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Abstract

Large datasets, which become increasingly available, allow us to infer interactions between different

quantities of interest. However, one of the most fundamental truths in statistics is that “correlation

does not imply causation”. If we observe strong dependence between two variables, we still do not

know anything about their causal relation, i.e., does X cause Y , does Y cause X, or is neither true,

and the dependence is induced by a common cause? The gold standard to answer such questions is

to design and conduct a randomized experiment, where we have control over one of the variables. If

the data still shows dependence between the two, this controlled variable must be a cause.

Unfortunately, such experimental data is often unavailable in practice: it could be infeasible or

unethical to collect, or data collection simply happened before the research questions of interest were

defined. We call such data observational meaning that it does not come from a designed experiment.

In this thesis, we discuss conditions under which we can still infer some causal interpretation from

purely observational data, and we provide suitable estimation algorithms.

A promising tool to model multivariate systems are structural equation models also referred to as

structural causal models. There, one assumes that an effect variable can be modelled as a function

of its causes, which are other variables in the system, and some independent unobservable noise. In

most generality, these models do not render the causal connections identifiable: even if we collect

infinite amounts of data one cannot decide between different candidate models. But, under suitable

restrictions on the function class, i.e., the way the causes and noise interact to yield the effect, they

become identifiable.

In Chapter 1, we consider the simplest function class: the linear structural equation model, where

the effect is a linear combination of its causes and the noise. This is known to be identifiable if the

noise is non-Gaussian. We provide a novel technique called “ancestor regression” which infers the

causes of a given target variable of interest. It uses a simple trick and is computationally very easy.

Unlike existing methods, we provide asymptotic type I error guarantees against false causal claims,

and the error control also works well for finite samples. These guarantees even hold in unidentifiable

settings. We extend the method to time series data with linear causal relations in Chapter 2. After

slightly adapting the algorithm to this scenario, we can provide similar guarantees. Given the amount

of time series datasets in practice, this modification can yield a large increase in scope.

These methods, like many others, rely on the correctness of the assumed model class. In Chapter 3,

we bring this into question. We focus on a given assumed linear causal model and assess whether this

is plausible. Our well-specification test considers dependencies in higher moments which are present

in case of misspecification. It is constructed in a way that allows for a per-covariate statement, i.e.,

even if there is evidence that the overall model is not true, we could retain some causal interpretation.

We search for a subset of the predictors for which linear causal effects are compatible with the data.
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We extend these ideas to a less restrictive framework in Chapter 4. In the additive noise model,

we assume that the unobserved noise additively disturbs the effect of the causes without constrain-

ing this effect further. We design a framework to assess the well-specification of this additive noise

model, which similarly allows for an interpretation for subsets of the predictors. Due to the uncon-

strained nature of modeling the causal effects, it requires a nonparametric assessment of (conditional)

independence relations.

We consider a specific misspecification of the additive noise model in Chapter 5. Namely, what

happens if one wrongly relies on the additive noise being Gaussian? In some settings assuming

Gaussianity is known to be conservative, meaning that one may not exploit all available information

and in the worst case remains indecisive. We show that this can be a fallacy in slight variations of

these settings, i.e., wrongly relying on the noise’s distribution can lead to false causal claims.

In both Chapters 4 and 5, we discuss extensions to heteroskedastic models in which the noise

intensity can depend on the causes. More flexibility in the function class could render the model

unidentifiable. Therefore, we analyze the identifiability after this extension in Chapter 6.
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Zusammenfassung

Große Datensätze, die in zunehmendem Maße zur Verfügung stehen, ermöglichen es uns, Wechsel-

wirkungen zwischen verschiedenen interessanten Größen zu erkennen. Eine der grundlegendsten

Wahrheiten in der Statistik ist jedoch: “Korrelation ist nicht gleichbedeutend mit Kausalität”. Wenn

wir eine starke Abhängigkeit zwischen zwei Variablen beobachten, wissen wir immer noch nichts über

ihre kausale Beziehung, d.h. verursacht X Y , verursacht Y X, oder trifft beides nicht zu, und die

Abhängigkeit wird durch eine gemeinsame Ursache hervorgerufen? Der Goldstandard zur Beantwor-

tung solcher Fragen ist die Planung und Durchführung eines randomisierten Experiments, bei dem

wir eine der Variablen kontrollieren können. Wenn die Daten immer noch eine Abhängigkeit zwischen

den beiden Variablen zeigen, muss diese kontrollierte Variable eine Ursache sein.

Leider stehen solche experimentellen Daten in der Praxis oft nicht zur Verfügung: Es könnte

undurchführbar oder unethisch sein, sie zu erheben, oder die Datenerhebung erfolgte einfach, bevor

die Forschungsfragen von Interesse definiert wurden. Wir bezeichnen solche Daten als Beobachtungs-

daten, was bedeutet, dass sie nicht aus einem geplanten Experiment stammen. In dieser Arbeit

erörtern wir Bedingungen, unter denen wir aus reinen Beobachtungsdaten dennoch eine gewisse

kausale Interpretation ableiten können, und wir stellen geeignete Schätzalgorithmen zur Verfügung.

Ein vielversprechendes Mittel zur Modellierung multivariater Systeme sind

Strukturgleichungsmodelle. Sie gehen davon aus, dass eine Effektvariable als Funktion ihrer Ursachen,

also anderer Variablen im System, und eines unabhängigen und unbeobachtbaren Rauschens model-

liert werden kann. Im allgemeinsten Fall lassen sich mit diesen Modellen die kausalen Zusammenhänge

nicht erkennen: Selbst wenn wir unendlich viele Daten sammeln, kann man nicht zwischen verschiede-

nen in Frage kommenden Modellen entscheiden. Unter geeigneten Einschränkungen hinsichtlich der

Funktionsklasse, sprich der Art und Weise, wie die Ursachen und das Rauschen zusammenspielen,

um die Wirkung zu erzielen, werden sie jedoch identifizierbar.

In Kapitel 1 betrachten wir die einfachste Funktionsklasse: das lineare Strukturgleichungsmodell,

bei dem die Wirkung eine lineare Kombination aus ihren Ursachen und dem Rauschen ist. Es ist

bekannt, dass dies identifizierbar ist, wenn das Rauschen nicht normalverteilt ist. Wir stellen eine

neuartige Technik namens “Ahnen-Regression” vor, die auf die Ursachen einer bestimmten Ziel-

variable von Interesse schließen lässt. Sie verwendet einen simplen Trick und ist rechnerisch sehr

einfach. Im Gegensatz zu existierenden Methoden bieten wir asymptotische Typ-I Fehlergarantien

gegen falsche Kausalaussagen, und die Fehlerkontrolle funktioniert auch für endliche Stichproben gut.

Diese Garantien gelten sogar in nicht identifizierbaren Situationen. In Kapitel 2 erweitern wir die

Methoden auf Zeitreihendaten mit linearen kausalen Beziehungen. Nach einer leichten Anpassung des

Algorithmus an dieses Szenario können wir ähnliche Garantien geben. In Anbetracht der Menge an

Zeitreihendaten, die man in der Praxis antrifft, kann diese Erweiterung das Anwedungsgebiet stark
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vergrössern.

Diese Methoden beruhen, wie viele andere auch, auf der Korrektheit der angenommenen Modell-

klasse. In Kapitel 3 stellen wir dies in Frage. Wir konzentrieren uns auf ein gegebenes angenommenes

lineares kausales Modell und beurteilen, ob dieses plausibel ist. Unser Spezifikationstest berücksichtigt

Abhängigkeiten in höheren Momenten, die im Falle einer Fehlspezifikation vorhanden sind. Er ist so

konstruiert, dass er eine Aussage pro Kovariate zulässt, d.h., selbst wenn es Hinweise darauf gibt, dass

das Gesamtmodell nicht wahr ist, können wir eine gewisse kausale Interpretation beibehalten. Wir

suchen nach einer Teilmenge der Prädiktoren, für die lineare kausale Effekte mit den Daten vereinbar

sind.

In Kapitel 4 erweitern wir diese Ideen auf ein weniger restriktives Modell. Im Modell des

additiven Rauschens gehen wir davon aus, dass das unbeobachtete Rauschen den Effekt der Ursachen

additiv perturbiert, ohne die Form dieses Effekts weiter einzuschränken. Wir entwerfen eine Methode

zur Bewertung der korrekten Spezifikation dieses Modells mit additivem Rausch, welche ebenfalls

eine Interpretation für Teilmengen der Prädikatoren ermöglicht. Da die Modellierung der kausalen Ef-

fekte nicht eingeschränkt ist, ist eine nichtparametrische Bewertung der (bedingten) Unabhängigkeits-

beziehungen erforderlich.

In Kapitel 5 betrachten wir eine spezielle Fehlspezifikation des Modells des additiven Rauschens.

Nämlich, was passiert, wenn man sich fälschlicherweise darauf verlässt, dass das additive Rauschen

normalverteilt ist? In einigen Szenarien ist die Annahme der Gauß’schen Verteilung als konservativ

bekannt, was bedeutet, dass man nicht alle verfügbare Information ausnutzt und im schlimmsten Fall

unentschlossen bleibt. Wir zeigen, dass dies in leichten Variationen dieser Szenarien ein Trugschluss

sein kann. Fälschlicherweise eine Annahme über die Verteilung des Rauschens zu treffen, kann zu

falschen Kausalaussagen führen.

In den beiden Kapiteln 4 und 5 diskutieren wir Erweiterungen auf heteroskedastische Modelle, in

denen die Rauschintensität von den Ursachen abhängen kann. Mehr Flexibilität in der Funktions-

klasse könnte dazu führen, dass das Modell nicht mehr identifizierbar ist. Daher analysieren wir die

Identifizierbarkeit nach dieser Erweiterung in Kapitel 6.
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Chapter 1

Ancestor regression in linear structural

equation models

Christoph Schultheiss and Peter Bühlmann

Biometrika 110 (4), 1117-1124.

Abstract

We present a new method for causal discovery in linear structural equation models. We propose

a simple “trick” based on statistical testing in linear models that can distinguish between ancestors

and non-ancestors of any given variable. Naturally, this can then be extended to estimating the

causal order among all variables. We provide explicit error control for false causal discovery, at

least asymptotically. This holds true even under Gaussianity, where other methods fail due to non-

identifiable structures. These type I error guarantees come at the cost of reduced empirical power.

Additionally, we provide an asymptotically valid goodness of fit p-value to assess whether multivariate

data stems from a linear structural equation model.
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1.1 Introduction

We propose a very simple yet effective method to infer the ancestor variables in a linear structural

equation model from observational data.

Consider a response variable of interest Y and covariates X in a linear structural equation

model. The procedure is as follows. For a nonlinear function f(·), for example f(Y ) = Y 3, run

a least squares regression of f(Y ) versus Y and all covariates X: the p-value corresponding to

the k-th covariate Xk is measuring the significance that Xk is an ancestor variable of Y , and it

provides type I error control.

We refer to this method as ancestor regression. Its power (i.e., type II error) depends on the nature of

the underlying data-generating probability distribution. Obviously, the proposed method is extremely

simple and easy to be used; yet, it deals with the difficult problem of finding the causal order among

random variables. In particular, the proposed method does not need any new software and it is

computationally very efficient.

Structure search methods based on observational data for the graphical structure in linear struc-

tural equation models have been developed extensively for various settings: for the Markov equivalence

class in linear Gaussian structural equation models (Spirtes et al., 2000, Chapter 5.4.2; Chickering,

2002) or for the single identifiable directed acyclic graph in non-Gaussian linear structural equation

models (Shimizu et al., 2006; Gnecco et al., 2021) or for models with equal error variances (Peters and

Bühlmann, 2014). None of the methods comes with p-values and type I error control. In addition, for

the identifiable cases, the corresponding algorithms require certain assumptions such as non-Gaussian

errors. Particularly, the method from Shimizu et al. (2006) and extensions thereof are not consistent

when there are at least two normally distributed additive error terms involved such that false causal

claims cannot be avoided even in the large sample limit. If the errors are just slightly non-Gaussian,

the method requires very many samples to achieve a favorable behavior. In contrast, our procedure

does not rely on any condition apart from linearity, but automatically exploits whether the structure

is identifiable or not. In the latter case, we miss out on some causal relationships but our type I error

control retains the same asymptotic guarantees. The price to pay for these guarantees is a reduced

empirical power compared to competing methods, sometimes being substantial.

Regarding notation, we use upper case letters to denote a random variable, e.g., X or Y . We use

lower case letters to denote i.i.d. copies of a random variable, e.g., x. If X ∈ Rp, then x ∈ Rn×p.
With a slight abuse of notation, x can either denote the copies or realizations thereof. We write xj

to denote the j-th column of matrix x and xi,j to denote the element in row i and column j. With

←, we emphasize that an equality between random variables is induced by a causal mechanism. All

proofs are given in Section 1.A in the supplementary material.
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1.2 Ancestor regression

1.2.1 Model and method

Let X ∈ Rp be given by the following linear structural equation model

Xj ← Ψj +
∑

k∈PA(j)

θj,kXk j = 1, . . . , p, (1.1)

where the Ψ1, . . . ,Ψp are independent and centered random variables. We assume that 0 < var(Ψj) =

σ2
j <∞ ∀j such that the covariance matrix of X exists and has full rank. We use the notation PA(j),

CH(j), AN(j) and DE(j) for j’s parents, children, ancestors, and descendants. Further, assume that

there exists a directed acyclic graph (DAG) representing this structure.

Let Xj with j ∈ {1, . . . , p} be a variable of interest; it has been denoted as response Y in Section

1.1. Consider a nonlinear function f(·). The following result describes the population property of

ancestor regression, with general function f(·).

Theorem 1.1. Assume that the data X follows the model (1.1). Consider the ordinary least squares

regression f(Xj) versus X, denote the according OLS parameter by βf,j := E
(
XX>

)−1E{Xf(Xj)}
and assume that it exists. Then,

βf,jk = 0 ∀k 6∈ {AN(j) ∪ j}.

Importantly, Xj itself must also be included in the set of predictors. The beauty of Theorem 1.1

lies in the fact that no assumptions on the distribution of the Ψl or the size of the θl,k, apart from

existence of the moments, must be taken for any l and k ∈ {1, . . . , p}. This allows one to control

against false discovery of ancestor variables.

Typically, βf,jk 6= 0 holds for ancestors since a nonlinear function of that ancestor cannot be

completely regressed out by the other regressors using only linear terms. For ancestors that are much

further upstream, this effect might become vanishingly small. However, this is not such an issue since

when fitting a linear model using the detected ancestors, those indirect ancestors are assigned a direct

causal effect of 0 anyway.

Based on Theorem 1.1, we suggest testing for βf,jk 6= 0 in order to detect some or even all ancestors

of Xj . Doing so for all k, requires nothing more than fitting a multiple linear model and using its

corresponding z-tests for individual covariates.

Let x ∈ Rn×p be n i.i.d. copies from the model (1.1). Define the following quantities

β̂f,j :=
(
x>x

)−1
x>f(xj), σ̂2 :=

∥∥∥f(xj)− xβ̂f,j
∥∥∥2

2

n− p
and v̂ar

(
β̂f,jk

)
=
(
x>x

)−1

k,k
σ̂2,

(1.2)
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where f(·) is meant to be applied elementwise in f(xj).

Theorem 1.2. Assume that the data X follows the model (1.1), E
{
f(Xj)

2
}
< ∞, E

(
X4
k

)
< ∞ ∀k

and βf,j exists. Let x be n i.i.d copies thereof. Using the definitions from (1.2), it then holds

β̂f,jk = βf,jk + Op(1), v̂ar
(
β̂f,jk

)
= Op

(
1

n

)
and

zjk :=
β̂f,jk√

v̂ar
(
β̂f,jk

) D→ N (0, 1) ∀k 6∈ {AN(j) ∪ j}.

Due to this limiting distribution, we suggest testing the null hypothesis H0,k→j : k 6∈ AN(j) with

the p-value

pjk = 2
{

1− Φ
(
|zjk|
)}
, (1.3)

where Φ(·) denotes the cumulative distribution function of the standard normal distribution.

For ancestors, for which βf,jk 6= 0, the absolute z-statistic increases as
√
n. In typical setups, one

can thus detect all ancestors. Having found all ancestors, one could infer the parents with an ordinary

least squares regression of Xj versus XAN(j), using the t-test for assigning the significance of being a

parental variable. Such a procedure might have poor error control for low sample sizes as it requires

full power in the first step to detect all ancestors; we provide error control only for the estimated

ancestral set.

The choice of f(·) has an impact on the constant in the growth of zjk for ancestors. If the Ψl are

symmetric, any even function yields βf,jk = 0 ∀k. Therefore, odd functions should be used. In our

simulations and the real data analysis, we use f(Xj) = X3
j as it is the simplest odd function that only

invokes slightly higher moments than linear functions. This choice leads to empirically competitive

performance relative to other candidates in our simulations.

1.2.2 Adversarial setups

There are cases where βf,jk 6= 0 does not hold true for some ancestors leading to reduced power of the

method. We provide necessary and sufficient conditions for this and present examples. Define first

the j-restricted Markov boundary of k to be

MA→j(k) :=

PA(k) ∪ CH(k) ∪
⋃

l∈CH(k)

{PA(l) \ k}

 ∩ {AN(j) ∪ j}.

It contains all the variables in the Markov boundary of k which are ancestors of j or j itself. E.g., if

k ∈ AN(j) all its parents are in the restricted Markov boundary, but not necessarily all its children.
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Theorem 1.3. Let k ∈ AN(j). Then,

βf,jk = 0 ∀f(·) if and only if E(Xk | Xj) = E
(
X>

MA→j(k)
γj,k | Xj

)
,

where γj,k is the least squares parameter for regressing Xk versus XMA→j(k). In particular,

βf,jk = 0 ∀f(·) if E
(
Xk | XMA→j(k)

)
= X>

MA→j(k)
γj,k.

Intuitively speaking, if the conditional expectation of Xk given the j-restricted Markov boundary

is linear, k could also be a child of all these variables. Thus, it is not detectable as ancestor of j. In

the following, we present two examples that fulfil the conditions of Theorem 1.3. These are the only

examples we know of.

Gaussian Ψ. It is well-known in causal discovery for linear structural equation models that Gaussian

error terms lead to non-identifiability.

Define

CH→j(k) := [CH(k) ∩ {AN(j) ∪ j}],

i.e., the children of k through which a directed path from k to j begins.

Proposition 1.1. Assume that the data X follows the model (1.1). Let k ∈ AN(j) with

Ψk ∼ N
(
0, σ2

k

)
. Then, it holds

βf,jk = 0 ∀f(·) if Ψl ∼ N
(
0, σ2

l

)
∀l ∈ CH→j(k).

Under the additional assumptions of Theorem 1.2,

zjk :=
β̂f,jk√

v̂ar
(
β̂f,jk

) D→ N (0, 1).

Thus, if every directed path from k to j starts with an edge for which the nodes on both ends have

Gaussian noise terms, we have no power to detect this ancestor relationship. However, we neither

detect the opposite direction as guaranteed by Theorem 1.1, and thus, control against false positives

is guaranteed.

Special constellation of distributions and coefficients. A pathological case occurs if a child’s,

say, l, error term has the same distribution as the inherited contribution from the parent’s, say, k,

error term. Then, k is not detectable as l’s ancestor. Likewise, it is not detected as ancestor of any

of l’s descendants j to which all directed paths from k start with the edge k → l.
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Proposition 1.2. Assume that the data X follows the model (1.1). Let k ∈ AN(j) and

CH→j(k) = {l}. Then, it holds

βf,jk = 0 ∀f(·) if Ψl
D
= θl,kΨk.

For the variables discussed here, the limiting Gaussian distribution as stated in Theorem 1.2 is

not guaranteed even though βf,jk = 0; see also the proof in the supplemental material.

1.2.3 Simulation example

We study ancestor regression in a small simulation example. We generate data from a linear structural

equation model with 6 variables. The causal order is fixed to be X1 to X6. Otherwise, the structure

is randomized and changes per simulation run: Xk is a parent of Xl for k < l with probability 0.4

such that there is an average of 6 parental relationships. The edge weights are sampled uniformly

and the Ψk are assigned by permuting a fixed set of 6 error distributions. The full data generating

process can be found in Section 1.C of the supplementary material.

We aim to find the ancestors of X4 which can be any subset of {X1, X2, X3}. We create 1000

different setups and test each on sample sizes varying from 102 to 106. As a nonlinear function, we use

f(Xj) = X3
j . By z-statistic, we mean z4

k as defined in Theorem 1.2. We calculate p-values according

to (1.3) and apply a Bonferroni-Holm correction (without cutting off at 1 for the sake of visualization)

to them.

In Figure 1.1, we see the desired
√
n-growth of the absolute z-statistic for the ancestors, while for

the non-ancestors their sample averages are close to the theoretical mean under the asymptotic null

distribution. Indirect ancestors are harder to detect than parents. Although the null distribution

is only asymptotically achieved, the type I family-wise error rate is controlled for every sample size,

supporting our method’s main benefit, i.e., robustness against false causal discovery.

1.3 Ancestor detection in networks: nodewise and recursive

1.3.1 Algorithm and goodness of fit test

In the previous section, we assumed that there is a (response) variable Xj that is of special interest.

This is not always the case. Instead, one might be interested in inferring the full set of causal

connections between the variables. Naturally, our ancestor detection technique can be extended to

that problem by applying it nodewise. We suggest the procedure sketched below. The detailed

algorithm can be found in Section 1.B of the supplementary material. Notably, the algorithm is

invariant to the ordering of the variables.

First, the set of ancestors is defined based on the significant p-values, after multiplicity correction

over all p(p− 1) z-tests, of ancestor regression. Any correction controlling the type I family-wise

6



Figure 1.1: Detecting the ancestors of X4 in a linear structural equation model with 6 variables.
The results are based on 1000 simulation runs. On the left: Average absolute z-statistic for all
ancestors (circles, black), parents (triangles, red), non-parental ancestors (pluses, green), and non-
ancestors (crosses, blue) for different sample sizes. The dashed diagonals correspond to

√
n-growth

fitted to perfectly match at n = 105. The horizontal line corresponds to (2/π)1/2, i.e., the first
absolute moment of the asymptotic null distribution, a standard Gaussian. On the right: fraction
of simulation runs with at least one false causal detection versus fraction of detected ancestors for
the different sample sizes 102 (solid, black), 103 (dashed, red), 104 (dotted, green), 105 (dot-dashed,
blue), and 106 (long-dashed, pink). The curve uses the level α of the test as implicit curve parameter.
The pluses correspond to nominal α = 5%. The vertical line is at actual 5%.

error rate is applicable, and we use here Bonferroni-Holm. Next, further ancestral relationships are

constructed recursively by adding the estimated ancestors of every estimated ancestor. This recursive

construction facilitates the detection of all ancestors. This procedure cannot increase the type I

family-wise error rate compared to just using the significant p-values because a false causal discovery

can only be propagated if it existed in the first place.

Since there is no guarantee that the recursive construction does not create directed cycles, i.e.,

variables are claimed to be their own ancestors, we need to address this. If such cycles are found,

the significance level is gradually reduced until no more directed cycles are outputted. This means

that the output becomes somewhat independent of the significance level, e.g., in a case with two

variables and p2
1 = 10−6 and p1

2 = 10−3 as in (1.3), we would never claim X2 → X1 no matter how

large α is chosen. We denote the estimated set of ancestors for Xj by ÂN(j). Notably, the algorithm

determines a causal order between the variables but does not always lead to a unique parental graph.

For instance, if ÂN(3) = {1, 2} and ÂN(2) = {1}, X1 might be a causal parent of X3 but its effect

could also be fully mediated by X2.

One can consider the largest significance level such that no loops are created as a p-value for the
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null hypothesis that the modeling assumption (1.1) holds true. We denote this level, which is a further

output of our algorithm, by α̂. Thus, we provide a goodness of fit test for our modelling assumption

with an asymptotically valid p-value: a small realized α̂ would provide evidence against the linear

structural equation model in (1.1). If such evidence exists, it is advisable to take the outcome of

ancestor regression or other causal discovery methods relying on linear structural equation models

with a grain of salt. We make use of this p-value in the data analysis in Section 1.4. We summarize

the properties of our algorithm.

Corollary 1.1. Assume that the conditions of Theorem 1.2 hold ∀j ∈ {1, . . . , p}. Let

ÂN(j) ∀j ∈ {1, . . . , p} and α̂ be the output of the nodewise ancestor regression algorithm with

significance level α and Bonferroni-Holm correction. Then, it holds

lim
n→∞

P
{
∃j, k 6= j : k 6∈ AN(j) and k ∈ ÂN(j)

}
≤ α and lim

n→∞
P
(
α̂ ≤ α′

)
≤ α′ ∀α′ ∈ (0, α).

1.3.2 Simulation example

We extend the simulation from Section 1.2.3 to estimating the ancestors of each variable using the

algorithm described in Section 1.3.1. We compare our method to LiNGAM (Shimizu et al., 2006)

using the implementation provided in the R-package pcalg (Kalisch et al., 2012). For every simulation

run, we use two slighlty different data generating processes. In the first, only one of the Ψk follows

a Gaussian distribution, in the second, there are two error terms with normal distribution and an

edge between the two respective nodes is always present. As LiNGAM provides an estimated set

of parents, we additionally apply our recursive algorithm to the output to get an estimated set of

ancestors which enables comparison with our method.

The results are shown in Figure 1.2. For the model with only one Gaussian error variable, we

can reliably detect almost all ancestors without any false causal claims for large enough sample sizes.

The few exceptions can be explained as some setups can be very close to the non-identifiable case

discussed in Proposition 1.2. Not all curves reach a power of 1 even when letting the significance level

become arbitrarily large. This can be explained by the possible insensitivity to the significance level,

as sketched in Section 1.3.1.

We are able to control the family-wise error rate even for low sample size using a nominal size of

α = 5% supporting our theoretical results. This is not the case for LiNGAM. LiNGAM is designed

such that it always must determine a causal order based on the underlying independent component

analysis (Hyvarinen, 1999) even when sufficient information is not available. Therefore, no type I

error guarantees can be provided. The power of LiNGAM approaches 1 much faster than ancestor

regression and if one allows for a bit more liberate type I error, LiNGAM appears preferable in the

model with one Gaussian noise term. The picture changes when looking at slight violations of the
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Figure 1.2: Nodewise ancestor detection in a linear structural equation model with 6 variables. The
results are based on 1000 simulation runs. Depicted is the family-wise error rate of false causal
detection versus the fraction of detected ancestors. The curves use the level of the test α as implicit
curve parameter. The pluses correspond to nominal α = 5%. The vertical line is at actual 5%. The
other symbols correspond to the performance of the LiNGAM algorithm. We consider the different
sample sizes 102 (solid / square, black), 103 (dashed / circle, red), 104 (dotted / triangle pointing
upward, green), 105 (dot-dashed / diamond, blue), and 106 (long-dashed / triangle pointing downward,
pink). On the left: exactly 1 error term follows a Gaussian distribution. On the right: exactly 2 error
terms follow a Gaussian distribution.

LiNGAM assumption, i.e., another Gaussian error term. LiNGAM is still more powerful but does not

control the error at all. No matter the sample size, a wrong causal claim is made in around 40% of

the setups. Ancestor regression is more robust to this deviation as the type I error guarantees do not

require non-Gaussian error terms. For the unidentifiable edges, it avoids making any decision and can

control the error rate at any desired level at the price of some power reduction. In this simulation,

Proposition 1.1 applies to around 14% of the ancestral connections.

We provide additional simulation results for settings varying between non-Gaussian and Gaussian

scenarios in Section 1.D in the supplementary material. When being close to the fully Gaussian case,

despite satisfying the LiNGAM assumption (Shimizu et al., 2006) in population, this clearly worsens

the performance of LiNGAM for finite sample size.

1.4 Real data example

We analyze the flow cytometry dataset presented by Sachs et al. (2005). It contains cytometry

measurements of 11 phosphorylated proteins and phospholipids. Data is available from various ex-

perimental conditions, some of which are interventional environments. The authors provide a “ground

truth” on how these quantities affect each other, the so-called consensus network. The dataset has
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been further analyzed in various follow-up papers, see, e.g., Mooij and Heskes (2013) and Taeb et al.

(2023). Following these works, we consider data from 8 different environments, 7 of which are inter-

ventional. The sample size per environment ranges from 707 to 913.

For each environment individually, we estimate the ancestral relationships using our recursive

algorithm sketched in Section 1.3.1 with nonlinear function f(Xj) = X3
j and α = 0.05. The goodness

of fit p-value α̂ per environment, but corrected for the number of environments, ranges from 0.14 to

3×10−12. All but one p-value are lower than 0.04, indicating for these environments that the data does

not follow the model (1.1). The deviation can be in terms of hidden variables, nonlinear effects, or noise

that is not additive. While the before mentioned and other published findings usually result in one

graph harmonized over different environments, our highly varying results across environments suggest

to question a standard “autonomy assumption” in causality (Aldrich, 1989) that an intervention does

not change the underlying graph (except for edges that point into the intervened node).

Subsequently, we focus on the environment with the highest α̂ which seems to be most conformable

with a linear structural equation model. The dataset contains 723 observations. For each node, we fit

a linear model using the claimed set of ancestors as predictors to see which ancestors might be direct

parents. We summarize our findings in Table 1.1. Most ancestors show indication of being direct

parents. However, as laid out in Section 1.2.1, we do not have type I error guarantees for finding

parents in case some ancestors are missing.

For comparison, we show what conclusion the consensus network as well as Mooij and Heskes

(2013) draw for these edges. Our method is in agreement with at least one of these works except for

Causal effect ancestor regression linear regression SC MH

PIP3 → PIP2 3.3e-39 5.5e-43 −→ −→
PIP3 → PLCg 6.7e-39 1.4e-36 −→ 99K
PKA → Erk 2.9e-26 7.2e-2 −→ 99K
JNK → p38 6.6e-20 2.4e-19 – –
PKA → Akt 7.2e-20 9.4e-4 −→ −→
JNK → PKC 1.2e-16 5.1e-88 ←− ←−
RAF → MEK 5.4e-15 0 −→ ←−
PKC → p38 3.1e-13 0 −→ −→
Akt → Erk 7.6e-07 0 – −→

Table 1.1: Analysis of the dataset by Sachs et al. (2005). The second column reports the raw p-value
from ancestor regression, pjk, associated with this edge and the third column the raw p-value from
the subsequent linear model fit. The rows are ordered by the p-value from ancestor regression from
low to high. We present the conclusions of the consensus network in Sachs et al. (2005) (column SC)
and the method from Mooij and Heskes (2013) (column MH): the edge is present (−→), there exists
a directed path with the same orientation but no edge (99K), the edge is reversed (←−), there is no
directed path (-).
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the two edges coming from JNK. One of the indirect paths in Mooij and Heskes (2013) corresponds

to the highest p-value in the linear model fit, which is a further agreement. Our outputted ancestral

graph, see Figure 1.3, consists of 4 disconnected components. When considering these components

individually, we note that the part containing JNK, where we receive somewhat unexpected findings,

has the strongest indication of violating the model assumptions in terms of the goodness of fit p-value

α̂.

PIP3

PIP2 PLCg PKC

JNK

p38

PKA

Akt

Erk

RAF

MEK

Figure 1.3: Ancestral relations for flow cytometry data obtained with ancestor regression
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1.A Proofs

1.A.1 Additional notation

We introduce additional notation that is used for these proofs.

Subindex −k, e.g., x−k denotes a matrix with all columns but the k-th. In is the n-dimensional

identity matrix. P−k denotes the orthogonal projection onto x−k and P⊥−k = In − P−k denotes the

orthogonal projection onto its complement. Px is the orthogonal projection onto all x.

For some random vector X, we have the moment matrix ΣX := E
(
XX>

)
. This equals the

covariance matrix for centered X. We assume this matrix to be invertible. Then, the principal

submatrix ΣX
−j,−j := E

(
X−jX

>
−j

)
is also invertible. We denote statistical independence by ⊥.

1.A.2 Previous work

We adapt some definitions from and results proven in Schultheiss et al. (2024), see also Section 3.2.2.

Zk := Xk −X>−kγk, where

γk := argmin
b∈Rp−1

E
{(

Xk −X>−kb
)2
}

=
(
ΣX
−k,−k

)−1E(X−kXk),

Wk := f(Xj)−X>−kζk, where

ζk := argmin
b∈Rp−1

E
{(

f(Xj)−X>−kb
)2
}

=
(
ΣX
−k,−k

)−1E{X−kf(Xj)}.

(1.4)

Using these definitions, we have βf,jk = E(ZkWk)/E
(
Z2
k

)
= E{Zkf(Xj)}/E

(
Z2
k

)
from partial regres-

sion. We cite a Lemma fundamental to our results, see also Lemma 3.5 in Section 3.B.7.

Lemma 1.1. Assume that the data follows the model (1.1) without hidden variables. Then,

Zk = δk,kΨk +
∑

l∈CH(k)

δk,lΨl k = 1, . . . , p

for an appropriate set of parameters. Further, the support of γj (cf. (1.4)) is restricted to j’s Markov

boundary.

1.A.3 Proof of Theorem 1.1

Let Ψ = (Ψ1, . . . ,Ψp)
>. Then, we can write X = ωΨ for a suitable ω with ωlk = 0 if l 6∈ {DE(k) ∪ k}.

We can now find βf,j using this representation.

βf,j = E
(
XX>

)−1
E{Xf(Xj}) =

(
ω−1

)>E(ΨΨ>
)−1

ω−1ωE{Ψf(Xj)}

=
(
ω−1

)>
diag

{
1

E
(
Ψ2

1

) , . . . , 1

E
(
Ψ2
p

)}E{Ψf(Xj)} =
(
ω−1

)>[E{Ψ1f(Xj)}
E
(
Ψ2

1

) , . . . ,
E{Ψpf(Xj)}

E
(
Ψ2
p

) ]>
.
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The third equality follows from the independence of the Ψl. Naturally, for all l 6∈ {AN(j) ∪ j} we

have Ψl ⊥ Xj such that E{Ψlf(Xj)} = 0. Further, ω−1
lk = 0 if l 6∈ {DE(k) ∪ k}. To see this, note

that ω would be lower triangular, if 1, . . . , p denoted a causal order. Then, its inverse would be lower

triangular as well. Naturally, the same principle applies for every other permutation. Thus,

βf,jk =
∑
l

ω−1
lk

E{Ψlf(Xj)}
E
(
Ψ2
l

) =
∑

l∈{DE(k)∪k}

ω−1
lk

E{Ψlf(Xj)}
E
(
Ψ2
l

) =
∑

l∈[{DE(k)∪k}∩{AN(j)∪j}]

ω−1
lk

E{Ψlf(Xj)}
E
(
Ψ2
l

)
such that βf,jk = 0 if {DE(k) ∪ k} ∩ {AN(j) ∪ j} = ∅, i.e., if k is not an ancestor of j.

Alternatively, we could invoke Lemma 1.1 to see that Zk ⊥ Xj for a non-ancestor k. Then,

βf,jk = E{Zkf(Xj)}/E
(
Z2
k

)
= 0

1.A.4 Proof of Theorem 1.2

Define

f(Xj) := X>βf,j + E , ẑk = P⊥−kxk and ŵk = P⊥−kf(xj) such that β̂f,jk =
ẑ>j ŵj

ẑ>j ẑj
.

Since we assume the covariance matrix to be bounded, we find

1

n
x>−kx−k

P→ ΣX
−k,−k =⇒ n

(
x>−kx−k

)−1 P→
(
ΣX
−k,−k

)−1

=⇒
∥∥∥∥n(x>−kx−k)−1

∥∥∥∥ P→
∥∥∥(ΣX

−k,−k
)−1
∥∥∥ = O(1),

where we use invertibility and the continuous mapping theorem. This then implies

|z>k P−kwk| = |z>k x−k
(
x>−kx−k

)−1
x>−kwk| ≤

∥∥∥z>k x−k∥∥∥
2

∥∥∥∥(x>−kx−k)−1
∥∥∥∥

2

∥∥∥x>−kwk∥∥∥
2

≤
∥∥∥z>k x−k∥∥∥

1

∥∥∥∥(x>−kx−k)−1
∥∥∥∥

2

∥∥∥x>−kwk∥∥∥
1

=
∑
l 6=k
|z>k xl|

∥∥∥∥(x>−kx−k)−1
∥∥∥∥

2

∑
l 6=k
|x>l wk|

= Op
(√
n
)
Op
(

1

n

)
Op(n) = Op

(√
n
)

and analogously

|z>k P−kzk| = Op
(√
n
)
Op
(

1

n

)
Op
(√
n
)

= Op(1).

13



We get a better rate for |z>k xl| than for |x>l wk| since we assume existence of the fourth moments.

Then,

1

n
ẑ>k ŵk =

1

n
z>k P

⊥
−kwk =

1

n

(
z>k wk − z>k P−kwk

)
=

1

n
z>k wk + Op

(
1√
n

)
= E(ZkWk) + Op(1),

1√
n
ẑ>k ŵk =

1√
n
z>k wk + Op(1)

D→ N{E(ZkWk), var(ZkWk)} and

1

n
ẑ>k ẑk =

1

n
z>k P

⊥
−kzk =

1

n

(
z>k zk − z>k P−kzk

)
=

1

n
z>k zk +Op

(
1

n

)
= E

(
Z2
k

)
+ Op(1).

(1.5)

The second line is restricted to covariates for which this variance exists, which includes all non-

ancestors as Zk ⊥Wk. Using Slutsky’s theorem, we have

β̂f,jk =
E(ZkWk)

E
(
Z2
k

) + Op(1) = βf,jk + Op(1) ∀k and

√
nβ̂f,jk

D→ N

{
0,

E
(
W 2
k

)
E
(
Z2
k

) }∀k 6∈ {AN(j) ∪ j},
(1.6)

which proves the first part of the theorem.

It remains to consider the variance estimate. Similar to above, we have

n
(
x>x

)−1

kk

P→
(
ΣX
)−1

kk
≡ 1

E
(
Z2
k

) = O(1).

Further,

σ̂2 =

∥∥∥f(xj)− xβ̂f,j
∥∥∥2

2

n− p
:=

1

n− p
ε̂>ε̂ =

1

n− p
ε>P⊥x ε =

1

n− p

(
ε>ε− ε>Pxε

)
.

Similar to before

1

n− p
|ε>Pxε| =

1

n− p
Op(n)Op

(
1

n

)
Op(n) = Op(1) such that

σ̂2 =
1

n− p
ε>ε+ Op(1) = E

(
E2
)

+ Op(1) = Op(1).

Combined, we find

nv̂ar
(
β̂f,jk

)
= Op(1)↔ v̂ar

(
β̂f,jk

)
= Op

(
1

n

)
,

proving the second part of the theorem.
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For non-ancestors, βf,jk = 0 such that Wk = E . Then,

nv̂ar
(
β̂f,jk

)
=

E
(
E2
)

E
(
Z2
k

) + Op(1) =
E
(
W 2
k

)
E
(
Z2
k

) + Op(1)

such that the last statement of Theorem 1.2 follows again from Slutsky’s theorem and (1.6).

1.A.5 Proof of Theoren 1.3

We generally have the following identity

E{Xlf(Xj)} = E{E(Xl | Xj)f(Xj)}.

Consider first the simpler case where the j-restricted Markov boundary is the full Markov bound-

ary, i.e., all children of k are ancestors of j or j itself. Let Ω := E
(
XX>

)−1
and Ωkk := dk. Then, we

have the off-diagonal elements

Ωkl =

−dkγ
j,k
l if l ∈ MA→j(k)

0 otherwise
,

which is a standard fact from least squares regression. Thus,

βf,jk =

p∑
l=1

ΩklE{Xlf(Xj)} = dkE{Xkf(Xj)} − dk
∑

l∈MA→j(k)

γj,kl E{Xlf(Xj)}

= dkE{E(Xk | Xj)f(Xj)} − dk
∑

l∈MA→j(k)

γj,kl E{E(Xl | Xj)f(Xj)}

= dkE

E

Xk −
∑

l∈MA→j(k)

γj,kl Xl | Xj

f(Xj)


This quantity is 0 for all possible f(·) iff the conditional expectation is the constant 0-function. The

if-statement is trivial. For the only if, note that one could choose

f(Xj) = E

Xk −
∑

l∈MA→j(k)

γj,kl Xl | Xj


leading to a nonzero expectation unless f(Xj) ≡ 0. Using

E(Xk | Xj) = E
{
E
(
Xk | Xj , XMA→j(k)

)
| Xj

}
= E

{
E
(
Xk | XMA→j(k)

)
| Xj

}
,
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the last part of the theorem follows directly.

For the general case, note that for l in the difference between the Markov boundary and the

j-restricted Markov boundary, βf,jl = 0 ∀f(·) follows from Theorem 1.1. Thus, the least squares

parameter for k and r ∈ MA→j(k) is the same as if these variables did not exist. Therefore, the result

for the general case follows directly from the simpler case discussed above.

1.A.6 Proof of Proposition 1.1

Consider the least squares solution when only the variables from the restricted Markov boundary are

the predictors. From Lemma 1.1, we get that the residuum, say Z̃k is a linear combination of Ψk and

Ψl for l ∈ CH→j(k). For every r ∈ MA→j(k),

Xr =
∑

t∈{AN(r)∪r}

ωrtΨt,

and, dependence with Z̃k could only be induced by

X̃r =
∑

t∈{AN(r)∪r}∩{CH→j(k)∪k}
ωrtΨt.

By the least squares property, X̃r and Z̃k are uncorrelated. By the Gaussianity of Ψk and Ψl, this

implies independence. Thus, Z̃k is independent from all Xr such that the linear least squares fit is

also the conditional expectation. Thus, the sufficient condition from Theorem 1.3 for βf,jk = 0 holds.

Due to Gaussianity and Lemma 1.1, Zk is independent from CH→j(k), their descendants, and all

its non-descendants. Therefore, it is also independent from

E = Wk = f(Xj)−X{AN(j)∪j}\kβ
f,j
{AN(j)∪j}\k

such that the variance as in (1.5) is consistently estimated.

1.A.7 Proof of Proposition 1.2

Decompose the conditional expectation as

E
(
Xk | XMA→j(k)

)
= E

Ψk +
∑

r∈PA(k)

θk,rXr | XMA→j(k)

 = E
(

Ψk | XMA→j(k)

)
+

∑
r∈PA(k)

θk,rXr
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Recall the definition CH→j(k) = {l}. Then,

Xl = E(Xl | Xl) = E
(
Xl | XMA→j(k)

)
= E

Ψl + θl,kXk +
∑

t∈PA(l)\k

θl,tXt | XMA→j(k)


= E

Ψl + θl,kΨk + θl,k
∑

r∈PA(k)

θk,rXr +
∑

t∈PA(l)\k

θl,tXt | XMA→j(k)


= E

(
Ψl + θl,kΨk | XMA→j(k)

)
+ θl,k

∑
r∈PA(k)

θk,rXr +
∑

t∈PA(l)\k

θl,tXt

such that

Xl − θl,k
∑

r∈PA(k)

θk,rXr −
∑

t∈PA(l)\k

θl,tXt = E
(

Ψl + θl,kΨk | XMA→j(k)

)
= 2θl,kE

(
Ψk | XMA→j(k)

)
.

The last equality follows since Ψl
D
= θl,kΨk and both random variables depend on the conditioning

set on the same way. Therefore, all the terms in E
(
Xk | XMA→j(k)

)
are linear combination such that

the sufficient condition from Theorem 1.3 holds.

However, Zk 6⊥ Xl in general such that var(ZkWk) = E
(
Z2
k

)
E
(
W 2
k

)
is not generally true. Then,

the limiting distribution of the estimator is not the same as for non-ancestors; see also (1.5).

1.A.8 Proof of Corollary 1.1

Let j, k be such that k ∈ ÂN(j). This means that there is at least one set

M = {m0 = k,m1, . . . ,mt−1,mt = j} such that Pmsms−1
< α ∀s ∈ {1, . . . , t}, where t ≥ 1. If k 6∈ AN(j)

at least one of these must correspond to a false causal discovery, i.e., there is an s such that Pmsms−1 < α

but ms−1 6∈ AN(ms). We conclude{
∃j, k 6= j : k 6∈ AN(j) and k ∈ ÂN(j)

}
→
{
∃j, k 6= j : k 6∈ AN(j) and P jk < α

}
.

Let r =
∑

j,k 6=j 1{H0,k→j is true} denote the number of true null hypotheses. By the construction of

Bonferroni-Holm{
∃j, k 6= j : k 6∈ AN(j) and P jk < α

}
→
{
∃j, k 6= j : k 6∈ AN(j) and pjk < α/r

}
.

Let zjk = β̂f,jk /

√
v̂ar
(
β̂f,jk

)
as used in Theorem 1.2. We find

lim
n→∞

P
{
∃j, k 6= j : k 6∈ AN(j} and k ∈ ÂN(j)

)
≤ lim

n→∞
P
{
∃j, k 6= j : k 6∈ AN(j) and P jk < α

}
17



≤ lim
n→∞

P
{
∃j, k 6= j : k 6∈ AN(j) and pjk < α/r

}
= lim

n→∞
P
(

min
j,k 6=j: k 6∈AN(j)

pjk < α/r

)
≤ lim
n→∞

∑
j,k 6=j: k 6∈AN(j)

P
(
pjk < α/r

)
=

∑
j,k 6=j: k 6∈AN(j)

lim
n→∞

P
(
pjk < α/r

)
=

∑
j,k 6=j: k 6∈AN(j)

lim
n→∞

P
{

Ψ
(
|zkj |
)
> 1− α/2r

}
=

∑
j,k 6=j: k 6∈AN(j)

lim
n→∞

P
{
|zkj | > Ψ−1(1− α/2r)

}
=

∑
j,k 6=j: k 6∈AN(j)

1− lim
n→∞

P
{
|zkj | ≤ Ψ−1(1− α/2r)

}
=

∑
j,k 6=j: k 6∈AN(j)

α/r = α,

which proves the first part of the corollary. The second to last equality uses Theorem 1.2 and the

continuous mapping theorem.

As the model (1.1) excludes the possibility of directed cycles, any output of BuildRecursive

that contains cycles must include at least one false causal detection. If α̂ < α, it corresponds to the

maximal p-value such that including the corresponding ancestor relationship creates cycles. Therefore,

it must hold min
j,k 6=j: k 6∈AN(j)

P jk ≤ α̂ such that

lim
n→∞

P
(
α̂ ≤ α′

)
≤ lim

n→∞
P
(

min
j,k 6=j: k 6∈AN(j)

P jk ≤ α
′
)
≤ α′

using similar arguments as above.

18



1.B Algorithm

Algorithm 1.1 Nodewise and recursive ancestor detection

Input data x ∈ Rn×p, significance level α ∈ (0, 1) and nonlinear function f(·)
Output Estimated set of ancestors ÂN(j) ∀j ∈ {1, . . . , p}, adjusted significance level α̂

1: for j = 1 to p do
2: Calculate pjk ∀k 6= j using (1.2) and (1.3) # Calculate the p-values of ancestor regression

3: Apply a multiplicity correction to the list of pjk ∀j, k 6= j denote the corrected p-values by P jk
4: # Store p-values in a matrix, descendants as rows, ancestors as columns
5: Define P ∈ Rp×p such that Pj,k = P jk and Pj,j = 1
6: (A, α̂)← FindStructure(P , α)
7: for j = 1 to p do
8: # Transform binary ancestor matrix to a list of ancestors for each node
9: ÂN(j)← {k : Aj,k = TRUE}

10: procedure FindStructure(P ∈ Rd×d, α)
11: # Define ancestors based on significant p-values
12: Define A ∈ Rd×d such that Aj,k = TRUE if Pj,k < α and else Aj,k = FALSE

13: # Recursively complete the ancestral sets such that ancestors’ ancestors are ancestors
14: A←BuildRecursive(A)
15: I ← {j ∈ {1, . . . , d} : Aj,j = TRUE} # Find nodes that lead to cycles
16: if I = ∅ then
17: return (A, α) # If no cycles remain, output the result of the current significance level
18: else
19: α̂← max

j∈I,k 6=j∈I: Pj,k<α
Pj,k # Otherwise, reduce α to remove at least one edge

20: (AI,I , α̂)← FindStrucure(PI,I , α̂) # Find structure for variables in cycles
21: A←BuildRecursive(A) # Once no more cycles occur, complete the ancestral sets
22: return (A, α̂)

23: procedure BuildRecursive(A ∈ Rd×d)
24: for j = 1 to d do
25: ÂN(j)← {k : Aj,k = TRUE} # Initiate ancestors based on p-values

26: for j = 1 to d do
27: S ← ∅ # Set of ancestors that have been checked, initiated as empty
28: while ÂN(j) \ S 6= ∅ do

29: for k ∈ ÂN(j) \ S do
30: # Add ancestors’ ancestors until all are checked
31: ÂN(j)← ÂN(j) ∪ ÂN(k) and S ← S ∪K
32: A

j,ÂN(j)
← TRUE # Store to matrix format

33: return A
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1.C Details on the simulation setup

We use the following distributions for the Ψj : two t7 distributions, a centered Laplace distribution

with scale 1, a centered uniform distribution, and a standard normal distribution. Depending on the

scenario, the last error distribution is either uniform or Gaussian. The results in Section 1.2.3 are

from the former case. All distributions are normalized to having unit variance. For each simulation

run, we randomly permute the distributions to assign them to Ψ1 to Ψ6.

We create an edge between the two variables with (potentially) Gaussian error term. The remain-

ing 14 edges Xk → Xj with k < j are present with probability 5/14 each such that an average of 6

parental connections exists.

We assign preliminary edge weights uniformly in [0.5, 1]. These are further scaled such that for

every Xj which is not a source node, the standard deviation of

∑
k∈PA(j)

θj,kXk

is uniformly chosen from
[√

0.5,
√

2
]
. Thus, the signal-to-noise ratio is between 1/2 and 2.

To initialize the graph and the weights, we use the function randomDAG from the R-package pcalg

(Kalisch et al., 2012) before applying our changes to enforce the constraints.

1.D Additional simulation results

To analyse the effect of close to Gaussian error distributions we consider a further variation of the

first the scenario in 1.C. Call the normalized error terms from before Ψ′j . These are mixed with a

standard Gaussian component Ψ′′j such that

Ψj =
√

1− γΨ′j +
√
γΨ′′j ∀j.

Thus, the Gaussian term causes a fraction γ of the variance. We vary γ from 0, which is the setup

from before, to 1 in steps of 0.25. We consider the same performance metrics as in Figure 1.2. For

the sake of overview, we restrict ourselves to n = 103 and n = 104 in Figure 1.4.

For both LiNGAM and ancestor regression, increasing the amount of Gaussianity leads to a

performance drop. Thus, not only fully Gaussian error terms harm these methods. For γ = 0.75, 104

samples are not sufficient to keep the type I error of LiNGAM low. For ancestor regression, nearly

Gaussian error distribution leads to a substantial drop in power. However, the type I error remains

under control supporting Corollary 1.1. While power considerations are clearly in favor of LiNGAM,

especially in easy scenarios, our method leads to fewer but more trustworthy findings in close to

unidentifiable scenarios within the class of linear structural equation models.
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Figure 1.4: Nodewise ancestor detection in a linear structural equation model with 6 variables. The
results are based on 1000 simulation runs. Depicted is the family-wise error rate of false causal
detection versus the fraction of detected ancestors. The curves use the level of the test α as implicit
curve parameter. The pluses correspond to nominal α = 5%. The vertical line is at actual 5%. The
other symbols correspond to the performance of the LiNGAM algorithm. We consider the different
values of γ: 0 (solid / square, black), 0.25 (dashed / circle, red), 0.5 (dotted / triangle pointing upward,
green), 0.75 (dot-dashed / diamond, blue), and 1 (long-dashed / triangle pointing downward, pink).
The sample size is 103 on the left and 104 on the right.
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Chapter 2

Ancestor regression in structural

vector autoregressive models

Christoph Schultheiss and Peter Bühlmann

To be revised with minor modifications for publication in Journal of Causal Inference.

Abstract

We present a new method for causal discovery in linear structural vector autoregressive models.

We adapt an idea designed for independent observations to the case of time series while retaining its

favorable properties, i.e., explicit error control for false causal discovery, at least asymptotically. We

apply our method to several real-world bivariate time series datasets and discuss its findings which

mostly agree with common understanding.

The arrow of time in a model can be interpreted as background knowledge on possible causal

mechanisms. Hence, our ideas could be extended to incorporating different background knowledge,

even for independent observations.
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2.1 Introduction

Real-world datasets often exhibit a time structure violating the i.i.d. assumption widely used in causal

discovery and beyond. Such data can be modeled with (structural) vector autoregressive models, i.e.,

using past and current observations of the time series as predictors. While the time dependence

implies certain difficulties in estimation, it offers some advantages as well because a predictor cannot

causally affect other variables that represent earlier time points. With independent innovation terms,

identifiability guarantees as for fully independent observations can be found under similar structural

assumptions, see Peters et al. (2013).

2.1.1 Our contribution

In this work, we extend the recent development on ancestor regression by Schultheiss and Bühlmann

(2023a) to the case of multivariate time series with linear causal relations, both instantaneous and

lagged. The time dependence between the observations poses technical challenges to ensure the

asymptotic guarantees. Further, to obtain error control among the lagged effects, we show how

to choose the right adjustment sets for different time lags. Given the amount of time series data

encountered in applications, we feel that this extension is of significant practical use; see also the

empirical demonstration in Section 2.4.

2.1.2 Structural vector autoregressive model

Let us denote the observed time series by xt,j for t = 1, . . . , T and j = 1, . . . , d. At time t the variables

are collected to the vector xt = (xt,1, . . . , xt,d)
T . We assume strictly stationary time series, i.e., the

probabilistic behavior is the same for every t. We say the time series follows a structural vector

autoregressive (SVAR) model of order p if

xt =

p∑
τ=0

Bτxt−τ + εt, where εt = (εt,1, . . . , εt,d)
T . (2.1)

We make the following assumptions:

(A2.1) The εt,j are centered, independent over both, t and j, and identically distributed over t.

(A2.2) The instantaneous effects in B0 imply an acyclic structure.

(A2.2) implies that B0 corresponds to a row- and column-permuted lower triangular matrix.

Therefore, the eigenvalues of I −B0 are all 1 and it is invertible. Hence, we get the equivalent form

of our model

xt = (I −B0)−1

(
p∑

τ=1

Bτxt−τ + εt

)
:=

p∑
τ=1

B̃τxt−τ + ξt, (2.2)
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where ξt has correlated components but is independent over time. Let xt p+1 with p ≥ 0 be the time

series in time range t to t− p flattened out to a vector in Rd(p+1). Also ξt p+1 are flattened versions

of ξt patched with zeros, i.e.,

xt p+1 =


xt

xt−1

...

xt−p

 ∈ Rd(p+1) and ξt p+1 =


ξt

0
...

0

 ∈ Rd(p+1).

With these flattened versions, we can rewrite (2.2) as an order 1 model

xt p =



B̃1 B̃2 . . . B̃p−1 B̃p

I 0 . . . 0 0

0 I . . . 0 0
...

. . .
...

...

0 0 . . . I 0


xt−1 p + ξt p := B̃xt−1 p + ξt p; (2.3)

see, e.g., (Lütkepohl, 2005, Chapter 2). We additionally require

(A2.3) The process xt is stable, i.e., for B̃ as in (2.3), det
(
I − B̃s

)
6= 0 if |s| ≤ 1.

This implies strict stationarity if the process is initialized correctly or has run for an infinite time.

The setting mostly corresponds to the one in Hyvärinen et al. (2010) which extends the LiNGAM

method from Shimizu et al. (2006) for linear structural equation models in the i.i.d. setting to the

time series case.

Let the τ -lagged causal ancestors of xt,j , ANτ (j) be all k for which there exists a directed path

from xt−τ,k to xt,j in the full causal graph. Analogously, we say k ∈ PAτ (j) ⇐⇒ j ∈ CHτ (k) to

denote parents and children if there is an edge from xt−τ,k to xt,j . For τ = 0, ANτ=0(j) are the

instantaneous ancestors of xt,j .

2.1.3 Identifying AN τ via ancestor regression

For the case of linear causal relations in i.i.d. data, the recent development in Schultheiss and

Bühlmann (2023a) provides asymptotic type I error guarantees for detecting any covariate’s an-

cestors. The method revolves around the following key observation: Assume that a set of variables

xk, k ∈ {1, . . . , p} is connected by linear causal relations (plus additive noise), and we are interested

in the causal ancestors of a given xj . Then, we can use least squares regression with response variable

f(xj), where f(·) is a nonlinear function, such as f(xj) = x3
j , and all xk as predictors, including xj
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itself:

f(xj) versus xj , {xk; k 6= j} with least squares.

The resulting least squares coefficients are (in population) 0 for all non-ancestors, while they are - up

to few counter-examples - non-zero for the ancestors. Hence, one can identify the ancestors using a

simple least squares regression. We will show here how this method can be extended to the related

SVAR (2.1).

Let

xt := Aτxt−(τ+1) p + ξτt with xt−(τ+1) p ⊥ ξτt . (2.4)

Here and forthcoming, we use ⊥ to denote statistical independence. This means that we regress out

the contribution of the observations from τ + 1 to τ + p time steps before. Due to the independence

of the innovation terms, such an independent residual can always be found. Hence, ξτt are also the

corresponding least squares residuals. For τ = 0 and using (2.3), we obtain:

A0 =
(
B̃1 B̃2 . . . B̃p−1 B̃p

)
and ξ0

t = ξt.

Define further

zt,k := ξt,k − ξ>t,−kγk, where γk := argmin
b∈Rd−1

E
[(
ξt,k − ξ>t,−kb

)2
]

= E
[
ξt,−kξ

>
t,−k

]−1
E
[
ξt,−kξt,k

]
,

i.e., the least squares residual of regressing one ξt,k against all others, or, equivalently, the residual of

regressing one xt,k against all others and xt−1 p.

Theorem 2.1. Assume that xt follows the model (2.1) with assumptions (A2.1) to (A2.3). Consider

the ordinary least squares regression f
(
ξτt,j

)
versus ξt−τ and denote the according corresponding OLS

parameter by

βf,j,τ := E
[
ξt−τξ

>
t−τ

]−1
E
[
ξt−τf

(
ξτt,j
)]

and assume that it exists. Then,

βf,j,τk = E
[
zt−τ,kf

(
ξτt,j
)]
/E
[
z2
t−τ,k

]
= 0 ∀k 6∈ ANτ (j).

All, ξτt,j and ξt−τ , are residuals of a model using xt−(τ+1) p as predictors and do not depend on

time before t− τ .

For τ = 0 this construction corresponds to i.i.d. ancestor regression (Schultheiss and Bühlmann,

2023a) applied to ξt which follow an acyclic linear structure equation model as argued in Hyvärinen

et al. (2010).

Of particular interest is the reverse statement of Theorem 2.1, namely whether βf,j,τk is non-zero
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for k ∈ ANτ (j) for a nonlinear function f(·). While this is typically true, there are some adversarial

cases as discussed next.

Adversarial setups

There can be cases where βf,j,τk = 0 although k ∈ ANτ (j). For some data generating mechanisms,

this happens regardless of the choice of function f(·). We want to characterize these cases. Denote

the Markov boundary of xt,k by MA(k) and get the corresponding vector as

xt,MA(k) :=
{
xt,l : l ∈ CH0(k); xt−τ ′,l : l ∈ PAτ ′(k); xt−τ ′,l : l ∈ PAτ ′(m) and m ∈ CH0(k)

}
,

not including xt,k itself. This matches the classical definition of children, parents, and children’s other

parents but is restricted to the observed xt p+1. Now let

CH0,τ→j(k) := CH0(k) ∩ANτ (j),

i.e., the instantaneous children through which a directed path goes to xt+τ,j . Then, we call MAτ→j(k)

the restricted Markov boundary and get the corresponding vector as

xt,MAτ→j(k) :=
{
xt,l : l ∈ CH0,τ→j(k); xt−τ ′,l : l ∈ PAτ ′(k);

xt−τ ′,l : l ∈ PAτ ′(m) and m ∈ CH0,τ→j(k)
}
,

again, not including xt,k itself, i.e., only children with a directed path to xt+τ,j are considered.

Theorem 2.2. Let k ∈ ANτ (j). Then,

βf,j,τk = 0 ∀f(·) if and only if E
[
xt,k | ξτt+τ,j

]
= E

[
x>
t,MAτ→j(k)

γτ→j,k | ξτt+τ,j
]
,

where γτ→j,k is the least squares parameter for regressing xt,k versus xt,MAτ→j . This implies

xt,k ⊥ xt+τ,j | xt,MAτ→j(k).

In particular,

βf,j,τk = 0 ∀f(·) if E
[
xt,k | xt,MAτ→j(k)

]
= x>

t,MAτ→j(k)
γτ→j,k and xt,k ⊥ xt+τ,j | xt,MAτ→j(k).

The implied conditional independence in Theorem 2.2 means that there are no directed paths

from xt,k to xt+τ,j that do not go through some other xt,l, or that all these paths cancel each other

out. It is trivially always fulfilled for instantaneous effects, i.e., for these, the result is very similar to
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Theorem 3 of Schultheiss and Bühlmann (2023a) and the same corresponding examples apply, i.e.,

Gaussian error terms and identical contribution between predictor and noise, see also Section 1.2.2

for details. Accordingly, if all paths from a lagged ancestor start with an undetectable immediate

effect, this lagged effect cannot be detected either.

2.2 Estimation from data and asymptotics

Based on Theorem 2.1, we suggest testing for βf,j,τk 6= 0 in order to detect some or even all τ -lagged

causal ancestors of xt,j . Doing so for all k requires nothing more than fitting a multiple linear model

and using its corresponding z-tests for individual covariates. Notably, if we are interested in ANτ (j)

for several values of τ , we also consider several OLS regressions.

Let

xr:s p+1 =
(
xr p+1 xr+1 p+1 . . . xs p+1

)>
for some p + 1 ≤ r ≤ s ≤ T be a matrix containing predictors at all lags for several time steps. Of

course, this matrix has multiple entries corresponding to the same observation. Accordingly,

xr:s,j =
(
xr,j xr+1,j . . . xs,j .

)>
We get the least squares residuals’ estimates for the residuals of interest.

ẑk = ẑp+1:T,k the least squares residual of xp+1:T,k versus xp+1:T,−k and xp:T−1 p,

ξ̂
τ

k = ξ̂
τ

p+1+τ :T,k the least squares residual of xp+1+τ :T,k versus xp:T−τ−1 p,

ξ̂
τ

=
(
ξ̂
τ

1 . . . ξ̂
τ

d

)>
,

ξ̂ = ξ̂
0
.

Then, we calculate the following estimates

β̂f,j,τk := ẑ>p+1:T−τ,kf
(
ξ̂
τ

j

)
/‖ẑp+1:T−τ,k‖22

σ̂2 :=

∥∥∥f(ξ̂τj)− ξ̂p+1:T−τ,kβ̂
f,j,τ

∥∥∥2

2

T − d− (p+ τ)
and

v̂ar
(
β̂f,j,τk

)
:= σ̂2/‖ẑp+1:T−τ,k‖22,

(2.5)

where f(·) is meant to be applied elementwise in f
(
ξ̂
τ

j

)
. These are the classical least squares estimates

for the given predictors and targets. There are d covariates and T − p− τ observations can be used,

hence the given normalization for the variance estimate. We obtain the test statistics

27



sj,τk :=
β̂f,j,τk

√
v̂ar
(
β̂f,j,τk

) for which we establish asymptotic normality under the null below. Therefore,

we suggest testing the null hypothesis

H0,kτ→j : k 6∈ ANτ (j)

with the p-value

pj,τk = 2
{

1− Φ
(
|sj,τk |

)}
, (2.6)

where Φ(·) denotes the cumulative distribution function of the standard normal distribution.

To control the asymptotic behavior of these estimates, we make additional assumptions on f(·).

(A2.4) The function f(·) has the following properties

E
[
f
(
ξτt,j
)2]

<∞ and ∃δ > 0 such that E
[∣∣εt,kf(ξτt+τ,j)∣∣1+δ

]
<∞ ∀k.

Also, it is differentiable everywhere, and its derivative f ′(·) has the following properties

∃δ > 0 such that E
[∣∣f ′(ξτt,j)∣∣2+δ

]
<∞ and E

[∣∣εt,kf ′(ξτt+τ,j)∣∣1+δ
]
<∞ ∀k.

For monomials of the form

f(x) = sign(x)|x|α, α > 1,

the moment conditions on f(·) imply those on f ′(·). We use these functions by default.

Theorem 2.3. Let xt follow an SVAR (2.1) for which (A2.1) - (A2.3) hold, and the innovation terms

have finite fourth moments. Let f(·) be such that (A2.4) holds and βf,j,τ exists. Using the definitions

from (2.5), it then holds for T →∞

β̂f,j,τk = βf,j,τk + Op(1), v̂ar
(
β̂f,j,τk

)
= Op

(
1

T

)
and

sj,τk
D→ N (0, 1) ∀k 6∈ ANτ (j).

2.2.1 Simulation example

We study ancestor regression in a small simulation example. We generate data from a structural

vector autoregressive model with d = 6 variables and order p = 1. For the instantaneous effects,

the causal order is fixed to be xt,1 to xt,6. Otherwise, the structure is randomized and changes per

simulation run: xt,k is an instantaneous parent of xt,l for k < l with probability 0.2 such that there is

an average of 3 parental relationships. The edge weights are sampled uniformly and the distributions
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of the εt,k are assigned by permuting a fixed set of 6 error distributions. The entries in B1 are non-

zero with probability 0.1. If so, they are sampled uniformly and assigned a random sign with equal

probabilities. If the maximum absolute eigenvalue of B̃ would be larger than 0.95, B1 is shrunken

such that this absolute eigenvalue is 0.95 to ensure stability.

We aim to find the ancestors of xt,4. We create 1000 different setups and test each on sample sizes

varying from 102 to 106. As a nonlinear function, we use f(xt,j) = x3
t,j . By z-statistic, we mean s4,τ

k

as in Theorem 2.3. We calculate p-values according to (2.6) and apply a Bonferroni-Holm correction

to them.

On the left-hand side of Figure 2.1, we see the average absolute z-statistics for ancestors and

non-ancestors for the different sample sizes. We distinguish between three types of ancestors: instan-

taneous ancestors, lagged ancestors for which B̃4,k 6= 0, and lagged ancestors from which all causal

paths start with an instantaneous effect. The last are the hardest to detect. Otherwise, lagged an-

cestors have stronger signals than instantaneous ones. This agrees with the intuition that it is easier

to find a directed causal path if it is a priori known that only one direction could be possible. For

Figure 2.1: Detecting the ancestors of xt,4 in a structural vector autoregressive model of order p = 1
with 6 variables. The results are based on 1000 simulation runs. On the left: Average absolute
z-statistic for instantaneous ancestors (circles, black), lagged ancestors for which B̃4,k 6= 0 (triangles,
red), lagged ancestors from which all causal paths start with an instantaneous effect (pluses, green),
and non-ancestors (crosses, blue) for different sample sizes. The dashed diagonals correspond to

√
T -

growth fitted to match at T = 105 perfectly. The horizontal line corresponds to (2/π)1/2, i.e., the first
absolute moment of the asymptotic null distribution, a standard Gaussian. On the right: fraction of
simulation runs with at least one false causal detection versus fraction of detected ancestors for the
different sample sizes 102 (solid, black), 103 (dashed, red), 104 (dotted, green), 105 (dot-dashed, blue),
and 106 (long-dashed, pink). The curve uses the level α of the test as the implicit curve parameter.
The pluses correspond to nominal α = 5%. The vertical line is at actual 5%.
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non-ancestors, the observed average of the absolute z-statistics is close to the theoretical mean under

the asymptotic null distribution as desired. On the right-hand side, we see that we can control the

type I error at the desired level for every sample size. As expected, the power to detect ancestors

increases with larger sample sizes. However, driven by this last group of ancestors, there are still some

undetected ancestors for T = 106. For the other groups, we obtain almost perfect power. One could

then also infer these missed effects by recursive arguments. We discuss this for the case of networks

below.

2.3 Inferring effects in networks

So far, we assumed that there is a time series component xt,j whose causal ancestors are of special

interest. This is not always the case. Instead, one might be interested in inferring the full set of causal

connections between the variables. Naturally, our ancestor detection technique can be extended to

that problem by applying it nodewise. After estimating the effects on every time series, there is a

total of (p+ 1)d(d− 1) p-values to consider when ignoring autoregressive effects. We suggest the

construction of two types of ancestral graphs that could be of interest.

2.3.1 Instantaneous effects

Focusing on instantaneous effects only, the situation is very similar as in the i.i.d. case discussed in

Schultheiss and Bühlmann (2023a). Hence, we apply the same algorithm:

First, we apply a multiplicity correction over the d(d− 1) tests to control the type I family-wise

error rate. We use the Bonferroni-Holm multiplicity correction. Then, we construct further ancestral

relationships recursively: E.g., if xt,1 has an instantaneous effect on xt,2, and xt,2 has an instantaneous

effect on xt,3, there must be an instantaneous effect from xt,1 to xt,3. If all detected effects are correct,

all such recursively constructed effects must be correct as well. Hence, the type I family-wise error

rate remains the same while the power can increase and typically does for larger networks.

If we make type I errors, this could create contradictions leading to cycles. Then, we gradually

decrease the significance level for edges within these cycles until no more cycles remain. The largest

significance level for which no loops occur is also an asymptotically valid p-value for the null hypothesis

that the data come from model (2.2) with assumptions (A2.1) - (A2.4) as we have asymptotic error

control under this model class. An example where α = 0.05 leads to cycles is demonstrated in Figure

2.2. We keep the edge from xt,2 to xt,4 using the initial significance level as it is not part of any cycles.

2.3.2 Summary time graph

If not only instantaneous effects but all effects are of interest, one can consider a summary time graph.

It includes an edge from k to j if there is a causal path from xt′,k to xt,j for any t′ ≤ t. This graph

can be cyclic under our modeling assumptions.
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xt,1 xt,2

xt,4xt,3

10−3

10−210−2 10−4

xt,1 xt,2

xt,4xt,3

xt,1 xt,2

xt,4xt,3

10−3

10−210−4

xt,1 xt,2

xt,4xt,3

Figure 2.2: From left to right: Detected edges with α = 0.05 and the corresponding p-values. Re-
cursive construction leading to cycles. Detected edges with α < 0.01 and the corresponding p-values.
Recursive construction without cycles.

To obtain it, we first assign a p-value to each potential edge k → j, say, pjk. There are p + 1 p-

values corresponding to this edge, i.e., pj,0k , . . . pj,pk . We combine them using ideas from Meinshausen

et al. (2009) designed to combine p-values under arbitrary dependence. For details, see Appendix

2.A.7. Again, we apply the Bonferroni-Holm multiplicity correction to control the family-wise error

rate. This allows to add recursively more edges while still controlling the type I error rate. Model

(2.1) does not imply that the summary graph must be acyclic. Thus, we output the result after

the recursive construction even in the presence of cycles. For example, in Figure 2.2 if the depicted

p-values are (multiplicity corrected) summary p-values, the obtained summary graph is the second to

the left.

In Figure 2.1, we saw that lagged ancestors from which the directed path begins with an in-

stantaneous edge are the hardest to detect. Here, such a recursive construction can help. Assume

xt,1 → xt,2 → xt+1,3. Then, there is also a detectable effect from xt,1 to xt+1,3, but it can be easier to

detect the two intermediate edges.

2.3.3 Simulation example

We extend the simulation in 2.2.1 to the network setting. We estimate both, an instantaneous

ancestral graph as in Section 2.3.1 and a summary time graph as in Section 2.3.2.

In Figure 2.3, we show the obtained detection rate versus the type I family-wise error rate for

varying significance levels. For the summary graph, we obtain slightly better performance. This

matches the intuition that this less detailed information is easier to obtain. For either, we achieve

essentially perfect separation between ancestors and non-ancestors for large enough sample sizes.

Hence, the recursive construction helped to detect even these effects that appeared hard to find based

on the individual test as in Figure 2.1. For the instantaneous effects, there is a slight overshoot of

the type I error for T = 100, i.e., the asymptotic null distribution is not sufficiently attained yet. For

all longer time series, it is controlled as desired.
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Figure 2.3: Nodewise ancestor detection in a structural vector autoregressive model of order p = 1
with 6 variables. The results are based on 1000 simulation runs. Depicted is the family-wise error
rate of false causal detection versus the fraction of detected ancestors. The curves use the level of the
test α as implicit curve parameter. The pluses correspond to nominal α = 5%. The vertical line is at
actual 5%. We consider the different sample sizes 102 (solid, black), 103 (dashed, red), 104 (dotted,
green), 105 (dot-dashed, blue), and 106 (long-dashed, pink). On the left: instantaneous effects. On
the right: summary graph.

2.4 Real data applications

Inspired by Peters et al. (2013), we apply our method to several bivariate time series as proof of

concept. As they suggest, we fit models of order p = 6.

Old Faithful geyser

We analyze data from the Old Faithful geyser (Azzalini and Bowman, 1990) provided in the R-package

MASS (Venables and Ripley, 2002). It contains information on the waiting time leading to an eruption

(xt,1) and the duration of an eruption (xt,2) for 299 consecutive eruptions. We model these as a

bivariate time series although we do not have the classical framework with equidistant measurements

in time. The consensus is that the eruption duration affects the subsequent waiting time more than

vice-versa.

Our algorithm outputs no significant instantaneous effects on this dataset (p1,τ=0
2 = 0.78, p2,τ=0

1 =

0.73). This is in line with the consensus which suggests no instantaneous effect from waiting to

duration. Here, the duration corresponds to something that happened after the waiting of the cor-

responding time point such that there should neither be an “instantaneous” effect from duration to

waiting. Our summarized p-values suggest an effect from duration to waiting (p1
2 = 15 ∗ 10−22) while

the opposite direction is borderline significant (p2
1 = 0.094).
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waiting duration

p2,τ=0
1 = 0.73

p1,τ=0
2 = 0.78

waiting duration

p2
1 = 0.094

p1
2 = 15 ∗ 10−22

Figure 2.4: Estimated effects for the geyser data. On the left, p-values corresponding to instantaneous
effects. On the right, summarized p-values over all considered lags, see Section 2.3.2. Significant edges
are drawn as full lines, the others are dotted.

We consider a slightly altered time series shifted such that waiting corresponds to the waiting

after the given eruption, i.e., 298 observations remain. Now, our output suggests an instantaneous

effect from duration to waiting (p1,τ=0
2 = 5 ∗ 10−4, p2,τ=0

1 = 0.51) in agreement with the consensus

belief. The summarized p-values are p1
2 = 9 ∗ 10−3 and p2

1 = 0.18 respectively.

waiting duration

p2,τ=0
1 = 0.51

p1,τ=0
2 = 5 ∗ 10−4

waiting duration

p2
1 = 0.18

p1
2 = 9 ∗ 10−3

Figure 2.5: Estimated effects for the shifted geyser data. On the left, p-values corresponding to
instantaneous effects. On the right, summarized p-values over all considered lags, see Section 2.3.2.
Significant edges are drawn as full lines, the others are dotted.

Gas furnace

We look at data from a gas furnace described in Box et al. (2015). It can be downloaded from

https://openmv.net/info/gas-furnace. The time series are the input gas rate (xt,1) and the

output CO2 level observed at 296 equidistant time points. The more plausible causal direction is

gas rate CO2

p2,τ=0
1 = 0.18

p1,τ=0
2 = 0.55

gas rate CO2

p2
1 = 4 ∗ 10−20

p1
2 = 1

Figure 2.6: Estimated effects for the gas furnace data. On the left, p-values corresponding to in-
stantaneous effects. On the right, summarized p-values over all considered lags, see Section 2.3.2.
Significant edges are drawn as full lines, the others are dotted.
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from input to output.

Our algorithm outputs no instantaneous effects (p2,τ=0
1 = 0.18, p1,τ=0

2 = 0.55). But, over lags, there

appears to be an effect from the input rate to the output concentration as expected. (p2
1 = 4 ∗ 10−20,

p1
2 = 1).

Dairy

We use data on ten years of weekly prices for butter (xt,1) and cheddar cheese (xt,2), i.e., 522 obser-

vations in total. Peters et al. (2013) present this as an example where the price of milk could act as a

hidden confounder hence violating the model assumptions. Unfortunately, the data source that they

mention has disappeared. But, the data was kindly provided by the first author.

We detect no significant instantaneous effects (p2,τ=0
1 = 0.64, p1,τ=0

2 = 0.71) and hence also no

model violations. There is a significant lagged effect from butter to cheddar (p2
1 = 5 ∗ 10−15, p1

2 = 1).

In the case of a hidden confounder, both effects should appear in the summary time graph, but we

have no evidence for this. However, given the size of the dataset, it can well be that we missed the

spurious effect from cheddar to butter.

butter cheddar

p2,τ=0
1 = 0.64

p1,τ=0
2 = 0.71

butter cheddar

p2
1 = 5 ∗ 10−15

p1
2 = 1

Figure 2.7: Estimated effects for the dairy data. On the left, p-values corresponding to instantaneous
effects. On the right, summarized p-values over all considered lags, see Section 2.3.2. Significant
edges are drawn as full lines, the others are dotted.

2.5 Discussion

2.5.1 Outlook: Lessons for independent data with background knowledge

Regressing ξτt,j against ξt−τ instead of xt,j against xt−τ means that we first project out all other

covariates that might have a confounding effect but are surely not descendants. Thus, all effects from

time points before t− τ are taken out of the analysis, and the fraction of relevant information in the

data increases. If we projected out only after the transformation, i.e., use f(xt,j) those effects could

not be fully taken out, and the noise level increases.

Similarly, it can happen that for data with no time structure a certain variable is known to be a

(potential) confounder between others, but surely not a descendant of any of these. For example, if

we measure the weight and height of children, our common sense says that age is a confounder of the
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two but surely not causally affected by either. In our assumed framework, i.e., linear causal relations,

one can then first regress out this confounding effect which can be done perfectly (in population)

before applying the transformation. If it is done after the transformation, there remains some noise

terms stemming from the confounder which decreases the signal-to-noise ratio for the effects we are

truly interested in.

Importantly, not every variable that is of lesser interest can be regressed out a priori. If its relative

place in the causal order is not known, it has to be included in the usual way to retain type I error

guarantees. Of course, one can always omit the according tests corresponding to uninteresting effects

such that less multiplicity correction must be applied.

2.5.2 Conclusion

We introduce a new method for causal discovery in structural vector autoregressive models. We assess

whether there is a causal effect from one time series component to another for any given time lag.

The method is computationally very efficient and has asymptotic type I error control against false

causal discoveries. Our simulations show that this error control works well for finite time series as

well.

We also obtain asymptotic power up to few pathological cases. In networks, additional effects can

be inferred by the logic that an ancestor of an ancestor must be an ancestor. In our simulation, we

see that this can help to find almost all ancestors without errors even when some connections are

individually hard to find at a given sample size.

We apply our method to three real-world bivariate time series and obtain results that mostly

agree with the common understanding of the underlying process. Hence, we demonstrate that ancestor

regression can be of use even when the modeling assumptions are not fulfilled as in the ideal simulated

cases, and the data is only of medium size.

Code scripts to reproduce the results presented in this paper are available here

https://github.com/cschultheiss/SVAR-Ancestor.
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2.A Proofs

2.A.1 Additional notation

We introduce additional notation that is used for the proofs. We do not explicitly mention the

time steps considered for a regression estimate. It is always meant to use as many observations as

available. The number of observations used for an estimate we call simply T as T →∞ is equivalent

to T − p− τ →∞.

Subindexing a matrix or vector containing several time lags e.g., x p+1,k means only selecting the

column or entry corresponding to time series k with no time lag unless stated otherwise. Subindex

−k means all but this column or entry. IT is the T -dimensional identity matrix. P−k denotes the

orthogonal projection onto x p+1,−k and P⊥−k = IT − P−k denotes the orthogonal projection onto its

complement. Px−τ is the orthogonal projection onto all x−τ−1 p.

For some random vector xt p+1, we have the moment matrix Σx := E
[
xt p+1x

>
t p+1

]
. This equals

the covariance matrix for centered xt p+1. We assume this matrix to be invertible. Then, the principal

submatrix Σx
−j,−j := E

[
xt p+1,−jx

>
t p+1,−j

]
is also invertible. Again, the negative subindex means the

realization without time lag is omitted. We make the analogous assumption for Σξ := E
[
ξtξ
>
t

]
.

2.A.2 Previous work

We adapt some definitions from and results proved in Schultheiss et al. (2024), see also Section 3.2.2.

zt,k := xt,k − x>t p+1,−kγk, where

γk := argmin
b∈Rd(p+1)−1

E
[(
xt,k − x>t p+1,−kb

)2
]

=
(
Σx
−k,−k

)−1E[xt p+1,−kxt,k],

wt,k := f
(
ξτt+τ,j

)
− ξ>t,−kζk, where

ζk := argmin
b∈Rd−1

E
[(
f
(
ξτt+τ,j

)
− ξ>t,−kb

)2
]

=
(

Σξ−k,−k

)−1
E
[
ξt,−kf

(
ξτt+τ,j

)]
.

(2.7)

We denote by zk := x p+1,k − x p+1,−kγk and wk analogously these true regression residuals at the

relevant time points. For notational simplicity, we do not index wk and ζk with the lag τ as the

arguments remain the same for every fixed lag. Using these definitions, we have

βf,j,τk = E[zt,kwt,k]/E
[
z2
t,k

]
= E

[
zt,kf

(
ξτt,j
)]
/E
[
z2
t,k

]
.

from partial regression.

2.A.3 Proof of Theorem 2.1

Under (2.1), xt p+1 includes all causal parents of xt,k. Now an argument analogous to Lemma 3.5

in Section 3.B.7 shows that zt,k must be a linear combination of εt,k and possibly some εt,l where
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k ∈ AN0(l). If k 6∈ ANτ (j), xt+τ,j must be independent of these innovation terms. Furthermore,

zt,k ⊥ xt′ ∀t′ < t. Hence,

zt,k ⊥ ξτt+τ,j = xt+τ,j − (Aτ )jxt−1 p,

using (2.4). Then,

E
[
zt,kf

(
ξτt+τ,j

)]
= E[zt,k]E

[
f
(
ξτt+τ,j

)]
= 0

Note that as βf,j,τk = 0, ζk = βf,j,τ−k . As k is not a τ -lagged ancestor, its 0-lagged children and

descendants cannot be either. Hence, their innovation terms cannot contribute to ξ>t,−kζk such that

zt,k ⊥ ξ>t,−kζk and zt,k ⊥ wt,k.

2.A.4 Proof of Theorem 2.3

Throughout this proof, we apply the law of large numbers in various places. The justification is

presented in Section 2.A.5.

With the law of large numbers and the continuous mapping theorem, we get

1

T
x>p+1x p+1

P→ Σx =⇒ 1

T
x>p+1,−kx p+1,−k

P→ Σx
−k,−k

=⇒ T
(
x>p+1,−kx p+1,−k

)−1 P→
(
Σx

−k,−k

)−1

=⇒ T

∥∥∥∥(x>p+1,−kx p+1,−k

)−1
∥∥∥∥ P→

∥∥∥∥(Σx
−k,−k

)−1
∥∥∥∥ = O(1)

For x>p+1,−kzk/T we get a stronger result. Consider any entry

1

T

T∑
t=1

xt p+1,lzt,k,

where l could also represent a time-lagged entry. Now for t′ > t consider the autocovariance

E
[
xt p+1,lzt,kxt′ p+1,lzt′,k

]
. As argued in 2.A.3, zt′,k is a combination of innovations from time t′

independent of all previous times. Hence, a contribution to the autocovariance could only come

from E[xt p+1,lzt,k]E
[
xt′ p+1,lzt′,k

]
. But this is 0 by definition such that there is no time correlation.

Combining this with the fourth moment assumption, we can apply the stronger result in Theorem

7.1.1 of Brockwell and Davis (2009) leading to
∥∥∥x>p+1,−kzk

∥∥∥ = Op
(√

T
)

. Analogously, as ξτj has

bounded time dependence
∥∥x>−τ−1 pξ

τ
j

∥∥ = Op
(√

T
)

. Let aj = (Aτ )j be the effect from xt−1 p on

xt+τ,j and âj its least squares estimate.

‖zk − ẑk‖22 = ‖P−kzk‖22 ≤
∥∥∥z>k x p+1,−k

∥∥∥
2

∥∥∥∥(x>p+1,−kx p+1,−k

)−1
∥∥∥∥

2

∥∥∥x>p+1,−kzk

∥∥∥
2
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= Op
(√

T
)
Op
(

1

T

)
Op
(√

T
)

= Op(1)∥∥∥ξτj − ξ̂τj∥∥∥2

2
=
∥∥Px−τ ξ

τ
j

∥∥2

2
≤
∥∥∥(ξτj )>x−τ−1 p

∥∥∥
2

∥∥∥∥(x>−τ−1 px−τ−1 p

)−1
∥∥∥∥

2

∥∥∥x>−τ−1 pξ
τ
j

∥∥∥
2

= Op
(√

T
)
Op
(

1

T

)
Op
(√

T
)

= Op(1)

‖aj − âj‖2 =

∥∥∥∥(x>−τ−1 px−τ−1 p

)−1
x>−τ−1 pξ

τ
j

∥∥∥∥
2

≤
∥∥∥∥(x>−τ−1 px−τ−1 p

)−1
∥∥∥∥

2

∥∥∥x>−τ−1 pξ
τ
j

∥∥∥
2

= Op
(

1

T

)
Op
(√

T
)

= Op
(

1√
T

)
∥∥∥ξτj − ξ̂τj∥∥∥∞ = ‖x−τ−1 p(aj − âj)‖∞ ≤ ‖x−τ−1 p‖∞‖aj − âj‖1 ≤ ‖x−τ−1 p‖∞

√
pd‖aj − âj‖2

= Op(1).

We use P−k = x p+1,−k

(
x>p+1,−kx p+1,−k

)−1
x>p+1,−k in the first equality and the according decom-

position for Px−τ in the second equality. For matrices, ‖ · ‖2 denotes the spectral norm. The last

equality follows as with the fourth moment assumption the maximum grows no faster than Op
(
T 1/4

)
.

Assess the numerator of the least squares coefficient∣∣∣z>k f(ξτj )− ẑ>k f
(
ξ̂
τ

j

)∣∣∣
≤
∣∣∣z>k (f(ξτj )− f(ξ̂τj))∣∣∣+

∣∣∣(zk − ẑk)
>f
(
ξτj
)∣∣∣+

∣∣∣(zk − ẑk)
>
(
f
(
ξτj
)
− f

(
ξ̂
τ

j

))∣∣∣
≤‖zk‖2

∥∥∥f(ξτj )− f(ξ̂τj)∥∥∥
2

+ ‖zk − ẑk‖2
∥∥f(ξτj )∥∥2

+ ‖zk − ẑk‖2
∥∥∥f(ξτj )− f(ξ̂τj)∥∥∥

2

By the moment assumption, ‖zk‖2 = Op
(√

T
)

and
∥∥f(ξτj )∥∥2

= Op
(√

T
)

. We consider the difference

in the nonlinearities. First, apply Taylor’s theorem

f
(
ξ̂
τ

j

)
− f

(
ξτj
)

=
(
f ′
(
ξτj
)

+ h1

(
ξ̂
τ

j , ξ
τ
j

))
�
(
ξ̂
τ

j − ξτj
)
,

where h1(·) is the Peano form of the remainder. All functions are meant to be applied elementwise

and � denotes elementwise multiplication. For ξ̂τt,j → ξτt,j , it holds h1

(
ξ̂τt,j , ξ

τ
t,j

)
→ 0. Then,

∥∥∥f(ξτj )− f(ξ̂τj)∥∥∥2

2
=

T∑
t=1

(
f
(
ξτt,j
)
− f

(
ξ̂τt,j

))2
=

T∑
t=1

(
f ′
(
ξτt,j
)

+ h1

(
ξ̂τt,j , ξ

τ
t,j

))2(
ξτt,j − ξ̂τt,j

)2

≤
∥∥∥f ′(ξτj )+ h1

(
ξ̂
τ

j , ξ
τ
j

)∥∥∥2

∞

T∑
t=1

(
ξτt,j − ξ̂τt,j

)2

=
∥∥∥f ′(ξτj )+ h1

(
ξ̂
τ

j , ξ
τ
j

)∥∥∥2

∞

∥∥∥ξτj − ξ̂τj∥∥∥2

2
= Op(T ).
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The maximum norm for f ′
(
ξτj
)

can be bounded at Op

(√
T
)

by the moment assumption, and that for

h1

(
ξ̂
τ

j , ξ
τ
j

)
is Op(1) by the properties of the remainder. In summary,

1

T
ẑ>k f

(
ξ̂
τ

j

)
=

1

T
z>k f

(
ξτj
)

+ Op(1) = E
[
zt,kf

(
ξτt+τ,j

)]
+ Op(1).

Consider the denominator∣∣∣z>k zk − ẑ>k ẑk

∣∣∣ =
∣∣∣z>k zk − z>k P

⊥
−kzk

∣∣∣ =
∣∣∣z>k (I − P⊥−k)zk

∣∣∣ = ‖zk − ẑk‖22 = Op(1) such that

1

T
ẑ>k ẑk =

1

T
z>k zk + Op(1) = E

[
z2
t,k

]
+ Op(1).

Hence, β̂f,j,τk is indeed a consistent estimator.

For non-ancestors, we require a faster convergence for the numerator term. Due to orthogonality

of the residuals and as βf,j,τk = 0

ẑ>k f
(
ξ̂
τ

j

)
= ẑ>k

(
f
(
ξ̂
τ

j

)
− ξ̂0

βf,j,τ
)
.

Assess the approximation error of this term∣∣∣z>k (f(ξτj )− ξ0βf,j,τ
)
− ẑ>k

(
f
(
ξ̂
τ

j

)
− ξ̂0

βf,j,τ
)∣∣∣ ≤∣∣∣z>k ((f(ξτj )− ξ0βf,j,τ

)
−
(
f
(
ξ̂
τ

j

)
− ξ̂0

βf,j,τ
))∣∣∣+

∣∣∣(zk − ẑk)
>
(
f
(
ξτj
)
− ξ0βf,j,τ

)∣∣∣+∣∣∣(zk − ẑk)
>
((
f
(
ξτj
)
− ξ0βf,j,τ

)
−
(
f
(
ξ̂
τ

j

)
− ξ̂0

βf,j,τ
))∣∣∣.

The last term is controlled at Op

(√
T
)

with the Cauchy-Schwarz inequality using the rates from

before. For the others, we make use of the structure of the process. Apply Taylor’s theorem again

f
(
ξ̂
τ

j

)
− f
(
ξτj
)

=
(
f ′
(
ξτj
)

+ h1

(
ξ̂
τ

j , ξ
τ
j

))
�
(
ξ̂
τ

j − ξτj
)

=
(
f ′
(
ξτj
)

+ h1

(
ξ̂
τ

j , ξ
τ
j

))
� (x−τ−1 p(aj − âj)),

Hence,∣∣∣z>k (f(ξτj )− f(ξ̂τj))∣∣∣ ≤ ∥∥∥z>k ((f ′(ξτj )+ h1

(
ξ̂
τ

j , ξ
τ
j

))
� x−τ−1 p

)∥∥∥
2
‖aj − âj‖2

≤
(∥∥∥z>k (f ′(ξτj )� x−τ−1 p

)∥∥∥
2

+
∥∥∥z>k (h1

(
ξ̂
τ

j , ξ
τ
j

)
� x−τ−1 p

)∥∥∥
2

)
‖aj − âj‖2.

Note that these norms are over fixed dimensional vectors such that controlling one element of the

vector is the same as controlling the norm. For the first summand, use zt,k ⊥ ξτt+τ,j ,xt−1 p such that
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the sum is over mean 0 terms and hence Op(T ). Consider any element in the second vector∣∣∣∑ zt,kh1

(
ξ̂τt+τ,j , ξ

τ
t+τ,j

)
xt−t′,l

∣∣∣ ≤ ∥∥∥h1

(
ξ̂
τ

j , ξ
τ
j

)∥∥∥
∞

∑∣∣zt,kxt−t′,l∣∣.
As we control

∥∥∥ξτj − ξ̂τj∥∥∥∞ the first factor is Op(1) while as the sum is Op(T ) such that this term is

controlled as Op(T ) as well. The argument for∣∣∣z>k (ξ0βf,j,τ − ξ̂0
βf,j,τ

)∣∣∣
follows from the same principles without the remainder term in the Taylor expansion. As

‖aj − âj‖2 = Op
(

1√
T

)
, these terms are Op

(√
T
)

. It remains to look at the middle term.

∣∣∣(zk − ẑk)
>
(
f
(
ξτj
)
− ξ0βf,j,τ

)∣∣∣ =
∣∣∣z>k P−k(f(ξτj )− ξ0βf,j,τ

)∣∣∣ ≤∥∥∥z>k x p+1,−k

∥∥∥
2

∥∥∥∥(x>p+1,−kx p+1,−k

)−1
∥∥∥∥

2

∥∥∥x>p+1,−k

(
f
(
ξτj
)
− ξ0βf,j,τ

)∥∥∥
2
.

The first two factors are Op
(√

T
)
Op
(

1

T

)
as before. In the last one, all sums are over mean 0 terms.

Columns of x p+1,−k corresponding to time steps before t are independent of ξτj and ξ0. For the other

columns, orthogonality is implied as βf,j,τ is the least squares coefficient. Thus, this factor is Op(T )

and the term is Op

(√
T
)

.

1√
T

ẑ>k f
(
ξ̂
τ

j

)
=

1√
T

ẑ>k

(
f
(
ξ̂
τ

j

)
− ξ̂0

βf,j,τ
)

=
1√
T

z>k

(
f
(
ξτj
)
− ξ0βf,j,τ

)
+ Op(1)

=
1√
T

z>k wk + Op(1)
D→ N

{
0,

1

T
E
[(

z>k wk

)2
]}
,

where we use the central limit theorem and Slutsky’s theorem. By construction E[zt,kwt,k] = 0. As

zk, and wk have time dependence only over a limited interval, the central limit theorem (Brockwell

and Davis, 2009, Theorem 6.4.2) can be applied.

E
[(

z>k wk

)2
]

= E

(∑
t

zt,kwt,k

)2
 =

∑
t

∑
t′

E
[
zt,kwt,kzt′,kwt′,k

]
It holds zt,k ⊥ wt,k and zt,k ⊥ zt′,k for t 6= t′ as there is no time-dependence. Also, zt,k ⊥ wt′,k for

t′ > t as the innovation terms in ξτt′+τ,j and ξ0
t′ are from later time steps. Thus, for t′ > t

E
[
zt,kwt,kzt′,kwt′,k

]
= E[zt,k]E

[
wt,kzt′,kwt′,k

]
= 0.
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The argument for t′ < t is equivalent such that

E
[(

z>k wk

)2
]

=
∑
t

E
[
z2
t,kw

2
t,k

]
= TE

[
z2
t,k

]
E
[
w2
t,k

]
.

Plugging this in and using Slutsky’s theorem again

√
T β̂f,j,τk

D→ N

0,
E
[
w2
t,k

]
E
[
z2
t,k

]
 (2.8)

For the variance estimate, we use∥∥∥f(ξ̂τj)− ξ̂0
β̂
f,j,τ

∥∥∥2

2
=
(
f
(
ξ̂
τ

j

)
− ξ̂0

β̂
f,j,τ

)>(
f
(
ξ̂
τ

j

)
− ξ̂0

β̂
f,j,τ

)
,

for which we have∣∣∣∣(f(ξτj )− ξ0βf,j,τ
)>(

f
(
ξτj
)
− ξ0βf,j,τ

)
−
(
f
(
ξ̂
τ

j

)
− ξ̂0

β̂
f,j,τ

)>(
f
(
ξ̂
τ

j

)
− ξ̂0

β̂
f,j,τ

)∣∣∣∣ ≤
2
∥∥∥f(ξτj )− ξ0βf,j,τ

∥∥∥
2

∥∥∥(f(ξτj )− ξ0βf,j,τ
)
−
(
f
(
ξ̂
τ

j

)
− ξ̂0

β̂
f,j,τ

)∥∥∥
2
+∥∥∥(f(ξτj )− ξ0βf,j,τ

)
−
(
f
(
ξ̂
τ

j

)
− ξ̂0

β̂
f,j,τ

)∥∥∥2

2
= Op(T ) such that∥∥∥f(ξ̂τj)− ξ̂0

β̂
f,j,τ

∥∥∥2

2
/T =

∥∥∥f(ξτj )− ξ0βf,j,τ
∥∥∥2

2
/T + Op(1) = E

[
w2
t,k

]
+ Op(1) = Op(1).

The law of large numbers applies here as∥∥∥f(ξτj )− ξ0βf,j,τ
∥∥∥2

2
/T

can be split into several converging sums of i.i.d. random variables. Thus, we get

σ̂2 = Op(1) and v̂ar
(
β̂f,j,τl

)
= Op

(
1

T

)
∀l.

For non-ancestors k,

v̂ar
(√

T β̂f,j,τl

)
= T v̂ar

(
β̂f,j,τl

)
P→

E
[
w2
t,k

]
E
[
z2
t,k

] ,
i.e., the estimated variance approaches the asymptotic variance leading to the desired standard normal

pivot.
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2.A.5 Near-epoch dependence

We adapt the concept of near-epoch dependence, see, e.g., Davidson and de Jong (1997); Davidson

(2002). Define for τ ≤ t Ftτ = σ(ετ , . . . , εt) the σ-field generated by a subset of the innovation terms

and Et+mt−m[·] the conditional expectation given Ft+mt−m. Let yt be some random process.

Definition 2.1. yt is near-epoch dependent on {εt} in Lp-norm, say Lp-NED, for p > 0 if

E
[(
yt − Et+mt−m[yt]

)p]1/p ≤ dtν(m)

where dt is a sequence of positive constants, and ν(m)
m→∞→ 0. It is said to be Lp-NED of size −µ if

ν(m) = O
(
m−µ−δ

)
for some δ > 0. It is said to be geometrically Lp-NED if ν(m) = O(exp(−δm))

for some δ > 0.

By establishing near-epoch dependence, we can apply the law of large numbers and the central

limit theorem in appropriate places.

Lemma 2.1. Let xt follow an SVAR (2.1) with finite second moments for which (A2.1) - (A2.3)

holds. Then, xt,k is geometrically L2-NED on {εt} for every k ∈ {1, . . .}.

By the triangle inequality, the same holds then for every finite linear combination of xt.

Lemma 2.2. Let xt follow an SVAR (2.1) with finite second moments for which (A2.1) - (A2.3)

holds. Then, xt,kxt+τ,l is geometrically L1-NED on {εt} for every l ∈ {1, . . . , d} and τ <∞.

Lemma 2.3. Let xt follow an SVAR (2.1) with finite second moments for which (A2.1) - (A2.3)

holds. Let ξt be a quantity determined by Ft+τt−τ for some τ < ∞ such that E[ξt] and E[xt,kξt] are

finite. Then, xt,kξt is geometrically L1-NED on {εt}.

As the innovation sequence {εt} is independent over time, it satisfies every mixing property. Thus,

we can apply Davidson and de Jong (1997)[Theorem 3.3] to obtain the LLN for L1-NED quantities

2.A.5.1 Proof of Lemma 2.1

Consider the form

xt p = B̃xt−1 p + ξt p =

∞∑
τ=0

B̃τξt−τ p

as in Lütkepohl (2005) and (2.3). Then

xt p − Et+mt−m[xt p] = xt p − Ett−m[xt p] =

∞∑
τ=m+1

B̃τξt−τ p.
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Consider any xt,k = e>k xt p, where ek ∈ Rdp is the according unit vector.

E
[(
xt,k − Ett−m[xt,k]

)2]
= e>k E

 ∞∑
τ=m+1

B̃τξt−τ p

( ∞∑
τ ′=m+1

B̃τ ′ξt−τ ′ p

)>ek

= e>k

∞∑
τ=m+1

B̃τE
[
ξt pξ

>
t p

](
B̃τ
)>

ek

≤
∞∑

τ=m+1

∥∥∥e>k B̃τ
∥∥∥2

2
λmax

(
E
[
ξt pξ

>
t p

])
≤ C

∞∑
τ=m+1

λmax

(
B̃
)2τ

,

where λmax(·) denotes the largest absolute eigenvalue of a matrix, and C is a accordingly chosen

constant. Under the stability assumption (A2.3), λmax

(
B̃
)
< 1 such that the sum decreases as

O
(
λmax

(
B̃
))2m

:= O(exp(−2θm)), where θ = − log
(
λmax

(
B̃
))

> 0.

2.A.5.2 Proof of Lemma 2.2

As xt,k is a linear combination of innovation terms, we can write

xt,k = Et+τt−m[xt,k] + Et−m−1
−∞ [xt,k] := x̃t,k + x̂t,k and analogously

xt+τ,l = Et+τt−m[xt+τ,l] + Et−m−1
−∞ [xt+τ,l] := x̃t+τ,l + x̂t+τ,l.

Let m ≥ τ .

E
[∣∣xt,kxt+τ,l − Et+mt−m[xt,kxt+τ,l]

∣∣] = E
[∣∣xt,kxt+τ,l − Et+τt−m[xt,kxt+τ,l]

∣∣]
=E
[∣∣(x̃t,k + x̂t,k)(x̃t+τ,l + x̂t+τ,l)− Et+τt−m[(x̃t,k + x̂t,k)(x̃t+τ,l + x̂t+τ,l)]

∣∣]
=E[|x̃t,k(x̂t+τ,l − E[x̂t+τ,l]) + x̃t+τ,l(x̂t,k − E[x̂t,k]) + x̂t,kx̂t+τ,l − E[x̂t,kx̂t+τ,l]|]

≤2(E[|x̃t,k|]E[|x̂t+τ,l|] + E[|x̃t+τ,l|]E[|x̂t,k|] + E[|x̂t,kx̂t+τ,l|]).

As argued before x̂t,k, x̂t+τ,l have exponentially decreasing moments while as the moments of x̃t,k,

x̃t+τ,l are bounded by the assumptions of the process. So, overall this sum is exponentially decreasing

which establishes the Lemma.

2.A.5.3 Proof of Lemma 2.3

Decompose

xt,k = x̃t,k + x̂t,k
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as before. Let m ≥ τ .

E
[∣∣xt,kξt − Et+mt−m[xt,kξt]

∣∣] = E
[∣∣(x̃t,k + x̂t,k)ξt − Et+mt−m[(x̃t,k + x̂t,k)ξt]

∣∣]
=E
[∣∣ξt(x̂t,k − Et+mt−m[x̂t,k]

)∣∣] ≤ 2E[|ξt|]E[|x̂t,k|],

which attains the exponential rate as argued before.

2.A.6 Proof of Theorem 2.2

For simplicity, assume MAτ→j(k) = MA(k) such that

zt,k = xt,k − x>
t,MAτ→j(k)

γτ→j,k.

We have

βf,j,τk = 0 ∀f(·) ⇐⇒ E
[
zt,kf

(
ξτt+τ,j

)]
= E

[
E
[
zt,k | ξτt+τ,j

]
f
(
ξτt+τ,j

)]
= 0 ∀f(·)

⇐⇒ E
[
zt,k | ξτt+τ,j

]
= 0.

Using the equality above, the last condition is equivalent to the one in the theorem. By construction

xt+τ,j = xt,kα+ x>
t,MAτ→j(k)

β + ε̃ for some α,β,

where ε̃ is a linear combination of xt′,l whose paths to xt,k are blocked by xt,MAτ→j(k) and noise terms

εt′,l with t′ > t such that xt,k ⊥ ε̃ | xt,MAτ→j(k). Hence,

xt,k 6⊥ xt+τ,j | xt,MAτ→j(k) =⇒ α 6= 0.

Then,

E
[
zt,kξ

τ
t+τ,j

]
= E[zt,kxt+τ,j ] = αE[zt,kxt,k] + E

[
zt,kx

>
t,MAτ→j(k)

]
β + E[zt,k ε̃] = αE

[
z2
t,k

]
6= 0,

i.e., the identity function leads to a non-zero regression coefficient if the conditional independence does

not hold. The first equality holds as zt,k is independent from xt′ for t′ < t. In the next expression, the

middle summand vanishes by the construction of the regression residual zt,k. For the last summand,

note that all contributions from εt′,l with t′ > t are independent of zt,k trivially, while as contributions

of other xt′,l must be uncorrelated from zt,k as it is a least squares residual.

For the last part, assume xt,k ⊥ xt+τ,j | xt,MAτ→j(k). This is equivalent to

xt,k ⊥ ξτt+τ,j | xt,MAτ→j(k) as ξτt+τ,j−xt+τ,j only depends on time before t such that xt,k cannot depend
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on it given xt,MAτ→j(k). Then, it follows

E
[
zt,k | ξτt+τ,j

]
= E

[
xt,k − x>

t,MAτ→j(k)
γτ→j,k | ξτt+τ,j

]
= E

[
E
[
xt,k − x>

t,MAτ→j(k)
γτ→j,k | xt,MAτ→j(k), ξ

τ
t+τ,j

]
| ξτt+τ,j

]
= E

[
E
[
xt,k | xt,MAτ→j(k)

]
− x>

t,MAτ→j(k)
γτ→j,k | ξτt+τ,j

]
= 0,

where the second to last equality uses conditional independence and the last follows trivially from the

assumption.

Finally, we can consider the general case where MAτ→j(k) ⊆ MA(k). Let l ∈ CH0(k) \ ANτ (j).

We know that ξt,l has a regression coefficient of 0 by Theorem 2.1. Hence, removing it from the

model cannot change the remaining least squares parameters. Now, after removing xt,l, its parents

do not contribute to zt,k unless they are in MAτ→j(k) due to one of the other conditions. Thus,

removing these additionally cannot change zt,k and hence βf,j,τk . Therefore, it suffices to analyze with

MAτ→j(k) only.

2.A.7 Combined p-values

The arguments presented here follow mainly on Meinshausen et al. (2009). But, by noting that one

should focus on the order statistics and not continuous quantiles, we slightly improve the penalty

term for the combined p-value. Also, we omit here the possibility of ignoring the lowest p-values as

there might be cases where only one should be non-uniform.

Let xt,j and xt,k be two of the observed time series and pj,0k , . . . pj,pk all p-values for potential effects

from k to j. Sort these p-values from lowest to largest, say pjk,(1), . . . p
j
k,(r) where r = p + 1. We get

our combined p-value as

pjk = min
i∈{1,...,r}

r

i
pjk,(i)

r∑
i′=1

1

i′
.

Proposition 2.1. If pj,0k , . . . pj,pk are all Uniform(0, 1), pjk is a valid p-value, i.e.,

P
(
pjk ≤ α

)
≤ α ∀α ∈ (0, 1).

Proof

Define

πjk(u) =
1

r

r∑
i=1

1
{
pjk,(i) ≤ u

}
.

We have

πjk

(
α
i

r

)
≥ i

r
⇐⇒ pjk,(i)

r

i
≤ α
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Let U be a random variable in [0, 1] and consider

max
i∈{1,...,r}

1{U ≤ αi/r}
i/r

=


0 U > α

r

dUr/αe
otherwise.

If U is uniformly distributed we get the expectation

E
[

max
i∈{1,...,r}

1{U ≤ αi/r}
i/r

]
= α

r∑
i=1

1

i

as for each possible i, there is a segment of length α/r where dUr/αe = i.

Thus, if the individual p-values are uniform

E

 max
i∈{1,...,r}

1

r

p∑
τ=0

1
{
pj,τk ≤ αi/r

}
i/r

 ≤ 1

r

p∑
τ=0

E

 max
i∈{1,...,r}

1
{
pj,τk ≤ αi/r

}
i/r

 = α
r∑
i=1

1

i
.

Apply the definition of πjk(·) and the Markov inequality.

α

r∑
i=1

1

i
≥ E

 max
i∈{1,...,r}

1

r

p∑
τ=0

1
{
pj,τk ≤ αi/r

}
i/r

 = E

[
max

i∈{1,...,r}

πjk(αi/r)

i/r

]
≥ P

(
max

i∈{1,...,r}

πjk(αi/r)

i/r
≥ 1

)

= P
(

max
i∈{1,...,r}

1
{
πjk(αi/r) ≥ i/r

}
≥ 1

)
= P

(
∃i ∈ {1, . . . , r} : πjk(αi/r) ≥ i/r

)
= P

(
∃i ∈ {1, . . . , r} : pjk,(i)

r

i
≤ α

)
= P

(
min

i∈{1,...,r}
pjk,(i)

r

i
≤ α

)
= P

(
pjk ≤ α

r∑
i=1

1

i

)
.

As α is arbitrary in this argument, this establishes the super-uniformity of the p-value. The only place

where uniformity of the individual pj,τk is invoked is when calculating the expectation of a bounded

function. Hence, if the individual p-values are asymptotically uniform, we obtain an asymptotic result

for pjk.

2.B Details on the simulation setup

We use the following distributions for the εt,j : two t7 distributions, two centered uniform distributions,

a centered Laplace distribution with scale 1, and a standard normal distribution. All distributions are

normalized to have unit variance. For each simulation run, we randomly permute the distributions

to assign them to εt,1 to εt,6.

The edges xt,k → xt,j with k < j are present, i.e., the entry (B0)jk is non-zero, with probability

0.2 each such that an average of 3 parental connections exists.
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We assign preliminary edge weights uniformly in [0.5, 1]. These are further scaled such that for

every xt,j which has instantaneous ancestors, the standard deviation of

ξt,k − εt,k

is uniformly chosen from [
√

0.5,
√

2] to control the signal-to-noise ratio.

To initialize the graph and the weights, we use the function randomDAG from the R-package pcalg

(Kalisch et al., 2012) before applying our changes to the weights to enforce the constraints.

The entries in B1 are non-zero with probability 0.1. If so, they are sampled uniformly with

absolute value in [0.2, 0.8] and assigned a random sign with equal probabilities. If the maximum

absolute eigenvalue of B̃ would be larger than 0.95, B1 is shrunken such that this absolute eigenvalue

is 0.95 to ensure stability.

We initiate the time series randomly and discard the first 104 observations to ensure strict sta-

tionarity (approximately).
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Chapter 3

Higher-order least squares: assessing

partial goodness of fit of linear causal

models

Christoph Schultheiss, Peter Bühlmann, and Ming Yuan

Journal of the American Statistical Association 119 (546), 1019-1031.

Abstract

We introduce a simple diagnostic test for assessing the overall or partial goodness of fit of a linear

causal model with errors being independent of the covariates. In particular, we consider situations

where hidden confounding is potentially present. We develop a method and discuss its capability

to distinguish between covariates that are confounded with the response by latent variables and

those that are not. Thus, we provide a test and methodology for partial goodness of fit. The test

is based on comparing a novel higher-order least squares principle with ordinary least squares. In

spite of its simplicity, the proposed method is extremely general and is also proven to be valid for

high-dimensional settings.

48



3.1 Introduction

Linear models are the most commonly used statistical tools to study the relationship between a

response and a set of covariates. The regression coefficient corresponding to a particular covariate

is usually interpreted as its net effect on the response variable when all else is held fixed. Such an

interpretation is essential in many applications and yet could be rather misleading when the linear

model assumptions are in question, in particular, when there are hidden confounders.

In this work, we develop a simple but powerful approach to goodness of fit tests for potentially

high-dimensional linear causal models, including also tests for partial goodness of fit of single predictor

variables. While hidden confounding is the primary alternative in mind, different nonlinear deviations

from the linear model assumption are also in scope. Tests for goodness of fit tests are essential to

statistical modeling (e.g., Lehmann et al., 2005) and the concept is also very popular in econometrics

where it is referred to as specification tests. For an overview of such methods, see, e.g., Godfrey

(1989) or Maddala and Lahiri (2009).

Another set of related works is Buja et al. (2019a,b), which elaborately discusses deviations from

the (linear) model and how distributional robustness, i.e., robustenss against shifts in the covari-

ates’ distribution, links to correctly specified models. For this, they introduce the definition of

“well-specified” statistical functionals. Distributional robustness, implied by well-specification, is

also related to the causal interpretation of a linear model as discussed in Peters et al. (2016).

We consider here the question when and which causal effects can be inferred from the ordinary least

squares estimator or a debiased Lasso procedure for the high-dimensional setting, even when there is

hidden confounding. We address this by partial goodness of fit testing: if the data speaks against a

linear causal model, we are able to specify which components of the least squares estimator should

be rejected to be linear causal effects and which not. In the case of a joint Gaussian distribution,

one cannot detect anything: this corresponds to a well-known unidentifiability result in causality

(Hyvärinen and Oja, 2000; Peters et al., 2014). But, in certain models, we are able to identify some

causal relations. Of particular importance are non-Gaussian linear structural equation models, as

used in Shimizu et al. (2006) or Wang and Drton (2020) amongst others. The latter constructs the

causal graph from observational data in a stepwise procedure using a test statistic similar to the one

we suggest.

Our strategy has a very different focus than other approaches which do not rely on the least squares

principle any longer to deal with the issue of hidden confounding. Most prominent, particularly in

econometrics, is the framework of instrumental variables regression: assuming valid instruments, one

can identify all causal effects, see, e.g., Angrist et al. (1996) or the books by Bowden and Turkington

(1985) and Imbens and Rubin (2015). The popular Durbin-Wu-Hausman test (Hausman, 1978) for

validity of instruments bears a relation to our methodology, namely that we are also looking at the
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difference of two estimators to test goodness of fit.

Our automated partial goodness of fit methodology is easy to be used as it is based on ordinary

(or high-dimensional adaptions of) least squares and its novel higher-order version: we believe that

this simplicity is attractive for statistical practice.

3.1.1 Our contribution

We propose a novel method with a corresponding test, called higher-order least squares (HOLS). The

test statistic is based on the residuals from an ordinary least squares or Lasso fit. In that regard, it

is related to Shah and Bühlmann (2018) who use “residual prediction” to test for deviation from the

linear model. However, our approach does neither assume Gaussian errors nor does it rely on sample

splitting, and our novel test statistic has a
√
n convergence rate (with n denoting the sample size).

In addition to presenting a “global” goodness of fit test for the entire model, we also develop a

local interpretation that allows detecting which among the covariates are giving evidence for hidden

confounding or nonlinear relations. Thus, we strongly increase the amount of extracted information

compared to a global goodness of fit test. In particular, in the case of localized (partial) confounding

in linear structural equation models, we are able to recover the unconfounded regression parameters

for a subset of predictors. This is a setting where techniques assuming dense (essentially global)

confounding, as in Ćevid et al. (2020) or Guo et al. (2022), fail.

The work by Buja et al. (2019a,b), especially the second paper, shows how to detect deviations

in a linear model using reweighting of the data. Our HOLS technique can be seen as a special way of

reweighting. In contrast to their work, we provide a simple test statistic that tests for well-specification

without requiring any resampling. Furthermore, we provide guarantees for a local interpretation under

suitable modeling assumptions while as their per-covariate view remains rather exploratory.

3.1.2 Outline

The remainder of this paper will be structured as follows. We conclude this section with the necessary

notation. In Section 3.2, we present the main idea of HOLS and the according global null hypothe-

sis. For illustrative purposes, we first discuss univariate regression. Then, we consider multivariate

regression and extend our theory to high-dimensional problems incorporating the (debiased) Lasso.

In Section 3.3, we present the local interpretation when the global null does not hold true alongside

with theoretical guarantees. Models for which this local interpretation is most suitable are discussed

in Section 3.4. Section 3.5 contains a real data analysis. We conclude with a summarizing discussion

in Section 3.6.

3.1.3 Notation

We present some notation that is used throughout this work. Vectors and matrices are written in

boldface, while scalars have the usual lettering. This holds for both random and fixed quantities. We
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use upper case letters to denote a random variable, e.g., X or Y . We use lower case letters to denote

i.i.d. copies of a random variable, e.g., x. If X ∈ Rp, then x ∈ Rn×p. With a slight abuse of notation,

x can either denote the copies or realizations thereof. We write xj to denote the j-th column of matrix

x and x−j to denote all but the j-th column. We write
H0= to state that equality holds under H0.

With←, we emphasize that an equality between random variables is induced by a causal mechanism.

We use � to denote elementwise multiplication of two vectors, e.g., x � y. Similarly, potencies of

vectors are also to be understood in an elementwise fashion, e.g., x2 = x�x. In is the n-dimensional

identity matrix. P−j denotes the orthogonal projection onto x−j and P⊥−j = In − P−j denotes the

orthogonal projection onto its complement. For some random vector X, we have the moment matrix

ΣX := E
[
XX>

]
. Note that this equals the covariance matrix for centered X. We denote statistical

independence by ⊥. We write e to denote a vector for which every entry is 1 and ej to denote the

unit vector in the direction of the j-th coordinate axis.

3.2 Higher-order least squares (HOLS)

We develop here the main idea of higher-order least squares (HOLS) estimation.

3.2.1 Univariate regression as a motivating case

It is instructive to begin with the case of simple linear regression where we have a pair of random

variables X and Y . We consider the causal linear model

Y ← Xβ + E , where X ⊥ E , E[E ] = 0 and E
[
E2
]

= σ2 <∞. (3.1)

We formulate a null hypothesis that the model in (3.1) is correct and we denote such a hypothesis

by H0. This model is of interest as β describes the effect of a unit change if we were to intervene on

covariate X without intervening on the independent E . Such model, or its multivariate extension, is

often assumed in causal discovery, see, e.g., Shimizu et al. (2006) or Hoyer et al. (2008b). Therefore,

we aim to provide a test for its well-specification.

Estimation of the regression parameter is typically done by the least squares principle

βOLS := argmin
b∈R

E
[
(Y −Xb)2

]
=

E[XY ]

E[X2]

H0= β,

where we use the superscript OLS to denote ordinary least squares. Alternatively, we can pre-multiply

the linear model (3.1) with X: the parameter minimizing the expected squared error loss is then

βHOLS := argmin
b∈R

E
[(
XY −X2b

)2]
=

E
[
X3Y

]
E[X4]

H0=
E
[
X4β

]
E[X4]

= β.
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More generally, βHOLS = βOLS = β, if E[Y |X] = Xβ. Using the definition from Buja et al. (2019b),

this means that the OLS parameter is well-specified. The estimation principle is called higher-order

least squares, or HOLS for short, as it involves higher-order moments of X. One could also multiply

the linear model with a factor other than X, which may have implications on the power to detect

deviations from (3.1). We shall focus here on the specific choice to fix ideas.

The motivation to look at HOLS is when H0 is violated, in terms of a hidden confounding variable:

let H be a hidden confounder leading to a model

X ← EX +Hρ, Y ← Xβ +Hα+ E ,

where EX , H, and E are all independent and α and ρ define additional model parameters. In particular,

we can compute under such a confounding model that

βHOLS − βOLS = ρα

(
3E
[
E2
X

]
E
[
H2
]

+ ρ2E
[
H4
]

E
[
E4
X

]
+ 6ρ2E

[
E2
X

]
E[H2] + ρ4E[H4]

−
E
[
H2
]

E
[
E2
X

]
+ ρ2E[H2]

)
. (3.2)

For simplicity, we assumed here E[EX ] = E[H] = E[E ] = 0. In practice, one can get rid of this

assumption by including an intercept in the model. If either α or ρ equals to 0, we see that the

difference in (3.2) is 0. This is not surprising as there is no confounding effect when either X or Y is

unaffected. However, this is not the only possibility how the difference can be 0. Namely,

E
[
H2
](

E
[
E4
X

]
− 3E

[
E2
X

]2)
= ρ2E

[
E2
X

](
E
[
H4
]
− 3E

[
H2
]2)⇒ βHOLS − βOLS = 0.

Especially, if neither EX norH have excess kurtosis, the difference is 0 for any ρ. This can be intuitively

explained as it corresponds to Gaussian data (up to the moments we consider). For Gaussian EX and

H, one can always write

Y = XβOLS + Ẽ where X ⊥ Ẽ ,

which cannot be distinguished from the null model (3.1). Or in other words E[Y |X] = XβOLS , i.e.,

the OLS parameter is well-specified although it is not the parameter β that we would like to recover.

For other data generating distributions, one should be able to distinguish H0 from certain deviations

when hidden confounding is present. We discuss the implications of this in the general multivariate

setting in Section 3.3.2. Similar behaviour occurs for a violation of H0 in terms of a nonlinear model

Y = f(X, ε) which then (typically) leads to βHOLS − βOLS 6= 0.

One can construct a test based on the sample estimates of βHOLS and βOLS . We consider the

centered data

x̃ = x− x̄e, ỹ = y − ȳe and ε̃ = ε− ε̄e =

(
In −

1

n
ee>

)
ε,
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where we use the upper bar to denote sample means. We can derive

ỹ = y − ȳe = xβ − x̄eβ + ε− ε̄e = x̃β + ε̃.

We now obtain β̂OLS from regression through the origin of ỹ versus x̃ with an error term of ε̃ and

β̂HOLS from regression through the origin of x̃ � ỹ versus x̃2 with an error term of x̃ � ε̃. More

precisely, we define

β̂OLS :=
x̃>ỹ

x̃>x̃
and β̂HOLS :=

(
x̃2
)>

(x̃� ỹ)

(x̃2)>(x̃2)
=

(
x̃3
)>

(ỹ)

(x̃2)>(x̃2)
.

Under H0, one can see that
(
β̂HOLS − β̂OLS

)
given x is some known linear combination of ε. As-

suming further Gaussianity of ε, it is conditionally Gaussian. We find

(
β̂HOLS − β̂OLS

)∣∣∣x H0∼ N

0, σ2


(
x̃3
)>(

In −
1

n
ee>

)(
x̃3
)

(
(x̃2)>(x̃2)

)2 − 1

(x̃>x̃)


. (3.3)

We can calculate this variance except for σ2. Further, we can consistently estimate σ2, for example,

with the standard formula

σ̂2 =

∥∥∥ỹ − x̃β̂OLS
∥∥∥2

2

n− 2
.

Thus, we receive asymptotically valid z-tests for the null-hypothesis H0 that the model (3.1) holds.

We treat the extension to non-Gaussian ε in Section 3.2.2 (for the multivariate case directly). As

discussed above, in the presence of confounding, we can have that βHOLS 6= βOLS . In such situations,

a test assuming (3.3) will have asymptotic power equal to 1 for correctly rejecting H0 under some

conditions. These asymptotic results are discussed in Section 3.3.1 and Section 3.3.2.

3.2.2 Multivariate regression

We typically want to examine the goodness of fit of a linear model with p > 1 covariates. We consider

p to be fixed in this section and discuss the case where p is allowed to diverge with n in Section 3.2.3.

We consider the causal model

Y ← X>β + E , where X ⊥ E , E[E ] = 0 and E
[
E2
]

= σ2 <∞ (3.4)

with X ∈ Rp and β ∈ Rp. Note that E[E ] = 0 can always be enforced by including an intercept in the

set of predictors. We assume the according moment matrix ΣX to be invertible. Then, the principal

submatrices ΣX
−j,−j := E

[
X−jX

>
−j

]
are also invertible. We formulate a global null hypothesis that the

53



model in (3.4) is correct and we denote it by H0. To make use of the test described for the univariate

case, we consider every component j ∈ {1, . . . , p} separately and work with partial regression, see,

e.g., Belsley et al. (2005). For the population version, we define

Zj := Xj −X>−jγj , where γj := argmin
b∈Rp−1

E
[(
Xj −X>−jb

)2
]

=
(
ΣX
−j,−j

)−1E[X−jXj ]

Wj := Y −X>−jζj , where ζj := argmin
b∈Rp−1

E
[(
Y −X>−jb

)2
]

=
(
ΣX
−j,−j

)−1E[X−jY ].

(3.5)

Under H0, it holds that Wj = Zjβj + E . For βOLS :=
(
ΣX
)−1E[XY ], we find

βOLSj =
E[ZjWj ]

E
[
Z2
j

] H0= βj .

The first equality is a well-known application of the Frish-Waugh theorem, see, e.g., Greene (2003).

We define the according HOLS parameter by partial regression for every component j separately,

namely

βHOLSj :=
E
[
Z3
jWj

]
E
[
Z4
j

] H0= βj .

We define a local, i.e., per-covariate null hypothesis H0,j : βOLSj = βHOLSj . The difference

βOLSj −βHOLSj can detect certain local alternatives from the null hypothesis H0. Here, local refers to

the covariate Xj whose effect on Y is potentially confounded or involves a nonlinearity. Under model

(3.4), H0,j holds true for every j. We discuss in Sections 3.3 and 3.4 some concrete examples, where

it is insightful to consider tests for individual H0,j .

We turn to sample estimates of the parameters. The residuals are estimated by

ẑj = xj − P−jxj = P⊥−jxj and

ŵj = y − P−jy = P⊥−jy
H0= P⊥−j(xβ + ε) = ẑjβj + P⊥−jε.

With ordinary least squares, we receive β̂OLSj from regression of ŵj versus ẑj , where the error term

is P⊥−jε. Accordingly, we calculate β̂HOLSj from regression of ẑj � ŵj versus ẑ2
j with an error term

ẑj � P⊥−jε. Thus, we define

β̂OLSj :=
ẑ>j ŵj

ẑ>j ẑj
and β̂HOLSj :=

(
ẑ2
j

)>
(ẑj � ŵj)(

ẑ2
j

)>(
ẑ2
j

) =

(
ẑ3
j

)>
ŵj(

ẑ3
j

)>
ẑj

. (3.6)
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This is analogous to the univariate case, where we have ỹ instead of ŵj , x̃ instead of ẑj and(
In −

1

n
ee>

)
instead of P⊥−j , and

(
In −

1

n
ee>

)
can be thought of as orthogonal projection onto

e’s complement, which completes the analogy. Again, we see that given x,
(
β̂HOLSj − β̂OLSj

)
is some

known linear combination of ε, thus, it is conditionally Gaussian for Gaussian ε. The same holds for(
β̂
HOLS − β̂OLS

)
.

Naturally, Gaussian E is an overly strong assumption. Therefore, we consider additional assump-

tions such that the central limit theorem can be invoked.

(A3.1) The moment matrix ΣX has positive smallest eigenvalue.

(A3.2) E
[
X6
j

]
<∞ and E

[
Z6
j

]
<∞ ∀j.

Further, let

Z̃3
j := Z3

j −X>−jγ̃j , where γ̃j := argmin
b∈Rp−1

E
[(
Z3
j −X>−jb

)2
]

=
(
ΣX
−j,−j

)−1E
[
X−jZ

3
j

]
. (3.7)

Note that E
[(
Z̃3
j

)2
]
≤ E

[
Z6
j

]
<∞.

Theorem 3.1. Assume that the data follows the model (3.4) and that (A3.1) - (A3.2) hold. Let p

be fixed and n→∞. Then,

√
n
(
β̂
HOLS − β̂OLS

)
D→ N

(
0, σ2E

[
VV>

])
1

n
v̂>v̂

P→ E
[
VV>

]
,

where v̂j =
P⊥−j

(
ẑ3
j

)
1

n

(
ẑ2
j

)>(
ẑ2
j

) − ẑj
1

n
ẑ>j ẑj

and Vj =
Z̃3
j

E
[
Z4
j

] − Zj

E
[
Z2
j

] .

Note that

(
β̂
HOLS − β̂OLS

)
H0=

1

n
v̂>ε, and, in analogy to (3.3),

1

n2
v̂>j v̂j =

(
ẑ3
j

)>
P⊥−j

(
ẑ3
j

)
((

ẑ2
j

)>(
ẑ2
j

))2 −
1

ẑ>j ẑj
.

Following Theorem 3.1, we can test the null hypothesis H0 with a consistent estimate for σ2. Such

an estimate can be obtained, e.g., using the standard formula

σ̂2 =

∥∥y − xβ̂
OLS∥∥2

2

n− p
.
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We define for later reference

V̂ar
(
β̂HOLSj − β̂OLSj

)
:= σ̂2 1

n2
v̂>j v̂j . (3.8)

To test H0,j , we can compare
(
β̂HOLSj − β̂OLSj

)
to the quantiles of the univariate normal distribution

with the according variance. The joint distribution leads to a global test that controls the type I

error. Namely, one can look at the maximum test statistic T = max
k

∣∣∣β̂HOLSk − β̂OLSk

∣∣∣ H0∼ max
k
|Sk|,

where S ∼ N
(
0, σ̂2v̂>v̂/n2

)
can be easily simulated. Further, one receives multiplicity corrected

individual p-values for H0,j by comparing each
∣∣∣β̂HOLSj − β̂OLSj

∣∣∣ to the distribution of max
k
|Sk|. This is

in analogy to the multiplicity correction suggested by Bühlmann (2013). Naturally, other multiplicity

correction techniques such as Bonferroni-Holm are valid as well.

Algorithm 3.1 summarizes how to find both raw and multiplicity corrected p-values for each

component j corresponding to the jth covariate, pj and Pj respectively. Then, one would reject the

global null hypothesis H0 that the model (3.4) holds if min
j

Pj ≤ α, and such a decision procedure

provides control of the type I error at level α. Note that this means that we have strong control of

the FWER for testing all H0,j .

Algorithm 3.1 HOLS check

1: for j = 1 to p do

2: P⊥−j = In − x−j

(
x>−jx−j

)
x>−j

3: Regress xj versus x−j via least squares, denote the residual by ẑj = P⊥−jxj
4: Regress y versus x−j via least squares, denote the residual by ŵj = P⊥−jy

5: β̂OLSj =
ẑ>j ŵj

ẑ>j ẑj
, β̂HOLSj =

(
ẑ3
j

)>
ŵj(

ẑ2
j

)>(
ẑ2
j

) and v̂j =
P⊥−j

(
ẑ3
j

)
1

n

(
ẑ2
j

)>(
ẑ2
j

) − ẑj
1

n
ẑ>j ẑj

6: σ̂2 =

∥∥y − xβ̂
OLS∥∥2

2

n− p
7: Create nsim i.i.d copies of S ∼ N

(
0, σ̂2v̂>v̂/n2

)
, say, s1 to snsim

8: for j = 1 to p do

9: pj = 2

1− Φ


∣∣∣β̂HOLSj − β̂OLSj

∣∣∣
σ̂

1

n
‖v̂j‖2




10: Pj =
1

nsim

∑nsim
i=1 1

(∣∣∣β̂HOLSj − β̂OLSj

∣∣∣ > ∥∥si∥∥∞)
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Corollary 3.1. Assume the conditions of Theorem 3.1. Consider the decision rule to reject H0 iff

minj Pj ≤ α, where Pj is as in Step 10 of Algorithm 3.1. Then, the type I error is asymptotically

controlled at α. Furthermore, the FWER is asymptotically controlled at level α for testing all local

hypotheses {H0,j ; j = 1, . . . , p} with the decision rule to reject H0,j iff Pj ≤ α.

We provide simulation results supporting this theory in Section 3.A of the supplemental material.

3.2.3 High-dimensional data

We now turn to high-dimensional situations. We assume the global null hypothesis (3.4) but allow

for p to diverge with and even exceed n such that ordinary least squares regression is not applicable.

Instead, we apply the debiased Lasso introduced in Zhang and Zhang (2014) and further discussed in

van de Geer et al. (2014). We denote the estimator again by β̂
OLS

since it converges under certain

conditions to the population parameter βOLS .

From the debiased Lasso, we receive ẑj = xj−x−jγ̂j , where γ̂j is obtained by regressing xj versus

x−j using the Lasso, and ŵj = y − x−jβ̂−j with β̂ coming from the Lasso fit of y versus x. Since

β̂OLSj = ẑ>j ŵj/ẑ
>
j xj , one might want to use

(
ẑ3
j

)>
ŵj/

(
ẑ3
j

)>
xj for HOLS. However, this leads in

general to an uncontrollable approximation error since E
[
Z3
jX−j

]
6= 0. As a remedy, we suggest a

second level of orthogonalization based on Z̃3
j and γ̃j as defined in (3.7). Naturally, we have Z̃3

j = Z3
j

iff E
[
Z3
jX−j

]
= 0 and always E

[
Z̃3
jX−j

]
= 0. To approximate z̃3

j we use the Lasso for the regression

ẑ3
j versus x−j leading to ˆ̃z3

j = ẑ3
j − x−j ˆ̃γj . We define β̂

HOLS
as

β̂HOLSj :=

(
ˆ̃z3
j

)>
ŵj(

ˆ̃z3
j

)>
xj

=

(
ˆ̃z3
j

)>(
y − x−jβ̂−j

)
(

ˆ̃z3
j

)>
xj

H0= βj +

(
ˆ̃z3
j

)>
x−j

(
β−j − β̂−j

)
/n(

ˆ̃z3
j

)>
xj/n

+

(
ˆ̃z3
j

)>
ε(

ˆ̃z3
j

)>
xj

.

Finally, we are interested in the difference between β̂HOLSj and β̂OLSj . Under suitable assumptions

for the sparsity, the moment matrix, and the tail behaviour of X and E , we can derive the limiting

Gaussian distribution of this difference allowing for asymptotically valid tests. We apply Algorithm

3.2 where we make use of the (asymptotic) normality of the non-vanishing term in this difference.

For non-Gaussian E , a multiplicity correction method that does not rely on exact Gaussianity of this

remainder might be preferred since the CLT does not apply for dimensions growing too fast.

We provide here the main result to justify Algorithm 3.2 invoking additional assumptions on the

dimensionality and sparsity of the problem. We use the definitions s := ‖β‖0, sj :=
∥∥γj∥∥0

and

s̃j :=
∥∥γ̃j∥∥0

to denote the different levels of sparsity.

(C3.1) The design matrix x has i.i.d. sub-Gaussian rows. The moment matrix ΣX has strictly

positive smallest eigenvalue Λ2
min satisfying 1/Λ2

min = O(1). Also, max
j

ΣX
j,j = O(1).
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(C3.2) s = O

(
n1/2

log(p)3

)
.

(C3.3) ss2
j = O

(
n3/2

log(p)3

)
, ssj = O

(
n

log(p)5/2

)
and ss

1/2
j = O

(
n1/2

log(p)3/2

)
.

(C3.4) sj = O

(
n3/5

log(p)

)
. (C3.5)

√
nsλλ̃j = O(1). (C3.6) s̃j λ̃

2
j = O(1).

Theorem 3.2. Assume that the data follows the model (3.4) with sub-Gaussian E and that (C3.1)

- (C3.6) hold (∀j). Let β̂ come from Lasso regression with λ �
√

log(p)/n, ẑj from nodewise Lasso

regression using λj �
√

log(p)/n, and ˆ̃z3
j from nodewise Lasso regression of ẑ3

j versus x−j using

λ̃j � max
{

log(p)5/2n−1/2, s2
j log(p)5/2n−3/2, sj log(p)2n−1,

√
sj log(p)n−1/2

}
. Let σ̂ be any consistent

estimator for σ. Then,

√
n
(
β̂HOLSj − β̂OLSj

)
√
σ̂2

1

n
v̂>j v̂j

D→ N (0, 1) where v̂j =

(
ˆ̃z3
j

)
1

n

(
ˆ̃z3
j

)>
xj

− ẑj
1

n
ẑ>j xj

.

Algorithm 3.2 HOLS check for p > n

1: Regress y versus x via Lasso with a penalty parameter λ, denote the estimated regression coeffi-
cients by β̂

2: for j = 1 to p do
3: Regress xj versus x−j via Lasso with a penalty parameter λj , denote the residual by ẑj
4: Regress ẑ3

j versus x−j via Lasso with a penalty parameter λ̃j , denote the residual by ˆ̃z3
j

5: ŵj = y − x−jβ̂−j

6: β̂OLSj =
ẑ>j ŵj

ẑ>j xj
, β̂HOLSj =

(
ˆ̃z3
j

)>
ŵj(

ˆ̃z3
j

)>
xj

and v̂j =

(
ˆ̃z3
j

)
1

n

(
ˆ̃z3
j

)>
xj

− ẑj
1

n
ẑ>j xj

7: σ̂2 =

∥∥y − xβ̂
∥∥2

2

n−
∣∣∣β̂∣∣∣

0

(or any other reasonable variance estimator)

8: Create nsim i.i.d copies of S ∼ N
(

0, σ̂2 1

n2
v̂>v̂

)
, say, s1 to snsim

9: for j = 1 to p do

10: pj = 2

1− Φ


∣∣∣β̂HOLSj − β̂OLSj

∣∣∣
σ̂

1

n
‖v̂j‖2




11: Pj =
1

nsim

∑nsim
i=1 1

(∣∣∣β̂HOLSj − β̂OLSj

∣∣∣ > ∥∥si∥∥∞)
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We defer the technical details to Section 3.C of the supplemental material. Simulation results

concerning high-dimensional data can be found in Section 3.A of the supplemental material.

3.3 The confounded case and local null hypotheses

In this section and the following, we mainly exploit confounding in linear models as the alternative

hypothesis since these are the models where our tests for the local null hypotheses H0,j are most

informative. For a discussion of which interpretations might carry over to more general data generating

distributions, we refer to Section 3.4.3.

Note that everything that is discussed in Sections 3.3 and 3.4 implicitly applies to high-dimensional

data as well under suitable assumptions. We refrain from going into detail for the sake of brevity.

Thus, Theorems 3.3 - 3.6 which contain our main asymptotic results for the local intepretation are

designed explicitly for the fixed p case.

We look at the causal model

X← ρH + EX

Y ← X>β + H>α+ E ,
(3.9)

where H ∈ Rd, EX ∈ Rp and E ∈ R are independent and centered random variables, and α ∈ Rd and

ρ ∈ Rp×d are fixed model parameters. Thus, there exists some hidden confounder H. For the inner

product matrices, it holds that

ΣX = ΣEX + ρΣHρ>.

Furthermore, we have

βOLS =
(
ΣX
)−1

E[XY ] =
(
ΣX
)−1(

ΣXβ + ρΣHα
)

= β +
(
ΣX
)−1
ρΣHα (3.10)

We will generally refer to βOLSj 6= βj , where βj is according to model (3.9), as confounding bias on

βOLSj . Further, when writing directly confounded, we mean covariate indices j for which Xj 6= EXj .

Note that we can always decompose Y both globally and locally as follows

Y = X>βOLS + Ẽ , with E
[
XẼ
]

= 0, E
[
Ẽ
]

= 0 but (potentially) X 6⊥ Ẽ (3.11)

Wj = Zjβ
OLS
j + Ẽ , with E

[
Zj Ẽ

]
= 0, E

[
Ẽ
]

= 0 but (potentially) Zj 6⊥ Ẽ (3.12)

using the definitions from (3.5). We now want to see how βOLS relates to β in certain models.

Especially, we are interested in whether there is some potential local interpretation in the sense of

distinguishing between “confounded” and “unconfounded” variables. From (3.10), we see that this is
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linked to the structure of the covariance matrices as well as ρ and α. We define the sets

V =
{
j : βOLSj = βj

}
and U =

{
j : βOLSj = βHOLSj

}
= {j : H0,j is true}. (3.13)

Using the Woodbury matrix identity, we find a sufficient condition

j ∈ V if ρ>
(
ΣEX

)−1

j
= 0 which is implied by{

k ∈ {1, . . . , p} :
(
ΣEX

)−1

jk
6= 0
}
∩
{
l ∈ {1, . . . , p} :

∥∥∥e>l ρ∥∥∥ > 0
}

= ∅. (3.14)

Thus, if the intersection between covariates that have linear predictive power for Xj and covariates

that are directly confounded is empty, it must hold that βOLSj = βj . Therefore, we can indeed say

that for these variables we estimate the true causal effect using ordinary least squares.

To correctly detect V , we would like βHOLSj = βOLSj = βj . As βHOLSj involves higher-order

moments, knowledge of the covariance structure is not sufficient to check this. From (3.12), we see

that E
[
Z3
j Ẽ
]

= 0 is necessary and sufficient to ensure j ∈ U . In Section 3.3.2, we discuss the two

cases where detection fails, i.e., U \ V 6= ∅ and V \ U 6= ∅. We present models for which we can

characterize a set of variables which are in U ∩ V =
{
j : βHOLSj = βOLSj = βj

}
in Section 3.4.

3.3.1 Sample estimates

For a confounded model, the hope is that the global test min
j
Pj ≤ α, where Pj is the adjusted p-value

according to Step 10 in Algorithm 3.1, leads to a rejection of H0, i.e., the modelling assumption (3.4).

One could further examine the local structure and, based on the corrected p-values Pj , distinguish the

predictors for which we have evidence that βHOLSj 6= βOLSj . We consider in the following this local

interpretation, showing that we asymptotically control the type-I error and receive power approaching

1. Implicitly, we assume that U is a useful proxy for V .

For all asymptotic results in this section, we assume p to be fixed and n→∞ as in Theorem 3.1.

Theorem 3.3. Assume that the data follows the model (3.11) and that (A3.1)-(A3.2) hold. Assume

further σ2
Ẽ = E

[
Ẽ2
]
<∞. Then,

β̂OLSj = βOLSj + Op(1), β̂HOLSj = βHOLSj + Op(1) and V̂ar
(
β̂HOLSj − β̂OLSj

)
= Op

(
1

n

)
,

where V̂ar
(
β̂HOLSj − β̂OLSj

)
is according to (3.8).

Thus, for some fixed alternative
∣∣∣βHOLSj − βOLSj

∣∣∣ > 0, the absolute z-statistics increases as
√
n.

In order to get some local interpretation, the behaviour for variables j ∈ U is of importance. If∣∣∣βHOLSj − βOLSj

∣∣∣ = 0, Theorem 3.3 is not sufficient to understand the asymptotic behaviour. We
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refine the results using additional assumptions.

(A3.3) E
[(
Xj Ẽ

)2
]
<∞ ∀j

(B3.1) E
[
Z2
jXkẼ

]
= 0 ∀k 6= j

(B3.2) Zj ⊥ Ẽ

(B3.3) Z̃3
j ⊥ Ẽ

Note that we use different letters for the assumptions to distinguish between those that are es-

sentially some (mild) moment conditions and those that truly make nodes unconfounded. Obviously,

(B3.2) is not necessary for βOLSj = βHOLSj , but we will focus on these variables as these are the

ones that are truly unconfounded in the sense that the projected single variable model (3.12) has an

independent error term, while as for other variables it can be rather considered an unwanted artefact

of our method. Furthermore, the derived asymptotic variance results only hold true when assuming

(B3.2) and (B3.3) as well. Assumption (A3.3) implies a further moment condition. Especially, when

considering nonlinearities, there exist cases for which (A3.3) is not implied by (A3.2). We discuss

Assumptions (B3.1), (B3.2) and (B3.3) for certain models in Section 3.4. Condition (B3.1) seems to

be a bit artificial but is invoked in the proofs. We argue in Section 3.4 that it is naturally linked to

the models in scope.

Theorem 3.4. Assume that the data follows the model (3.11) and that (A3.1) - (A3.3) hold. Let j

be some covariate with βOLSj = βHOLSj for which (B3.1) - (B3.3) hold. Then,

√
n
(
β̂HOLSj − β̂OLSj

)
√

V̂ar
(√

n
(
β̂HOLSj − β̂OLSj

)) D→ N (0, 1).

Thus, for these predictors we receive asymptotically valid tests.

Multiplicity correction In order not to falsely reject the local null hypothesis H0,j for any co-

variate with j ∈ U (with probability at least 1− α), we need to invoke some multiplicity correction.

Analogously to Section 3.2.2, one can see that β̂
HOLS−β̂OLS = v̂>ε̃/n, which enables the multiplicity

correction as in Algorithm 3.1.

Theorem 3.5. Assume that the data follows the model (3.11) and that (A3.1) - (A3.3) hold. Let U ′

be the set of variables j for which j ∈ U and (B3.1) - (B3.3) hold. Then,

√
n
(
β̂
HOLS

U ′ − β̂OLSU ′

)
D→ N

(
0, σ2

ẼE
[
VU ′V

>
U ′

])
1

n
v̂>U ′ v̂U ′

P→ E
[
VU ′V

>
U ′

]
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Corollary 3.2. Assume the conditions of Theorem 3.5. Consider the decision rule to reject H0,j iff

Pj ≤ α, where Pj is as in Step 10 of Algorithm 3.1. Then, the familywise error rate amongst the set

U ′ is asymptotically controlled at α.

3.3.2 Inferring V from U

Recall the definitions in (3.13). U is the set that we try to infer with our HOLS check. Naturally, one

would rather be interested in the set V , which consists of the variables for which we can consistently

estimate the true linear causal effect according to (3.9) through linear regression. We discuss here when

using U as proxy for V might fail and especially analyse how variables could belong to the difference

between the sets. For this, recall our formulation of the model when the global null hypothesis does

not hold true in (3.11) and (3.12). Note that j ∈ U is equivalent to E
[
Z3
j Ẽ
]

= 0.

For any variable j ∈ U \ V , certain modelling assumptions, that we discuss in the sequel, cannot

be fulfilled but they are not necessary for E
[
Z3
j Ẽ
]

= 0. Especially, the last equality always holds

if both EX and H jointly have Gaussian kurtosis. If they are even jointly Gaussian, then it is clear

that X ⊥ Ẽ such that the model (3.11) has independent Gaussian error. Thus, when using only

observational data, it behaves exactly like a model under the global null hypothesis and, naturally,

we cannot infer the confounding effect. Apart from Gaussian kurtosis, j ∈ U \ V would be mainly

due to special constellations implying cancellation of terms that one does not expect to encounter in

normal circumstances.

For j ∈ V \ U , Zj and Ẽ must not be independent. As Zj 6⊥ Ẽ , the single-covariate model (3.12)

is not a linear causal model with independent error term as given in (3.1). Therefore, from a causal

inference perspective, one can argue that rejecting the local null hypothesis H0,j is the right thing to

do in this case. Furthermore, having variables j ∈ V is usually related to certain model assumptions

except for very specific data setups that lead to cancellation of terms. Under these assumptions,

Zj ⊥ Ẽ is then usually implied. An example where βOLS = β, but (potentially) X 6⊥ Ẽ is data for

which ρΣHα = 0 using the definitions from model (3.9).

Recovery of U Based on our asymptotic results when the global null does not hold true, we would

like to construct a method that perfectly detects the unconfounded variables as n→∞. Define

Û = {j : H0,j not rejected} (3.15)

The question is how and when can we ensure that

lim
n→∞

P
[
Û = U

]
= 1.
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Suppose that we conduct our local z-tests at level αn, which varies with the sample size such that

αn → 0 as n→∞. It will be more convenient to interpret this as a threshold on the (scaled) absolute

z-statistics, say, τn that grows with n, where the z-statistics is defined as

tj =

√
n
(
β̂HOLSj − β̂OLSj

)
√

V̂ar
(√

n
(
β̂HOLSj − β̂OLSj

)) .
We refrain from calling it zj to avoid confusion. We use an additional assumption which is a relaxed

version of (B3.3).

(A3.4) E
[(
Z̃3
j Ẽ
)2
]
<∞

Theorem 3.6. Assume that the data follows the model (3.11) and that (A3.1) - (A3.3) hold. Assume

that (B3.1) and (A3.4) hold ∀j ∈ U . Let τn be the threshold on the absolute z-statistics to reject the

according null hypothesis with τn = O(
√
n) and 1/τn = O(1). Then,

lim
n→∞

P
[
Û = U

]
= 1.

In other words, we can choose τn to grow at any rate slower than
√
n.

3.4 Specific models

In this section, we discuss two types of models where the local interpretation applies. In these settings,

there are variables for which βj = βOLSj = βHOLSj and assumptions (B3.1)-(B3.3) hold even though

the overall data follows the model (3.9). We note here first that the model of jointly Gaussian EX,

for which the method is suited, is a special case of the model in Section 3.4.2 below.

3.4.1 Block independence of EX

Assume that the errors EX can be grouped into two or more independent and disjoint blocks. Denote

the block that includes j by B(j). Then, it is clear that
(
ΣEX

)−1

jk
= 0 if B(j) 6= B(k). If

XB(j) = EXB(j)
, i.e., the confounder has no effect onto XB(j), (3.14) holds for all covariates in

B(j). Then, no variable in XB(j) contributes to the best linear predictor for H>α. Due to the block

independence, this yields XB(j) ⊥ Ẽ and Zj ⊥ Ẽ , i.e., (B3.2) is fulfilled. This also ensures E
[
Z3
j Ẽ
]

= 0.

We consider the remaining assumptions: Naturally, the regression Z3
j versus X−j only involves XB(j)\j

and (B3.3) holds as well. For (B3.1), separately consider the case k ∈ B(j) and k 6∈ B(j). In the first

case, E
[
Z2
jXkẼ

]
= E

[
Z2
jXk

]
E
[
Ẽ
]

= 0. In the second case, E
[
Z2
jXkẼ

]
= E

[
Z2
j

]
E
[
XkẼ

]
= 0.
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Theorem 3.7. Assume the data follows the model (3.9) with errors EX that can be grouped into

independent blocks. Then,

βHOLSj = βOLSj = βj ∀j for which XB(j) = EXB(j)
. Further,

(B3.1) -(B3.3) hold ∀j for which XB(j) = EXB(j)
.

In some cases, block independence may be a restrictive assumption. Testing this assumption is

not an easy problem, and will remain out of the scope of this paper. However, the HOLS check

still provides an indirect check of such an assumption since HOLS would likely reject the local null-

hypotheses for all covariates, at least for large data-sets, if there is no block that is unaffected by the

confounding.

3.4.2 Linear structural equation model

From the previous sections, we know that locally unconfounded structures, in the sense that

βOLSj = βj , are strongly related to zeroes in the precision matrix. Thus, the question arises for what

type of models having zeroes in the precision matrix is a usual thing. Besides block independence,

which we have discussed in Section 3.4.1, this will mainly be the case if the data follows a linear

structural equation model (SEM). Thus, we will focus on these linear SEMs for the interpretation of

local, i.e., by parameter, null hypotheses.

To start, assume that there are no hidden variables. So, let X be given by the following linear

SEM

Xj ← Ψj +
∑

k∈PA(j)

θj,kXk j = 1, . . . , p, (3.16)

where the Ψ1, . . . ,Ψp are independent and centered random variables. We use the notation PA(j),

CH(j) and AN(j) for j’s parents, children and ancestors. Further, assume that there exists a directed

acyclic graph (DAG) representing this structure. For this type of model, we know that a variable’s

Markov boundary consists of its parents, its children, and its children’s other parents. For every other

variable k outside of j’s Markov boundary, we have
(
ΣX
)−1

jk
= 0. Thus, these 0 partial correlations

are very usual. In the following, we will analyse how our local tests are especially applicable to this

structure.

In the context of linear SEMs, hidden linear confounders can be thought of as unmeasured vari-

ables. Therefore, we split X which contains all possible predictors into two parts. Let XM be the

measured variables and XN the hidden confounder variables. Let Ψ =
(

Ψ1, . . . ,Ψp

)>
with the

according subsets ΨM and ΨN . Then, we can write

X = ωΨ, XM = ωM,MΨM + ωM,NΨN and XN = ωN,MΨM + ωN,NΨN
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for some suitable ω ∈ Rp×p, where ωk,l = 0 for k 6= l if l 6∈ AN(k) and ωk,k = 1. Note that ωM,M is

always invertible since it can be written as a triangular matrix with ones on the diagonal if permuted

properly. Under model (3.9), Y can be thought of as a sink node in (3.16). To avoid confusion, we

call the parameter if all predictors were observed β∗. This leads to the definitions

EX := ωM,MΨM , ρ := ωM,N and H := ΨN such that (3.17)

XM = EX + ρH with EX ⊥ H

Y − E = X>β∗ = X>Mβ
∗
M + X>Nβ

∗
N

= X>M

(
β∗M +

(
ωN,Mω

−1
M,M

)>
β∗N

)
+ H>

(
ωN,N − ωN,Mω−1

M,MωM,N

)>
β∗N

:= X>Mβ + H>α.

When only the given subset is observed we are interested in the parameter β as before. We have

βj = β∗j iff
((
ωN,Mω

−1
M,M

)>
β∗N
)
j

= 0.

Theorem 3.8. Assume that the data follows the model (3.16) and (3.17). Let XM and XN be the

observed and hidden variables. Denote by PAM (k) the closest ancestors of k that are in M . Consider

some j ∈M .

If 6 ∃k ∈ N :
(
j ∈ PAM (k) and βk 6= 0

)
, then βj = β∗j .

In other words, the causal parameter can only change for variables that have at least one direct

descendant in the hidden set which is a parent of Y itself. By direct descendant, we mean that there

is a path from j to k that does not pass any other observed variable. We analyse for which variables

we can reconstruct this causal parameter using ordinary least squares regression.

Theorem 3.9. Assume that the data follows the model (3.16) and (3.17). Let XM and XN be the

observed and hidden variables. Then,

βHOLSj = βOLSj = βj ∀j ∈M that are not in the Markov boundary of any hidden variable.

(B3.1) -(B3.3) hold ∀j ∈M that are not in the Markov boundary of any hidden variable.

Thus, for those variables, we can a) correctly retrieve the causal parameter using ordinary least

squares regression and b) detect that this is the true parameter by comparing it to βHOLSj .

Simulation example We assess the performance of our HOLS method in a linear SEM using a

simple example. In Figure 3.1, we show the DAG that represents the setup.

For simplicity, the parameters are set such that X1 to X7 all have unit variance. X3 is the only

parent of Y and we apply the HOLS method using all but X3 as predictors, i.e., X3 is treated as
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X1 X2

X3

X4

X5

X6 X7

Y

Figure 3.1: DAG of the linear SEM. X3 is assumed to be hidden which is depicted by the dashed

circle. We use the following specifications: Ψ1
D
= Ψ3

D
= Ψ5 ∼ t7/

√
7/5, Ψ2

D
= Ψ6

D
= Ψ7 ∼ N (0, 1/2),

Ψ4 ∼ Unif
[
−
√

3/2,
√

3/2
]

and E ∼ N (0, 1). θ2,1 = θ7,6 =
√

1/2, θ4,2 = θ4,3 = θ6,4 = θ6,5 = 0.5 and

β∗3 =
√

5/2.

hidden variable. Following Theorem 3.9, we know that for variables X1 and X5 to X7 the causal

effect on Y is consistently estimated with OLS, while we chose the detailed setup such that there

is a detectable confounding bias on βOLS2 and βOLS4 . Thus, ideally, our local tests reject the null

hypothesis for those two covariates but not for the rest.

For numerical results, we let the sample size grow from 102 to 106. For each sample size, we do

200 simulation runs. On the left-hand side of Figure 3.2, we show the average absolute z-statistics

per predictor for the different sample sizes. For X2 and X4 we see the expected
√
n-growth. For the

other variables, the empirical averages are close to the theoretical mean, which equals
√

2/π ≈ 0.8,

with a minimum of 0.70 and a maximum of 0.88. Further, we see that the confounding bias on the

OLS parameter for X4, which is a child of the hidden variable, is easier to detect than the bias onto

Figure 3.2: Simulation in a linear SEM corresponding to Figure 3.1. The results are based on 200
simulation runs. On the left: Average absolute z-statistics per covariate for different sample sizes.
The dotted lines grow as

√
n and are fit to match perfectly at n = 105. On the right: Empirical

probability of perfectly recovering U (cf. (3.13)) for different sample sizes.
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the parameter for X2, which is a child’s other parent. The multiplicity corrected p-value for X4 is

rejected at level α = 0.05 in 91.5% of the cases for n = 103, while as the null hypothesis for X2 is

only rejected with a empirical probability of 3%. For X2, it takes n = 105 samples to reject the local

null hypothesis in 89% of the simulation runs.

Following Section 3.3.2, we should be able to perfectly recover the set U (cf. (3.13)) as n→∞ if

we let the threshold on the absolute z-statistics grow at the right rate. Therefore, we plot on the right-

hand side of Figure 3.2 the empirical probability of perfectly recovering U over a range of possible

thresholds for the different sample sizes. For n = 106, we could achieve an empirical probability of 1.

For n = 105 the optimum probability is 87%, while as for n = 104 it is only 19%.

Naturally, perfectly recovering U is a very ambitious goal for smaller sample sizes, and one might

want to consider different objectives. In Figure 3.3, we plot two different performance metrics. On

the left-hand side, we plot the empirical probability of not falsely including any variable in Û against

the average intersection size
∣∣∣Û ∩ U ∣∣∣. The curve is parametrized implicitly by the threshold on the

absolute z-statistics in order to reject the local null hypothesis for some variable. Thus, the graphic

considers the question of how many variables in U can be recovered while keeping the probability of

not falsely including any low. For a sample size of 105, we have an average intersection size of 3.97

allowing for a 10% probability of false inclusions. For 104, it is still 0.995. Thus, we can find (almost)

one of the 4 variables in U on average. As we see in Figure 3.2, the bias on βOLS4 is much easier

Figure 3.3: Simulation in a linear SEM corresponding to Figure 3.1. The results are based on 200
simulation runs. On the left: Probability of not falsely including a variable in Û versus average

intersection size
∣∣∣Û ∩ U ∣∣∣ (cf. (3.15)). On the right: average remaining fraction of confounding signal

versus average intersection size
∣∣∣Û ∩ U ∣∣∣. It holds that |U | = 4. Both curves use the threshold on the

absolute z-statistics as implicit curve parameter. Note that the legend applies to either plot.
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to detect than the bias on βOLS2 . Thus, keeping the probability of including X2 in Û low is still an

ambitious task. Therefore, we analyse on the right-hand side of Figure 3.3 how many variables in U

we can find while removing a certain amount of confounding signal. We define the remaining fraction

as ∥∥∥βOLS
Û
− βÛ

∥∥∥
1∥∥βOLS − β∥∥

1

,

i.e., how much of the difference βOLS − β persists in terms of `1 norm.

In this SEM, βOLS4 caries 2/3 of the confounding signal, βOLS2 only 1/3. Accepting 1/3 of remaining

confounding signal, we receive an average intersection size of 3.885 for a sample size of 103. For 104,

the average is 4. Thus, if we allow for false inclusion of X2 we can almost perfectly retrieve all of U

for sample size 103 already.

What if X includes descendants of Y ? So far, we have only considered the case where X causally

affects Y , but potentially, some of Y ’s parents are missing leading to a confounding effect. However,

another possibility for βOLS to not denote a causal effect is that there are descendants of Y amongst

the predictors. The two different situations are depicted in Figure 3.4. The case with descendants in

the set of predictors fits our theory from before if interpreted properly. If the model (3.4) for Y holds

true using only the parents as predictors, Y can be naturally included in the assumed linear SEM for

X in (3.16). Then, one can also think of E as an unobserved confounder. The Markov boundary of

E with respect to the observed predictors is the same as the Markov boundary of Y . Of course, it

holds β = β∗, i.e., βj = 0 ∀j 6∈ PA(Y ). Using Theorem 3.9, we find

βHOLSj = βOLSj = βj = 0 ∀j ∈M that are not in the Markov boundary of Y.

Thus, for all variables outside Y ’s Markov boundary, one can correctly detect that they have no

causal effect onto Y ceteris paribus. The variables in the boundary, which includes all parents, are

up to term cancellations all confounded. This can be detected under some conditions, as discussed in

Section 3.3.2.

X Y

H

X1 Y

E

X2

Figure 3.4: Left: SEM with a hidden confounder. Right: SEM with a descendant of Y .
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3.4.3 Beyond linearity

We have mainly focused on linear models, i.e., the data is either generated by model (3.4) or model

(3.9). Naturally, this assumption might be questionable in practice. Therefore, we provide some

intuition about how HOLS might be applied in a more general setup. As we only detect misspec-

ification of the OLS coefficient without identifying the type of misspecification, one should not try

to over-interpret the effect of the regressors in Û c = {1, . . . , p} \ Û (cf. Section 3.3.2). However,

the linear effect of the variables in Û can always be interpreted to be well-specified, meaning that

E[Wj |Zj ] = Zjβ
OLS
j or at least “sufficiently” well-specified such that no misspecification is detected

in the data. Generally, we can write

Y = X>βOLS + fnonlinear(X) + E , where fnonlinear(X) = E[Y |X]−X>βOLS , E[E|X] = 0.

Wj = Zjβ
OLS
j + fnonlinear(X) + E .

Thus, well-specification of βOLSj implies E[fnonlinear(X)|Zj ] = 0, i.e., after linearly adjusting for X−j ,

Xj does not have any predictive power for fnonlinear(X). If it does not have any predictive power

after linear adjustment, it would be a natural conclusion that it does not have predictive power after

optimally adjusting for X−j implying that fnonlinear(X) can be written as function of X−j only. This

would then imply

E[Y |Xj = xj + 1,X−j = x−j ]− E[Y |Xj = xj ,X−j = x−j ] = βOLSj ∀xj ,x−j .

Except for Gaussian data, such a linear relationship must be either causal or due to very pathological

data setups. Excluding such unusual cancellations, the conclusion is that for j ∈ U there must be a

true linear causal effect from Xj to Y keeping the other predictors fixed, which can be consistently

estimated using OLS. Of course, if there are no locally linear structures, it might well be that U = ∅
such that the local tests are not more informative than the global test. However, there is also nothing

to be lost by exploiting this local view.

Note that the asymptotic results presented in Sections 3.3.1 and 3.3.2 hold for nonlinear data as

well since they only assume model (3.11) - (3.12), which is the most general formulation.

3.5 Real data example

We analyse the flow cytometry dataset presented by Sachs et al. (2005). It contains cytometry mea-

surements of 11 phosphorylated proteins and phospholipids. There is a “ground truth” on how these

quantities affect each other, the so-called consensus network (Sachs et al., 2005). Data is available

from various experimental conditions, some of which are interventional environments. The dataset

has been further analysed in various projects, see, e.g., Mooij and Heskes (2013), Meinshausen et al.
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(2016) and Taeb et al. (2023). Following these works, we consider data from 8 different environments,

7 of which are interventional. The sample size per environment ranges from 707 to 913.

In our analysis, we focus on the consensus network from Sachs et al. (2005). For each node, we go

through all environments, fit a linear model using all its claimed parents as predictors, and assess the

goodness of fit of the model using our HOLS check. In the consensus network, there is one bidirected

edge between the variables PIP2 and PIP3. We include it as a parent for either direction. For each

suggested edge, we also collect the p-values from the linear model fit in all environments, keeping only

those where the edge passes the local HOLS check at level α = 5% without multiplicity correction.

We omit the multiplicity correction here to lower the tendency to falsely claim causal detection. In

Table 3.1, we report the minimum p-value from OLS, over the environments where the HOLS check

is passed, sorted by increasing p-values. Additionally, we show the number of environments in which

the check is passed and out of these the number where the edge is significant at level α = 5% in the

respective linear model fit (with Bonferroni correction over all 8 environments and 17 edges, i.e., we

require a p-value of at most 0.05/136). Note that there is one p-value 0 reported corresponding to a

t-value of 174, which exceeds the precision that can be obtained with the standard R-function lm.

Edge Passing
HOLS

Significant in
linear model

minimum
p-value

RAF → MEK 3 2 0
PKA → Akt 3 3 1.5e-120
PKA → Erk 5 5 3.8e-69
PKC → JNK 3 3 5.9e-55
PIP2 → PIP3 1 1 6.5e-40
PIP3 → PLCg 5 1 1.4e-36
PKC → p38 1 1 7.1e-34

PIP3 → PIP2 1 1 9.6e-08
PLCg → PKC 6 0 0.016
PLCg → PIP2 1 0 0.027
PKC → RAF 8 0 0.046
PKC → PIP2 8 0 0.057
PKA → RAF 8 0 0.086
PKA → p38 8 0 0.12
PIP3 → Akt 8 0 0.2
PKA → JNK 8 0 0.21
MEK → Erk 8 0 0.42

Table 3.1: The working model is taken from the consensus network. The second column reports the
number of environments in which the edge passes the HOLS check (among 8 possible ones). The
third column additionally shows, in how many of these it is also significant in the respective linear
model fit. The p-value is the minimum of the p-values from linear regression in environments, where
the edge passes the HOLS check.
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We see that the edge RAF → MEK is the most significant. Further, every edge of the consensus

network passes the HOLS check in at least one environment. Frequently, we see that edges pass the

HOLS check in certain environments without being significant in the linear model. Considering our

discussion around linear SEMs, this could easily happen if the alleged predictor node is not actually

in the Markov boundary of the response. In fact, there are seven edges that pass the HOLS check in

every environment which are not significant based on the linear model fits. This is in agreement with

Taeb et al. (2023), where none of them is reported.

As we cannot guarantee that the data follows a linear SEM as in (3.16), we shall not interpret

the edges that do not pass the HOLS check to be subject to hidden confounding. However, the fact

that we still find a decent number of suggested edges that pass the HOLS check, at least in some

environments, leads to evidence that the assumption of some local unconfounded linear structures is

not unrealistic, see also the discussion in Section 3.4.3.

We can also analyse our results in the light of invariant causal prediction, see, e.g., Peters et al.

(2016), where one typically assumes that interventions do not change the underlying graph except for

edges that point towards the node that is intervened on. This assumption is highly questionable in

practice, and our findings, which vary a lot over different environments, indicate that the assumption

is likely not fulfilled in the given setup.

3.6 Discussion

We have introduced the so-called HOLS check to assess the goodness of fit of linear causal models.

It is based on the dependence between residuals and predictors in misspecified models, leading to

non-vanishing higher moments. Besides checking whether the overall model might hold true, the

method allows to detect a set of variable for which linear regression consistently estimates a true

(unconfounded) causal effect for certain model classes.

We extend the HOLS method to high-dimensional datasets based on the idea of the debiased

Lasso (Zhang and Zhang, 2014; van de Geer et al., 2014). This extension comes very naturally as our

HOLS check involves nodewise regression just as the debiased Lasso.

Of particular interest are linear structural equation models, for which our method allows for

very precise characterizations regarding which least squares parameters are causal effects. The result

requires some non-Gaussianity. We complement our theory with a simulation study as well as a real

data example.

A drawback of our method is that it does not distinguish whether a model is misspecified due

to confounding or due to nonlinearities in the model. Therefore, an interesting follow-up direction

would be to extend our methodology and theory from linear to nonlinear SEM using more flexible

regression methods. This could allow to detect local causal structures in nonlinear settings as well.
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Further simulation results as well as proofs and extended theory can be found in the supple-

mental material. Code scripts to reproduce the results presented in this paper are available here

https://github.com/cschultheiss/HOLS.
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3.A Simulation results

3.A.1 Global null

We create data that follows the model (3.4). We chose the sample size and dimensionality to be

n = 100 and p = 30 and sample X as follows. Let Ψ1, . . . ,Ψp be i.i.d. random variables. Each of

these follows a mixture distribution such that every copy comes from a N (0, 0.5) distribution with

probability 2/3 or from a N (0, 2) distribution with probability 1/3. Thus, they are 0 mean and unit

variance random variables. Then, set X1 = Ψ1 and

Xj = rXj−1 +
√

1− r2Ψj (∀j > 1)

This leads to a Toeplitz covariance structure Σx with Σx
ij = r|i−j|, where we set r = 0.6. The

coefficient vector β is 5-sparse, and the active predictors are {1, 5, 10, 15, 20}, each of which having a

coefficient equal to 1. The random error E follows the same non-Gaussian distribution as the Ψj .

We run 200 simulations of this setup. For every simulation run, we calculate the p-value per

predictor (without multiplicity adjustment) as well as the minimum of the multiplicity corrected p-

values. Asymptotically, these p-values would be uniformly distributed as the model assumptions hold

true. On the left-hand side of Figure 3.5, we analyse these p-values by looking at their empirical

cumulative density function (ECDF). For pj , the curve is combined over all the p = 30 covariates.

Thus, it is based on 6000 p-values.

We see that even though the error does not have a Gaussian distribution, the p-values still are

very close to being uniformly distributed. Furthermore, we see that the curve for the raw p-values is

closer to the uniform distribution than the one for the minimum of the multiplicity corrected p-values.

This is not surprising since the ECDF is based on more observations and as the CLT for multiple

dimensions might take longer to kick in.

High-dimensional data We extend the simulation to a high-dimensional case. We reuse the setup

with the only exception that p = 200 > n. Thus, we add an extra 170 predictors that do not actually

have any influence on Y .

To calculate ẑj , ŵj , and σ̂ we use the default implementation of the debiased Lasso, available in

the R-package hdi (Dezeure et al., 2015). To get the estimate ˆ̃z3
j , we run a second level of nodewise

regression with cross-validated λ̃j . It shall be noted that all the estimated ˆ̃γj = 0. Thus, x−j does

not appear to contain strong enough information on z3
j , at least for the given sample size.

Again, we look at all the obtained raw p-values and plot the ECDF on the right-hand side of

Figure 3.5. We see some deviations from the uniform distribution. Especially, very low p-values

become more unlikely. Thus, the procedure is a bit too conservative. This is emphasized by the
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Figure 3.5: Simulation under the global null. The results are based on 200 simulation runs. On the
left: ECDF of p-values for low-dimensional data pj (unadjusted as in Step 9 of Algorithm 3.1) over
all p = 30 predictors and of min

j
Pj (multiplicity corrected as in Step 10 of Algorithm 3.1). On the

right: ECDF of p-values for high-dimensional data pj (unadjusted as in Step 10 of Algorithm 3.2)
over all p = 200 predictors and of min

j
Pj (multiplicity corrected as in Step 11 of Algorithm 3.2.

ECDF for the minimum of the multiplicity corrected p-values as this minimum is affected by the

distribution of very low p-values. The issue might be related to σ being overestimated: the empirical

average of σ̂2 is 1.35 and σ̂ > σ = 1 occurred in 88.5% of the cases. However, when replacing the

estimate with the true σ the p-values become too liberal.

In summary, after increasing the number of predictors but keeping the sample size the same, the

results deviate a bit more from the optimal distribution. Though, the behaviour is still fairly close to

what one would aim for, supporting the benefit of our method.

3.A.2 Missing variable in a linear SEM

For the sake of comparison with the results under the global null, we provide here an additional

analysis of the simulation example in Section 3.4.2. Namely, we show in Figure 3.6 the empirical

cumulative distribution function of the p-values obtained for different predictors. The predictors X2

and X4, for which the local null hypothesis should be rejected, are depicted separately, while as the

rest is grouped together. Note that for X4 sample sizes of more than 104 are not in the plot anymore

as they look just the same.

We see that the distribution of the p-values for the covariates outside the hidden variable’s Markov

boundary are close to the desired uniform distribution even for low sample sizes. Furthermore, in

accordance with the z-statistics shown in Section 3.4.2, the confounding bias on βOLS4 is much easier

to detect than the bias on βOLS2 .
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Figure 3.6: Simulation in a linear SEM corresponding to Figure 3.1. The results are based on 200
simulation runs. Depicted is the ECDF of the p-values for different predictors (unadjusted pj as in
Step 9 of Algorithm 3.1).

3.A.3 High-dimensional data: missing variable in a linear SEM

We want to assess how well our method for high-dimensional data can detect deviations from the

null hypothesis. We create data from the linear SEM depicted in Figure 3.7, where all predictors but

X1

X5

X6

X7

X2

X3

X4Y

...

...

...

Xp−2

Xp−1

XpY

Figure 3.7: Linear SEM used for the high-dimensional simulation.
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X3 are observed. According to our theoretical results, βOLSj = βHOLSj = βj ∀j 6∈ {2, 4}. We set the

number of variables to p = 1.5n + 1. Thus, there are 0.5n of these blocks. We consider n = 102

and n = 103. For a comparison with low-dimensional HOLS, we also assess the performance using

just p = 13 predictors, i.e., four blocks. We let all Ψj follow a centered uniform distribution and set

Y = X3. To execute the high-dimensional HOLS test, we proceed as in Section 3.A.1.

In Figure 3.8, we show the empirical cumulative distribution function of the p-values obtained

over 200 simulation runs. We look at the p-values for X2 and X4 separately and for all other variables

combined. The latter should roughly follow a uniform distribution. Similar to our results in Sections

3.4.2 and 3.A.2, we see that it is much easier to reject the null hypothesis for the hidden variable’s

child X4 than for the child’s other parent (with respect to the observed covariates) X2. With a

sample size of 103, no p-value p4 larger than 1.4 ∗ 10−4 was obtained. Finally, we see that for the

other covariates the obtained p-values are indeed close to being uniformly distributed.

In Figure 3.9, we consider the same statistics for the low-dimensional HOLS test applied to the

same data but with just the first 12 observed covariates. We note that for this data the distribution

of the p-values for X2 and X4 is more distinct from the uniform distribution in the high-dimensional

setup than in the low-dimensional setup. Other than that, the conclusion regarding the algorithm’s

performance remains the same.

Figure 3.8: Simulation for a missing variable in a linear SEM corresponding to Figure 3.7 for high-
dimensional data. The results are based on 200 simulation runs. Depicted is the ECDF of the p-values
for different predictors (unadjusted pj as in Step 10 of Algorithm 3.2).
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Figure 3.9: Simulation for a missing variable in a linear SEM corresponding to Figure 3.7 for low-
dimensional data. The results are based on 200 simulation runs. Depicted is the ECDF of the p-values
for different predictors (unadjusted pj as in Step 9 of Algorithm 3.1).

3.A.4 Confounding onto block-independent EX

To simulate block-independent data, we make use of the Boston housing data, available in the R-

package MASS (Venables and Ripley, 2002). We use all variables but the variable medv, which is

typically the response variable for regression. Then, we create two independent bootstrap samples

and concatenate those such that we have two independent blocks forming the matrix εx. There are

13 covariates per block. Before this bootstrap sampling, we make all variables have 0 mean and unit

variance. We let H be a standard normal random variable and set X1 = EX1 +H and X7 = EX7 −H.

For the remaining variables, we let Xj = EXj . Finally, we set Y = H for simplicity. Thus, the first

block is confounded with Y , but the second is not. As the covariance ΣEX is defined by the empirical

correlation of the Boston housing data, there are no vanishing entries in each of the blocks. Thus,

none of the covariates X1 to X13 fulfils (3.14), and there is a confounding bias on each of the OLS

parameters.

We vary the sample size from 102 to 106, doing 200 simulation runs for each sample size. Thus, it

is a “m out of n” bootstrap, where m can be smaller than n (for m = 102) or larger (for the rest). In

the remainder, we call the bootstrap sample size n to keep the notation consistent and as the size of

the real Boston housing data is not of primary interest. On the left-hand side of Figure 3.10, we plot

the average absolute z-statistics for a representative subset of the predictors. Notably, it is the same

four predictors once from the first block and once from the second. As expected, this average grows as
√
n for variables in the confounded block, while it stays approximately constant for variables from the

independent block. Further, we see that the two variables X1 and X7, which are directly confounded,
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Figure 3.10: Simulation for confounding onto block independent EX. The results are based on 200
simulation runs. On the left: Average absolute z-statistics per covariate for different sample sizes.
The dotted lines grow as

√
n and are fit to match perfectly at n = 105. On the right: Empirical

probability (over 200 simulation runs) of perfectly recovering U (cf. (3.13)) for different sample sizes.

are the easiest to detect as such. For only 102 samples, the multiplicity corrected p-values for X1 and

X7 lead to a rejection of the local null hypothesis in 78.5% respectively 46% of the simulation runs at

level α = 0.05. For some of the other variables in the confounded block, it takes many more samples

to reliably reject the local null hypothesis. For X9, the local null hypothesis is only rejected in 3% of

the cases for n = 104 and only from n = 105 it is always rejected.

On the right-hand side, we show the empirical probability of perfectly recovering U , i.e., rejecting

the null hypothesis for all variables from the first block but not rejecting it for any variable from

the second block. We see that for n = 105 we are able to achieve this recovery with an empirical

probability of 1, and, for n = 106, it is even possible for a larger range of thresholds. Comparing

the two curves for n = 105 and n = 106, we see that they initially look very similar. This is as one

would expect as the initial increase of the curve corresponds to reducing the type I error, which is

independent of the sample size, assuming the CLT has kicked in sufficiently. The decrease of the curve

depends on the z-statistics for the confounded variables, which we know to increase as
√
n. Thus,

this decrease will appear later the larger n gets.

We show the empirical cumulative distribution function of the obtained p-values in Figure 3.11.

X1 and X9 are considered separately while as all p-values for the variables from the second block

are grouped together. For the latter, the ECDF is close to the desired uniform distribution for every

sample size. In accordance with the average z-statistics, the p-values for the directly confounded

variable X1 are more extreme than those for X9.

In Figure 3.12, we analyse the partial recovery of U as in Section 3.4.2. We see that for a sample
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Figure 3.11: Simulation for confounding onto block independent EX. The results are based on 200
simulation runs. Depicted is the ECDF of the p-values for different predictors (unadjusted pj as in
Step 9 of Algorithm 3.1).

Figure 3.12: Simulation for confounding onto block independent EX. The results are based on 200
simulation runs. On the left: Probability of not falsely including a variable in Û versus average

intersection size
∣∣∣Û ∩ U ∣∣∣ (cf. (3.15)). On the right: average remaining fraction of confounding signal

versus average intersection size
∣∣∣Û ∩ U ∣∣∣. It holds that |U | = 13. Both curves use the threshold on the

absolute z-statistics as implicit curve parameter. Note that the legend applies to either plot.
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size of 104, for which perfect recovery is hardly achievable, we receive an average intersection size

of 9.175 (out of 13) allowing for 10% probability of false inclusion. For lower sample sizes, there is

not much that can be found under this constraint. In this setup, there is a confounding bias onto

13 OLS parameters with varying signal strength
∣∣∣βOLSj − βj

∣∣∣. The two directly confounded variables

amount to 45.254% of the confounding signal. Thus, a remaining fraction of 54.746% appears to be

particularly achievable. We see that we can do even better than that. Namely, for a sample size

of 103, we can get an empirical probability of 1 of including all variables of U in Û allowing for an

average of 44.775% of the confounding signal. For 104, we can go down to a remaining fraction of

17.597%.

3.B Proofs

3.B.1 Proof of Theorem 3.1

Note that model (3.4) and (A3.2) imply that (B3.1) - (B3.3) hold for all j, i.e., U ′ = {1, . . . , p}.
Thus, we receive Theorem 3.1 for free by proving Theorem 3.5 and we receive Corollary 3.1 for free

by proving Corollary 3.2.

3.B.2 Proof of Theorem 3.3

Note first that Assumptions (A3.1) and (A3.2) imply

1

n
x>−jx−j

P→ ΣX
−j,−j =⇒ n

(
x>−jx−j

)−1 P→
(
ΣX
−j,−j

)−1

=⇒
∥∥∥∥n(x>−jx−j

)−1
∥∥∥∥ P→

∥∥∥(ΣX
−j,−j

)−1
∥∥∥ = O(1),

(3.18)

where we use invertibility and the continuous mapping theorem. In several occasions, we use bounds

on multiplication with the projection matrix P−j , e.g.,

∣∣∣z>j P−jwj

∣∣∣ =

∣∣∣∣z>j x−j

(
x>−jx−j

)−1
x>−jwj

∣∣∣∣ ≤ ∥∥∥z>j x−j

∥∥∥
2

∥∥∥∥(x>−jx−j

)−1
∥∥∥∥

2

∥∥∥x>−jwj

∥∥∥
2

≤
∥∥∥z>j x−j

∥∥∥
1

∥∥∥∥(x>−jx−j

)−1
∥∥∥∥

2

∥∥∥x>−jwj

∥∥∥
1

=
∑
k 6=j

∣∣∣z>j xk

∣∣∣∥∥∥∥(x>−jx−j

)−1
∥∥∥∥

2

∑
k 6=j

∣∣∣x>k wj

∣∣∣
= Op

(√
n
)
Op
(

1

n

)
Op(n).

(3.19)

For the last equality, we used Chebyshev’s inequality, (3.18), and the LLN together with E[ZjXk] = 0,

E
[
(ZjXk)

2
]
<∞ and E[XkWj ] = 0.
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Theorem 3.3 consists of three parts. Consider β̂OLSj .

1

n

∣∣∣ẑ>j ŵj − z>j wj

∣∣∣ =
1

n

∣∣∣z>j P⊥−jP⊥−jwj − z>j wj

∣∣∣ =
1

n

∣∣∣z>j P−jwj

∣∣∣
=

1

n
Op
(√
n
)
Op
(

1

n

)
Op(n) = Op

(
1√
n

)
. Thus,

1

n
ẑ>j ŵj =

1

n
z>j wj + Op

(
1√
n

)
= E[ZjWj ] + Op(1) + Op

(
1√
n

)
= E[ZjWj ] + Op(1).

1

n
ẑ>j ẑj = E

[
Z2
j

]
+Op

(
1√
n

)
follows analogously such that

β̂OLSj =
E[ZjWj ]

E
[
Z2
j

] + Op(1).

For β̂HOLSj , we first consider some intermediate results.

∥∥γ̂j − γj∥∥2
=

∥∥∥∥(x>−jx−j

)−1
x>−jzj

∥∥∥∥
2

≤

∥∥∥∥∥
(

1

n
x>−jx−j

)−1
∥∥∥∥∥

2

∥∥∥∥ 1

n
x>−jzj

∥∥∥∥
2

= Op(1)Op
(

1√
n

)
= Op

(
1√
n

)
such that

‖ẑj − zj‖∞ =
∥∥x−j(γj − γ̂j)∥∥∞ ≤ ‖x−j‖∞∥∥γ̂j − γj∥∥1

≤ ‖x−j‖∞
√
p
∥∥γ̂j − γj∥∥2

= Op(K)Op
(

1√
n

)
= Op

(
K√
n

)
,

using fixed p. Note that we denote the bound on ‖x−j‖∞ by K. (A3.2) induces a worst-case bound

of K = n1/6. This could be heavily improved for certain assumptions on the distribution of X, e.g.,

K =
√

log(n) for Gaussian data. To keep things more general, we will use generic K in the following.

Further,

‖ẑj − zj‖22 =
∥∥∥P⊥−jzj − zj

∥∥∥2

2
= ‖P−jzj‖22 = Op(1) and analogously ‖ŵj −wj‖22 = Op(n).

We invoke the following identity

(
a3 − b3

)
= (a− b)3 − 3a(a− b)2 + 3a2(a− b)
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to find∥∥z3
j − ẑ3

j

∥∥
2
≤
∥∥∥(zj − ẑj)

3
∥∥∥

2
+ 3
∥∥∥zj � (zj − ẑj)

2
∥∥∥

2
+ 3
∥∥z2

j � (zj − ẑj)
∥∥

2

≤
∥∥∥(zj − ẑj)

2
∥∥∥
∞
‖zj − ẑj‖2 + 3‖zj‖∞‖zj − ẑj‖∞‖zj − ẑj‖2 + 3

∥∥z2
j

∥∥
∞‖(zj − ẑj)‖2

= Op
(
K2

n

)
+Op

(
K2

√
n

)
+Op

(
K2
)

= Op
(
K2
)
.

(3.20)

With this at hand, we find

1

n

∣∣∣(z3
j

)>
wj −

(
ẑ3
j

)>
ŵj

∣∣∣
=

1

n

∣∣∣(z3
j − ẑ3

j

)>
wj +

(
ẑ3
j − z3

j

)>
(wj − ŵj) +

(
z3
j

)>
(wj − ŵj)

∣∣∣
≤ 1

n

(∣∣∣(z3
j − ẑ3

j

)>
wj

∣∣∣+
∣∣∣(ẑ3

j − z3
j

)>
(wj − ŵj)

∣∣∣+
∣∣∣(z3

j

)>
(wj − ŵj)

∣∣∣)
≤ 1

n

(∥∥(z3
j − ẑ3

j

)∥∥
2
‖wj‖2 +

∥∥(ẑ3
j − z3

j

)∥∥
2
‖(wj − ŵj)‖2 +

∥∥(z3
j

)∥∥
2
‖(wj − ŵj)‖2

)
=

1

n

(
Op
(
K2
)
Op
(√
n
)

+Op
(
K2
)
Op
(√
n
)

+Op
(√
n
)
Op
(√
n
))

= Op(1). Thus,

1

n

(
ẑ3
j

)>
ŵj =

1

n

(
z3
j

)>
wj + Op(1) = E

[
Z3
jWj

]
+ Op(1).

1

n

(
ẑ3
j

)>
ẑj =E

[
Z4
j

]
+Op

(
K2

√
n

)
follows analogously such that

β̂HOLSj =
E
[
Z3
jWj

]
E
[
Z4
j

] =
E
[
Z3
jWj

]
E
[
Z4
j

] + Op(1).

The last part of Theorem 3.3 considers the variance estimate (cf. (3.8)) and is implied by the following

Lemma which is a more precise statement.

Lemma 3.1. Assume that the data follows the model (3.11) and that (A3.1) - (A3.2) hold. Then,

V̂ar
(√

n
(
β̂HOLSj − β̂OLSj

))
P→ σ2

Ẽ

E
[(
Z̃3
j

)2
]

E
[
Z4
j

]2 − 1

E
[
Z2
j

]
 ∀j.

Note that we defined

V̂ar
(√

n
(
β̂HOLSj − β̂OLSj

))
:= nV̂ar

((
β̂HOLSj − β̂OLSj

))
.
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3.B.2.1 Proof of Lemma 3.1

For ẑ>j ẑj and
(
ẑ2
j

)>
(ẑj)

2 =
(
ẑ3
j

)>
ẑj , we have established convergence already. It remains to look at

the other terms in (3.8), i.e.,
(
ẑ3
j

)>
P⊥−j

(
ẑ3
j

)
and σ̂2. We find

1

n

∣∣∣(ẑ3
j

)>
P⊥−j

(
ẑ3
j

)
−
(
z3
j

)>
P⊥−j

(
z3
j

)∣∣∣ =
1

n

∣∣∣(ẑ3
j − z3

j

)>
P⊥−j

(
ẑ3
j − z3

j

)
+ 2
(
z3
j

)>
P⊥−j

(
ẑ3
j − z3

j

)∣∣∣
≤ 1

n

∥∥ẑ3
j − z3

j

∥∥2

2
+

2

n

∥∥z3
j

∥∥
2

∥∥ẑ3
j − z3

j

∥∥
2

= Op
(
K4

n

)
+Op

(
K2

√
n

)
= Op

(
K2

√
n

)
, and

1

n

∣∣∣(z3
j

)>
P⊥−j

(
z3
j

)
−
(
z̃3
j

)>(
z̃3
j

)∣∣∣ =
1

n

∣∣∣(z̃3
j

)>
P⊥−j

(
z̃3
j

)
−
(
z̃3
j

)>(
z̃3
j

)∣∣∣ =
1

n

∣∣∣(z̃3
j

)>
P−j

(
z̃3
j

)∣∣∣
= Op(1) such that

1

n

(
ẑ3
j

)>
P⊥−j

(
ẑ3
j

)
=

1

n

(
z̃3
j

)>(
z̃3
j

)
+ Op(1) = E

[(
Z̃3
j

)2
]

+ Op(1).

This ensures convergence of the per variable error scaling. It remains to estimate the variance of Ẽ .

Although the error is now only uncorrelated but not independent from X (cf. (3.11)), the variance

can still be estimated consistently using the standard formula. Let

ε̂ = y − xβ̂
OLS

= P⊥−j ε̃,

which is used for variance estimation. We find

1

n− p

∣∣∣ε̃>ε̃− ε̂>ε̂∣∣∣ =
1

n− p

∣∣∣ε̃>P−j ε̃∣∣∣ = Op
(

1

n

)
Op(n)Op

(
1

n

)
Op(n) = Op(1) such that

σ̂2 =
‖ε̂‖22
n− p

=
‖ε̃‖22
n− p

+ Op(1) = E
[
Ẽ2
]

+ Op(1).

3.B.3 Proof of Theorem 3.4

We provide a supporting Lemma.

Lemma 3.2. Assume that the data follows the model (3.11) and that (A3.1) - (A3.3) hold . Let j

be some covariate with βOLSj = βHOLSj for which (B3.1) and (A3.4) hold. Then,

√
n
(
β̂HOLSj − β̂OLSj

)
D→ N

0,Var

 Z̃3
j Ẽ

E
[
Z4
j

] − Zj Ẽ

E
[
Z2
j

]
.
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If (B3.2) and (B3.3) hold as well for j, this can be refined as

√
n
(
β̂HOLSj − β̂OLSj

)
D→ N

0, σ2
Ẽ

E
[(
Z̃3
j

)2
]

E
[
Z4
j

]2 − 1

E
[
Z2
j

]

.

Note that (A3.4) is implied by (B3.3). Theorem 3.4 follows from Lemmata 3.1 and 3.2, applying

Slutsky’s theorem. Thus, it remains to prove Lemma 3.2.

3.B.3.1 Proof of Lemma 3.2

We look at the scaled estimates
√
nβ̂OLSj and

√
nβ̂HOLSj for some variable with βOLSj = βHOLSj

fulfilling (B3.1) and (A3.4). Note that since we assume (A3.3), we can sharpen
∣∣x>k wj

∣∣ = Op(
√
n)

instead of just Op(n).

√
nβ̂OLSj =

√
n

1

n
ẑ>j ŵj

1

n
ẑ>j ẑj

=

√
n

1

n
z>j wj +Op(1/

√
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1
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=

√
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1
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z>j wj

1

n
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+Op
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√
n
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√
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√
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z>j ε̃

1
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1/
√
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=
√
nβOLSj +

√
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1
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z>j ε̃

E
[
Z2
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]
+Op(1/

√
n)

+Op
(
1/
√
n
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=
√
nβOLSj +

√
n

1
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z>j ε̃

E
[
Z2
j

] +Op
(
1/
√
n
)
,

where we used results from the previous section (together with the sharpening) and the fact that

wj = zjβ
OLS
j + ε̃. For β̂HOLSj , we analyse the numerator.

√
n

1

n

∣∣∣(z3
j

)>
P⊥−j ε̃−

(
ẑ3
j

)>
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∣∣∣ ≤ √n 1
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∣∣∣+
√
n

1

n

∣∣∣(z3
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j

)>
P−j ε̃

∣∣∣. (3.21)

Using a derivation as in (3.19) and (A3.3), we know ‖P−j ε̃‖2 = Op(1). Thus, using (3.20), the second

term is controlled. In (3.20), we have split
(
ẑ3
j − z3

j

)
in to three parts. Only the third part is critical

concerning the convergence of the first term in (3.21) as the others lead to Op(1) terms when applying

Cauchy-Schwarz to the inner product. Therefore, we take a closer look at
(
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∣∣∣∣∣∣
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≤
∑
k 6=j
|γ̂jk − γjk|

∣∣∣∣∣√n 1

n

n∑
i=1

z2
ijxik ε̃i

∣∣∣∣∣ =
∑
k 6=j
Op
(

1√
n

)
Op
(√
n
)
Op(1) = Op(1).

In the second to last inequality, we use (B3.1). In short,

√
n

1

n

∣∣∣(z3
j

)>
P⊥−j ε̃−

(
ẑ3
j

)>
P⊥−j ε̃

∣∣∣ = Op(1) such that

√
n

1

n

∣∣∣(z̃3
j

)>
ε̃−

(
ẑ3
j

)>
P⊥−j ε̃

∣∣∣
≤
√
n

1

n

∣∣∣(z3
j

)>
P⊥−j ε̃−

(
ẑ3
j

)>
P⊥−j ε̃

∣∣∣+
√
n

1

n

∣∣∣(z̃3
j

)>
ε̃−

(
z3
j

)>
P⊥−j ε̃

∣∣∣
=
√
n

1

n

∣∣∣(z3
j

)>
P⊥−j ε̃−

(
ẑ3
j

)>
P⊥−j ε̃

∣∣∣+
√
n

1

n

∣∣∣(z̃3
j

)>
P−j ε̃

∣∣∣ = Op(1).

This leads to

√
nβ̂HOLSj =

√
n

1

n

(
ẑ3
j

)>
ŵj

1

n

(
ẑ3
j

)>
ẑj

=
√
nβOLSj +

√
n

1

n

(
ẑ3
j

)>
P⊥−j ε̃

1

n

(
ẑ3
j

)>
ẑj

=
√
nβOLSj +

√
n

1

n

(
z̃3
j

)>
ε̃+ Op(1)

E
[
Z4
j

]
+ Op(1)

=
√
nβOLSj +

√
n

1

n

(
z̃3
j

)>
ε̃

E
[
Z4
j

] + Op(1).

Combining the results for
√
nβ̂OLSj and

√
nβ̂HOLSj , we find

√
n
(
β̂HOLSj − β̂OLSj

)
=
√
n

1

n


(
z̃3
j

)>
E
[
Z4
j

] − z>j

E
[
Z2
j

]
ε̃+ Op(1). (3.22)

Since the first term is a scaled sum of i.i.d. random variables, we can apply the CLT to it

√
n

1

n

 z̃3
j

E
[
Z4
j

] − zj

E
[
Z2
j

]
>ε̃ D→ N

0,Var

 Z̃3
j Ẽ

E
[
Z4
j

] − Zj Ẽ

E
[
Z2
j

]
. (3.23)

Note that E
[
Z̃3
j Ẽ
]

= 0 as βOLSj = βHOLSj . Combining (3.22) and (3.23) leads to the first statement

in Lemma 3.2. Applying the independence relationship induced by (B3.2) and (B3.3), the second

statement follows trivially.

3.B.4 Proof of Theorem 3.5

From (3.22), we know
√
n

1

n

∣∣∣v̂>j ε̃− v>j ε̃
∣∣∣ P→ 0 ∀j ∈ U ′ under the given assumptions. For fixed

dimensions, we can easily make this statement multivariate, i.e.,
√
n

1

n

∥∥v̂>U ε̃− v>U ε̃
∥∥ P→ 0. Therefore,
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we inspect v>U ε̃ in the following. Note that this is a (scaled) sum of mean 0 i.i.d random vectors.

Obviously, this enables the multivariate CLT such that

√
n

1

n
v>U ε̃

D→ N
(
0,E

[
ẼVUV>U Ẽ

])
= N

(
0, σ2

ẼE
[
VUV>U

])
,

which implies the first part of Theorem 3.5. For the second part, note

1

n
v̂>j v̂k =

1

n

 P⊥−j

(
ẑ3
j

)
1

n

(
ẑ2
j

)>(
ẑ2
j

) − ẑj
1

n
ẑ>j ẑj


> P⊥−k

(
ẑ3
k

)
1

n

(
ẑ2
k

)>(
ẑ2
k

) − ẑk
1

n
ẑ>k ẑk


=

1

n


(
ẑ3
j

)>
P⊥−jP

⊥
−k
(
ẑ3
k

)
1

n

(
ẑ2
j

)>(
ẑ2
j

) 1

n

(
ẑ2
k

)>(
ẑ2
k

) −
(
ẑ3
j

)>
P⊥−j ẑk

1

n

(
ẑ2
j

)>(
ẑ2
j

) 1

n
ẑ>k ẑk

−
ẑ>j P

⊥
−k
(
ẑ3
k

)
1

n
ẑ>j ẑj

1

n

(
ẑ2
k

)>(
ẑ2
k

) +
ẑ>j ẑk

1

n
ẑ>j ẑj

1

n
ẑ>k ẑk


For each of the denominator terms, convergence has been established already. For the numerator

terms, we can apply (3.19), (3.20), and ‖ẑj − zj‖2 = Op(1).

1

n

∣∣∣(ẑ3
j

)>
P⊥−jP

⊥
−k
(
ẑ3
k

)
−
(
z3
j

)>
P⊥−jP

⊥
−k
(
z3
k

)∣∣∣
=

1

n

∣∣∣(ẑ3
j − z3

j

)>
P⊥−jP

⊥
−k
(
ẑ3
k − z3

k

)
+
(
z3
j

)>
P⊥−jP

⊥
−k
(
ẑ3
k − z3

k

)
+
(
ẑ3
j − z3

j

)>
P⊥−jP

⊥
−k
(
ẑ3
k

)∣∣∣
≤ 1

n

∣∣∣(ẑ3
j − z3

j

)>
P⊥−jP

⊥
−k
(
ẑ3
k − z3

k

)∣∣∣+
1

n

∣∣∣(z3
j

)>
P⊥−jP

⊥
−k
(
ẑ3
k − z3

k

)∣∣∣+
1

n

∣∣∣(ẑ3
j − z3

j

)>
P⊥−jP

⊥
−k
(
ẑ3
k

)∣∣∣
≤ 1

n

∥∥∥P⊥−j(ẑ3
j − z3

j

)∥∥∥
2

∥∥∥P⊥−k(ẑ3
k − z3

k

)∥∥∥
2

+
1

n

∥∥∥P⊥−j(ẑ3
j

)∥∥∥
2

∥∥∥P⊥−k(ẑ3
k − z3

k

)∥∥∥
2
+

1

n

∥∥∥P⊥−j(ẑ3
j − z3

j

)∥∥∥
2

∥∥∥P⊥−k(ẑ3
k

)∥∥∥
2

≤ 1

n

∥∥(ẑ3
j − z3

j

)∥∥
2

∥∥(ẑ3
k − z3

k

)∥∥
2

+
1

n

∥∥ẑ3
j

∥∥
2

∥∥(ẑ3
k − z3

k

)∥∥
2

+
1

n

∥∥(ẑ3
j − z3

j

)∥∥
2

∥∥ẑ3
k

∥∥
2

=Op
(
K2

√
n

)
= Op(1)

1

n

∣∣∣(z3
j

)>
P⊥−jP

⊥
−k
(
z3
k

)
−
(
z̃3
j

)>(
z̃3
k

)∣∣∣ =
1

n

∣∣∣(z̃3
j

)>
P⊥−jP

⊥
−k
(
z̃3
k

)
−
(
z̃3
j

)>(
z̃3
k

)∣∣∣
=

1

n

∣∣∣(z̃3
j

)>
P−jP−k

(
z̃3
k

)
+
(
z̃3
j

)>
P−k

(
z̃3
k

)
+
(
z̃3
j

)>
P−j

(
z̃3
k

)∣∣∣
≤ 1

n

∣∣∣(z̃3
j

)>
P−jP−k

(
z̃3
k

)∣∣∣+
1

n

∣∣∣(z̃3
j

)>
P−k

(
z̃3
k

)∣∣∣+
1

n

∣∣∣(z̃3
j

)>
P−j

(
z̃3
k

)∣∣∣
≤ 1

n

∥∥P−j(z̃3
j

)∥∥
2

∥∥P−k(z̃3
k

)∥∥
2

+
1

n

∥∥z̃3
j

∥∥
2

∥∥P−k(z̃3
k

)∥∥
2

+
1

n

∥∥P−j(z̃3
j

)∥∥
2

∥∥z̃3
k

∥∥
2

= Op(1) so
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(
ẑ3
j

)>
P⊥−jP

⊥
−k
(
ẑ3
k

)
=
(
z̃3
j

)>(
z̃3
k

)
+ Op(1) = E

[
Z̃3
j Z̃

3
k

]
+ Op(1)

The other terms follow in a very similar fashion such that Slutsky’s theorem leads to

1

n
v̂>j v̂k = E[VjVk] + Op(1)

For fixed p, this can be directly made multidimensional which proves the theorem’s statement.

3.B.4.1 Proof of Corollary 3.2

Consider S as given in Step 7 of Algorithm 3.1. Using the second part of Theorem 3.5 and a consistent

estimate of σ̂, we have
√
nSU ′

D→ N
(
0, σ2

ẼE
[
VU ′V

>
U ′

])
.

Let S∗ ∼ N
(
0, σ2

ẼE
[
VU ′V

>
U ′
])

and denote the cumulative density function (CDF) of its maximum

absolute value by F ∗. Denote the CDF of
√
n
∥∥∥β̂HOLSU ′ − β̂OLSU ′

∥∥∥
∞

by Fn. Let q be the quantile

function and q̂ the estimated quantile function using s1, . . . , snsim . Then,

lim
n→∞

lim
nsim→∞

P
(
∃j ∈ U ′ such that H0,j is rejected

)
= lim
n→∞

lim
nsim→∞

P
(∥∥∥β̂HOLSU ′ − β̂OLSU ′

∥∥∥
∞
> q̂1−α(‖S‖∞)

)
≤ lim
n→∞

lim
nsim→∞

P
(∥∥∥β̂HOLSU ′ − β̂OLSU ′

∥∥∥
∞
> q̂1−α(‖SU ′‖∞)

)
= 1− lim

n→∞
lim

nsim→∞
Fn(q̂1−α(‖SU ′‖∞))

=1− lim
n→∞

lim
nsim→∞

F ∗(q̂1−α(‖SU ′‖∞)) = 1− lim
n→∞

F ∗(q1−α(‖SU ′‖∞)) = 1− F ∗(q1−α(‖S∗‖∞))

=α

For the equality between the second and third line, note that Fn → F using Theorem 3.5 and

the continuous mapping theorem. As the maximum of several Gaussian random variables has a

continuous CDF, this convergence is uniform such the convergence also holds at q̂1−α(‖SU ′‖∞) which

is not constant in n and nsim. For the convergence of empirical quantiles, see, e.g., the discussion in

(van der Vaart, 2000, Chapter 21).

3.B.5 Proof of Theorem 3.6

We split the goal into two problems, namely,

lim
n→∞

P
[
Û ⊆ U

]
= 1 and lim

n→∞
P
[
Û ⊇ U

]
= 1. (3.24)

The first one corresponds to rejecting the required H0,j and the second one to no wrong rejection.

We provide the supporting lemmata. Theorem 3.6 follows directly by combining these.
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Lemma 3.3. Assume that the data follows the model (3.11) and that (A3.1) - (A3.2) hold. Let

j 6∈ U . Then,

P[|tj | ≥ τn] ≥ P
[∣∣βHOLSj − βOLSj

∣∣ ≥ τn∣∣Op(1/√n)∣∣+ |Op(1)|
]
.

This probability can be ensured to approach 1 if we chose τn = O(
√
n). Under this condition, we

find lim
n→∞

P
[
Û ⊆ U

]
= 1. Notably, we assume

∣∣∣βHOLSj − βOLSj

∣∣∣ to be constant, i.e., we deal with a

fixed alternative. We further remark that we could use a constant significance level αn = α to receive

just the first convergence in (3.24).

Let us now turn to variables for which H0,j holds true. In order to reuse our convergence results

from Section 3.3.1, we have to additionally invoke (A3.3), (B3.1) and (A3.4).

Lemma 3.4. Assume that the data follows the model (3.11) and that (A3.1) - (A3.3) hold. Let j be

some covariate in U for which (B3.1) and (A3.4) hold. Then,

P[|tj | ≥ τn] ≤ E

 Z̃3
j

E
[
Z4
j

] − Zj

E
[
Z2
j

]
Ẽ
2/(τn|Op(1)|/2)2 + P[|Op(1)| ≥ τn/2].

Either term vanishes if we choose 1/τn = O(1). Thus, as long as τn grows at any rate, we receive

lim
n→∞

P
[
Û ⊇ U

]
= 1.

3.B.5.1 Proof of Lemma 3.3

From Theorem 3.3, we know

√
n
(
β̂HOLSj − β̂OLSj

)
=
√
n
(
βHOLSj − βOLSj

)
+ Op

(√
n
)

V̂ar
(√

n
(
β̂HOLSj − β̂OLSj

))
= Op(1).

Thus, we have

|tj | =

∣∣∣∣∣∣
√
n
(
βHOLSj − βOLSj

)
Op(1)

+ Op
(√
n
)∣∣∣∣∣∣ ≥

∣∣∣∣∣∣
√
n
(
βHOLSj − βOLSj

)
Op(1)

∣∣∣∣∣∣− ∣∣Op(√n)∣∣
P[|tj | ≥ τn] ≥ P

∣∣∣∣∣∣
√
n
(
βHOLSj − βOLSj

)
Op(1)

∣∣∣∣∣∣ ≥ τn +
∣∣Op(√n)∣∣


= P

[∣∣βHOLSj − βOLSj

∣∣ ≥ τn∣∣Op(1/√n)∣∣+ |Op(1)|
]
.
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3.B.5.2 Proof of Lemma 3.4

For variables fulfilling (B3.1), we know from (3.22) and Theorem 3.3

√
n
(
β̂HOLSj − β̂OLSj

)
=
√
n

1

n

 z̃3
j

E
[
Z4
j

] − zj

E
[
Z2
j

]
>ε̃+ Op(1).

V̂ar
(√

n
(
β̂HOLSj − β̂OLSj

))
= Op(1).

This yields

|tj | =

∣∣∣∣∣∣∣
√
n

1

nOp(1)

 z̃3
j

E
[
Z4
j

] − zj

E
[
Z2
j

]
>ε̃+ Op(1)

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
√
n

1

nOp(1)

 z̃3
j

E
[
Z4
j

] − zj

E
[
Z2
j

]
>ε̃

∣∣∣∣∣∣∣+ |Op(1)|

P[|tj | ≥ τn] ≤ P


∣∣∣∣∣∣∣
√
n

1

nOp(1)

 z̃3
j

E
[
Z4
j

] − zj

E
[
Z2
j

]
>ε̃

∣∣∣∣∣∣∣+ |Op(1)| ≥ τn


≤ P


∣∣∣∣∣∣∣
√
n

1

nOp(1)

 z̃3
j

E
[
Z4
j

] − zj

E
[
Z2
j

]
>ε̃

∣∣∣∣∣∣∣ ≥ τn/2
+ P[|Op(1)| ≥ τn/2]

≤ P


∣∣∣∣∣∣∣
√
n

1

n

 z̃3
j

E
[
Z4
j

] − zj

E
[
Z2
j

]
>ε̃

∣∣∣∣∣∣∣ ≥ τn|Op(1)|/2

+ P[|Op(1)| ≥ τn/2]

≤ E

 Z̃3
j

E
[
Z4
j

] − Zj

E
[
Z2
j

]
E
2/(τn|Op(1)|/2)2 + P[|Op(1)| ≥ τn/2],

where the last step follows from Chebyshev’s inequality, assuming the second moment exists (cf.

(A3.4)).

3.B.6 Proof of Theorem 3.8

From the definitions in (3.17), we see that βj = β∗j iff
((
ωN,Mω

−1
M,M

)>
β∗N
)
j

= 0. We can inspect this

further((
ωN,Mω

−1
M,M

)>
β∗N

)
j

=

((
ω−1
M,M

)>
ω>N,Mβ

∗
N

)
j

=
(
ω−1
M,M

)>
j

∑
k∈N

ω>k,Mβ
∗
k =

∑
k∈N

(
ω−1
M,M

)>
j
ω>k,Mβ

∗
k.
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For some variable k ∈ N , we have

E
[
ωM,MΨM (ωM,MΨM )>

]
= ωM,MΣΨMω>M,M and

E
[
ωM,MΨM (ωk,MΨM )>

]
= ωM,MΣΨMω>k,M . Thus,

E
[
ωM,MΨM (ωM,MΨM )>

]−1
E
[
ωM,MΨM (ωk,MΨM )>

]
=
(
ω−1
M,M

)>
ω>k,M

is the regression parameter of the regression ωk,MΨM versus ωM,MΨM . Naturally, ωk,MΨM can

be perfectly recovered by a linear combination of ωM,MΨM using only k’s nearest ancestors in M ,

say, PAM (k). Thus,
(
ω−1
M,M

)>
j
ωk,M = 0 if j 6∈ PAM (k). Extending this argument to all k ∈ N the

theorem’s statement follows.

3.B.7 Proof of Theorem 3.9

We provide some supporting lemmata.

Lemma 3.5. Assume that the data follows the model (3.16) without hidden variables. Then,

Zj = δj,jΨj +
∑

k∈CH(j)

δj,kΨk j = 1, . . . , p

for an appropriate set of parameters. Further, the support of γj (cf. (3.5)) is restricted to j’s Markov

boundary.

Thus, only the “noise” of j itself or its children remains in Zj .

Now, consider the best regression of Z3
j versus X−j as defined in (3.7). We get an analogous result

for the residuum Z̃3
j .

Lemma 3.6. Assume that the data follows the model (3.16) without hidden variables. Then,

Z̃3
j = Z3

j + δ̃j,jΨj +
∑

k∈CH(j)

δ̃j,kΨk j = 1, . . . , p

for an appropriate set of parameters. Further, the support of γ̃j (cf. (3.7)) is restricted to j’s Markov

boundary.

Finally, we inspect the regression of Ψk versus XM for some k ∈ N . With a slight abuse of

notation, define

Zk := Ψk −X>Mβ
k, where βk := argmin

b∈R|M|
E
[(

Ψk −X>Mb
)2
]

= E
[
XMX>M

]−1
E[XMΨk]. (3.25)
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Lemma 3.7. Assume that the data follows the model (3.16). Let XM and XN be the observed and

the hidden variables, where k ∈ N . Then,

Zk =
∑
l∈N

δk,lΨl +
∑

m∈CHN

δk,mΨm, where CHN =

(
∪
l∈N

CH(l)

)
\N,

for an appropriate set of parameters. Further, the support of βk is restricted to the union of the

hidden variables’ Markov boundaries.

As Ẽ is a linear combination of these Zk and the independent E , we can combine Lemmata 3.5

and 3.6 and 3.7 to find Zj ⊥ Ẽ and Z̃3
j ⊥ Ẽ for some variable j outside the hidden variables’ Markov

boundaries. Furthermore, βOLS − β is a linear combination of the βk for k ∈ N such that outside

the hidden variables’ Markov boundaries the two parameters are equal as claimed.

To check (B3.1), split Xk into a part consisting of Ψj and Ψl ∀l ∈ CH(j), say Xk,1, independent

from Ẽ , and the remainder, say Xk,2, independent from Zj . Then, we find

E
[
Z2
jXkẼ

]
= E

[
Z2
jXk,1Ẽ

]
+ E

[
Z2
jXk,2Ẽ

]
= E

[
Z2
jXk,1

]
E
[
Ẽ
]

+ E
[
Z2
j

]
E
[
Xk,2Ẽ

]
= E

[
Z2
j

]
E
[
Xk,2Ẽ

]
= E

[
Z2
j

](
E
[
XkẼ

]
− E

[
Xk,1Ẽ

])
= 0.

3.B.7.1 Proof of Lemma 3.5

Recall the representation

Zj = δj,jΨj +
∑

k∈CH(j)

δj,kΨk. (3.26)

Assume first only the noise terms Ψj and Ψk ∀k ∈ CHj exist, while all the other terms are set to 0.

Call the variables in this construction X ′k and the residuum Z ′j . Obviously, Z ′j has a representation

as in (3.26). Now by the definition of least squares, Z ′j and Zj always have the smallest possible

variance in their given model. If we add more independent noise terms to the model, the variance

cannot decrease. Therefore, it holds Var(Zj) ≥ Var
(
Z ′j

)
. Thus, if there exists a parameter such that

Xj − γ>X−k = Z ′j , it must be optimal such that Zj = Z ′j . Let now γ = −δj . Then, we have

Xj −
∑
k 6=j

γkXk = Xj +
∑
k∈CHj

δj,kXk = Xj +
∑

k∈CH(j)

δj,k

Ψk + θk,jXj +
∑

l∈PA(k)\j

θk,lXl


= Xj

1 +
∑

k∈CH(j)

δj,kθk,j

+
∑

k∈CH(j)

δj,kΨk +
∑

k∈CH(j)

δj,k
∑

l∈PA(k)\j

θk,lXl.

Now adjust γ by
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• ∀l ∈ PA(j) adding
(

1 +
∑

k∈CH(j) δj,kθk,j

)
θj,l to γl

• ∀k ∈ CH(j), ∀l ∈ PA(k) \ j adding δj,kθk,l to γl

This leads to

Xj −
∑
k 6=j

γkXk = Ψj

1 +
∑

k∈CH(j)

δj,kθk,j

+
∑

k∈CH(j)

δj,kΨk.

This is almost the optimal Z ′j as in (3.26). It remains to argue that the term in the bracket equals

δj,j . For this, note that the weighted sum of terms that include Ψk in the construction of Z ′j must

be exactly δj,k. These terms can occur from adding a multiple of either k itself or of descendants

thereof (that are children of j as well). These descendants have “inherited” the same multiple of Ψk

as of θk,jΨj . Therefore, there is a net contribution of δj,kθk,jΨj originating from variable k. Applying

this argument to each child, we receive the desired sum. Naturally, the 1 is the contribution from

X ′j = Ψj itself.

Thus, we receive the desired construction of Zj . Further, we see that in this construction the

support of γj is restricted to j’s parents, its children, and its children’s other parents, which is

exactly the second part of the lemma.

3.B.7.2 Proof of Lemma 3.6

This follows using very similar arguments as in Section 3.B.7.1 and is omitted here for simplicity.

3.B.7.3 Proof of Lemma 3.7

Recall the construction

Zk =
∑
l∈N

δk,lΨl +
∑

m∈CHN

δk,mΨm, where CHN =

(
∪
l∈N

CH(l)

)
\N. (3.27)

We argue as before: Assume first only these variables are nonzero leading to an optimal residuum

Z ′k which has a representation as in (3.27). Naturally, Zk = Ψk −
(
βk
)>

XM for some βk. If we find

a parameter such that Ψk −
(
βk
)>

XM = Z ′k, it must be optimal as Var(Zk) ≥ Var(Z ′k). We now

construct such a parameter. Start by βk = −δk.

−
(
βk
)>

XM =
∑

m∈CHN

δk,mXm =
∑

m∈CHN

δk,m(EXm + ωm,NΨN )

=
∑
l∈N

Ψl

∑
m∈CHN

δk,mωm,l +
∑

m∈CHN

δk,mEXm

=
∑
l∈N

Ψl

∑
m∈CHN

δk,mωm,l +
∑

m∈CHN

δk,m

Ψm +
∑

r∈PAM (m)

θ′mrEXr


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=
∑
l∈N

Ψl

∑
m∈CHN

δk,mωm,l +
∑

m∈CHN

δk,m

Ψm +
∑

r∈PAM (m)

θ′mr(Xr − ωr,HΨH)


=
∑
l∈N

Ψl

∑
m∈CHN

δk,m

ωm,l − ∑
r∈PAM (m)

θ′mrωr,l


+

∑
m∈CHN

δk,m

Ψm +
∑

r∈PAM (m)

θ′mrXr

,
where we have used the fact that EX follows a linear SEM as well for some suitable set of parameters

θ′m,r. Now adjust βk by

• ∀m ∈ CHN , ∀r ∈ PAM (m) adding δk,mθ
′
m,r to βkr .

This leads to

Ψk −
(
βk
)>

XM = Ψk +
∑
l∈N

Ψl

∑
m∈CHN

δk,m

ωm,l − ∑
r∈PAM (m)

θ′mrωr,l

+
∑

m∈CHN

δk,mΨm,

which is as in (3.27). It remains to argue that the coefficient for Ψl equals δk,l. Note that ∀m ∈ CHN

there is a net contribution of δk,mΨm coming from a weighted sum of m and its descendants. There

must be an according net contribution of all other parts that X ′m does not inherit from its parents (in

M). These must be multiples of Ψl for l ∈ N . If ωr,l 6= 0, there is already a multiple of Ψl in X ′r. Thus,

X ′m inherits θ′mrωr,l from X ′r. Extending this argument to all parents, a total of
∑

r∈PAM (m) θ
′
mrωr,l

is inherited. The remainder, i.e., ωm,l −
∑

r∈PAM (m) θ
′
mrωr,l must then originate from X ′k itself and

there is a contribution of δk,m times this remainder times Ψl. As this holds ∀m ∈ CHN , one can add

all contributions leading to the desired sum.

Thus, we have established that Zk = Z ′k such that Zk and βk must be optimal. We also see that

the support of βk is restricted to CHN and ∪
m∈CHN

PAM (m), which is exactly the hidden variables’

Markov boundary.

3.C Theory for the high-dimensional extension

We provide additional details on the high-dimensional extension including proofs of the main results.

To understand Theorem 3.2, take a closer look at the difference between β̂OLSj and β̂HOLSj , which
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can be written as

√
n
(
β̂HOLSj − β̂OLSj

)
=
√
n

(
ˆ̃z3
j

)>
x−j/n(

ˆ̃z3
j

)>
xj/n

(
β−j − β̂−j

)
−
√
n

ẑ>j x−j/n

ẑ>j xj/n

(
β−j − β̂−j

)
+


(

ˆ̃z3
j

)>
/
√
n(

ˆ̃z3
j

)>
xj/n

−
ẑ>j /
√
n

ẑ>j xj/n

ε := ∆HOLS
j −∆OLS

j +
√
n

1

n
v̂>j ε

(3.28)

√
n
(
β̂
HOLS − β̂HOLS

)
=∆HOLS −∆OLS +

√
n

1

n
v̂>ε. (3.29)

Thus, it consists of two bias terms and an error term, whose variance we can estimate. In the following,

we inspect the terms in (3.28) assuming model (3.4) to justify Algorithm 3.2 and Theorem 3.2. ∆OLS
j

is under control under certain conditions as discussed in (van de Geer et al., 2014). For ∆HOLS
j as

well as the error scaling, we invoke our extra assumptions.

We consider the bias term.

Lemma 3.8. Assume that the data follows the model (3.4) with sub-Gaussian E and that

(C3.1) - (C3.3) and (C3.5) - (C3.6) hold (∀j). Let β̂ come from Lasso regression with λ �
√

log(p)/n,

ẑj from nodewise Lasso regression using λj �
√

log(p)/n, and ˆ̃z3
j from nodewise Lasso regression of

ẑ3
j versus x−j using

λ̃j � max
{

log(p)5/2n−1/2, s2
j log(p)5/2n−3/2, sj log(p)2n−1,

√
sj log(p)n−1/2

}
. Use the definitions in

(3.28). Then, ∥∥∆HOLS
∥∥
∞ = Op(1) and

∥∥∆OLS
∥∥
∞ = Op(1).

Thus, under suitable assumptions, the bias vanishes. To get powerful tests, we want the variance

of the error term to stay bounded. For asymptotically valid tests, we must ensure that the estimated

standard deviation is of higher order of magnitude than the bias term.

Lemma 3.9. Assume that the data follows the model (3.4) with sub-Gaussian E and that (C3.1),

(C3.2), (C3.4) and (C3.6) hold (∀j). Let β̂ come from Lasso regression with λ �
√

log(p)/n, ẑj from

nodewise Lasso regression using λj �
√

log(p)/n, and ˆ̃z3
j from nodewise Lasso regression of ẑ3

j versus

x−j using

λ̃j � max
{

log(p)5/2n−1/2, s2
j log(p)5/2n−3/2, sj log(p)2n−1,

√
sj log(p)n−1/2

}
. Use the definitions in

(3.28). Then,
1

n
v̂>j v̂j

P→ E
[
V 2
j

]
uniformly in j

where Vj =
Z̃3
j

E
[
Z4
j

] − Zj

E
[
Z2
j

] .
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Note that the sub-Gaussian assumption ensures E
[
V 2
j

]
<∞, while as E

[
V 2
j

]
> 0 if

E
[(
Z̃3
j

)2
]
E
[
Z2
j

]
> E

[
Z4
j

]2
, which always holds if Z̃3

j is not a linear function of Zj . Thus, the estimate

of the standard error approaches a bounded positive constant, enabling asymptotically valid z-tests.

In (C3.3), we have joint conditions on the different sparsity levels s and sj . Thus, the larger

the one is, the more restrictive the assumption on the other is. Let us consider some specific cases,

namely, s ≈ sj , sj maximal according to (C3.4), and s maximal according to (C3.2).

For s ≈ sj , we need s ≈ sj = O

(
n1/3

log(p)

)
.

For sj = O

(
n3/5

log(p)

)
, we need s = O

(
n1/5

log(p)

)
.

For s = O

(
n1/2

log(p)3

)
, we need sj = O

(
log(p)3

)
.

Note that if λ̃j is chosen optimally with respect to sj , (C3.5) is actually the same as (C3.2) and

(C3.3) such that there is no extra assumption on s that one has to invoke. In (C3.6), we have joint

conditions on the different sparsity levels sj and s̃j . Thus, the larger the one is, the more restrictive

the assumption on the other is. Let us consider some specific cases, namely, sj ≈ s̃j , sj maximal

according to (C3.4), and s̃j maximal according to (C3.6).

For sj ≈ s̃j , we need sj ≈ s̃j = O

(
n1/2

log(p)

)
.

For sj = O

(
n3/5

log(p)

)
, we need s̃j = O

(
n2/5

log(p)

)
.

For s̃j = O

(
n

log(p)5

)
, we need sj = O

(
log(p)3

)
.

Naturally, sj and s̃j are to some extent related. In a linear SEM, the support of γj and the support

of γ̃j always lie within j’s Markov boundary as we argue in Section 3.4.2. For completely arbitrary

setups, it is typically even all of the boundary. Thus, sj = s̃j would then be usual, except for “sink”

nodes, such that the first case appears to be most interesting. Furthermore, if E
[
Z3
jX−j

]
= 0 ∀j, it

holds s̃j = 0 and (C3.6) is automatically fulfilled.
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3.C.1 Proof of Lemma 3.8

Following the proofs in van de Geer et al. (2014), the assumptions are sufficient to claim

∥∥∆OLS
∥∥
∞ = Op(1),

∥∥∥β̂ − β∥∥∥
1

= Op(sλ),
1

n

∥∥∥x(β̂ − β)∥∥∥2

2
= Op

(
sλ2
)
,∥∥γ̂j − γj∥∥1

= Op(sjλj) ∀j and
1

n

∥∥x−j(γ̂j − γj)∥∥2

2
= Op

(
sjλ

2
j

)
∀j.

We now turn to
∥∥∆HOLS

∥∥
∞. To control this, we want to ensure that∣∣∣∣(ˆ̃z3

j

)>
x−j

(
β−j − β̂−j

)∣∣∣∣/n = Op
(
1/
√
n
)

and
(

ˆ̃z3
j

)>
xj/n = E

[
Z4
j

]
+ Op(1). (3.30)

Note that we always have
∥∥(ˆ̃z3

j

)>
x−j

∥∥
∞/n = λ̃j . Thus, the first goal in (3.30) is fulfilled using (C3.2)

and (C3.3). Further,

ẑ3
j = z3

j +
(
ẑ3
j − z3

j

)
= x−jγ̃j + z̃3

j +
(
ẑ3
j − z3

j

)
.

From standard Lasso theory (cf. Bühlmann and van de Geer (2011)), we know that the order of which

we should choose the tuning parameter λ̃j is dependent on the bound for

1

n

∥∥x−j(z̃3
j +

(
ẑ3
j − z3

j

))∥∥
∞ ≤

1

n

∥∥x−j z̃3
j

∥∥
∞ +

1

n

∥∥x−j(ẑ3
j − z3

j

)∥∥
∞

≤ 1

n

∥∥x−j z̃3
j

∥∥
∞ +

1

n
‖x−j‖∞

∥∥ẑ3
j − z3

j

∥∥
1
.

For the first term,

E
[
max
j

∥∥∥(z̃3
j

)>
x−j

∥∥∥
∞

]
=E
[
max
j,k 6=j

∣∣∣(z̃3
j

)>
xk

∣∣∣] = E

[
max
j,k 6=j

∣∣∣∣∣
n∑
i=1

z̃3
ijxik

∣∣∣∣∣
]

=E

[
max
j,k 6=j

∣∣∣∣∣
n∑
i=1

z̃3
ijxik − E

[
z̃3
ijxik

]∣∣∣∣∣
]
.

We maximize over j as well to receive results uniformly in j. In the last equality, we use

E
[
z̃3
ijxik

]
= E

[
Z̃3
jXk

]
= 0.

The terms of the type z̃3
ijxik can be viewed as different functions of the vector(

xi1 . . . xip z̃3
i1 . . . z̃3

ip

)>
. In total, these are p(p− 1) functions. For these, we can apply the

Nemirovski moment inequality from Lemma 14.24 in Bühlmann and van de Geer (2011), which yields

E max
j,k

∣∣∣∣∣
n∑
i=1

z̃3
ijxik − E

[
z̃3
ijxik

]∣∣∣∣∣ ≤ (8 log(2p(p− 1)))1/2 E

[
max
j,k

n∑
i=1

(
z̃3
ijxik

)2]1/2

≤
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(8 log(2p(p− 1)))1/2 E

[
n∑
i=1

max
j,k

(
z̃3
ij

)2
x2
ik

]1/2

= (8 log(2p(p− 1))n)1/2 E
[
max
j,k

(
Z̃3
j

)2
X2
k

]1/2

≤(8 log(2p(p− 1))n)1/2 E
[
max
k
X8
k

]1/2

.

In the last expression, we simplify the notation and let k ∈ {1, . . . , 2p} with Xp+j =
(
Z̃3
j

)1/3
. We

aim to bound that last expectation term, for which we use the sub-Gaussian assumption.

E
[
max
k
X8
k

]
=

∫ ∞
0

P
(

max
k
X8
k > t

)
dt =

∫ ∞
0

P
(

max
k
|Xk| > t1/8

)
dt

≤
∫ ∞

0
min

{
1,
∑
k

P
(
|Xk| > t1/8

)}
dt ≤

∫ ∞
0

min

{
1, 2p max

k
P
(
|Xk| > t1/8

)}
dt

≤
∫ ∞

0
min

{
1, 4p max

k
exp

(
− t

1/4

2σ2
k

)}
dt ≤

∫ a

0
1dt+ 4p

∫ ∞
a

exp

(
− t1/4

2σ2
max

)
dt

= a+ p exp

(
− a1/4

2σ2
max

)
poly(a) = a+ exp

(
− a1/4

2σ2
max

+ log(p)

)
poly(a)

This holds for any positive integration bound a. If we choose a > 16σ8
max log(p)4, the second term

will vanish as p→∞ leading to

E
[
max
k
X8
k

]
≤ O

(
log(p)4

)
such that

E
[
max
j

1

n

∥∥∥(z̃3
j

)>
x−j

∥∥∥
∞

]
≤ 1

n
(8 log(2p(p− 1))n)1/2

(
O
(

log(p)4
))1/2

= O
(

log(p)5/2n−1/2
)

1

n

∥∥∥(z̃3
j

)>
x−j

∥∥∥
∞

= Op
(

log(p)5/2n−1/2
)

uniformly in j.

The last conclusion is a simple application of Markov’s inequality. We now turn to the second term

to be bounded

1

n

∥∥∥(ẑ3
j − z3

j

)>
x−j

∥∥∥
∞
≤ 1

n

∥∥ẑ3
j − z3

j

∥∥
1
‖x−j‖∞

‖x−j‖∞ = Op
(√

log(p)
)

from the sub-Gaussian assumption.

Thus,

1

n

∥∥ẑ3
j − z3

j

∥∥
1

=
1

n

∥∥∥(ẑj − zj)
3 + 3zj � (ẑj − zj)

2 + 3z2
j � (ẑj − zj)

∥∥∥
1

≤ 1

n

∥∥∥(ẑj − zj)
3
∥∥∥

1
+

3

n

∥∥∥zj � (ẑj − zj)
2
∥∥∥

1
+

3

n

∥∥z2
j � (ẑj − zj)

∥∥
1
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≤ 1

n
‖ẑj − zj‖∞

∥∥∥(ẑj − zj)
2
∥∥∥

1
+

3

n
‖zj‖∞

∥∥∥(ẑj − zj)
2
∥∥∥

1
+

3

n

∥∥z2
j � (ẑj − zj)

∥∥
1

≤‖ẑj − zj‖∞
1

n
‖ẑj − zj‖22 + 3‖zj‖∞

1

n
‖ẑj − zj‖22 + 3

√
1

n

∥∥∥z2
j

∥∥∥2

2

1

n
‖ẑj − zj‖22

≤ ‖x−j‖∞
∥∥γ̂j − γj∥∥1

1

n
‖ẑj − zj‖22 + +3‖zj‖∞

1

n
‖ẑj − zj‖22 + 3

√
1

n

∥∥∥z2
j

∥∥∥2

2

1

n
‖ẑj − zj‖22

= Op
(√

log(p)s2
jλ

3
j

)
+Op

(√
log(p)sjλ

2
j

)
+Op

(√
sjλ2

j

)
.

In summary,

1

n

∥∥x−j(z̃3
j +

(
ẑ3
j − z3

j

))∥∥
∞ = Op

(
log(p)5/2n−1/2 + log(p)s2

jλ
3
j + log(p)sjλ

2
j +

√
log(p)sjλ2

j

)
.

If we choose λ̃j of this order (as we do in the statement of Lemma 3.8), we have

∥∥∥γ̃j − ˆ̃γj

∥∥∥
1

= Op
(
s̃j λ̃j

)
and

1

n

∥∥∥x−j(γ̃j − ˆ̃γj

)∥∥∥2

2
= Op

(
s̃j λ̃

2
j

)
.

For
(

ˆ̃z3
j

)>
xj , we use the decomposition

ˆ̃z3
j = ẑ3

j − x−j ˆ̃γj = z3
j +

(
ẑ3
j − z3

j

)
− x−jγ̃j + x−j

(
γ̃j − ˆ̃γj

)
= z̃3

j +
(
ẑ3
j − z3

j

)
+ x−j

(
γ̃j − ˆ̃γj

)
.

Thus,

1

n

∣∣∣∣(ˆ̃z3
j

)>
xj −

(
z̃3
j

)>
xj

∣∣∣∣ =
1

n

∣∣∣∣(ẑ3
j − z3

j

)>
xj +

(
γ̃j − ˆ̃γj

)>
x>−jxj

∣∣∣∣
≤ 1

n

∥∥ẑ3
j − z3

j

∥∥
1
‖xj‖∞ +

1

n

∥∥∥x−j(γ̃j − ˆ̃γj

)∥∥∥
2
‖xj‖2

= Op
(

log(p)s2
jλ

3
j + log(p)sjλ

2
j +

√
log(p)sjλ2

j

)
+Op

(√
s̃j λ̃2

j

)
,

which is Op(1) by assumption. This leads to

1

n

(
ˆ̃z3
j

)>
xj =

(
z̃3
j

)>
xj + Op(1) = E

[
Z̃3
jXj

]
+ Op(1).

The last equality could be derived using the Nemirovski moment inequality in a very similar fashion.

For the expectation, we have

E
[
Z̃3
jXj

]
= E

[
Z̃3
j

(
Zj + γ>j X−j

)]
= E

[
Z̃3
jZj

]
= E

[(
Z3
j − γ̃>j X−j

)
Zj

]
= E

[
Z4
j

]
such that the second goal in (3.30) is fulfilled as well. As all these derivations hold uniformly in j,∣∣∣∆HOLS

j

∣∣∣ = Op(1) implies
∥∥∆HOLS

∥∥ = Op(1).
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3.C.2 Proof of Lemma 3.9

We analyse the error term in (3.28). From the proof of Lemma 3.8 as well as results in van de Geer

et al. (2014), we know

(
ˆ̃z3
j

)>
xj/n = E

[
Z4
j

]
+ Op(1), ẑ>j xj/n = E

[
Z2
j

]
+ Op(1) and ‖ẑj‖22/n = E

[
Z2
j

]
+ Op(1).

For the remaining terms in v̂>j v̂j/n, we want to ensure

1

n

∥∥∥ˆ̃z3
j

∥∥∥2

2
= E

[
Z̃6
j

]
+ Op(1) and

1

n

(
ˆ̃z3
j

)>
ẑj =

∥∥ẑ2
j

∥∥2

2
/n =

[
Z4
j

]
+ Op(1). (3.31)

Using the Nemirovski equation in a similar fashion as before, we know

max
j

∣∣∣∣∣ 1n
n∑
i=1

zrij − E
[
Zrj
]∣∣∣∣∣ = Op

(
log(p)(r+1)/2

n1/2

)
.

We assume this to be Op(1) ∀r ≤ 10 and even Op(1) ∀r ≤ 6 (which is implied by the first condition).

We look at some intermediary results. Each difference is Op(1) using the sparsity assumptions.

1

n

∥∥z2
j � ẑ2

j − z4
j

∥∥
1

=
1

n

∥∥z2
j �

(
ẑ2
j − z2

j

)∥∥
1

=
1

n

∥∥∥z2
j �

(
(ẑj − zj)

2 + 2zj � (ẑj − zj)
)∥∥∥

1

≤ 1

n

∥∥z2
j

∥∥
∞‖ẑj − zj‖22 +

2

n

∥∥z3
j

∥∥
2
‖ẑj − zj‖2

= Op
(
log(p)sjλ

2
j

)
+Op

(√
sjλ2

j

)
.

This implies
1

n

∥∥∥z2
j � ẑ2

j

∥∥∥
1

=
1

n
‖zj � ẑj‖22 = Op(1). With this, we can refine our result in a stepwise

fashion:

1
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∥∥z4
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∥∥
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=
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n
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(
ẑ2
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j
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=
1

n
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j �

(
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2 + 2zj � (ẑj − zj)
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1

≤ 1

n

∥∥z4
j

∥∥
∞‖ẑj − zj‖22 +

2

n

∥∥z5
j

∥∥
2
‖ẑj − zj‖2
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(

log(p)2sjλ
2
j

)
+Op

(√
sjλ2

j

)
such that
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j
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=
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n
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1

=
1

n
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j � ẑ2

j �
(

(ẑj − zj)
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1
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≤ 1

n

∥∥z2
j

∥∥
∞

∥∥ẑ2
j

∥∥
∞‖ẑj − zj‖22 +

2

n
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such that

1
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j

∥∥
2
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4
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)
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2
j
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Finally, it follows
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This can now be applied to find the desired convergence.
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2
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All these terms have already been bounded. Thus, we do not need any further assumptions to claim

1

n

(
ˆ̃z3
j

)>
ẑj =

1

n

(
z̃3
j

)>
zj + Op(1) = E

[
Z̃3
jZj
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+ Op(1) = E

[
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We turn to the final term in the error scaling
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j

)
−
(
z̃3
j

)>(
z̃3
j

)∣∣∣∣ =
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ẑ3
j − z3

j

)
+ 2
(
z̃3
j

)>
x−j

(
γ̃j − ˆ̃γj

)
+
(
ẑ3
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Again, these are all terms that we have seen before such that we do not need any additional assump-

tions to claim
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n
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Thus, we have shown convergence for all terms in v̂>j v̂j/n. Finally, note that

E
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]
such that convergence is towards E

[
V 2
j

]
as claimed.

3.C.3 Proof of Theorem 3.2

With Lemmata 3.8 and 3.9, we have already established that the bias terms vanish and the denomi-

nator converges. It remains to look at v̂>j ε/
√
n.

E
[
(v̂j − vj)

>ε/
√
n
]

= E
[
E
[
(v̂j − vj)

>ε/
√
n|x
]]

= E
[
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>E
[
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√
n|x
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= 0 and

Var
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(v̂j − vj)
>ε/
√
n
)

= E
[
Var
(
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>ε/
√
n|x
)]

+ Var
(
E
[
(v̂j − vj)

>ε/
√
n|x
])

= σ2E
[
‖v̂j − vj‖22/n

]
+ 0 = O(1)

The last equality uses the convergence rates from the proof of Lemma 3.9. By Chebyshev’s inequality

and the CLT

v̂>j ε/
√
n

P→ v>j ε/
√
n

D→ N
(
0, σ2E

[
V 2
j

])
By Slutsky’s theorem, we can replace σ2 with a consistent estimate such that the theorem’s statement

follows.
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Chapter 4

Assessing the overall and partial causal

well-specification of nonlinear additive

noise models

Christoph Schultheiss and Peter Bühlmann

Journal of Machine Learning Research 25, (159): 1-41.

Abstract

We propose a method to detect model misspecifications in nonlinear causal additive and potentially

heteroscedastic noise models. We aim to identify predictor variables for which we can infer the causal

effect even in cases of such misspecification. We develop a general framework based on knowledge

of the multivariate observational data distribution. We then propose an algorithm for finite sample

data, discuss its asymptotic properties, and illustrate its performance on simulated and real data.
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4.1 Introduction

Nonlinear additive noise models and their heteroscedastic extensions are a popular modelling frame-

work for causal discovery and inference. They allow to infer the true causal connections and effects

from the multivariate distribution when the nonparametric model is correct; see, e.g., Hoyer et al.

(2008a); Peters et al. (2014) or, for heteroscedastic models, Strobl and Lasko (2023); Immer et al.

(2023). However, the conclusions can be misleading if the additive noise model is misspecified, es-

pecially in the presence of hidden confounding variables. In this paper, we define the term “causal

well-specification” of additive noise models, discuss its relevance, and finally present a corresponding

estimation technique for observational data.

The concept of well-specification for regression functionals in parametric regression was introduced

by Buja et al. (2019b). A regression functional is well-specified for a conditional target distribution if

it only depends on the conditional distribution but is invariant to shifts in the predictors’ distribution.

This relates to the work by Peters et al. (2016) and, hence, gives the notion of well-specification a

causal interpretation. Buja et al. (2019b) suggest a set of reweighting diagnostics to assess well-

specification of regression functions. For the linear model, an explicit test with asymptotic level as

well as precise per-covariate interpretation for certain models is presented by Schultheiss et al. (2024).

If there is no functional assumption for the additive noise model, one must rely on flexible nonpara-

metric regression techniques that approximate the conditional mean. Considering well-specification

of the conditional mean is of little use. It is by definition a property of the conditional distribution

only. Hence, it is, upon existence, well-specified for arbitrary data generating mechanisms.

Thus, different concepts are needed to infer whether the estimated effects in an assumed additive

noise model are causal. One of our contributions is the definition of causal well-specification and

presenting its interpretation. Apart from global causal well-specification, we also define a local, i.e.,

per predictor version that is to be considered when the overall model does not satisfy the desired

properties. This local viewpoint is of particular interest in the presence of hidden common causes,

hidden mediating variables, or misspecified functional form, e.g., the effect of the unmeasured inde-

pendent error cannot be separated as an individual addend. We propose a methodology to assess

causal well-specification from observational data by relying on and exploiting conditional indepen-

dence. Based on this, we derive an algorithm for finite sample data and prove its consistency. From

a practical viewpoint, our estimated set of well-specified predictors (i.e., covariables) can be viewed

as the one where the data is compatible (i.e., does not falsify) with the corresponding local structure

of the model and its (partial) causal interpretation.

Almost no work exists on local goodness of fit or well-specification of nonlinear causal models,

where local well-specification has a causal interpretation. The latter is the main goal of the present

paper. Our method works in arbitrary structural causal models, i.e., if there is no well-specification,
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the interpretation becomes conservative but not wrong.

Causal structure learning with hidden variables in greatest generality is treated within the frame-

work of Fast Causal Inference (FCI, Spirtes, 2001). More specific and weakly related to our work is

the approach by Maeda and Shimizu (2021) which discusses hidden variables in causal additive mod-

els (CAM, Bühlmann et al., 2014): unlike our current work, Maeda and Shimizu (2021) rely on the

correctness of the causal additive model assumption. They present a causal graph detection algorithm

based on unconditional independence tests. We do not provide a graph search technique but consider

verification or falsification of assumed causal structures instead. We allow for as much flexibility

in the model as possible while the CAM restricts the causal effect to sums of univariate functions.

With the method in Maeda and Shimizu (2021) which is based on unconditional independence tests,

certain edges remain undirected. By considering conditional independence, additional edges could be

directed - at least with a conditional independence oracle which is at the basis of our approach. After

introducing our theory, we present an example in Section 4.2.4 which illustrates some gains over the

approach by Maeda and Shimizu (2021) by exploiting conditional independence.

4.2 Causal well-specification in population

We consider first the population case in which we know the joint distribution of the observed random

variables, e.g. conditional expectations and conditional independence between random variables can

be perfectly assessed. This section is a stand-alone and can be used in connection with other estimation

algorithms than the ones presented in Sections 4.3 and 4.6.1.

In Section 4.2.1, we introduce the causal model, our notation, and the most important background

concepts from the causality literature. Section 4.2.2 provides a “roadmap” of our methodology. We

describe on a high level which assumptions lead to a causal interpretation of the additive noise model,

and how we can assess these using conditional independence statements. The mathematical details

around these concepts follow in Sections 4.2.3 and 4.2.4.

4.2.1 Structural causal model

We summarize the concepts from the causality literature that are fundamental to our work. Let

Z = (Z1, . . . , Zq)
> ∈ Rq be a random vector whose entries Zj follow a structural causal model (SCM),

say, C,

C : Zj ← fj
(
ZPA(j), ξj

)
∀j ∈ {1, . . . , q}. (4.1)

We write ← to emphasize that the equality is induced by a causal effect. ξj is some noise that is

jointly independent over j. The set PA(j) denotes the parents of j, i.e., covariates Zk with k ∈ PA(j)

have a direct causal effect on Zj . Conversely, j is a child of k. The SCM is represented by a directed

graph that has an edge from Zk → Zj if and only if k ∈ PA(j). We assume that this results in a
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directed acyclic graph (DAG).

If the DAG contains any directed path from k to j, which may include several edges, we call j a

descendant of k, j ∈ DE(k), and k an ancestor of j. On a path, Zk → Zl → Zj , we call l a mediator.

In a structure Zk ← Zl → Zj , l is a confounder.

We use the concept of d-separation (Geiger et al., 1990, Section 3). Two sets of variables ZA and

ZB are d-separated by ZC if it blocks all paths from ZA to ZB. There are two ways to block a path:

• ∃j ∈ C such that Zk → Zj → Zl, Zk ← Zj ← Zl, or Zk ← Zj → Zl is on the path.

• ∃j 6∈ C such that Zk → Zj ← Zl is on the path, and (DE(j) ∩ C) = ∅.

The joint independence of the ξj in (4.1), implies that d-separated sets of variables are independent

conditioned on the separating set (Pearl, 2009, Theorem 1.4.1). This is called the global Markov

property. It applies for unconditional independence with C = ∅ as well. The distribution is called

faithful to its DAG if all independences are implied by such a d-separation (Spirtes et al., 2000,

Chapter 2.3.3). Violations of faithfulness can intuitively be described as cancellations of effects such

that dependencies that one would assume to exist from the graph alone vanish.

We are interested in the situation where one variable with index in {1, . . . , q} is the target, some

of the variables are observed (potential) predictors and the rest are unobserved or ignored (potential)

predictors. Let Y , M (measured) and N (not measured) be a partition of {1, . . . , q} that represent

these subsets, and define the corresponding random variables and vectors

Y := ZY , X := ZM ∈ Rp, H := ZN , XPA(Y ) := ZM∩PA(Y ) and HPA(Y ) := ZN∩PA(Y ).

In words, Y is the target, X are observed covariates, H are latent variables, XPA(Y ) is the subset of

Y ’s parents that we observe, and HPA(Y ) is the subset that we do not observe. With a slight abuse

of notation, Y can represent the target random variable or the index in {1, . . . , q} that corresponds

to the target. Note that for notational simplicity, we can absorb ξY to be an additional variable in

HPA(Y ). Therefore, HPA(Y ) always has dimensionality of at least one assuming Y is not deterministic

in X. In our SCM (4.1), we then have

Y ← fY
(
XPA(Y ),HPA(Y )

)
.

For a realization z of Z, we use the same naming convention, e.g., the realization of X is then x.

We define the term Markov blanket. Consider HPA(Y ) as an exemplary target, analogous defini-

tions for other targets exist. We call a set S a Markov blanket of these hidden parents if

HPA(Y ) ⊥ X−S |XS ,
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where X−S denotes all observed variables that are not in S. Importantly, we always mean these

blankets to be found within only the observed covariates X. Markov blankets are also known as

sufficient sets. We define minimal Markov blankets as Markov boundaries, i.e., a set S such that

HPA(Y ) ⊥ X−S |XS , but ∀S′ ⊂ S : HPA(Y ) 6⊥ X−S′ |XS′ .

As the Markov boundary is defined within only the observed covariates X, in a structure

H1 → H2 → X1, X1 would still count as part of the boundary of H1 since it is the nearest measured

descendant. We discuss the uniqueness of the Markov boundary in Section 4.2.4. It could also be all

of X or empty.

We use causal do-notation to denote interventions. Conditioning on, e.g., do(Zj ← zj) means that

we assume a variation of the SCM C (4.1) where the structural assignment for Zj is not a function

in its parents and the noise term but set to a fixed value. The remaining structural equations remain

the same. Similarly, do(ZS ← zS) means that a whole set of variables is intervened to have a fixed

value.

We also apply the related concept of counterfactuals: what would happen to an observed data

point if some of the covariates are set to hard values while the remaining structural assignments and

unobserved noise terms remain unaffected? We use the notation from Chapter 6.4 in Peters et al.

(2017), i.e., P
C|Z=z;do(X←x′)
Y denotes the counterfactual distribution of Y in the SCM C where Z = z

is observed and the counterfactual intervention is X← x′.

4.2.2 Roadmap of our methodology

We describe here on a high level the idea of causal well-specification of the general additive noise

model as defined below. The interplay between the different assumptions, their causal implications,

and how we aim to test for it is then visualized in Figure 4.1. Detailed mathematical definitions,

assumptions, and results are given in the subsequent sections.

The additive noise model (ANM) has the following structure

Y ← fXY

(
XPA(Y )

)
+ fHY

(
HPA(Y )

)
, where X ⊥ HPA(Y ).

It implies a testable proxy

H0 : E ⊥ X, where E = Y − E[Y |X].

Independence from the hidden causes means that for the outcome’s distribution it makes no difference

if we observe X = x or enforce it by intervention. With the additivity, we can even understand how

the outcome reacts to a counterfactual change in X while keeping the unobserved ξk in (4.1) ∀k ∈ N
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fixed. Hence, we can understand how the system reacts to change purely from the observational

distribution.

The ANM assumption or the null-hypothesis H0 can be violated in presence of dependence between

X and hidden causal parents of Y , or misspecified functional form, meaning interactions between

XPA(Y ) and the hidden parents of Y in the structural equation for Y , or both. However, it can be that

some observed covariates do not interact with the hidden causes ((A4.2) later) and are conditionally

independent of these given the remaining covariates ((A4.1) later). We then say the ANM is causally

well-specified for these covariates, say, XU . This implies another testable proxy

H0,U : E ⊥ XU |X−U , with E = Y − E[Y |X].

As for all observed variables, M , we do not restrict U to be among the parents of Y since we typically

do not have knowledge of these. Our causal interpretation of well-specification remains valid even

for j ∈ U \ PA(Y ): we can correctly characterize the absence of effects. Conditional independence

from the unobserved causes means that for the outcome’s distribution it makes no difference if we

observe XU = xU or enforce it by intervention at fixed levels of X−U . With the additivity, we can

even understand how the outcome reacts to a counterfactual change in XU while keeping X−U and

the unobserved ξk in (4.1) ∀k ∈ N fixed. Hence, we can understand how the system reacts to changes

in some covariates purely from the observational distribution.

By definition, such {1, . . . , p} \ U is a Markov blanket of E . The more variables we can put into

U the more explicative our model becomes. Hence, we aim to find a Markov boundary. But, having

any blanket is enough to avoid false causal claims. We summarize in Figure 4.1.

Importantly, our results do not assume any model apart from the SCM in (4.1). We require

independence and additivity to identify causal implications of the ANM. But, we can correctly falsify

models if these assumptions do not hold.

Such causal well-specification can also be of use if one is mainly interested in purely predictive

tasks and aims for out-of-distribution generalization where the new (test) data distribution is different

(“shifted”) from the training distribution; see, e.g., Rojas-Carulla et al. (2018) or the survey by Wang

et al. (2023). Consider the task of domain adaptation with only few data in a target domain but many

observations in a different training domain. If the distribution of the ξj in the target environment

is shifted, also the best predictive function, E[Y |X] might be different such that the large training

set is not suitable for learning the predictive function. But, assuming invariant causal assignments in

our SCM (4.1), the addend of the conditional mean induced by the causally well-specified covariates

remains invariant across such shifted domains. Hence, this invariant part of the function could be

estimated using the large multi-source data set from different domains.
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Independence

from hidden

causes (A4.1)

Additivity

(A4.2)

(A4.1) +

(A4.2)

Interventional

distribution

Counterfactual

distribution

Independence

from residual

“Causal well-

specification

in ANM”

Figure 4.1: Interconnection between assumptions, causal interpretations, and the testable proxy.
Directed edges denote implications, the plus means that both assumptions hold simultaneously, the
bidirected edge denotes equivalence per definition, and the dotted edge denotes implication up to
pathological cases, i.e., a proxy.

4.2.3 Global well-specification

We recapitulate the ANM assumption for covariates X and target Y . We call the ANM causally

well-specified if

Y ← fXY

(
XPA(Y )

)
+ fHY

(
HPA(Y )

)
, where X ⊥ HPA(Y ). (4.2)

Note that we do not constraint the functional form of fXY (·) and fHY (·) any further. In particular,

the structure does not imply that the functions must be additive in their respective arguments.

The independence condition corresponds to no hidden confounding or hidden mediation. It ensures

Y |X = x
d
= Y |do(X← x),

where
d
= states that two random variables have the same distribution. Assuming faithfulness, it also

implies DE(Y ) ∩M = ∅ since faithfulness ensures ∀j ∈ DE(Y ) Zj 6⊥ ξY ∈ HPA(Y ).

The parametrization in (4.2) is not unique as constants could be moved between the two sum-

mands. We let the second have mean 0 such that E[Y |X] = fXY

(
XPA(Y )

)
. The additivity condition

then ensures that in the counterfactual, where we can change X without changing any other unob-

served noise term, the outcome is exactly shifted by the difference in conditional expectation. Thus,
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we fully understand the effect of changing X. Denote point masses at y by δy, then,

P
C|Z=z;do(X←x′)
Y = δy′ where y′ = y + E

[
Y |X = x′

]
− E[Y |X = x].

The conditions in (4.2) additionally imply the following global null hypothesis that we aim to

check first.

H0 : E ⊥ X, where E = Y − E[Y |X]. (4.3)

Note the subtle difference between (4.2) and (4.3). The conditions in (4.2) are sufficient to fulfill (4.3)

but they are not necessary as such independence could also exist non-causally. A prime example is

with jointly Gaussian Z: then, H0 holds regardless of the independence condition in (4.2) as E and

X are uncorrelated. The additivity is always fulfilled since multivariate Gaussianity implies linear

additive causal effects. However, except for Gaussian Z or some other pathological data generating

distributions, (4.3) is a useful proxy for (4.2), i.e., it allows to check whether E[Y |X] represents a true

causal effect; see also the discussions on the identifiability of ANM in Hoyer et al. (2008a) and Peters

et al. (2014).

To test H0, any valid test for independence of X and E can be used.

4.2.4 Local well-specification

If the conditions (4.2) are partially violated it might still be possible to correctly understand the

causal effect for some of the predictors XU where U ⊆ {1, . . . , p}. We say the effect of XU is causally

well-specified in the ANM with response Y and covariates X if the following hold.

(A4.1) The covariates in X−U form a Markov blanket of HPA(Y ), i.e., HPA(Y ) ⊥ XU |X−U .

(A4.2) Y ← fXUY

(
XU ,XPA(Y )\U

)
+ fHY

(
HPA(Y ),XPA(Y )\U

)
, i.e., the causal effect is additively

separable into all terms that include XU only with observed X and all terms that include H without

XU .

Consider Figure 4.2 containing two examples of DAGs with hidden parents. On the left, the

set U = {2} fulfils (A4.1). On the right, U = {1} fulfils it. Correctness of (A4.2) depends on the

X1 X2 Y

H

X2 H Y

X1

Figure 4.2: Left: Structure with a hidden confounder. Right: Structure with a hidden mediator.
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structural assignment for Y . E.g.,

Y ← sin(X2) + sin(H),

is ok for U = {2} in the example on the left, but

Y ← sin(X2 +H),

is not.

If ∃k ∈ M ∩ DE(Y ), i.e., we observe one or more descendants of Y , all Xj where j ∈ PA(Y )

are, up to faithfulness, in any Markov blanket of ξY ∈ HPA(Y ) since they have a common child with

respect to the measured covariates. Thus, sets containing measured parents do not fulfill (A4.1).

When choosing (causal) predictors, one aims for M ∩DE(Y ) = ∅, but there is in general no guarantee

for it. So, this is another potential model misspecification. Violations of faithfulness are irrelevant

for (A4.1): if there are effects from HPA(Y ) to XU or vice-versa that cancel out each other, we receive

the same implications as if there were no such effects unless (B4.1) is violated; see below.

We impose no constraints onto fXUY (·) and fHY (·) in (A4.2). Hence, the first summand could be

zero, which is the case for U ∩ PA(Y ) = ∅.
(A4.1) ensures that

Y |XU = xU ,X−U = x−U
d
= Y |do(XU ← xU ),X−U = x−U

whenever both are defined. This follows from the second rule of do-calculus (Pearl, 2012). After

removing edges out of XU , dependence between XU and Y could only be induced by a common

ancestor or a path from Y to XU . But, these are all blocked by X−U , on which we condition, by the

assumption.

Combined with (A4.2), we get two implications under an additional technical assumption.

(B4.1) Let {A,B,C} be disjoint subsets of {1, . . . , q} in model (4.1). Then,

ZA ⊥ ZB|ZC =⇒ ZA|ZB = zB,ZC = zC
d
= ZA|ZB = z′B,ZC = zC ∀zB, z′B, zC .

This means that there are no unobservable dependencies on null sets of the observational distri-

bution which is natural to assume except for pathological data. In general, independence only implies

the latter equality for almost all zB, z
′
B, zC . A counterexample to (B4.1) would be the following SCM

with continuous and univariate components ZA, ZB, and ZC

ZC ← ξC ,

ZB ← ZC + ξB,
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ZA ← ZC + ξA + 1{ZB=0}.

Then,

ZA ⊥ ZB|ZC , but, e.g., ZA|ZB = 1, ZC = 0
d
6= ZA|ZB = 0, ZC = 0,

i.e., there is no observable conditional dependence between ZA and ZB, but we could, in theory, create

an intervention that provokes unexpected behaviour. Therefore, we exclude such hidden dependencies.

Theorem 4.1. Assume the model (4.1) with (B4.1). Let XU be a set of covariates fulfilling (A4.1)

and (A4.2), then

P
C|Z=z;do(XU←x′U ,X−U←x−U)
Y = δy′ where y′ = y + E

[
Y |XU = x′U ,X−U = x−U

]
− E[Y |X = x]

for (XU = x′U ,X−U = x−U ) in the support of the observational distribution. Further, H0,U holds,

where

H0,U : E ⊥ XU |X−U , with E = Y − E[Y |X]. (4.4)

The first implication means that in the counterfactual, where we can change XU without changing

X−U or ξk in (4.1) ∀k 6∈M , the effect on Y is fully determined by the shift in conditional expectation.

Thus, we understand the causal effect of this theoretical intervention. Note that with (A4.1) and

(B4.1), not changing X−U and ξk ∀k 6∈ M is equivalent to not changing X−U and H, i.e., all other

variables apart from XU and Y remain unchanged; see also the proof in Appendix 4.A.1. More

generally, including cases where (XU = x′U ,X−U = x−U ) is outside the support of the observational

distribution, one could replace

E
[
Y |XU = x′U ,X−U = x−U

]
by E

[
Y |do

(
XU ← x′U

)
,X−U = x−U

]
which are equivalent if both are defined as discussed above. However, this is not estimable outside

the data support. H0,U (4.4) is equivalent to saying that {1, . . . p} \ U defines a Markov blanket of

the residual E .

We note that the implication of (A4.1) would be of practical interest on its own. However, as we

do not know of any useful proxy for it that can be calculated by the observational distribution, we

always consider the combination of (A4.1) and (A4.2) as the object of interest.

The local null hypothesis H0,U , which can be checked by the observational distribution alone,

serves as a proxy for (A4.1) and (A4.2). Again, a multivariate Gaussian distribution is an example

where (4.4) holds regardless of (A4.1). However, for other data generating distributions, we consider

(4.4) to be a good proxy to see whether (A4.1) and (A4.2) might hold.
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Of most interest are the sets

W ∈ arg max
U :H0,U is true

|U |. (4.5)

As W is of maximum size, {1, . . . p} \W is of minimum size. Thus, it is not only a Markov blanket

but a Markov boundary of E such that uniqueness of W is implied by the uniqueness of the Markov

boundary. This is guaranteed if the so-called intersection property holds (Pearl, 1988, Chapter 3).

(B4.2) E ⊥ XA|XB,XC and E ⊥ XB|XA,XC =⇒ E ⊥ XA,XB|XC

for any partition A,B,C of {1, . . . , p}.

X having full support with respect to the product of the domains of the individual Xj is sufficient

for the intersection property and hence uniqueness of the Markov boundary. Strictly weaker, necessary

and sufficient conditions are discussed by Peters (2015).

One estimation strategy would be to consider the individual hypothesis and output the collection

of all variables for which these individual hypotheses are true

H0,j : E ⊥ Xj |X−j , where E = Y − E[Y |X]

W̃ = {j : H0,j is true}.
(4.6)

We can relate this to the Markov boundary.

Theorem 4.2. Assume the model (4.1). Let W be any set as in (4.5) and W̃ as in (4.6). Then,

W ⊆ W̃ . If the intersection property (B4.2) holds, W = W̃ , and W is unique.

In general, (A4.1) and (A4.2) do not imply that the ANM (4.2) with only XU as predictors is

causally well-specified. Therefore, this set cannot be found by looping over all subsets of X and

testing (4.3).

Recall the examples in Figure 4.2. In the left structure, W = {2} if (A4.2) holds for X2. But,

X2 → Y is not a causally well-specified ANM unless faithfulness is violated, i.e., X2 ⊥ H. Similarly,

on the right, it holds W = {1} if (A4.2) holds for X1. But, X1 → Y is not a causally well-specified

ANM unless faithfulness is violated, i.e., X1 ⊥ H.

Note also that there is an unobserved causal path (Maeda and Shimizu, 2021) from X1 to Y .

This means that their method which exploits different potential parental sets to obtain independent

residuals cannot identify this edge. Nevertheless, the edge can be characterized as causally well-

specified when considering conditional independence criteria.

We emphasize that the characterizations in this Section 4.2 provide the fundamental basis to

define the concepts of global and local causal well-specification. This then enables the construction of

algorithms that aim to estimate causal well-specification based on finite sample observational data,

as discussed next.
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4.3 Estimating the set of well-specified predictor variables

We subsequently focus on a specific method to assess conditional dependence. Of course, different

estimators could be used as well. The intuition of how conditional independence relates to causal

well-specification stays the same. The practical algorithm to estimate the set of variables with well-

specified effect is given in Section 4.3.3.

Throughout this section, we assume that we have n i.i.d. observations x1, . . . ,xn and y1, . . . , yn of

X and Y respectively. More compactly, this data can be written as x =
(
x1, . . . ,xn

)>
∈ Rn×p and

y =
(
y1, . . . , yn

)>
∈ Rn. Also, define the unobserved εi = yi − E[Y |X = xi].

4.3.1 Making use of FOCI (Feature Ordering by Conditional Independence)

One estimation strategy would be to test the hypotheses in (4.6) for all j. Conditional independence

testing is a hard problem on its own; see, e.g., Shah and Peters (2020). Here, it is even more

challenging as we need to rely on estimated residuals rather than the error terms directly. Instead

of testing, we use FOCI (Feature Ordering by Conditional Independence) by Azadkia and Chatterjee

(2021). This method estimates a Markov blanket, which they call a sufficient set, of a target variable,

and they give guarantees which hold with high probability for large enough sample size. Thus, it can

find a superset of the Markov boundary of E , say, Ŝ, such that
(
{1, . . . , p} \ Ŝ

)
⊆W .

Before reviewing the most important concepts of FOCI, we emphasize what our contribution

to the subsequent results is. Here, we need to deal with the harder problem of applying FOCI to

the estimated residuals ε̂ instead of the true, unobserved residuals ε. We extend the theory from

Azadkia et al. (2021) to this case and provide asymptotic guarantees in Section 4.3.2. As additional

assumptions, we require only a weak form of consistency for the regression estimates as well as

continuous residuals. An example demonstrating the pitfalls of discrete residuals is given in Section

4.3.2.1. Furthermore, we show a new result for transforming the data before applying FOCI; see

Proposition 4.2. Finally, we suggest an algorithm that yields more stable estimates in Section 4.3.3.

We provide now some background on FOCI by focusing on its main concepts. The precise defini-

tions can be found in Appendix 4.A.3. Assume we want to consider if

E ⊥ XU |XS .

Azadkia et al. (2021) define a coefficient of conditional dependence, T (E ,XU |XS) ∈ [0, 1], which is

0 for conditional dependence, 1 if E is almost surely a function of XU given XS , and in between

otherwise. A slightly different coefficient with the same properties is defined for empty conditioning
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sets. T (·) can be decomposed as

T (E ,XU |XS) =
Q(E ,XU |XS)

S(E ,XS)
,

with a nonnegative numerator and denominator. Thus, conditional independence is also equivalent

to Q(E ,XU |XS) = 0. By construction

Q(E ,XU |XS) = Q(E , {XU ,XS})−Q(E ,XS)

using the version of Q(·) without a conditioning set. FOCI is designed to greedily find an additional

covariate that maximizes T (E , Xj |XS) assuming XS has already been chosen. This is equivalent to

greedily maximizing Q(E , {Xj ,XS}) as the normalization S(·) above does not depend on the candidate

variable. For practical evaluation, one can use a sample estimate Qn(ε,xS). This only depends on

the relative order of ε and is not guaranteed to be non-decreasing when adding additional covariates

to S. Hence, FOCI stops when no candidate variable yields and improvement in Qn(·), i.e.,

∀j ∈ {1, . . . , p} \ S : Qn(ε, {xj ,xS}) ≤ Qn(ε,xS).

For large enough data, Qn(ε, {xj ,xS}) ≈ Q(E , {Xj ,XS}) such that the algorithm does not stop before

the estimated set Ŝ is a Markov blanket, i.e., it includes all necessary covariates {1, . . . , p} \W with

high probability. However, there is in general no guarantee against superfluous inclusion to Ŝ and we

get
(
{1, . . . , p} \ Ŝ

)
⊆W .

For power purposes, it can be advantageous to consider a certain non-monotonic transforma-

tion g(E) as input to FOCI. Intuitively, T (g(E), Xj |XS) measures nonparametrically how much Xj

increases the explicative power for g(E). Hence, transforming E such that this relative explicative

power increases, makes detection easier. In particular, we suggest the absolute value function. For

this, we provide a precise result for symmetric data below. Although exact symmetry is hardly the

case except for toy examples, the intuition is that the dependence of E on X can be mainly in the

second moment, i.e., the scale. Hence, the absolute value transform is then beneficial. For our general

results, we assume that g(·) is an l-Lipschitz function whose level sets have Lebesgue measure 0.

For the precise definitions for T (·) and Q(·); see (2.1) and (11.1) in Azadkia and Chatterjee (2021)

or Appendix 4.A.3 here. FOCI greedily increases the set of predictors to maximize Q.
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Proposition 4.1. Let S ⊆ {1, . . . , p}. If E|XS has a continuous and symmetric (around 0) distribu-

tion, it holds

T (|E|,XS) = 4T (E ,XS) and Q(|E|,XS) = 4Q(E ,XS).

These larger population values can improve the algorithm’s performance.

In general, we require some sort of consistency for our regression estimates and our discussion

allows any reasonable choice of regression (machine learning) techniques. While as in the population

case rejections of the null hypothesis could only be due to hidden confounding or additively non-

separable functions, one must always consider insufficient explicative power of the applied regression

(machine learning) method as a further reason in the finite sample case.

We consider two different algorithms.

Algorithm 4.1 In-sample FOCI

Input i.i.d. data x ∈ Rn×p and y ∈ Rn, and function g(·)
Output estimated set of variables Ŝ for which null hypothesis (4.4) is rejected

1: Get an estimate f̂(X) for E[Y |X] using a certain regressor
2: Estimate the residuals as ε̂ = y − f̂(x)
3: Apply FOCI (Azadkia and Chatterjee, 2021) to the data (g(ε̂),x) to get the set Ŝ

Algorithm 4.2 Sample splitting FOCI

Input i.i.d. data x ∈ Rn×p and y ∈ Rn, and function g(·)
Output estimated set of variables Ŝ for which null hypothesis (4.4) is rejected

1: Split the data uniformly at random into two disjoint parts of sizes bn/2c and dn/2e, say,
(
x(1),y(1)

)
and

(
x(2),y(2)

)
2: Get an estimate f̂(X) for E[Y |X] using a certain regressor on the data

(
x(1),y(1)

)
3: Estimate the residuals as ε̂(2) = y(2) − f̂

(
x(2)

)
4: Apply FOCI (Azadkia and Chatterjee, 2021) to the data

(
g
(
ε̂(2)
)
,x(2)

)
to get the set Ŝ

For notational simplicity, we call the data that is input to FOCI (ε̂,x) in our theoretical derivations

regardless of the applied algorithm, i.e., we omit the superscript in the splitting case. The advantage of

Algorithm 4.2 is that the residuals estimated on the hold-out split are still i.i.d. which simplifies things,

at least analytically. Furthermore, the sample splitting idea enables further favourable algorithms to

be presented in Section 4.3.3.

4.3.2 Asymptotic results

We generally make the following assumptions for applying FOCI to an estimated ε̂.

(B4.3) |ε̂i − εi| = Op(1).

(B4.4) E is a continuous random variable.
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(B4.5) @S ⊆ {1, . . . , p} such that X−S 6⊥ E|XS but X−S ⊥ g(E)|XS .

The probability in (B4.3) is with respect to both the regression estimate and the new data point

i. The assumption is slightly different depending on which algorithm is applied. Apart from invoking

(B4.4) for the proofs, we provide a simple example in Section 4.3.2.1 to show that discrete distributions

can lead to inconsistency.

The main proof ingredient for adapting the results to our setting is showing that for random

indices i and l the probability that the estimated residuals imply a different relative ordering than

the true residuals approaches 0.

With sample splitting, we obtain a consistency result analogous to Azadkia and Chatterjee (2021).

We require the same regularity conditions as they do. Let

δ = min
j,S: T (g(E),Xj |XS)>0

Q(g(E), {XS, Xj})−Q(g(E),XS),

i.e., the lowest difference in Q(·) we should be able to detect.

(A1’) There are nonnegative real numbers β and C such that for any set S ⊆ {1, . . . , p} of size

s ≤ 1/δ + 2, any xS ,x
′
S ∈ Rs and any t ∈ R,

∣∣P (g(E) ≥ t|X = xS)− P (g(E) ≥ t|X = x′S)
∣∣

≤ C(1 + ‖xS‖β + ‖x′S‖β)‖xS − x′S‖.

(A2’) There are positive numbers C1 and C2 such that for any S of size s ≤ 1/δ + 2 and any t > 0,

P(‖XS‖ ≥ t) ≤ C1e
−C2t.

Theorem 4.3. Suppose that the regularity assumptions (A1’) and (A2’) (Azadkia and Chatterjee,

2021) for the data (g(E),X) hold as well as conditions (B4.2) - (B4.5). Let Ŝ be the output of

Algorithm 4.2. There are positive real numbers L1, L2 and L3 that do not depend on the sample size

such that

P
(
Ŝ ⊇ {1, . . . , p} \W

)
≥ 1− L1p

L2 exp(−L3n).

Without sample splitting, (g(ε̂),xU ) are not independent copies. Therefore, the bounded difference

inequality (McDiarmid et al., 1989) which is applied to obtain the exponential probability decay

cannot be used. Nevertheless, convergence in probability is still true.

Theorem 4.4. Assume the conditions of Theorem 4.3. Let Ŝ be the output of Algorithm 4.1. Then,

lim
n→∞

P
(
Ŝ ⊇ {1, . . . , p} \W

)
= 1.
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This result is derived by a simple application of the Markov inequality instead of the bounded

difference inequality. As the (g(ε̂),xU ) become decreasingly dependent from another with increasing

sample size, we conjecture that the true convergence rate could be similar to the one for sample

splitting.

4.3.2.1 Discrete E

For our results, we invoked assumption (B4.4), i.e., the residuum is a continuous random variable. A

simple toy example shows that a discrete random variable might invalidate the asymptotic guarantees.

Use the definition (2.1) in Azadkia and Chatterjee (2021) for T (·), i.e., T (E , X) = 0 if and only if E
and X are independent. Let Tn(·) be its suggested sample estimate; see also Appendix 4.A.3.

Proposition 4.2. Let X be a bounded, continuous random variable and E a centered random variable

that is uniformly distributed over a discrete set of size k > 1 independent from X such that

T (E , X) = 0. Let Y ← Xβ + E for some β 6= 0. Apply linear least squares regression, which fulfils

(B4.3), to n i.i.d. copies (y,x) to get the estimates ε̂. It holds

E[Tn(ε̂,x)]
n→∞→ 1

k2
> 0.

We provide some intuition while the detailed proof can be found in Appendix 4.A.7. As x is

continuous, it is never perfectly orthogonal to ε, and the least squares estimator is slightly off. Then,

within each of the k groups the ranking of the ε̂ = ε+ x
(
β − β̂

)
is exactly according to the ranking

of the x or inverted such that there is some non-vanishing dependence that FOCI detects.

4.3.3 Practical algorithm

Although we can consistently find a Markov blanket (but not necessarily the minimal Markov bound-

ary) using Algorithms 4.1 or 4.2 as the sample size grows, there are several drawbacks to that. First,

there is no protection against including superfluous variables into Ŝ and typically this happens with

non-negligible probability. Second, for low sample sizes, Ŝ can miss out on some variables.

To partially remedy these issues, we incorporate ideas from multisplitting (Meinshausen et al.,

2009) and stability selection (Meinshausen and Bühlmann, 2010). We apply Algorithm 4.2 repeatedly

with several random data partitions. Inspired by Shah and Samworth (2013) who suggest using

“complementary pairs”, i.e., both halves of every split, we let each halve be used once for estimating

the conditional mean and once for independence testing.

As unconditional independence is easier to assess than conditional independence, we first test for

H0 as in (4.3). For this, we apply the test by Pfister et al. (2018). The case where only estimates of

the residuals are available is explicitly discussed in their work. Then, we combine the p-values over

the different splits as suggested by Meinshausen et al. (2009). Only if the global model is rejected,
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the individual covariates are inspected.

If we cannot trust the overall model, we only consider the effects of variables that are selected

substantially less than others by the FOCI algorithm to be causally well-specified. We split the

variables into two groups: those that are selected by FOCI below average over the splits and the

others. For the latter group, we reject H0,j . Each variable from the first group we compare to

the least selected variable from the second group with some proportion test such as Fisher’s exact

test. The variables that show significant differences are added to the estimated well-specified set Ŵ .

Notably, there is no exact interpretation of the significance level used for these tests, but the intuition

that a lower significance level leads to fewer false positives in the set Ŵ remains true. In contrast,

a lower significance level for the preceding test of the global model leads to the methods becoming

more liberal.

The intuition behind splitting at the mean is the following. For large enough sample size, the

Algorithm 4.3 Selection of variables with well-specified effect using multiple splits

Input i.i.d. data x ∈ Rn×p and y ∈ Rn, function g(·), number of repetitions B, and significance
levels α and α̃.

Output estimated set of variables Ŵ with causally well-specified effect

1: nj = 0 ∀j = 1, . . . , p
2: for b = 1 to B do
3: Split the data uniformly at random into two disjoint parts of sizes bn/2c and dn/2e, say,(

x(1),y(1)
)

and
(
x(2),y(2)

)
4: Get an estimate f̂(X) for E[Y |X] using a certain regressor on the data

(
x(1),y(1)

)
5: Estimate the residuals as ε̂(2) = y(2) − f̂

(
x(2)

)
6: Apply the HSIC test to the data

(
ε̂(2),x(2)

)
to get the p-value pb.

7: Apply FOCI (Azadkia and Chatterjee, 2021) to the data
(
g
(
ε̂(2)
)
,x(2)

)
to get the set Ŝb

8: Swap the roles of
(
x(1),y(1)

)
and

(
x(2),y(2)

)
and repeat the previous steps to get pB+b and

ŜB+b

9: Combine the p-values p1, . . . p2B (Meinshausen et al., 2009) and get the model p-value p0.
10: if p0 > α then
11: Ŵ = {1, . . . , p}
12: else
13: Ŵ = ∅
14: for j = 1 to p do
15: nj =

∑2B
b=1 j ∈ Ŝb

16: n̄ =
∑p

j=1 nj/p

17: nmin = minnj
j:nj≥n̄

18: for j = 1 to p do
19: if nj < n̄ and proportion.test

(
nj , n

min, 2B
)
≤ α̃ then

20: Ŵ = Ŵ ∪ j
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necessary variables are selected by FOCI in almost every split, see Theorem 4.3, while the variables

with causally well-specified effect could be selected with some probability much lower than 1. The

mean separates the two groups and there is a significant difference in the selection fraction of the

two groups. For a low sample size, the behaviour of FOCI is more random. However, as long as no

variables stand out, we do not add any to Ŵ , i.e., if H0,j is not true, the probability P
(
j ∈ Ŵ

)
is

moderately low. However, it is lower bound by the type II error of the global test. This is fundamental

to our idea. If the sample size is such that the global test, i.e., unconditional independence testing,

does not work well yet, the local analysis is also not of much use.

We summarize the procedure in Algorithm 4.3.

4.4 Simulation example

We evaluate the method on a simple SCM represented by the DAG in Figure 4.3. We let the causal

effects be non-monotonic functions. As discussed in Section 5.3, non-monotonic effects can lead to

stronger dependence between residual and predictor in the wrong direction. Hence, we are a bit more

sample-efficient than with monotonic functions. The effects have the following form

f(Xj) = α1|Xj |β1sign(Xj) + α2|Xj |β2 ,

where the parameters are randomly sampled and differ for every simulation run. The causal effect on

Y is additive in the parents. We standardize and normalize the effects. The additive error terms are

either normal, uniform, or Laplace with variance 1 for the root nodes and 1/4 for the others. The

different distributions are randomly assigned to the different nodes; two of each.

We consider all possible subsets of size 3 as observed predictors. Denote this observed subset by

M . For M = {1, 2, 3} and M = {1, 3, 5} the additive noise model is causally well-specified.

We consider 100 different random setups for sample sizes 102 to 105. For each, we consider all

possible M . To get Ŵ we apply Algorithm 4.3 with B = 25 splits and the absolute value function as

g(·).
For the regression, we apply eXtreme Gradient Boosting implemented in the R-package xgboost

(Chen et al., 2021). Other regression (machine learning) techniques could be used instead if they

X1

X2 X3

Y X4

X5

Figure 4.3: DAG representing the SCM in the simulation.
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are flexible enough. We fix our choice here for this proof of concept. We use the respective left-out

split of the data for early stopping when fitting the regression functions. This is a slight violation

of our theoretical algorithm where the residuals are perfectly independent. We use the authors’

implementation of FOCI (Azadkia et al., 2021) and dHSIC (Pfister and Peters, 2019).

For the predictor sets where global causal well-specification does not hold, we consider the false

positive rate (FPR) P̂
(
j ∈ Ŵ |j 6∈W

)
and the true positive rate (TPR) P̂

(
j ∈ Ŵ |j ∈W

)
for adding

predictors to the set Ŵ . Here, P̂(·) denotes the empirical probability over our simulation runs. We

fix α = 0.05 and consider varying values of α̃. The resulting rates are on the left in Figure 4.4.

For n = 102, a low FPR is not attainable because the p-values for (4.3) are not reliably small

enough, and Algorithm 4.3 often terminates before considering the individual covariates. However,

even for this low sample size, we get a performance that is clearly better than random guessing. For

large sample sizes, the FPR becomes very low which is in agreement with Theorem 4.3. The lack of

power is mainly due to the subsets of predictors with |W | > 1. FOCI chooses superfluous covariates

with non-vanishing probability for every sample size. Hence, the two covariates with causally well-

specified effects may be selected with a frequency that differs a lot between the two. If one then

appears to be more similar to the covariate with not well-specified effect, our algorithm misses out

on this such that Ŵ ⊂W .

For comparison, we also show the results if we instead only consider a single random split where

50% of the data is used to estimate the residuals and the other 50% to assess independence. If H0

is rejected we apply Algorithm 4.2 (using the same splits) and choose Ŵ to be the complement of

the set chosen by FOCI. Except for n = 102, this lies below the curve for multiple splits, i.e., there

is an α̃ that is better in terms of both FPR and TPR. Further, our default choice α̃ = 0.01 is more

conservative. For large enough sample size, using α̃ = 0.01 leads to more power than considering a

single split. Hence, even though the problem is hard in general, aggregating information over multiple

random splits of the same dataset can lead to a performance boost.

We also evaluate the testing of H0 (4.3). For this, we show the empirical cumulative distribution

function of the obtained p-values in the middle of Figure 4.4. We consider the p-value aggregated

over the splits as well as the individual p-values considering single splits. For the largest sample sizes,

the distribution of both is visibly not distinguishable from a point mass at 0. We omit this in the

plot for the sake of overview. For n = 102 and n = 103, aggregating the p-values over splits helps to

reject the global model for most possible significance levels. The acceptance rate for the global model

poses a lower bound to the attainable FPR for every subsequent per-covariate analysis. For n = 102

and α = 0.05, this rate is around 0.56 for single splits and reduced to roughly 0.33 by aggregating.

This confirms the usefulness of the multisplitting idea.

We also consider the distribution of the p-values for the two subsets of predictors that yield causally
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Figure 4.4: The results are based on 100 simulation runs. On the left: False positive rate versus true
positive rate obtained with Algorithm 4.3 for varying α̃ and α = 0.05. The crosses correspond to
α̃ = 0.01. The other symbols describe the performance of Algorithm 4.2. In the middle: empirical
cumulative distribution function of the p-values obtained with HSIC. We compare the raw p-values
from each split (lines only) to the cumulated p-value per simulation run (lines with dots). On the
right: the same for the models fulfilling H0.

well-specified models. This is shown on the right side of Figure 4.4. We see that the raw p-values

are too liberal. By construction, this effect is enhanced by aggregation over the splits. For increasing

sample size, there are two competing effects. The regression approximation becomes better leading

to less dependent residuals. But, the tests become more powerful in detecting spurious dependence.

As the HSIC implementation cannot handle 5 · 104 samples, we only test with 104 samples per split.

Hence, the p-values for n = 105 are likely more liberal theoretically. In summary, we see that testing

for (4.3) is already difficult per se. However, one can also see it the other way around: if the regression

is unable to render the residuals independent one should not trust the obtained function even if there

was a true underlying ANM.

In this example, fitting only additive functions with no interactions between the measured covari-

ates leads to the same conclusion given perfect regression fit and independence tests since the data

follow a CAM (Bühlmann et al., 2014). Hence, if one restricts the analysis to additive functions due

to pre-knowledge or just by assumption the problem could become easier. When applying GAM re-

gression as implemented in mgcv (Wood, 2011), the results for the causally not well-specified predictor

sets remain qualitatively similar. The p-values for the models fulfilling H0 are still visibly clearly not

uniformly distributed. But, they become less liberal. This is as finding the true conditional mean and

hence the true independent residuals becomes easier. For n = 105 the distribution of the raw p-values

is sufficiently close to uniform such that the aggregated p-values are even super-uniform. Again, this

needs to be taken with a grain of salt as not all samples can be used for testing independence.
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4.5 Real data analysis

We consider the K562 dataset provided by Replogle et al. (2022). We follow the preprocessing in the

benchmark of Chevalley et al. (2023). Then, the dataset contains 162,751 measurements of the activity

of 622 genes: 10,691 of the measurements are taken in a purely observational environment while the

remaining are obtained under various interventions. For each gene, there exists an environment where

it has been intervened on by a knockdown using CRISPRi (Larson et al., 2013), i.e., its activity is

reduced. As our method is designed for i.i.d. data, we only consider the observational environment

henceforth. With the interventions, some sanity checks of our findings are possible as discussed below.

We make a pre-selection of the measured covariates before applying our method. There are 28

genes that are active, i.e., greater than 0, in each measurement in the observational sample. We

restrict our analysis to these and call them X1 to X28 for simplicity. Within these 28, we estimate

Markov blankets using FOCI. For each of the 28 genes, two estimates are implied: all the genes

selected by FOCI when this covariate is the target as well as all the genes for which this covariate is

in the output of FOCI. As the target, say Y , we choose the one with the highest agreement between

the two estimated sets in terms of intersection size relative to the size of the union. For the target Y ,

we then consider the intersection of the Markov blankets mentioned above (where Y is the target or

appears in the output of FOCI). This results in three predictors, X10, X12, and X15.

With the selected target and predictors we run Algorithm 4.3 with B = 25 splits using xgboost

for regression. There is a strong indication against the global null hypothesis (4.3) with a p-value of

roughly 10−27. Hence, we proceed to the per-covariate analysis. Covariate X15 is in Ŝb 41 out of 50

times while as for the others it is only 22 (X10) and 19 (X12). Hence, the effects of the latter appear

to be causally well-specified and we get the set Ŵ = {X10, X15} when running Algorithm 4.3 with

our suggested default of α̃ = 0.01.

To assess the success of our method, we now consider the available interventional data. Com-

paring the distribution of Xk when the activity of Xj is reduced by an external intervention to its

observational distribution, gives an assessment of whether there is a causal effect from Xj to Xk. We

do this using a Mann-Whitney U test. Intervening on any of the three predictor covariates appears

to highly influence the activity of Y with p-values of the order 10−4, 10−13, and 10−6. In the reverse

direction, intervening on Y does not have strong influence on X10 (p ≈ 0.1) and X12 (p ≈ 0.5) but

on X15 (p ≈ 4 ∗ 10−5). Thus, there appears to be some cyclic effect between Y and X15. Hence, it

is less appropriate to consider its regression effect to be causally well-specified whereas our estimated

well-specification for X10, X12 on Y is compatible with the validation analysis based on interventional

data.

Finally, we can also compare how well our regression model trained on the observational data

performs on data from the different interventional environments. We do this comparison in terms of
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absolute bias relative to Y ’s mean activity in the observational sample, i.e.,

RBXj→Y =

∣∣∣∑i∈Dj yi − f̂(xi)
∣∣∣/|Dj |∑

i∈DO yi/|DO|
, (4.7)

where Dj denotes the data points where Xj is knocked down, DO the observational data, and f̂(·) is

trained on DO. This suggests that generalization to the environment where a knockdown is applied

to X15 works the least with a relative bias (4.7) of about 12% while in the other environments it

is roughly 5% or 8% respectively. It must be noted that most data points in the knocked down

environments are outside the support of the observational training data such that f̂(X) can also be a

poor approximation for causal effects; see also the discussion regarding out-of-support interventions

in Section 4.2.4. Hence, this analysis of the regression performance in other environments, although

in line with our other results, shall be viewed with some caution. The analysis for this target variable

Target Y Predictor Xj Mann-Whitney U test Splits Proportion test Relative bias

X5

X2 2.3e-18 14 1.2e-02 1.3e-01
X3 4.9e-31 26 – 2.1e-02
X4 1.2e-69 19 1.1e-01 3e-02
X12 3.5e-01 28 – 4.3e-02

X6
X11 7.7e-01 17 2.3e-05 1e-01
X24 2.4e-09 38 – 1.5e-01

X7

X8 3.3e-02 28 – 1e-01
X9 1.4e-16 10 2e-04 8.3e-02
X14 1.2e-79 30 – 9.7e-02
X22 1.6e-35 11 4.6e-04 4.1e-02

X9

X7 5.4e-01 14 2.2e-03 1.8e-02
X11 1.2e-14 30 – 1.8e-02
X22 2.3e-06 29 – 2.4e-02

X15
X11 2.3e-02 12 4.9e-07 1.1e-01
X16 1.6e-06 37 – 1.2e-01

X16

X10 1e-01 22 7.7e-05 4.7e-02
X12 4.7e-01 19 6.3e-06 7.7e-02
X15 3.8e-05 41 – 1.2e-01

Table 4.1: Application to the K562 dataset with varying targets and predictor sets. The third column
is the p-value of the Mann-Whitney U test comparing the observational distribution of the predictor
to its distribution when knocking down the target. The fourth and fifth column report the output
of Algorithm 4.3, i.e., the number of splits where FOCI selects this predictor, nj , and the p-value of
the proportion test if nj < n̄ (the significant findings with small p-value correspond to the variables
which are causally well-specified; no p-value indicates that nj ≥ n̄ and the variable is not causally
well-specified). The last column reports the relative bias RBXj→Y (4.7) when using the model fit on
observational data to predict the target in the dataset where the predictor is knocked down.
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corresponds to the last row-box in Table 4.1.

Of course, other genes could be viewed as target Y . When estimating a Markov blanket as

described above for different variables, the interventional environments often indicate the existence

of cyclicity between the target and all its potential causes. Then, our method is of little help as the

different predictors cannot be grouped into different classes. In Table 4.1, we summarize the results

for all possible targets with multiple predictors where at least one predictor appears to be neither a

descendant of the target nor in a cyclic relation using a threshold of 0.01 for the Mann-Whitney U

test. In 4 out of 6 cases, the ranking implied by our method in terms of number of splits where a

predictor is selected by FOCI is in agreement with the ranking implied by the Mann-Whitney U test,

and Ŵ using α̃ = 0.01 is exactly as implied by the interventional data. Of the remaining two cases,

the method is once conservative Ŵ = ∅ (for Y = X5) and once the interventional data suggest that

there are false positives in Ŵ (for Y = X7). Y = X16 is the case discussed in more detail above.

4.6 Location-scale noise models

A simple extension of model (4.2), that has recently gained some attention, is the heteroskedastic noise

model also referred to as the location-scale noise model (LSNM). There, the independent, additive

noise is scaled by some nonnegative function gXY

(
XPA(Y )

)
inducing heteroskedasticity. This is the

leading causal model in, e.g., Xu et al. (2022); Strobl and Lasko (2023); Immer et al. (2023), where

the latter two provide identifiability guarantees, see also Chapter 6. In analogy to (4.2), we call the

LSNM causally well-specified if

Y ← fXY

(
XPA(Y )

)
+ gXY

(
XPA(Y )

)
fHY

(
HPA(Y )

)
, where HPA(Y ) ⊥ X. (4.8)

We choose the parametrization E
[
fHY

(
HPA(Y )

)]
= 0 and E

[
fHY

(
HPA(Y )

)2]
= 1 such that fXY (·)

and g2
XY (·) denote the conditional mean and variance. As before, the independence condition implies

Y |X = x
d
= Y |do(X← x).

With the others, one can separate the independent noise term such that one can understand the

counterfactual of changing the predictors.

P
C|Z=z;do(X←x′)
Y = δy′ where

y′ = (y − E[Y |X = x])
√

Var(Y |X = x′)/Var(Y |X = x) + E
[
Y |X = x′

]
.
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To check (4.8), we have the natural proxy

H0 : E ⊥ X, where E =
Y − E[Y |X]√

Var(Y |X)
(4.9)

since under (4.8) we have that E = fHY

(
HPA(Y )

)
and hence H0 in (4.9) holds.

In case of model misspecification, we can consider the per-covariate causal well-specification.

Condition (A4.1) remains the same for the LSNM, (A4.2) can be replaced by a weaker version for

this more flexible causal model:

(A4.2*) Y ← fXUY

(
XU ,XPA(Y )\U

)
+ gXUY

(
XU ,XPA(Y )\U

)
fHY

(
HPA(Y ),XPA(Y )\U

)
, i.e., with ad-

dition and multiplication of measured functions, one can separate a term that does not include XU .

Again, these assumptions imply a counterfactual statement and a testable proxy.

Theorem 4.5. Assume the model (4.1) with (B4.1). Let XU be a set of covariates fulfilling (A4.1)

and (A4.2*), then

P
C|Z=z;do(XU←x′U ,X−U←X−U)
Y = δy′ where

y′ =(y − E[Y |X = x])
√

Var
(
Y |XU = x′U ,X−U = X−U

)
/Var(Y |X = x)+

E
[
Y |XU = x′U ,X−U = X−U

]
for (XU = x′U ,X−U = x−U ) in the support of the observational distribution. Further, H0,U holds,

where

H0,U : E ⊥ XU |X−U , with E =
Y − E[Y |X]√

Var(Y |X)
. (4.10)

By constructing a counterfactual such that the regression residual E remains unchanged, the effect

on Y can be assessed in terms of the conditional mean and the conditional variance. As in Section

4.2.4 one could alternatively use do-statements for (XU = x′U ,X−U = x−U ) outside the support of

the observational distribution.

4.6.1 Asymptotic results

To fit location-scale noise models, a simple approach is to estimate both E[Y |X] and E
[
Y 2|X

]
. If

both these quantities are known, one can recover E .

We consider variations of Algorithms 4.1 and 4.2 where we get estimates f̂1(X) for f1(X) := E[Y |X]

and f̂2(X) for f2(X) := E
[
Y 2|X

]
using certain regressors on the data (x,y); see the notation in Section

4.3. Then, we estimate the residuals

εi =
yi − f1(xi)√
f2(xi)− f2

1 (xi)
by ε̂i =

yi − f̂1(xi)√
f̂2(xi)− f̂2

1 (xi)
.
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Especially for low sample sizes, it can happen that f̂2(xi) ≤ f̂2
1 (xi) for some i. To make the method

operational in such cases, we suggest defining ε̂i by a large quantity in absolute value with the same

sign as yi − f̂1(xi). For our asymptotic results, it could even be replaced by arbitrary values. To

establish guarantees for FOCI, we make the following assumptions

(B4.6)
∣∣∣f1(xi)− f̂1(xi)

∣∣∣ = Op(1).

(B4.7)
∣∣∣f2(xi)− f̂2(xi)

∣∣∣ = Op(1).

(B4.8) P
(
f2(xi)− f2

1 (xi) > 0
)

= 1.

In Assumptions (B4.6) and (B4.7) the probability is over both, the function estimates and the

new data point. Assumption (B4.8) implies that Y is almost surely not deterministic in X.

Theorem 4.6. Suppose that the regularity assumptions (A1’) and (A2’) (Azadkia and Chatterjee,

2021) for the data (g(E),X) hold as well as conditions (B4.2) and (B4.4) - (B4.8). Let Ŝ be the output

of Algorithm 4.2 modified to normalize the residuals for the heteroscedastic noise model. There are

positive real numbers L1, L2 and L3 that do not depend on the sample size such that

P
(
Ŝ ⊇ {1, . . . , p} \W

)
≥ 1− L1p

L2 exp(−L3n).

If instead Ŝ is the output of Algorithm 4.1 adjusted to normalize the residuals, it holds

lim
n→∞

P
(
Ŝ ⊇ {1, . . . , p} \W

)
= 1.

The key step to adapt the results to the heteroskedastic case is seeing that (B4.6) - (B4.8) imply

|ε̂i − εi| = Op(1).

Then, all the results from the homoskedastic case carry over. Any other regression algorithm tailor-

made for location-scale noise models could be applied as well if it ensures this condition.

Although we receive similar asymptotic guarantees for location-scale noise models under rather

weak assumptions, they are harder to deal with for finite samples. As all conditional dependence

between Y and any Xj that is due to location or scale is regressed out, the residing dependence can

be very weak. Hence, the population Conditional Dependence Coefficient (Azadkia and Chatterjee,

2021) is low requiring an even larger sample size. Also, the absolute value transform appears to be

less appropriate after regressing away the scale information. Hence, we apply no transform in the

simulation example.
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4.6.2 Simulation example

We consider a simple example with two observed predictors and one hidden confounder as shown in

Figure 4.5. We let

Y ← gX2Y (X2)H

such that (A4.2*) holds for X2. The causal effect is sinusoidal from H to X1, linear from X1 to X2,

and there is an additive Gaussian error term on each.

X1 X2 Y

H

Figure 4.5: DAG representing the SCM in the simulation fitting LSNM.

For each sample size from 102 to 105, we run 200 repetitions of the same data generating mech-

anism. We fit both moments with xgboost and use the identity function for g(·). Otherwise, we

proceed as in Section 4.4.

In Figure 4.6, we show the same performance metrics as in Figure 4.4. We see that our method

can handle this toy example quite well. For 105 samples, the performance with α̃ = 0.01 is almost

perfect, i.e., 196 times the output is Ŵ = {2} and 4 times Ŵ = ∅. There are no false positives in Ŵ .

Figure 4.6: The results are based on 200 simulation runs. On the left: False positive rate versus true
positive rate obtained with Algorithm 4.3 adjusted to LSNM for varying α̃ and α = 0.05. The crosses
correspond to α̃ = 0.01. The other symbols describe the performance of Algorithm 4.2 adjusted to
LSNM. In the middle: empirical cumulative distribution function of the p-values obtained with HSIC.
We compare the raw p-values from each split (lines only) to the cumulated p-value per simulation run
(lines with dots). On the right: average misposition (4.11) of the estimated residuals with respect to
the true residuals.
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The global test works well already for 102 samples. After aggregation over the different splits, H0

in (4.9) is rejected in every simulation run at α = 0.05. This can be facilitated by the fact that the

fits are not good for this sample size such that there is more dependence on x for ε̂ than for the true

ε.

Finally, we compare how well the ordering of ε̂ matches that of ε. For each run, we calculate the

average misposition defined as

AMP =
1

n2

n∑
i=1

∣∣∣∣∣
n∑
l=1

1{εl<εi} − 1{ε̂l<ε̂i}

∣∣∣∣∣. (4.11)

We show the according box plots on the right side of Figure 4.6. As desired, this quantity approaches

0 for increasing sample size. For simplicity, we calculate this quantity only on a single split per

simulation run.

4.7 Conclusion

In this paper, we introduce the notion of causal well-specification for additive noise models or their

extension to heteroskedastic errors. Our viewpoint of local, i.e., for a subset of the covariates, causal

well-specification, for which conditional independence between predictor and residual can serve as a

proxy, provides a new option instead of rejecting entire models.

We present an algorithm to estimate our quantities of interest from finite data and provide some

asymptotic guarantees. We demonstrate its application in simulation setups. This reveals some

difficulties but also shows how considering multiple data splits can help even in hard cases.

Finally, we also apply our methodology and algorithm to regression problems extracted from a

large-scale genomic dataset. While in many cases, causal well-specification appears to be not even

approximately fulfilled, we find multiple examples where our estimate of well-specification is in line

with an approximate validation from various gene knockdown perturbations.

We would like to emphasize that our formulation and analysis of the information provided by

conditional independence, which we present in Section 4.2, can also be applied as stand-alone and

other machine learning methods for regression and conditional dependency assessment can be used.

Code scripts to reproduce the results presented in this paper are available here

https://github.com/cschultheiss/nl GOF.
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4.A Proofs

4.A.1 Proof of Theorem 4.1

Recall

Y := E[Y |X] + E .

Due to (A4.2), we have

E[Y |X] = fXUY

(
XU ,XPA(Y )\U

)
+ E

[
fHY

(
HPA(Y ),XPA(Y )\U

)
|X
]

such that

E = fHY

(
HPA(Y ),XPA(Y )\U

)
− E

[
fHY

(
HPA(Y ),XPA(Y )\U

)
|X
]
.

Using (A4.1), XU ⊥ HPA(Y )|X−U , and trivially, XU ⊥ X−U |X−U . It follows

E
[
fHY

(
HPA(Y ),XPA(Y )\U

)
|X
]

= E
[
fHY

(
HPA(Y ),XPA(Y )\U

)
|X−U

]
⊥ XU |X−U and

fHY

(
HPA(Y ),XPA(Y )\j

)
⊥ XU |X−U such that E ⊥ XU |X−U .

Consider the counterfactual intervention. As X−U remains unchanged, the second summand in (A4.2)

could only change if HPA(Y ) changes. This could happen through some directed path from XU to

HPA(Y ) that is not blocked by X−U . By (A4.1), if such an effect from XU to HPA(Y ) exists, it is

constant for almost all xU . With (B4.1), we can extend this argument to all attainable xU . Hence,

changing XU from xU to x′U while keeping X−U fixed, cannot affect HPA(Y ) such that the second

summand remains constant. For the first summand, we can directly plug in the counterfactual values

of X.

In the conditional expectation given above, only the first summand can change as the second is a

function of only X−U . As the altered summand is the same for both Y and E[Y |X], the new value y′

must exactly represent this change in conditional mean.

4.A.2 Proof of Theorem 4.2

Consider first the ⊆-statement. This means that H0,j in (4.6) must hold ∀j ∈W . Let

S = {1, . . . , p} \W . Then, we want that

E ⊥ XW |XS =⇒ E ⊥ Xj |X−j .

This can be rewritten as

E ⊥ XW\j , Xj |XS =⇒ E ⊥ Xj |XS ,XW\j .
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This is the weak union property in Chapter 3 of Pearl (1988) and hence holds for any random variables.

For W = W̃ , we additionally need that H0,j cannot hold for any j ∈ S. By minimality of S

E 6⊥ Xj ,XW |XS\j .

Then, the intersection property implies

E 6⊥ XW |Xj ,XS\j or E 6⊥ Xj |XW ,XS\j .

The first cannot hold by the definition of W , so the second must hold. This means that H0,j is not

fulfilled, and W = W̃ is guaranteed. As W̃ is unique by construction, W is then unique as well.

4.A.3 Definitions from FOCI

These definitions are taken from (Azadkia and Chatterjee, 2021), adapted in parts to fit our notation.

Let µ be the law of E . We have the following population quantities

Q(E ,XU ) =

∫
Var(P(E ≥ t|XU ))dµ(t) ≥ 0

S(E) =

∫
Var(1E≥t)dµ(t) ≥ 0

T (E ,XU ) = Q(E ,XU )/S(E) ∈ [0, 1]

Q(E ,XU |XS) =

∫
E[Var(P(E ≥ t|XU ,XS)|XS)]dµ(t) ≥ 0

S(E ,XS) =

∫
E[Var(1E≥t|XS)]dµ(t) ≥ 0

T (E ,XU |XS) = Q(E ,XU |XS)/S(E ,XS) ∈ [0, 1].

For data estimates, define first

Ri =

n∑
l=1

1εl≤εi , Li =

n∑
l=1

1εl≥εi

and M(i) the nearest neighbour of i with respect to xU with a random tie-breaking rule. Then, we

have the data estimates

Qn(ε,xU ) =
1

n2

n∑
i=1

min
{
Ri, RM(i)

}
− L2

i

n

Sn(ε) =
1

n3

n∑
i=1

Li(n− Li)

Tn(ε,xU ) = Qn(ε,xU )/Sn(ε)
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Sn(ε,xU ) =
1

n2

n∑
i=1

Ri −min
{
Ri, RM(i)

}
.

4.A.4 Proof of Proposition 4.1

We have T (·,XS) = Q(·,XS)/S(·). As argued in Azadkia and Chatterjee (2021) the denominator for

unconditional independence tests is simply 1/6 for continuous random variables. If E is conditionally

continuously distributed, the same holds for its marginal distribution and thus also for the distribution

of |E|. Hence, it suffices to consider Q(·,XS) and the statement for T (·,XS) follows directly. Let µ

and ν be the law of E and |E|. Due to symmetry, it holds dν(t) = 2dµ(t) ∀t ≥ 0.

Q(|E|,XS) =

∫ ∞
0

Var(P(|E| ≥ t|XS))dν(t) =

∫ ∞
0

Var(2P(E ≥ t|XS))2dµ(t)

= 8

∫ ∞
0

Var(P(E ≥ t|XS))dµ(t),∫ 0

−∞
Var(P(E ≥ t|XS))dµ(t) =

∫ 0

−∞
Var(P(E ≤ −t|XS))dµ(t)

=

∫ 0

−∞
Var(1− P(E ≥ −t|XS))dµ(t) =

∫ 0

−∞
Var(P(E ≥ −t|XS))dµ(t)

t′←−t
=

∫ ∞
0

Var
(
P
(
E ≥ t′|XS

))
dµ
(
t′
)

such that

Q(E ,XS) =

∫ ∞
−∞

Var(P(E ≥ t|XS))dµ(t) = 2

∫ ∞
0

Var(P(E ≥ t|XS))dµ(t).

The first line uses symmetry, and the second chain of equalities uses symmetry as well as continuity

to allow for a weak inequality in the complementary probability. Comparing the quantity on the first

line to that on the last line we see that the ratio between the numerator terms is 4.

4.A.5 Proof of Theorem 4.3

We build up the proof by some supporting Lemmata.

Lemma 4.1. Assume (B4.3) and (B4.4).

lim
n→∞

P([g(εi) > g(εl) ∩ g(ε̂i) ≤ g(ε̂l)] ∪ [g(εi) < g(εl) ∩ g(ε̂i) ≥ g(ε̂l)] ∪ [g(εi) = g(εl)]) = 0 ∀i 6= l,

i.e., the probability that the estimates imply a different ordering between i and l approaches 0.

Define Qn(·) and Sn(·) as in Section 9 of Azadkia and Chatterjee (2021).

Lemma 4.2. Assume the conditions of Lemma 4.1. Let U be any non-empty subset of {1, . . . , p}.
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Then,

lim
n→∞

E[|Qn(g(ε),xU )−Qn(g(ε̂),xU )|] = 0, lim
n→∞

E[|Sn(g(ε),xU )− Sn(g(ε̂),xU )|] = 0,

lim
n→∞

E[|Sn(g(ε))− Sn(g(ε̂))|] = 0.

As in the sample splitting case (g(ε̂),xU ) are i.i.d. copies, one can apply Lemma 11.9 in Azadkia

and Chatterjee (2021) to those. This yields

P(|Qn(g(ε̂),xU )− E[Qn(g(ε̂),xU )]| ≥ t) ≤ K1 exp
(
−K2nt

2
)
, (4.12)

for some positive K1, K2. Therefore, we can draw similar conclusions as in their Lemma 14.2.

Lemma 4.3. Let U be a subset of size u. Assume conditions (A1), which defines β, and (A2) from

Azadkia and Chatterjee (2021) for the data (g(E),XU ) as well as conditions (B4.3) - (B4.4). Then,

there exist positive K1, K2, and K3 that do not depend on the sample size such that in the sample

splitting case

P
(
|Qn(g(ε̂),xU )−Q(g(E),XU )| ≥ K1 max

{
D1/3(n), n−min{−1/u,−1/2} log(n)u+β+1

}
+ t
)
≤

K2 exp
(
−K3nt

2
)
.

Under (B4.2) and (B4.5) any set U that is not a (weak) superset of {1, . . . , p} \W cannot be

sufficient for g(E). Thus, it suffices to bound the probability of Ŝ not being sufficient, and then

Theorem 4.3 follows. This corresponds to Theorem 6.1 in Azadkia and Chatterjee (2021). The only

part of its proof that needs adaptation is Lemma 16.3. To proof an according result based on our

Lemma 4.3, we require

L1 max
{
D(n), n−min{−1/K,−1/2} log(n)K+β+1

}
≤ δ

16
.

Here, we use their definition of δ, i.e., δ is the largest number such that for any insufficient subset

U 6⊇ ({1, . . . , p} \W ), there exists j 6∈ U that fulfils Q(g(E),XU∪j) ≥ Q(g(E),XU )+δ. K is the integer

part of 1/δ+2. As we consider fixed data generating mechanisms, δ > 0 holds by construction. Hence,

we do not mention it in the theorems explicitly. This inequality might require a larger sample size

than in Azadkia and Chatterjee (2021) and larger L6 accordingly. Apart from that, the proof follows

from the same principles.
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4.A.5.1 Proof of Lemma 4.1

The properties of g(·) imply that g(E) is a continuous random variable as well such that the probability

of the last event has probability 0 regardless of the sample size. As i and l are interchangeable, the

first two events have the same probability and it suffices to analyse one. Let η > 0 be arbitrary.

P(g(εi) > g(εl) ∩ g(ε̂i) ≤ g(ε̂l)) =

P(g(εi) > g(εl) ∩ g(ε̂i) ≤ g(ε̂l) ∩ g(εi)− g(εl) ≤ η)+

P(g(εi) > g(εl) ∩ g(ε̂i) ≤ g(ε̂l) ∩ g(εi)− g(εl) > η) ≤

P(|g(εi)− g(εl)| ≤ η) + P(|g(ε̂i)− g(εi)|+ |g(ε̂l)− g(εl)| > η) ≤

P(|g(εi)− g(εl)| ≤ η) + P(max{|g(ε̂i)− g(εi)|, |g(ε̂l)− g(εl)|} > η/2) ≤

P(|g(εi)− g(εl)| ≤ η) + 2P(|g(ε̂i)− g(εi)| > η/2) ≤ P(|g(εi)− g(εl)| ≤ η) + 2P(|ε̂i − εi| > η/2l).

Let now η depend on n. For η → 0 the first term vanishes. If it approaches 0 slowly enough, the

second term vanishes as well assuming the regression is suitable. Thus, one can choose η such that

both terms vanish. Since the inequality holds for arbitrary η, the probability goes to 0, i.e.,

P([g(εl) ≤ g(εi) ∩ g(ε̂l) > g(ε̂i)] ∪ [g(εl) ≥ g(εi) ∩ g(ε̂l) < g(ε̂i)]) = O(1).

4.A.5.2 Proof of Lemma 4.2

Let Ri =
∑
g(εl) ≤ g(εi), Li =

∑
g(εl) ≥ g(εi), and R̂i, L̂i the according quantities estimated with ε̂.

Note that index M(i), i.e., the nearest neighbour of i with respect to xU , only depends on observed

quantities. Hence, it is the same for the estimated quantity R̂M(i).

|Qn(g(ε),xU )−Qn(g(ε̂),xU )| =

∣∣∣∣∣ 1

n2

n∑
i=1

min
{
Ri, RM(i)

}
−min

{
R̂i, R̂M(i)

}
+
L̂2
i − L2

i

n

∣∣∣∣∣ ≤∣∣∣∣∣ 1

n2

n∑
i=1

min
{
Ri, RM(i)

}
−min

{
R̂i, R̂M(i)

}∣∣∣∣∣+

∣∣∣∣∣ 1

n3

n∑
i=1

L̂2
i − L2

i

∣∣∣∣∣.
|Sn(g(ε),xU )− Sn(g(ε̂),xU )| =

∣∣∣∣∣ 1

n2

n∑
i=1

Ri − R̂i + min
{
R̂i, R̂M(i)

}
−min

{
Ri, RM(i)

}∣∣∣∣∣ ≤∣∣∣∣∣ 1

n2

n∑
i=1

Ri − R̂i

∣∣∣∣∣+

∣∣∣∣∣ 1

n2

n∑
i=1

min
{
R̂i, R̂M(i)

}
−min

{
Ri, RM(i)

}∣∣∣∣∣.
|Sn(g(ε))− Sn(g(ε̂))| =

∣∣∣∣∣ 1

n3

n∑
i=1

n
(
Li − L̂i

)
+ L̂2

i − L2
i

∣∣∣∣∣ ≤
∣∣∣∣∣ 1

n2

n∑
i=1

Li − L̂i

∣∣∣∣∣+

∣∣∣∣∣ 1

n3

n∑
i=1

L̂2
i − L2

i

∣∣∣∣∣.
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Thus, there are four different terms to be controlled. If both ε and ε̂ have n distinct values, all the

terms that do not depend on the nearest neighbouring property amongst xU are trivially 0 for all

sample sizes. However, we can prove convergence without this assumption.

E

[∣∣∣∣∣ 1

n2

n∑
i=1

Ri − R̂i

∣∣∣∣∣
]
≤ E

[
1

n2

n∑
i=1

∣∣∣Ri − R̂i∣∣∣] = E

[
1

n2

n∑
i=1

∣∣∣∣∣
n∑
l=1

1{g(εl)≤g(εi)} − 1{g(ε̂l)≤g(ε̂i)}

∣∣∣∣∣
]

=

E

 1

n2

n∑
i=1

∣∣∣∣∣∣
∑
l 6=i

1{g(εl)≤g(εi)} − 1{g(ε̂l)≤g(ε̂i)}

∣∣∣∣∣∣
 ≤ 1

n2

n∑
i=1

∑
l 6=i

E
[∣∣1{g(εl)≤g(εi)} − 1{g(ε̂l)≤g(ε̂i)}∣∣] =

n2 − n
n2

E
[∣∣1{g(εl)≤g(εi)} − 1{g(ε̂l)≤g(ε̂i)}∣∣] =

n2 − n
n2

P([g(εl) ≤ g(εi) ∩ g(ε̂l) > g(ε̂i)] ∪ [g(εl) ≥ g(εi) ∩ g(ε̂l) < g(ε̂i)])
n→∞→ 0

by Lemma 4.1. In the last two expressions, l 6= i is assumed. The argument for the term with Li− L̂i
is identical.

E

[∣∣∣∣∣ 1

n2

n∑
i=1

min
{
R̂i, R̂M(i)

}
−min

{
Ri, RM(i)

}∣∣∣∣∣
]
≤ E

[
1

n2

n∑
i=1

∣∣∣R̂i −Ri∣∣∣+
∣∣∣R̂M(i) −RM(i)

∣∣∣] =

E

 1

n2

n∑
i=1

∣∣∣R̂i −Ri∣∣∣+
1

n2

n∑
i=1

∑
l: M(l)=i

∣∣∣R̂i −Ri∣∣∣
 = E

 1

n2

n∑
i=1

∣∣∣R̂i −Ri∣∣∣
1 +

∑
l 6=i

1M(l)=i

 =

1

n2

n∑
i=1

E

∣∣∣R̂i −Ri∣∣∣
1 +

∑
l 6=i

1M(l)=i

 =
1

n2

n∑
i=1

E

∣∣∣R̂i −Ri∣∣∣E
1 +

∑
l 6=i

1M(l)=i|R̂i, Ri

 ≤
2 + C(p)

n2

n∑
i=1

E
[∣∣∣R̂i −Ri∣∣∣] n→∞→ 0.

By Lemma 11.4 in Azadkia and Chatterjee (2021), there is a dimension-dependent constant such that

no point can be the nearest neighbour of more than C(p) distinct points in Rp. If there are l such

that xl,U = xi,U , M(l) is chosen uniformly at random from this set, and in expectation there is one l

such that M(l) = i. As this uniform draw is independent of Ri and R̂i, the upper bound also applies

to the conditional expectation and we can pull it out.

E

[∣∣∣∣∣ 1

n3

n∑
i=1

L2
i − L̂2

i

∣∣∣∣∣
]

= E

[∣∣∣∣∣ 1

n3

n∑
i=1

(
Li − L̂i

)(
Li + L̂i

)∣∣∣∣∣
]
≤ E

[∣∣∣∣∣ 2

n2

n∑
i=1

Li − L̂i

∣∣∣∣∣
]
n→∞→ 0.

Thus, every term is under control which concludes the proof. As all the terms are at most of the

same order as the probability in Lemma 4.1, the bound on the convergence rate follows directly.
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4.A.5.3 Proof of Lemma 4.3

By Lemma 4.2, there exists a rate, say, D(n) = O(1) such that

|E[Qn(g(ε̂),xU )]− E[Qn(g(ε),xU )]| = O(D(n)).

Then,

|Qn(g(ε̂),xU )−Q(g(E),XU )| ≤

|Qn(g(ε̂),xU )− E[Qn(g(ε̂),xU )]|+ |E[Qn(g(ε̂),xU )]− E[Qn(g(ε),xU )]|+

|E[Qn(g(ε),xU )−Q(g(E),XU )]| ≤

|Qn(g(ε̂),xU )− E[Qn(g(ε̂),xU )]|+K1 max
{
D(n), n−min{−1/u,−1/2} log(n)u+β+1

}
,

using the rate derived in Lemma 14.2 of (Azadkia and Chatterjee, 2021). Therefore, with (4.12),

P
(
|Qn(g(ε̂),xU )−Q(g(E),XU )| ≥ K1 max

{
D(n), n−min{−1/u,−1/2} log(n)u+β+1

}
+ t
)
≤

P(|Qn(g(ε̂),xU )− E[Qn(g(ε̂),xU )]| ≥ t) ≤ K2 exp
(
−K3nt

2
)
.

4.A.6 Proof of Theorem 4.4

Again, we only have to bound the probability of Ŝ not being sufficient.

Using Lemma 4.2 and the Markov inequality, we see

P(|Qn(g(ε̂),xU )−Qn(g(ε),xU )| ≥ t) ≤ K1D(n)

t
.

Hence, we get

P
(
|Qn(g(ε̂),xU )−Q(g(E),XU )| ≥ K1n

−min{−1/u,−1/2} log(n)u+β+1 + t
)
≤

P
(
|Qn(g(ε̂),xU )−Qn(g(ε),xU )|+ |Qn(g(ε),xU )−Q(g(E),XU )| ≥

K1n
−min{−1/u,−1/2} log(n)u+β+1 + t

)
≤

P
(
|Qn(g(ε̂),xU )−Qn(g(ε),xU )| ≥ t

2

)
+

P
(
|Qn(g(ε),xU )−Q(g(E),XU )| ≥ K1n

−min{−1/u,−1/2} log(n)u+β+1 +
t

2

)
≤

K2(n)

t
+K3 exp

(
−K4nt

2
)
≤ K5 max

{
D(n)

t
, exp

(
−K4nt

2
)}
,

where we used Lemma 14.2 in (Azadkia and Chatterjee, 2021) in the second to last inequality. Fi-
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nally, we can follow the proof idea of Lemma 16.3 in (Azadkia and Chatterjee, 2021) with the given

probability bound showing that the probability of Ŝ being insufficient goes to 0.

4.A.7 Proof of Proposition 4.2

For the least squares parameter, we have

β̂ =
x>y

x>x
= β +

x>ε

x>x
, P

(
β̂ = β

)
= P

(
x>ε = 0

)
= 0

since X is a continuous random variable. However, for large enough sample size, it holds (with high

probability)

i ∈ arg min
l
|ε̂i − εl| ∀i,

i.e., the estimated residuals scatter closely around the true value from the discrete set. There are

roughly n/k observations per possible value of E , and, due to the linear dependence, around each

value, the ordering of ε̂ corresponds to the ordering of x or is exactly inverted. Therefore,

R̂i mod
n

k
≈ R̂M(i) mod

n

k
and R̂M(i)|R̂i∼̇R̂i mod

n

k
+
n

k
Unif{0, . . . , k − 1}.

Since the ε̂i all have distinct values, it holds

n∑
i=1

L̂i =
n∑
i=1

i =
n2 + n

2
and

n∑
i=1

L̂2
i =

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6
such that

Tn(ε̂,x) =
n
∑n

i=1 min
{
R̂i, R̂M(i)

}
− n(n+ 1)(2n+ 1)

6
n3 + n2

2
− n(n+ 1)(2n+ 1)

6

.

We consider the only random term

E

[
n∑
i=1

min
{
R̂i, R̂M(i)

}]
= E

 n∑
R̂i=1

min
{
R̂i, R̂M(i)

} = E

 n∑
R̂i=1

min
{
R̂i, R̂M(i)

}
|R̂1, . . . , R̂n


=

n∑
R̂i=1

E
[
min

{
R̂i, R̂M(i)

}
|R̂1, . . . , R̂n

]
=

n∑
R̂i=1

E
[
min

{
R̂i, R̂M(i)

}
|R̂i
]
.

The first equality holds as summing over all i is the same as summing over all ranks. As the problem

is permutation invariant, conditioning on all ranks does not change the expectation. Under the con-

ditioning, the ranks are deterministic and linearity of expectation applies. Finally, knowing any rank

apart from R̂i does not influence min
{
R̂i, R̂M(i)

}
. We analyse the expectation under the approximate

conditional distribution as given above. If R̂i ≤ n/k, min
{
R̂i, R̂M(i)

}
= R̂i. If n/k < R̂i ≤ 2n/k and
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the uniformly chosen number is 0, min
{
R̂i, R̂M(i)

}
= R̂i−n/k. This has probability 1/k. Otherwise,

min
{
R̂i, R̂M(i)

}
= R̂i. Analogously, if ln/k < R̂i ≤ (l + 1)n/k for some integer 0 ≤ l < k, i.e.,

l = max
{
r ∈ N0|r < R̂ik/n

}
, it holds under the approximate distribution

Ẽ
[
min

{
R̂i, R̂M(i)

}
|R̂i
]

= R̂i −
1

k

l∑
r=0

rn

k
= R̂i −

n

2k2

(
l2 + l

)
.

For each possible value of l, there are n/k ranks such that ln/k < R̂i ≤ (l + 1)n/k. Therefore,

n∑
R̂i=1

Ẽ
[
min

{
R̂i, R̂M(i)

}
|R̂i
]

=
n∑

R̂i=1

R̂i −
n2

2k3

k−1∑
l=0

(
l2 + l

)
=

n2 + n

2
− n2

2k3

(
k(k − 1)(2k − 1)

6
+
k(k − 1)

2

)
=
n2 + n

2
− n2

6k3

(
k3 − k

)
.

Then,

E[Tn(ε̂,x)] ≈

n3 + n2

2
− n(n+ 1)(2n+ 1)

6
− n3

6k3

(
k3 − k

)
n3 + n2

2
− n(n+ 1)(2n+ 1)

6

n→∞→

1

6
− 1

6
+

1

6k2

1

6

=
1

k2
.

To make the proof complete the proof, we need to show that∣∣∣∣∣∣
n∑

R̂i=1

Ẽ
[
min

{
R̂i, R̂M(i)

}
|R̂i
]
− E

[
min

{
R̂i, R̂M(i)

}
|R̂i
]∣∣∣∣∣∣ = O

(
n2
)
.

We even control
n∑

R̂i=1

∣∣∣Ẽ[min
{
R̂i, R̂M(i)

}
|R̂i
]
− E

[
min

{
R̂i, R̂M(i)

}
|R̂i
]∣∣∣.

For arbitrary conditioning events A, we have

n∑
R̂i=1

∣∣∣Ẽ[min
{
R̂i, R̂M(i)

}
|R̂i
]
− E

[
min

{
R̂i, R̂M(i)

}
|R̂i
]∣∣∣ =

n∑
R̂i=1

∣∣∣Ẽ[min
{
R̂i, R̂M(i)

}
|R̂i
]
− E

[
min

{
R̂i, R̂M(i)

}
|R̂i, A

]
P(A)−

E
[
min

{
R̂i, R̂M(i)

}
|R̂i, Ac

]
P(Ac)

∣∣∣ ≤
n∑

R̂i=1

∣∣∣Ẽ[min
{
R̂i, R̂M(i)

}
|R̂i
]
− E

[
min

{
R̂i, R̂M(i)

}
|R̂i, A

]∣∣∣P(A)+
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n∑
R̂i=1

∣∣∣Ẽ[min
{
R̂i, R̂M(i)

}
|R̂i
]
− E

[
min

{
R̂i, R̂M(i)

}
|R̂i, Ac

]∣∣∣P(Ac) ≤

n∑
R̂i=1

nP(A) +

n∑
R̂i=1

∣∣∣Ẽ[min
{
R̂i, R̂M(i)

}
|R̂i
]
− E

[
min

{
R̂i, R̂M(i)

}
|R̂i, Ac

]∣∣∣ =

n∑
R̂i=1

∣∣∣Ẽ[min
{
R̂i, R̂M(i)

}
|R̂i
]
− E

[
min

{
R̂i, R̂M(i)

}
|R̂i, Ac

]∣∣∣+ n2P(A).

Hence, we can ignore events with vanishing probability. Let v1, . . . , vk be the attainable values of E
and

nt =

n∑
i=1

1{εi=vt} ∼ Binom

(
n,

1

k

)
.

Define the event

A =

{
max
t
|nt − n/k| > n3/4 ∪ ∃i : i 6∈ arg min

l
|ε̂i − εl|

}
.

By the Markov inequality and a union bound, this event has vanishing probability, so we must only

control

n∑
R̂i=1

∣∣∣Ẽ[min
{
R̂i, R̂M(i)

}
|R̂i
]
− E

[
min

{
R̂i, R̂M(i)

}
|R̂i, Ac

]∣∣∣.
Under Ac, there are only O

(
n3/4

)
ranks R̂i for which εi 6= vl+1 with l = max

{
r ∈ N0|r < R̂ik/n

}
is

possible. Summing over these leads to another O
(
n2
)

term and can be ignored. Consider the R̂i for

which Ai := {εi = vl+1} holds. Assume without loss of generality that β̂ < β such that larger xi leads

to larger ε̂i. Let FX(·) be the cumulative distribution function of X. For given n1, . . . , nk, we have

xi = F−1
X

(
R̂i −

∑l
r=1 nr

nl+1

)
+Op

(
n−1/2

)
.

Thus, one can condition on xi being in a n−1/4 range around the theoretical quantile for any n1, . . . , nk

fulfilling Ai. Call this event, whose complementary event has vanishing probability, Bi. It remains to

control

E
[
min

{
R̂i, R̂M(i)

}
|R̂i, Ac, Ai, Bi

]
=

k∑
r=1

E
[
min

{
R̂i, R̂M(i)

}
|R̂i, Ac, Ai, Bi, εM(i) = vr

]
P
(
εM(i) = vr|R̂i, Ac, Ai, Bi

)
=

k∑
r=1

E
[
min

{
R̂i, R̂M(i)

}
|R̂i, Ac, Ai, Bi, εM(i) = vr

](
P
(
εM(i) = vr|R̂i

)
+ O(1)

)
=
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k∑
r=1

E
[
min

{
R̂i, R̂M(i)

}
|R̂i, Ac, Ai, Bi, εM(i) = vr

](1

k
+ O(1)

)
.

If εM(i) > εi, it holds min
{
R̂i, R̂M(i)

}
= R̂i and we get the right contribution. If εM(i) = εi, the

conditional expectation is in
[
R̂i − 1, R̂i

]
, i.e., only a O(1) deviation. If vm+1 = εM(i) < εi,

min
{
R̂i, R̂M(i)

}
= R̂M(i) =

m∑
r=1

nr +
∑

l:εl=vm+1

1{xl≤xM(i)}

=

m∑
r=1

nr +
∑

l:εl=vm+1

1{xl≤xi} + 1{xM(i)>xi}.

Under the given conditioning, this is

m∑
r=1

nr + nm+1

(
R̂i −

∑l
r=1 nr

nl+1
+ O(1)

)
+O(1) =

nm

k
+O

(
n3/4

)
+
(n
k

+O
(
n3/4

))R̂i − nl/k +O
(
n3/4

)
n/k +O

(
n3/4

) + O(n) =

nm

k
+
(

1 +O
(
n−1/4

))(
R̂i −

nl

k
+O

(
n3/4

))
+ O(n) =

nm

k
+ R̂i −

nl

k
+O

(
n3/4

)
+ O(n) =

R̂i −
n(l −m)

k
+ O(n).

In summary,

E
[
min

{
R̂i, R̂M(i)

}
|R̂i, Ac, Ai, Bi

]
= R̂i −

1

k

l−1∑
m=0

n(l −m)

k
+ O(n) = R̂i −

1

k

l∑
r=0

r

k
+ O(n).

Therefore, each term deviates with O(n) from the approximate expectation. Summing over O(n) such

deviations leads to O
(
n2
)

as desired.

4.A.8 Proof of Theorem 4.5

Due to (A4.2*), we have

E[Y |X] =fXUY

(
XU ,XPA(Y )\U

)
+ gXUY

(
XU ,XPA(Y )\U

)
E
[
fHY

(
HPA(Y ),XPA(Y )\U

)
|X
]
,

Var(Y |X) =g2
XUY

(
XU ,XPA(Y )\U

)(
E
[
f2
HY

(
HPA(Y ),XPA(Y )\U

)
|X
]
− E

[
fHY

(
HPA(Y ),XPA(Y )\U

)
|X
]2)

,

E =
fHY

(
HPA(Y ),XPA(Y )\U

)
− E

[
fHY

(
HPA(Y ),XPA(Y )\U

)
|X
]√

E
[
f2
HY

(
HPA(Y ),XPA(Y )\U

)
|X
]
− E

[
fHY

(
HPA(Y ),XPA(Y )\U

)
|X
]2 .
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As in Section 4.A.1,

fHY

(
HPA(Y ),XPA(Y )\j

)
⊥ XU |X−U and E

[
fHY

(
HPA(Y ),XPA(Y )\U

)
|X
]

= ⊥ XU |X−U

accordingly E
[
f2
HY

(
HPA(Y ),XPA(Y )\U

)
|X
]
⊥ XU |X−U such that E ⊥ XU |X−U .

(A4.1) together with (B4.1) implies that only terms involving XU can be different for the counterfac-

tual; see Section 4.A.1. In particular, E cannot change. Hence, Y changes from

y = E[Y |X = x] +
√

Var(Y |X = x)ε to

y′ = E
[
Y |XU = x′U ,X−U = x−U

]
+
√

Var
(
Y |XU = x′U ,X−U = x−U

)
ε

which is as stated in the theorem.

4.A.9 Proof of Theorem 4.6

We have the following supporting result.

Lemma 4.4. Suppose that (B4.6) - (B4.8) hold. Then

|ε̂i − εi| = Op(1).

With Lemma 4.4 we have replaced Assumption (B4.3) which is the only missing part to reconstruct

the asymptotic results as in Theorems 4.3 and 4.4.

4.A.9.1 Proof of Lemma 4.4

Let

V (xi) = f2(xi)− f2
1 (xi) and V̂ (xi) = f̂2(xi)− f̂2

1 (xi).

Note that

P
(

1

V (xi)
<∞

)
= P(V (xi) > 0) = 1 hence

1

V (xi)
= Op(1) likewise

1√
V (xi)

= Op(1).

Consider the difference∣∣∣V (xi)− V̂ (xi)
∣∣∣ =

∣∣∣f2(xi)− (f2(xi) + Op(1))− f2
1 (xi) + (f1(xi) + Op(1))2

∣∣∣
≤ Op(1) + |f1(xi)|Op(1) = Op(1).
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In the last equality we use E[f1(xi)] = E[yi] <∞, otherwise regression would not be possible. Hence,

lim
n→∞

P
(
V̂ (xi) ≤ 0

)
≤ lim

n→∞
P
(∣∣∣V (xi)− V̂ (xi)

∣∣∣ ≥ V (xi)
)

= lim
n→∞

P


∣∣∣V (xi)− V̂ (xi)

∣∣∣
V (xi)

≥ 1

 = 0.

Therefore, we will forthcoming condition on V̂ (xi) being positive which is asymptotically negligible.

We now compare the standard deviation and its estimate and consider the event that the difference

is either large or not defined. Fix some η > 0.

lim
n→∞

P
(∣∣∣∣√V (xi)−

√
V̂ (xi)

∣∣∣∣ ≥ η ∪ V̂ (xi) < 0

)
= lim

n→∞
P
(∣∣∣∣√V (xi)−

√
V̂ (xi)

∣∣∣∣ ≥ η ∪ V̂ (xi) < 0|V̂ (xi) > 0

)
P
(
V̂ (xi) > 0

)
+

P
(∣∣∣∣√V (xi)−

√
V̂ (xi)

∣∣∣∣ ≥ η ∪ V̂ (xi) < 0|V̂ (xi) ≤ 0

)
P
(
V̂ (xi) ≤ 0

)
≤ lim

n→∞
P
(∣∣∣∣√V (xi)−

√
V̂ (xi)

∣∣∣∣ ≥ η ∪ V̂ (xi) < 0|V̂ (xi) > 0

)
+ P

(
V̂ (xi) ≤ 0

)
= lim

n→∞
P
(∣∣∣∣√V (xi)−

√
V̂ (xi)

∣∣∣∣ ≥ η|V̂ (xi) > 0

)
= lim

n→∞
P

∣∣∣∣∣∣ V (xi)− V̂ (xi)√
V (xi) +

√
V̂ (xi)

∣∣∣∣∣∣ ≥ η|V̂ (xi) > 0


≤ lim

n→∞
P

(∣∣∣∣∣V (xi)− V̂ (xi)√
V (xi)

∣∣∣∣∣ ≥ η|V̂ (xi) > 0

)
≤ lim

n→∞
P

(∣∣∣∣∣V (xi)− V̂ (xi)√
V (xi)

∣∣∣∣∣ ≥ η
)
/P
(
V̂ (xi) > 0

)
= 0.

Consider the residuals assuming a positive variance estimate.

|ε̂i − εi| =

∣∣∣∣∣∣yi − f̂i(xi)√
V̂ (xi)

− yi − fi(xi)√
V (xi)

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
(
yi − f̂i(xi)

)√
V (xi)− (yi − fi(xi))

√
V̂ (xi)√

V̂ (xi)
√
V (xi)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
(
fi(xi)− f̂i(xi)

)√
V (xi) + (yi − fi(xi))

(√
V (xi)−

√
V̂ (xi)

)
√
V̂ (xi)

√
V (xi)

∣∣∣∣∣∣∣∣
≤ 1√

V̂ (xi)

(∣∣∣fi(xi)− f̂i(xi)∣∣∣+ |εi|
∣∣∣∣√V (xi)−

√
V̂ (xi)

∣∣∣∣).
Arguing similarly as before, we have

lim
n→∞

P
(
|ε̂i − εi| ≥ η ∪ V̂ (xi) < 0

)
= 0.
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If we replace ε̂i by an arbitrary value in case of a nonpositive variance estimate, it holds

lim
n→∞

P(|ε̂i − εi| ≥ η) = 0.
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Chapter 5

On the pitfalls of Gaussian likelihood

scoring for causal discovery

Christoph Schultheiss and Peter Bühlmann

Journal of Causal Inference, 11(1):20220068.

Abstract

We consider likelihood score-based methods for causal discovery in structural causal models. In

particular, we focus on Gaussian scoring and analyze the effect of model misspecification in terms

of non-Gaussian error distribution. We present a surprising negative result for Gaussian likelihood

scoring in combination with nonparametric regression methods.
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5.1 Introduction

We consider the problem of finding the causal structure of a set of random variables X1, . . . Xp. We

assume that the data can be represented by a structural equation model whose structure is given

by a directed acyclic graph (DAG), say, G0, with nodes 1, . . . , p and denote by PA(j) the parents

of j. Without further assumptions on the structural causal model, one can only find G0 up to its

Markov equivalence class. This can, e.g., be achieved with the PC algorithm (Spirtes et al., 2000).

Its generality comes at the price of requiring conditional independence tests, which are a statistically

hard problem.

Here, we focus on the so-called additive noise model (ANM)

Xj ← fj
(
XPA(j)

)
+ Ej ∀j ∈ 1, . . . , p, (5.1)

where the Ej are mutually independent centered random variables. This is a popular modelling

assumption that allows for better identifiability guarantees; see, e.g., (Hoyer et al., 2008a; Peters

et al., 2014).

For an arbitrary DAG G, let PAG(j) be the nodes from which a directed edge towards j starts.

Define

EGj = Xj − E
[
Xj |XPAG(j)

]
∀j ∈ 1, . . . , p.

Obviously, EG0

j = Ej . Under not overly restrictive assumptions, it holds that EG1 , . . . EGp are mutually

independent only if G ⊇ G0, see Peters et al. (2014). Thus, an obvious approach to find G0 is to loop

over all possible graphs and test for independence of the residuals. Of course, this becomes infeasible

when the dimensionality p grows.

A more reasonable algorithm based on greedy search is presented in Peters et al. (2014). They also

introduce RESIT (regression with subsequent independence test) that iteratively detects sink nodes.

Finding the true DAG is guaranteed assuming perfect regressors and independence tests. It involves

O
(
p2
)

nonparametric independence tests which might be computationally involved or lacking power

when the sample size is small.

Instead of performing independence tests, one can compare the likelihood score of different graphs

L(G) = E

log

 p∏
j=1

pGj
(
EGj
) =

p∑
j=1

E
[
log
(
pGj
(
EGj
))]

,

where pGj denotes the density of EGj . Only for independent EGj , their multivariate density factorizes as

suggested. Therefore, the true DAG maximizes this quantity due to the properties of the Kullback-

Leibler divergence. In practice, this comes with the additional difficulty of estimating the densities
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pGj (·) and one needs to add some penalization to prefer simpler graphs and avoid selecting complete

graphs; see, e.g., Nowzohour and Bühlmann (2016).

If one additionally assumes that the Ej are marginally normally distributed N
(

0, σ2
j

)
one can

instead consider the Gaussian likelihood

LN (G) :=

p∑
j=1

(
− log

(
σGj
)
− 1

2
− 1

2
log(2π)

)
= −

p∑
j=1

log
(
σGj
)

+ C,

where
(
σGj

)2
= E

[(
EGj
)2
]

(Bühlmann et al., 2014). It holds L(G) ≥ LN (G) and LN
(
G0
)

= L
(
G0
)
.

Thus, the problem simplifies to finding the graph that leads to the lowest sum of log-variances.

Under such a normality assumption for Ej and the fj(·) in (5.1) being additive in their arguments,

Bühlmann et al. (2014) present a causal discovery method that is consistent for high-dimensional

data. To justify this approach for a broader class of error distributions, define

∆ := min
G 6⊇G0

p∑
j=1

log
(
σGj
)
− log

(
σG

0

j

)
(5.2)

Then, one has to assume that

(A5.1) ∆ > 0.

That is, the lowest possible expected negative Gaussian log-likelihood with any graph G that is not

a superset of the true G0 must be strictly larger than the expected negative Gaussian log-likelihood

with the true graph G0. An argument for that assumption is that a true causal model should be easier

to fit in some sense and thus also obtain lower error variance. Using simple “non-pathological” exam-

ples, we demonstrate that this can easily be a fallacy when the true error distribution is misspecified.

Thus, we advocate the need to be very careful when using Gaussian scoring with flexible nonpara-

metric regression functions in causal discovery. The main part of this paper considers theoretical

population properties. We discuss some data applications in Section 5.5.1.

5.2 Data-generating linear model

We consider first data-generating linear models where

fj
(
XPA(j)

)
=

∑
k∈PA(j)

βjkXk.

For these, we find the explicit Theorem 5.1. The intuition for this result carries over to a range of

nonlinear ANM (5.1), especially if the causal effects are close to linear. We present according examples

in Section 5.3.
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If all the Ej in a data-generating linear model are Gaussian, i.e., X1, . . . , Xp are jointly Gaussian,

it is known that any causal order could induce the given multivariate normal distribution and obtain

an optimal Gaussian score. Assuming that the distribution is faithful with respect to the true DAG

G0, the set of the most sparse DAGs obtaining the optimal Gaussian score corresponds to the Markov

equivalence class of G0; see, e.g., Zhang and Spirtes (2008). Thus, one can obtain this Markov

equivalence class by preferring more sparse DAGs in case of equal scores. In general, the single true

DAG cannot be determined even if the full multivariate distribution is known. On the contrary, the

Linear Non-Gaussian Acyclic Model (LiNGAM) introduced in Shimizu et al. (2006) is known to be

identifiable. In such linear non-Gaussian models, algorithms designed for linear Gaussian models,

e.g., the PC algorithm using partial correlation to assess conditional independence, do not use all

the available information, but typically still provide the same guarantees since they depend on the

covariance structure only. The covariance matrix of data generated by a linear causal model does

not change when replacing a Gaussian Ej by an additive error of the same variance but otherwise

arbitrary distribution. Thus, assuming the faithfulness condition for the data-generating distribution,

Gaussian scoring for linear causal models in the infinite sample limit leads to the true underlying

Markov equivalence class even under misspecification of the error distribution.

If the data-generating model is not known to be linear such that nonparametric regression methods,

or the conditional mean as their population version, are applied, this generalization does not hold

true anymore, as laid out in the following theorem. Let π be a permutation on {1, . . . , p} and Gπ the

full DAG according to π, i.e., π(k) ∈ PAGπ(π(j)) if and only if k < j.

Theorem 5.1. Let X1, . . . , Xp come from a linear model:

Xj ←
∑

k∈PA(j)

βjkXk + Ej , with E[Ej ] = 0, E
[
E2
j

]
<∞ ∀j ∈ 1, . . . , p, (5.3)

with mutually independent Ej . Then, for every possible permutation π,

p∑
j=1

log
(
σG

π

j

)
− log

(
σG

0

j

)
≤ 0.

That is, for every causal order, the corresponding full graph scores at least as well as the true causal

graph.

Furthermore,

p∑
j=1

log
(
σG

π

j

)
− log

(
σG

0

j

)
< 0 if

∃j ∈ {1, . . . , p} : E
[
Xj |XPAGπ (j)

]
6= X>PAGπ (j)β

π,j where
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βπ,j = E
[
XPAGπ (j)X

>
PAGπ (j)

]−1
E
[
XjXPAGπ (j)

]
is the least squares parameter.

That is, for every causal order, the corresponding full graph scores strictly better than the true causal

graph if at least one conditional expectation is nonlinear in the parental variables.

Apart from some pathological cases, the last condition holds for permutations that are not con-

formable with the true DAG unless all the Ej are Gaussian. Thus, the gap condition (A5.1) does not

hold true for this whole set of distributions, and, without Gaussianity, a wrong model would not only

score equivalently but even be preferred. This is in stark contrast to results around Gaussian scoring

when fitting linear models.

5.2.1 Illustrative examples

For illustrative purposes, we restrict ourselves to the two variable case with X2 ← βX1 +E2. We have

the true DAG G0 = {X1 → X2} and define G⊥ = {X1 ← X2}. If βX1
D
= E2, it holds

X2 = E[X2|X2] = E[βX1 + E2|X2] = 2 ∗ βE[X1|X2] implying that E[X1|X2] =
1

2β
X2

such that ∆ = 0; see the definition in (5.2). In the two variable linear model, exp(∆)2 equals the ratio

of the attainable mean squared error for the backward direction between the best-fitting unrestricted

model and the best-fitting linear model.

Consider first the analytically tractable case where X1
D
= E2 ∼ Unif[−1, 1]. Then, for β = ±1,

E[X1|X2] = ±X2/2 and ∆ = 0. For every other nonzero and bounded β, ∆ < 0 so a causal discovery

method based on Gaussian scoring would - assuming a correct regression function estimator - wrongly

claim X2 → X1 in the large sample limit. We make things more explicit.

Proposition 5.1. Let X2 = βX1 + E2 with X1
D
= E2 ∼ Unif[−1, 1]. Define γ = max{|β|, |1/β|}.

Then, the ratio of the variances is given by

exp(∆)2 =

 2∏
j=1

(
σG
⊥

j

)2

/
 2∏
j=1

(
σG

0

j

)2

 =

(
γ2 + 1

)
(2γ − 1)

2γ3
:= r(γ).

As argued above, r(1) = 1. For |β| → 0, the ratio between the variance products approaches 1 as

X1 and X2 become independent, and, hence, both models perform equally well. For |β| → ∞, the

ratio approaches 1 as X2 becomes a deterministic linear map of X1, and, hence, the linear model is

invertible. The ratio r(γ) is minimized for γ = 3, with r(3) ≈ 0.93, strictly decreasing for γ ∈ [1, 3),

and strictly increasing for γ ∈ (3,∞). This is visualized in Figure 5.1a.

Consider next a similar example but with X1 ∼ N (0, 1). Analytic expressions for E[X1|X2] and

Var(X1|X2) can be found in terms of the Gaussian cumulative distribution function. For
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(a) X1
D
= E2 ∼ Unif[−1, 1] (b) X1 ∼ N (0, 1), E2 ∼ Unif[−1, 1] (c) X1 ∼ N (0, 1), E2 + 1 ∼ χ2

1

Figure 5.1: Two variable linear model: effect of changing β.

(
σG
⊥

1

)2
= E[Var(X1|X2)] we invoke numerical integration. The obtained exp(∆)2 is shown in Figure

5.1b. As elaborated before, it approaches 1 for β → 0 and β →∞. In between, it is strictly less than

1 since E[X1|X2] is not linear in X2. The minimum of exp(∆)2 ≈ 0.92 is obtained for β ≈ 0.21.

Finally, we use an asymmetric error distribution instead, namely, E2 ∼ χ2
1 − 1. Figure 5.1c shows

that this leads to more extreme values of ∆ < 0. Notably, E[X1|X2] is not monotone in this case so

the best linear fit is not a good approximation.

5.3 Beyond a data-generating linear model

If all Ej are Gaussian, we know that ∆ = 0 for linear conditional expectations in (5.1), but ∆ > 0

otherwise. Thus, involving nonlinearities enables the identifiability of the model.

For non-Gaussian Ej in a linear model, ∆ < 0 holds true apart from some special cases; see,

Theorem 5.1. The intuition is that nonlinearities could be beneficial for the identifiability nevertheless.

As the lower bound for ∆ is negative and not 0, presumably a higher degree of nonlinearity might be

necessary to achieve ∆ > 0. We analyze this with the following simple model

X2 ← βSign(X1)
|X1|ν√
E
[
|X1|2ν

] + E2, ν > 0. (5.4)

The normalization ensures that the variance of X2 depends only on β. For ν = 1, we obtain a linear

model.

Consider the case X1 ∼ N (0, 1) and E2 ∼ Unif[−1, 1]. Analytic expressions for E[X1|X2] and

Var(X1|X2) can be found in terms of the Gaussian cumulative distribution function and the

Γ-function. For
(
σG
⊥

1

)2
= E[Var(X1|X2)] we invoke numerical integration. The obtained exp(∆)2

is shown in Figure 5.2a for different values of β. It confirms the intuition, that sufficiently strong

nonlinearity leads to ∆ > 0 even for non-Gaussian errors. For β = 1 and β = 2, the model becomes

identifiable for most ν 6= 1. For β = 0.5, stronger nonlinearities are necessary. Also, the minimum ∆

is not obtained for ν = 1 but at ν ≈ 1.32. Thus, not every nonlinear model is better identifiable than

the corresponding linear model.
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(a) X1 ∼ N (0, 1), E2 ∼ Unif[−1, 1] (b) X1 ∼ N (0, 1),
√

6E2 + 1 ∼ χ2
1 (c) X1

D
=
√

3E2 ∼ N (0, 1)

Figure 5.2: Two variable nonlinear model (5.4): effect of changing ν for β = 0.5 (solid blue curve),
β = 1 (dashed red curve), and β = 2 (dotted black curve).

As in the linear case, we consider the effect of an assymetric error distribution, namely, a scaled and

centered chi-squared distribution. We show this in Figure 5.2b. The factor
√

6 leads to the different

lines corresponding to the same respective signal-to-noise ratios. As expected, higher degrees of

nonlinearity are necessary to obtain a positive ∆.

We show the behavior for a correctly specified model in 5.2c. For ν = 1, ∆ = 0 as implied by

the unidentifiability result, otherwise, ∆ > 0. For ν 6= 1, higher signal-to-noise ratios lead to more

distinct ∆ > 0.

Monotonicity of f2(·) The nonlinearities discussed here are designed to be slight deviations from

the linear model and, thus, chosen to be strictly monotone. Notably, for non-monotone functions, the

intuition that the anti-causal model is harder to fit is more applicable. In particular, if X1 is centered

and symmetric, and f2(·) is an even function, it holds E[X1|X2] ≡ 0. Then,

(
σG
⊥

1

)2
= Var(X1) and exp(∆)2 =

Var(X1)Var(X2)

Var(X1)Var(E2)
> 1. (5.5)

Thus, the gap condition (A5.1) is satisfied regardless of the distribution of E2 as long as X1 and X2

have finite variance.

5.4 Heteroskedastic noise model

A simple extension of model (5.1), that has recently gained some attention, is the heteroskedastic

noise model also referred to as location-scale noise model

Xj ← fj
(
XPA(j)

)
+ gj

(
XPA(j)

)
Ej with E[Ej ] = 0, E

[
E2
j

]
= 1 ∀j ∈ 1, . . . , p,

with some nonnegative functions gj(·) (Strobl and Lasko, 2023; Xu et al., 2022; Immer et al., 2023),

see also Chapter 6. It comes with similar identifiability guarantees as the ANM when testing for
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mutual independence between the Ej . Let accordingly

fGj

(
XPAG(j)

)
= E

[
Xj |XPAG(j)

]
, gGj

(
XPAG(j)

)2
= E

[(
Xj − fGj

(
XPAG(j)

))2
|XPAG(j)

]
and

EGj =
Xj − fGj

(
XPAG(j)

)
gGj

(
XPAG(j)

)
be the conditional means, conditional variances, and residuals according to any, potentially wrong,

DAG G. Then, one gets

L(G) =

p∑
j=1

E

log

 pGj

(
EGj
)

gGj

(
XPAG(j)

)


LN (G) := −
p∑
j=1

E
[
log
(
gGj

(
XPAG(j)

))]
+ C = −

p∑
j=1

1

2
E
[
log

(
gGj

(
XPAG(j)

)2
)]

+ C

≥ −
p∑
j=1

1

2
log

(
E
[
gGj

(
XPAG(j)

)2
])

+ C = −
p∑
j=1

log
(
σGj
)

+ C.

Thus, when fitting heteroskedastic models the score can only be increased compared to the ho-

moskedastic fit. This can further increase the difficulty of finding the correct direction under non-

Gaussian noise. Even if the true forward model is homoskedastic, i.e., gj(·) ≡ σj , the backward model

is typically heteroskedastic and profits from this new score. For example, in the set-up of Figure 5.1a,

∆ would be negative even for β = 1. If one allows to fit heteroskedastic models, a result analagous

to Theorem 5.1 exists. A negative gap is obtained unless all conditional expectations are linear and

all conditional variances are constant for the wrong causal order.

(a) Model (5.3) with X1
D
= E2 ∼ Unif[−1, 1]

(b) Model (5.4) with X1
D
=
√

3E2 ∼ N (0, 1) and β = 2

Figure 5.3: Two variable additive model: fitting homoskedastic models (solid blue curve) versus
heteroskedastic models (dashed red curve).
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In Figure 5.3, we review the examples from Figures 5.1a and 5.2c and see how allowing for

a heteroskedastic fit makes the problem harder. For the sake of comparison, we look at exp(∆)2

although it does not have the same simple interpretation in the heteroskedastic case.

In terms of the location-scale noise model, the data-generating model as in Figure 5.3a is unidenti-

fiable as X1|X2 is uniformly distributed, i.e., its distribution is independent of X2 apart from location

and scale. This does not contradict the identifiability results as they are derived for random variables

with full support in R.

5.5 Discussion

5.5.1 Data applications

For an extensive comparison between methods relying on Gaussian scoring and nonparametric in-

dependence tests in additive noise models or heteroskedastic noise models, we refer to Immer et al.

(2023). There, several fitting methods are considered and combined with both approaches and eval-

uated on a variety of benchmark cause and effect pairs. Those pairs include both real and artificial

data. For some of the considered data sources, using independence tests clearly improved the success

rate for inferring the causal direction as compared to using the Gaussian score.

Let us consider two specific examples of the Tübingen data by Mooij et al. (2016). Details on the

data can be found in Section D.11 of their paper. Both examples have the temperature as the effect

variable while the cause is the day of the year or the intensity of the solar radiation, respectively. We

Figure 5.4: Scatter plot and contour lines of the density estimate for two selected pairs from the
Tübingen data.
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show the corresponding scatter plots as well as the contour lines of the density estimates in Figure

5.4. It is evident that in neither case the cause variable is normally distributed, the days are perfectly

uniformly distributed while solar radiation is right-skewed. Therefore, the assumptions for Gaussian

scoring to infer the true causal direction are not fulfilled. For the first data set, we restrict the

numerical analysis to the time frame April 1st to September 30th (March 31st to September 29th in

leap years) to circumvent the issue that the data are circular. This is indicated by the black dotted

lines.

To evaluate the Gaussian scores, we estimate the conditional expectation for either direction with

a smoothing spline. In the first case, the causal effect is non-monotone, and the conditional mean in

the anti-causal direction is not very informative to predict the day of the year. Therefore, we obtain

the correct causal direction with Gaussian scoring even though the assumptions are not fulfilled. We

get the data estimate exp(∆)2 = 1.48.

The effect of solar radiation on the temperature appears to be monotone which makes the condi-

tional expectation in the anti-causal direction more informative. Also, it seems that the conditional

expectation in the causal direction is not so far from being linear. This indeed makes the Gaussian

scoring algorithm prefer the wrong direction. The estimate is exp(∆)2 = 0.91. Similarly, it fails for

the first data set when considering the first 183 days of the year instead (exp(∆)2 = 0.99).

With RESIT relying on independence testing, we see for both data sets that the hypothesis of

residuals being independent of the predictor is rejected in either direction. This indicates that the

ANM in (5.1) is not rich enough to explain the data. However, applying Algorithm 1 from Peters

et al. (2014) which minimizes the estimated dependence between predictor and residuals finds the

true causal direction for both data pairs.

5.5.2 Conclusion

We discuss causal discovery in structural causal models using Gaussian likelihood scoring and analyze

the effect of model misspecification.

In the case where the data-generating distribution comes from a linear structural equation model

and linear regression functions are used for estimation, the following holds. When the true error

distribution is Gaussian, one can only identify the Markov equivalence class of the underlying data-

generating DAG. The same is true when the error distribution is non-Gaussian but one wrongly relies

on a Gaussian error distribution for estimation.

Thus, popular algorithms like the greedy equivalence search (GES) (Chickering, 2002) for Gaussian

models or the PC algorithm (Spirtes et al., 2000) assessing partial correlation are potentially conser-

vative and only infer the Markov equivalence class when the error distributions are non-Gaussian as

they do not exploit the maximal amount of information. But they are safe to use within the domain of

data-generating linear structural equation models. We prove here that this fact does not necessarily

152



hold true when invoking nonparametric regression estimation. Especially, if the true causal model is

linear or just “slightly nonlinear” one would systematically get the wrong causal direction under error

misspecification. As optimizing Gaussian scores is the same as optimizing `2-loss, regressors that are

more flexible than necessary for the causal model support anti-causal decisions. The intuition carries

over when allowing for the flexibility of heteroskedastic error terms. If the true causal model has

homoskedastic additive errors, fitting heteroskedastic models will increase the range of set-ups where

misspecified Gaussian scoring chooses anti-causal relationships.

To overcome these issues, one could rely on general nonparametric independence tests, either

between the different residuals or between residuals and predictors. Of course, this comes at higher

computational cost and potentially lower sample efficiency in cases where Gaussian scoring works,

including in the presence of non-monotonic causal effects.
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5.A Proofs

5.A.1 Proof of Theorem 5.1

It is well known that for jointly Gaussian variables X1, . . . , Xp every possible causal order can induce

the multivariate distribution with a suitable linear model. As the sum of log-variances determines the

Kullback-Leibler divergence in the Gaussian case, this sum must be equal for all these linear models

that induce the same multivariate distribution.

For every possible multivariate distribution with existing and bounded moment matrix

ΣX = E
[
XX>

]
, which the assumed model has, the linear least squares parameter and correspond-

ing residual variances using arbitrary sets of regressor covariates are completely determined by the

moment matrix. Therefore, the residual variances correspond to those of multivariate Gaussian data.

Accordingly, one can obtain the same sum of log-variances as for the true model using the best linear

predictors for every possible permutation. This proves the non-strict inequality in the theorem.

If for some variable j the conditional expectation given its parents (in the DAG Gπ) is not a

linear function, the linear model cannot be optimal in terms of residual variance. Therefore, σG
π

j in

an unrestricted model is lower than the residual standard error of the best fitting linear model, and

the score is further improved. Hence, the inequality is strict as soon as there exists at least one such

variable.

5.A.2 Proof of Proposition 5.1

The variances ofX1 andX2 as well as E2 follow directly from the properties of the uniform distribution.(
σG

0

1

)2
= Var(X1) =

1

3
,
(
σG

0

2

)2
= Var(E2) =

1

3
, and(

σG
⊥

2

)2
= Var(X2) = β2Var(X1) + Var(E2) =

1

3

(
β2 + 1

)
.

The last term requires some more work. Due to the symmetry, we can assume without loss of

generality that β ≥ 0. For the densities, we get

fX1(x1) =
1

2
1{|x1|≤1}, fX2|X1

(x2, x1) =
1

2
1{|x2−βx1|≤1} and

fX2(x2) =

∫
1

4
1{|x1|≤1}1{|x2−βx1|≤1}dx1 =

1

4

(
min

{
1,
x2 + 1

β

}
−max

{
−1,

x2 − 1

β

})
:=

1

4
(a− b).
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For notational simplicity, we define random variables A and B with realizations a and b. We obtain

the moments

E[X1|X2] =

∫
x1fX1|X2

(x1, X2)dx1 =

∫ x1

4
1{|x1|≤1}1{|X2−βx1|≤1}dx1∫ 1

4
1{|x1|≤1}1{|X2−βx1|≤1}dx1

=
A2 −B2

2(A−B)
=

1

2
(A+B),

E
[
X2

1 |X2

]
=

∫
x2

1fX1|X2
(x1, X2)dx1 =

∫ x2
1

4
1{|x1|≤1}1{|X2−βx1|≤1}dx1∫ 1

4
1{|x1|≤1}1{|X2−βx1|≤1}dx1

=
A3 −B3

3(A−B)

=
1

3

(
A2 +AB +B2

)
,

Var(X1|X2) = E
[
X2

1 |X2

]
− E[X1|X2]2 =

1

12
(A−B)2.

Finally, we are interested in

(
σG
⊥

1

)2
= E[Var(X1|X2)] = E

[
1

12
(A−B)2

]
=

∫ 1+β

−1−β

1

12
(a− b)2fX2(x2)dx2

=

∫ 1+β

−1−β

1

48
(a− b)3dx2 = 2

∫ 1+β

0

1

48
(a− b)3dx2.

Assume first β ≥ 1. Then, b = (x2 − 1)/β in the area of integration. For x2 ≥ β − 1, it holds a = 1.

(
σG
⊥

1

)2
=

∫ 1+β

0

1

24
(a− b)3dx2 =

∫ β−1

0

1

24

(
2

β

)3

dx2 +

∫ 1+β

β−1

1

24

(
β + 1− x2

β

)3

dx2

=
1

24β3

(
8(β − 1) +

∫ 2

0
u3du

)
=

1

24β3
(8β − 4) =

1

6β3
(2β − 1),

where we applied the change of variable u = β+ 1− x2 to simplify the integration. Inserting residual

variances with γ = β, the proposition’s statement follows.

Alternatively, if β < 1, a = 1 in the interval of integration. For x2 < 1− β, it holds b = −1.

(
σG
⊥

1

)2
=

∫ 1+β

0

1

24
(a− b)3dx2 =

∫ 1−β

0

1

24
(2)3dx2 +

∫ 1+β

1−β

1

24

(
β + 1− x2

β

)3

dx2

=
1

24

(
8(1− β) +

1

β3

∫ 2β

0
u3du

)
=

1

24
(8− 4β) =

1

6
(2− β),

where we applied the change of variable u = β + 1− x2 to simplify the integration. Inserting all the

residual variances with γ = 1/β, the proposition’s statement follows.
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5.B Derivations for the figures

Assume model (5.4), which has model (5.3) as a special case for ν = 1. With X1 ∼ N (0, 1) the

normalization is

V (ν) := E
[
|X1|2ν

]
=

2νΓ

(
ν +

1

2

)
√
π

.

As before, (
σG

0

1

)2
= Var(X1),

(
σG

0

2

)2
= Var(E2) and(

σG
⊥

2

)2
= Var(X2) = β2 + Var(E2).

5.B.1 Gaussian and uniform

For E2 ∼ Unif[−1, 1], X1 is constrained to lie within

Sign
(

(X2 − 1)
√
V (ν)/β

)∣∣∣(X2 − 1)
√
V (ν)/β

∣∣∣1/ν and

Sign
(

(X2 + 1)
√
V (ν)/β

)∣∣∣(X2 + 1)
√
V (ν)/β

∣∣∣1/ν ,
i.e., given X2, it is a truncated standard Gaussian. The conditional mean and variance follow from

standard theory about truncated Gaussian random variables. For simplicity, call the upper bound A

and the lower bound B. The density of X2 is then given by

f2(x2) =

∫ a

b

1

2
φ(x1)dx1 =

1

2
(Φ(a)− Φ(b)).

Finally, (
σG
⊥

1

)2
= E[Var(X1|X2)]

is obtained by numerically integrating over (a sufficient part of) the real line.

5.B.2 Two Gaussian random variables, or Gaussian and χ2
1

Except for V (ν), all quantities are obtained by brute force numerical integration.

5.B.3 Two uniform random variables with heteroskedastic fitting

We can mainly follow the derivation in 5.A.2. Instead of
(
σG
⊥

1

)2
, we need exp(E[log(Var(X1|X2))])

which is obtained by numerical integration.
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Chapter 6

On the identifiability of causal

location-scale noise models

Extracted from Alexander Immer, Christoph Schultheiss, Julia E Vogt, Bernhard Schölkopf,

Peter Bühlmann, and Alexander Marx

On the identifiability and estimation of causal location-scale noise models

International Conference on Machine Learning, PMLR 202, 14316-14332.

Abstract

We study the class of location-scale or heteroscedastic noise models (LSNMs), in which the effect

Y can be written as a function of the cause X and a noise source N independent of X, which may

be scaled by a positive function g over the cause, i.e., Y = f(X) + g(X)N . Despite the generality of

the model class, we show the causal direction is identifiable up to some pathological cases.
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6.1 Identifiability of LSNMs

In this section, we focus on the identifiability of location-scale noise models (LSNMs). A causal model

is said to be identifiable under a set of structural constraints, if only the forward (causal) model is

well specified and no backward model fulfilling these structural constraints exists.

To formally analyze this problem, we first need to define our assumed causal model.

Definition 6.1 (Location-Scale Noise Model). Given two independent random variables X and NY .

If the effect Y is generated by a location-scale noise model, we can express Y as an structural causal

model (SCM) of the form

Y := f(X) + g(X)NY , (6.1)

where f :X → R and g:X → R+, i.e. g is strictly positive.

LSNMs simplify to additive noise models (ANM) when g(X) is constant, and to multiplicative

noise models when f(X) is constant.

To prove identifiability of such a restricted SCM, it is common to derive an ordinary differential

equation (ODE), which needs to be fulfilled such that a backward model exists, see e.g. Hoyer et al.

(2008a), or Zhang and Hyvärinen (2009). Intuitively, the solution space of such an ODE specifies all

cases in which the model is non-identifiable, leaving all specifications which do not fulfill the ODE as

identifiable. In the following theorem, we derive such a differential equation for LSNMs and discuss

its implications.

Theorem 6.1. Assume the data is such that a location-scale noise model can be fit in both directions,

i.e.,

Y = f(X) + g(X)NY , X ⊥ NY

X = h(Y ) + k(Y )NX , Y ⊥ NX .

Let ν1(·) and ν2(·) be the twice differentiable log densities of Y and NX respectively. For compact

notation, define

νX|Y (x|y) = log
(
pX|Y (x|y)

)
= log

(
pNX

(
x− h(y)

k(y)

)
/k(y)

)
= ν2

(
x− h(y)

k(y)

)
− log(k(y)) and

G(x, y) = g(x)f ′(x) + g′(x)[y − f(x)].
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Assume that f(·), g(·), h(·), and k(·) are twice differentiable. Then, the data generating mechanism

must fulfill the following PDE for all x, y with G(x, y) 6= 0.

0 = ν ′′1 (y) +
g′(x)

G(x, y)
ν ′1(y) +

∂2

∂y2
νX|Y (x|y)+

g(x)

G(x, y)

∂2

∂y∂x
νX|Y (x|y) +

g′(x)

G(x, y)

∂

∂y
νX|Y (x|y).

(6.2)

The equality derived in Theorem 6.1 is equivalent to the result concurrently provided by Strobl

and Lasko (2023) up to fixing a sign error in the terms involving g′(x), which they had in a preliminary

version. We derived this result independently using a different proof technique and additionally note

that pX|Y (x|y) cannot be written as univariate function with argument ([x− h(y)]/k(y)) if Y → X

is an LSNM with non-constant k(·).
The conclusion of Strobl and Lasko (2023) is that if we have x0 such that G(x0, y) 6= 0 for all

but countably many y, then knowing νX|Y (x0|y), G(x0, y) 6= 0, g(x0) and g′(x0) leads to ν1(y) being

constrained to a two dimensional affine space as (6.2) becomes an ODE. This is in analogy to the

result of Hoyer et al. (2008a) for ANMs. For this case, Zhang and Hyvärinen (2009) have refined the

result and provide a list of all possible cases of unidentifiable models: only for specific choices of f(·)
and ν2(·), one can find ν1(·) such that the model is invertible.

This conclusion carries over to the LSNM. Assume there exist different values x such thatG(x, y) 6=
0 for all but countably many y. If g(·) is strictly positive and f(·) is injective, this applies to all x ∈ R
except for at most countably many. Each such value leads to a different ODE in y when plugging

it into Equation (6.2). Only when the solution spaces of all ODEs overlap such that the same ν1(·)
is found, which must also be valid log-density, the model can be invertible. This is not the case for

generic combinations of g(·), G(·, ·) and νX|Y (·|·) but only for very specific exceptions. Thus, apart

from some pathological cases, an LSNM cannot be invertible. A precise characterization of these

cases as in Zhang and Hyvärinen (2009) for the post-nonlinear model, which involves the ANM as a

special case, has not yet been found for LSNM to the best of our knowledge.

To provide a bit more intuition regarding the assumptions of Theorem 6.1, note that the results

only apply to random variables X with unbounded support. This is implied by requiring that the log-

density of NX has to be twice differentiable. For example, X could not follow a uniform distribution.

This also implies that g(·) has to be a non-linear (or constant) function since otherwise g(·) is negative

for some attainable values of X and does not strictly map to R+ as required by our assumptions.

Assuming that the noise variable is Gaussian, necessary conditions for the distributions of X and

Y as well as the functions f(·), g(·), h(·), and k(·) can be found (Khemakhem et al., 2021). For

completeness, we provide the corresponding result as Theorem 6.2 in Appendix 6.B.
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6.A Proof

We follow the proof technique of Zhang and Hyvärinen (2009), i.e., we build upon the linear sepa-

rability of the logarithm of the joint density of independent random variables. That is, for a set of

independent random variables whose joint density is twice differentiable, the Hessian of the logarithm

of their density function is diagonal everywhere (Lin, 1997). We first define the joint distribution

p(x, nY ) via the change of variable formula, then derive the Hessian of its logarithm, and lastly,

derive an PDE which is necessary to hold such that an inverse model can exist.

We define the change of variables from {x, nY } to {y, nX}

y = f(x) + g(x)nY ,

nX = [x− h(y)]/k(y).

The according Jacobian matrix amounts to ∂y/∂x g(x)

1

k(y)
− ∂y/∂xk(y)h′(y) + [x− h(y)]k′(y)

k(y)2 −g(x)
k(y)h′(y) + [x− h(y)]k′(y)

k(y)2

,
with absolute determinant g(x)/k(y) such that

p(x, nY ) =
g(x)

k(y)
p(y, nX).

Under independence it holds

∂2

∂x∂nY
log(p(x, nY )) = 0 such that

∂2

∂x∂nY
log

(
g(x)

k(y)
p(y, nX)

)
=

∂2

∂x∂nY
[ν1(y) + ν2(nX) + log(g(x))− log(k(y))] = 0.

Evaluating this quantity and dividing by (∂y/∂x)(∂y/∂nY ) leads to

ν ′′1 (y) + ν ′1(y)

[
g′(x)

G(x, nY )

]
+ ν ′′2 (nX)

[
h′(y) + k′(y)nX

k(y)2

[
h′(y) + k′(y)nX −

g(x)

G(x, nY )

]]
+

ν ′2(nX)

2
[
nXk

′(y)2 + h′(y)k′(y)
]

k(y)2 − h′′(y) + nXk
′′(y)

k(y)
− h′(y)g′(x) + nXk

′(y)g′(x)

k(y)G(x, nY )
−

g(x)k′(y)

k(y)2G(x, nY )

]
+
k′(y)2 − k(y)k′′(y)

k(y)2 − g′(x)k′(y)

k(y)G(x, nY )
= 0,

(6.3)
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where

G(x, nY ) =
∂y

∂x

∂y

∂nY
= g(x)

[
f ′(x) + g′(x)nY

]
.

Assuming injectivity of f(·) and positivity of g(·), G(x, nY ) can only be 0 on a set of measure 0.

Finally, plugging in all the definitions in Equation (6.2) and taking the derivatives, one finds that

Equation (6.2) is identical to Equation (6.3).

6.B Gaussian noise

In the following, we state the theoretical result on Gaussian LSNMs found in the supplementary

material in Khemakhem et al. (2021). Note that we slightly changed the theorem as the original

version has a typo in the definition of g and k.

Theorem 6.2 (Khemakhem et al. (2021)). Assume the data follows the model in Def. 6.1 with NY

standard Gaussian, NY ∼ N (0, 1). If a backward model exists, i.e.

X = h(Y ) + k(Y )NX

where NX ∼ N (0, 1), NX ⊥ Y and k > 0, then one of the following scenarios must hold:

a) (g, f) =
(

1√
Q
, PQ

)
and (k, h) =

(
1√
Q′
, P
′

Q′

)
where Q,Q′ are polynomials of degree two, Q,Q′ > 0,

P, P ′ are polynomials of degree two or less, and pX , pY are strictly log-mix-rational-log. In

particular, lim−∞ g = lim+∞ g = 0+, lim−∞ f = lim+∞ f < ∞, similarly so for k, h, and

f, g, h, k are not invertible.

b) g, k are constant, f, g are linear and pX , pY are Gaussian densities.
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Meinshausen, N. and Bühlmann, P. (2010). Stability selection. Journal of the Royal Statistical Society:

Series B (Statistical Methodology), 72(4):417–473.

Meinshausen, N., Hauser, A., Mooij, J. M., Peters, J., Versteeg, P., and Bühlmann, P. (2016). Methods
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Schultheiss, C. and Bühlmann, P. (2024a). Ancestor regression in structural vector autoregressive

models.
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