer to Appendix 3.12 for more
details.

3.6 protrr

An ideal TRR mechanism (TRRideal) requires a large amount of storage.
For example, a single-rank module with 16 banks/rank and 16 bit row
addresses needs in total 14 MiB (Rthresh = 5 K). Mitigations deployed in
the memory controller can use known optimized data structures to detect
when a potential victim row reaches a specific threshold. Once this happens,
these mitigations can delay the execution of normal DRAM operations to
refresh this victim row [41, 42, 59, 80]. As already explained (Section 3.5), it
is not possible for in-DRAM mitigations to delay DRAM requests due to
the synchronous nature of the DRAM protocol.

Park et al. [41] use Misra-Gries summaries [68] that provide deterministic
guarantees of finding the most frequently activated (aggressor) rows [83].
Misra-Gries summaries are proven to be optimal in the number of counters
they need for detecting frequent items. Unfortunately, these summaries can-
not be directly applied to the in-DRAM setting. First, Misra-Gries provides
guarantees of finding frequent items occurring more than a fixed thresh-
old in a stream with a specific length. However, an in-DRAM mitigation
must protect V rows with the highest count at any TRR event without a
fixed threshold. It is unclear how many counters are necessary to provide
similar guarantees in PROTRR. Second, in a proactive in-DRAM setting, the
counters of refreshed rows must reset while processing the stream, which
is not considered in Misra-Gries.

Our proposed in-DRAM Rowhammer mitigation, PROTRR, uses a new fre-
quent item counting scheme for in-DRAM operation, called PROMG (Proac-
tive Misra-Gries). PROMG operates similarly to the Misra-Gries scheme,
but is designed to function in the in-DRAM scenario. In the followings, we
show how PROMG is similarly optimal in the number of required counters
by leveraging the bounds given by FEINTING. Furthermore, we show how
PROMG enables PROTRR to provide an optimal trade-off between the num-
ber of required counters and additional refreshes – given a DRAM device
with a specific Rthresh.



3.6 protrr 41

2 Victims generator 

Summary update3

calculated 
using FEINTING

Victim not presentVictim not present

Aggressor not presentAggressor present

Spillover

... ...

C

Addr. H.C.
0x0001

0x0005

x

1

1

1

0

01a

Spillover

... ...

Addr. H.C.
0x0001

0x0005

0x0009

1

1

1

0

1b

Victim present

Spillover

... ...

Addr. H.C.
0x0001

0x0005

x+1

1

1

0

3a
1 2

Low spillover

Spillover

... ...
Addr. H.C.
0x0001

0x0005

0x0003

0x1203

1

1

1

1

3b

0 1

High spillover

Spillover
... ...

Addr. H.C.
0x0001

0x0005

0x0003

x+10x112

2

2

2

1

3c

21

x+1 x-1
 

ACT of aggressor “x” 1

Fig. 3.9: Victim counting in PROTRR. Once a row is activated ( 1 ), if its address
is contained in the summary it is pruned ( 1a ). Then, the aggressor blast
diameter is considered ( 2 , for e.g. B = 2) identifying the victim rows.
The victim rows are compared with the summary’s content, which is
updated accordingly ( 3a , 3b , 3c ).

3.6.1 Design of PROTRR

PROMG is a proactive version of Misra-Gries summaries with two crucial
differences. First, PROMG needs a different number of counters than the
original Misra-Gries since it needs to make proactive decisions. We later
show how FEINTING can be used to right-size PROMG summaries. Second,
PROMG supports pruning entries from its summaries.

Similar to Misra-Gries, a PROMG summary is a table of < ID, count>
pairs and a spillover counter. Conceptually, the spillover counter represents
the upper bound of counts for all rows that are currently not in the summary.
For every input, its ID is compared with all existing table entries; if there
is a match, the associated counter is increased. Otherwise, the spillover
value is compared with the lowest counter, and if the former is equal to or



42 protrr

higher than the latter, the new input replaces that entry and its counter is
increased. If every entry has a higher count than the spillover, the spillover
is increased. Unlike Misra-Gries, in PROMG, a row that is either activated
or refreshed is pruned from the summary, and its victim rows are treated
as summary inputs.

Fig. 3.9 shows how PROTRR makes use of PROMG. On each activation,
PROTRR updates its summary accordingly by incrementing counters that
are associated with victim rows of the activated row. At each TRR event,
PROTRR refreshes the V rows with the highest counters in the summary.

Right-sizing the PROMG summary in PROTRR. In the original Misra-
Gries scheme, given C counters and an input stream of size L, any entry
occurring more than L

C+1 times will be included in the summary [41].
In contrast, PROTRR uses PROMG to make proactive decisions without
reaching a threshold. To do this securely, we need to find the right number
of PROMG counters for PROTRR to be secure against FEINTING. Furthermore,
every row will be refreshed in a tREFW which we also leverage in PROTRR
to ensure that the counters do not grow unbounded. To do this securely,
however, we have to adjust the bounds given by FEINTING. We now prove
theorems that shows how PROTRR right-sizes PROMG considering these
observations.

Theorem 4 (FEINTING optimality against PROTRR). If the amount of TRR
events in an attack is n, given PROTRR with C = (n − 1) × V + 1 counters
in the summary (excluding the spillover), FEINTING is the optimal attack against
PROTRR.

Corollary. Given Hammermax obtained with FEINTING for fixed (V, B and n TRR
events) and considering PROTRR with C = (n− 1)×V + 1 counters (excluding
the spillover), PROTRR protects any device less vulnerable than Hammermax, i.e.,
where the Rowhammer threshold Rthresh >Hammermax.

I Proof. Given that C = (n − 1) × V + 1, PROTRR behaves exactly like
an ideal counter against FEINTING. Therefore, an attacker is able to reach
Hammermax as described earlier. We now prove that an attacker forcing the
replacement of rows in the summary due to the limited number of counters
does not increase Hammermax. A replacement happens if a row d̃s that is
not in the summary is hammered, and the spillover is equal or higher than
the minimum count of the summary (row d̃t). The replacement increases
the counter that now refers to d̃s. The effect on the attack is equivalent as if
d̃t had been hammered, since for the victim to survive, it does not matter



3.6 protrr 43

which decoy is TRRed. Note that the replacement can only happen if more
than C decoys have already been hammered; otherwise, d̃s is added to
the summary. Moreover, because C = DT , all the decoys necessary for the
attack have already been hammered. Therefore, these replacements cannot
improve the attack.

Resetting. Over time, the counters can grow unbounded, thus requiring
unlimited storage to avoid overflows. This does not reflect reality where
every row is refreshed at least once in a tREFW. To handle this, PROTRR
resets the entire summary once every tREFW. The refresh of a given row,
however, is not necessarily synchronized with the summary reset. This loss
of information about the past tREFW allows an attacker to perform FEINTING

across a reset, thus changing the supported Rthresh. We address this in
Theorem 5.

Theorem 5 (Non-linearity of FEINTING). In the presence of a summary reset,
two independent and shorter back-to-back FEINTING result in a higher Hammermax
than a longer one.

I Intuition. FEINTING starts after the victim row has been regularly
refreshed (REFI) to maximize the activations available for the attack
(LtREFW). However, during the attack, the summary could reset, leading
to an information loss that can be exploited to increase Hammermax. For
example, two attacks of (each) 4096 intervals require half of the decoys
than one attack lasting 8192 intervals but using the same number of
activations, allowing the victim to be hammered more.

I Proof. We define the baseline as case (1): FEINTING lasting n intervals,
never crossing a summary reset. The number of times the victim will be
hammered by the end of these intervals is denoted by x(1)(αn). In case (2),
we consider a summary reset happening σ intervals after FEINTING has
started (with σ < n − 1). Once the summary resets, it becomes empty,
and a new FEINTING can be initialized, lasting the remaining i = n − σ
intervals. The cumulative number of times the victim is hammered, after n
intervals is x(2)(αn). We compare these two cases. In case (2), the number
of hammers to the victim is obtained by two different contributions, the
first attack (σ intervals) and the second attack (n− σ intervals): x(2)(αn) =

∑σ
φ=1

B×T
φ×V+1 + ∑i−1

φ=0
B×T

1+φ×V . Instead, case (1) consists of only one attack:

x(1)(αn) = ∑n−1
φ=0

B×T
1+φ×V . The second part of case (2) overlaps with the start

of case (1), i.e., their contributions are equal — a direct consequence of



44 protrr

Theorem 2. The first part of case (2) is larger than the sum of the σ last
terms in case (1), which proves the non-linearity.

Corollary (FEINTING-Split). Given a summary reset every tREFW, two balanced
(σ = n

2 ), independent back-to-back FEINTING attacks are optimal.

We proved that if σ < n− 1, it is always better for the attacker to have
two distinct and independent FEINTING. Now we prove that the optimal
condition for the attacker is when there are two equally long attacks. We
start by showing the effect of moving an interval from the attack’s second
part (i.e., last n− σ intervals) to the first part (i.e., first σ intervals). The
reader will remember that the sum of the two intervals is fixed by n. Moving
an interval from the second to the first part is beneficial for the attacker
when B×T

σ×V+1 ≥
B×T

1+i×V leading to i ≥ σ. Given that i = n− σ, it follows that
the best case for the attacker is when σ = n

2 . Because PROTRR implements
summary refresh, we have to consider this adaptation of FEINTING, which we
refer to as FEINTING-Split, when right-sizing the PROMG summary. Before
finalizing FEINTING-PROTRR, we add flexibility to PROTRR.

3.6.2 Optimality and Flexibility

Depending on the DRAM technology, a vendor may afford a maximum
number of TRR events (N) to be performed in a tREFW and a certain number
of counters (C) to keep track of victim rows. We design PROTRR to be
flexible: given any pair of (N, C), the maximum vulnerability protected
can be obtained using FEINTING. A DRAM vendor, knowing the Rthresh for
its own devices, can decide to change N or C as needed. Furthermore, we
show that for any given (N, C, Rthresh), PROTRR is optimal: there exists no
other deterministic in-DRAM TRR that is secure against FEINTING with a
smaller number of TRR events than N. Similarly, for a given Rthresh and N,
the number of counters C is optimal. We first show how PROTRR achieves
flexibility and optimality for N, and then we discuss the same for C.

Flexible and optimal TRR events. The bounds given by FEINTING enable
vendors to calculate the required TRR events (N) in a tREFW for a device-
specific Rthresh. The following theorem shows that N is optimal for a given
Rthresh.

Theorem 6 (TRR events optimality). For a supported Rthresh, PROTRR is
optimal in the number of TRR events needed.



3.6 protrr 45

2K1K512256128S
up

po
rt

ed
  R

T
H

R
E

S
H

# Counters

d=1 d=3 d=5 d=7 d=10 d=15
40K
30K
20K
10K
0

Fig. 3.10: Flexibility in PROTRR. Example for DDR4 (B=2, V=2, tREFW =64 ms).
For a fixed storage, TRR distance (d) can be used as trade off.

To defend Rthresh = Hammermax + 1 against FEINTING, the device requires
at least DT−1

V + 1 TRR events in a tREFW. If a smaller number of TRRs are
employed, then the decoys for FEINTING will be fewer, and Hammermax will
exceed Rthresh. Hence, the number of TRR events is optimal. This feature of
PROTRR provides it with flexibility on the number of TRR events. We can
reduce the number of TRR events if a device has a high Rthresh. In practice,
a manufacturer can tune the number of TRR events using the distance d
(Section 3.5.2). This enables configurability of PROTRR according to the
DRAM vendors’ needs. Fig. 3.10 shows how PROTRR can support devices
with different Rthresh by appropriately choosing d. We now show how
PROTRR provides further flexibility in the number of required counters.

Flexible and optimal number of counters. For a given Rthresh, FEINTING

gives us the optimal number of TRR events. It follows that DT counters are
needed. Given that Misra-Gries summaries are space-optimal [83], using
DT counters will be optimal against FEINTING. For more flexibility, we show
how PROTRR can reduce this number of counters with a slight increase of
Rthresh.

FEINTING-Ghost. We adapt FEINTING to handle cases where PROTRR has
a limited storage, providing a trade-off between the supported Rthresh and
the number of counters in the summary. With reduced storage, an attacker
engaged in FEINTING can create ghost decoys by first saturating the number
of counters. Theorem 7 proves the optimal number of decoys for this
modified attack.

Theorem 7 (FEINTING-Ghost optimality). For PROTRR with C < (n− 1)×
V + 1 counters, where n is the number of TRR events in a tREFW, FEINTING-Ghost
with C + 1 decoys is optimal.

I Proof. We assume C < DT and prove that C + 1 is the maximum number
of decoys needed. After C decoys are hammered, the summary is full, and



46 protrr

the next (new) hammered decoy turns the spillover counter to one. Now, the
rows that are not in the summary are considered already hammered once
(i.e., ghost decoys) – thus reducing the number of hammers for maintaining
them. Likewise, after the next C + 1 hammers, each row will be considered
hammered twice, and so on. This condition persists until the number of
decoys is C. From this point on, all hammers target rows present in the
summary, and the attack is the same as the original FEINTING.

Theorem 8 (Counters optimality). For a supported Rthresh, given a number of
TRR events, PROTRR is counter-optimal.

I Proof. If we remove one counter (i.e., C− 1), there would be a ghost decoy
for which an attacker does not need to waste activations until there are
only C− 1 alive decoys left. These extra activations could be used to further
increase the victim (and decoys) to exceed Rthresh. Hence, the number of
counters needed in PROTRR is optimal. Fig. 3.10 shows how this allows
PROTRR to massively reduce the number of counters needed, marginally
increasing Rthresh in most settings.

FEINTING-PROTRR. Summarizing, the optimal attack against PROTRR is the
adaptation of FEINTING given two new conditions: summary reset and lim-
ited number of counters. We define this attack as FEINTING-PROTRR, which
is the implementation of FEINTING-Split, where each part is performing
FEINTING-Ghost. We consider Hammermax achieved by FEINTING-PROTRR
in different settings in our evaluation in Section 3.7.

3.6.3 Implementation of PROTRR

We implemented PROTRR in a popular 12 nm ASIC technology, to confirm
its feasibility. In our evaluation (Section 3.7), we assessed the supported
vulnerability for the number of counters implemented in current mitigations.
Our design, depicted in Fig. 3.11, uses a decoder logic ( 1 ) to distribute
simple micro-operations over several clock cycles. The entries update logic ( 2 )
performs the summary update and, depending on the given micro-operation
( 3 ): removes a row after it has been refreshed (REF request), increases the
counters of a victim (Blast request), or resets the summary (Clear request).
Within the same cycle, two parallel combinational circuits (min/max reduction,
4a and 4b ) determine the rows with the lowest and highest counts for the

next summary update ( 5a and 5b ). We implemented the summary as a



3.7 evaluation 47

Command Row
address

Row 
address

(max)

REF
request

Blast
request

Clear
request

Decoder

A
dd

re
ss

M
ax

 re
du

ct
io

n

M
in

 re
du

ct
io

n

Entries update logic

Row address Count

1

2

5a 5b

3

16

16

... .........

Row
address 16

log
(S
)

S

4a 4b

log(S)

Fig. 3.11: PROTRR’s ASIC design. Schematic of PROTRR’s mechanisms.

standard cell memory to get simultaneous access to all its elements for the
reductions.

Integration and placement. PROTRR can replace existing counter-based,
in-DRAM TRR schemes [6, 84, 85]. Typically, control logic (excluding array
decoders, Fig. 3.1) is placed in the center of the DRAM chip, while the
rest of the area is devoted to the DRAM cell blocks [86–90]. Instead, for
LPDDR devices, the control logic is placed on an edge pad. We received
confirmation from a DRAM vendor that the TRR mechanism is placed in the
peripheral logic which is part of the control logic. They also confirmed that
it is feasible to implement 2K counters in this area in an older technology
than the one used by PROTRR. While this is enough for almost all settings
we considered in Section 3.7, more recent process technologies are capable
of implementing more counters if needed.

3.7 evaluation

In this section, we present an extensive evaluation of PROTRR. We consider
three key aspects that we assess for both DDR4 and DDR5: the impact on
performance, storage requirements, and energy consumption. We show that
PROTRR is lightweight, incurs negligible energy and performance overhead,
and is practical for real-world deployments.

In §3.7.1, we show PROTRR’s flexibility in supporting different device
constraints with a varying number of required counters. To estimate the per-
formance and energy overhead, we run the SPEC2017 benchmark suite [91],
as described in §3.7.2. We run the benchmarks using full system simulation,
allowing us to evaluate the impact of PROTRR under real-world conditions.



48 protrr

0
40
80

120
160

200
TRR Distance = 1 TRR Distance = 3 TRR Distance = 5 TRR Distance = 7 TRR Distance = 10 TRR Distance = 15

5k 10k 15k 20k 25k
Supported device vulnerability

05k 10k 15k 20k 25k
Supported device vulnerability

05k 10k 15k 20k 25k
Supported device vulnerability

05k 10k 15k 20k 25k
Supported device vulnerability

0

a.
S

iz
e 

[K
iB

]

0
50

100
150

200
250

RAAIMT=32 RAAIMT=40 RAAIMT=48 RAAIMT=56 RAAIMT=64 RAAIMT=72 RAAIMT=80

S
iz

e 
[K

iB
]

b.

LP
D

D
R4

D
D

R4

B=2  tREFW=64ms B=2  tREFW=32ms B=4  tREFW=32msB=4  tREFW=64ms

B=4 d=2B=4 d=1B=2 d=2B=2 d=1

5k 10k 15k 20k 25k
Supported device vulnerability

05k 10k 15k 20k 25k
Supported device vulnerability

05k 10k 15k 20k 25k
Supported device vulnerability

05k 10k 15k 20k 25k
Supported device vulnerability

0

Fig. 3.12: Storage size of PROTRR, per-chip values. The green arrows indicates
the worst device vulnerability taken from Kim et al. [17]. a. DDR4 stor-
age size. V = 2. b. DDR5 storage size. m = 6, V = 2. The results for
DDR4 with tREFW = 32 ms also apply for DDR5 without RFM support.

Additionally, even though PROTRR provides formal guarantees, we verified
its implementation against state-of-the-art Rowhammer fuzzers [5, 7] and
FEINTING (§3.7.4). We provide a confirmation of PROTRR’s feasibility with
our ASIC implementation (§3.7.3), and lastly, we test FEINTING against real
DDR4 devices (§3.7.5). We point out that PROTRR is the first Rowhammer
mitigation that is compatible with the latest DDR standard (DDR5), and
this is the first work that evaluates the impact of RFM.

3.7.1 Storage size and supported vulnerability

The required storage of PROTRR is derived from the number of banks
(Nbanks) and the size of each summary. A summary contains entries (Sentries),
each consisting of a row address and a counter. We consider 16-bit addresses,
and log2(Hammermax) bits for the counter. The total size in bits is Nbanks ×
Sentries × (16 + dlog2 (Hammermax)e).

Fig. 3.12 presents the storage size of different DDR4 and DDR5 settings
based on the geometries given in Tbl. 3.1. These figures show the required
size per rank to support varying levels of device vulnerability to Rowham-
mer in different setups. The blast diameter of 4 incorporates devices subject
to the recently discovered half-double attack [71]. These results illustrate
how storage can flexibly be traded-off by a higher refresh rate, a lower TRR
distance, or RFM postponing in DDR5.

DDR4. We consider a tREFW of 64 ms and 32 ms with a TRR volume of 2,
for blast diameters of 2 and 4 (Fig. 3.12a). We also indicate the highest



3.7 evaluation 49

CPU (OoO) Memory Controller DRAM DDR4
2933

DDR5
4800

Cores 8 Channels 2 Ranks 1 1

CPU Freq. 3 GHz Page Policy Open Page Bankgroups 4 8

L1D/I Cache 32 KiB Scheduling FR-FCFS Banks/Group 4 2

L2 Cache 256 KiB Queue Structure Per Bank Banks/Rank 16 16

L3 Cache 8 MiB Total Capacity 16 GB Rows/Bank 64 K 64 K

Tbl. 3.1: Hardware settings and DRAM geometries of our gem5 simulations.

vulnerability degree as reported in previous work [17]. We make two
observations using these results: (i) The TRR distance has a significant
impact on the supported vulnerability. Due to the lack of RFM support
in DDR4, this suggests that a TRR distance of one is required for newer
process technologies. For example, LPDDR4 devices with 64 ms of tREFW

can only be protected against the half-double attack with a TRR distance of
one. (ii) A high blast diameter impacts the level of protection offered. In
Appendix 3.12.6, we extend the results and present the same analysis for
a TRR volume of 4. When a TRR volume of 4 is supported, PROTRR can
mitigate much lower Rowhammer thresholds.

DDR5. Fig. 3.12b shows the required storage size for DDR5 for the worst
possible case with RFM postponing of 6. We refer to Fig. 3.20 (Appendix 3.12)
for more details. We make the following observations: (i) Thanks to the
RFM extension, PROTRR can protect DDR5 devices with drastically lower
Rowhammer thresholds. (ii) Lowering RAAIMT only marginally increases
the offered protection, suggesting that the current set of possibilities in the
latest JEDEC standard [12] is suboptimal. (iii) All the possible setups can
protect against the most recently discovered half-double patterns.

3.7.2 Performance and energy overhead

Methodology. We evaluate PROTRR on the SPEC®2017 [91] benchmark suite
to assess its performance and energy overhead in real-world workloads.
We follow the benchmark’s guidelines and run each benchmark with eight
parallel copies (i.e., number of cores) to maximize the simulated load.
We use gem5 [92], a cycle-accurate hardware simulator, in conjunction
with DRAMsim3 [93], a cycle-accurate memory controller. We implemented
PROTRR in DRAMsim3, and due to the lack of publicly available DDR5



50 protrr

R
FM

s 
/ R

E
Fs

 [%
]

D=1 D=2

D=1 D=2

32 40 48 56 64 72 80
RAAIMT La

te
nc

y 
ov

er
he

ad
 [%

]

2

0

1

30

0

10

20

Latency

RFMs

a. b.

64ms

Perf. overhead: 12.5%
Tail latency overhead: 2.5%

32ms
tREFW

Fig. 3.13: Average performance impact on DDR4 and DDR5. (a) DDR4. Per-
formance and tail latency overhead with tREFW = 32 ms. (b) DDR5.
Left: percentage of RFM, relative to REFs in a tREFW. Right: tail latency
overhead.

simulators, added DDR5 support to DRAMsim3, including the new RFM

command. For benchmarking, we use the full system simulation mode
of gem5 to run Ubuntu 20.04 with the Linux kernel 5.4.49. We follow the
SMARTS methodology [94] to obtain 20 equally-spaced checkpoints, each
running 10 M instructions, for a total of 200 M instructions in line with
previous work [17, 42].

The simulated hardware setup is listed in Tbl. 3.1. The results are relative
to a baseline, which was obtained by running the benchmarks without
any active mitigation. The simulations consider varying (a) TRR volumes,
(b) TRR distances, and (c) tREFW durations. As recommended by JEDEC [95]
to help against Rowhammer, we assume that the REFs cannot be postponed.
We still show in Section 3.8 how PROTRR can support postponing REFs.
We configure the memory controller to immediately send an RFMsb upon
reaching RAAIMT, which is the worst-case scenario for performance. Note
that our performance and (dynamic) power measurements are independent
of Rthresh. A vendor should select the correct TRR distance, tREFW (in case
of DDR4), and RAAIMT (in case of DDR5) according to the Rthresh for their
device. In contrast, the implementation-dependent area and static power
overhead depend on Rthresh, which we report in §3.7.3 using our ASIC
implementation.

Performance. In DDR4, TRRs happen only during REF without any perfor-
mance overhead. However, as discussed, a default tREFW of 64 ms may not
provide adequate protection with low Rowhammer thresholds. For this
reason, we evaluated the impact of changing tREFW to 32 ms (Fig. 3.13a).
This not only reduces the time window available for an attack but also
increases the frequency of internal TRRs. The result is an average CPI



3.7 evaluation 51

32 40 48 56 64 72 80
RAAIMT

0

1

2

E
ne

rg
y 

ov
er

he
ad

 [%
]

D=1
D=2

1 3 5 7 10 150

0.2

0.4

0.6
a.

E
ne

rg
y 

ov
er

he
ad

 [%
]

TRR distance (D)

b.

64ms
32ms

Fig. 3.14: Average energy impact on DDR4 and DDR5. (a) DDR4. Energy over-
head of TRRs performed during REF. (b) DDR5. Energy overhead due
to TRRs performed during REF and RFM.

(cycles-per-instruction) overhead of 12.5% while increasing the tail latency
of DRAM accesses by 2.5%2.

In DDR5, TRR events still happen during REF, but, if required, the new
RFM command is sent, potentially introducing overhead. To analyze the RFM’s
impact, we tested all possible combinations of RAAIMT and TRR distances. In
all scenarios, the performance overhead is always negligible, never exceed-
ing 0.2%. To better understand the impact of RFM, we present the percentage
of RFM compared to REF commands and the increasing tail latency with
varying RAAIMT and TRR distance in Fig. 3.13b (for more details, see Ap-
pendix 3.12). We make two observations: (i) For small RAAIMT numbers, we
require a substantial number of RFM commands (30.87% increase compared
to the baseline REF in the worst case). These RFM commands, however, do
not alter the instruction throughput (i.e., CPI) due to the parallelism offered
by the out-of-order CPU cores and bank-level parallelism offered by RFM. In
DDR4, the REF is a per-rank command, blocking the entire rank and substan-
tially increasing the overhead when moving from tREFW of 64 ms to 32 ms.
(ii) While CPI (i.e., instruction throughput) remains mostly unaffected, RFM
does increase the tail latency of DRAM accesses (1.25% in the worst case).

Energy. We analyze the energy impact of the additional refreshes during
TRR events. For each benchmark, we calculate the energy consumption as a
sum of the device’s plain energy, the energy of the TRRs performed during
REF commands, and the energy consumed by RFM commands. To estimate
the energy of these extra TRR refreshes, we calculate the energy required to
refresh a single row and multiply it by the volume.

2 Considering DRAM accesses that take longer than 200 cycles.



52 protrr

a. b.

# Counters (log scale)

0.1

0.2

0.3

To
ta

l a
re

a 
[m

m
2 ]

1

2

3

P
ow

er
 [m

W
]Area

Power

# Counters (log scale)
64 128 256 512 1024 204864 128 256 512 1024 2048

DDR4
DDR5

5

15

25

35

45

R
T

H
R

E
S

H
 (x

10
3)

Fig. 3.15: PROTRR feasibility, per-bank values. (a) Required number of counters
for different Rthresh in DDR4 (tREFW = 64ms, d = 1) and DDR5 (TRFM =
32, d = 1). (b) ProTRR ASIC costs in terms of total area and power
consumption.

1 8191 81928190

R
ow

 ID

2
...

Activation o�set in tREFi
44 881 22 66

Activation o�set in tREFi
44 881 22 66

Activation o�set in tREFi
44 8822 66

1

18
12
6

Activation o�set in tREFi
44 8822 66

Activation o�set in tREFi
44 8822 66

Fig. 3.16: Trace of FEINTING-Ghost against DDR4 samples with 16 counters.
The attack duration is 8192 tREFI.

Fig. 3.14a reports the energy overhead of PROTRR in DDR4 for a tREFW of
64 ms and 32 ms with varying TRR distance between 1 and 15. Fig. 3.14b
shows the energy overhead of DDR5 for different RAAIMT and the two
possible TRR distances. We make the following observations: (i) The energy
overhead in DDR4 is always below 0.6% of the device’s total energy. (ii) The
energy overhead in DDR5 is generally higher than for DDR4 due to the
additional TRRs. However, this is still relatively small and at 2.11% in
the worst case. (iii) In DDR5, given the same number of activations, for
a TRR distance of 2, a higher number of RFM must be sent to compensate,
increasing the energy overhead.

3.7.3 Feasibility

We implemented PROTRR in ASIC, using a popular 12 nm technology and
the Synopsys Design Compiler. Fig. 3.15b reports the total area required
and power consumption and Fig. 3.15a shows the Rthresh that PROTRR can
protect for the number of counters. As results show, having more counters
than 1024 does not substantially increase security; therefore, we consider
it as the worst-case scenario. We designed the ASIC such that all updates
(including lookups) are faster than the time between two consecutive ACTs,



3.7 evaluation 53

allowing PROTRR to execute in parallel. In particular, the operations require
V cycles during a refresh, and B+1 cycles during an ACT. We considered
45 ns as the minimum time between two activations, as previously reported
[41].

Static power. Although previous work showed that the energy consumption
for the mitigation logic is negligible [41, 42], we evaluated it for complete-
ness. The overhead for 1024 counters is at maximum 17.44 mW for 16 banks,
obtaining a total of 139.52 mW for 8 chips. This is in line with previously
reported values [42]. For a baseline static consumption of 3 W/8 GiB [96],
this leads to 4.65% static power overhead. However, given the current tech-
nology and consumer DDR4 chips, 512 counters are enough to ensure
protection in the worst cases, leading to 2.35% static power overhead.

Area. Chips area depends on process technology, fabrication, and the array
size. For our analysis, we consider a common density for DDR4 devices,
0.247 GB/mm2 [97]. For a chip that uses 16 banks and 1024 counters per
bank, this leads to a maximum area overhead of 3.7%. Unfortunately, cur-
rently deployed TRR mechanisms are kept secret and there is no open
DRAM implementation that can integrate PROTRR. For this reason, to fur-
ther confirm the feasibility of PROTRR, we contacted a DRAM manufacturer.
We obtained confirmation that (i) up to 2K counters have already been
deployed in the past, and (ii) given PROTRR’s specifications (dimension, as
obtained from results), it is reasonable to deploy it.

3.7.4 Correctness

We tested PROTRR against FEINTING to check its implementation by running
PROTRR in DRAMsim3 with memory traces. In all the cases with a correct
configuration, PROTRR could withstand FEINTING. Instead, in cases where
PROTRR was improperly configured, FEINTING could successfully trigger
bit flips. We also generated traces from two state-of-the-art Rowhammer
fuzzers [5, 7] and executed them against PROTRR for three days without
observing any bit flip.

3.7.5 FEINTING on real devices

FEINTING assumes a mitigation that counts every activation with an ade-
quate number of counters. Existing TRR schemes are not ideal and may



54 protrr

DIMM Mf. Date
(yy-ww)

Size
(GiB)

Freq.
(MHz)

Geom.
#R., #B.

Best
Params.

Bit Flips
Observed

D0 20-03 8 2666 1, 16 2048, 9, 1 4
D1 20-06 32 2666 2, 16 2048, 9, 3 4
D2 20-10 8 2400 1, 16 8192, 9, 4 4

Tbl. 3.2: Results of FEINTING on three DDR4 devices. We report the best attack’s
parameters (Best Params.) as: attacks duration (in tREFIs), TRR distance,
and number of victim hammer repetitions.

employ multiple concurrent mechanisms to catch aggressors, some com-
pletely different from PROTRR [6]. However, we were still interested to
see if FEINTING is able to generate bit flips on devices with a deployed
counter-based mitigation. To evaluate this, we acquired three DDR4 devices
from the same manufacturer previously reported to use a counter-based
mitigation [6] (see Tbl. 3.2).

We conducted our experiments on an Intel i7-8700K running on Linux
with kernel 4.15.0. We adapted FEINTING based on insights from [6] as
follows: we assumed that counters could track at most 16 rows (i.e., 18 de-
coys needed as part of FEINTING-Ghost), and systematically tested different
attack durations (2048× up to 32768× tREFI) as a row could be refreshed
multiple times in a tREFW. We tested different TRR distances (1 up to 9) and
victim hammer repetitions (1 to 4) while assuming 5 hammering repetitions
for decoys.

In Tbl. 3.2, we show the results of running FEINTING-Ghost on our ac-
quired DDR4 devices. An attack trace can be seen in Fig. 3.16, where the
duration is 8192× tREFI. Our results show that with minor adaptations, we
could successfully trigger bit flips on all three devices using FEINTING. Fur-
ther, we can see that an attack duration shorter than a tREFW and hammering
the victim fewer times (e.g., one time for D0) can be beneficial because
sampling may happen only at specific times as reported in previous work [5,
7]. We tested Blacksmith [7] on the same devices, which could trigger bit
flips on all of them, while TRRespass [5] failed to obtain bit flips on DIMM
D0.



3.8 discussion 55

3.8 discussion

We now discuss how PROTRR can (i) be adapted to handle postponing and
pulling-in of refresh commands, (ii) obtain better bounds by using subarray
parallelism, and (iii) generalize to other, yet unknown, Rowhammer effects.

Postponing and pulling-in of REFs. The DDRx standard gives some flexi-
bility in terms of REFs by allowing REF postponing and pulling-in. Attackers
can exploit postponing to maximize TRR-free REFs, which reduces the num-
ber of decoys needed for both DDR4 and DDR5. For DDR4, the victim can
be hammered more often than before, but for DDR5 nothing changes due to
RFM still being sent. A more detailed analysis of REF postponing/pulling-in
is given in Appendix 3.12.1.

Subarray parallelism. Subarrays enable a bank to refresh multiple rows
at each REF. PROTRR can potentially leverage this to perform more TRRs
when necessary. We provide a detailed description of how FEINTING can
be adapted to subarray parallelism in Appendix 3.12.3. In summary, each
bank can perform multiple TRRs at the same time, effectively increasing V.
However, the additional TRRs cannot target any row as each subarray can
still only refresh V rows at any given TRR event. An adapted FEINTING can
exploit this limitation by reducing the number of required decoys to create
the optimal attack.

Generalization. FEINTING provides the basis to configure PROTRR to pro-
tect against Rowhammer. The only (implicit) requirement for FEINTING is
knowing the interaction between an aggressor and its victims. In the case
of the standard Rowhammer attack, which we originally considered, an
aggressor activation interacts with its direct neighboring victim rows. With
new Rowhammer effects, FEINTING should be adjusted to consider new
interactions between aggressors and victims. We discuss two of these cases
next.

During the development of PROTRR, the half-double pattern was dis-
closed by Google researchers [71]. To also protect against it, we only needed
to consider that on certain devices, an aggressor activation can also interact
with victim rows that are more than one row apart (i.e., up to B rows).
Currently, a rigorous characterization of the half-double effect is missing.
For this reason, we assumed the worst-case in the design of PROTRR, i.e.,
the same effect on every row in the blast diameter. Once this relationship
is better understood, future research can adapt FEINTING accordingly to
derive the optimal version of PROTRR when B > 2.



56 protrr

Another concurrent discovery shows that rows that are kept active can
also influence adjacent rows [32]. PROTRR can easily generalize to this case
as well. The only new requirement is to increase the counter for victims
of the (aggressor) row that remains active. It remains unclear, however,
whether simply keeping a row active is more effective than using the time
for additional hammering which should be characterized more rigorously
in the future.

3.9 security analysis of existing schemes

We first discuss a general limitation when mitigating Rowhammer outside
of DRAM. We then present our security analysis of state-of-the-art hardware
mitigations, which resulted in the discovery of novel vulnerabilities in four
earlier proposed schemes [35, 41, 59, 80].

Internal row remapping. Previous work has observed that bits can flip
in rows that are not adjacent to an aggressor [3, 57, 58]. This is due to
internal row remapping that does not necessarily map logically-adjacent
to physically-adjacent rows inside the DRAM device [98]. This is a major
limitation of all existing Rowhammer mitigations that are outside of DRAM,
both hardware and software [3, 16, 41, 56, 57, 59–61, 63, 64, 80] except
Blockhammer [42]. PARA [3] explicitly requires this remapping information
to be communicated from the DRAM to the CPU, which has never been
implemented. In contrast, the in-DRAM nature of PROTRR allows it to use
the correct row mapping that is known by the DRAM chip only.

CBT [80] and CAT-TWO [59]. Both mitigations reset their table after a tREFW

period. If within this period, an aggressor row reaches Rthresh activations,
its neighbors are refreshed. An attacker can, however, activate an aggressor
Rthresh − 1 times immediately before and after the tREFW, violating the
guarantees provided by the mitigation. A second issue concerns CAT-TWO
only: it employs trees of counters distributed among the rows of a full rank.
However, these trees are blind to victim rows that share aggressor rows
across different trees. By hammering each aggressor for Rthresh − 1 times,
the victim can exceed the threshold.

Graphene [41]. Refreshing a row with TRR has a similar effect like an ACT,
which is used while hammering rows. As a consequence, an attacker could
exploit TRRs to hammer rows. While this could be easy to fix, it is not taken



3.10 related work 57

Mitigation Scalability Security Support Integration

Flex. Opt. Det. FP Vuln. DDR4 DDR5 OS CPU DRAM

H
W

-b
as

ed

PROTRR —
Blockhammer [42] —
CBT [80]
CAT-TWO [59]
Graphene [41]
MRLoc [60]
Panopticon [35]
PARA [3] —
PRoHIT [82]
TWiCe [61]

SW
-b

as
ed

ALIS [57] — — — —
ANVIL [16] — — — —
CATT [63] — — — —
GuardION [56] — — — —
ZebRAM [64] — — — —

Tbl. 3.3: Rowhammer mitigations in hardware and software.

into account in the current design of Graphene. We discuss how PROTRR
securely handles TRRs in Appendix 3.12.4.

Panopticon [35]. Concurrent to our work, Panopticon is a new in-DRAM
mitigation against Rowhammer that relies on per-row counters stored in
DRAM and uses the ALERT mechanism to request more time (from the mem-
ory controller) to TRR victim rows that reached a threshold. While storing
counters inside DRAM itself is cheap, it is insecure as they can similarly
be affected by Rowhammer bit flips. Furthermore, overloading the ALERT

mechanism has multiple undesirable implications. First, not all devices may
support ALERT as it is optional according to the standard, and the PHY-level
errors causing them are very rare. Second, ALERT is a signal that blocks the
whole device, likely causing significant performance degradation. Finally, it
is unclear how the memory controller can tell the difference between a real
ALERT (to retry commands) and one due to Rowhammer activity. If counters
in DRAM can be secured (e.g., with a strong ECC), PROTRR can use these
counters to provide a better alternative.

3.10 related work

We summarize existing work on Rowhammer mitigations in Tbl. 3.3 and
compare the following properties: (i) scalability, i.e., the optimality of re-



58 protrr

source allocation; (ii) security, i.e., the strength of the provided security
guarantees; (iii) support, i.e., the mitigation’s supported DRAM standards;
(iv) and integration, i.e., the solution’s required integration effort.

For scalability, we consider if mitigations optimally use counters and
refreshes (Opt.); and if these resources can flexibly be traded-off with
each other (Flex., ). For flexibility, we further analyze if the mitigation’s
required storage size is always the same ( ), hence is more wasteful,
or scales with the system’s connected devices ( ). The security category
includes the mitigations’ guarantees, which are either deterministic (Det., )
or probabilistic ( ). Deterministic mitigations provide a stronger guarantee
against bit flips. Further, we consider if a mitigation provides a formal proof
(FP) for its design ( ). Lastly, we highlight those mitigations for which
we (or existing work) revealed vulnerabilities (Vuln.), and we distinguish
between minor issues ( ) and fundamental flaws in the design ( ). An
extensive support of different DRAM standards (DDR4, DDR5) is essential
to ensure practicality and widespread adoption. We further analyze whether
mitigations require changes to the DRAM protocol ( ) or not ( ). Finally,
we consider the system integration effort by describing which components
need to be modified. Minimizing the effort is critical for real-world adoption
as indirectly affected manufacturers (i.e., CPU/OS vendors) may not be
willing to implement complex solutions.

Scalability. Only two mitigations (PROTRR and Graphene) are optimal
w.r.t. counters and refresh requirements. PROTRR is the only solution that
can flexibly trade-off storage with additional refreshes. PROTRR, ProHIT
and Panopticon are the only mitigations that have counters in-DRAM, i.e.,
their required storage scales per connected device. Panopticon’s storage
is flexible as the counter table uses DRAM. PARA is completely stateless
and does not require any storage. Similarly, MRLoc has negligible storage
requirements. All other hardware-based mitigations are implemented in
the memory controller; hence vendors need to provision enough storage
for the system’s maximum supported DRAM size.

Security. Few mitigations provide formal security guarantees for protection
against Rowhammer attacks. We denote mitigations without known vulner-
abilities by “—”. Based on our security analysis (Section 3.9) and previous
work [41], most of the hardware-based mitigations suffer from vulnerabil-
ities. PARA’s security is probabilistic, and to protect modern devices the
overhead can be substantial [17]. Instead, all software mitigations provide a
partial protection because of blindness to internal row remapping, and to



3.11 conclusion 59

newer Rowhammer variants like half-double [71]. Previous work has also
shown design-level flaws in ANVIL [26, 55, 98] and GuardION [78].

Support. None of the existing hardware-based mitigations are DDR5-ready,
except PROTRR, which considers the new RFM extension introduced in
the DDR5 standard [12]. Software-based mitigations are agnostic to the
DDR technology. PROTRR, ProHIT, and Blockhammer are the only three
mitigations that do not require changing the DRAM protocol. TWiCe and
Graphene require adding new DRAM commands for refreshing rows adja-
cent to the aggressors, and PARA requires communicating the mapping of
internal rows to the CPU. All other mitigations implicitly assume that there
exists a DRAM command for refreshing a specific row – which currently
does not exist.

Integration. Our comparison shows that all hardware-based solutions re-
quire modifications to the CPU (e.g., memory controller), except for PRoHIT,
and PROTRR, which can be fully implemented in-DRAM. PRoHIT is vulner-
able to specific patterns [41]. Panopticon [35] requires the CPU’s memory
controller to handle the ALERT signal gracefully, and as discussed in Sec-
tion 3.9, some of its security aspects remain unclear. Instead, PROTRR is the
only solution with deterministic and formal security guarantees. Software-
based solutions are often integrated into the operating system’s kernel.
None has seen widespread adoption so far.

3.11 conclusion

We introduced PROTRR, the first in-DRAM Rowhammer mitigation with
formal security guarantees, for which we also proved that it is optimal
in terms of storage and refresh overhead for any given DRAM technol-
ogy. PROTRR is secure against FEINTING, the best possible attack we have
formally constructed against a perfect in-DRAM TRR. Moreover, we used in-
sights from FEINTING to provide a flexible trade-off between needed storage
and refreshes given a DRAM device with a certain degree of vulnerabil-
ity to Rowhammer. PROTRR is compatible with DDR4 and leverages the
recent RFM extension in DDR5 to support future devices that are more
susceptible to Rowhammer. We evaluated PROTRR’s space, performance,
and power overhead using an ASIC implementation and cycle-accurate sim-
ulation. In summary, PROTRR can protect current and future devices while
requiring minimal storage and incurring negligible power and performance
overhead.



60 protrr

3.12 appendix

3.12.1 Impact of REF postponing and pulling-in: FEINTING-PostponingREFs

The DDR4 and DDR5 standards [12, 20] allow the memory controller to
postpone some REF commands (e.g., under heavy DRAM activity) or to
pull in a number REF commands (e.g., under idle DRAM activity). With the
standard refresh rate in DDR4, up to 8 REF commands can be postponed or
pulled in, and the maximum distance between two consecutive refreshes
can be up to 9× tREFI. Likewise, for DDR5 devices, up to 4 REF commands
can be postponed or pulled in, and the maximum distance between two
consecutive refreshes can be up to 5× tREFI. The JEDEC consortium rec-
ommended to disable REF postponing and pulling-in to reduce the impact
on in-DRAM Rowhammer mitigations [95]. Nonetheless, we show how
PROTRR can securely support REF postponing and pulling-in by slighting
modifying FEINTING.

Postponing and pulling-in are a relaxation of when REF commands need
to be sent to a DRAM device. That said, even with postponing and pulling-
in, a certain number of REF commands needs to be sent to the DRAM
device in a tREFW. Given that the structure of the FEINTING is agnostic to
when REF commands are issued, the only remaining question is whether
it enables using fewer decoys. In both DDR4 and DDR5, at the end of the
tREFW, the attacker can abuse postponing to maximize the number of tREFIs
without any REF commands, which we indicate by Pmax (1 when there is no
postponing).

This configuration has two implications. First, (Pmax − 1)×V fewer de-
coys are needed compared to the original FEINTING for both DDR4 and
DDR5. Second, for DDR4, an attacker can continuously hammer the victim
for Pmax×tREFI. For DDR5, if RAAIMT is between 32 and 64, this does not
change the number of times the victim can be hammered other than what is
allowed by RFM postponing (as discussed in Section 3.5.4). When RAAIMT is
set to 72 or 80, however, the distance between groups of RFM commands can
be higher than those of postponed REF commands: 6× RAAIMT > 5× TREF.
Where, in the default tREFW of DDR5 (32 ms), TREF is equal to 83. In these
cases, equally as in DDR4, the last round of the attack is extended.



3.12 appendix 61

RAAIMT REF REF REF

ACTs used Extra ACTs accumulated

+ +

RFMs

RAAIMT RAAIMT

=RAAMMT

Fig. 3.17: FEINTING for large TRFM. As the attacker sends activations, REF can
reduce RAA accounting only for RAAIMT activations. The exceeding value
eventually reaches RAAMMT, and m RFMs are sent by the controller.

3.12.2 RFM postponing: FEINTING-PostponingRFMs

We now consider a more advanced memory controller that postpones RFM

commands. This means that RFM commands do not have to be sent exactly
after RAAIMT activations. Instead, the controller has the flexibility to choose
a better scheduling. As explained in Section 3.4, the only requirement set
by the standard [12] is that RAA can never exceed TRFM = m× RAAIMT. In
other words, RFM commands can be postponed up to m times. In a real
scenario, it is very hard for an attacker to influence the way RFM commands
are scheduled. Nonetheless, we assume the most favorable scheduling from
an attacker’s perspective. Depending on TRFM, there are two possibilities:
(i) TRFM ≤ TREF, where the same as in an earlier section (§3.5.3) applies
and nothing changes from an attacker’s point of view; and (ii) TRFM >
TREF, where FEINTING can further be improved. We now analyze case (ii)
considering an attacker who is able to precisely influence the scheduling of
RFM commands.

FEINTING for large TRFM. Postponing RFM commands enables a lucky
attacker to avoid the situation of costly RFM commands triggered due to only
a few extra activations, such as the case in Fig. 3.7c, Section 3.5.3. Instead,
RFM postponing can be used to create blocks of RAAIMT activations similar
to FEINTING-Medium (Fig. 3.7b, Section 3.5.3). This postponing, however,
causes the RAA counter to increase, and at some point, the memory controller
will have to issue RFM commands. Overall, two phenomena are happening
simultaneously: a slow accumulation of extra activations that results in a
series of RFM, and a fast increase of RAA that is reduced immediately upon
refresh as shown in Fig. 3.17. However, given that our LtREFW activations
are now equally distributed over intervals of size RAAIMT, this is the optimal
scenario for the attacker similar to FEINTING-Medium.

An exception are the last few intervals of FEINTING in this scenario. The
last RFM commands can potentially be sent after the tREFW, de facto removing



62 protrr

...
ACT

+1

+1

+1

+1
ACT

...
ACT

+1

+1

+1

+1
ACT

ACT
+1

+1

...
ACT

+1

+1

+1

+1
ACT

...
...

(1) TRR 
subarray 

(2) TRR 
subarray 

...
+1

+1
ACT

...
+1

+1
ACT

ACT
+1

+1

...
ACT

+1

+1

+1

+1
ACT

...
...

(1) TRR 
subarray 

(2) TRR 
subarray 

...

...

ACT
+1

+1

...
ACT

+1

+1

+1

+1
ACT

...
...

(1) TRR 
subarray

Subarrays
51

2
ro

w
s

ACT
+1

+1

...
ACT

+1

+1

+1

+1
ACT

ACT
+1

+1

...
ACT

+1

+1

+1

+1
ACT

ACT
+1

+1

...
ACT

+1

+1

+1

+1
ACT

...
...

(1) TRR 
subarray

PARALLEL
TRR events

V=2
(2) TRR 
subarray 

V=2

Aggressor
Decoys

Target victim

T  ACTs T  ACTs...

Parallel 
saturation Normal

Feinting

Refreshed

Fig. 3.18: FEINTING against subarray parallelism.

them from the mitigation. These activations can freely be used to increase
the count of the last decoys (needed for REF) and the victim. We consider
RFM postponing when configuring PROTRR as discussed in Section 3.6 and
our evaluation in Section 3.7.

3.12.3 FEINTING against subarray parallelism: FEINTING-Subarrays

In the following, we describe how FEINTING can be adapted for subarray
TRR parallelism. To obtain the highest Hammermax, the choice of aggressor
rows used for FEINTING must be optimized. We define S as the maximum
number of subarrays refreshed at each TRR event. We consider a TRR
mechanism that refreshes the highest rows from S different subarrays,
resulting in a volume of S×V. The number of rows in each subarray is Rsb,
typically 512 [69] resulting in 128 subarrays per bank.

Theorem 9 (Optimal aggressor distribution for subarray parallelism). In
the case of subarray TRR parallelism, the aggressor rows have to be distributed
equally over all the subarrays in a bank to maximize Hammermax.

I Proof. The maximum number of decoys in a subarray is given by Rsb ×
B/(B + 1) (remember that B is the blast diameter of an aggressor). If only
one subarray is used for FEINTING, all the rows involved would be refreshed
after Talive = Rsb/V × B/(B + 1). If the aggressors are distributed over a
number of subarrays lower or equal to S, the same result would apply as
all the rows would be refreshed in parallel. Moreover, as the number of
subarrays in the attack increases up to S, the share of activations used for
the victim is reduced as this only increases the number of necessary decoys,



3.12 appendix 63

lowering the final Hammermax. Instead, targeting a number of subarrays
higher than S means that the parallel refresh will be saturated, and some
subarrays will be skipped (Fig. 3.18). Similar to FEINTING without subarray
parallelism, we assume that for equal counters, the attacker can control
that the victim row to have the lowest refresh priority. That is, a subarray
is never picked for a refresh if at least S different subarrays exist with the
same maximum row count. Because of FEINTING, all the rows are equally
often activated. Considering targeting S + 1 subarrays and using all the
possible decoys, it would mean that in the first Talive TRR events, the S decoy
subarrays are completely refreshed, and in the last Talive event, the rows
from the victim subarrays are refreshed. In the same way as the original
FEINTING, any other distribution of activations either induces a refresh
on the victim subarray or is a loss because a decoy is refreshed with a
higher activation count that could have otherwise been used for the victim.
Therefore, the distribution of rows across subarrays should still follow the
original theorems for FEINTING (see Section 3.5). To exploit the saturation as
much as possible, FEINTING must be performed using all available subarrays.
Fig. 3.18 shows the structure of FEINTING considering subarrays parallelism.

3.12.4 Impact of TRR Events

The TRR mechanism itself performs an activation when refreshing a row.
This effect should be considered when deriving Hammermax. In our study,
the maximum number of activations LtREFW is increased by the times
TRR is performed and the TRR volume: L′tREFW = LtREFW × (1 + V/T).
Moreover, because every T activations, V more TRRs are sent, the effective
TRR interval T′ is calculated as T′ = T + V.

3.12.5 Double-sided Rowhammer versus FEINTING

Double-sided Rowhammer is a technique to hammer a victim row, where
both its directly adjacent rows are alternatingly activated. In PROTRR, this
technique is avoided as it is not beneficial for the attacker. To model the
defender’s worst case, we assume a closed-page policy for the DRAM
device. This means that a row is automatically precharged after activating
it. In other words, in an interval of T activations, a victim row can be
hammered T times by accessing only one aggressor. This is the same
amount of activations that can be achieved with double-sided Rowhammer



64 protrr

TRR Distance = 1 TRR Distance = 3 TRR Distance = 5 TRR Distance = 7 TRR Distance = 10 TRR Distance = 15

S
iz

e 
[K

iB
]

V
=4

V
=2

0
40
80

120
160

200 B=2  tREFW=64ms B=2  tREFW=32ms B=4  tREFW=32msB=4  tREFW=64ms

0
40
80

120
160

200

5k 10k 15k 20k 25k
Supported device vulnerability

05k 10k 15k 20k 25k
Supported device vulnerability

05k 10k 15k 20k 25k
Supported device vulnerability

05k 10k 15k 20k 25k
Supported device vulnerability

0

Fig. 3.19: The storage size for different possible setups and degrees of vulnera-
bility in DDR4. The first line considers volumes of 2 and the second
volumes of 4. Setups with tREFW of 64 ms 32 ms are alternated to blast
diameters of 2 and 4.

 TRFM=32 d=1 m=1
 TRFM=80 d=1 m=1

 TRFM=32 d=1 m=6
 TRFM=80 d=1 m=6

 TRFM=32 d=2 m=1
 TRFM=80 d=2 m=1

 TRFM=32 d=2 m=6
 TRFM=80 d=2 m=6

a.

S
iz

e 
[K

iB
]

25
50
75

100
125

0

b.

25
50
75

100
125

02500 5000 10000
Device vulnerability

2500 5000 10000
Device vulnerability

V=2 B=2V=4 B=4

Fig. 3.20: Required storage size on DDR5 for various possible setups.

but with the difference that the total number of victims affected is higher,
and as such, the total number of generated decoys. Consequently, for the
same number of TRR events where the victim is not refreshed, a higher
number of activations can be used against the victim, resulting in a higher
Hammermax.

3.12.6 Extra figures

Extended storage size analysis. Fig. 3.19 and Fig. 3.20 show the storage
size required for PROTRR in different settings, including a volume of 4 at
each TRR event. Fig. 3.21 reports the maximum vulnerabilities that can be
protected, in various DDR5 configurations.

Details of increased RFM sent. Fig. 3.22 shows the increase in RFM sent
and the increased tail latency for individual SPEC benchmarks.



3.12 appendix 65

Symbol Description Ref. (§)

tREFI Duration of a refresh interval (tREFW/8192) in µs. 3.2.1
tREFW Duration of a REF window, e.g. 64 ms (DDR4). 3.2.1
B No. of rows affected by an aggressor (e.g., 2 or 4). 3.3
Rthresh Number of hammer required to trigger a bit flip. 3.3
Lattk Number of total activations of an attack. 3.5.1
m The value of the MR59 register in OP[7:6]. 3.4
RAA Rolling Accumulated ACT. 3.4
RAAMMT Maximum Management Threshold (RAAIMT×m). 3.4
RAAIMT Initial Management Threshold. 3.4
V TRR volume: no. of rows refreshed at every TRR

event.
3.5

T No. of ACTs in between of two consecutive REFs. 3.5
A Rowhammer attack: a sequence of row activations 3.5.1
Hammermax Max. hammer count a victim can reach before

refresh.
3.5.1

LtREFW Total number of activations in a tREFW. 3.5.1
DT No. of rows used in FEINTING (decoys and vic-

tims).
3.5.2

D(α) No. of decoys that have not been refreshed at ACT
a.

3.5.2

d Distance of TRR events expressed in REFs. 3.5.2
TREF Number of activations between two consecutive

REFs that perform a TRR.
3.5.3

TRFM Number of activations between two consecutive
RFMs.

3.5.3

N Maximum number of TRR events in a tREFW. 3.6.2
C No. of counters used to track victim rows. 3.6.2
Sentries Number of counters in a PROTRR summary. 3.7.1
Nbanks No. of banks of the system. 3.7.1
Pmax The max. number of tREFIs without any REFs. 3.8

Tbl. 3.4: Overview of used symbols.

Maximum vulnerability (Rthresh)

S
iz

e 
[M

iB
]

TRFM=80TRFM=32

m=1
m=6

m=1
m=6

m=1
m=6

m=1
m=6

V=B=2 V=B=4

m=1
m=6

m=1
m=6

m=1
m=6

m=1
m=6

V=B=4V=B=2

d=2

d=1 d=1

d=2

d=1d=1

d=2d=2
600 800 10001200 1400 1600 1800
1

2

3

4

Fig. 3.21: Maximum vulnerability supported in DDR5.

Symbols. In Tbl. 3.4, we present an overview of symbols with references to
the section where they were introduced.



66 protrr

La
te

nc
y 

ov
er

he
ad

 [%
]

0
1
2
3
4
5

 6 6 D=2D=1

bl
en

de
r

bw
av

es
ca

ct
uB

S
S

N
ca

m
4

de
ep

sj
en

g
ex

ch
an

ge
2

fo
to

ni
k3

d
gc

c
im

ag
ic

k
lb

m
le

el
a

m
cf

na
b

na
m

d
om

ne
tp

p
pa

re
st

pe
rlb

en
ch

po
vr

ay
ro

m
s

w
rf

x2
64

xa
la

nc
bm

k xz

bl
en

de
r

bw
av

es
ca

ct
uB

S
S

N
ca

m
4

de
ep

sj
en

g
ex

ch
an

ge
2

fo
to

ni
k3

d
gc

c
im

ag
ic

k
lb

m
le

el
a

m
cf

na
b

na
m

d
om

ne
tp

p
pa

re
st

pe
rlb

en
ch

po
vr

ay
ro

m
s

w
rf

x2
64

xa
la

nc
bm

k xz

Latency
RFMs

Latency
RFMs

2.5

R
F

M
s/

R
E

Fs 2
1.5

1
0.5

0

Fig. 3.22: RFMs sent relative to REFs and the increase in the tail latency for all SPEC
benchmarks. D={2;1}.



4
R E G A : S C A L A B L E R O W H A M M E R M I T I G AT I O N W I T H
R E F R E S H - G E N E R AT I N G A C T I VAT I O N S

Mitigating Rowhammer requires performing additional refresh operations
to recharge DRAM rows before bits start to flip. These refreshes are scarce
and can only happen periodically, impeding the design of effective mitiga-
tions as newer DRAM substrates become more vulnerable to Rowhammer,
and more “victim” rows are affected by a single “aggressor” row.

We introduce REGA, the first in-DRAM mechanism that can generate
extra refresh operations each time a row is activated. Since row activations
are the sole cause of Rowhammer, these extra refreshes become available as
soon as the DRAM device faces Rowhammer-inducing activations. Refresh
operations are traditionally performed using sense amplifiers. Sense ampli-
fiers, however, are also in charge of handling the read and write operations.
Consequently, the sense amplifiers cannot be used for refreshing rows dur-
ing data transfers. To enable refresh operations in parallel to data transfers,
REGA uses additional low-overhead buffering sense amplifiers for the sole
purpose of data transfers. REGA can then use the original sense amplifiers
for parallel refresh operations of other rows during row activations.

The refreshes generated by REGA enable the design of simple and scal-
able in-DRAM mitigations with strong security guarantees. As an example,
we build REGAm, the first deterministic in-DRAM mitigation that scales to
small Rowhammer thresholds while remaining agnostic to the number of
victims per aggressor. REGAm has a constant 2.1% area overhead, and can
protect DDR5 devices with Rowhammer thresholds as small as 261, 517,
and 1029 with 23.9%, 11.5%, and 4.7% more power, and 3.7%, 0.8% and 0%
performance overhead.

4.1 introduction

Rowhammer has been a moving target when it comes to mitigations. Wors-
ening Rowhammer thresholds in newer DRAM devices have enabled new
access patterns that bypass all deployed in-DRAM mitigations [7]. New

67



68 rega

Rowhammer effects such as half-double further challenge the design of
secure mitigations as they increase the number of potential victim rows for
a single aggressor row [34]. The next generation of Rowhammer mitigations
will require exceedingly more refresh operations to protect potential vic-
tim rows. Unfortunately, the current DRAM architecture provides limited
capabilities for additional refreshes.

Since Rowhammer is triggered by DRAM row activations, the only way
to scale the number of required refresh operations is during the activa-
tions themselves. We present a new in-DRAM mechanism called REfresh-
Generating Activation (REGA). REGA time-multiplexes existing DRAM
resources using additional lightweight elements, enabling parallel refresh
operations while a row is being activated. These parallel refreshes allow for
simple, effective, and scalable in-DRAM mitigations against current and
future Rowhammer attacks while respecting the respective standards [12,
20].

Rowhammer attacks. Rowhammer is part of a broader class of reliability
issues known as disturbance errors. Kim et al. [3] showed that Rowhammer
affects most DRAM devices in production settings. To trigger Rowhammer,
an aggressor row in DRAM must be accessed repeatedly. If this happens
frequently enough, bits start to flip in the neighboring victim rows. Follow-
up research showed that these reliability errors can compromise systems
in a variety of scenarios, most notably, to escalate privileges [24, 26, 34],
compromise the browser [9, 52–54], phones [55, 56, 78], clouds [10, 25, 49,
62], and across the network [57, 58]. Given the severity of these attacks,
numerous mitigations have been devised by both academia and industry.

Mitigations. Most research in academia proposes to modify the CPU’s
memory controller (MC) to track aggressor rows, for blocking them before
they cause bits to flip in their victims [42], or to send preventive refreshes to
their victim rows [3, 40, 41, 59–61, 80]. In contrast, in recent years, industry
has adopted mitigations that solely operate inside DRAM given the high
cost of mitigating Rowhammer inside the CPU [5]. These mitigations track
aggressor rows and issue preventive refreshes, also known as Target Row
Refresh (TRR), to potential victim rows. Recent academic work provides a
formal foundation for designing secure in-DRAM TRR mitigations [23].

New effects and new patterns. The additional refreshes that can be gener-
ated inside DRAM are scarce, and generating them from the CPU negatively
impacts the performance [40]. This forces the mitigations to keep track of
aggressor rows to utilize these precious refreshes only when necessary.



4.1 introduction 69

Tracking aggressors requires assumptions on the behavior of Rowhammer,
which is constantly changing with newer technology nodes: the number of
required aggressor accesses is rapidly dropping [17], while the number of
affected victim rows for a given aggressor is increasing [99]. Researchers
were quick to show that these new effects enable new access patterns that
evade the mitigations on newer devices [5, 7, 34]. Learning from these expe-
riences, the next generation of Rowhammer mitigations must not tailor their
design towards specific (known) behaviors of Rowhammer. The question
is how to make this possible given the limited refreshing capability in the
current DRAM architecture.

REGA. To cleanly decouple the mitigation mechanism (i.e., additional re-
freshes) from Rowhammer-dependent policies, we should minimize or
completely eradicate the state that is necessary for tracking aggressors.
Our new in-DRAM mechanism, REGA, makes this possible by allowing
parallel refresh operations whenever DRAM receives an activate command
to access a row. Because row activations are the sole cause of triggering
Rowhammer, these parallel refreshes are immediately available for mitigat-
ing Rowhammer without the need for tracking aggressors. As an example,
we have built a simple and scalable in-DRAM mitigation on top of REGA,
called REGAm, that sequentially refreshes all rows in a DRAM sub-array
that receives activate commands.

Refresh-generating activations. Modifying DRAM to enable parallel re-
fresh operations is non-trivial due to its highly-optimized architecture
and stringent timing requirements dictated by the respective DDRx stan-
dards [12, 20]. Without altering the dense DRAM mats (where the data is
stored), REGA enables refresh-generating row activations by decoupling
row refreshing and data transfer operations performed by the DRAM sense
amplifiers. REGA achieves this using a second set of low-overhead buffering
sense amplifiers for the sole purpose of supporting data transfers, while
the original sense amplifiers are used for parallel refresh operations.

Operating the bitline wires inside the DRAM mats with the additional
sense amplifiers complicates the timing of the internal DRAM signals.
To ensure the correct operation of REGA, we developed a new accurate
DRAM model in collaboration with a DRAM vendor. On top of showing
the correctness of REGA in this model, we show that the time between two
row activations is sufficient for REGA to perform a single parallel refresh
on all 21 DDR4 and 16 DDR5 devices in our test pool. We can further scale



70 rega

REGA to refresh multiple rows during a single activation by increasing the
time a row must remain active, defined in the standard as tRAS.

Our evaluation using an ASIC implementation of the mitigations on
top of REGA, and an analog and cycle-accurate simulation of REGA itself,
demonstrates a constant 2.1% area overhead, independent of the degree
of Rowhammer vulnerability. The performance and power overhead of
REGA depends on the number of refreshes it needs per activation to protect
DRAM devices with varying degree of Rowhammer vulnerability. As an
example, REGAm protects DDR5 devices with Rowhammer thresholds as
small as 261, 517, and 1029 with 23.9%, 11.5%, and 4.7% more power, and
3.7%, 0.8% and 0% performance overhead; regardless of the number of
victims per aggressor. These results show that REGA is the first mitigation
that can comfortably scale to Rowhammer thresholds that are up to 36×
smaller than previously reported (i.e., 9.8 K [17]). Without relying on other
mitigations (e.g., ECC), we estimate that REGA can comfortably provide
Rowhammer protection for another 10 years. Furthermore, REGA can be
scaled to even lower thresholds using the same circuitry by increasing tRAS

if necessary.

Contributions. The following summarizes our contributions:

1. We present REGA, the first in-DRAM mechanism that can scale the
number of required refreshes with activations.

2. We develop a new, accurate model of DRAM internals in collaboration
with a DRAM vendor. We use this model to ensure the correctness of
REGA. To enable future research on DRAM architecture, we release
this model as open source to the community: https://comsec.ethz.ch/
rega.

3. We design and implement a new in-DRAM mitigation on top of
REGA, called REGAm, that can protect against current and future
Rowhammer attacks.

4. We evaluate the correctness, performance, area, and power impact
of REGA and REGAm using an ASIC implementation, SPICE and
cycle-accurate simulations. REGAm has a constant minimal area im-
pact while its performance and power overhead scales to very small
Rowhammer thresholds.

https://comsec.ethz.ch/rega
https://comsec.ethz.ch/rega


4.2 background and motivation 71

�����������
����������


����

��
	�����

�������������
���

�
���

�
���

�
���

�

���
�

���
�

���
�

���
�

������� ������� �������

������� ������� ���������������������

��
�
��
��
��

��

��������


��������


��������


�

�




	

�

�

Fig. 4.1: DRAM. Example of multiple DRAM chips on a DIMM ( 1 ). The chip lay-
out is divided into banks ( 2 ) and includes a control logic pad. Each bank
is comprised of multiple sub-arrays ( 3 ), in turn composed of mats ( 4 ).
Each row spans across an entire sub-array. Each mat is surrounded by
bitline sense amplifiers for accessing data inside the mat ( 5 ). Rowham-
mer affects victim rows adjacent to a repeatedly accessed aggressor row
inside a sub-array ( 6 ).

4.2 background and motivation

We describe DRAM’s organization and operation (§4.2.1), discuss Rowham-
mer attacks and defenses (§4.2.2), and the ongoing Rowhammer trends with
DRAM technology scaling and what they entail for future defenses (§4.2.3).

4.2.1 Organization and Operation of DRAM

Logical Organization. The DDRx standard [12, 20] describes the logical
organization and operation of DRAM devices attached to an external mem-
ory controller (typically, in the CPU). Multiple DRAM devices are usually
operated simultaneously by the memory controller in a dual in-line memory
module (DIMM), as shown in Fig. 4.1. The memory controller can access
DRAM by providing an address, which specifies a DRAM bank, a row
inside that bank, and a column inside that row that identifies a single byte
of data. Internally and abstracted away from the memory controller, each
bank is organized into multiple sub-arrays. Each sub-array contains multi-
ple DRAM mats arranged in rows and columns. Each DRAM row consists
of capacitors (or cells), each storing one bit of information as an electrical



72 rega

charge. To access a specific column, the entire DRAM row is first selected by
a row decoder in the sub-array. The charges in the capacitors of the selected
row are then detected by sense amplifiers, collectively known as the row
buffer. A column decoder then selects the sense amplifiers associated with
the requested column.

The DDR Protocol. To access data in DRAM, the memory controller must
first activate the row by sending an ACTIVATE (ACT) command to a specific
DRAM bank. After sending an ACT, the memory controller must wait tRCD
for reliable logical values to become present in the sense amplifiers. Once
this happens, the MC can send a READ or WRITE command to a selected
column. The data will then be read from or written to the DRAM bus after
tCL or tCWL, respectively. DRAM allows one row of a bank to be activated
at a time. Thus, if a different row is requested, the memory controller must
first deactivate the currently activated row by issuing a PRECHARGE (PRE)
command. The PRE is considered complete after waiting for tRP, and the
new row of choice can now be activated by sending an ACT for that row.
Independently of the DRAM operations, a row can be precharged only after
a minimum of tRAS has passed since its activation.

As discussed, DRAM saves data on capacitors that leak charge over time.
Therefore, to prevent data corruption, the capacitors’ charge is periodically
restored via the REFRESH command (REF). REF has to be sent on average every
tREFI to keep data integrity. DRAM handles REF as multiple row activations
where an incremental index defines a subset of rows that are activated
and precharged simultaneously. We will provide more information on the
organization and operation of DRAM when describing our accurate DRAM
model in Section 4.5.3.

4.2.2 Rowhammer

As shown in Fig. 4.1, electrical interferences generated by activating a row
(aggressor row) can accelerate charge leakage in physically adjacent rows
(victim rows). If the victim rows’ charges leak fast enough, i.e., before these
rows are refreshed by a REF, DRAM can no longer detect the values that
were previously stored in these cells, and bits start to flip. This type of
crosstalk was of concern already in 2002 [4] and was publicly demonstrated
for the first time in 2014 [3]. Shortly after, security researchers showed many
critical attacks based on this effect, now famously known as Rowhammer.



4.2 background and motivation 73

Attacks. Rowhammer allows an attacker to compromise the integrity of data
stored in adjacent rows that are assumed not be accessible to the attacker.
Rowhammer attacks often go through three stages: templating, memory
massaging, and exploitation [25]. First, the attacker identifies vulnerable
memory locations (templating). The attacker then forces the system to
store security-sensitive information in these locations (memory massaging)
and retriggers Rowhammer to corrupt the security-sensitive information
(exploitation).

Previous research has shown that Rowhammer can be used for local priv-
ilege escalation [24, 26, 34, 55, 56], compromising co-located cloud virtual
machines [10, 25, 49], web browsers [9, 52–54] and even machines across
the network [57, 58]. It has recently even been shown that Rowhammer can
increase the strength of Spectre attacks [100].

Defenses. Common mechanisms to mitigate Rowhammer include preven-
tive refreshes to victim rows, which are broadly known as Target Row
Refresh (TRR) [5], isolation of sensitive data, and error-correcting codes
(ECC). Isolation of sensitive data requires software changes, making it chal-
lenging to deploy in practice. ECC complicates Rowhammer attacks but
does not prevent them [62]. Furthermore, the increasing density of bit flips
in newer technology nodes makes secure ECC schemes rather expensive [6].
As a result, TRR is the only specific mitigation that is currently deployed
for tackling Rowhammer.

TRR can be implemented in software [16, 56, 57, 63, 64], in the CPU’s
MC [3, 40–42, 44, 59–61, 80], and inside DRAM [23, 35, 39, 82]. Mitigating
Rowhammer is costly, making its deployment unattractive for software
and CPU vendors. Consequently, TRR is currently deployed inside the
component affected by Rowhammer, which is DRAM itself. Unfortunately,
recent work shows that all existing implementations of TRR in DDR4

DRAM devices are vulnerable to special access patterns [7, 34]. This is
due to the limited availability of additional refresh operations to perform
TRR in the current DRAM architecture and the increasing cost of tracking
potential aggressor rows for using these refresh operations judiciously. New
Rowhammer effects due to technology scaling further accentuate the cost
of future mitigations.



74 rega

����

��
�
��

��
��

����
���

���
���
��
��

�� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

Hy
dr
a

������� ��������
��
 �	�
����
 �	�
����
�
��


RE
GA

Pr
oT
RR

Fig. 4.2: Trend of Rthresh from 2016 to 2035 (B=4). The curve represents the min-
imum number of activations to induce bit flips, both for the absolute
minimum values and for the average. Vertical orange lines report the
minimum Rthresh for ProTRR [23], Hydra [40] and our mitigation, REGA.
For REGA, the minimum depends on its configuration, as later discussed
in the paper. The fitting is based on previous work [6, 87]. We refer the
reader to Appendix 4.12.1 for details about the mitigations’ threshold
and the estimation methodology.

4.2.3 The Impact of Technology Scaling on Rowhammer

There are two Rowhammer trends as DRAM moves to smaller technology
nodes: the worsening Rowhammer vulnerability and the Rowhammer
impact of a single aggressor. As we show, these factors have an heavy
impact on existing Rowhammer mitigations.

The worsening Rowhammer thresholds. The original Rowhammer study
with DDR3 DRAM [3] measured the minimum number of activations re-
quired to induce bit flips (i.e., Rthresh) to be in the order of 139 K to 284 K. A
more recent study showed that the Rthresh is dropping with each new gen-
eration of DRAM devices, reaching as few as 9.6 K activations [17]. Fig. 4.2
shows that Rthresh has dropped almost 15 times since Rowhammer was first
demonstrated and is posed to drop even further with future generations of
DRAM devices. Fig. 4.2 further shows that proposed mitigations can only
cope for a few more years with the dropping Rthresh. This is due to the fact
that they need to keep a non-trivial amount of state to use the available row
refreshes without significantly sacrifying performance. We show that our
proposed mitigation, REGA, provides better scalability against Rowhammer
in future devices by reducing the cost of refreshes inside DRAM.

The increasing impact of a single aggressor. An aggressor row impacts
the victim rows directly adjacent to it. This means that the aggressor row
has a blast diameter (B) of 2 victim rows. Recent work [34] shows that
the blast diameter has increased to 4 in more recent DRAM devices. The
blast diameter is posed to further increase, and we are likely to see de-



4.3 threat model 75

vices with blast diameters of 6 or even higher based on a recent JEDEC
specification [12]. None of the existing mitigations has so far considered
blast diameters of 6 or above. We show that the refreshes generated by our
new in-DRAM mechanism enable the construction of mitigations that are
independent of the blast diameter.

4.3 threat model

We assume that the CPU’s MC complies with the respective DRAM stan-
dard. We assume the software to be untrusted: the attacker can send ACT

commands to target DRAM rows through native code execution [10, 24–26,
55, 56], a browser tab (e.g., running JavaScript) [9, 52, 53], or over the net-
work [57, 58] to trigger Rowhammer bit flips that compromise the target
system. We assume that DRAM is vulnerable to Rowhammer and that bits
start to flip if (aggressor) rows receive a certain number of ACT commands
before the standard refresh mechanism in a tREFW refreshes their victims.
All recent DRAM devices are reported to be vulnerable to Rowhammer [7,
17]. While some Rowhammer effects are known (e.g., half-double [34]), we
assume more will be discovered over time, and our proposed mitigation
should be able to cope with that.

4.4 overview

Our goal is to design a new mechanism that can scale the number of addi-
tional refreshes as needed to defend against current and future Rowhammer
attacks. We first overview the requirements for this new mechanism, called
REGA, before discussing the challenges in designing it.

4.4.1 Requirements

We define our requirements (R1 – R3) around scalability, (forward) security,
and practicality.

Refresh scaling. The DDR4 protocol only allows issuing extra refreshes
during REFs [95]. The DDR5 protocol improves this by introducing the RFM

command [12, 23], which can periodically send additional refreshes to help
mitigate Rowhammer. However, its periodic nature requires mitigations to



76 rega

keep a state (e.g., counters) to decide which victims to refresh. As discussed
before (Section 4.2.3), maintaining this state becomes more expensive with
smaller technology nodes. Further, shortening the RFM period to allow for
more refreshes would negatively impact performance. Instead, an ideal
mechanism should allow scaling REFs as needed, up to generating an extra
REF, or more, for each ACT received by the DRAM device.

Requirement (R1). REGA should allow scaling of extra REFs as needed.

Forward security. Deployed mitigations do not decouple mechanisms from
policies. This impedes their adaptability to new Rowhammer effects, such
as the rapidly dropping Rthresh with smaller technology nodes [17] and
the half-double effect [34]. The main reason is the need for careful state
management in hardware due to the scarcity of extra REFs. Hence, as
a second requirement, we define the possibility of configuring simple
(stateless) policies to mitigate current and future Rowhammer effects.

Requirement (R2). REGA should decouple its mitigation mechanism
from policies to counter current and future Rowhammer effects.

Practicality. An in-DRAM solution must meet two requirements to make
its deployment practical. First, the new REF mechanism should have a small
impact on current and future technology nodes. Requiring more area with
smaller technology nodes will reduce the benefits of using the smaller
technology nodes in the first place. Moreover, the DRAM mats should
not be changed since they are the most important and highly optimized
building block of today’s DRAM chips. Second, a new mitigation should
operate within the bounds defined by the DDR standards [12, 20] as protocol
changes are a multi-year effort requiring consensus among all involved
parties.

Requirement (R3). REGA should have a minimal impact on the area and
layout of the DRAM while operating inside the bounds of the respective
DDR standard.

Next, we discuss how fulfilling these requirements introduces challenges
in the design and implementation of REGA, and summarize how we ad-
dress these challenges in the rest of the paper.



4.4 overview 77

4.4.2 Challenges

REGA requires changing certain DRAM elements to achieve low-cost and
scalable refresh generation. To ensure that our changes do not compro-
mise the device’s functionality, it is paramount to use an accurate DRAM
model. Currently, such a model does not exist, which brings us to our first
challenge:

Challenge (C1). Deriving an accurate model of DRAM internals that
represents modern DRAM devices.

We address this challenge in Section 4.5 by explaining the details of
the internal DRAM architecture and presenting REGA Model (REM), an
accurate DRAM model that we developed in collaboration with Zentel
Japan. Furthermore, we show that REM captures timings and internal
signal propagations more precisely than the previous state-of-the-art DRAM
model. Equipped with REM, we seek to understand and modify the DRAM
architecture to fulfill requirements R1 and R3.

So far, extra refreshes have been generated only in response to REF or RFM

commands, which are periodic and do not directly scale with a decreasing
Rthresh. Hence, to fulfill R1, the DRAM chip must be able to generate these
extra refreshes as part of ACTs. To fulfill R3, these extra refreshes should not
change the DRAM timings, as defined in the respective standards [12, 20].
Consequently, we propose generating these refreshes in parallel with ACT

commands.

Challenge (C2). Generating refreshes in parallel with ACTs.

In Section 4.6, we discuss possible placement options for REGA and
explain involved timings, leading us to its final design. Because we need
direct control of rows, REGA is deployed next to the mats. To perform extra
refreshes in parallel with every ACT, REGA must finish before a PRE. We
describe the additional circuitry to achieve this capability.

REGA’s implementation needs to time-multiplex wires in the mats, which
implies that more operations must be performed during tRAS. Through
experiments conducted on real DDR4 and DDR5 devices in Section 4.7, we
show that this is already feasible in today’s existing DRAM designs. To
protect devices with ultra-low Rthresh, REGA requires increasing the tRAS

further.



78 rega

����������������������

���

����

�����������������

���������


���

��

��������������

������
���������


�
�
��
��
��

��

��

��
�

������

����

��
�

������

����

��
�

�� ��
��������� Bank in PRE

��

��
�

������
��

�
������

��
�

����
	���

Vdd/2

��
��

�
��

�

��
��

����

Vdd/2

0V

�

�
�

� �

�

���

���

��

������
���������

ACT

����
	��� +Cell��
��

�
��

�

�

��

��
�


Vpp

Vss

��

�

� ���

���

��

������
���������

PRE

����
	���

��
��

�
��

�

�

��

Vss

Vdd/2

Fig. 4.3: DRAM’s internal physical organization. Top left: DRAM bank compo-
sition. Top right: voltage levels when a bank is in the precharged state.
Bottom left: voltage levels when a row is activated. Bottom right: voltage
levels when going from an activated to a precharged state. The voltage
levels under these different states are discussed in Section 4.5.2.

With REGA in place, we address R2 by building a secure, configurable,
and future-proof mitigation against Rowhammer.

Challenge (C3). Building a secure and configurable mitigation on top of
REGA.

In Section 4.8, we present REGAm, a new deterministic mitigation on top
of REGA that protects against all known and future Rowhammer attacks by
relying on the sole assumption that Rowhammer is induced by activations.
REGAm is secure against new Rowhammer effects by design, and its power
consumption can be configured depending on the Rthresh.



4.5 accurate modeling of dram 79

4.5 accurate modeling of dram

We now describe the details of DRAM’s internal physical organization
(§4.5.1) and focus on the sense amplifier’s operation (§4.5.2). Then, we
present our novel DRAM model and compare it with the state-of-the-art
DRAM model [101] (§4.5.3). A summary of all abbreviations and symbols
introduced in this section can be found in Appendix 4.12.

4.5.1 Physical Organization

In DRAM, data is saved in cells as a full charge (Vdd) or an empty charge
(Vss). Depending on the encoding, either one of the two charge levels can
correspond to a logical one (1b) [102]. Physically, cells are organized in
compact, hierarchical, and matrix-based structures as shown in Fig. 4.3.
These structures (mats) are composed of 512× 1024 cells ( 1 ), and each cell is
connected to a column bitline ( 2 ), via an access transistor ( 3 ) [87, 102, 103].
Along a mat’s row, all access transistors share the same control line, the sub-
word line (SWL) ( 4 ), which is raised upon row activation by the sub-word
line driver (SWD, 5 ) [104, 105]. Functionally, the SWL corresponds to the
logical row selector. A single row address uses multiple mats. Multiple rows,
typically 512, form a sub-array and multiple sub-arrays form a bank [106,
107].

The bitlines are connected to bitline sense amplifiers (BLSAs, 6 ) placed
on top or on the bottom of the mat in an alternating manner. Each BLSA
is connected to two bitlines, one coming from the mat above (BL) and one
from the mat below it (BLB). During the sensing operation, one bitline
transmits information, and the other is used as a reference voltage. This
open bitline design reduces crosstalk between bitlines and improves space
efficiency. Along a mat’s row, each cell has a unique bitline, but along a
column, all cells share the same bitline.

Activation process. After the memory controller sends an ACT, the associ-
ated SWLs are raised by the SWDs. All the cells of the row get connected
to the BLSAs, which are subsequently activated. The BLSAs read and am-
plify the stored data; as they read it, they also recharge the cells. After the
sensing operation stabilizes to a logical value, data can be read (or written)
by specifying a column. The column’s data is obtained by connecting one
byte from each mat to the local I/O (LIO). The LIO precedes the global I/O



80 rega

(GIO), and other data manipulation, such as further sensing operation (I/O
sense amplifier), serialization, and I/O line drivers [108].

4.5.2 Sense Amplifier

We now describe the bitline sense amplifier and its operation. In DRAM,
the cell capacitance is in the order of femtofarads (fF) [109], which allows
for high-density memories. However, because of the low capacitance, sense
amplifiers are needed to amplify the cell’s value to become interpretable.
Moreover, sense amplifiers are also used to restore the capacitors’ charge.
A sense amplifier is a circuit with two inputs: BL and BLB (Fig. 4.4center).
When the sense amplifier is activated, it senses the voltage difference be-
tween BL and BLB, amplifies it, and obtains its rail-to-rail output. That is, if
V(BL) > V(BLB) for voltage V, then BL is raised to Vdd and BLB is brought
to Vss (whose voltage levels are given in Appendix 4.12.3). These values are
then held or latched. As described before, only BL or BLB will be connected
to a cell.

Charge sharing. Before the first ACT reaches a bank, the bank is in a
precharged state (Fig. 4.3, “Bank in PRE”). Consequently, all SWLs are
low, and all BLSAs are OFF. A precharge circuit keeps the bitlines’ voltage
at Vdd/2. After an ACT is received (Fig. 4.3, “ACT”), the precharge is turned
off, allowing the bitline’s voltage to change. Then, the corresponding SWLs
are raised to connect the cells to the bitlines.

For a given BLSA, when the access transistor is activated the bitline
voltage varies depending on the charge stored in the cell. As the other
bitline connected to the BLSA remains at Vdd/2, the difference between
BL and BLB can be amplified by activating the sense amplifier (Fig. 4.4-
center, signals S/S#). Because the bitline has a high parasitic capacitance,
the cell’s value is lost during this operation, which is called charge sharing.
The sensing operation amplifies the signal to enable retrieving its logical
value, and restores the charges in the cells.

Precharge. When PRE is received (Fig. 4.3, “PRE”), the SWLs’ voltage is low-
ered, thus disconnecting the cells. Now the BLSAs are driving the bitlines
to either Vdd or Vss. At this point, if another row were to get activated,
the values in this other row would get corrupted [110]. To avoid this, after
having turned the sense amplifier to OFF, the precharge circuit (Fig. 4.4left)
brings the bitlines back to Vdd/2.



4.5 accurate modeling of dram 81

�����

����

���������

��

��
�

��

�� ��

��
�

����
�

�

���������������

��� ���

�� �
��

���

Fig. 4.4: Relevant electronic circuits. Left: the precharge circuit is used to bring
the bitline to the reference voltage (Vdd/2). Center: the sense amplifier
circuit is used to sense and amplify the charge inside the cell’s capac-
itor and recharge it when needed. Right: the gate circuit is used as a
multiplexer in the design of REGA, as discussed in Section 4.6.

�� �� ��
���

��������������
������ �
	
��

��������

��
���������

�
�
�

��
��
��
�

���

Fig. 4.5: DRAM model comparison (SWL). CLR-DRAM inaccurately assumes
an optimistic rise of the SWL. This results in faster (de-)activation of the
access transistor.

Timings and parasitics. The operations we described are delayed by para-
sitic elements of the lines (i.e., resistance and capacitance). For example, the
SWL’s parasitics slow down the (de-)activation of the access transistors. The
bitline’s parasitics reduce the sensed voltage, slow down the signal propa-
gation, and increase the time required for the precharge operation. These
effects are the key elements for a correct and realistic DRAM simulation.
Yet, no accurate and up-to-date circuit description based on real devices
exists today.

We collaborated with a DRAM vendor to overcome this limitation by
designing an accurate model called the REGA Model (REM), using details
from a real DRAM design. Next, we provide additional details about REM
and show that it captures DRAM details that existing models [101, 104] do
not. We open source REM to enable further research on DRAM architecture
and its security in the following URL: https://comsec.ethz.ch/rega.

https://comsec.ethz.ch/rega


82 rega

Property DIFF IN Explanation

Transistors sizes 4 Inaccurate ratios
Voltage sources 4 Simplified sources
Control voltages 4 Simplified control
Line parasitics 4 Low parasitics
SWL drivers 4 Not modeled
LIO & MIO loads 4 Not modeled

Tbl. 4.1: Identified issues in CL-DRAM compared to REM. Summary of differ-
ences (DIFF) and inaccuracies (IN) of CL-DRAM compared to REM.

4.5.3 REM

In the following, we present REM and compare it with the state-of-the-art
model described in CLR-DRAM [101]. In CLR-DRAM, the authors propose
DRAM architecture modifications to improve performance. To derive our
accurate model, REM, the DRAM vendor provided us with real physical
values obtained from DDR4 devices and the circuit we use in this work.
REM and CLR-DRAM differ substantially.

Overall, accurately describing DRAM requires knowing the (i) transistor
dimensions, (ii) source voltages, (iii) control voltages, and (iv) line parasitics.
Tbl. 4.1 summarizes our findings. We divide our comparison with CLR-
DRAM into inaccuracies (IN) and circuit differences (DIFF). Inaccuracies
are fundamental as they affect the simulation’s validity. Differences in the
circuit may not always be critical as they could emerge from alternative but
correct DRAM topologies. Lax timing constraints are easier to comply with,
and the resulting power consumption will generally be underestimated.
More importantly, an inaccurate model does not have enough fidelity to
confirm the feasibility of proposed DRAM modifications. We now describe
the differences between REM and CLR-DRAM.

Sub-word line (IN). A major inaccuracy of CLR-DRAM is the SWL’s char-
acterization. First, this model considers SWL as a single element instead of
a transmission line. Second, the model underestimates the line resistance
and parasitic capacitance. Lastly, the SWDs are not modeled at all, heavily
impacting the reliability. We observed that SWL’s rising time, illustrated
in Fig. 4.5, is one of the slowest in the circuit when modeled accurately. A
slow SWL delays the activation of the access transistor, which further delays
the sense amplifier’s activation. Evaluating the SWL’s actual timing is essen-
tial to assess the feasibility of performing REGA’s parallel refresh within



4.6 rega 83

tRAS. Likewise, the SWL timing affects most architectural modifications as
it affects the precharging and activation speed.

Voltages (DIFF). CLR-DRAM considers only two voltage sources in the
circuit: 1.2 V and 2.5 V. Our model describes voltages controlled by 1 V,
1.1 V, 1.4 V, 1.5 V and 2.5 V sources (see Section 4.12.3). Modeling incorrect
voltages may affect switching speeds, noise robustness, and power con-
sumption. Our bitlines are referenced to a maximum of 1 V, which makes
the sensing operation more difficult yet realistic.

Sense amplifier’s transistor ratios (IN). Transistors ratios characterize the
speed of operation of the sense amplifiers, reflecting in noise sensitivities
and timings. For the sense amplifiers, CLR-DRAM uses overly optimistic
ratios and optimistic absolute transistor sizes. In other cases, CLR-DRAM
uses pessimistic ratios.

Data path (IN). We modeled the local and global I/O lines, which all
previous models omitted. LIO and GIO lines act as a load to the BLSA
during read/write operations.

Sense amplifier circuit (DIFF). So far, literature has kept adopting the
textbook DRAM model [104] where the BLSAs are supplied with a single
voltage Vdd. However, in reality modern DRAM implementations may
differ, with BLSAs that can be overdriven [107, 111, 112]. The DRAM
vendor confirmed that they use overdriven BLSAs, and we designed our
DRAM model to implement overdriven BLSAs as described by them. Such
BLSA can switch between the common cell high voltage of 1 V and a higher
(overdrive) voltage of 1.4 V. The goal of the overdrive voltage is to accelerate
the first phase of sense amplification, while the lower 1 V, used in the second
phase, saves energy and avoids overcharging the cell.

4.6 rega

Equipped with REM, we proceed to the design of REGA. Parallelizing an
additional DRAM operation next to an ongoing one has (to the best of our
knowledge) not yet been explored. We provide a high-level description of
how REGA achieves this in §4.6.1, before discussing implementation details
and internal signal timing control in §4.6.2 and §4.6.3, respectively. We also
discuss supporting multiple refreshes per ACT in §4.6.4.



84 rega

����������� ���������� ������
������������
��� 
��������
���

��

��

��������

��� ���

����
����

��

��

��������

��� ���

����
����

��

��

��������

��� ���

����
����

��

��

��������

��� ���

����
����

���
���

1

2

3 4

������� ������� �������

Fig. 4.6: REGA’s concept. Row requested (RR) is activated and REGA sense ampli-
fier (SAR) starts latching its charge ( 1 ). While SAR latches the value, RR and
SAR are disconnected from the bitline. Row shadow (RS) and the original
sense amplifier (SAO) are activated ( 2 ). RS is recharged by SAO ( 3 ). SAR
and RR are connected, and RR is recharged ( 4 ).

�������

���������

����

�� ��
�

���������

����������

����
�����
���������


�������
�����
���������


�������
���������

���������

����

��

�

����

���������

�

���������

����

�

���������

����

��




���������

����

��

�

��

���������

����

�
������� ������� �������


���� 	��� 	����

��
�

��
�

Fig. 4.7: REGA’s design. The DRAM receives an ACT for RR. After turning OFF

the precharge and connecting RR, SAR starts latching supported by SAO
( 1 ). After SAR has started amplifying the voltage, the gate and RR are
disconnected, the bitline is precharged, and SAO is turned OFF ( 2 ). SAR
remains active to support reads and writes. When the bitline has been
precharged, RS is connected, and SAO starts refreshing it ( 3 ). After RS has
been refreshed and RS is closed, the bitline is precharged ( 4 ). RR and SAR
are connected to the bitline ( 5 ). Lastly, SAO is turned ON to support the
refresh operation on RR ( 6 ).

4.6.1 High-Level Operation

To parallelize DRAM operations, one obvious direction is doubling the
bitlines to make cells in different rows accessible at the same time. Unfortu-



4.6 rega 85

nately, this introduces a significant per-cell area overhead in the otherwise
highly-optimized DRAM mats. This means that to remain area-efficient,
REGA must multiplex the bitlines during the parallel operations.

Time-multiplexing the bitline. The most effective scenario for a Rowham-
mer attack is one that maximizes the number of activations by simply
alternating ACT and PRE on an aggressor row [23, 41]. This means that
REGA should generate the necessary refresh either during ACT or PRE. In
the same bank, the time between a PRE and an ACT is tRP, typically 13.75 ns.
As discussed in Section 4.5, DRAM requires this time to bring the bitlines
back to the reference voltage. Therefore, we cannot use tRP for our parallel
operation.

The time between an ACT and a PRE is defined as tRAS, which is at mini-
mum 32 ns. The row activation at the beginning of tRAS also uses the bitlines.
However, since tRAS is relatively long, we can leverage it to multiplex the
bitlines for our parallel operation in REGA.

Reads and writes. During bitline multiplexing, the memory controller will
send either READ or WRITE. As described in Section 4.5, these commands
can be sent tRCD after an activation, which is less than tRAS. REGA should
comply, allowing reads and writes while refreshing an additional row in
parallel.

Shadow refresh. REGA allows normal DRAM operations on a requested
row while simultaneously enabling refreshing another row. We denote the
requested row by RR and the shadow row by RS (i.e., the row that gets
refreshed in parallel). One may propose using the bitline sense amplifiers
to first read data from RR (as part of ACT) and then to refresh RS. However,
after RR has been activated, the memory controller can read from/write to
any column at any given time. Therefore, there should be two sets of sense
amplifiers: the original sense amplifiers (SAO) to perform refresh operations,
and a new set of sense amplifiers, called the REGA sense amplifiers (SAR),
to hold the values that could be read (or written). In practice, SAR acts as a
buffer to the original SAO.

Fig. 4.6 shows the high-level operation of REGA. To enable time-multiplexing
of the bitlines, we make a key observation that for the sense amplifiers
to start their mechanism, charge sharing is the only required operation
( 1 ). This step provides the logical values that can be read by the memory
controller in time with a tRCD. After the charge sharing phase, the bitlines
can be disconnected and connected to a different row and sense amplifiers
( 2 ). When the second set of sense amplifiers is connected, REGA refreshes



86 rega

��
��
��
���
��
��

����

��������������

��
�
��
��
��

��

��
��

����
����

��

����
����

��
�

�

�

����
����

��

����
����

��
�

����
����

��

����
����

��
�

�� �� ��

Fig. 4.8: REGA’s Internal Deployment. REGA is deployed next to the original
bitline sense amplifier (BLSA).

the shadow row ( 3 ). After the shadow refresh, the RR is reconnected ( 4 ), al-
lowing any operation conforming to the standard to be executed identically
to what is possible after a normal ACT on RR. In other words, REGA does
not require changing the DRAM standard, hence satisfying R3. The time
available to perform both refreshes is tRAS; after this, the memory controller
can send a PRE. If tRAS is preceded by a read, the value can be read by the
sense amplifier that had latched the logical value. If tRAS is preceded by a
write, the new value will replace the one latched by SAR, later used to finish
refreshing RR.

4.6.2 Low-Level Operation

REGA requires replicating existing elements in the sub-array’s circuit as
shown in Fig. 4.8. In particular, additional sense amplifiers and transmission
gates (Fig. 4.4right) are required. No modification to the data path is
necessary. We now describe REGA’s operation for a single sense amplifier,
as the same applies to all of them. We assume that the device receives an
ACT for RR, which may or may not be part of an attack, and we assume that
the shadow refresh targets RS. REGA’s complete design for a single cell is
in Fig. 4.7.

Circuit’s basics. For each bitline, two sets of sense amplifiers are used:
the already present, “original” sense amplifier (SAO), and our addition, the
REGA sense amplifier (SAR). SAR latches the requested row’s value and serves
as an I/O buffer. SAO refreshes the shadow and requested rows. REGA uses
the existing circuit to precharge the bitline.



4.6 rega 87

���
�

��
��

���
�

��

���
�

��
��

���

���

�

�

��
�

��
�

�
�����

�

�
�

�
�

��
�� ����

�

�

�

�

�

�
���� �� �� �� �� �� ��

���������

��
�

��
�

��
�



���
�

��
�

5

6

7

8

2

1

3

0

4

������� ������� �������

�������

����
�

���

����


	����	��

�����

����

��������

Fig. 4.9: Timing of REGA. Initially, the bitline is precharged ( 0 ). An ACT is
received for RR, and its word line is risen ( 1 ). After the charge sharing
operation, SAOD helps SAR latching the cell’s value ( 2 ). After SAR has
started the latching operation, the gate is opened to disconnect SAR from
the bitline ( 3 ). Now, the bitline is brought back to the reference voltage
via the precharge circuit ( 4 ). RS is activated, and SAO and SAOD perform a
normal refresh operation ( 5 , 7 ). Parallel to RS refresh, a read operation
occurs ( 6 ) by reading from SAR. Once RS has been refreshed, SAO is turned
OFF ( 7 ). After a brief precharge operation, the gate is closed ( 8 ), and
RR is refreshed by the combined operation of SAR and the original sense
amplifier.



88 rega

��
��
��
�

�������

��� ��

�������

2

3

1

���
���
�
��
���
	�
���� ���

������������
�	��
���
������� �������

�����
���

���

��
������
����	�

�
��
��
���

�
��

��
��
��&

 P
RE

 [V
]

���

4

������������
�	��
���
�������

���

�
 �

��

������

�­�����	����
��
���
	��­�	�� ����	��������

��	������������
�	��
���
�	
��������
�����

5

��������
������ �	
�������������

�������� �������� �������

Fig. 4.10: REGA Performing Multiple Refreshes. The bitline is precharged ( 1 ),
after which the target shadow row is activated ( 2 ), and SAO is used to
perform its refresh ( 3 ). The same can be repeated for more shadow
rows ( 4 ), and lastly, the process can be completed by restoring RR ( 5 ).

Stage 1: Logical ACT. In Stage 1 (Fig. 4.6), REGA latches the logical values
from the requested row. The latching mechanism is first started by SAO
and quickly latched by SAR (Fig. 4.7, Stage 1.1). This combined operation
allows SAR to be smaller than SAO, thereby keeping area overhead and power
consumption low. To correctly multiplex the bitline, a transmission gate is
required between the two sense amplifiers, which prevents SAO’s refresh
mechanism from corrupting SAR’s logical value when the signal VG is low.
Therefore, before activating RS, two events are necessary: turning OFF the
original sense amplifier SAO and precharging the bitline (Fig. 4.7, Stage 1.2).

Stage 2: Parallel REF. In Stage 2 (Fig. 4.6), REGA performs a parallel refresh
to RS. First RS is activated, then the standard charge sharing and recharging,
as described in Section 4.5, happen via SAO (Fig. 4.7, Stage 2.1). Before Stage
3 can be started, SAO must be turned OFF, and the bitline must be precharged.
This precharge is needed because the SAR might lose the latched value due
to the high-charge parasitics of the bitline.

Stage 3: Logical REF. In the last stage, REGA recharges RR with the up-to-
date logical value. This is necessary, as the cell had partially lost its value
during the charge sharing operation of Stage 1. First, the transmission gate



4.6 rega 89

is turned ON, connecting SAO to the bitlines (Fig. 4.7, Stage 3.1). Then, SAR is
activated to assist in the refresh of RR (Fig. 4.7, Stage 3.2).

4.6.3 Detailed Signal Timings

We now analyze the detailed signal timings. Our design considers the
worst-case scenario, where the RR and RS cells have opposite values and
with a minimum charge. The timings are obtained using REM simulations
as shown in Fig. 4.9. In this accurate description, we use SAO and SAOD to
refer to the activation of the original sense amplifier’s supply, either with
the common (1 V) or overdriven (1.4 V) voltage.

Stage 1: Logical ACT. In the initial state, the bitline is precharged (Fig. 4.9,
0 ). The memory controller sends an ACT to the row RR. This causes the
precharge signal to be de-asserted and RR to be connected to the bitline
while RR’s SWL is set high ( 1 ). With this last operation, charge sharing
begins, inducing a voltage variation along the bitline. After the bitline has
received the capacitor’s charge, SAOD is activated (SAOD is set high) to help
SAR latch the value ( 2 ) with the transmission gate active. Shortly after, SAR
is activated and starts latching the logical value of RR. SAOD is turned OFF,
and the transmission gate is opened (VG is set low, 3 ).

At this point, the bitline is precharged for the required time ( 4 ). SAR
will latch the logic value before a tRCD. This operation is very fast because
SAR does not have the load of the bitline, which is disconnected via the
transmission gate. Before the end of tRAS, read and write operations go to
SAR.

Stage 2: Parallel REF. This stage follows the standard charge sharing and
recharging but targets RS ( 4 - 6 ). After this activation (used as a refresh)
of RS is over, RS is disconnected from the bitline, and SAO is turned OFF ( 7 ).
Then, the bitline is precharged. As previously noted, this precharge is
needed because in the next stage, SAR will be connected to the bitline.

SAR now holds a value that must be stored back in RR. However, if the
parasitics of bitline held an opposite value, connecting the SAR might corrupt
its value. This depends on SAR’s transistors sizes, on its power supply, and
on the bitline parasitics. Considering the technology of our collaborating
DRAM vendor, the precharge operation is fast, and the SAR’s transistors are
big enough to reliably keep their value.



90 rega

Supporting other DRAM technologies. We provide solutions for cases
where the SAR or the precharge circuit must be very weak. First, we simu-
lated a weaker precharge circuit and determined that it is not required to
bring the bitline exactly to Vdd/2. Given our values for the SAR, we found
that a margin of at least 60 mV is tolerated. Second, we tested a weaker SAR
with transistor widths halved. This situation can be overcome by controlling
the gate circuity separately for the two bitlines (BL and BLB). In particular,
in Stage 3 only the gate that connects BL can be connected. This improves
the reliability of SAR to hold its value once connected to charged bitlines. If
the assisted refresh is needed in Stage 3, SAO can initially be kept OFF while
only BLB is precharged. Then, BLB’s gate is connected, and SAO finishes the
refresh operation.

Stage 3: Logical REF. RR is activated, and the gate is turned ON ( 8 ). After
a short time, SAOD is turned ON to assist the row refresh. To compensate
for the short refresh time, SAOD is held overdriven longer than usual before
switching to SAO.

All the discussed timings need to consider the rising time and the delays
due to parasitics. For the sake of simplicity, we did not include them in this
description. They are, however, used in our simulations and included in
our model. All voltage levels are summarized in Tbl. 4.6.

4.6.4 Parallel Refresh of Multiple Rows

As we discuss in Section 4.8, multiple parallel refreshes at every activation
enable protecting devices with very small Rowhammer thresholds. REGA
can perform more than one refresh in parallel to a row activation without
changing its circuit. Parallel refreshes involve repeating some key opera-
tions, illustrated in Fig. 4.10 for shadow rows RS1 to RSV. For each shadow
row, REGA interleaves bitline precharging with Stage 2 (Parallel REF). First,
the bitline is precharged ( 1 ). Then, the target shadow row is activated ( 2 ),
and SAO is used to perform its refresh ( 3 ). Then, these operations can be
repeated for a different shadow row ( 4 ), or the process can be completed
by (re)storing the charge in the requested row ( 5 ).

In the next section, we show that on recent DDR4 and DDR5 devices, the
minimum tRAS of 32 ns suffices for refreshing a single shadow row (V = 1).
Performing multiple refreshes requires more time, which a DRAM device
can do by extending tRAS from its minimum of 32 ns. To refresh V shadow



4.7 impact of rega on tras 91

Algorithm 4.1: Experiment for measuring the slack in tRAS.

Output : Number of corruptions C for all rows

1 S← PickRandomRows(1000)

2 for t ← {8, 16, 24, 32} do // tRAS in ns

3 for R← S do

4 Fill R with a random data pattern

5 Send ACT-PRE to R with tRAS = t
6 Read R
7 Ct

R ← number of corruptions in R
8 if Ct

R == 0 then

// If it does not corrupt with a low tRAS,

// neither it will with a higher tRAS

9 Remove R from S

10 return C

rows on top of RR, REGA requires a tRAS of 32 + (V − 1)× (17.5) ns which
we evaluate in Section 4.9.

4.7 impact of rega on tras

For a single shadow refresh (V = 1), REGA needs 16 ns (Fig. 4.9). We
introduce two experiments showing that (i) tRAS has sufficient slack to im-
plement REGA in today’s devices, and (ii) reducing tRAS does not negatively
affect data retention. We present our experimental platforms in §4.7.1, and
the experimental methodologies and results in Sections 4.7.2 and 4.7.3. We
discuss how tRAS can be configured for values higher than 32 ns allowing
multiple parallel refresh operations in §4.7.4.

4.7.1 Experimental Platforms

We measure the slack in tRAS on PCs to obtain minimal tRAS values. To
measure the impact of reducing tRAS on data retention, we rely on an FPGA
platform which provides us with precise timing for DRAM commands.

PC configurations. We use Intel Core i7-8700K (DDR4) and Intel Core
i7-12700K (DDR5) machines for PC-based experiments. Our mainboards



92 rega

(Appendix 4.12.4) allow accurately setting DRAM timings, such as tRAS. We
use a SO-DIMM-to-UDIMM extender to connect our SO-DIMMs to these
machines, which limits their speed to 2666 MHz. We use MemTest86 Pro
(version 9.4) for testing the DIMMs under reduced tRAS.

FPGA details. Our platform is based on a Zynq ZCU104 FPGA running
Antmicro’s Rowhammer tester [113]. It supports off-the-shelf DDR4 SO-
DIMMs, and allows issuing DRAM commands directly to the memory
device. Further, we have a DRAM heating infrastructure with which we can
keep the DRAM device’s temperature up to 100 ◦C.

Test devices. Our DRAM test pool consists of 21 DDR4 SO-DIMMs and
16 DDR5 UDIMMs, all off-the-shelf DRAM devices, covering all major
DRAM manufacturers and varying in size and frequency. For more details
about our test devices and the experimental platforms, we kindly refer
to Appendix 4.12.4.

4.7.2 Experiment 1: Slack in tRAS

In this first experiment, we investigate the slack in the default tRAS of
existing devices. We achieve this by sending ACT-PRE sequences with a
reduced tRAS value and using corruptions as an indicator for failures caused
by a too small tRAS value.

We describe our experiment in Algorithm 4.1. As temperature might
affect the DRAM’s operation, we perform this experiment under normal
room temperature (25 ◦C) and the maximum temperature specified by the
JEDEC standard (85 ◦C). Because precise timing is essential, we executed
this experiment using our FPGA platform on all our SO-DIMMs. The
results for the devices where we observed any corruptions are given in
Tbl. 4.2. We observe that even with an extremely reduced tRAS of 8 ns,
we could only observe corruptions on 3 of 21 tested DDR4 devices. S16
reports fewer corruptions with a higher temperature. This is because higher
temperatures can lower the threshold of access transistors, allowing for
faster data restoration in some cases (i.e., fewer corruptions). For a tRAS

of 16 ns, the value we require for REGA with V = 1, we never observed
corruptions.

We do not have precise control over DRAM commands on a PC. However,
to verify that our results hold for UDIMMs, we reconfigured the tRAS of
these devices in the PC’s BIOS/UEFI to 16 ns. We then ran a full pass of all



4.7 impact of rega on tras 93

DIMM Room temp. Max. (85 ◦C)

/tRAS 8 16 8 16

S6 7 0 1,747 0

S13 1,413 0 2,840 0

S16 2,937 0 1,315 0

Tbl. 4.2: Results of the free tRAS slack experiment. We report the no. of corrup-
tions on all SO-DIMMs and UDIMMs in our test pool. We omit devices
without any observed corruptions.

������������

��
�
��

�
�

��

��

�
���� �����

����������������
����
����������������
����

�	�������
����

�	�������
����

�� �� ��� ���

Fig. 4.11: Retention time experiment. Time required for corruptions to occur on
the DDR4 SO-DIMMs under different tRAS settings and temperatures.

16 MemTest86 [114] tests on all our test devices (including the SO-DIMMs)
to check for any corruptions that might be caused by the lower tRAS. We
confirm having observed no corruption over all tests in any of our DDR4

and DDR5 devices.

4.7.3 Experiment 2: Impact of a Reduced tRAS on Data Retention

This experiment’s goal is to show that reducing tRAS does not negatively
affect the data retention time even though less time is given to the ACT

command. In other words, reducing tRAS should not lead to data corruption
due to retention errors. To analyze this, we construct an experiment where
we refresh rows varying tRAS values and use wait periods of different
lengths to see the impact of tRAS on data retention.

We precisely describe our experiment in Algorithm 4.2, which we repeat
for the two different temperature levels for all DDR4 SO-DIMMs in our test
pool. As the JEDEC standard requires a data retention time of 64 ms, we
do not expect to see any retention failures for this waiting period. Fig. 4.11

reports the number of DIMMs in which we observed corruptions, for
different values of tRAS and after a waiting period. The data clearly shows
that for up to 256 ms, there are no data corruptions: the first corruptions



94 rega

start to appear after a waiting time of 1 s. This is significantly more than the
64 ms that JEDEC specifies in the DDR4 standard. Furthermore, there is no
clear difference between the retention profiles of devices with different tRAS
values. Hence, we conclude that it is safe to reduce the tRAS value to 16 ns,
or more precisely, use the available slack to perform REGA operations.

4.7.4 Configuring tRAS

DDRx devices use an SPD chip to inform the memory controller which
timings to use [115–117]. The content of the SPD chip is standardized
by JEDEC [118, 119] and intended to allow departing from the timings
described in the DDR standard for future devices.

The SPD chip includes tRAS, therefore devices deploying REGA can set
the necessary tRAS value. For DDR4 devices, the tRAS in the SPD can be
set up to 512 ns, making REGA with high V (e.g., 8) already deployable.
On DDR5 devices, the tRAS on the SPD can be set up to 65.5 ns, making
V values higher than 2 not immediately compatible with the current SPD
standard. As we discuss in Section 4.8, V > 2 enable protection for devices
with Rthresh smaller than 517, estimated to occur in around 7 years from
now. We hence recommend future revisions to the JEDEC SPD standard to
allow the SPD chip to set higher tRAS values as necessary. In Section 4.9 we
evaluate the performance overhead introduced by increasing tRAS beyond
32 ns.

4.8 regam

We show how we can leverage refreshes generated by REGA to design
new Rowhammer mitigations by demonstrating a blast-independent, fully
in-DRAM, stand-alone mitigation called REGAm. REGAm is simple, deter-
ministic, and configurable based on the device’s Rthresh.

4.8.1 Design

Aggressor rows only affect victims inside the same sub-array since sub-
arrays are physically separated from each other by sense amplifiers. Given
a sub-array, REGAm cyclically refreshes all its rows as it receives activations.



4.8 regam 95

Algorithm 4.2: Evaluation of the impact of tRAS on the data retention
time.
Output : Number of corruptions C for all rows

1 S← PickConsecutiveRows(1000)

2 for R← S do

3 Fill R with a random data pattern;

4 for t ← {8, 16} do // tRAS in ns

5 for m ← {64k, 16k, 4k, 1k, 256, 64} do // waiting time in ms

6 Ct
R ← 0;

7 for r ← 0 to 5 by 1 do // reps. account for VRT

8 for R← S do

9 Send PRE-ACT with tRAS = t ns // , refresh

10 Wait by sending NOPs for m ms;

11 for R← S do

12 Read R;

13 Ct
R ← Ct

R+ number of corruptions in R;

14 if Ct
R == 0 then

// m causes no corruptions

// =⇒ any m′ < m will not cause corruptions

15 break;

16 Ct
R ← Ct

R/5 // Average over the 5 repetitions

17 return C

In particular, REGAm refreshes V different rows in a sub-array every time
it receives T activations. T and V are parameters that can be dynamically
configured through a freely available register inside SPD to account for
devices with different Rowhammer thresholds and the discovery of new
Rowhammer effects. We show in Section 4.9 that REGAm outperforms the
state-of-the-art in-DRAM mitigation when it comes to known Rowhammer
effects. Furthermore, since REGAm refreshes all rows in a sub-array that
is receiving activations, it also provides strong protection against new
(yet unknown) Rowhammer effects. As an example, after this paper was
submitted, the latest JEDEC standard extended the maximum supported
blast diameter to 6 [12]. REGAm is immediately capable of protecting
devices in these scenarios. To easily integrate normal refresh operations,
refreshes targeting a particular sub-array will use REGAm’s row index as a
target, and then increment it.



96 rega

...

...����� 
��������� 

�����
��������� 
��
�����

��
	��
�������

��
	�

=
�� ������

�
��
�����

��
�����

 
��������� 

�����
...

������	�

�����

������

�����


���������

Fig. 4.12: Overview of the REGAm implementation.

����

��
�
��

��

��

����
���

���
���
��
��

�� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��
������� ��
��
	������������
� ��
��
	�����
�

RE
GA

M
1

RE
GA

M
2

RE
GA

M
4

RE
GA

M
8

Fig. 4.13: Trend of Rthresh from 2016 to 2035. In orange is reported the minimum
Rthresh for REGAm1, REGAm2, REGAm4 and REGAm8.

4.8.2 ASIC implementation

We propose to implement REGAm in the CMOS area of the DRAM chip,
similarly to our previous work [23]. Fig. 4.12 provides an overview of
REGAm’s ASIC implementation. REGAm is made of Nb identical blocks,
where Nb is the number of banks. Each block is essentially composed of
Ns indices Ii, where Ns is the number of sub-arrays inside a bank and
each Ii is a 9-bit register pointing to the next row to be refreshed in the
corresponding sub-array. Additionally, each block contains Ns registers Ti,
which are duty-cycling the refresh commands, i.e., to ensure that REGAm

sends a refresh every T activations received by a sub-array. Whenever an
activation affects the i-th sub-array, if Ti = T− 1, then V refreshes are sent
to Ii, Ti is reset and Ii is incremented by V, wrapping around the maximum
row index.

4.8.3 Security

REGAm can protect a device for a minimum Rthresh depending on its config-
uration. To obtain Rthresh, we consider the worst-case scenarios happening
before and after a victim row is refreshed. For a typical sub-array size of



4.9 evaluation 97

512 rows, a victim row is refreshed after a maximum of 512
V × T activations,

during which its aggressor rows can repeatedly be activated. Of these ac-
tivations, 512

V will perform extra refreshes. Therefore, because the SWL is
raised twice, these will hammer the victim twice. The last extra-refresh
operation is an exception, as the victim will be refreshed after SWL is raised
once. Instead, 512

V × (T − 1) activations will not perform extra refreshes,
hammering the victim only once. Lastly, refreshed rows will also hammer
the victim if inside its blast diameter B. Depending on the victim’s position
inside the refreshed group, the refreshed rows will either be a hammering
baseline for the next iteration or will hammer before the victim’s refresh.
In either case, this will result in a total of B hammerings (i.e., row activa-
tions). A victim will always have a hammer baseline of 1 due to the SWL
raise after its refresh. Therefore, a victim row can be hammered at most
512
V × (T + 1) + B times. We further validated REGAm using state-of-the-art

Rowhammer fuzzers [5, 7] without observing any bit flips.

In certain DRAM chips, rows that are kept active for longer periods could
increase the Rowhammer vulnerability [32]. This behavior still requires
extensive characterization to conclude whether it can provide an additional
benefit to an attacker. If necessary, REGAm can completely eliminate this
effect with a minor variation. Because REGA adds buffering sense amplifiers,
RR does not need to stay active during writes and reads. REGAm write back
operation can then be performed during a PRE, as it only requires 12 ns.

Fig. 4.13 reports REGAm thresholds for V = 1, 2, 4, 8, respectively as
REGAm1-8, offering Rowhammer protection for devices up to 10 years from
now.

4.9 evaluation

We now evaluate the key aspects of REGA and the mitigations REGAm1-8.
Results for REGA and the ASIC implementation are shared by all the
mitigations. Results that are V-specific are indicated as REGAmx (V = x).

First, we analyze the die’s area overhead due to the extra REGA circuitry
and the ASIC implementation, and we report the static power consumption
(§4.9.1). Second, we evaluate the circuit’s reliability based on 160 K analog
Monte Carlo simulations (§4.9.2). Third, we estimate the power, energy and
performance overhead of REGAm1-8 by running cycle-accurate simulations
(§4.9.3).



98 rega

We compare the overheads of REGAm1-8 with ProTRR [23], which is the
state-of-the-art in-DRAM Rowhammer mitigation. We synthesized REGAm’s
ASIC and ProTRR using a 12 nm technology with Synopsys Design Com-
piler 2021. In our evaluations, we consider B = 2 for the classical Rowham-
mer effect [3], B = 4 for the recently introduced half-double effect [99],
B = 6 that has been added in the latest JEDEC standard [12] and B = 8 for
future DRAM technologies where an aggressor row can cause bit flips in
four victim rows on each side. We regard Rthresh of interest to be lower than
4 K.

4.9.1 Area Overhead

The area in the DRAM chip is generally limited, and the vendors aim to
maximize the area for the mats. Given that, we must ensure that REGA’s
implementation is practical, i.e., it consumes a reasonably small amount of
die area.

Methodology. Depending on the DRAM design and technology, the ratio
between the sensing circuit and the chip’s die can vary between 8% and
15% [87], averaging 11.5%. The sensing circuit includes column selectors,
precharge circuits, and BLSAs. According to the sense amplifier layout
reported by our collaborating DRAM vendor, the BLSAs occupy 60% of the
sensing area. REGA adds small buffering sense amplifiers and transmission
gates, and for simplicity, we consider their length to be equivalent to the
original BLSAs. More precisely, REGA requires eight additional transistors
per each BLSA: four that are 1/6-th of the BLSA’s transistors width and
another four that are 1/8-th of the BLSA’s transistors width.

To conservatively evaluate the area overhead of REGA, we assume no
available free space to place our extra transistors. Instead, because each
BLSA is formed by four transistors, we propose placing them in two groups
following the BLSAs. Consequently, REGA’s area overhead can be calculated
as follows: 60%× ( 1

6 + 1
8 )× 11.5% resulting in, on average, only 2% area

overhead. Our ASIC implementation of REGAm incurs as little as 0.06%
area overhead.

Comparison with ProTRR. In Fig. 4.14, we show the total area overhead
of REGAm compared to ProTRR for DDR4 and DDR5. As REGAm does
not use any counters, its area overhead is independent of the Rowhammer
threshold.



4.9 evaluation 99

�
�
��
��
��

�����������������������������
����������� ����������� ����������
����

���
�		����
���
��� ���
�		����
���
��� ���
�		����
���
��� ���
�		����
���
���

�������������

��
�

����������� ��������������������������
���
�		����
���
��� ���
�		����
���
��� ���
�		����
���
��� ���
�		����
���
���

�
��
��

��
��

��
�

��
�

��� ��� ��� �� ��
���
�		����
���
��� ���
�		����
���
��� ���
�		����
���
��� ���
�		����
���
���

��� ��� ��� �� �� ��� ��� ��� �� �� ��� ��� ��� �� ��

�����������������������������

�� ��

������������� �������������

����������� �������������������������� ������������� �������������

�
��
��
��
��

����

����

��
 ��� ��� ���

��� ��� ���

��� ���

�� ��

��� ��� ��� �� �� ��� ��� ��� �� �� ��� ��� ��� �� �� ��� ��� ��� �� ���� �� �� ��

��� ��� ��� �� �� ��� ��� ��� �� �� ��� ��� ��� �� �� ��� ��� ��� �� ���� �� �� ��

��


��
 ���

����
��� �����
 ���

��� �����
 ���

Fig. 4.14: Area and power overhead of REGAm1-8. (i.) Area overhead. Overhead
for 32 banks and blast diameters of 2, 4, 6, and 8. (ii.) Power overhead
per bit (DDR5/4). Power overhead related to a bit for a fixed chip
area. In orange, the point of crossing between REGAm and ProTRR
is highlighted. Because REGAm is blast independent, its evaluation
for different Bs is identical. The only difference is a Rthresh shift of 2
between each panel (see Section 4.8.3).

In DDR4, ProTRR struggles for Rowhammer thresholds lower than 4 K
(B = 2) or has no protection (B > 2). For DDR5 devices, REGAm’s area
is lower for Rowhammer thresholds lower than 1156 (B = 2) and any
threshold lower than 4 K (B > 2). As thresholds approach 1 K, ProTRR can
no longer protect these devices (B = 4, 6, 8).

Static power overhead. The extra sense amplifier circuit uses CMOS tech-
nology and incurs a negligible static power overhead. For 32 banks, REGAm

has a static power consumption of 0.015%, for a baseline of 3 W [23]. This
is significantly less than ProTRR, which requires overheads between 4.65%
and 2.35% for 16 banks.

4.9.2 Circuit Reliability

Methodology. We used LTspice [120] to simulate REGA using REM. We
ran 40 K Monte Carlo simulations while introducing random variations of
±5% in the transistor’s dimension and the line parasitics. As previously



100 rega

CPU Memory Controller DRAM DDR4 DDR5

Sched. Type OoO #Channels 2 Freq (GHz) 2.9 4.8
# Cores 8 Page Policy Open Ranks 1 1

Freq. (GHz) 3 Scheduler FR-FCFS Bankgroups 4 8

L1 (KiB) 2x32 Queue Type Per Bank Banks/group 4 2

L2 (KiB) 256 Capacity (GiB) 16 Banks/rank 16 16

Rows/bank 64 K 64 K

Tbl. 4.3: Gem5 system configuration. For results including L3 (8 MiB shared),
see Appendix 4.12.9

done for DRAM [82, 101, 121–124], we modeled the transistors using the
22 nm predictive transistor model (PTM) [125]. Based on indications from
our DRAM collaborator, we set the DRAM cells’ charge to the minimum
that is still considered correct. We repeated the simulations for V = 1, 2, 4, 8.

Results. The circuit reported 100% reliability on all 160 K Monte Carlo
simulations for REGAm1-8. We consider the circuit reliable if all capacitors
are recharged to the correct value. To evaluate the worst-case scenario,
we tested the combinations where the sequence of cells to recharge have
opposite values.

4.9.3 Performance, energy and power overhead

We benchmark SPEC®
2017 [91] with a cycle-accurate simulator, evaluat-

ing the energy and power overhead of the extra row refreshes, and the
performance overhead due to the corresponding tRAS extension. Before
presenting our results, we briefly describe our methodology and simulation
setup. Because power presents the main design factor for devices, we refer
the reader to §4.12.5 for the energy overhead results.

Gem5 simulation. We configured gem5 [92] as described in Tbl. 4.3 to
do a full-system simulation of Ubuntu (Linux kernel 5.4) based on an 8-
core out-of-order CPU. Like previous work [23], we modeled the DRAM
subsystem using DRAMsim3 [93] as it allows for a higher accuracy than
the DRAM model included in gem5. Per SPEC®

2017’s recommendation, we
ran multiple copies in parallel, equal to the number of cores (i.e., eight in
our configuration). This maximizes the workload and, as such, increases
the load on the memory subsystem. For each benchmark, we obtained 20



4.9 evaluation 101

equally-spaced checkpoints (SMARTS methodology [94, 126]) and we ran
each checkpoint for 10 M instructions.

Methodology for energy and power overhead. We evaluated the energy
overhead on top of a regular ACT operation for V = 1, 2, 4, 8 extra refreshes.
We considered the worst case where a cell needs to be fully recharged.
Simulating REGA using LTspice [120], averaging over 50 Monte Carlo
simulations, showed a per-ACT energy overhead of 38%, 95%, 223% and
479%, respectively for V = 1, 2, 4, 8. For each benchmark, we extracted the
average total energy consumed and the energy consumed due to activations,
repeated for DDR4 and DDR5. Depending on T and V, we obtained the
overhead with respect to the baseline (V = 0). We used this energy to derive
power consumption and power overhead, by using the individual CPU time
simulated for each benchmark and each checkpoint. We then calculated the
energy and power overhead per bit by considering a fixed die size available,
as we do not expect manufacturers to increase the die area freely.

Power overhead. REGAm performs refreshes every T activations, which
depends on the Rowhammer threshold and on V. A high value of T sub-
stantially decreases power consumption. For example, if a device has a
Rowhammer threshold of 4 K, REGAm1 can be activated every 6 activations,
incurring 6 times less energy overhead and consequently less power over-
head. Fig. 4.14 shows the average power overhead per bit depending on the
Rowhammer threshold, compared with ProTRR. In almost all cases of inter-
est, REGAm has a lower power consumption compared to ProTRR. As an
example, to protect DDR5 devices with Rthresh of 1027 and B = 2, REGAm

requires only 7% extra power per bit, while ProTRR needs 18%. In the case
of extended tRAS and high values of T, the power is reduced with respect
to the baseline (negative overhead). This is due to a reduced amount of
activations sent for a given time, and is reflected in a performance overhead
(see next). We further provide REGAm’s absolute power overhead (i.e., not
relative to the area) in Appendix 4.12.7.

Performance overhead. REGA does not require timing changes when re-
freshing a single row (V = 1). Therefore, it does not introduce any perfor-
mance overhead. If REGA refreshes V > 1 rows, tRAS must be extended.

We repeat the measurements for V = 2, 4, 8 and for the baseline (V = 0).
In Fig. 4.15 we report the average performance overhead relative to the
baseline. A detailed overview can be found in Appendix 4.12. ProTRR
has a negligible performance overhead, however, for low thresholds it
becomes infeasible due to its area overhead or it cannot provide a sufficient



102 rega

��
��

�
��

��
�
��

�
��

��
��

�
���

�

��
���

�
��


�
�
��

�������������������������������������

��� ������������������

�
�
	�� 	�� 	��	��

�
�
��
��

���
���

��
���
���

Fig. 4.15: Performance overhead. Average performance overhead for V=1, 2, 4, 8

for SPEC®
2017 on DDR4 and DDR5.

protection. REGAm offers a protection with 0% performance overhead for
the thresholds that are covered by ProTRR, and it extends this protection to
thresholds significantly lower by adding a performance overhead due to
extending tRAS (e.g., 3.7% for Rthresh = 261). In Appendix 4.12.9, we report
detailed results when L3 is included. Generally, the addition of L3 reduces
the performance overhead (e.g., 1.9% compared to 3.7% for Rthresh = 261).

4.10 related work

In the following, we summarize and compare existing Rowhammer mit-
igations to REGAm. In Tbl. 4.4, we provide an overview of the existing
mitigations, comparing them for their security properties (Security), their
deployment location, their compatibility to the DDRx standard (Comp.),
their approach (Concepts), and if they were evaluated on the latest DDR
standard (Eval.). We differentiate between agreement ( ), and disagree-
ment ( ); for positive ( ) and negative properties ( ). Not applicable
properties are denoted by “–”.

Security. First, 15 of our 19 considered mitigations are deterministic (Det.),
which is favorable due to stronger security guarantees. Other mitigations
use probabilistic decisions such as MRLoc, ProHIT, and PARA. Second,
REGAm is the first proposed mitigation that can protect against new (un-
known) Rowhammer effects without modification (Eff.) such as the recently
discovered half-double effect or even higher blast diameters [12, 34]. Third,
some mitigations suffer from known vulnerabilities (Vuln.) as shown by
existing work [23, 41] and in §4.12.8. We only considered insecurities in the
original design, not arising from new effects. As previously exposed [127],
in-CPU mitigations that rely on refreshes are either vulnerable or incompat-
ible. For a refresh to be secure, the internal DRAM topology must be known.
This way, the mitigation can keep track of the rows that are hammered



4.10 related work 103

Yr.
Security Comp. Eval. Concepts

Eff. Vuln. Det. DDR 4/5 DDR5 Ct. Pr. Is. B.I.
DRAM

REGAm1-m2 ’22 /
REGAm4-m8 ’22 /
Mithril [39] ’22 /
ProTRR [23] ’22 /
Panopticon [35] ’21 /
ProHIT [82] ’17 /
Memory controller

Hydra [40] ’22 /
Row-Swap [44] ’22 /
BlockH. [42] ’21 /
CAT-TWO [59] ’20 /
Graphene [41] ’20 /
TWiCe [61] ’19 /
MRLoc [60] ’19 /
CBT [80] ’16 /
PARA [3] ’14 /
Software

ALIS [57] ’18 – / –
GuardION [55] ’18 – / –
ZebRAM [64] ’18 – / –
CATT [63] ’17 – / –
ANVIL [16] ’16 – / –

Tbl. 4.4: Overview of Rowhammer mitigations.

by extra refreshes. Unfortunately this has never been addressed by the
standard, leading to new attacks to surface [34]. We considered a mitigation
to be vulnerable if they do not mention this effect, or do not require the
topology to be known.

Location. The majority of existing mitigations (9 out of 19) need changes
in the CPU’s memory controller. Software-based mitigations involving the
operating system have also been proposed. Notably, the focus has moved
since 2019 from software- towards memory controller-based mitigations
and, more recently (2021+), to fully in-DRAM mitigations.

Compatibility. Most mitigations target the DDR4 standard, though many
require changes to the protocol, for example, by requiring a new (refresh)
command or the internal row layout. We consider mitigations to be non-



104 rega

compliant, if in the original publication they required standard modifica-
tions for the evaluated protocol. We report Row-Swap to be compatible
with the standard, however, as confirmed with the authors, the time delay
for the operations should be roughly twice what is used in the paper. Only
the more recent mitigations from 2022, namely REGA, ProTRR, and Mithril,
are evaluated for DDR5. We ignore software-based mitigations, as they are
by design independent of the DDRx standard. We considered mitigations
that rely on the knowledge of internal row mapping to be incompatible
but secure. Currently, REGAm4-m8 are non-compliant with the DDR5’s SPD
specification, which limits the compatible volume to V = 1, 2.

Concepts. Most mitigations employ counters (Cnt.) to keep track of ag-
gressors or victims. Those who do not employ counters use other data
structures such as queues (e.g., ProHIT and MRLoc) or are entirely stateless
(e.g., PARA). As it is generally difficult to precisely track row activations
from software, 4 out of 5 proposed mitigations use isolation (Isol.) to
protect against Rowhammer. ANVIL is an exception to this trend: it uses
performance counters to track row activations. We consider PARA, ProHIT,
MRLoc, and also Row-Swap’s random swapping of rows to be based on
probabilities (Prob.).

REGAm is the only blast-diameter independent (B.I.) mitigation. The
design of all other mitigations heavily relies on the considered diameter.
This gives REGAm the flexibility to scale with the increasing blast diameter.

4.11 conclusion

We presented REGA, a new in-DRAM mechanism that can scale the number
of refreshes with activations. REGA uses buffering sense amplifiers to time-
multiplex DRAM bitlines so that refreshes can occur in parallel to standard
DRAM operations. We demonstrated the correctness of REGA’s circuit
using a new accurate DRAM model that we developed in collaboration
with a DRAM vendor. REGA enables simple yet powerful mitigations
against current and future Rowhammer attacks. We built a deterministic
and scalable mitigation on top of REGA, called REGAm, and evaluated its
area, power and performance impact. REGA is the first in-DRAM mitigation
that scales to small Rowhammer thresholds with a constant small area
overhead (2.1%) and power and performance overhead dependent on the
Rowhammer threshold. As an example, REGA scales to Rthresh = 517 with
11.5% power and 0.8% performance overhead.



4.12 appendix 105

4.12 appendix

4.12.1 Rowhammer trend

The fitting of the curves is based on the minimum Rowhammer thresholds
reported in previous works [6, 87]. We now briefly report the methodology
and fitting results.

Average curve. For each DRAM vendor, we calculated the average Rthresh
in each year. Then, we averaged across vendors for the same year. The
resulting points are reported in Fig. 4.2, which also includes a fitted curve
using an exponential function (i.e., a × eb×x) obtained using MATLAB®
2020 automatic fitting tool (R-square=0.96).

Absolute minimum curve. For each year, we considered the absolute min-
imum across all vendors. In the dataset, the year 2018 included only a
single point, which we considered to be an overly optimistic outlier. For
this reason, we removed it from the computation, as it would have skewed
the minimum curve to be overly optimistic. Like above, the points used
for the fitting are reported in Fig. 4.2, and fitted with an exponential func-
tion (i.e., a× eb×x) obtained using MATLAB® 2020 automatic fitting tool
(R-square=0.98).

The figure reports the minimum thresholds supported by the mitigations.
However, the Rowhammer threshold is defined differently depending on
the publication. In this work and others [23, 39, 41], Rthresh is the minimum
number of activations to have bit flips. A Rthresh of 1024 with B = 4 could
be reached by 4 different aggressors, each activated 1024/4 = 256 times.
Other mitigations [40, 44] refer to Rthresh relatively to aggressors. In those
cases, the threshold is the number of times every aggressor in the blast
diameter needs to be activated to induce bit flips. For example, Hydra [40]
targets a threshold of 500 with B = 4. Because each row can be activated
500 times, and each victim has 4 different aggressors, this corresponds to a
Rthresh equal to 2000.

4.12.2 Abbreviations

In Tbl. 4.5, we summarize the abbreviations and symbols we used through-
out this work.



106 rega

Abbrv./Symb. Description Ref. (§)

BLSA Bitline Sense Amplifier 4.5.1
DIMM Dual-Inline Memory Module 4.2.1
ECC Error-Correcting Codes 4.2.2
GIO Global I/O 4.5.1
LIO Local I/O 4.5.1
MC Memory Controller 4.10

MC Monte Carlo 4.9
REM REGA (DRAM) Model 4.5.3
REGA Refresh-Generating Activations 4.4
RFM Refresh Management (DDR5 Extension) 4.4
SPD Serial Presence Detect 4.4
SWD Sub-Word Line Driver 4.5.1
SWL Sub-Word Line 4.5.1
TRR Target Row Refresh 4.2.2

B Blast Diameter 4.2.3
T Period of REGAm parallel refreshes 4.8
V No. of shadows rows refreshed in parallel 4.6.2
ACT A DRAM activation command 4.2.1
PRE A DRAM precharge command 4.2.1
tRAS Min. Row Address Strobe: ACT-to-PRE delay 4.2.1
Rthresh #ACTs req. to trigger bit flips 4.2.3

Tbl. 4.5: Abbreviations & Symbols. A summary of abbreviations and symbols
we used in our work with a brief description and reference to the section
where it has been introduced.

4.12.3 Voltages used in REM

The voltage levels of our REM are listed in Tbl. 4.6.

Parameter Voltage (V) Description

Vpp 2.5 SWD power supply and overdrive control
Vss 0.0 Ground
Vperi 1.1 Peripherical circuitry voltage
Vdd 1.0 DRAM core voltage and cell’s high value
Vpre 1.5 Control voltage of the precharge circuit
Vod 1.4 Overdrive voltage

Tbl. 4.6: Voltage levels used by REM.



4.12 appendix 107

������������������������������

������ ����������������
��������������
����

�


	

�


�


��
�

����������������������������
�

�������� ��������

����
���

��� ��� ��� �� �� ��� ��� ��� �� ��
��������������
����

��
���

��
�

��
�

��
�

��
�

Fig. 4.16: Energy overhead per bit of REGAm1-8. Energy overhead related to a bit
for a fixed chip area. In orange, the point of crossing between REGAm

and ProTRR is highlighted. Because REGAm is blast independent, its
evaluation for different Bs is identical and in this figure grouped in
a single plot. The only difference is a shift in Rthresh as described
before (Section 4.8.3).

4.12.4 Experiment Platform & Devices

In the following, we provide more details on our PC-based test platform
and the test devices of our DRAM test pool.

PC. We use Intel Core i7-8700K (“Coffee Lake”) machines for DDR4 experi-
ments, equipped with ASUS ROG STRIX Z930-E mainboards. We use Intel
Core i7-12700K (“Alder Lake”) machines for DDR5 experiments, equipped
with Gigabyte Z690 AORUS PRO mainboards.

DDR4/5 Test Devices. In Tbl. 4.7, we list all the DDR4 and DDR5 DIMMs
in our DRAM test pool.

4.12.5 Energy overhead

Results energy overhead. Fig. 4.16 shows the average energy overhead
per bit depending on the Rowhammer threshold, compared with ProTRR.
Given the recent half-double effect, REGAm is always convenient for DDR4

and DDR5 for the threshold in scope. For B = 2, REGAm is comparable to
ProTRR (DDR5) and convenient in current DDR4 technologies.



108 rega

DIMM DRAM
Manuf.

Mf. Date
(yy-ww)

Freq.
(MHz)

Size
(GiB)

Geom.
(#R, #B)

tRAS
(ns)

S0 SK Hynix 22-31 † 2133 8 1, 16 33.000

S1 Micron 20-41 2400 16 1, 16 29.125

S2 Micron 20-48 3200 8 1, 16 26.250

S3 Samsung 20-47 2666 8 1, 16 32.000

S4 Samsung 20-52 2666 4 1, 8 32.000

S5 Micron 22-31 † 3200 16 1, 16 32.000

S6 Samsung 20-44 2133 4 1, 16 33.000

S7 Micron 20-45 2400 8 1, 16 32.000

S8 Nanya 20-43 2400 8 1, 16 32.000

S9 SK Hynix 22-31 † 2400 16 2, 16 32.000

S10 Samsung 19-34 2666 8 1, 16 32.000

S11 n/a 22-31 † 2666 8 1, 16 32.000

S13 Samsung 22-31 † 2666 16 2, 16 29.250

S14 Micron 22-22 2666 8 2, 16 32.000

S15 Micron 22-21 2666 16 2, 16 32.000

S16 Samsung 22-31 † 3200 8 1, 16 32.000

S17 Micron 22-31 † 3200 32 2, 16 32.000

S18 SK Hynix 21-28 2666 16 2, 16 32.000

S19 SK Hynix 16-25 2133 16 2, 16 33.000

S20 Zentel 22-31 † 2400 4 1, 16 32.000

S21 n/a 22-15 2666 16 2, 16 32.000

U0 Micron 22-04 4800 16 1, 32 32.000

U1 Micron 21-41 4800 16 1, 32 32.000

U2 SK Hynix 22-05 4800 8 1, 16 32.000

U3 Micron 22-07 4800 16 1, 32 32.000

U4 Samsung 21-52 4800 8 1, 16 32.000

U5,6 Micron 21-42 4800 16 1, 32 32.000

U7 Micron 21-49 4800 16 1, 32 32.000

U8 Samsung 22-01 4800 16 1, 32 32.000

U9 Samsung 21-42 4800 16 1, 32 32.000

U10,11 Micron 22-02 † 4800 16 1, 32 32.000

U12,13 Samsung 21-44 † 5600 16 1, 32 32.000

U14,15 SpecTek 21-48 4800 16 1, 32 32.000

Tbl. 4.7: Specifications of the DRAM devices in our test pool. Upper half (Sx):
DDR4 SO-DIMMs, lower half (Ux): DDR5 UDIMMs. We report for each
device its DRAM manufacturer (DRAM Manuf.) or “n/a” if there is no
information reported by the DIMM’s SPD chip; its manufacturing date
(Mf. Date), or the date of purchase (†) in case it is not reported by the
SPD chip; the frequency (Freq.); the device’s size (Size); the geometry
(Geom.) as number of ranks/banks; and its default tRAS value. DDR5:
Same devices are same-kit modules.

4.12.6 Performance overhead

Fig. 4.18 and Fig. 4.17 show the performance overhead for V = 2, 4, 8, for the
individual benchmarks of SPEC®

2017 on DDR4 and DDR5. As discussed
in the paper, V = 1 does not incur any performance overhead.



4.12 appendix 109

��
��

�
��

��
�
���

��
��

��
�
���

�

0
0.5
1

1.5
2

0
2
4
6
8

10
���

��
��

��
��
��

��
���

��
��

��
�
�

��
�

���
��

�

�	
��
��
�

���
��
���
�

��
�

��
��
��� ��� ���
��

�
��

��
�

��
�
�

��
��
�





�
���

�

�
���
��
�	


�
���

�
��
�
�

��
�


�
��


�
���

��
�
� 
�

0
5

10
15
20
25
30
35

���

���

���

���������

Fig. 4.17: Individual performance overhead (DDR5). Performance overhead for
V=2,4,8 for the different benchmarks of SPEC®

2017. Geometric mean =
0.8%, 3.7%, 12.7% respectively for V of 2, 4 and 8.

4.12.7 Power overhead

Fig. 4.20 and Fig. 4.19 show the average power overhead without con-
sidering the area overhead. The value is relative to the baseline power
consumption, which depends on the device. Average power consumptions
around 3 W are common [23].

4.12.8 Mithril

In this appendix, we point out vulnerabilities we discovered in the state-
of-the-art in-DRAM mitigation Mithril [39]. Our analysis is focused on its
security and standard compliance.

Missing standard compliance. Mithril is not compliant with the current
DDR5 standard. It proposes using the new RFM command but fails to adhere
to the correct parameters in the respective JEDEC specification [12]. In
particular, the authors assume and evaluate an RFM command targeting
a specific bank. However, the RFM can only either target all banks (RFMab)



110 rega

��
��

�
��

��
�
���

��
��

��
�
���

�

���
��
��

��
��
��

��
���

��
��

��
�
�

��
�

���
��

�

�	
��
��
�

���
��
���
�

��
�

��
��
��� ��� ���
��

�
��

��
�

��
�
�

��
��
�





�
���

�

�
���
��
�	


�
���

�
��
�
�

��
�


�
��


�
���

��
�
� 
�

���

���

���

�

��

��

��
�
�
�
�
�

��
��
 �
­�
��

���������

Fig. 4.18: Individual performance overhead (DDR4). Performance overhead for
V=2,4,8 for the different benchmarks of SPEC®

2017. Geometric mean =
1.6%, 5%, 16% respectively for V of 2, 4 and 8.

�������������������������� ������������� �������������

��
�
��
��

��
��

��
�
���

�

�
��
��
��
��

�������������������
��� ��� ��� �� �� ��

Fig. 4.19: Power overhead (DDR5). Average power overhead for REGAm.

or banks that have the same ID in all bank groups (RFMsb). Moreover, the
standard specifies RFM periods between 32 and 80 with steps of 8. Mithril,
however, assumes an arbitrary RFM period. The standard also requires the
bank activation counter to be decreased at every REF, which is another
aspect not considered by Mithril.

Vulnerabilities. Mithril uses wrapping counters that expose the design
to security issues. The counters can be manipulated to reach MAX-1 for
a row a0, where MAX is the maximum number the counter can hold
before wrapping around. Now, hammering a different row a1 would lead



4.12 appendix 111

�������������������������� ������������� �������������

��
�
��
��

��
��

��
�
���

�
�
��
��
��
��

�������������������
��� ��� ��� �� �� ��

Fig. 4.20: Power overhead (DDR4). Average power overhead for REGAm.

��
��

�
��

��
�
��

�
��

��
��

�
���

�

��
���

�
��


�
�
��

�������������������������������������

���

	� 
	� 
	�
	�

�
�
�
�
�

���
���
���
���
���

Fig. 4.21: Performance overhead (DDR5) with L3. Average performance over-
head for REGAm1-8 for SPEC®

2017 on DDR5.

to it being replaced and subsequently refreshed. At this point, any new
hammered row will replace the new minimum (0), and our victim row a0
will never be picked for a refresh until all the others have been refreshed
before.1 Lastly, the effect of the refresh itself is not considered in the paper.
It has been shown that refreshes can be used as a vector for exploitation on
real-world devices [34], making the mitigation act as a confused deputy.

4.12.9 Errata Corrige

Overheads. We discovered a bug that affected the gem5 simulations, where
the L3 cache was configured but not enabled. L3 caches are present on
most desktop and server systems, while mobile devices might not have
an L3 cache. The absence of L3 increased the memory load and made the
original results a worst-case scenario for REGA. We have rerun all the gem5

simulations with L3 enabled, and the results are presented in Figs. 4.21–4.27.

Mithril’s wrapping counters. The authors of Mithril [39] contacted us to
clarify the implementation of their wrapping counters, which we now
believe to be secure. However, Mithril’s authors acknowledged that given

1 See §4.12.9 for an update on this vulnerability.



112 rega

�������������������������� ������������� �������������

��
�
��
��

��
��

��
�
���

�
�
��
��
��
��

�������������������
��� ��� ��� �� �� ��

Fig. 4.22: Power overhead per bit (DDR5) with L3. Average power overhead per
bit (for a fixed chip area) for REGAm1-8.

�������������������������� ������������� �������������

��
�
��
��

��
��

��
�
���

�

�
��
��
��
��

�������������������
��� ��� ��� �� �� ��

Fig. 4.23: Power overhead (DDR5) with L3. Average power overhead for
REGAm1-8.

the description in Mithril’s paper, our attack is correct and would work. We
want to thank the authors of Mithril for their clarification.



4.12 appendix 113

������������������������������

����������������
�������������������

�


�

�






	�
�

����������������������������
�

�������� ��������

��� ��� ��� �� �� ��� ��� ��� �� ��
�������������������

��

Fig. 4.24: Energy overhead per bit (DDR5 and DDR4) of REGAm1-8 with L3.

��
��

�
��

��
�
��

�
��

��
��

�
���

�

��
���

�
��


�
�
��

�������������������������������������

���

	� 
	� 
	�
	�

�
�
��
��
��

���
���
���
���
���

Fig. 4.25: Performance overhead (DDR4) with L3. Average performance over-
head for REGAm1-8 for SPEC®

2017 on DDR4.

�������������������������� ������������� �������������

��
�
��
��

��
��

��
�
���

�

�
��
��
��
��

�������������������
��� ��� ��� �� �� ��

Fig. 4.26: Power overhead per bit (DDR4) with L3. Average power overhead per
bit (for a fixed chip area) for REGAm1-8.

�������������������������� ������������� �������������

��
�
��
��

��
��

��
�
���

�

�
��
��
��
��

�������������������
��� ��� ��� �� �� ��

Fig. 4.27: Power overhead (DDR4) with L3. Average power overhead for
REGAm1-8.





5
H I F I - D R A M : E N A B L I N G H I G H - F I D E L I T Y D R A M
R E S E A R C H B Y U N C O V E R I N G S E N S E A M P L I F I E R S W I T H
I C I M A G I N G

DRAM vendors do not disclose the architecture of the sense amplifiers
deployed in their chips. Unfortunately, this hinders academic research that
focuses on studying or improving DRAM. Without knowing the circuit
topology, transistor dimensions, and layout of the sense amplifiers, re-
searchers are forced to rely on best guesses, impairing the fidelity of their
studies. We aim to fill this gap between academia and industry for the first
time by performing Scanning Electron Microscopy (SEM) with Focused
Ion Beam (FIB) on recent commodity DDR4 and DDR5 DRAM chips from
the three major vendors. This required us to adequately prepare the sam-
ples, identify the sensing area, and align images from the different FIB
slices. Using the acquired images, we reverse engineer the circuits, measure
transistor dimensions and extract physical layouts of sense amplifiers —
all previously unavailable to researchers. Our findings show that the com-
monly assumed classical sense amplifier topology has been replaced with
the more sophisticated offset-cancellation design by two of the three major
DRAM vendors. Furthermore, the transistor dimensions of sense amplifiers
and their revealed physical layouts are significantly different than what
is assumed in existing literature. Given commodity DRAM, our analysis
shows that the public DRAM models are up to 9x inaccurate, and existing
research has up to 175x error when estimating the impact of the proposed
changes. To enable high-fidelity DRAM research in the future, we open
source our data, including the reverse engineered circuits and layouts.

5.1 introduction

DRAM is the target of many research efforts from academia every year with
the sense amplifier being the fundamental section most commonly modified
and simulated [22, 33, 36, 101, 124, 128–146]. Unfortunately, DRAM vendors
keep the internal architecture of sense amplifiers in their chips a secret. As
a result, researchers are forced to make assumptions and speculate over

115



116 hifi-dram

crucial design factors, impacting the accuracy of their results. We aim to fill
this gap by imaging, and subsequently reverse engineering, sense amplifier
circuits on modern DDR4 and DDR5 devices.

Existing research commonly assumes commodity DRAM to employ the
classical sense amplifier circuit, which we show not to be the case in DRAM
chips from two of three major DRAM vendors. Instead, their sense ampli-
fiers include new components and events to perform offset-compensating
operations for reliable DRAM operation with smaller technology nodes.
Furthermore, we obtain crucial information concerning deployed sense
amplifiers, such as transistor dimensions and physical layout. Using this
knowledge, we systematically analyze the feasibility and accuracy of DRAM
studies spanning a decade of research. We find that the majority of these
studies make inaccurate assumptions about sense amplifiers, resulting in
significant errors when estimating the impact of their proposed changes. We
formulate recommendations based on our findings to enable high-fidelity
DRAM research in the future.

Research accuracy. DRAM provides cheap and low-latency memory based
on capacitors. The transition between the analogue world of capacitors and
the digital world is performed by sense amplifiers. Sense amplifiers enhance
the extremely weak signals stored in capacitors while adhering to strict
timings [12]. Their design and topology must be reliable towards process
manufacturing variability and noise, yet strongly optimized to keep high die
efficiency [147]. Research based on modifying sense amplifiers depends on
three factors for its accuracy and validity: (i) the employed sense amplifier
circuit, commonly assumed to be the classical design, (ii) the transistor
dimensions, as circuits with overly large transistors will be optimistic
towards their reliability, and (iii) complying with existing layouts, given
that the sense amplifier region is a highly optimized area, adding new
components should be done with care to achieve realistic area overheads.
Unfortunately, information on these crucial factors that are necessary for
high-fidelity DRAM research is not publicly available to researchers. This
paper aims to fill this gap for the first time.

DRAM reverse engineering. We perform high-resolution chip imaging
to reverse engineer the sense amplifier region in six commodity DDR4

and DDR5 devices from the three major DRAM vendors. For the first
time, we report circuit topologies, transistor dimensions, and layouts of
sense amplifiers on modern commodity DRAM devices. To this end, we
combine Scanning Electron Microscopy (SEM) aided with Focused Ion



5.1 introduction 117

Beam (FIB) to obtain cross-section images from the samples. Performing
SEM/FIB requires adequate sample preparation and the identification of
the sensing areas. We then perform a highly sensitive image alignment
and noise cancellation on the cross-section images, allowing us to obtain a
planar view of the sense amplifier region. Using the planar view images,
we reverse engineer the circuit topology by performing a multi-dimension
inter- and intra-layer mapping.

HiFi-DRAM. We seek to enable high-fidelity DRAM research using our
reverse engineered data. We start by comparing our findings to existing
DRAM models, discovering that they employ transistors with dimensions
up to 9x different than our samples counterpart. Then, we analyze existing
studies that propose to modify the sense amplifier region. We find three
major inaccuracies. First, these studies consider inaccurate sense amplifier
designs, hence their modifications do not always apply to more modern
devices. Second, the addition of new elements assumes free space in existing
chips which we find not to be the case in our samples. Third, these proposals
do not consider the physical layout of sense amplifiers, underestimating the
impact of the proposed changes. Considering these inaccuracies, we find
that existing studies can have up to 175x errors in their original estimations
when considering modern commodity DRAM. Based on these findings, we
formulate a set of recommendations to improve the fidelity of future DRAM
research. As an example, future studies must avoid focusing on a single
sense amplifier in isolation, since we find that multiple sense amplifiers are
interconnected in modern DRAM chips.

Contributions. The following summarizes our contributions:

1. Using high-resolution IC imaging, we reverse engineer the sense
amplifiers of modern commodity DRAM devices from the three major
vendors on both DDR4 and DDR5 devices.

2. We report on important properties of sense amplifiers in our samples
such as their circuitry, transistor dimensions and physical layouts.

3. We evaluate 13 papers that aim to modify sense amplifiers using our
reverse engineered information to identify inaccuracies and formulate
recommendations for high-fidelity DRAM research in the future.

Open sourcing. The extracted information including IC images, reversed
engineered circuits, transistor dimensions and physical layouts can be
reached via https://comsec.ethz.ch/hifi-dram.

https://comsec.ethz.ch/hifi-dram


118 hifi-dram

DIMM

Logic 
pad

Sense amplifier regions Bitlines Rows

Sense amplifiers

Banks

MAT

Row drivers

Capacitor

DRAM chip

Fig. 5.1: A DIMM contains several DRAM chips, each made of multiple banks.
A bank has many MATs, filled with capacitors. Capacitors are connected
to SAs via bitlines after they are selected by rows. SAs are in between
MATs.

5.2 background

We introduce the DRAM architecture and sense amplifier topologies (5.2.1)
before summarizing research that aims at modifying DRAM sense ampli-
fiers (5.2.2).

5.2.1 DRAM and Sense Amplifier Topologies

Commodity DRAM is available as chips complying with the DDR protocol,
standardized by JEDEC [12, 20]. DRAM used in servers and desktops
is usually assembled as multiple identical DRAM chips on dual-inline
memory modules (DIMMs) [115, 116].

Physical organization. Internally, a DRAM chip has a hierarchical structure
made of banks (Fig. 5.1), each made of multiple MATs that generally contain
between half to a million capacitors [22, 148, 149]. Each capacitor in a MAT
stores one bit of memory and is identified by the combination of a column,
row, and bank address supplied by the memory controller. The MATs are
surrounded by row drivers in one direction, and by sense amplifiers (SAs)
in the other (Fig. 5.1). When the memory controller accesses memory, it first
activates a specific row of a MAT. With a row activation, the capacitors in a



5.2 background 119

BL

BLB
Row MAT

Yi YiLA LAB PEQ VPRE

Column Latch Equalizer Precharge

PEQ

LA LAB Yi

BL
LIO

BLB
LIOB

VPRE

pSA nSAPRE and EQ
Column

b c

a

Charge sharing
BLVBL

Latch & Rest.

BL

PRE & EQ
BL

BLB
Vpre

2

1

3

Control line

SA

Fig. 5.2: Latch, equalizer, precharge and column are the main sense amplifier
elements (a). In the classic circuit (b), PEQ activates both precharge and
equalization. After a row activation, the classic circuit events (c) are
charge sharing (1), and latching & restore (2). A precharge makes bitlines
connect to Vpre (PRE) and to each others (EQ) (3).

MAT are connected via bitlines to the SAs of both sides. The connections
are interleaved, resulting in half connections towards each side. Then, to
perform reads or writes, the memory controller specifies a subset of these
bits (or capacitors) with the column address. Before activating another row,
the memory controller must issue a precharge to deactivate the current row.

Sense amplifiers. SAs are analog circuits that amplify the weak signals
stored in the capacitors. Their design determines the speed of a DRAM
chip and must avoid data failures. It is hence a contemporary research
topic [107, 147, 150–166]. A SA operates by comparing two bitlines, one that
is perturbated by the capacitor of the activated row (BL), and one that is the
reference (bitline bar or BLB). The reference bitline comes from the MAT
opposite to the activated MAT (Fig. 5.1). This is referred to as an open bitline
scheme, currently known to be the most compact scheme and considered
the standard [167]. The prime elements of SAs are latch circuits (Fig. 5.2a).
Once activated by control lines LA and LAB, the latch circuits amplify and
lock the difference between BL and BLB. Then, a column selector multiplexes
the latched data from a particular SA (selected by control line Yi). Finally,
equalizer and precharge circuits restore the SA reference voltage (Vpre with
the control line PEQ), which is necessary for accessing data from a different
row.



120 hifi-dram

Classic sense amplifier topology and events. The classic SA is shown
in Fig. 5.2b. The latch element is made of cross-coupled transistors (two pSA
and two nSA). Two transistors are used for the precharge, each connecting
a different bitline to Vpre. For equalization, one transistor connects BL and
BLB. Lastly, the column signal multiplexes both BL and BLB. The classic
SA works as follows. After the row activation, each capacitor on the row
shares its charge to a specific bitline (BL) perturbating its voltage (charge
sharing, Fig. 5.2c). Subsequently, the SA latching elements are activated. This
amplification also restores the charge in the capacitor. After the voltage is
latched, the memory controller can perform read/write operations. Finally,
the memory controller can close the row, and internally, each BL and BLB
pair is connected together (equalized) and set back to the reference voltage
Vpre (precharged, Fig. 5.2c).

Contemporary research systematically assumes that the topology de-
ployed on modern devices is the classic SA [22, 101, 124, 128, 130, 132–134,
136, 141, 168–173].

New sense amplifiers. Previous work attempts to enhance DRAM perfor-
mance with a multitude of new SA topologies [107, 147, 150–166]. These
proposals change the classic design by adding elements and modifying
events. Meanwhile, DRAM designers aim at packing as many rows as
possible per MAT, thus increasing the die efficiency. However, having many
rows in a MAT reduces the signal strength latched by the SA, increasing
the risk of failure (i.e., latching the opposite value) which is exacerbated by
smaller technologies. This latching reliability is the result of manufacturing
asymmetries in the transistors and bitlines which create an offset between
BL and BLB. Thus, many of the new SA topologies aim at compensating
for these asymmetries, and a subclass of these directly tries to reduce the
offset and is known as offset-compensating (or offset-cancellation) SA [147,
157–166]. In such topologies, the SAs perform additional operations to
compensate for these asymmetries.

5.2.2 Research on DRAM

Research focusing on commodity DRAM frequently proposes performance
enhancements to the SA region. For example, optimizing the precharge
event [141, 171] or speeding up the latching mechanism [174] to reduce
memory latency. These improvements often require inserting new elements
into the SA or MAT area, such as isolation transistors [101]. SAs, by construc-



5.3 overview and challenges 121

a b c

Slice alignment

Planar
view

3D
evaluation d

Fig. 5.3: We filter (a) and align (b) the cross section images. After we obtain a
planar view (c), we identify connections between different layers, wires,
and transistors. This allows us to reverse engineer the SA circuit (d).

tion, always latch all bits of a given row. In-DRAM Processing-In-Memory
(PIM) exploits this parallelism by modifying SAs and MATs, typically re-
lying on dual-contact cells (DCCs) [134, 135]. DCC is a widely-used SA
addition, originally described in [124]. It aims to add an extra row in the
MAT, in which each capacitor can connect to two different bitlines instead
of one, as selected by two wordlines. Generally, one bitline is the standard
connection (BL), while the “extra” bitline (EBL) is connected to the BLB.
Lastly, recent work improves memory integrity by adding elements into the
SA area [22].

Research fidelity. Multiple aspects critically undermine the accuracy of
existing DRAM research that focuses on SAs. First, DRAM MATs and SA
regions are highly optimized areas, and they represent the majority of a
chip. Therefore, changes in these regions that were intended to be simple,
could cause high overheads or require complete re-designs. Second, existing
research performs analog simulations either on “best-guess” models or old
technologies, and area overheads are based on old values or averages [22,
36, 101, 128]. Lastly, literature assumes that modern DRAM employs the
classic SA topology. With HiFi-DRAM, we aim at providing clarity over
these aspects.

5.3 overview and challenges

We aim to reverse engineer the SA region in multiple DRAM chips from the
three major DRAM vendors. Then, we seek to use the acquired information
to extend and improve the accuracy of existing and future research. To
these ends, we must overcome challenges that we now describe.



122 hifi-dram

Vendors do not disclose details about the SA region including its location,
section dimensions or component feature sizes. Certain physical properties
such as the materials as well as the thickness of the Integrated Circuit (IC)
layers are further undisclosed. We want to acquire images of this area to
then analyze it. Therefore, the first challenge is:

Challenge (C1). Acquiring images of the SA region, in a way that the
elements of interest and all the layers are visible and identifiable. Then,
processing the images to obtain a planar view of the circuit.

We address this challenge in Section 5.4 by employing high-resolution
imaging. In particular, we first identify the SA region using a blind approach
and proceed to image it by acquiring multiple cross-section slices. Then,
we post-process the slices to denoise and align them (Fig. 5.3a-b), before
changing the point-of-view from cross section to top-down (i.e., planar,
Fig. 5.3c).

Once we have obtained a planar view of the different layers of the circuit,
we must extract meaningful information. Namely, we must reverse engineer
the deployed circuitry and measure component features, such as transistor
widths. This requires analyzing the images on different levels of abstraction.
First, identifying different material classes that make up different electrical
components and measuring their physical dimensions. Second, mapping
the visible components and their connections, which might cross layers and
the planar view (Fig. 5.3c). Third, understanding how these components
interact (i.e., the circuit topology, Fig. 5.3d).

Challenge (C2). Starting from the planar view, reverse engineering the
circuits considering all the inter-connected layers, and measuring relevant
features.

We describe how we address this challenge in Section 5.5. First, we find
features that corresponds to gates, wires and vias. After findinding the MAT
bitlines, we identify different classes of transistors. We then trace their intra-
and inter-layer connections and their relation to the MAT bitlines. This way,
we associate functionalities to the classes of transistors, which we link to
the equivalent circuit block. Lastly, we extensively measure dimensions,
including transistor sizes and region areas.

Using this newly acquired data, we aim to understand the accuracy of
existing DRAM studies. To accomplish this, we review literature to identify
common assumptions that are in conflict with our observations. Further,



5.4 image acquisition and post processing 123

Electron 
gun

Cross section Wires

Metal 
layers

Vias

Transistors
layer

Ion
beam Sample

BSE detector

SE detector

Fig. 5.4: FIB/SEM imaging requires an ion beam and an electron gun, under
which the sample is positioned. The BSE detector is placed on the electron
gun, while the SE detector is skewed. FIB/SEM allows to image the cross
section of an IC. An IC is made of multiple metal layers, which are
interconnected by vias. The transistor layer is placed at the bottom of the
IC.

we must understand if the original estimations can accurately represent
overheads on modern devices.

Challenge (C3). Evaluating the accuracy of existing research.

We address this challenge in Section 5.6, where we evaluate 13 different
papers. We find that 8 of them result in more than 20x error in the calculation
of the overheads and in the extreme case up to 175x when considering the
architecture of modern commodity DRAM. We also study the existing
available DRAM models, which we found to deviate substantially from
the real chips. To enable high-fidelity DRAM research in the future, we
formulate a number of recommendations based on our data and on the
inaccuracies that we have observed of existing studies.

5.4 image acquisition and post processing

Due to the small feature sizes of modern ICs, optical microscopy is not
viable for contemporary chip imaging. On the other hand, Scanning Electron
Microscopy (SEM) is an imaging technology that allows resolutions below
the optical limit [175]. SEM is based on a system emitting an electron beam
on the target sample (Fig. 5.4). The sample will in turn emit Secondary
Electrons (SE) and BackScatter Electrons (BSE), with intensities that depend
on its chemical composition.

SEM parameters. Many parameters influence the quality of a SEM im-
age [176]. For example, the dwell time represents the time that each spot



124 hifi-dram

will receive the beam [177]. A higher dwell time will produce an image with
a higher signal-to-noise ratio, but it will require more time which increases
the imaging cost since SEM devices are often shared across many different
projects. Furthermore, the dwell time is limited by the employed technology
and sample stability. The electron beam should be focused and with a
high current, while the voltage that accelerates the beam affects brightness.
Ultimately, optimal parameters depend on the required resolution, the chip
area to image, and the sample under test.

Detectors. SEM images are based on either BSE or SE detectors, which have
different contrast characteristics. Generally, BSE will enhance the difference
in atomic number between the elements of a sample, while SE depends
on the conductivity. Depending on the analyzed sample, the image quality
might be better with either BSE or SE.

FIB. ICs are manufactured as various interconnected layers (Fig. 5.4), as
such, the features of interest are buried inside the chips. Thus, imaging an
IC with only SEM would result in merely viewing the upper-most external
layer. Focused Ion Beam (FIB) allows milling the sample of interest. By
removing material with FIB, the region of interest is exposed and can be
imaged via SEM. FIB is usually implemented as GaFIB, where Gallium
ion beams are used. Commercially, FIB/SEM are commonly integrated in
single machines.

5.4.1 Sample Preparation

For each of the three major DRAM vendors, we analyze a DDR4 and a
DDR5 chip, for a total of 6 chips. We extracted the chips from commodity
devices sold as Dual Inline Memory Modules (DIMMs). We purchased
the DIMMs from online suppliers and, for each chip, we identified the
DRAM vendor using the ID reported on the packaging. The list of chips
and production years can be found in Tbl. 5.1 (anonymized vendors).

Die extraction. We first aim to expose the chip die, which our imaging
targets. We desolder the chip from the DIMM by applying a heatgun
(400°C). We further use the heatgun to partially remove the epoxy package
covering the die. Lastly, we remove the remaining epoxy with a sulfuric
acid solution at 140°C (Fig. 5.5).

ROI identification. Given the die dimensions (up to 75 mm2, Tbl. 5.1) and
the expected features size (tens of nm), imaging the entire chip is not



5.4 image acquisition and post processing 125

ID Vendor Storage Yr. Size Det. MATs Pixl.Res.

A4 A (DDR4) 8Gb ’17 34 mm2 SE V. 10.4 nm
B4 B (DDR4) 4Gb ’22 48 mm2 BSE N.V. 3.4 nm
C4 C (DDR4) 8Gb ’18 42 mm2 BSE V. 5 nm

A5 A (DDR5) 16Gb ’21 75 mm2 SE N.V. 5.2 nm
B5 B (DDR5) 16Gb ’22 68 mm2 BSE N.V. 4.2 nm
C5 C (DDR5) 16Gb ’22 66 mm2 BSE V. 5 nm

Tbl. 5.1: Studied chips. We study a total of six chips, from the three major DRAM
vendors (anonymized as A,B and C). We report the chip production year,
its dimension, and SEM information.

a

b Exposed IC

ROI
cross sections

c
SEM/FIB

Fig. 5.5: We extract (a) and decap (b) target chips. Then, we acquire cross sections
of the ROI using SEM/FIB (c).

realistic for time, cost and required processing. Hence, we must establish
a region of interest (ROI, i.e., the SA region). On the exposed die, we first
identify banks and logic pad using an optical microscope (AX10 Imager.M2,
ZEISS [178]). In some cases, the die extraction exposed lower layers (Tbl. 5.1).
In these chips, we identify the ROI as the largest area surrounding a MAT,
as typically row drivers are smaller than SA (Section 5.2) [22].

For the remaining chips, the procedure is more challenging, as optical
and electron microscopy only reveal the top layer. Its coarse features solely
provide the bank-level organization, leaving the MAT locations unclear.
We rely on three properties of DRAM chips to identify the ROI. First, the
bank areas are dominated by MATs. Second, the feature lines are either
perpendicular or parallel to MATs edges. Third, the area occupied by
capacitors visually differs from the analog logic [179, 180]. On this basis,
using FIB, we acquire blind cross sections in a bank perpendicularly to the
feature lines (Fig. 5.6). A single image corresponds to less than one millionth
of the chip area. We observe the result, and continue acquiring cross sections



126 hifi-dram

2

1

W2

W1
W2

W1

Planar view

TransistorsMultiple
cross sections

Capacitor area

Morphological
variation

Chip die

MAT
SA

MAT SA

MAT Row driver

Fig. 5.6: Starting from one direction (1), we identify a logic region with width W1
surrounding a MAT. The opposite direction (2) results in a logic region
with a width W2, bigger than W1. We identify this second region as the
SAs.

in the same direction, until we reach a morphological variation in the
acquired images. In particular, until we reach an area in which we can
identify transistors (Fig. 5.6). Then, based on the properties, we classify the
non-logic area as a MAT. We then perform a perpendicular scan, to obtain
the other edge of the MAT (Fig. 5.6). We identify the ROI as the biggest
logic region surrounding the MAT. The identification procedure lasts no
more than 2 hours per chip.

5.4.2 ROI Imaging

Once the ROI is identified, we must capture a region large enough to
contain complete SAs. We configure SEM/FIB to acquire images of an area
of 100 um2 between two adjacent MATs. We hypothesize, based on existing
DRAM models [22, 128], that this is enough to capture SAs. We perform
this scan on both DDR4 and DDR5 devices (A4-5), confirming our theory.
Each acquisition took more than 24 hours of SEM/FIB and resulted in
imaging many SAs. To reduce the cost of imaging the remaining samples,
we perform their acquisitions scanning areas of 30 um2, enough to capture
multiple SAs.

Details of SEM/FIB cross sections. We perform volumetric reconstruction
using the Helios 5 UX (Thermo Fisher Scientific [181]) as follows. We use
FIB to repeatedly slice the ROI, by removing perpendicular slices of 20 nm
or 10 nm (30 kV Gallium ion beam with 90 pA beam current). For each slice
removed, we image the cross section with SEM. The pixel resolution of the
SEM images varies across experiments, down to 3.37 nm (Tbl. 5.1). We first



5.4 image acquisition and post processing 127

d

Active regions

GatesS/Ds

a

Capacitors
S.A. MAT region

Y

XZ

Y

XZ

Y

XZ

MAT S.A. MAT

Bitlines

S.A.MAT region

Sense amplifier region MAT regionMAT region

Wires

Vias
Transistors

Y
X

Z

Gates

Active regions

S/Ds

10μmY

XZ

Y

X
Z

Y

XZ
2μm

Common gate tr.
Multiplexer
transistor

Transistor layer

cb

Fig. 5.7: From the imaged ROI of C5 (a-center), we can identify bitlines (a-left)
and capacitors (a-right). They correspond to two different layers, omitted
for simplicity. In the 3D reconstruction of the SA region (b) wires, vias
and transistors are visible. An enhanced image (c) shows that different
transistors share the same source/drain and active region. From selected
planar slices of the 3D reconstruction (d), we can see major elements of
the SA circuitry: (1) connections between the different SA elements (i.e.,
bitlines); (2) gates and source/drains of the transistors; (3) the transistor
active regions (enhanced contrast).

acquire the SEM images with SE for A4-5, which provides good quality.
For the remaining chips, SE does not provide a good contrast, likely due to
manufacturing processes, so we use BSE instead. The space parameter for
SEM is large, so it may be possible for SE to produce images with higher
quality for vendor B and C under different SEM parameters, such as a
much longer dwell time (increasing the cost). For the acquisition, we use an
accelerating voltage of 2 kV, and dwell times of 3 us (A4-5, B4) and 6 us (B5,
C4-5).



128 hifi-dram

5.4.3 Image Post Processing

For each chip, we obtain images representing slices of the SA region. To
reverse engineer the circuit, however, we require a planar view. That is,
we must align the slices together and change the point of view. This step
requires post-processing to address high levels of noise and drift.

Noise sensitivity. We measure wire heights in the SA region to be as
small as 30 nm (cross-sectional view, B5), while the cross section height is
generally 130x this value. This makes the planar view extremely sensitive
to slice alignment. We hence need to reduce the slice alignment noise and
drift to less than 0.77% (1/130) of the slice. Further, this alignment error
must apply across all the acquired slices for consistent planar views.

Reliable post-processing. We use the Dragonfly software [182] to perform
multiple post processing steps. First, we crop the slices to include only
the cross section. Then, we filter the images to reduce noise with edge
preserving algorithms (split-Bregman [183] or Chambolle [184] for a total-
variation denoising). Once denoised, we align the slices using the mutual-
information algorithm of Dragonfly. In particular, each slide is aligned
with respect to the previous one. Lastly, we change the point of view from
cross section to top-down, and we further rotate the volume to correct
for possible remaining misalignments. This process is semi-automatic as
it requires per-scan tuning, and can be reliably performed in less than 3

hours by an analyst, including the algorithms execution time. Note that the
official Thermo Fisher software (Avizo3D [185]), which would include semi-
automatic tools for slice alignment and SEM processing, did not produce
results matching our requirements.

5.4.4 Imaging System Capabilities

We focus on the SA region, yet so far, the target component feature size is
unclear. As half of the evaluated chips were produced in 2022, it is uncertain
if our system can provide a sufficient resolution. In Fig. 5.7, we demonstrate
the reconstruction capabilities of our end-to-end imaging methodology on
C5. After post-processing, the planar images allow for the identification of
transistors, wires and vias in the SA region. For example, Fig. 5.7a reveals ca-
pacitors and bitlines. The capacitors are arranged in a honeycomb structure
and are placed above the bitlines (stacked capacitor [186]). The honeycomb



5.5 circuits reverse engineering 129

structure has been proposed as a method to increase the capacitance for
the same cell size [186, 187]. Fig. 5.7b shows the 3D reconstruction of the
SA region. Fig. 5.7c depicts two transistors sharing a contact node. Finally,
Fig. 5.7d displays three slices of the SA logic layers, including SA bitlines,
transistors and active regions.

5.5 circuits reverse engineering

First, we describe the reverse engineering of the sense amplifier circuit and
its challenges (5.5.1). We then detail the size measurements that we per-
formed (5.5.2) and analyze the implemented sense amplifier layouts (5.5.3).

5.5.1 Reverse Engineering the Circuit Topology

Analog circuits are generally drawn by humans on single-layer schematics,
yet this abstraction differs from the final manufactured product, which is
implemented as multiple layers stacked vertically (Section 5.4). Transistors
may appear close on the schematic, but they may be deployed far from each
other to better utilize the available chip area. Further, some transistor charac-
teristics (e.g., NMOS and PMOS) that impact the circuit topology might be
visually indistinguishable, which is the case with our samples as opposed
to previous work that targeted different technology [188]. Overall, these
factors make reverse engineering analog circuits in DRAM a challenging
task, even after a multi-dimensional mapping.

From images to circuits. We now describe the methodology that we de-
vised to account for the aforementioned challenges shown in Fig. 5.7.
(i) First, we determine color intensities that correspond to gates, wires
and vias (Fig. 5.7b-d). (ii) Then, we identify the bitlines in the MAT, and
their connections in the SA region (Fig. 5.7a). We use the bitlines as an
anchor for inferring the circuit. (iii) We identify the different transistors, the
corresponding wires, and the source/drains contacts. To correctly identify
transistors, we include active regions in the analysis (Fig. 5.7d). (iv) We
classify three different types of transistor: multiplexer transistors (Fig. 5.7d),
transistors with a common gate spanning the entire region (Fig. 5.7d), and
coupled transistors with a shared source (Fig. 5.7c). (v) The multiplexer
transistors select a group of 4 adjacent bitlines, which are then connected
to wires spanning the entire region (not shown). Each of these transistors



130 hifi-dram

ViasShared 
wire

Bitlines Vias Cross-
coupled tr.

LA

Y

X
Z

21 3

4

MAT 
bitlines

Z

X
Y SA

cross-section

Fig. 5.8: Cross-coupled transistor reverse engineer on B5. From the top slice,
we identify a shared line (1-2). Two bitlines are connected with vias to
transistors gate and drains (2-3). Once the full circuit is mapped (4), the
transistors are identified as the pSA latching element of the SA.

have a different gate control. Hence, we identify them as column tran-
sistors. (vi) We track the bitlines connections to the coupled transistors,
which represent a latched connection, and find that the source is shared
among all of these transistors. Hence, these represent the latching part of
the SA. (vii) In B4, C4 and C5, the transistors with a common gate short
the bitlines together and with a global value. Therefore, we identify these
as precharge/equalizer elements. (viii) Finally, in SAs, PMOS latching tran-
sistors are designed with a smaller width than NMOS [156, 164, 189, 190].
Based on this, we identify the PMOS latching transistors. We considered all
other transistors to be of NMOS type. We collaborated with an independent
DRAM vendor that confirmed our analysis.

Fig. 5.8 displays an example of multi-dimensional mapping. We trace
inter- and intra-layer connections, and identify cross-coupling transistors.
Only after the entire circuit is mapped, we can identify these elements
as the pSA of the latching component. Contrary to existing models and
literature about commodity DRAM, we found extra elements in B5 and
A4-5.

Investigating the extra elements. In chips B5, A4, and A5, we found that
the precharge element is stand-alone, and four extra “common-gate” tran-
sistors are present (Fig. 5.10). Moreover, we could not identify the bitlines
equalizer. We hypothesized that such a topology might belong to the exten-
sive corpus of past research [107, 147, 150–166] and identified similarities
with research in offset cancellation. Of the many different proposed offset



5.5 circuits reverse engineering 131

b

a

LA LAB Yi

BL

BLB
LIOB

ISO

PEQ

VPRE

OC

OC
LIO

Isolation and
o�set-cancellation

pSA
Column

OCSA
events

PRE
& EQR/W

C.S.O.C. Rest.

ACT

Pre-sens.

BL

BL

BL
VPRE

BL

VBL

New events

Fig. 5.9: (a) Offset-cancellation SA (OCSA) circuit, used on A4, A5 and B5, and
its events (b), which include offset-cancellation and the pre-sensing.

Column ColumnnSAISO OCOC ISOOC ISO pSA pSAPREPRE nSA nSAnSA pSA pSAOC ISO
LIO

LSA

Y

XZ
Yi1

(b)Common-gate tr. (d) Extra elements

Shared source

(a) Multiplexer

M
A

T

M
A

T

Yi2

Yi1

Yi2

BL2
LIOBL1

(c) Coupled tr.

LA

BL BLB
Connection

Bitline Gate
BL BLB

LA

SA2SA1

Fig. 5.10: Reverse engineered layout of the A5 chip. To reverse engineer the
chips, we identified different transistor classes. Multiplexer (a), common-
gate (b) and coupled (c) transistors. In chips A4-5 and B5 we discovered
extra elements (d). In all the chips, two SA were stacked between two
MATs (i.e., along X).

cancellation SAs (OCSAs) [147, 157–166], we could finally pin-point the
reverse-engineered circuits to one design [164].

Deployed OCSAs. Half of the devices (B4, C4, C5) use the classic SA
circuit [104]. Instead, chips A4, A5, and B5 implement an OCSA with the
circuit shown in Fig. 5.9a [164]. Our paper is the first to publicly report
that OCSA topology is being used in modern commodity DRAM. The
deployment of OCSA circuits is likely due to the need for reliable sensing
of capacitor charge in smaller technology nodes. Hence, it is very likely that
manufacturers that currently use the classic SA circuits will move to OCSA
in the future as well.

The OCSA topology differs substantially from the conventional circuit
and adds four transistors and two control signals (Fig. 5.9a). Two of these
transistors perform isolation (ISO) and the other two offset cancellation



132 hifi-dram

(OC). The OCSA adds two operations to the classic row activation of a
SA (Fig. 5.9b). First, charge sharing is anteceded by an offset cancellation
operation. Second, the restoring operation is preceded by a pre-sensing
event. The pre-sensing operation latches the capacitor value without the
bitline load and without recharging the capacitor.

Isolation and equalization in OCSAs. DRAM research often proposes
adding isolation transistors to the SAs [22, 101, 141, 191]. Typically, this
allows decoupling the bitlines from the latching circuit. The isolation tran-
sistors used in OCSAs differ from these proposals, as the bitlines are
decoupled from the latch amplifier drains but not from the gates. Further-
more and as previously explained, precharge and equalizer circuits are
necessary to operate DRAM. Normally, this is achieved by a three-transistor
setup (Section 5.2). In the reverse engineered circuits that employ OCSAs,
the equalizer transistor is absent. Instead, this functionality is achieved by
the simultaneous activation of both the isolation and offset-cancellation
elements.

5.5.2 Measurement of the DRAM Elements

DRAM research that performs analog simulations relies on the transistor
widths and lengths. The ratios between width and length (W/L) of the
various elements strongly affect the stability and speed of DRAM operations.
Therefore, we measure the width and length of each transistor employed
by the SA. To measure their length, we consider the gate pitch between
source and drain. To measure their width, we consider the overlapping area
between the gate and the active region [192]. We perform multiple distinct
measurements for each dimension and for each transistor. In total, we make
835 size measurements using Dragonfly [182]. In Section 5.6, we provide
more details about these measurements and their impact on existing DRAM
research.

Effective sizes. Adding elements to the SA region must take IC design rules
into account. As a proxy for important design rules for DRAM research,
we measure the effective spacing dimensions required for each element.
That is, we measure the element size including the full gate dimension and
the element distance from the other components. These dimensions are
higher than the width and length of transistors, as they must include safety
margins. We measure the dimensions of the SA and MAT regions, and of



5.5 circuits reverse engineering 133

each die. We make all our measurements for each of the samples available
online.

5.5.3 Layout Design Analysis

Given the absence of information, previous studies that modify SA regions
have mostly ignored the physical layout of modern DRAM devices. Unfor-
tunately, this has repercussions on the accuracy and overhead of research as
we will show in Section 5.6. To bridge this gap, we re-created the physical
layout of the SA regions in all of our samples, which we make available in
the standard GDSII format. As an example, Fig. 5.10 shows the layout of
the A5 chip. We find that all the samples employ an open-bitline architec-
ture, considered the standard since many years [167]. We now describe the
immediate differences that we found when comparing our findings to the
assumptions made on the DRAM layout in existing work.

SA arrangement. In all studied chips, SA elements are always arranged
horizontally (i.e., along the X axis, Fig. 5.10). All chips have two stacked
SAs (side by side) between each MAT (Fig. 5.10, “SA1” and “SA2”), with
transistors positioned symmetrically. Both sets of SAs connect to bitlines
from each MAT. This is different from the usual description of SAs [22, 69,
101, 128, 130, 134, 136, 139, 168], where only one SA is placed between two
MATs. Consequently, the overhead of elements shared among all bitlines
(e.g., isolation transistors) is lower than what previous research has assumed.
The column transistors are always the first elements connected by MAT
bitlines in the SA region which results in inaccuracies in previous studies
as we outline in Section 5.6. Finally, the SA region further contains latching
elements connected to the selected column (i.e., to LIO). They represent
the next data-path step and are not part of the SA circuit (Fig. 5.10a, LSA).
However, because they are part of the SA region, their presence reduces the
relative overhead of new elements.

Transition from MAT to SA. The transition of a bitline from MAT to planar
logic requires an overhead on average of 318 nm (DDR4) and 275 nm (DDR5)
in the bitline direction. This information is useful for research that proposes
to add transistors in between the MAT (i.e., creating a new logic region),
and to the best of our knowledge, it has not been reported in literature so far.
For example, [144] proposes to place isolation transistors in a MAT to create
shorter bitlines. On top of the overhead due to a single isolation transistor,



134 hifi-dram

two transitions are required, as the MAT is split in two. On average this
represents 1.6% and 1.1% of a MAT in DDR4 and DDR5 respectively.

Transistor characteristics. Previous work that adds transistors to the SA
region often calculates overheads as an increase in SA height (i.e., along X)
related to the transistors width (W) [22, 171]. This is correct for the latching
components, as their width is parallel to the SA height. Instead, we find
that precharge, isolation and offset-cancellation transistors are designed
with a common gate spanning the entire SA region (i.e., along Y). As result,
the width of these transistors is perpendicular to the width of the other
elements (Fig. 5.10). Therefore, the addition of these elements causes a SA
height overhead that depends on their lengths (L). Finally, we find that the
access transistors used in the MAT region have a bitline/wordline layout
typical of Buried Channel Array Transistors (BCAT) across all vendors. This
is consistent with literature [186].

5.6 evaluation of existing dram research

We first analyze analog DRAM models based on our reverse engineered
data (§5.6.1). Then, we evaluate previous studies that modify the sense
amplifier region to identify the sources of inaccuracies (§5.6.2), and provide
a more accurate measurement of area overhead in these studies (§5.6.3). Fi-
nally, we comment on the reliability of physical experiments on DRAM (§5.6.4)
and conclude with a set of recommendations for accurate DRAM research
in the future (§5.6.5).

5.6.1 Inaccuracies of Existing Analog Models

Analog simulations of DRAM SAs are widely used in research papers [22,
33, 36, 101, 124, 128–144, 193]. However, no DDR5 model exists, and only two
public models exist for DDR4. In particular, DDR4 SAs are simulated with
CROW (2019) [128] or with REM (2022) [22] models. Neither of these two
models are based on commodity DRAM devices from the major manufac-
turers. CROW is employed in multiple recent work [36, 101, 128], however
its transistor dimensions are based on best guesses and it does not include
column transistors. REM is based on real DDR4 transistor dimensions of a
smaller vendor (Zentel Japan [194]) that uses 25nm technology. This tech-
nology, however, is one generation older than current commodity DDR4



5.6 evaluation of existing dram research 135

200 300 400 500
Width [nm]

80
100
120
140

Le
ng

th
 [

nm
]

pSA

200 300 400 500
Width [nm]

nSA

A5 C5B5REM DDR4 C4B4A4

Measured Transistor Sizes

80
100
120

Fig. 5.11: Measured transistor sizes of the pSA and nSA for all the chips and
the values used in REM. CROW values are omitted as severely out the
range.

In
ac

cu
ra

cy
 [

%
]

DDR4 chips DDR5 chips¥

Average Absolute Inaccuracies of Transistors Dimensions

40

236

40

196

0

100

200

REM CROW

W/L

31
18

43 41

REM CROW
0

20
40
60 L

58

271

49
0

100

200

300

REM CROW

W
263

In
ac

cu
ra

cy
 [

%
]

DDR4 chips DDR5 chips¥

Maximum Absolute Inaccuracies of Transistors Dimensions

101 93

192 180

REM CROW
0

80

160

261

938

152

REM CROW
0

400

800

121

562

67

340

REM CROW
0

200

400

600
W/L W L

624

Fig. 5.12: Average and maximum absolute inaccuracies of REM and CROW
compared to the measured transistors in all the chips, as W/L ratios,
and separately width and length. (¥) Portability to DDR5.

device from the three major DRAM vendors [195]. Neither models include
the OCSA design. In Fig. 5.11, we report the dimensions of the latching
transistors (nSA and pSA) for all the chips that we reverse engineered and
for REM. We omit CROW in this figure as its values are vastly out of range.
To understand if existing DRAM models provide an accurate representation
of commodity DRAM devices, we analyzed the width-to-length ratio (W/L)
of their transistors. Generally, higher width-to-length ratios correspond to
more optimistic simulations [22]. In particular, we compared each model
element to each ratio obtained for that element in each chip. We included a
comparison to DDR5 technology to determine whether these models can
provide a reasonable approximate description of these chips as well.



136 hifi-dram

Results. We report a summary of our analysis in Fig. 5.12 and discuss
the inaccuracies when compared to DDR4 chips. On average, CROW has
the higher inaccuracy between the two models (236%). The precharge of
CROW has the highest W/L inaccuracy (562% when compared with the
measured values of C4). We further analyzed the individual widths and
lengths. CROW gives the most inaccurate widths on average (271%), with
an inaccuracy of 938% when compared to the C4’s precharge transistors.
REM has the most inaccurate lengths on average (31%), with an inaccuracy
of 101% when compared to C4’s equalizer transistors. The models follow a
similar trend when considering the DDR5 technology.

5.6.2 Deriving Research Inaccuracies

We now analyze research that proposes to modify the SA regions of com-
modity DRAM. Correctly estimating overheads and feasibility of proposed
modifications to DRAM is a complex task. Even for variations that would
appear minor, the absence of public information about modern devices is
an obstacle that forces researchers to make blind assumptions and estimate
overheads based on outdated ranges. Once a new technology is released,
such as DDR5, it is further challenging to understand if existing proposals
remain feasible. Unfortunately, this is a de-facto accepted status in the field.
With HiFi-DRAM, we provide researchers with a realistic basis upon which
they can evaluate their work.

Papers summary and analysis. We study 13 papers, crossing technologies
(DDR3-DDR4) and spanning a decade (2013-2023). Among these, [101, 140,
141, 171, 173, 191] seek to improve performance by modifying DRAM. [22]
modifies DRAM to improve data integrity. The remaining studies aim to
implement in-DRAM PIM [124, 134, 135, 142, 196, 197]. Studying these
papers, we enumerate the sources of research inaccuracy when compared
to commodity devices. As research on DRAM has been based on similar re-
peated assumptions throughout the years, we identify common inaccuracies
across most papers under study, which we describe as I1 to I5.

A major inaccuracy arises from the implementation of dual-contact cells
(DCCs), discussed in Section 5.2.2. Their overhead is estimated to be approx-
imately two wordlines, i.e., negligible [124]. In all the chips that we studied,
MATs do not have available space for the extra bitlines (I1, Fig. 5.13a).
Because of this, implementing a DCC requires doubling the MAT area. As
MATs represent the majority of a DRAM chip, implementing even a single



5.6 evaluation of existing dram research 137

ba
Extra
bitline

Extra
bitline

DCC

S.A.
region

S.A.
region

�

�

�

�

�

MAT MAT

�

Fig. 5.13: (a) No free space to add new bitlines in the MAT (I1) and (b) SA
region (I2).

DCC results in a significant overhead. Further, making the MATs larger will
increase the wordline length. Due to this increase, extending the MATs will
also require placing new row drivers to correctly drive the new load. Row
drivers areas are comparable to the sense amplifier areas [22]. As measured
from our data, all the papers affected by I1 require on average 57% chip
overhead, solely for the MAT extension.

Array size and implications related to I1. DRAM vendors are constantly
trying to reduce the size of their memory arrays to increase chip yield. The
current standard is the open bitline design, which has an area consumption
per cell of 6F2 (F represents the feature size). If MAT bitlines could be made
closer, this would effectively reduce the cell size to under 6F2. Prior work
describes the same type of cell structure as a DCC, resulting in an area of
12F2 when reverting to a folded-bitline architecture [198], confirming the
aforementioned overhead.

Inaccuracy (I1). No free space for bitlines in the MAT area.

The main DCC application is an inverter PIM operation exploiting row
parallelism, so the EBL is connected to the reference bitline (BLB). There is,
however, no extra space for bitlines crossing the SA region (I2, Fig. 5.13b).
The same inaccuracy arises in [101], which aims to connect all bitlines in
the MAT to the same SA region. In [22], additional wires are required for
routing purposes of the new circuitry. All these papers do not consider
extra overhead due to the new required wiring.

Inaccuracy (I2). No free space for bitlines in the SA area.

In standard IC processes (i.e., non-DRAM), designers could try to resolve
I1-2 by exploiting the many available IC layers. However, as confirmed by
our observations and literature, this is not possible in the DRAM SA regions



138 hifi-dram

and MATs, where the number of IC layers is limited [141, 199, 200]. One
possibility is shrinking the bitlines. However, MAT bitlines are the main
contributor of timing and signal level. Changing their dimensions would
severely affect the functioning of the SA.

The feasibility of changing the SA bitlines depends on the fabrication
process. These changes would affect resistance and parasitics, and must
respect the design rules, such as the minimum distance between bitlines.
These considerations are not addressed in the aforementioned studies. We
refer the reader to Appendix 5.9.1 for further explanations.

Some studies rely on SA circuitries that differ from the ones that are
currently deployed. This affects [134], in which the authors consider the
precharge and equalization gates to be independent for each SA. In reality,
the gates of these elements are spanning the entire SA region and are shared
across all the SAs. In [173], the authors assume that isolation transistors are
available in the design. As described earlier (Section 5.5), these isolation
transistors differ from the one employed in OCSAs. These inaccuracies could
be resolved by adding new elements to the SA region or by duplicating
existing ones, introducing additional area overhead.

Inaccuracy (I3). Assuming a SA circuitry that is not deployed in practice.

Additionally, [22, 141, 191] modify SAs by adding isolation transistors
and assuming that column transistors are physically placed after the SAs. In
reality, column transistors are the first elements after the MATs. Therefore,
these modifications require a reorganization of the SA elements.

Inaccuracy (I4). Assuming a SA physical layout that does not correspond
to the ones deployed.

Finally, no paper includes the OCSA topology in their studies, in contrast
to chips A4-5, B5. This affects the overheads of additional components and
the timings of the new events as well as the reliability of analog simulations,
impacting the performance, energy and power overheads of the affected
operations.

Inaccuracy (I5). Not considering offset-cancellation designs as the de-
ployed SA topologies.

In Tbl. 5.2, we provide a summary of our findings, and evaluate the
overhead inaccuracies which we detail next.



5.6 evaluation of existing dram research 139

Research Inacc. Error Port. Cost DDR Yr.

CHARM [140] I5 N/A 0.29x 3 ’13

R.B. DEC. [141] I4,5 N/A −0.25x 3 ’14

AMBIT [124] I1,2,5 N/A 68x 3 ’17

DrACC [196] I1,2,5 35x 34x 4 ’18

Graphide [135] I1,2,5 54x 52x 4 ’19

In-Mem.Lowcost. [197] I1,2,5 70x 67x 4 ’19

ELP2IM [134] I2,3,5 N/A 90x 3 ’20

CLR-DRAM [101] I2,5 22x 21x 4 ’20

SIMDRAM [142] I1,2,5 70x 67x 4 ’21

Nov. DRAM [191] I4,5 0.49x 0.001x 4 ’21

PF-DRAM [171] I5 0.35x −0.01x 4 ’21

REGA [22] I2,4,5 8x 7x 4 ’23

CoolDRAM [173] I1,2,3,5 175x 168x 4 ’23

Tbl. 5.2: Research inaccuracies, average overhead error and portability cost. The
overhead error is evaluated on the original technology if possible. Porta-
bility cost represents the overhead variation of DDR3 to DDR4/5 and
DDR4 to DDR5.

5.6.3 Evaluation of Research Inaccuracies

The area overhead of DRAM research is a main factor influencing its feasi-
bility. However, previous estimations have been performed by referencing
outdated values or average ranges [22, 23, 101, 134, 141, 171, 173, 196, 197,
201]. It is unclear if the reported results are realistic when considering
commodity DRAM and how they would change if applied to a newer
technology such as DDR5. We now study these aspects for the papers under
analysis. When the paper is evaluated on its original technology, we describe
the variation of overhead as overhead error. In case the original technology
is older than DDR4, the analysis is not applicable (N/A). Instead, when the
paper is compared to a different technology, we describe the variation in
overhead as porting cost. To this end, we use the transistors effective sizes,
the region areas measured in Section 5.5, and we include the effects of the
inaccuracies discussed in Section 5.6.2. For our calculations, we follow the
description of the original document as closely as possible, and calculate
the overheads for each chip. For papers requiring isolation transistors that
gave no indication about their sizing, we used dimensions from the existing
isolation transistors if any isolation transistor is present in the chip, else we
scaled their average dimensions to the chip values.



140 hifi-dram

A4

B4

C4

A5

B5

C5

Nov. DRAMREGA PF-DRAM
-60
-40
-20

0
20
40
60

CHARM

Overhead Error Portability Cost to DDR4

R.B. DEC.

E
rr

or
 [

%
] 52 29

25

-20-12

18

0

-60
-40
-20

20
40
60 Portability Cost to DDR5

C
os

t 
[%

]

Nov. DRAM
(2021)

PF-DRAM
(2021)

CHARM
(2013)

R.B. DEC.
(2014)

REGA
(2023)

-17

1015 1226

-44-44

48
153

-13

17 15

-6-13-3
-47

26
2616

1173
1072 28

91

2694

Fig. 5.14: Research portability cost and overhead error divided per DRAM vendor.
Papers where the cost/error is always higher than 10x are omitted.

Effects of I1-2. Inaccuracies I1-2 result in an extension of MAT and SA
regions. For example, if for every existing bitline a new bitline must be
added, this effectively means doubling the width of the region. We contacted
the authors of the papers affected by I1 or I2, as the quantitative effect of
these inaccuracies is severe. While many authors replied ([22, 101, 124,
134, 142, 173, 197]), none provided clarifying details that would resolve the
inaccuracies given the content of the original papers.

However, the authors of [134] suggested a feasible approach to implement-
ing the NOT operation (not evaluated in the original paper). The authors
of [101, 124, 142] explained that a detailed implementation was outside the
scope of their paper, in line with prior work. They also suggested that if
adding a new metal layer were possible, alternative implementations (not
evaluated in the original paper) could reduce the overhead. The authors
of [22] reported that their collaborating (smaller) DRAM vendor did not
report I2 to be an issue on their technology and are exempted from I2 in
chips A4-5 as discussed in Appendix 5.9.1. Finally, the authors of [173]
explained that their evaluations were based on the original paper on the
topic ([124]) and limited by not having access to proprietary details of
DRAM circuitry. We believe these communications show that HiFi-DRAM
is highlighting inaccuracies in previous work, and will provide value to
researchers focusing on DRAM.

Results. The average overhead errors and porting costs are reported in
Table 5.2. Papers affected by I1 or I2 have consistently large errors and
porting costs (e.g., up to 175x) across all vendors. Such large errors occur due



5.6 evaluation of existing dram research 141

to the (often) very small overheads reported by the papers (e.g., 0.4% [173]).
In Fig. 5.14, we report the inaccuracies and porting costs individually per
DRAM vendor. We omit proposals where these are always higher than 10x.
The formulas used to calculate the errors are reported in Appendix 5.9.2.

Observation 1. The overheads of papers can vary significantly across ven-
dors. For example, [140] has a variation of 0.45x when passing from Vendor
A to Vendor C on DDR5 chips.

Observation 2. Porting modifications that are originally intended for older
DRAM devices results in much lower overhead in DDR5 due to smaller
technology nodes. The biggest variation is for [141] (-0.47x on A5). This
analysis shows that, in newer technologies, researchers can generally afford
more complex circuits.

5.6.4 Out-of-spec DRAM Experiments and OCSA

Issuing commands to DRAM without complying with the DDR standard
is used for reverse engineering [202], transistor speed evaluation [22], and
DRAM characterization [28, 203, 204]. Furthermore, operating DRAM out of
specification is used to exploit the interactions of SAs with rows to perform
logic operations [170]. To these ends, researchers expect commodity DRAM
to deploy classic SAs. However, chips employing OCSAs have key differ-
ences in timings and functionalities that could impact similar experiments.
First, charge sharing is usually assumed to occur immediately upon a row
activation with the classical SA design [170]. Instead, in chips with OCSAs,
charge sharing is delayed and happens after the offset cancellation. This
could impact, for example, studies that intend to perform majority-based
row operations [170], where multiple rows perform charge sharing without
starting the latch operation. Second, bitlines have only two states in the
classic circuit, either being latched or precharged and equalized. Instead,
OCSAs briefly connect bitlines to diode-connected transistors as a way to
improve the sensing margin (Section 5.5). This could impact studies that
skip the precharge command to avoid any effect on bitlines [170].



142 hifi-dram

5.6.5 Recommendations

Based on our findings, we now formulate a number of recommendations for
future DRAM research. First, simple changes might result in non-negligible
overheads when applied to commodity devices (I1-2).

Recommendation (R1). Overheads should be estimated including all
additions to MATs or SAs, such as wires connections.

Second, research usually focuses on a single SA element, which can
lead to wrong assumptions such as considering SA control lines being
independent of other SAs (I3).

Recommendation (R2). Research modifying SAs should consider the
impact on all the interconnected SAs.

Third, differences between the abstract SA circuit schematic and its
physical layout can create inaccuracies, for example when adding isolation
elements (I4).

Recommendation (R3). Research should consider the physical layout
and organization of SAs blocks.

Finally, the deployed SA topology impacts analog simulations, overheads
and timings of research proposals (I5). Moreover, it can impact DRAM
experiments that operate the devices outside of the standard.

Recommendation (R4). Research should consider OCSA in the evalua-
tion.

On existing and future work. Our results discussed in Section 5.6.3 show
that some previous work incur high overhead when considering current
commodity devices. We would like to clarify that our evaluation does not
reduce the value of these proposals, some of which have led to a high
sprout of subsequent work. HiFi-DRAM’s aim is to increase the fidelity of
DRAM research, and we sincerely hope that it is not indiscriminately used
to stop novel future work due to potentially higher (but more accurate)
reported overheads.



5.7 related work 143

5.7 related work

5.7.1 DRAM Reverse Engineering

To the best of our knowledge, HiFi-DRAM is the first public research that
reverse engineers the sense amplifier topologies, transistor sizes and physi-
cal layout of DRAM. In [6], the authors directly issue DRAM commands
to devices with an FPGA. Their aim is to reverse engineer internal digital
control mechanisms that protect against memory corruption. This results in
estimating the existence of row activation counters and their sizes and is
unrelated to sense amplifiers. Recent work [202] tries to obtain the number
of rows in MATs by exploiting data corruption.

Techinsights [205] is a company that sells access to reverse engineered
chips, including DRAM. Unfortunately, the price for accessing DRAM
information equivalent to this paper is prohibitive for academic researchers
(in the order of $100 ks). Moreover, the corresponding license [206] prohibits
sharing the data publicly and may prevent the resulting publication. This
makes it impossible to reproduce and verify research based on such data.

5.7.2 IC Imaging

IC imaging is commonly performed by device manufacturers for identi-
fying manufacturing failures in the produced chips [207–210] or possible
malicious modifications [188, 211, 212]. It is further used by private or-
ganizations to verify IP infringement [213–215], and to perform offensive
research [216–219] such as breaking protection systems [175] or extracting
private keys [220].

Previous work reports imaging of proprietary ICs on different targets,
from EEPROMs [217], baseband chips [213], lockout chips [175], micro-
controllers [220], processors [221], to system-on-chips [222]. A substantial
orthogonal research direction is based on trying to automatize standard cell
recognition and netlist extraction [209, 223–226].



144 hifi-dram

5.8 conclusion

We reverse engineered the sense amplifier region in DDR4 and DDR5 de-
vices from the major DRAM vendors. We discovered that half of the chips
employ an offset-cancellation sense amplifier, instead of the commonly
assumed classical design. We measured transistor dimensions and further
reverse engineered the physical layouts of the sense amplifiers. With this
acquired knowledge, we validated the overhead and accuracy of existing
research in the past decade that modify DRAM sense amplifiers. Consider-
ing commodity modern DRAM, our analysis shows that the public DRAM
models are up to 9x inaccurate, and existing research has up to 175x error
when estimating the impact of the proposed changes. We hope this pa-
per and the reverse engineered information to enable high-fidelity DRAM
research in the future and foster new research directions.

5.9 appendix

5.9.1 Effects of Changing Bitlines

Among many other things, IC design rules describe the minimum width
of wires and their safety distance from other elements. Bitlines are the
narrowest wires placed on the lowest metal layer (M1) of the SA region,
which then extend in the MAT region. We now briefly discuss on the
feasibility of shrinking bitlines, which is related to I1-2.

Process feasibility. From a pure manufacturing point of view, shrinking
wires that are already narrow can cause the interruption of their conductiv-
ity (i.e., creating disjointed wires), while reducing the distance with adjacent
wires can create short circuits [227].

Electrical impact. Shrinking wires increase their electrical resistance (R),
while making wires closer increases crosstalk [192]. The increase in R will
reduce the speed of transmission of bitlines. In DRAM applications, this
further translates to the time required to: precharge bitlines, charge sharing,
latching the stored data and recharge the capacitor. Crosstalk is modeled as
capacitive coupling between parallel wires. Effectively, crosstalk means that
a variation in one wire will affect its adjacent wires. This is a particularly
well known problem in DRAM applications and can cause read failure [228–
230].



5.9 appendix 145

Transistors MATMAT

Columns
Upper metal layer (M2)

SA region

Bitlines

Fig. 5.15: Connection on M2 of existing bitlines (A4-5). Columns connect to LI-
O/LIOB (Fig. 5.2b).

DRAM manufacturing processes use the smallest bitlines width possible
to keep the design as compact and reliable as possible. However, even in
the case that shrinking bitlines would be possible and not performed in the
original layout, doubling the number of bitlines would still result in large
overhead. As an example, if halving B5 SA-region bitlines were possible,
the result would still add 21% chip area overhead on top of the existing
overheads. As the safe distance (d) is kept, and the bitline width (Bw) is
Bw ' d× 2, the SA extension in the Y direction would be:

Ext =
TB × 2× (d + Bw/2)

TB × (d + Bw)
− 1

=
2× (Bw/2 + Bw/2)

(Bw/2 + Bw)
− 1 =

4
3
− 1 ' 33%

(5.1)

where TB is the initial number of bitlines in the region. Due to layout
requirements, this extension is required on the MAT as well (or alternatively,
it introduces empty spaces), resulting in 21% chip overhead.

Metal layer 2 in A4-5. In chips A4-5, bitlines that use the second set of SAs
are connected via the metal layer 2 (M2). This differs from the other chips
where these bitlines are directly connected on M1, and M2 is fully dedicated
to other connections. These bitlines are already present in the SA region,
and the translation is performed after the column transistors (Fig. 5.15).
M2 wires are around 8x bigger than bitlines on M1, are not packed closely,
and the layer presents empty spaces. We evaluated that [22] would require
reducing these wires by 0.25x to accommodate new connections, and thus
we consider this possible. Papers that require adding new bitlines to the SA
region are not impacted by this because they still require the new bitlines
to enter the sense amplifier region as shown in Fig. 5.13b.



146 hifi-dram

5.9.2 Overhead calculations

We now briefly discuss the mathematical formulas we used to derive
overhead errors. For each paper, we estimate its overhead (Pchip) for each
imaged chip (chip). Given the paper original overhead estimation (Poe), we
report the average of (Pchip/Poe − 1) in Tbl. 5.2. For simplicity, we define
Pchip = Pextra/Chiparea and now describe Pextra.

Papers that suffer I1 or I2 will require a severe extension of the SA or
MAT region. Due to layout requirements, extending only the MAT or SA
alone will require its counterpart to be extended as well (or alternatively, it
introduces equivalent empty spaces). Generally, calculating the effect of I1
and/or I2 for a paper that doubles the bitline can be approximated as:

Pextra = MATarea + SAarea

REGA [22] requires adding one new bitline every three in chips B4-5 and
C4-5:

Pextra = (MATarea + SAarea)/3

We now report the formulas of Pextra for the remaining papers and for
REGA on chips A4-5. In the following, MATs represents the number of
MATs in a chip, SAw the SA region width. Instead isols, sanws, sapws, colws
are the horizontal (i.e., X direction) sizes of isolation, nSA, pSA and column
transistors, respectively. Most of the calculations represent a horizontal
extension multiplied by the width, replicated for the total number of SA
regions in a chip. As all the chips implement two stacked sense amplifiers,
original papers that requires adding a new SA, will actually require adding
2 SAs to connect all bitlines. Further, isolation transistors are shared among
multiple rows.

REGA [22] requires new isolation transistors and SAs (A4-5):

Pextra = MATs× SAw × (2× isols + 8× sanws + sapws

6
)

NR.B. DEC. [141] requires new isolation transistors:

Pextra = MATs× SAw × 2× isols

Nov. DRAM [191] adds isolation, column and SA transistors:

Pextra = MATs× SAw × (2× isols + 2× colws + 8× (sanws + sapws))



5.9 appendix 147

CHARM [140] changes the aspect ratio of MATs, where 1% is an overhead
due to layout reorganization (we use the configuration [×2,/4] from the
original paper):

Pextra = MATs× SAw × SAh/4 + 0.01× Chiparea

PF-DRAM [171] adds independent isolation transistors and an SA imbal-
ancer, similarly to an SA:

Pextra = MATs× SAw × (4× isols + 8× (sanws + sapws))

We invite the reader to refer to the original content of the papers and to
https://comsec.ethz.ch/hifi-dram for more details.

https://comsec.ethz.ch/hifi-dram




6
C O N C L U S I O N A N D O U T L O O K

In this dissertation, we studied DRAM security by devising novel Rowham-
mer mitigations and demonstrating bit flips from the new RISC-V ecosystem
for the first time. By collaborating with a DRAM vendor and by reverse
engineering commodity DRAM devices, we open-sourced unprecedented
detailed information about DRAM internals, which we believe will improve
the fidelity of future DRAM research. Overall, we demonstrated that a prin-
cipled approach to DRAM security is key to both offensive and defensive research
efforts. We now describe the main contributions of each chapter and propose
research questions for future work.

risc-h . In Chapter 2, with RISC-H, we demonstrated Rowhammer bit
flips triggered by a RISC-V device for the first time. RISC-V is a new archi-
tecture, and only recently its first high-end CPU has become available to
consumers. Compared to the mature and complex Intel and AMD counter-
parts, it is expected that its design might be much slower and less optimized.
Porting the patterns and methods used to trigger Rowhammer bit flips by
previous work results in unsuccessful attacks on this CPU and a false sense
of security. Instead, we carefully analyzed internal memory bottlenecks that
we could bypass with new memory patterns and devised a novel method
to order memory requests based on surgical delays. Once we combined
these new approaches with our reverse-engineered DRAM functions, we
were able to demonstrate that the RISC-V ecosystem is also affected by
Rowhammer.

Research Question for Future Work 1. What is the feasibility of
Rowhammer on the RISC-V ecosystem for different DRAM DIMMs?

Our study was constrained by the extremely limited memory support
provided by the RISC-V CPU, which resulted in only one DDR4 DIMM
successfully booting from 85 of our lab. Therefore, a clear continuation of
our work is to assess the feasibility of Rowhammer on the RISC-V ecosystem
with a larger variety of DIMMs, once extended memory support is available.

149



150 conclusion and outlook

Research Question for Future Work 2. What is the feasibility of
Rowhammer on the RISC-V ecosystem for DDR4 and DDR5 devices
with ECC?

Demonstrating successful Rowhammer bit flips on a novel system re-
quires significant reverse engineering and extensive characterization efforts.
Therefore, it is a topic of research that focuses on memory modules that do
not include ECC-protected memory. Literature has shown that successful
Rowhammer attacks can be performed on ECC modules; however, it is
unclear how effective Rowhammer is on RISC-V devices employing ECC
memory.

protrr . In Chapter 3, we presented our Rowhammer mitigation ProTRR.
Contrary to industry results and researchers’ belief, we proved that TRR can
provide security to current DDR4 devices. Furthermore, we demonstrated
that the new DDR5 protocol can enhance ProTRR security while reducing
the overhead for protection.

Research Question for Future Work 3. Can ProTRR overhead be re-
duced by relying on a probabilistic approach?

ProTRR design provides deterministic guarantees against Rowhammer
attacks. However, for very vulnerable devices, it can require substantial
overhead. As such, future work could evaluate how to implement a prob-
abilistic mitigation on top of ProTRR design, and what is the trade-off
between security and overhead.

Research Question for Future Work 4. What is the trade-off between
the addition of ECC and ProTRR?

The addition of ECC might be required on future technologies to support
data integrity independently from Rowhammer attacks. The deployment
of ECC will introduce an overhead, but will effectively reduce the device
vulnerability towards Rowhammer. As the vulnerability is reduced, the
overhead of ProTRR will decrease. Therefore, future work could analyze
the trade-off of integrating ECC with ProTRR.

rega . In Chapter 4, we studied how to secure DRAM devices in case
the Rowhammer vulnerability becomes much worse in future devices. With
our novel mitigation REGA, we proposed changes to the internal DRAM
architecture that secure these devices. To achieve this, we added an extra



conclusion and outlook 151

sense amplifier to perform refresh operations in parallel with memory
requests. To evaluate the reliability of REGA, in collaboration with a DRAM
vendor we developed the first accurate DRAM model for modern devices,
which we further open-sourced. By not relying on states, we were able to
design a mitigation that scales even with high blast radius and extremely
low thresholds.

Research Question for Future Work 5. Can REGA circuitry be used to
perform Processing-In-Memory operations?

With REGA, we focused on the security of DRAM devices against
Rowhammer. However, adding new circuitry in the sense amplifier region
can support other operations as well. In particular, a common research field
in DRAM is to exploit row parallelism to perform Processing-In-Memory.
Future research could study how to leverage the additional circuitry intro-
duced by REGA to enable Processing-In-Memory. This would effectively
use REGA to enhance both security and performance.

hifi-dram . In Chapter 5, we imaged and reverse engineered DDR4

and DDR5 devices from the major DRAM vendors focusing on the sense
amplifier region. By evaluating ten years of research, our work HiFi-DRAM
showed that literature was based on repeatedly shared wrong assumptions.
This issue is multifaceted: the commonly assumed sense amplifier circuitry
has been replaced in half of the studied chips, no DRAM model accurately
describes commodity devices, and many research proposals can result
in overheads much larger than anticipated when layout inaccuracies are
considered.

Research Question for Future Work 6. Can REGA be optimized for the
circuitry of commodity devices that have no space for extra connections?

With our mitigation REGA, we proposed the addition of new sense
amplifiers to perform refreshes in parallel with memory requests. To achieve
this, REGA requires new connections, which we showed with HiFi-DRAM
might be hard to achieve in some devices without extra overhead. Future
work could study how to optimize REGA circuitry to enable seamlessly
deployment on these devices.

Research Question for Future Work 7. Can this approach be used to
reverse engineer deployed Rowhammer mitigations?



152 conclusion and outlook

The deployed mitigations on DRAM devices are kept undisclosed by
DRAM vendors. Their security guarantees are therefore unclear. Future
work could perform our invasive reverse engineering approach to deter-
mine the circuitry deployed on modern devices to mitigate Rowhammer.
While this is clearly of research interest, it will require a very complex
reconstruction of the logic and significant reverse engineering effort.

Research Question for Future Work 8. Do other technologies similarly
present a huge gap between Research and industry?

With HiFi-DRAM, we discovered that research on DRAM suffers from a
high level of inaccuracy when compared to modern devices. Future work
should assess whether other technologies that are of interest to researchers
share this problem as well.

conclusion. We first demonstrated that even new architectures on less
mature CPUs can trigger bit flips by successfully performing Rowhammer
on a RISC-V system for the first time. Contrary to industry results and
previous work uncertainties [65, 231–233], we proved that securing DRAM
devices is possible with TRR already on DDR4 devices, and its security
guarantees are substantially enhanced with the latest DDR5 protocol. To
protect future technologies that might be extremely vulnerable to Rowham-
mer, we designed a scalable stateless mitigation that parallelizes refreshes
to activations by modifying the internal DRAM architecture. Our design
has been based on a collaboration with a minor DRAM vendor; however,
little information is available about commodity devices. To fill this gap, we
reverse-engineered commodity DRAM devices and compared our findings
to the assumptions made in existing research. We discovered critical dis-
crepancies between industry and literature regarding the deployed circuitry,
leading to significant research inaccuracies. Finally, to improve the fidelity
of future studies, we open-sourced both the accurate DRAM model devel-
oped with the DRAM vendor and all the data we extracted from commodity
devices.



B I B L I O G R A P H Y

[1] Kuljit S. Bains, John B. Halbert, Christopher P. Mozak, Theodore Z.
Schoenborn, and Zvika Greenfield. Row hammer refresh command.
2012.

[2] Zvika Greenfield, Kuljit S. Bains, Theodore Z. Schoenborn, Christo-
pher P. Mozak, and John B. Halbert. Row hammer condition monitoring.
2012.

[3] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee,
Donghyuk Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu.
“Flipping Bits in Memory without Accessing Them: An Experimental
Study of DRAM Disturbance Errors”. In: ISCA. 2014.

[4] Michael Redeker, Bruce F Cockburn, and Duncan G Elliott. “An
Investigation into Crosstalk Noise in DRAM Structures”. In: IEEE
MTDT. IEEE. 2002, 123.

[5] Pietro Frigo, Emanuele Vannacci, Hasan Hassan, Victor van der Veen,
Onur Mutlu, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi.
“TRRespass: Exploiting the Many Sides of Target Row Refresh”. In:
IEEE S&P. 2020.

[6] Hasan Hassan, Yahya Can Tugrul, Jeremie S Kim, Victor Van der
Veen, Kaveh Razavi, and Onur Mutlu. “Uncovering In-DRAM
RowHammer Protection Mechanisms: A New Methodology, Cus-
tom RowHammer Patterns, and Implications”. In: MICRO-54: 54th
Annual IEEE/ACM International Symposium on Microarchitecture. 2021,
1198.

[7] Patrick Jattke, Victor van der Veen, Pietro Frigo, Stijn Gunter, and
Kaveh Razavi. “Blacksmith: Scalable Rowhammering in the Fre-
quency Domain”. In: IEEE S&P. 2022.

[8] Lucian Cojocar, Jeremie Kim, Minesh Patel, Lillian Tsai, Stefan Saroiu,
Alec Wolman, and Onur Mutlu. “Are We Susceptible to Rowham-
mer? An End-to-End Methodology for Cloud Providers”. In: IEEE
S&P. 2020, 712.

153



154 bibliography

[9] Finn de Ridder, Pietro Frigo, Emanuele Vannacci, Herbert Bos, Cris-
tiano Giuffrida, and Kaveh Razavi. “SMASH: Synchronized Many-
Sided Rowhammer Attacks from JavaScript”. In: USENIX Security.
2021.

[10] Andrew Kwong, Daniel Genkin, Daniel Gruss, and Yuval Yarom.
“RAMBleed: Reading Bits in Memory Without Accessing Them”. In:
IEEE S&P. 2020.

[11] Patrick Jattke, Max Wipfli, Flavien Solt, Michele Marazzi, Matej
Bölcskei, and Kaveh Razavi. “ZenHammer: Rowhammer Attacks on
AMD Zen-based Platforms”. In: 33rd USENIX Security Symposium
(USENIX Security 2024). 2024.

[12] JESD79-5B: Double Data Rate 5 (DDR5) SDRAM. 2022.

[13] JESD79-5C: Double Data Rate 5 (DDR5) SDRAM. 2024.

[14] SOPHGO. Sophon SG2042. 2024.

[15] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz,
and Stefan Mangard. “DRAMA: Exploiting DRAM Addressing for
Cross-CPU Attacks”. In: USENIX Security. 2016.

[16] Zelalem Birhanu Aweke, Salessawi Ferede Yitbarek, Rui Qiao, Reetu-
parna Das, Matthew Hicks, Yossi Oren, and Todd Austin. “ANVIL:
Software-Based Protection Against Next-Generation Rowhammer
Attacks”. In: ASPLOS. 2016.

[17] Jeremie S. Kim, Minesh Patel, A. Giray Yağlıkçı, Hasan Hassan, Rokn-
oddin Azizi, Lois Orosa, and Onur Mutlu. “Revisiting RowHammer:
An Experimental Analysis of Modern DRAM Devices and Mitigation
Techniques”. In: ISCA. 2020, 638.

[18] Seungki Hong, Dongha Kim, Jaehyung Lee, Reum Oh, Changsik
Yoo, Sangjoon Hwang, and Jooyoung Lee. “Dsac: Low-cost rowham-
mer mitigation using in-dram stochastic and approximate counting
algorithm”. In: arXiv preprint arXiv:2302.03591 (2023).

[19] Woongrae Kim, Chulmoon Jung, Seongnyuh Yoo, Duckhwa Hong,
Jeongjin Hwang, Jungmin Yoon, Ohyong Jung, Joonwoo Choi,
Sanga Hyun, Mankeun Kang, et al. “A 1.1 v 16gb ddr5 dram with
probabilistic-aggressor tracking, refresh-management functionality,
per-row hammer tracking, a multi-step precharge, and core-bias
modulation for security and reliability enhancement”. In: 2023 IEEE
International Solid-State Circuits Conference (ISSCC). IEEE. 2023, 1.



bibliography 155

[20] JEDEC Solid State Technology Association. JESD79-4B, DDR4 Speci-
fication. 2017.

[21] Michele Marazzi, Tristan Sachsenweger, Flavien Solt, Peng Zeng,
Kubo Takashi, Maksym Yarema, and Kaveh Razavi. “HiFi-DRAM:
Enabling High-fidelity DRAM Research by Uncovering Sense Ampli-
fiers with IC Imaging”. In: 51st IEEE/ACM International Symposium
on Computer Architecture (ISCA). 2024.

[22] Michele Marazzi, Flavien Solt, Patrick Jattke, Kubo Takashi, and
Kaveh Razavi. “REGA: Scalable Rowhammer Mitigation with
Refresh-Generating Activations”. In: IEEE S&P. 2023.

[23] Michele Marazzi, Patrick Jattke, Flavien Solt, and Kaveh Razavi.
“PROTRR: Principled yet Optimal in-DRAM Target Row Refresh”.
In: IEEE S&P. 2022.

[24] Mark Seaborn and Thomas Dullien. “Exploiting the DRAM Rowham-
mer Bug to Gain Kernel Privileges”. In: Black Hat USA. 2015.

[25] Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel, Cristiano Giuf-
frida, and Herbert Bos. “Flip Feng Shui: Hammering a Needle in the
Software Stack”. In: USENIX Security. 2016.

[26] D. Gruss, M. Lipp, M. Schwarz, D. Genkin, J. Juffinger, S. O’Connell,
W. Schoechl, and Y. Yarom. “Another Flip in the Wall of Rowhammer
Defenses”. In: IEEE S&P. 2018.

[27] Koksal Mus, Yarkın Doröz, M Caner Tol, Kristi Rahman, and Berk
Sunar. “Jolt: Recovering tls signing keys via rowhammer faults”. In:
2023 IEEE Symposium on Security and Privacy (SP). IEEE. 2023, 1719.

[28] Zhenrong Lang, Patrick Jattke, Michele Marazzi, and Kaveh Razavi.
“BLASTER: Characterizing the Blast Radius of Rowhammer”. In: 3rd
Workshop on DRAM Security (DRAMSec) co-located with ISCA 2023.
ETH Zurich. 2023.

[29] Hwayong Nam, Seungmin Baek, Minbok Wi, Michael Jaemin
Kim, Jaehyun Park, Chihun Song, Nam Sung Kim, and Jung Ho
Ahn. “DRAMScope: Uncovering DRAM Microarchitecture and
Characteristics by Issuing Memory Commands”. In: arXiv preprint
arXiv:2405.02499 (2024).

[30] Wei He, Zhi Zhang, Yueqiang Cheng, Wenhao Wang, Wei Song,
Yansong Gao, Qifei Zhang, Kang Li, Dongxi Liu, and Surya Nepal.
“Whistleblower: A system-level empirical study on rowhammer”. In:
IEEE Transactions on Computers (2023).



156 bibliography

[31] Ataberk Olgun, Majd Osseiran, A Giray Yağlıkçı, Yahya Can Tuğrul,
Haocong Luo, Steve Rhyner, Behzad Salami, Juan Gomez Luna, and
Onur Mutlu. “An experimental analysis of rowhammer in hbm2

dram chips”. In: 2023 53rd Annual IEEE/IFIP International Conference
on Dependable Systems and Networks-Supplemental Volume (DSN-S).
IEEE. 2023, 151.

[32] Lois Orosa, Abdullah Giray Yaglikci, Haocong Luo, Ataberk Olgun,
Jisung Park, Hasan Hassan, Minesh Patel, Jeremie S Kim, and Onur
Mutlu. “A Deeper Look into RowHammer’s Sensitivities: Experi-
mental Analysis of Real DRAM Chips and Implications on Future
Attacks and Defenses”. In: MICRO-54: 54th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture. 2021, 1182.

[33] A Giray Yağlıkçı, Haocong Luo, Geraldo F De Oliviera, Ataberk
Olgun, Minesh Patel, Jisung Park, Hasan Hassan, Jeremie S Kim,
Lois Orosa, and Onur Mutlu. “Understanding RowHammer under
reduced wordline voltage: An experimental study using real DRAM
devices”. In: 2022 52nd Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN). IEEE. 2022, 475.

[34] Andreas Kogler, Jonas Juffinger, Salman Qazi, Yoongu Kim, Moritz
Lipp, Nicolas Boichat, Eric Shiu, Mattias Nissler, and Daniel Gruss.
“Half-Double: Hammering from the next Row Over”. In: USENIX
Security. 2022.

[35] Tanj Bennett, Stefan Saroiu, Alec Wolman, and Lucian Cojocar.
“Panopticon: A Complete In-DRAM Rowhammer Mitigation”. In:
DRAMSec. 2020.

[36] Minbok Wi, Jaehyun Park, Seoyoung Ko, Michael Jaemin Kim, Nam
Sung Kim, Eojin Lee, and Jung Ho Ahn. “SHADOW: Preventing
Row Hammer in DRAM with Intra-Subarray Row Shuffling”. In:
HPCA. 2023, 333.

[37] Jeonghyun Woo, Gururaj Saileshwar, and Prashant J Nair. “Scalable
and secure row-swap: Efficient and safe row hammer mitigation in
memory systems”. In: 2023 IEEE International Symposium on High-
Performance Computer Architecture (HPCA). IEEE. 2023, 374.

[38] Ataberk Olgun, Yahya Can Tugrul, Nisa Bostanci, Ismail Emir Yuksel,
Haocong Luo, Steve Rhyner, Abdullah Giray Yaglikci, Geraldo F
Oliveira, and Onur Mutlu. “ABACuS: All-Bank Activation Counters
for Scalable and Low Overhead RowHammer Mitigation”. In: arXiv
preprint arXiv:2310.09977 (2024).



bibliography 157

[39] Michael Jaemin Kim, Jaehyun Park, Yeonhong Park, Wanju Doh,
Namhoon Kim, Tae Jun Ham, Jae W Lee, and Jung Ho Ahn. “Mithril:
Cooperative Row Hammer Protection on Commodity DRAM Lever-
aging Managed Refresh”. In: IEEE HPCA. IEEE. 2022, 1156.

[40] Moinuddin Qureshi, Aditya Rohan, Gururaj Saileshwar, and
Prashant J. Nair. “Hydra: Enabling Low-Overhead Mitigation
of Row-Hammer at Ultra-Low Thresholds via Hybrid Tracking”. In:
ISCA. New York New York: ACM, 2022, 699.

[41] Yeonhong Park, Woosuk Kwon, Eojin Lee, Tae Jun Ham, Jung Ho
Ahn, and Jae W Lee. “Graphene: Strong yet Lightweight Row Ham-
mer Protection”. In: MICRO. IEEE. 2020, 1.

[42] A. Giray Yağlikçi, Minesh Patel, Jeremie S. Kim, Roknoddin Az-
izi, Ataberk Olgun, Lois Orosa, Hasan Hassan, Jisung Park, Kon-
stantinos Kanellopoulos, Taha Shahroodi, Saugata Ghose, and Onur
Mutlu. “BlockHammer: Preventing RowHammer at Low Cost by
Blacklisting Rapidly-Accessed DRAM Rows”. In: HPCA. 2021, 345.

[43] Anish Saxena, Gururaj Saileshwar, Prashant J Nair, and Moinuddin
Qureshi. “Aqua: Scalable rowhammer mitigation by quarantining
aggressor rows at runtime”. In: 2022 55th IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE. 2022, 108.

[44] Gururaj Saileshwar, Bolin Wang, Moinuddin Qureshi, and Prashant J
Nair. “Randomized Row-Swap: Mitigating Row Hammer by Break-
ing Spatial Correlation between Aggressor and Victim Rows”. In:
(2022), 14.

[45] Onur Mutlu and Thomas Moscibroda. “Stall-time fair memory access
scheduling for chip multiprocessors”. In: 40th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO 2007). IEEE.
2007, 146.

[46] Prathap Kumar Valsan and Heechul Yun. “MEDUSA: a predictable
and high-performance DRAM controller for multicore based em-
bedded systems”. In: 2015 IEEE 3rd international conference on cyber-
physical systems, networks, and applications. IEEE. 2015, 86.

[47] William K Zuravleff and Timothy Robinson. Controller for a syn-
chronous DRAM that maximizes throughput by allowing memory requests
and commands to be issued out of order. US Patent 5,630,096. 1997.



158 bibliography

[48] Scott Rixner, William J Dally, Ujval J Kapasi, Peter Mattson, and
John D Owens. “Memory access scheduling”. In: ACM SIGARCH
Computer Architecture News 28.2 (2000), 128.

[49] Yuan Xiao, Xiaokuan Zhang, Yinqian Zhang, and Radu Teodorescu.
“One Bit Flips, One Cloud Flops: Cross-VM Row Hammer Attacks
and Privilege Escalation.” In: USENIX Security. 2016.

[50] Minghua Wang, Zhi Zhang, Yueqiang Cheng, and Surya Nepal.
“DRAMDig: A Knowledge-assisted Tool to Uncover DRAM Address
Mapping”. In: DAC ’20. 2020.

[51] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano
Giuffrida. “ASLR on the Line: Practical Cache Attacks on the MMU.”
In: NDSS. Vol. 17. 2017, 26.

[52] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. “Rowham-
mer.Js: A Remote Software-Induced Fault Attack in JavaScript”. In:
DIMVA. 2016.

[53] Erik Bosman, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
“Dedup Est Machina: Memory Deduplication as an Advanced Ex-
ploitation Vector”. In: IEEE S&P. 2016.

[54] Pietro Frigo, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi.
“Grand Pwning Unit: Accelerating Microarchitectural Attacks with
the GPU”. In: IEEE S&P. 2018.

[55] Victor van der Veen, Yanick Fratantonio, Martina Lindorfer, Daniel
Gruss, Clementine Maurice, Giovanni Vigna, Herbert Bos, Kaveh
Razavi, and Cristiano Giuffrida. “Drammer: Deterministic Rowham-
mer Attacks on Mobile Platforms”. In: ACM SIGSAC. CCS ’16. New
York, NY, USA: Association for Computing Machinery, 2016, 1675.

[56] Victor van der Veen, Martina Lindorfer, Yanick Fratantonio, Harikr-
ishnan Padmanabha Pillai, Giovanni Vigna, Christopher Kruegel,
Herbert Bos, and Kaveh Razavi. “Guardion: Practical Mitigation of
DMA-Based Rowhammer Attacks on ARM”. In: DIMVA. 2018.

[57] Andrei Tatar, Radhesh Krishnan Konoth, Elias Athanasopoulos,
Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. “Throwhammer:
Rowhammer Attacks over the Network and Defenses”. In: USENIX
ATC. 2018.



bibliography 159

[58] Moritz Lipp, Michael Schwarz, Lukas Raab, Lukas Lamster, Misiker
Tadesse Aga, Clémentine Maurice, and Daniel Gruss. “Netham-
mer: Inducing Rowhammer Faults Through Network Requests”. In:
EuroS&PW. 2020, 710.

[59] Ingab Kang, Eojin Lee, and Jung Ho Ahn. “CAT-TWO: Counter-
Based Adaptive Tree, Time Window Optimized for DRAM Row-
Hammer Prevention”. In: IEEE Access 8 (2020), 17366.

[60] Jung Min You and Joon-Sung Yang. “MRLoc: Mitigating Row-
Hammering Based on Memory Locality”. In: DAC. IEEE. 2019,
1.

[61] Eojin Lee, Ingab Kang, Sukhan Lee, G Edward Suh, and Jung Ho
Ahn. “TWiCe: Preventing Row-Hammering by Exploiting Time Win-
dow Counters”. In: ISCA. 2019.

[62] Lucian Cojocar, Kaveh Razavi, Cristiano Giuffrida, and Herbert Bos.
“Exploiting Correcting Codes: On the Effectiveness of ECC Memory
Against Rowhammer Attacks”. In: IEEE S&P. 2019.

[63] Ferdinand Brasser, Lucas Davi, David Gens, Christopher Liebchen,
and Ahmad-Reza Sadeghi. “CAn’t Touch This: Software-Only Miti-
gation against Rowhammer Attacks Targeting Kernel Memory”. In:
USENIX Security. 2017.

[64] Radhesh Krishnan Konoth, Marco Oliverio, Andrei Tatar, Dennis
Andriesse, Herbert Bos, Cristiano Giuffrida, and Kaveh Razavi. “Ze-
bRAM: Comprehensive and Compatible Software Protection Against
Rowhammer Attacks”. In: USENIX OSDI. 2018.

[65] Z. Zhang, Y. Cheng, D. Liu, S. Nepal, Z. Wang, and Y. Yarom.
“PThammer: Cross-User-Kernel-Boundary Rowhammer through Im-
plicit Accesses”. In: MICRO. 2020, 28.

[66] Jung-Bae Lee. Green Memory Solution. 2014.

[67] Micron. DDR4 SDRAM Datasheet. Tech. rep. 2016, 380.

[68] Jayadev Misra and David Gries. “Finding Repeated Elements”. In:
Science of Computer Programming 2.2 (1982), 143.

[69] Yoongu Kim, Vivek Seshadri, Donghyuk Lee, Jamie Liu, and Onur
Mutlu. “A Case for Exploiting Subarray-Level Parallelism (SALP) in
DRAM”. In: ISCA. IEEE. 2012, 368.

[70] Onur Mutlu. “The RowHammer Problem and Other Issues We May
Face as Memory Becomes Denser”. In: DATE. 2017.

http://aod.teletogether.com/sec/20140519/SAMSUNG_Investors_Forum_2014_session_1.pdf#page=15


160 bibliography

[71] Google LLC. Half-Double: Next-Row-Over Assisted Rowhammer. Tech.
rep. Google LLC, 2021, 22.

[72] Misiker Tadesse Aga, Zelalem Birhanu Aweke, and Todd Austin.
“When Good Protections Go Bad: Exploiting Anti-DoS Measures to
Accelerate Rowhammer Attacks”. In: HOST. 2017.

[73] Sarani Bhattacharya and Debdeep Mukhopadhyay. “Curious Case of
Rowhammer: Flipping Secret Exponent Bits Using Timing Analysis”.
In: CHES. 2016.

[74] Sarani Bhattacharya and Debdeep Mukhopadhyay. “Advanced Fault
Attacks in Software: Exploiting the Rowhammer Bug”. In: Fault
Tolerant Architectures for Cryptography and Hardware Security. Ed. by
Sikhar Patranabis and Debdeep Mukhopadhyay. Singapore: Springer
Singapore, 2018, 111.

[75] Apostolos P Fournaris, Lidia Pocero Fraile, and Odysseas Koufopavlou.
“Exploiting Hardware Vulnerabilities to Attack Embedded System
Devices: A Survey of Potent Microarchitectural Attacks”. In: Elec-
tronicsweek (2017).

[76] Damian Poddebniak, Juraj Somorovsky, Sebastian Schinzel, Man-
fred Lochter, and Paul Rösler. “Attacking Deterministic Signature
Schemes Using Fault Attacks”. In: EuroS&P. 2018.

[77] Rui Qiao and Mark Seaborn. “A New Approach for Rowhammer
Attacks”. In: HOST. 2016.

[78] Zhenkai Zhang, Zihao Zhan, Daniel Balasubramanian, Xenofon
Koutsoukos, and Gabor Karsai. “Triggering Rowhammer Hardware
Faults on ARM: A Revisit”. In: ASHES. 2018.

[79] Xin-Chuan Wu, Timothy Sherwood, Frederic T. Chong, and Yan-
jing Li. “Protecting Page Tables from RowHammer Attacks Using
Monotonic Pointers in DRAM True-Cells”. In: ASPLOS. New York,
NY, USA: Association for Computing Machinery, 2019, 645.

[80] Seyed Mohammad Seyedzadeh, Alex K Jones, and Rami Melhem.
“Counter-Based Tree Structure for Row Hammering Mitigation in
DRAM”. In: IEEE Computer Architecture Letters 16.1 (2016), 18.

[81] Mark Kaczmarski. Thoughts on Intel Xeon E5-2600 v2 Product Family
Performance Optimisation Component Selection Guidelines. 2014.

[82] Mungyu Son, Hyunsun Park, Junwhan Ahn, and Sungjoo Yoo. “Mak-
ing DRAM Stronger Against Row Hammering”. In: DAC. 2017, 1.

https://infobazy.gda.pl/2014/pliki/prezentacje/d2s2e4-Kaczmarski-Optymalna.pdf
https://infobazy.gda.pl/2014/pliki/prezentacje/d2s2e4-Kaczmarski-Optymalna.pdf


bibliography 161

[83] Erik D Demaine, Alejandro López-Ortiz, and J Ian Munro. “Fre-
quency Estimation of Internet Packet Streams with Limited Space”.
In: ESA. Springer. 2002, 348.

[84] Sujeet Ayyapureddi and Raghukiran Sreeramaneni. “Apparatus
and Method Including Analog Accumulator for Determining Row
Access Rate and Target Row Address Used for Refresh Operation”.
US10964378B2. 2021.

[85] Ya-Chun Lai, Po-Hsun Wu, and Jen-Shou Hsu. “Target Row Refresh
Mechanism Capable of Effectively Determining Target Row Address
to Effectively Mitigate Row Hammer Errors without Using Counter
Circuit”. US10916293B1. 2021.

[86] Koo et al. “A 1.2V 38nm 2.4Gb/s/pin 2Gb DDR4 SDRAM with bank
group and ×4 half-page architecture”. In: 2012, 40.

[87] Thomas Vogelsang. “Understanding the energy consumption of
dynamic random access memories”. In: 2010 43rd Annual IEEE/ACM
International Symposium on Microarchitecture. IEEE. 2010, 363.

[88] Niladrish Chatterjee, Naveen Muralimanohar, Rajeev Balasubramo-
nian, Al Davis, and Norman P Jouppi. “Staged reads: Mitigating
the impact of DRAM writes on DRAM reads”. In: IEEE International
Symposium on High-Performance Comp Architecture. IEEE. 2012, 1.

[89] Chun et al. “A 16Gb LPDDR4X SDRAM with an NBTI-tolerant cir-
cuit solution, an SWD PMOS GIDL reduction technique, an adaptive
gear-down scheme and a metastable-free DQS aligner in a 10nm
class DRAM process”. In: 2018 IEEE International Solid - State Circuits
Conference - (ISSCC). 2018, 206.

[90] Shim et al. “A 16Gb 1.2V 3.2Gb/s/pin DDR4 SDRAM with improved
power distribution and repair strategy”. In: 2018 IEEE International
Solid - State Circuits Conference - (ISSCC). 2018, 212.

[91] James Bucek, Klaus-Dieter Lange, and Jóakim v. Kistowski. “SPEC
CPU2017: Next-Generation Compute Benchmark”. In: ICPE. 2018,
41.

[92] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Rein-
hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower,
Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell,
Muhammad Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood.
“The Gem5 Simulator”. In: SIGARCH 39.2 (2011), 1.



162 bibliography

[93] Shang Li, Zhiyuan Yang, Dhriaj Reddy, Ankur Srivastava, and Bruce
Jacob. “DRAMsim3: A Cycle-Accurate, Thermal-Capable DRAM
Simulator”. In: IEEE Computer Architecture Letters (2020).

[94] Roland E Wunderlich, Thomas F Wenisch, Babak Falsafi, and James
C Hoe. “SMARTS: Accelerating Microarchitecture Simulation via
Rigorous Statistical Sampling”. In: ISCA. 2003, 84.

[95] JEDEC Solid State Technology Association. JEP300-1: Near-Term
DRAM Level Rowhammer Mitigation. 2021.

[96] Micron Technology Inc. How Much Power Does Memory Use? 2021.

[97] TechInsights Inc. Micron MT40A4G4JC-062E_E 1z nm DDR4 Process
Flow Full. 2021.

[98] Andrei Tatar, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi.
“Defeating Software Mitigations against Rowhammer: A Surgical
Precision Hammer”. In: RAID. 2018.

[99] Google LLC. Half-Double: Next-Row-Over Assisted Rowhammer. Tech.
rep. 2021, 22.

[100] Youssef Tobah, Andrew Kwong, Ingab Kang, Daniel Genkin, and
Kang G Shin. “SpecHammer: Combining Spectre and Rowhammer
for New Speculative Attacks”. In: IEEE S&P. 2022.

[101] Haocong Luo, Taha Shahroodi, Hasan Hassan, Minesh Patel, A Giray
Yağlıkçı, Lois Orosa, Jisung Park, and Onur Mutlu. “CLR-DRAM: A
Low-Cost DRAM Architecture Enabling Dynamic Capacity-Latency
Trade-Off”. In: ACM/IEEE ISCA. IEEE. 2020, 666.

[102] Kira Kraft, Chirag Sudarshan, Deepak M Mathew, Christian Weis,
Norbert Wehn, and Matthias Jung. “Improving the Error Behavior
of DRAM by Exploiting Its Z-channel Property”. In: DATE. IEEE.
2018, 1492.

[103] Matthias Jung, Carl C Rheinländer, Christian Weis, and Nor-
bert Wehn. “Reverse Engineering of DRAMs: Row Hammer with
Crosshair”. In: ACM MEMSYS. 2016, 471.

[104] Brent Keeth, R Jacob Baker, Brian Johnson, and Feng Lin. DRAM
Circuit Design: Fundamental and High-Speed Topics. Vol. 13. John Wiley
& Sons, 2007.

[105] Akira Kotabe. “Low-Power DRAM”. In: Green Computing with Emerg-
ing Memory. Ed. by Takayuki Kawahara and Hiroyuki Mizuno. New
York, NY: Springer New York, 2013, 87.

https://www.jedec.org/standards-documents/docs/jep300-1
https://www.jedec.org/standards-documents/docs/jep300-1
https://www.crucial.com/support/articles-faq-memory/how-much-power-does-memory-use
https://www.techinsights.com/products/pff-2007-801
https://www.techinsights.com/products/pff-2007-801


bibliography 163

[106] Kibong Koo, Sunghwa Ok, Yonggu Kang, Seungbong Kim, Choungki
Song, Hyeyoung Lee, Hyungsoo Kim, Yongmi Kim, Jeonghun Lee,
Seunghan Oak, Yosep Lee, Jungyu Lee, Joongho Lee, Hyungyu Lee,
Jaemin Jang, Jongho Jung, Byeongchan Choi, Yongju Kim, Youngdo
Hur, Yunsaing Kim, Byongtae Chung, and Yongtak Kim. “A 1.2V
38nm 2.4Gb/s/Pin 2Gb DDR4 SDRAM with Bank Group and ×4

Half-Page Architecture”. In: IEEE ISSCC. 2012, 40.

[107] Masayuki Nakamura, Tugio Takahashi, Takesada Akiba, Goro Kit-
sukawa, Makoto Morino, Toshihiro Sekiguchi, Isamu Asano, Katsuo
Komatsuzaki, Yoshitaka Tadaki, Songsu Cho, et al. “A 29-Ns 64-Mb
DRAM with Hierarchical Array Architecture”. In: IEEE Journal of
Solid-State Circuits 31.9 (1996), 1302.

[108] Tae-Young Oh, Hoeju Chung, Jun-Young Park, Ki-Won Lee, Se-
unghoon Oh, Su-Yeon Doo, Hyoung-Joo Kim, ChangYong Lee, Hye-
Ran Kim, Jong-Ho Lee, et al. “A 3.2 Gbps/Pin 8 Gbit 1.0 V LPDDR4

SDRAM with Integrated ECC Engine for Sub-1 V DRAM Core Op-
eration”. In: IEEE Journal of Solid-State Circuits 50.1 (2014), 178.

[109] TechInsights Inc. SK Hynix 21 Nm DRAM Cell Technology: Comparison
of 1st and 2nd Generation. 2017.

[110] Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata
Ausavarungnirun, Gennady Pekhimenko, Yixin Luo, Onur Mutlu,
Phillip B Gibbons, Michael A Kozuch, et al. “RowClone: Fast and
Energy-Efficient in-DRAM Bulk Data Copy and Initialization”. In:
IEEE/ACM MICRO. 2013, 185.

[111] Tsugio Takahashi, Tomonori Sekiguchi, Riichiro Takemura, Seiji
Narui, Hiroki Fujisawa, Shinichi Miyatake, Makoto Morino, Koji
Arai, Satoru Yamada, Shoji Shukuri, et al. “A Multigigabit DRAM
Technology with 6F/Sup 2/Open-Bitline Cell, Distributed Over-
driven Sensing, and Stacked-Flash Fuse”. In: IEEE Journal of Solid-
State Circuits 36.11 (2001), 1721.

[112] Jyi-Tsong Lin and Cheng-Chih Hsu. “An Initial Overdriven Sense
Amplifier for Low Voltage DRAMS”. In: IEEE ICCDCS. IEEE. 2000,
C31.

[113] AntMicro. LiteX Rowhammer Tester. 2022.

[114] MemTest86 - Official Site of the X86 Memory Testing Tool.

[115] JEDEC. DDR4 SDRAM UDIMM Design Specification. 2019.

[116] JEDEC. DDR4 SDRAM SODIMM Design Specification. 2019.



164 bibliography

[117] JEDEC. DDR3 SDRAM Unbuffered DIMM Design Specification. 2021.

[118] JEDEC. SPD Annex L: Serial Presence Detect (SPD) for DDR4 SDRAM
Modules, Release 6. 2022.

[119] JEDEC. JESD4005A. 2022.

[120] Analog Devices Inc. LTspice Simulator. 2022.

[121] Hasan Hassan, Gennady Pekhimenko, Nandita Vijaykumar, Vivek
Seshadri, Donghyuk Lee, Oguz Ergin, and Onur Mutlu. “Charge-
Cache: Reducing DRAM Latency by Exploiting Row Access Local-
ity”. In: IEEE HPCA. IEEE. 2016, 581.

[122] Chuxiong Lin, Weifeng He, Yanan Sun, Zhigang Mao, and Mingoo
Seok. “CDAR-DRAM: An in-Situ Charge Detection and Adaptive
Data Restoration DRAM Architecture for Performance and Energy
Efficiency Improvement”. In: ACM/IEEE DAC. IEEE. 2021, 1093.

[123] Yaohua Wang, Lois Orosa, Xiangjun Peng, Yang Guo, Saugata
Ghose, Minesh Patel, Jeremie S Kim, Juan Gómez Luna, Moham-
mad Sadrosadati, Nika Mansouri Ghiasi, et al. “Figaro: Improving
System Performance via Fine-Grained in-Dram Data Relocation and
Caching”. In: IEEE/ACM MICRO. IEEE. 2020, 313.

[124] Vivek Seshadri, Donghyuk Lee, Thomas Mullins, Hasan Hassan,
Amirali Boroumand, Jeremie Kim, Michael A Kozuch, Onur Mutlu,
Phillip B Gibbons, and Todd C Mowry. “Ambit: In-memory Ac-
celerator for Bulk Bitwise Operations Using Commodity DRAM
Technology”. In: IEEE/ACM MICRO. IEEE. 2017, 273.

[125] Nanoscale Integration and ASU Modeling (NIMO) Group. Predictive
Technology Model (PTM). 2022.

[126] Kevin Loughlin, Ian Neal, Jiacheng Ma, Elisa Tsai, Ofir Weisse, Satish
Narayanasamy, and Baris Kasikci. “{DOLMA: Securing Speculation
with the Principle of Transient {non-Observability”. In: USENIX
Security. 2021, 1397.

[127] Stefan Saroiu and Alec Wolman. “How to Configure Row-Sampling-
Based Rowhammer Defenses”. In: DRAMSec. 2022.

[128] Hasan Hassan, Minesh Patel, Jeremie S Kim, A Giray Yaglikci, Nan-
dita Vijaykumar, Nika Mansouri Ghiasi, Saugata Ghose, and Onur
Mutlu. “Crow: A low-cost substrate for improving dram perfor-
mance, energy efficiency, and reliability”. In: Proceedings of the 46th
International Symposium on Computer Architecture. 2019, 129.



bibliography 165

[129] Muhammad Mohsin Ghaffar, Chirag Sudarshan, Christian Weis,
Matthias Jung, and Norbert Wehn. “A low power in-DRAM archi-
tecture for quantized CNNs using fast Winograd convolutions”. In:
The International Symposium on Memory Systems. 2020, 158.

[130] Fujun Bai, Song Wang, Xuerong Jia, Yixin Guo, Bing Yu, Hang Wang,
Cong Lai, Qiwei Ren, and Hongbin Sun. “A Low-Cost Reduced-
Latency DRAM Architecture With Dynamic Reconfiguration of Row
Decoder”. In: IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 31.1 (2022), 128.

[131] Gian Singh, Ankit Wagle, Sunil Khatri, and Sarma Vrudhula. “Cidan-
xe: Computing in dram with artificial neurons”. In: Frontiers in
Electronics 3 (2022), 834146.

[132] Lavanya Subramanian, Kaushik Vaidyanathan, Anant Nori, Sreeni-
vas Subramoney, Tanay Karnik, and Hong Wang. “Closed yet open
dram: achieving low latency and high performance in dram mem-
ory systems”. In: Proceedings of the 55th Annual Design Automation
Conference. 2018, 1.

[133] Lois Orosa, Yaohua Wang, Mohammad Sadrosadati, Jeremie S. Kim,
Minesh Patel, Ivan Puddu, Haocong Luo, Kaveh Razavi, Juan Gómez-
Luna, Hasan Hassan, Nika Mansouri-Ghiasi, Saugata Ghose, and
Onur Mutlu. “Codic: A low-cost substrate for enabling custom in-
dram functionalities and optimizations”. In: 2021 ACM/IEEE 48th
Annual International Symposium on Computer Architecture (ISCA). IEEE.
2021, 484.

[134] Xin Xin, Youtao Zhang, and Jun Yang. “ELP2IM: Efficient and low
power bitwise operation processing in DRAM”. In: 2020 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA).
IEEE. 2020, 303.

[135] Shaahin Angizi and Deliang Fan. “Graphide: A graph processing
accelerator leveraging in-dram-computing”. In: Proceedings of the
2019 on Great Lakes Symposium on VLSI. 2019, 45.

[136] Kevin K Chang, Prashant J Nair, Donghyuk Lee, Saugata Ghose,
Moinuddin K Qureshi, and Onur Mutlu. “Low-cost inter-linked
subarrays (LISA): Enabling fast inter-subarray data movement in
DRAM”. In: 2016 IEEE International Symposium on High Performance
Computer Architecture (HPCA). IEEE. 2016, 568.



166 bibliography

[137] Jungwhan Choi, Wongyu Shin, Jaemin Jang, Jinwoong Suh, Yong-
kee Kwon, Youngsuk Moon, and Lee-Sup Kim. “Multiple clone
row DRAM: A low latency and area optimized DRAM”. In: ACM
SIGARCH Computer Architecture News 43.3S (2015), 223.

[138] Sourjya Roy, Mustafa Ali, and Anand Raghunathan. “PIM-DRAM:
Accelerating machine learning workloads using processing in com-
modity DRAM”. In: IEEE Journal on Emerging and Selected Topics in
Circuits and Systems 11.4 (2021), 701.

[139] João Dinis Ferreira, Gabriel Falcao, Juan Gómez-Luna, Mohammed
Alser, Lois Orosa, Mohammad Sadrosadati, Jeremie S. Kim, Geraldo
F. Oliveira, Taha Shahroodi, Anant Nori, and Onur Mutlu. “pluto:
Enabling massively parallel computation in dram via lookup tables”.
In: 2022 55th IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE. 2022, 900.

[140] Young Hoon Son, O Seongil, Yuhwan Ro, Jae W Lee, and Jung Ho
Ahn. “Reducing memory access latency with asymmetric DRAM
bank organizations”. In: Proceedings of the 40th annual international
symposium on computer architecture. 2013, 380.

[141] O Seongil, Young Hoon Son, Nam Sung Kim, and Jung Ho Ahn.
“Row-buffer decoupling: A case for low-latency DRAM microarchi-
tecture”. In: 2014 ACM/IEEE 41st International Symposium on Computer
Architecture (ISCA). IEEE. 2014, 337.

[142] Nastaran Hajinazar, Geraldo F Oliveira, Sven Gregorio, João Dinis
Ferreira, Nika Mansouri Ghiasi, Minesh Patel, Mohammed Alser,
Saugata Ghose, Juan Gómez-Luna, and Onur Mutlu. “SIMDRAM: a
framework for bit-serial SIMD processing using DRAM”. In: Proceed-
ings of the 26th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems. 2021, 329.

[143] Rachmad Vidya Wicaksana Putra, Muhammad Abdullah Hanif, and
Muhammad Shafique. “Sparkxd: A framework for resilient and
energy-efficient spiking neural network inference using approximate
dram”. In: 2021 58th ACM/IEEE Design Automation Conference (DAC).
IEEE. 2021, 379.

[144] Donghyuk Lee, Yoongu Kim, Vivek Seshadri, Jamie Liu, Lavanya
Subramanian, and Onur Mutlu. “Tiered-latency DRAM: A low la-
tency and low cost DRAM architecture”. In: 2013 IEEE 19th Interna-
tional Symposium on High Performance Computer Architecture (HPCA).
IEEE. 2013, 615.



bibliography 167

[145] Kevin K Chang, A Giray Yağlıkçı, Saugata Ghose, Aditya Agrawal,
Niladrish Chatterjee, Abhijith Kashyap, Donghyuk Lee, Mike
O’Connor, Hasan Hassan, and Onur Mutlu. “Understanding
reduced-voltage operation in modern DRAM devices: Experimental
characterization, analysis, and mechanisms”. In: Proceedings of the
ACM on Measurement and Analysis of Computing Systems 1.1 (2017), 1.

[146] Oghenekarho Okobiah, Saraju P Mohanty, Elias Kougianos, and
Mahesh Poolakkaparambil. “Towards robust nano-CMOS sense am-
plifier design: a dual-threshold versus dual-oxide perspective”. In:
Proceedings of the 21st edition of the great lakes symposium on Great lakes
symposium on VLSI. 2011, 145.

[147] Sanghoon Hong, Sejun Kim, Jae-Kyung Wee, and Seongsoo Lee.
“Low-voltage DRAM sensing scheme with offset-cancellation sense
amplifier”. In: IEEE Journal of Solid-State Circuits 37.10 (2002), 1356.

[148] T. Kirihata, G. Mueller, M. Clinton, S. Loeffler, B. Ji, H. Terletzki,
D. Hanson, Chorng-Lil Hwang, G. Lehmann, D. Storaska, G. Daniel,
L. Hsu, O. Weinfurtner, T. Boehler, J. Schnell, G. Frankowsky, D.
Netis, J. Ross, A. Reith, O. Kiehl, and M. Wordeman. “A 113 mm/-
sup 2/600 Mb/s/pin 512 Mb DDR2 SDRAM with vertically-folded
bitline architecture”. In: 2001 IEEE International Solid-State Circuits
Conference. Digest of Technical Papers. ISSCC (Cat. No. 01CH37177).
IEEE. 2001, 382.

[149] Mingyu Gao, Christina Delimitrou, Dimin Niu, Krishna T Malladi,
Hongzhong Zheng, Bob Brennan, and Christos Kozyrakis. “DRAF:
A low-power DRAM-based reconfigurable acceleration fabric”. In:
ACM SIGARCH Computer Architecture News 44.3 (2016), 506.

[150] Akira Kotabe, Yoshimitsu Yanagawa, Satoru Akiyama, and Tomonori
Sekiguchi. “0.5-V Low-VT CMOS Preamplifier for Low-Power and
High-Speed Gigabit-DRAM Arrays”. In: IEEE journal of solid-state
circuits 45.11 (2010), 2348.

[151] Travis N Blalock and RC Jaeger. “A subnanosecond clamped-bit-line
sense amplifier for 1T dynamic RAMs”. In: 1991 International Sympo-
sium on VLSI Technology, Systems, and Applications. IEEE Computer
Society. 1991, 82.

[152] Sherif M Sharroush. “A predischarged bitline 1T-1C DRAM readout
scheme”. In: Microelectronics Journal 83 (2019), 168.



168 bibliography

[153] Choongkeun Lee, Taegun Yim, and Hongil Yoon. “Bit-line Sense Am-
plifier Using PMOS Charge Transfer Pre-amplifier for Low-Voltage
DRAM”. In: TENCON 2018-2018 IEEE Region 10 Conference. IEEE.
2018, 1357.

[154] Jae-Yoon Sim. “Circuit design of DRAM for mobile generation”. In:
Journal of Semiconductor Technology and Science 7.1 (2007), 1.

[155] Choongkeun Lee and Hongil Yoon. “Highly robust and sensitive
charge transfer sense amplifier for ultra-low voltage DRAMs”. In:
Fifth Asia Symposium on Quality Electronic Design (ASQED 2013). IEEE.
2013, 227.

[156] Suk Min Kim, Byungkyu Song, and Seong-Ook Jung. “Imbalance-
tolerant bit-line sense amplifier for dummy-less open bit-line scheme
in dram”. In: IEEE Transactions on Circuits and Systems I: Regular
Papers 68.6 (2021), 2546.

[157] Hongil Yoon, Jae Yoon Sim, Hyun Suk Lee, Kyu Nam Lim, Jae Young
Lee, Nam Jong Kim, Keum Yong Kim, Sang Man Byun, Won Suk
Yang, Chang Hyun Choi, Hong Sik Jeong, Jel Hwan Yoo, Dong Il
Seo, Kinam Kim, Byung Il Ryu, and Chang Gyu Hwang. “A 4 Gb
DDR SDRAM with gain-controlled pre-sensing and reference bitline
calibration schemes in the twisted open bitline architecture”. In: 2001
IEEE International Solid-State Circuits Conference. Digest of Technical
Papers. ISSCC (Cat. No. 01CH37177). IEEE. 2001, 378.

[158] Kyu-Nam Lim, Woong-Ju Jang, Hyung-Sik Won, Kang-Yeol Lee,
Hyungsoo Kim, Dong-Whee Kim, Mi-Hyun Cho, Seung-Lo Kim,
Jong-Ho Kang, Keun-Woo Park, and Byung-Tae Jeong. “A 1.2 V
23nm 6F 2 4Gb DDR3 SDRAM with local-bitline sense amplifier,
hybrid LIO sense amplifier and dummy-less array architecture”. In:
2012 IEEE International Solid-State Circuits Conference. IEEE. 2012, 42.

[159] Hee-Bok Kang, Suk-Kyoung Hong, Heon-Yong Chang, Hae-Chan
Park, Nam-Kyun Park, Man Young Sung, Jin-Hong Ahn, and Sung-
Joo Hong. “A sense amplifier scheme with offset cancellation for
giga-bit DRAM”. In: Journal of Semiconductor Technology and Science
7.2 (2007), 67.

[160] Myoung Jin Lee. “A sensing noise compensation bit line sense am-
plifier for low voltage applications”. In: IEEE journal of solid-state
circuits 46.3 (2011), 690.



bibliography 169

[161] Yohji Watanabe, Nobuo Nakamura, and Shigeyoshi Watanabe. “Off-
set compensating bit-line sensing scheme for high density DRAM’s”.
In: IEEE journal of solid-state circuits 29.1 (1994), 9.

[162] Jinyeong Moon and Byongtae Chung. “Sense amplifier with offset
mismatch calibration for sub 1-V DRAM core operation”. In: 2010
IEEE International Symposium on Circuits and Systems (ISCAS). IEEE.
2010, 3501.

[163] Suk Min Kim, Tae Woo Oh, and Seong-Ook Jung. “Sensing voltage
compensation circuit for low-power dram bit-line sense amplifier”.
In: 2018 International Conference on Electronics, Information, and Com-
munication (ICEIC). IEEE. 2018, 1.

[164] Suk Min Kim, Byungkyu Song, and Seong-Ook Jung. “Sensing
margin enhancement technique utilizing boosted reference voltage
for low-voltage and high-density DRAM”. In: IEEE Transactions on
Very Large Scale Integration (VLSI) Systems 27.10 (2019), 2413.

[165] Jung-Won Sub, Kwang-Myoung Rho, Chan-Kwang Park, and Yo-
Hwan Koh. “Offset-trimming bit-line sensing scheme for gigabit-
scale DRAM’s”. In: IEEE Journal of Solid-State Circuits 31.7 (1996),
1025.

[166] J Park, D-H Shin, Y-H Cho, and K-W Kwon. “Inverted bit-line sense
amplifier with offset-cancellation capability”. In: Electronics Letters
52.9 (2016), 692.

[167] Alessio Spessot and Hyungrock Oh. “1T-1C dynamic random access
memory status, challenges, and prospects”. In: IEEE Transactions on
Electron Devices 67.4 (2020), 1382.

[168] Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur
Mutlu. “An experimental study of data retention behavior in mod-
ern DRAM devices: Implications for retention time profiling mecha-
nisms”. In: ACM SIGARCH Computer Architecture News 41.3 (2013),
60.

[169] Jeremie S Kim, Minesh Patel, Hasan Hassan, Lois Orosa, and Onur
Mutlu. “D-RaNGe: Using commodity DRAM devices to generate
true random numbers with low latency and high throughput”. In:
2019 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE. 2019, 582.



170 bibliography

[170] Fei Gao, Georgios Tziantzioulis, and David Wentzlaff. “Comput-
edram: In-memory compute using off-the-shelf drams”. In: Pro-
ceedings of the 52nd annual IEEE/ACM international symposium on
microarchitecture. 2019, 100.

[171] Nezam Rohbani, Sina Darabi, and Hamid Sarbazi-Azad. “PF-DRAM:
a precharge-free DRAM structure”. In: 2021 ACM/IEEE 48th Annual
International Symposium on Computer Architecture (ISCA). IEEE. 2021,
126.

[172] Nezam Rohbani, Mohammad Arman Soleimani, and Hamid Sarbazi-
Azad. “PIPF-DRAM: processing in precharge-free DRAM”. In: Pro-
ceedings of the 59th ACM/IEEE Design Automation Conference. 2022,
1075.

[173] Nezam Rohbani, Mohammad Arman Soleimani, and Hamid Sarbazi-
Azad. “CoolDRAM: An Energy-Efficient and Robust DRAM”. In:
2023 IEEE/ACM International Symposium on Low Power Electronics and
Design (ISLPED). IEEE. 2023, 1.

[174] Wongyu Shin, Jungwhan Choi, Jaemin Jang, Jinwoong Suh, Yongkee
Kwon, Youngsuk Moon, Hongsik Kim, and Lee-Sup Kim. “Q-DRAM:
Quick-access DRAM with decoupled restoring from row-activation”.
In: IEEE Transactions on Computers 65.7 (2015), 2213.

[175] Markus Kammerstetter, Markus Muellner, Daniel Burian, Christian
Platzer, and Wolfgang Kastner. “Breaking integrated circuit device se-
curity through test mode silicon reverse engineering”. In: Proceedings
of the 2014 ACM SIGSAC Conference on Computer and Communications
Security. 2014, 549.

[176] Weilie Zhou, Robert Apkarian, Zhong Lin Wang, and David Joy.
“Fundamentals of scanning electron microscopy (SEM)”. In: Scanning
Microscopy for Nanotechnology: Techniques and Applications (2007), 1.

[177] Patrick Trampert, Faysal Bourghorbel, Pavel Potocek, Maurice
Peemen, Christian Schlinkmann, Tim Dahmen, and Philipp Slusallek.
“How should a fixed budget of dwell time be spent in scanning
electron microscopy to optimize image quality?” In: Ultramicroscopy
191 (2018), 11.

[178] Carl Zeiss AB. Carl Zeiss AB. https://www.zeiss.com/. 2023.

[179] Dick James. “Recent innovations in DRAM manufacturing”. In: 2010
IEEE/SEMI Advanced Semiconductor Manufacturing Conference (ASMC).
IEEE. 2010, 264.

https://www.zeiss.com/


bibliography 171

[180] H.J. Oh, J.Y. Kim, J.H. Kim, S.G. Park, D.H. Kim, S.E. Kim, D.S. Woo,
Y.S. Lee, G.W. Ha, J.M. Park, N.J. Kang, H.J. Kim, J.S. Hwang, B.Y.
Kim, D.I. Kim, Y.S. Cho, J.K. Choi, B.H. Lee, S.B. Kim, M.H. Cho,
Y.I. Kim, J. Choi, D.W. Shin, M.S. Shim, W.T. Choi, G.P. Lee, Y.J. Park,
W.S. Lee, and B.I. Ryu. “High-density low-power-operating DRAM
device adopting 6F/sup 2/cell scheme with novel S-RCAT structure
on 80nm feature size and beyond”. In: Proceedings of 35th European
Solid-State Device Research Conference, 2005. ESSDERC 2005. IEEE.
2005, 177.

[181] Thermo Fisher Scientific Inc. Helios 5 UX DualBeam for Materials
Science. https://www.thermofisher.com/order/catalog/product/
HELIOS5UX. 2023.

[182] Comet Technologies Canada Inc. Dragonfly 2022.2. https://www.

theobjects.com/dragonfly. 2023.

[183] Tom Goldstein and Stanley Osher. “The split Bregman method for
L1-regularized problems”. In: SIAM journal on imaging sciences 2.2
(2009), 323.

[184] Antonin Chambolle. “An algorithm for total variation minimization
and applications”. In: Journal of Mathematical imaging and vision 20

(2004), 89.

[185] Thermo Fisher Scientific Inc. Avizo Software. https://www.thermofisher.
com/ch/en/home/electron-microscopy/products/software-em-3d-

vis/avizo-software.html. 2023.

[186] J. M. Park, Y. S. Hwang, S.-W. Kim, S. Y. Han, J. S. Park, J. Kim,
J. W. Seo, B. S. Kim, S. H. Shin, C. H. Cho, S. W. Nam, H. S. Hong,
K. P. Lee, G. Y. Jin, and E. S Jung. “20nm DRAM: A new beginning
of another revolution”. In: 2015 IEEE International Electron Devices
Meeting (IEDM). IEEE. 2015, 26.

[187] Nayoung Bae, Sophie Thibaut, Toshiharu Wada, Andrew Metz,
Akiteru Ko, and Peter Biolsi. “Advanced multiple patterning tech-
nologies for high density hexagonal hole arrays”. In: Advanced Etch
Technology and Process Integration for Nanopatterning X. Vol. 11615.
SPIE. 2021, 24.

[188] Takeshi Sugawara, Daisuke Suzuki, Ryoichi Fujii, Shigeaki Tawa,
Ryohei Hori, Mitsuru Shiozaki, and Takeshi Fujino. “Reversing
stealthy dopant-level circuits”. In: Cryptographic Hardware and Em-
bedded Systems–CHES 2014: 16th International Workshop, Busan, South
Korea, September 23-26, 2014. Proceedings 16. Springer. 2014, 112.

https://www.thermofisher.com/order/catalog/product/HELIOS5UX
https://www.thermofisher.com/order/catalog/product/HELIOS5UX
https://www.theobjects.com/dragonfly
https://www.theobjects.com/dragonfly
https://www.thermofisher.com/ch/en/home/electron-microscopy/products/software-em-3d-vis/avizo-software.html
https://www.thermofisher.com/ch/en/home/electron-microscopy/products/software-em-3d-vis/avizo-software.html
https://www.thermofisher.com/ch/en/home/electron-microscopy/products/software-em-3d-vis/avizo-software.html


172 bibliography

[189] Suk Min Kim, Byungkyu Song, Tae Woo Oh, and Seong-Ook Jung.
“Analysis on sensing yield of voltage latched sense amplifier for
low power DRAM”. In: 2018 14th Conference on Ph. D. Research in
Microelectronics and Electronics (PRIME). IEEE. 2018, 65.

[190] Joyce Yeung and Hamid Mahmoodi. “Robust sense amplifier design
under random dopant fluctuations in nano-scale CMOS technolo-
gies”. In: 2006 IEEE International SOC Conference. IEEE. 2006, 261.

[191] Chirag Sudarshan, Lukas Steiner, Matthias Jung, Jan Lappas, Chris-
tian Weis, and Norbert Wehn. “A novel DRAM architecture for
improved bandwidth utilization and latency reduction using dual-
page operation”. In: IEEE Transactions on Circuits and Systems II:
Express Briefs 68.5 (2021), 1615.

[192] R Jacob Baker. CMOS: circuit design, layout, and simulation. John Wiley
& Sons, 2019.

[193] Hoseok Seol, Wongyu Shin, Jaemin Jang, Jungwhan Choi, Jinwoong
Suh, and Lee-Sup Kim. “In-dram data initialization”. In: IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems 25.11 (2017),
3251.

[194] Zentel Japan Corp. Zentel Home. https://www.zentel-japan.com/.
2023.

[195] TechInsights Inc. Micron 1a DRAM Technology. https : / / www .

techinsights.com/blog/memory/micron-1a-dram-technology. 2023.

[196] Quan Deng, Lei Jiang, Youtao Zhang, Minxuan Zhang, and Jun Yang.
“DrAcc: A DRAM based accelerator for accurate CNN inference”. In:
Proceedings of the 55th annual design automation conference. 2018, 1.

[197] Mustafa F Ali, Akhilesh Jaiswal, and Kaushik Roy. “In-memory
low-cost bit-serial addition using commodity DRAM technology”.
In: IEEE Transactions on Circuits and Systems I: Regular Papers 67.1
(2019), 155.

[198] Louis L Hsu, Rajiv V Joshi, and Radens Carl. Compact dual-port
DRAM architecture system and method for making same. US Patent
6,504,204. 2003.

[199] Chirag Sudarshan, Jan Lappas, Muhammad Mohsin Ghaffar,
Vladimir Rybalkin, Christian Weis, Matthias Jung, and Norbert
Wehn. “An in-dram neural network processing engine”. In: 2019
IEEE international symposium on circuits and systems (ISCAS). IEEE.
2019, 1.

https://www.zentel-japan.com/
https://www.techinsights.com/blog/memory/micron-1a-dram-technology
https://www.techinsights.com/blog/memory/micron-1a-dram-technology


bibliography 173

[200] Ytong-Bin Kim and Tom W Chen. “Assessing merged DRAM/logic
technology”. In: Integration 27.2 (1999), 179.

[201] Shih-Lien Lu, Ying-Chen Lin, and Chia-Lin Yang. “Improving DRAM
latency with dynamic asymmetric subarray”. In: Proceedings of the
48th International Symposium on Microarchitecture. 2015, 255.

[202] Hwayong Nam, Seungmin Baek, Minbok Wi, Michael Jaemin Kim,
Jaehyun Park, Chihun Song, Nam Sung Kim, and Jung Ho Ahn. “X-
ray: Discovering DRAM Internal Structure and Error Characteristics
by Issuing Memory Commands”. In: IEEE Computer Architecture
Letters (2023).

[203] Kevin K Chang, Abhijith Kashyap, Hasan Hassan, Saugata Ghose,
Kevin Hsieh, Donghyuk Lee, Tianshi Li, Gennady Pekhimenko,
Samira Khan, and Onur Mutlu. “Understanding latency variation
in modern DRAM chips: Experimental characterization, analysis,
and optimization”. In: Proceedings of the 2016 ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer
Science. 2016, 323.

[204] Donghyuk Lee, Yoongu Kim, Gennady Pekhimenko, Samira Khan,
Vivek Seshadri, Kevin Chang, and Onur Mutlu. “Adaptive-latency
DRAM: Optimizing DRAM timing for the common-case”. In: 2015
IEEE 21st International Symposium on High Performance Computer Ar-
chitecture (HPCA). IEEE. 2015, 489.

[205] TechInsights Inc. The Semiconductor Information Platform. https://
www.techinsights.com. 2023.

[206] TechInsights Inc. Terms and Conditions – Content Licensing. https:
//www.techinsights.com/sites/default/files/2023-09/Ts%26Cs%20-

%20Content%20Licensing%202023%20-%20v1.1.pdf. 2023.

[207] Ann-Christin Bette, Patrick Brus, Gabor Balazs, Matthias Ludwig,
and Alois Knoll. “Automated defect inspection in reverse engineer-
ing of integrated circuits”. In: Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision. 2022, 1596.

[208] Ruediger Rosenkranz. “Failure localization with active and passive
voltage contrast in FIB and SEM”. In: Journal of Materials Science:
Materials in Electronics 22 (2011), 1523.

https://www.techinsights.com
https://www.techinsights.com
https://www.techinsights.com/sites/default/files/2023-09/Ts%26Cs%20-%20Content%20Licensing%202023%20-%20v1.1.pdf
https://www.techinsights.com/sites/default/files/2023-09/Ts%26Cs%20-%20Content%20Licensing%202023%20-%20v1.1.pdf
https://www.techinsights.com/sites/default/files/2023-09/Ts%26Cs%20-%20Content%20Licensing%202023%20-%20v1.1.pdf


174 bibliography

[209] Adam Kimura, Jon Scholl, James Schaffranek, Matthew Sutter, An-
drew Elliott, Mike Strizich, and Glen David Via. “A decomposition
workflow for integrated circuit verification and validation”. In: Jour-
nal of Hardware and Systems Security 4 (2020), 34.

[210] Bernhard Lippmann, Michael Werner, Niklas Unverricht, Aayush
Singla, Peter Egger, Anja Dübotzky, Horst Gieser, Martin Rasche,
Oliver Kellermann, and Helmut Graeb. “Integrated flow for reverse
engineering of nanoscale technologies”. In: Proceedings of the 24th
Asia and South Pacific Design Automation Conference. 2019, 82.

[211] Bernhard Lippmann, Niklas Unverricht, Aayush Singla, Matthias
Ludwig, Michael Werner, Peter Egger, Anja Duebotzky, Helmut
Graeb, Horst Gieser, Martin Rasche, and Oliver Kellermann. “Verifi-
cation of physical designs using an integrated reverse engineering
flow for nanoscale technologies”. In: Integration 71 (2020), 11.

[212] Matthias Ludwig, Ann-Christin Bette, and Bernhard Lippmann. “Vi-
tal: Verifying trojan-free physical layouts through hardware reverse
engineering”. In: 2021 IEEE Physical Assurance and Inspection of Elec-
tronics (PAINE). IEEE. 2021, 1.

[213] Randy Torrance and Dick James. “The state-of-the-art in IC reverse
engineering”. In: International Workshop on Cryptographic Hardware
and Embedded Systems. Springer. 2009, 363.

[214] Marc Fyrbiak, Sebastian Strauß, Christian Kison, Sebastian Wallat,
Malte Elson, Nikol Rummel, and Christof Paar. “Hardware reverse
engineering: Overview and open challenges”. In: 2017 IEEE 2nd
International Verification and Security Workshop (IVSW). IEEE. 2017, 88.

[215] Ulbert J Botero, Ronald Wilson, Hangwei Lu, Mir Tanjidur Rahman,
Mukhil A Mallaiyan, Fatemeh Ganji, Navid Asadizanjani, Mark M
Tehranipoor, Damon L Woodard, and Domenic Forte. “Hardware
trust and assurance through reverse engineering: A tutorial and
outlook from image analysis and machine learning perspectives”. In:
ACM Journal on Emerging Technologies in Computing Systems (JETC)
17.4 (2021), 1.

[216] Franck Courbon, Jacques JA Fournier, Philippe Loubet-Moundi, and
Assia Tria. “Combining image processing and laser fault injections
for characterizing a hardware AES”. In: IEEE transactions on computer-
aided design of integrated circuits and systems 34.6 (2015), 928.



bibliography 175

[217] Franck Courbon, Sergei Skorobogatov, and Christopher Woods. “Re-
verse engineering flash EEPROM memories using scanning electron
microscopy”. In: International Conference on Smart Card Research and
Advanced Applications. Springer. 2016, 57.

[218] Arunkumar Vijayakumar, Vinay C Patil, Daniel E Holcomb, Christof
Paar, and Sandip Kundu. “Physical design obfuscation of hardware:
A comprehensive investigation of device and logic-level techniques”.
In: IEEE Transactions on Information Forensics and Security 12.1 (2016),
64.

[219] M Tanjidur Rahman, Qihang Shi, Shahin Tajik, Haoting Shen, Damon
L Woodard, Mark Tehranipoor, and Navid Asadizanjani. “Physical
inspection & attacks: New frontier in hardware security”. In: 2018
IEEE 3rd International Verification and Security Workshop (IVSW). IEEE.
2018, 93.

[220] Christian Kison, Jürgen Frinken, and Christof Paar. “Finding the
aes bits in the haystack: Reverse engineering and sca using voltage
contrast”. In: Cryptographic Hardware and Embedded Systems–CHES
2015: 17th International Workshop, Saint-Malo, France, September 13-16,
2015, Proceedings 17. Springer. 2015, 641.

[221] Mirko Holler, Manuel Guizar-Sicairos, Esther HR Tsai, Roberto
Dinapoli, Elisabeth Müller, Oliver Bunk, Jörg Raabe, and Gabriel
Aeppli. “High-resolution non-destructive three-dimensional imaging
of integrated circuits”. In: Nature 543.7645 (2017), 402.

[222] Dr Franck Courbon. “In-house transistors’ layer reverse engineering
characterization of a 45nm SoC”. In: ISTFA 2018. ASM International.
2018, 272.

[223] Leonid Azriel, Julian Speith, Nils Albartus, Ran Ginosar, Avi Mendel-
son, and Christof Paar. “A survey of algorithmic methods in IC
reverse engineering”. In: Journal of Cryptographic Engineering 11.3
(2021), 299.

[224] Franck Courbon. “Practical Partial Hardware Reverse Engineering
Analysis: For Local Fault Injection and Authenticity Verification”. In:
Journal of Hardware and Systems Security 4.1 (2020), 1.

[225] Sebastian Wallat, Nils Albartus, Steffen Becker, Max Hoffmann, Maik
Ender, Marc Fyrbiak, Adrian Drees, Sebastian Maaßen, and Christof
Paar. “Highway to HAL: open-sourcing the first extendable gate-
level netlist reverse engineering framework”. In: Proceedings of the
16th ACM International Conference on Computing Frontiers. 2019, 392.



176 bibliography

[226] Raul Quijada, Roger Dura, Jofre Pallares, Xavier Formatje, Salvador
Hidalgo, and Francisco Serra-Graells. “Large-area automated layout
extraction methodology for full-ic reverse engineering”. In: Journal
of Hardware and Systems Security 2.4 (2018), 322.

[227] Hubert Kaeslin. Top-down digital VLSI design: from architectures to
gate-level circuits and FPGAs. Morgan Kaufmann, 2014.

[228] Zemo Yang and Samiha Mourad. “Crosstalk induced fault analysis
and test in DRAMs”. In: Journal of Electronic Testing 22 (2006), 173.

[229] Yoshinobu Nakagome, M Aoki, S Ikenaga, M Horiguchi, S Kimura,
Y Kawamoto, and K Itoh. “The impact of data-line interference noise
on DRAM scaling”. In: IEEE Journal of Solid-state circuits 23.5 (1988),
1120.

[230] Seyed Mohammad Seyedzadeh, Donald Kline Jr, Alex K Jones, and
Rami Melhem. “Mitigating bitline crosstalk noise in dram memo-
ries”. In: Proceedings of the International Symposium on Memory Systems.
2017, 205.

[231] Ali Fakhrzadehgan, Yale N Patt, Prashant J Nair, and Moinuddin K
Qureshi. “Safeguard: Reducing the security risk from row-hammer
via low-cost integrity protection”. In: 2022 IEEE International Sympo-
sium on High-Performance Computer Architecture (HPCA). IEEE. 2022,
373.

[232] Dayeon Kim, Hyungdong Park, Inguk Yeo, Youn Kyu Lee, Youngmin
Kim, Hyung-Min Lee, and Kon-Woo Kwon. “Rowhammer Attacks
in Dynamic Random-Access Memory and Defense Methods”. In:
Sensors 24.2 (2024), 592.

[233] Jonas Juffinger, Lukas Lamster, Andreas Kogler, Maria Eichlseder,
Moritz Lipp, and Daniel Gruss. “CSI: Rowhammer–Cryptographic
security and integrity against rowhammer”. In: 2023 IEEE Symposium
on Security and Privacy (SP). IEEE. 2023, 1702.


	Abstract
	Sommario
	Publications
	Acknowledgements
	Contents
	1 Introduction
	2 RISC-H
	2.1 Introduction
	2.2 Background
	2.3 Overview
	2.4 Reverse Engineering of DRAM Functions
	2.5 Maximizing the Activation Rate
	2.6 Enforcing Memory Requests Order
	2.7 RISC-H
	2.8 Conclusion

	3 ProTRR
	3.1 Introduction
	3.2 Background
	3.3 Threat Model
	3.4 Refresh Management in DDR5
	3.5 Feinting
	3.6 ProTRR
	3.7 Evaluation
	3.8 Discussion
	3.9 Security Analysis of Existing Schemes
	3.10 Related Work
	3.11 Conclusion
	3.12 Appendix

	4 REGA
	4.1 Introduction
	4.2 Background and Motivation
	4.3 Threat Model
	4.4 Overview
	4.5 Accurate Modeling of DRAM
	4.6 REGA
	4.7 Impact of REGAon tRAS
	4.8 REGAm
	4.9 Evaluation
	4.10 Related Work
	4.11 Conclusion
	4.12 Appendix

	5 HiFi-DRAM
	5.1 Introduction
	5.2 Background
	5.3 Overview and Challenges
	5.4 Image Acquisition and Post Processing
	5.5 Circuits Reverse Engineering
	5.6 Evaluation of Existing DRAM Research
	5.7 Related Work
	5.8 Conclusion
	5.9 Appendix

	6 Conclusion and outlook
	 Bibliography
	 References


