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ABSTRACT

Stochastic approximation methods are a class of iterative algorithms that play an
essential role in applications involving noisy and incomplete observations. Rooted
in the seminal works of Robbins and Monro (1951) and Kiefer and Wolfowitz
(1952), this class of iterative processes drive a system towards a specified objective
despite noise and bias. Stochastic approximation methods have become increasingly
important in fields like statistics and machine learning due to their resilience
to noise and low computational costs. They are especially useful in training
neural networks and adaptive learning systems. The rise of big data has further
heightened the significance of stochastic approximation, as it necessitates efficient
and scalable algorithms for real-time decision-making.

This thesis embarks on a renewed exploration of stochastic approximation
through a contemporary lens, focusing on its dynamics and long-term behavior in
non-Euclidean spaces. Inspired by the dynamical systems approach introduced by
Benaïm and Hirsch in the 1990s, this work tackles crucial questions surrounding
the convergence of the iterates of a stochastic approximation algorithm, the
characteristics of its limits, and the desirability of these limits. The thesis aims to
provide profound theoretical insights into the stability and convergence of these
algorithms amidst the challenges posed by their non-Euclidean structure and
real-world conditions marked by noise and incomplete information.

This work examines stochastic approximation within three unconventional con-
texts where traditional methods are inadequate. Firstly, we delve into stochastic
approximation on Riemannian manifolds, analyzing problems related to Rieman-
nian optimization and strategic games. This non-Euclidean setting introduces
complexities requiring novel approaches for proving convergence.

Secondly, the thesis investigates the discretization of stochastic differential
equations by lifting the problem to the Wasserstein space. This is particularly
relevant to sampling algorithms based on the Langevin diffusion, which are
essential in Bayesian learning and generative modeling. We demonstrate how our
findings can enhance the reliability and effectiveness of these sampling algorithms,
ultimately supporting more robust Bayesian inference and generative processes.

Lastly, the thesis explores algorithms lacking a step-size parameter, focusing on
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the Sinkhorn algorithm for solving the entropic optimal transport and Schrödinger
bridge problems. By proposing a variant with a step-size parameter and examining
its continuous-time limit, we offer a stochastic approximation analysis that ensures
convergence of this variant of the Sinkhorn algorithm even under noise and bias.

This thesis represents a harmonious blend of classical stochastic approximation
and its extended applications in non-Euclidean setups. By integrating different
areas of mathematics, we offer a thorough analysis that enriches the theoretical
foundation of stochastic approximation and guarantees the robustness of these
algorithms across a diverse array of scenarios.



ZUSAMMENFASSUNG

Stochastische Approximationsmethoden sind eine Klasse von iterativen Algorith-
men, die bei Anwendungen mit verrauschten und unvollständigen Beobachtungen
eine wesentliche Rolle spielen. Diese Klasse von iterativen Verfahren, die auf die
bahnbrechenden Arbeiten von Robbins und Monro (1951) und Kiefer und Wolfo-
witz (1952) zurückgehen, steuern ein System trotz Rauschen und Verzerrungen
auf ein bestimmtes Ziel zu. Stochastische Approximationsverfahren haben in Be-
reichen wie der Statistik und dem maschinellen Lernen zunehmend an Bedeutung
gewonnen, da sie robust gegenüber Rauschen sind und geringe Rechenkosten
verursachen. Sie sind besonders nützlich für das Training neuronaler Netze und
adaptiver Lernsysteme. Mit dem Aufkommen von Big Data hat die Bedeutung der
stochastischen Approximation weiter zugenommen, da effiziente und skalierbare
Algorithmen erforderlich sind, um Entscheidungen in Echtzeit zu treffen.

In dieser Dissertation wird die stochastische Approximation aus einem mo-
dernen Blickwinkel erneut untersucht, wobei der Schwerpunkt auf ihrer Dynamik
und ihrem langfristigen Verhalten in nichteuklidischen Räumen liegt. Inspiriert
vom Ansatz der dynamischen Systeme, der von Benaïm und Hirsch in den 1990er
Jahren eingeführt wurde, befasst sich diese Arbeit mit entscheidenden Fragen rund
um die Konvergenz der Iterate eines stochastischen Approximationsalgorithmus,
die Eigenschaften seiner Grenzen und die Erwünschtheit dieser Grenzen. Die
Dissertation zielt darauf ab, tiefgreifende theoretische Einblicke in die Stabilität
und Konvergenz dieser Algorithmen zu geben, inmitten der Herausforderungen,
die sich aus ihrer nichteuklidischen Struktur und den realen Bedingungen ergeben,
die durch Rauschen und unvollständige Informationen gekennzeichnet sind.

In dieser Arbeit wird die stochastische Approximation in drei unkonventionel-
len Kontexten untersucht, in denen konventionelle Methoden unzureichend sind.
Zunächst befassen wir uns mit der stochastischen Approximation auf riemannschen
Mannigfaltigkeiten und analysieren Probleme im Zusammenhang mit riemannscher
Optimierung und strategischen Spielen. Diese nichteuklidische Umgebung führt zu
komplexen Problemen, die neue Ansätze zum Nachweis der Konvergenz erfordern.

Zweitens untersucht die Dissertation die Diskretisierung stochastischer Dif-
ferenzialgleichungen, indem das Problem auf den Wasserstein-Raum übertragen
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wird. Dies ist besonders relevant für Sampling-Algorithmen, die auf der Langevin-
Diffusion basieren und die für das Bayes’sche Lernen und die generative Modellie-
rung unerlässlich sind. Wir zeigen, wie unsere Erkenntnisse die Zuverlässigkeit
und Effektivität dieser Sampling-Algorithmen verbessern können, was letztlich
eine robustere Bayes’sche Inferenz und generative Prozesse unterstützt.

Schliesslich werden in der Dissertation Algorithmen untersucht, denen ein
Schrittweitenparameter fehlt, wobei der Schwerpunkt auf dem Sinkhorn-Algorith-
mus zur Lösung des entropischen optimalen Transports und des Schrödinger-
Brückenproblems liegt. Indem wir eine Variante mit einem Schrittweitenparameter
vorschlagen und ihre zeitkontinuierliche Grenze untersuchen, bieten wir eine
stochastische Approximationsanalyse an, die die Konvergenz dieser Variante des
Sinkhorn-Algorithmus auch bei Rauschen und Verzerrungen gewährleistet.

Diese Dissertation stellt eine harmonische Mischung aus klassischer stochasti-
scher Approximation und ihren erweiterten Anwendungen in nichteuklidischen
Konstellationen dar. Durch die Integration verschiedener Bereiche der Mathematik
bieten wir eine gründliche Analyse, die das theoretische Fundament der stochasti-
schen Approximation bereichert und die Robustheit dieser Algorithmen in einer
Vielzahl von Szenarien garantiert.
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CHAPTER ONE

INTRODUCTION

As with everything else, so with a mathematical theory:
beauty can be perceived, but not explained.

— ARTHUR CAYLEY

Stochastic approximation is an essential technique in the development and
analysis of iterative algorithms. Established in the early 1950s by the pioneering
studies of Robbins and Monro (1951) and Kiefer and Wolfowitz (1952), this
methodology lays a fundamental framework for handling applications involving
noisy data and incomplete observations. A core concept in stochastic approximation
in its simplest form is the difference equation

θn+1 − θn = anYn, (1.1)

where θn represents the parameters of a system, Yn is a function of the noise-
corrupted observation at θn, and an is a diminishing step-size approaching zero
as n → ∞. The main idea is to adjust the parameters iteratively to achieve
some desired goal asymptotically. This thesis investigates the qualitative and
asymptotic properties of such recursive algorithms in the diverse forms they arise
in applications.

The field of stochastic approximation started with the foundational work of
Robbins and Monro [RM51] on the problem of finding the root of an unknown
function, given noisy observations at arbitrary argument values. A classic example
is to determine the correct dosage of a drug for some disease. Letting θ be the
drug dosage level and F (θ) be the probability of success at dosage level θ, the
experimenter’s goal is to identify the correct dosage level at which the probability
of success equals a specified value, say α. However, the experimenter can only
observe F through experimental outcomes that are either successes or failures,
rendering analytical solutions infeasible.

The first idea that comes to mind might be to perform multiple experiments
at a constant level θ and estimate F (θ) via averaging. However, many of these
observations occur at dosage levels far from the optimum, leading to inefficient
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use of resources. Robbins and Monro propose a more efficient approach. Here is
an excerpt from their article, with a slight change of notation, describing their
method:

We give a method for making successive experiments at levels θ1, θ2, . . .
in such a way that θn will tend to the optimum in probability . . . Let
{an} be a fixed sequence of positive constants such that

∑∞
n=1 a

2
n <∞.

We define a (non-stationary) Markov chain {θn} by taking θ1 to be
an arbitrary constant and defining

θn+1 − θn = an(α− Yn), (∗)

where Yn is a random variable such that E[Yn | θn] = F (θn).

This simple approach ensures that the parameters θn move—on average—in the
correct direction after each observation. Robbins and Monro’s key insight was
recognizing that if the step-sizes an approach zero appropriately as n→∞, an
implicit averaging emerges, which mitigates the effects of noise over the long term.
Indeed, a significant portion of the content of [RM51] consists of probabilistic
arguments showing this.

While the original work of Robbins and Monro concerns finding the zeros of
a scalar function, one can extend it to vector-valued functions defined on more
complicated spaces. In this broader sense, the root-finding problem shows up in
various scientific and practical applications. In optimization, for example, finding
the critical points of a function f corresponds to finding the roots of its gradient.
By substituting F with the gradient of f and α with 0, the iteration (∗) transforms
into the renowned stochastic gradient descent algorithm, widely used in practice for
training neural networks. In this scenario, Yn is typically the gradient calculated
based on a random batch of data that adheres to an underlying (but unknown)
distribution. We will see later in this introduction that other important problems,
such as approximate sampling from probability distributions and finding equilibria
in games are other instances of the general root-finding problem.

Over the decades, the scope of stochastic approximation has expanded. In the
1970s and 1980s, the method was pivotal in signal processing and adaptive control,
aiding in adaptive filtering and system identification [KC78; LS83; Hay86]. In
robotics, these algorithms have enabled systems to learn and adapt in real time
from uncertain or imprecise sensory inputs [Ber96; SB98]. Stochastic approximation
has become increasingly important in recent years, especially in statistics and
machine learning, due to the rise of big data: Stochastic optimization methods are
crucial for training large-scale neural networks and developing real-time decision-
making algorithms; online algorithms and reinforcement learning frameworks are
now ubiquitous in adaptive learning systems, where fast and iterative updates are
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necessary. Many of today’s advanced models, even though named differently, rely
fundamentally on stochastic approximation techniques, highlighting its central
position in the architecture of modern data-driven and intelligent systems.

Dynamics and Long-time Behavior
The simplicity of the update rule (1.1) might mask its potentially complex behavior.
For instance, the Robbins–Monro algorithm (∗) is guaranteed to converge to a
root of the equation F (θ) = α provided that F is monotone and the deviation
of Yn from F (θn) remains uniformly bounded. However, applying this algorithm
outside these ideal conditions may result in the algorithm failing to find a root. The
complexity increases further when one considers a more intricate algorithm, such as
various forms of stochastic gradient descent, or when modeling adaptive behavior.
In real-world applications, these algorithms and models often do not function
under ideal conditions and are prone to noisy and incomplete information in
their updates. Therefore, understanding how these algorithms behave in non-ideal
scenarios is crucial.

This necessitates a deeper exploration of the dynamics of stochastic approx-
imation algorithms. Specifically, we need to examine the long-term behavior of
the sequence {θn} defined by (1.1). Key questions include: Does this sequence
converge? If so, what are the limits of this convergence, and are these limits
desirable? How can we characterize these limits, should they exist? By analyzing
these factors, we can gain significant insights into the stability and effectiveness
of these algorithms across various practical applications. This understanding can
lead to the development of more reliable algorithms, improving their performance
in diverse scenarios.

Traditionally, dynamics of different instances of stochastic approximation
algorithms were studied in isolation. Significant contributions to this field have
been made by Benaïm and Hirsch [BH96], whose series of works has unified several
results into one general framework, and has provided profound insights into the
long-term behavior and convergence properties of such algorithms. One of the
key pieces of this framework is the ODE method of Ljung [Lju77], which relates
the discrete-time update (1.1) to a continuous-time one. The main idea of Ljung
is the following: In many practical situations, we can rewrite Yn = F (θn) + Un,
where F (θn) is the main signal and Un is “all the noise factored away.” With this,
we have

1

an
(θn+1 − θn) = F (θn) + Un.

Averaging Un away and tending the step-size to zero, one recovers a continuous-
time “mean dynamics” corresponding to the update (1.1), described by the ordinary
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differential equation (ODE)

d

dt
θ(t) = F (θ(t)).

By associating a deterministic differential equation with the algorithm, the chal-
lenging task of convergence analysis of a stochastic algorithm is effectively reduced
to a “stability analysis problem” of an ODE.

The methodology of Benaïm and Hirsch is a beautiful tandem of ideas from
dynamical systems and probability theory, and consists of the following steps.
First, the continuous-time mean dynamics of the algorithm is constructed, which
is typically evident in root-finding problems, while in some other cases, one has to
do some work to find it. Next, the limit sets of the mean dynamics are identified
using a dynamical systems approach. Finally, one demonstrates that the original
non-ideal algorithm converges to these identified limit sets by showing that the
stochastic noise diminishes over time, resulting in the algorithm’s trajectory
“shadowing” the orbits of the corresponding ODE. In this case, the algorithm’s
trajectory is called an asymptotic pseudo-trajectory of the mean dynamics. Proving
this property is usually where the probabilistic ideas lie. It is crucial, however, to
determine which terminal limiting objects are favorable, ascertain the probability
of converging to these favorable points, assess the likelihood of avoiding undesirable
points (such as strict saddle points in optimization problems), and evaluate the
rate at which the algorithm trends toward equilibrium.

Beyond Euclidean Spaces
Traditionally, stochastic approximation algorithms are analyzed in the context of
systems with parameters residing in some Euclidean space. This classical approach,
while powerful, proves inadequate for a broader range of applications where system
states are more naturally represented on a Riemannian manifold or within the
space of measures. In such contexts, even the standard recursion (1.1) does not
necessarily make sense.

While it is feasible to mimic a Euclidean analysis for manifolds (for example,
by isometrically embedding the manifold in a Euclidean space), this approach
often falls short of a robust intrinsic analysis. An intrinsic perspective not only
offers deeper insights but also addresses the inherent topological complexities
that arise in the manifold and infinite-dimensional settings, which are beyond
the reach of conventional Euclidean techniques. Building on the foundational
work of Benaïm and Hirsch, this thesis explores these novel settings, offering a
more comprehensive understanding of stochastic approximation in non-Euclidean
spaces. Below, we describe the instances we consider in this thesis.
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Riemannian manifolds

A Riemannian manifold is a smooth, curved space where one can measure distances
of points and angles between tangent vectors. It generalizes concepts like curves
and surfaces to higher dimensions, and facilitates studying geometric properties
in an abstract way. Riemannian manifolds are used to model complex, non-linear
structures in various scientific and engineering fields. Two such examples are
the Stiefel manifold and the Hyperbolic space. The Stiefel manifold consists
of all orthonormal k-frames in Rd, and is used for optimization problems with
orthonormality constraints such as Principal Component Analysis (PCA) and
eigenvalue problems, as well as modeling orientation in robotics and aircraft
control. The Hyperbolic space is a space with constant negative curvature, and
is used to represent high-dimensional data in lower dimensions while preserving
hierarchical relationships, making it suitable for modeling tree-structured data
(e.g., evolutionary trees in Phylogenetics), robot localization, and navigation.

The generic root-finding problem in a Riemannian manifold M is to

find θ ∈M so that V (θ) = 0. (1.2)

Here, V is a smooth vector field, which assigns a tangent vector to every point
on the manifold. An example of a vector field is the (Riemannian) gradient of a
smooth, real-valued function on the manifold. Solving the root-finding problem
(1.2) in this context turns into a Riemannian optimization problem. Additionally,
the general form of this root-finding problem includes other complex scenarios like
bi-level problems, saddle-point problems, dynamic programming, and equilibrium
problems found in games and other practical applications.

Most methods for solving (1.2) are iterative and construct a sequence of
successive approximations θ1, θ2, . . . of the root of V . Similar to the Robbins–
Monro algorithm, θn+1 is constructed based on a noise-corrupted evaluation Yn
of V at θn. However, we have to change the update rule and use the Riemannian
exponential map (or more practically, a retraction)

θn+1 = expθn(anYn)

so that the iterates stay on the manifold.
To get a feeling of the challenges of the Riemannian setting, let us consider

the simplest case where V ≡ 0, focusing solely on the effect of noise. First, let
us recall what happens in the Euclidean case: Suppose U1, U2, . . . is a martingale
difference sequence bounded in L2, meaning E[Un |U1, . . . , Un−1] = 0 for every
n and supn E ∥Un∥2 < ∞. If the step-sizes an are such that

∑
an = ∞ and∑

a2n <∞, then the sum
∑∞
n=1 anUn converges almost surely to some limit. In

other words, defining the partial sums Mn :=
∑n
k=1 akUk, the martingale M
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almost surely converges to a limit M∞.
Now, consider the same setup in the hyperbolic space H2: Starting from an

arbitrary point p0 ∈ H2, at each step n, we take a random tangent vector Un from
the tangent plane Tpn at pn and move in that direction (along a geodesic) to reach
pn+1. Mathematically, pn+1 = exppn(anUn). The left part of Fig. 1.1 illustrates
this procedure.

Figure 1.1. Left: Two sample trajectories of pure noise are depicted in the Poincaré
half-plane model of the hyperbolic space. Consecutive points are connected
via geodesics, which in this geometry, are arcs of circles centered on the
x-axis, or vertical lines. As seen in the figure, the trajectories eventually
converge to some (random) limit. Right: Exponential growth of the distance
between two geodesics in the Hyperbolic space, emanating from the same
point with the same speed. The dashed lines are the minimizing geodesics
between corresponding points on the initial geodesics.

The question is whether the same result of Doob holds in this case—whether
there exists a (random) point p∞ such that pn → p∞ almost surely. As the
distances grow exponentially in the Hyperbolic space due to its negative curvature,
it is not at all obvious why such convergence should hold; see the right side of
Fig. 1.1. The theory we develop later in Chapter 3 gives an affirmative answer to
this question for a general class of Riemannian manifolds, including Hyperbolic
spaces. Notice that our answer cannot use the linear structure of a Euclidean
space, a property that is the defining property of a martingale, and essential for
proving convergence results.

The Wasserstein space

Another important setting for studying stochastic approximation algorithms is
discretization schemes for stochastic differential equations (SDEs). A prominent
example in this category is Markov Chain Monte Carlo methods that are based
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on discretizing SDEs such as the Langevin diffusion

dXt = V (Xt) dt+
√
2 dWt.

Here, V is usually the gradient of the log-density of some target probability
distribution. These methods are widely used in practice to generate samples from
complex, high-dimensional probability distributions, which is a critical task in
Bayesian learning and statistics. Sampling is achieved by constructing a Markov
chain whose stationary distribution matches (or approximates) the desired target
distribution. Similar methods are used for generative modeling tasks via diffusion
models.

Ordinary differential equations and stochastic differential equations exhibit
distinct long-term behaviors. For instance, consider the function f(x) = 1

2x
2,

the differential equation ẋ = −f ′(x), and the stochastic differential equation
dXt = −f ′(Xt) dt+

√
2 dWt. It is evident that from any initial point, the solution

to the ODE converges to x = 0, the only zero of f ′. In contrast, the solution to
the SDE, influenced by Brownian motion, never settles and continues to fluctuate
indefinitely.

At the macroscopic level, the behavior of an SDE tends to be deterministic.
To illustrate this, consider a simple Brownian motion Wt representing the motion
of a small particle in a suspension. By observing a large number of independent
Brownian particles and focusing on their empirical distribution rather than in-
dividual positions, we can deduce that as the number of particles approaches
infinity, the empirical distribution at each time t converges to a probability density
ϱ(t, x). This density function ϱ(t, x) essentially satisfies the partial differential
equation (PDE) known as the Fokker–Planck equation:

∂ϱ(t, x)

∂t
=

1

2
∆xϱ(t, x),

where ∆x represents the Laplacian operator with respect to the x variable. This
PDE, which in this context is equivalent to the heat equation in physics, provides
a deterministic framework to describe the macroscopic dynamics of Brownian
motion or, more broadly, an SDE. Consequently, analyzing the macroscopic
behavior of an SDE can be reduced to studying the corresponding Fokker–Planck
equation. For example, the Fokker–Planck equation corresponding to the SDE
dXt = −Xt dt+

√
2 dWt is:

∂ϱ(t, x)

∂t
=

∂

∂x
(ϱ(t, x), x) +

∂2ϱ(t, x)

∂x2
. (1.3)

Further analysis reveals that, given mild regularity conditions on the initial
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Figure 1.2. The solution of the Fokker–Planck equation (1.3) with the initial density
ϱ(0, ·) being the mixture of two Gaussians (yellow). As time progresses,
the solution converges to the density of a standard Gaussian (purple).

density ϱ(0, ·), the density ϱ(t, ·) converges to the density of a standard Gaussian
distribution as t→∞; see Fig. 1.2.

To interpret the Fokker–Planck equation for an SDE geometrically, one can
view it as defining a curve (ϱt)t≥0 within the space of probability measures. To
rigorously discuss this curve, it is essential to define a corresponding metric space.
In this context, it turns out that the Wasserstein metric, derived from optimal
transport theory, is particularly suitable, as it turns the space of probability
measures into a complete metric space, thus enabling a geometric analysis. The
importance of the Wasserstein metric is underscored by the groundbreaking result
of Jordan, Kinderlehrer, and Otto [JKO98]: The Fokker–Planck equation for the
Langevin diffusion becomes the gradient flow of the relative entropy functional
in the space of probability measures endowed with the Wasserstein metric. Otto
[Ott01] further demonstrated that when the space of measures is equipped with
the quadratic Wasserstein distance, it exhibits a Riemannian-like structure. This
structure supports the definition of tangent spaces, geodesics, gradients, and
curvature, and has become a powerful tool for formal computations within the
Wasserstein space. In this manifold notation, the Fokker–Planck PDE becomes
the following ODE in the Wasserstein space:

ϱ̇t = −∇W2
H(ϱt |µ),

where ∇W2
is the gradient in the sense of Otto, H is the relative entropy, and µ

is the stationary distribution of the Langevin diffusion.
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Our primary take-away from this perspective is that discretization algorithms
for SDEs can be conceptualized as stochastic approximation algorithms. In this
framework, the algorithm’s “iterates” correspond to their distributions within the
Wasserstein space. The “mean dynamics” is also represented by the evolution
curve derived from the Fokker–Planck equation associated with the SDE. Noise
and biases in the discretization algorithm result in deviations from the mean
dynamics, manifesting as a form of bias within the Wasserstein space. Consequently,
examining the convergence properties in the Wasserstein space is equivalent to
analyzing the macroscopic properties of the algorithm’s iterates.

One can study other evolutionary equations using the same framework. A
prominent example is McKean–Vlasov processes, which are often used for modeling
the behavior of large systems of interacting particles (or agents), such as neurons
in a wide neural network, or molecules following a kinetic equation. Investigating
the dynamics of such evolutionary equations, their mean-field approximation, and
their discretizations in the Wasserstein space is similar to that of a single SDE.
We do not discuss this class of algorithms in this thesis and refer the reader to
[KHK23b] and references therein for further explanation.

ODE Method, Revisited
In all examples above, the mean dynamics of a stochastic approximation algorithm
is relatively clear from the algorithm itself. For instance, in the Riemannian
setting, the vector field V induces a flow on the manifold, constituting the mean
dynamics. Similarly, for SDE discretization, the corresponding Fokker–Planck
equation identifies the mean dynamics in the Wasserstein space. More broadly, for
any stochastic approximation algorithm characterized by a step-size parameter, it
is feasible to recover the mean dynamics by performing averaging on the noise
and considering the limiting behavior as the step-size approaches zero.

Certain algorithms, however, lack a defined step-size parameter. A notable
example is the Sinkhorn algorithm—also known as the Iterative Proportional
Fitting procedure—for solving entropic optimal transport and Schrödinger bridge
problems. The goal of the entropic optimal transport problem is to find the most
efficient way to transform one probability distribution into another while minimiz-
ing a given cost function, incorporating entropy to regularize the solution. This
problem has gained traction for its applications in machine learning, economics,
and physics. The Schrödinger bridge problem is the dynamic cousin of the entropic
optimal transport problem, and involves finding the most likely evolution of a
probability distribution subject to observed marginals at two different times. This
problem has numerous applications in biology and molecular dynamics, to name a
few. In the implementation of these iterative algorithms in practice, noise-induced
updates are pervasive, necessitating a stochastic approximation analysis.
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We propose a new approach to understanding these algorithms by framing them
within the stochastic approximation framework, leveraging recent advancements
that categorize these algorithms as optimization methods. Research has shown
that the Sinkhorn algorithm can be viewed as a type of mirror descent algorithm,
a well-known method typically used in constrained optimization and optimization
in Banach spaces (as detailed in [Lég20; AKL22]).

Building on this understanding, we introduce a version of the Sinkhorn al-
gorithm with adjustable step-sizes, along with a continuous-time version of the
algorithm. Through a dynamic analysis using the ODE method, we develop a new
stochastic approximation analysis for these algorithms. This analysis ensures that
they converge to optimal solutions even when affected by noise and bias.

THESIS ROADMAP

This thesis is structured as follows. Chapter 2 is an introduction to the framework
of Benaïm and Hirsch. This chapter establishes a foundation for a dynamical
system viewpoint to examine the behavior of stochastic approximation algorithms.
The subsequent three chapters (Chapters 3–5) address the core objectives of the
thesis. Specifically, Chapter 3 offers a theoretical exploration of stochastic approxi-
mation algorithms within the context of Riemannian manifolds. In Chapter 4, the
focus shifts to analyzing algorithms that can be interpreted as discretizations of
stochastic differential equations, particularly within the Wasserstein space. Lastly,
Chapter 5 presents findings related to the development of continuous-time coun-
terparts of the Sinkhorn and Iterative Proportional Fitting algorithms, alongside
a discussion of stochastic approximation methods for solving entropic optimal
transport and Schrödinger bridge problems. Below, we detail this outline:

Chapter 2 starts with essentials of dynamical systems. Central notions such
as flows, asymptotic pseudo-trajectories, and chain-recurrence are introduced,
along with some of their basic properties. The main theorem of this chapter is
the limit set theorem (Theorem 2.6), which identifies the limit sets of the iterates
of a stochastic approximation algorithm. We outline the process of proving that
a stochastic approximation algorithm meets the requirements of the limit set
theorem by giving a detailed proof for the classic Euclidean case.

Chapter 3 studies our first non-Euclidean setting: Riemannian manifolds. This
chapter lays the groundwork for a proper formulation and analysis of stochastic
approximation algorithms in the Riemannian context. We begin by reminding
foundational concepts and notations pertinent to differential and Riemannian
geometry, followed by a discussion on adapting iterative methods to manifold
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settings. By examining specific examples related to machine learning and games,
we aim to illustrate the practical relevance and challenges of nonlinear root-finding
on manifolds. Next, we show that a wide class of algorithms—namely Riemannian
Robbins–Monro algorithms—satisfy the asymptotic pseudo-trajectory property,
and we show stability of these algorithms in Hadamard manifolds for weakly
coercive vector fields. Our proof technique combines many ideas from differential
and Riemannian geometry, parts of which might be of independent interest.

Chapter 4 studies our second non-Euclidean setting: the Wasserstein space.
First, we review essential background knowledge, including aspects of stochastic
calculus, the Fokker–Planck equation, and Wasserstein spaces. Next, we discuss
the setup for analyzing SDE discretization algorithms, outlining the discretization
template, interpolation methods, relevant metric spaces, and mean dynamics. The
main theorem in this chapter states that the iterates of an SDE discretization
converge to the same limits as the corresponding SDE. We then identify potential
limit sets for two SDEs: Langevin and mirror Langevin diffusions. Following this,
we demonstrate that a dissipativity condition is sufficient for stability. Finally,
we present a set of practical sampling algorithms, showing that they adhere to
the described template and proving their asymptotic convergence to the target
distribution under noise and bias.

Chapter 5 shifts to exploring the linear structure and convexity in the space of
signed measures, emphasizing the importance of the relative entropy functional.
We start with an extensive review of the mirror descent algorithm, followed
by essentials of analysis on topological vector spaces. We then introduce the
Entropic Optimal Transport problem, the properties of its optimal solution, and
the Sinkhorn algorithm. A variant of the Sinkhorn algorithm is derived based on
the discrete-time mirror descent scheme. This variant transitions to a continuous-
time flow in infinitesimal step-sizes, giving rise to the Sinkhorn flow. We analyze
the convergence of both discrete- and continuous-time schemes using stochastic
mirror descent analysis. Finally, we discuss the Schrödinger Bridge problem and
interpret the Iterative Proportional Fitting procedure through mirror descent,
linking these iterations to SDEs.

Chapter 6 concludes this thesis and brings future research directions and a few
open problems.

Throughout the text, we mainly use italics for defining new mathematical
objects and reserve bold face for headings and titles. Important theorems,
corollaries, etc. are marked with a ▶ in their title. In several places in the thesis,
the most technical parts of proofs are deferred to the appendix at the end, making
it easier to follow the main arguments while reading the main text.
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GENERAL NOTATION

R+ : the set of non-negative real numbers [0,∞).
Ck(Ω) : the set of k-times continuously differentiable

functions defined on the set Ω.
C(Ω;E) : the set of E-valued continuous functions defined on

the set Ω.
Cc(Ω;E) : the set of E-valued continuous functions defined on

the set Ω with compact support.
Cb(Ω;E) : the set of E-valued continuous and bounded

functions defined on the set Ω.
L∞
+ (Ω) : the set of non-negative functions in L∞(Ω).

L∞
++(Ω) : the set of non-negative functions in L∞(Ω) that are

bounded away from zero.
A := B : A is defined by B.

A(x) ≡ B(x) : A(x) and B(x) are identical.
A
.
= B : A is equal to B, up to some additive constant.

A ≲ B : A is less than B up to some multiplicative constant.
P(X) : the set of all probability measures on the measurable

set X.
a.s. : almost surely, or with probability 1.
T#µ : the pushforward of the measure µ with the map T ,

i.e., (T#µ)(A) = µ(T−1(A)).
1A : the indicator function of the set A, i.e., 1A(x) = 1 if

x ∈ A and is otherwise 0.
σ(C) : the σ-algebra generated by the random variables in

the set C.
F ∨ G : the smallest σ-algebra containing both F and G.
µ≪ ν : the measure µ is absolutely continuous with respect

to ν.
X ∈ F : the random variable Y is F-measurable.

A or clA : the closure of the set A.
Bδ(p) : (metric) open ball of radius δ centered at p.
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|v| : Riemannian norm of a tangent vector v.
∥v∥ or ∥v∥2 : Euclidean norm of a vector v.

∇ · (v) : divergence of a vector field v, i.e., ∇ · (v) =
∑
∂ivi.

∇2h : Hessian of a function h.
∆h : Laplacian of a function h, i.e., ∆h =

∑
∂2iih.

tr(A) : the trace of a matrix A.



CHAPTER TWO

DYNAMICAL SYSTEMS AND
STOCHASTIC APPROXIMATION

In this chapter, we present those fundamental concepts from dynamical systems
on metric spaces that are essential for stochastic approximation. The key notions
discussed are asymptotic pseudo-trajectories and internally chain-transitive sets.
An asymptotic pseudo-trajectory is a continuous curve that increasingly approx-
imates some orbit of a flow over arbitrarily long time intervals. An internally
chain-transitive set is a compact, connected, attractor-free invariant set, and is a
potential limit of a perturbed orbit of a flow. The limit set theorem, Theorem 2.6,
connects these two concepts, showing that the limits of a precompact asymptotic
pseudo-trajectory is always an internally chain-transitive set.

We focus exclusively on aspects of dynamical systems that are directly relevant
to this thesis. For comprehensive details, readers are encouraged to consult the
outstanding work of Benaïm [Ben99] and the paper of Benaïm and Hirsch [BH96].
Nearly all the material, including theorem statements and proofs, is drawn from
these sources. While some technical proofs are omitted, additional proofs are
provided where they are not covered in the mentioned references.
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2.1. FLOWS ON METRIC SPACES

LetM be a metric space equipped with the distance function (or metric) d. Metric
spaces are one of the most general settings for studying many of the concepts of
mathematical analysis and geometry. Many types of mathematical objects that
have a natural notion of distance admit the structure of a metric space, including
Euclidean spaces, Riemannian manifolds, normed vector spaces, and graphs. We
always consider the topology on M induced by the metric d.

A flow on M is a continuous function Φ : R ×M → M, mapping (t, x) to
Φ(t, x) = Φt(x), satisfying Φ0 = IdM and the semigroup property Φs ◦ Φt = Φt+s
for all t, s ∈ R. If Φ is defined over R+×M, it is called a semi-flow . An example to
keep in mind is the flow of a vector field on some Euclidean space: Let V : E → E
be a continuous vector field on the Euclidean space E, and for any initial point
x0 ∈ E, consider the solution of the initial value problem

ẋ(t) = V (x(t)), x(0) = x0.

If the solution is unique and exists for all x0 ∈ E and all t ∈ R (resp. t ≥ 0), one
can define the flow (resp. semi-flow) Φ corresponding to V as Φt(x0) = x(t). See
Fig. 2.1 for an illustration.

Figure 2.1. An illustration of the flow of a vector field in R2. The gray arrows depict
the streamlines of the flow. The black curve is the forward orbit of the
black point in the center. This example is taken from [CG24].
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2.1.1. Invariant Sets and Attractors
Understanding the dynamics of a flow, namely if it converges towards some limit or
avoids other sets, usually boils down to studying its invariant sets and attractors.
In this section, we introduce such objects and bring a few relevant properties.
To make the exposition easier, we let the time index set T to be R+ in case of
semi-flows, and R in case of flows.

• A subset A ⊂ M is positively invariant for the flow (or semi-flow) Φ if
Φt(A) ⊂ A for all t ≥ 0, and is invariant if Φt(A) = A for all t ∈ T.

• A point p ∈M is at equilibrium if Φt(p) = p for all t ∈ T.

• For x ∈ M, the forward orbit of x is the set γ+(x) = {Φt(x) : t ≥ 0} and
the orbit of x is γ(x) = {Φt(x) : t ∈ T}.

• A point p ∈M is an omega limit point of x if p = limtk→∞ Φtk(x) for some
sequence tk →∞. We denote the set of all omega limit points of x by ω(x).
See Fig. 2.2 for an illustration. An alpha limit point is defined similarly for
the reverse flow.

• A nonempty subset A ⊂ M is an attractor if it is compact and invariant
and has a neighborhood W , called a fundamental neighborhood , such that
d(Φt(x), A)→ 0 as t→∞ uniformly in x ∈W . The basin of A is a positively
invariant open set of all points x such that d(Φt(x), A)→ 0 as t→∞.

ω(x)x

Φt1(x)
Φt2(x)

p

Figure 2.2. The forward orbit of the flow Φ starting at x is shown as the thin line,
and the set ω(x) of all omega limit points of x is denoted by the thick
line on the right. For each point p ∈ ω(x), there corresponds a sequence
of times t1, t2, . . . → ∞ such that Φti(x) converges to p.

Let us now make use of the definitions above and show a few properties of
invariant sets and attractors. We begin by showing that the omega limit set of a
point is an invariant set.
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Lemma 2.1. The omega limit set of a point x ∈M is an invariant set. Moreover,
if the forward orbit γ+(x) of x has compact closure, then the omega limit set of x
is also compact and connected.

Proof. For any fixed t ∈ T, Φt : M → M is a continuous map on M. Let
p ∈ ω(x) and let {ti}i≥0 be a sequence such that Φti(x)→ p. Applying Φt to both
sides of the limit gives Φt(Φti(x)) → Φt(p). This means that Φt+ti(x) → Φt(p),
implying Φt(p) ∈ ω(x). Thus, ω(x) is an invariant set.

Let us now assume that γ+(x) is precompact. First, we show that ω(x) is
compact. Clearly, ω(x) is precompact, as it is a subset of cl γ+(x). To show that
it is closed, consider a sequence of points {pn} in ω(x) converging to some point
p ∈M. As pn ∈ ω(x), there exists a convergent sequence in γ+(x) that converges
to pn. A diagonal argument on this sequence of sequences shows that the limit p
is also in ω(x).

To see why ω(x) is connected, suppose on the contrary that it is included
in the union of two disjoint open sets A ∪ B. Take p ∈ A and q ∈ B and let
{ti} and {sj} be a sequence of times for which Φti(x)→ p and Φsj (x)→ q. By
taking subsequences, we can assume that t1 < s1 < t2 < s2 < · · · and Φti(x) ∈ A
and Φsi(x) ∈ B for all i. Since Φ is continuous, for each i, there exists a time
ri ∈ (ti, si) such that Φri(x) /∈ A ∪ B. As γ+(x) is precompact, after taking
a subsequence, we have that Φri(x) → y. Surely, y ∈ ω(x), but y /∈ A ∪ B as
M\ (A ∪B) is closed; a contradiction.

Attractors are special invariant sets that absorb nearby points. One way to
assess if there is some attractor inside an open set is provided below. Intuitively, if
the flow, after a while, maps an open set into itself, there should be some attractor
inside to make this happen. The nature of this result is similar to fixed-point
theorems.

Lemma 2.2 (Ben99, Lem. 5.2). Let U ⊂M be an open set with compact closure.
If ΦT (U) ⊂ U for some T > 0, then there exists an attractor A ⊂ U whose basin
includes U .

Proof. The proof follows Benaïm’s. The guiding intuition is the following: for
large enough t, Φt maps U to the interior of U ; taking the limit as t→∞ of the
sets Φt(U) should give us the attractor, as one cannot escape from this limiting
set, if started in U .

Since U has compact closure, ΦT (U) is compact and we can find an open
set V such that ΦT (U) ⊂ V ⊂ V ⊂ U . Moreover, as the flow is continuous,
there is some ε > 0 such that Φt(U) ⊂ V for all t ∈ [T − ε, T + ε]. Thus, for
all t ≥ T 2/ε, writing t = kT + r with k ∈ N and 0 ≤ r/k < ε, we see that
Φt(U) = (ΦT+r/k ◦ · · · ◦ ΦT+r/k)(U) ∈ V .
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The “limit” of the sets Φt(U) is our candidate for the attractor. Concretely,
let At = cl(

⋃
s≥tΦs(U)) ⊂ V and define A =

⋂
t≥0At. By construction, A is

compact and invariant, and it is the omega limit of a neighborhood of itself; as
this neighborhood is contained in a compact set U , uniform convergence to A
started from U is also guaranteed.

2.2. CHAIN RECURRENCE

Having stochastic approximation in mind, we rarely have access to exact evaluation
of a flow and resort to constructing approximations of the orbit that are susceptible
to noise and bias. An essential tool for analyzing such perturbed orbits of a flow
is via the notion of chain-recurrence.

Let δ > 0 and T > 0. A (δ, T )-pseudo-orbit from a to b is a chain of orbits

{Φt(yi) : t ∈ [0, ti]}, i = 0, 1, . . . , k − 1, ti ≥ T

with
d(y0, a) < δ, d(Φti(yi), yi+1) < δ, and yk = b.

See Fig. 2.3 for an illustration. We write Φ : a ↪−→δ,T b if there is a (δ, T )-pseudo-
orbit from a to b, and drop Φ if it is clear from the context. We also write a ↪−→ b
if there is a (δ, T )-pseudo-orbit from a to b for all δ, T > 0.

yk = b
· · ·

y0

Φt0(y0)

a y1

y2
δ

yk−1

Figure 2.3. A (δ, T )-pseudo-orbit from a to b consists of a chain of trajectories of the
flow Φ, each having duration at least T and the endpoint of each segment
being δ-close to the start of the next one. In the figure, the gray circles
are metric balls of radius δ and the black lines are orbits of the flow.

The flow Φ is called chain-transitive if a ↪−→ b for all a, b ∈M. A point a ∈M
is called a chain-recurrent point if a ↪−→ a. We denote by R(Φ) the set of all
chain-recurrent points of Φ. If every point in M is chain-recurrent, Φ is called a
chain-recurrent flow.
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Let Λ ⊂M be an invariant set. We say Φ is chain-recurrent on Λ if Λ = R(Φ|Λ).
Here, Φ|Λ is the restriction of the flow Φ to the set Λ. A compact invariant set on
which Φ is chain-recurrent (resp. chain-transitive) is called an internally chain-
recurrent (resp. internally chain-transitive) set. The following example gives more
intuition on these concepts.

▷ Example 2.1 (Ben99, Ex. 5.1). Consider the unit circle S1 = R/2πZ and the
flow Φ induced by the differential equation θ̇ = f(θ) with f(θ) = sin2(θ) ≥ 0, see
Fig. 2.4.

0π

Figure 2.4. Flow on the unit circle.

Notice that the set of equilibria of this flow is f−1(0) = {0, π}. Moreover, every
point in S1 is chain-recurrent, i.e., R(Φ) = S1. This is because we are allowed to
“jump” over the points 0 and π and go from one side to the other.

Now, consider the upper half of the circle Λ := [0, π], which is invariant for the
flow. Note that Λ is a compact invariant set consisting of chain-recurrent points.
However, it is not internally chain-recurrent: Choose T large and δ small, so that
starting close to 0 always sends us to the left side, closer to π. ◁

The reason that in the previous example, [0, π] failed to be internally chain-
recurrent is that the flow restricted to [0, π] has a proper attractor {π}. Propo-
sition 2.3 below shows that this is the only reason that prevents a connected
compact invariant set from being internally chain-recurrent.

Proposition 2.3 (Ben99, Prop. 5.3). Let Λ ⊂M. The following assertions are
equivalent:

(i) Λ is an internally chain-transitive set.

(ii) Λ is connected and internally chain-recurrent.

(iii) Λ is a compact invariant set and Φ|Λ has no proper attractors.

Proof. (i) ⇒ (ii): We only have to show that Λ is connected. Suppose on the
contrary that Λ ⊂ A∪B, where A,B are two disjoint open sets. Since Λ is compact,
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there exists some δ > 0 such that d(x, y) ≥ δ for all x ∈ Λ ∩ A and y ∈ Λ ∩ B.
This implies that there cannot be a (δ/2, T )-pseudo-orbit starting from Λ∩A and
ending in Λ ∩B.

The rest of the proof follows Benaïm’s.
(ii) ⇒ (iii): Suppose on the contrary that Λ admits a proper attractor A.

We show that A = Λ by showing that A is both closed and open relative to
Λ. Let W be a relatively open fundamental neighborhood of A, and suppose
that there is some p ∈ W \ A. What we show is that it is impossible to have
p ↪−→ p. Since A is an attractor, it is compact, and there exists a δ > 0 such that
Uδ := {x ∈ Λ : d(x,A) ≤ δ} satisfies Uδ ⊂ U2δ ⊂ W and Bδ(p) ⊂ W \ U2δ. Now,
since W is a fundamental neighborhood of A, we can choose T > 0 in such a way
that for all x ∈W , ΦT (x) ∈ Uδ. Therefore, any (δ, T )-pseudo-orbit starting from
Bδ(p), ends up in Uδ in the first step. Then, the next starting point shall be in
U2δ, and similarly for the rest of the pseudo-orbit. Thus, there is no chance to get
δ-close to p; a contradiction.

(iii) ⇒ (i): Take x ∈ Λ and δ, T > 0, and consider the set V of all points
y ∈ Λ such that (Φ|Λ : x ↪−→δ,T y). It is clear that the set V is open and satisfies
ΦT (V ) ⊂ V . Lemma 2.2 then implies that V contains an attractor. However, since
Λ has no proper attractors, it follows that V = Λ. Since this is true for all δ, T > 0,
the set Λ is internally chain-transitive.

An important example of an internally chain-transitive set is given by the
following proposition:

Proposition 2.4 (Ben99, Cor. 5.6). Let x ∈M. If γ+(x) has compact closure,
then ω(x) is internally chain-transitive.

2.3. ASYMPTOTIC PSEUDO-TRAJECTORIES AND
THE LIMIT SET THEOREM

One of the key notions of this chapter is that of an asymptotic pseudo-trajectory.

Definition 2.5. We say that a continuous curve x : R+ →M is an asymptotic
pseudo-trajectory of the flow Φ if, for all T > 0, it holds

lim
t→∞

sup
0≤h≤T

d(x(t+ h),Φh(x(t))) = 0, almost surely. (2.1)

In other words, for each fixed T > 0, the curve [0, T ] → M : s 7→ x(t + s)
shadows the forward orbit of the flow Φ started at x(t) over the interval [0, T ]
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with arbitrary accuracy for sufficiently large t. See Fig. 2.5 for an illustration. A
large portion of this thesis is devoted to proving such property for different classes
of algorithms.

x(t)

x(t+ T )

ΦT (x(t))

Figure 2.5. An illustration of an asymptotic pseudo-trajectory. The thick line depicts
an asymptotic pseudo-trajectory x. The thin lines are the orbits of the
flow Φ for a time duration of T started at different x(t)’s. As seen in the
figure, as time t passes, the curve x gets closer to being an orbit of Φ.

The main reason to consider asymptotic pseudo-trajectories is the following
theorem, known as the limit set theorem of Benaïm and Hirsch:

▶ Theorem 2.6 (Ben99, Thm. 5.7). Let X be a precompact asymptotic pseudo-
trajectory of the flow Φ. Then the limit set L(X) :=

⋂
t≥0 cl {X(s) : s ≥ t} of X

is an internally chain-transitive set.

Denote by C(R;M) the set of all M-valued continuous functions (i.e., the
space of all continuous curves on M), endowed with the topology of uniform
convergence on compact intervals. This topology is metrizable with the metric

d(f, g) :=

∞∑
k=1

1

2k
min(1, dk(f, g)), (2.2)

where dk(f, g) := supt∈[−k,k] d(f(t), g(t)).
The main idea of the proof is to “lift” the problem the larger space C(R;M)

and to consider the translation flow Θ in that space: For any curve X and any
t ∈ R, Θt maps the curve X to Θt(X), defined as

Θt(X)(s) = X(t+ s).

As it turns out, the translation flow and Φ will be topologically conjugate when
restricted to the set of orbits of Φ. This in turn implies that all topological
properties of our interest, such as internally chain-transitive sets, are preserved
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by this conjugacy; we only have to prove things for the translation flow and
automatically get results for the flow Φ. Below, we make this approach precise.

First, let us recall the notion of topological conjugacy for flows. Suppose Φ and
Ψ are two flows on the metric spacesM and N , respectively. We say Φ and Ψ are
topologically conjugate if there is a homeomorphism (i.e., a continuous bijection
with continuous inverse) h :M→N such that for all t ∈ R,

Ψ(t, h(x)) = h(Φ(t, x)), ∀x ∈M.

Notice that in this case, the orbits of Φ are homeomorphically mapped to orbits of
Ψ. Informally, topological conjugacy is a “change of variables” in the topological
sense.

Let SΦ ⊂ C(R;M) be the set of all orbits ϕp : t 7→ Φt(p). Define the homeo-
morphism H :M→ SΦ by H : p 7→ ϕp, i.e.,

H(p)(t) = ϕp(t) = Φt(p).

It is then evident that H creates a topological conjugacy between the translation
flow Θ|SΦ

restricted to SΦ and the flow Φ:

Θt|SΦ
(H(p)) = H(Φt(p)), ∀p ∈M.

Having this conjugacy at our disposal, our first task is to identify an equivalent
notion for the asymptotic pseudo-trajectory property in the space C(R;M).

Lemma 2.7 (Ben99, Lem. 3.1). A continuous function X : R+ → M is an
asymptotic pseudo-trajectory for Φ if and only if

lim
t→∞

d(Θt(X), Φ̂ ◦Θt(X)) = 0,

where Φ̂(X) = H(X(0)) = ϕX(0).

Note that Φ̂ : C(R;M)→ SΦ is a retraction, that is, a continuous mapping
from C(R;M) into the subspace SΦ that preserves the position of all points in
that subspace. Thus, we can interpret the lemma above in the following way: An
asymptotic pseudo-trajectory of Φ is a point of C(R;M) whose forward trajectory
under Θ is absorbed by SΦ. If, moreover, the asymptotic pseudo-trajectory X is
precompact, then the set of its translations will be precompact in C(R;M).

Theorem 2.8 (Ben99, Thm. 3.2). Let X : R+ → M be a continuous curve
with precompact image. If X is an asymptotic pseudo-trajectory, then the set
{Θt(X) : t ≥ 0} is precompact in C(R;M).
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We are now ready to prove Theorem 2.6.

Proof of Theorem 2.6. Since X is a precompact asymptotic pseudo-trajectory,
Theorem 2.8 implies that {Θt(X) : t ≥ 0} is precompact in C(R;M). Therefore,
Proposition 2.4 implies that the omega limit set ωΘ(X) of X under the translation
flow Θ is internally chain-transitive.

We now use the conjugacy (induced by H) between Θ|SΦ
and Φ. Note that

chain-transitivity is preserved under conjugacy, and therefore, if we show that

H(L(X)) = ωΘ(X),

then we get that L(X) is internally chain-transitive, and we are done. We prove
this by showing that each side is a subset of the other.

Take p ∈ L(X). This means that p = limtk→∞X(tk) for some sequence {tk}.
As {Θt(X) : t ≥ 0} is precompact, after taking a subsequence, we can assume that
Θtk(X)→ Y ∈ C(R;M). Since by Lemma 2.7, limtk→∞ d(Θtk(X), Φ̂ ◦Θtk(X)) =

0, we deduce that Y = Φ̂(Y ) = H(Y (0)) = H(p). Thus, H(L(X)) ⊆ ωΘ(X).
To show the other direction, take Y ∈ ωΘ(X). That is, Y = limtk→∞ Θtk(X).

Using Lemma 2.7 again shows that Φ̂(Y ) = Y , which means that Y = H(Y (0)) =
ϕq for some q ∈ M. Moreover, q = Y (0) = limtk→∞X(tk). That is, q ∈ L(X).
Thus, ωΘ(X) ⊆ H(L(X)), and we are done.

2.4. GRADIENT-LIKE SYSTEMS

We now turn our attention to an important category of flows: those originating
from gradient-like systems. Fundamentally, any gradient-like system is associated
with a concept of “energy” that dissipates along the flow trajectories. When a flow
is derived from the gradient of a potential function, it evidently adheres to this
dissipation property. However, it is important to note that this is not the only
way such systems can exhibit energy dissipation.

A broader framework to understand this dissipation property is given by Lya-
punov functions. Lyapunov functions provide a generalized method to demonstrate
that the energy of the system decreases along the flow, ensuring the system’s
stability. In this section, we will explore the concept of Lyapunov functions in
detail and discuss their application in characterizing the internally chain-transitive
sets of gradient-like systems.

Definition 2.9. Let Λ ⊂ M be a compact invariant set of the semi-flow Φ. A
continuous function f :M→ R is called a Lyapunov function for Λ if the function
t ∈ R+ 7→ f(Φt(x)) is strictly descreasing for x ∈M\Λ and is constant for x ∈ Λ.



§ 2.5 EUCLIDEAN STOCHASTIC APPROXIMATION 25

In the case where Λ is the set of equilibria of Φ, f is called a strict Lyapunov
function and the flow Φ is called a gradient-like system.

Theorem 2.10. Let Λ ⊂M be a compact invariant set and let f be a Lyapunov
function for Λ. If f(Λ) ⊂ R has empty interior, then any internally chain-transitive
set L is contained in Λ. Moreover, f |L is constant.

Proof. First, we show that L ∩ Λ ̸= ∅ and

inf
x∈L

f(x) = inf
x∈L∩Λ

f(x).

For this, take x ∈ L. Since by assumption, f(Φt(x)) is nonincreasing as a function
of t and is bounded from below by the infimum of f over the compact set L, it
has a limit f∞(x) = limt→∞ f(Φt(x)) ∈ R. Moreover, for any point p ∈ ω(x),
continuity of f implies that f(p) = f∞(x). Thus,

f(p) = f∞(x) ≤ f(x), ∀p ∈ ω(x).

Since ω(x) is an invariant set (Lemma 2.1) and f is constant on trajectories in
ω(x), we conclude that ω(x) ⊂ Λ. Having in mind that L is compact and invariant
itself, we know that ω(x) ⊂ L. Therefore, we conclude that ω(x) ⊂ L ∩ Λ and
thus, L ∩ Λ ̸= ∅. Moreover, as f(x) ≥ f(p) for all p ∈ ω(x), we deduce that
infx∈L f(x) = infx∈L∩Λ f(x) =: v

∗.
Since by assumption, f(Λ) has empty interior, there exists a decreasing sequence

{vn}, so that vn → v∗ and vn ̸∈ f(Λ). Let Ln = {x ∈ L : f(x) < vn}. As f
is a Lyapunov function, we find that Φt(Ln) ⊂ Ln for all t > 0. Lemma 2.2
then implies that there exists some attractor A ⊆ Ln whose basin contains Ln.
However, since L is internally chain-transitive, it cannot have any proper attractors
(Proposition 2.3). The only possibility that remains is that Ln = L for all n and
f(x) = v∗ for all x ∈ L. As L is invariant, this also implies that L ⊂ Λ.

2.5. EUCLIDEAN STOCHASTIC APPROXIMATION

In this section, we explain how to prove that a curve is an asymptotic pseudo-
trajectory in the Euclidean setting. While this result is well-known and classical [see
Ben99, Sec. 4], we present this proof to illustrate the core intuitions and arguments
involved, along with the general structure of such proofs. Understanding this
structure in its simplest form is beneficial for proofs that follow in the subsequent
chapters.
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Let us first describe the setup. Suppose V is a complete vector field in Rd, that
is, the ordinary differential equation ẋ(t) = V (x(t)) has a unique solution for all
initial values and the solution exists for all t ≥ 0. Consider the iterates x0,x1, . . .
of a Robbins–Monro stochastic approximation algorithm

xn+1 = xn + αn+1(V (xn) + Zn+1) (2.3)

for finding the zeros of V , where Zn+1 is a deterministic or random perturbation,
and αn+1 is a deterministic step-size. Let the filtration Fn encode all the informa-
tion available at iteration n, that is, Fn = σ({xk, Zk}, k = 0, 1, . . . , n). With this,
it is convenient to decompose Zn+1 as

Zn+1 = Un+1 +Bn+1,

where Un+1 = Zn+1−E[Zn+1 | Fn] is the zero-mean stochastic noise, and Bn+1 =
E[Zn+1 | Fn] is the (systematic) bias. The role of the noise and bias is going to be
asymmetric and the set of assumptions for each is different.

Our main objective is to show—under some assumptions that will follow—
that the asymptotic behavior of the sequence {xn}n≥0 is determined by the flow
of the vector field V . We already know one such result: the limit-set theorem
(Theorem 2.6). To use this theorem, though, we have to first construct a continuous-
time curve that interpolates the iterations {xn}n≥0, and its convergence to some
set implies the convergence of the iterates to that set. For the Euclidean setting,
the interpolation is rather straightforward. Specifically, by defining the “effective
time” variables

τn =

n−1∑
k=1

αk,

we can construct the piecewise-linear interpolation

x(t) = xn +
t− τn

τn+1 − τn
(xn+1 − xn) for all t ∈ [τn, τn+1], n ∈ N. (2.4)

We use the same symbol for this interpolation and the iterates and differentiate
between them by using subscripts for the discrete-time iterates and parenthesis
for the continuous-time counterpart. It is also convenient to define the “inverse” of
the map n 7→ τn as

m(t) = sup{n ≥ 0 : τn ≤ t}. (2.5)

Let us now state the main assumptions and the result we are about to prove:

Theorem 2.11 (Ben99, Prop. 4.1). Let V be an L-Lipschitz vector field. Assume
that
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(A1) supn∥xn∥ <∞ or V is bounded on the iterates {xn},

(A2) the bias terms Bn vanish almost surely as n→∞,

(A3) the noise terms Un have the cancellation property; that is, for any T > 0,

lim
n→∞

max

{∥∥∥∥∥
k−1∑
i=n

αi+1Ui+1

∥∥∥∥∥ : k = n+ 1, . . . ,m(τn + T )

}
= 0. (2.6)

Then, the piecewise-linear interpolated curve x defined in (2.4) is an asymptotic
pseudo-trajectory of the flow Φ induced by V . That is, for any T > 0,

lim
t→∞

sup
0≤h≤T

∥x(t+ h)− Φh(x(t))∥ = 0. (2.7)

Remark 2.1. A few remarks on the assumptions are in order:

(1) We take the vector field to be Lipschitz only for convenience and simplicity of
the argument. Indeed, Benaïm proves the theorem above for continuous and
complete vector fields. A more refined analysis is also provided in [Ben99,
Prop. 4.1] for vector fields that are Lipschitz and bounded on a neighborhood
of the iterates {xn : n ≥ 0}.

(2) Boundedness of the iterates in (A1) is a rather practical assumption: in
practice, the iterates of a stochastic approximation algorithm are expected
not to blow up to infinity. In the literature, this property is also called
stability of the algorithm, and there are specific criteria to assess such
property. For example, having a Lyapunov function is most of the time
sufficient to ensure stability.

(3) The assumption on the bias (A2) is required as there might be no cancellation
of the bias terms in the long run, making convergence analysis rather
challenging. The upside is that this assumption is satisfied by a large range
of algorithms used in practice. Throughout this thesis, we will see many
instances of practical algorithms, all of which satisfy (A2).

(4) We will discuss the assumption (A3) on the noise and ways to verify it in
detail in Section 2.5.1 below. ♢

Let us now go ahead and see how these simple assumptions imply the strong
asymptotic pseudo-trajectory property. The proof we present here is modified
from Benaïm’s proof.
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Let us start by defining the continuous-time piecewise-constant processes

x(t) = xm(t), α(t) = αm(t)+1, Z(t) = Zm(t)+1.

We also define B and U similar to Z. Using this notation, we can rewrite the
interpolation (2.4) in an integral form:

x(t) = x(0) +

∫ t

0

(V (x(s)) + Z(s)) ds. (2.8)

As (2.7) suggests, for fixed t ≥ 0 and T > 0, we need to compare—in supremum
norm—the [t, t+ T ]-segment of the interpolation x with the orbit of the flow Φ
starting at x(t) up to time T . We must subsequently show that this distance
almost surely vanishes as t→∞.

A crucial idea for facilitating this comparison is to construct another curve
based on the interpolation and the flow, which lies between the interpolation and
the orbit of the flow. A suitable candidate for this curve is the Picard iteration
applied to the interpolation. Given a continuous curve X : [a, b]→ Rd, a Picard
iteration is the result of applying the operator LV : C([a, b];Rd)→ C([a, b];Rd)
on the curve X. This operator keeps the initial point of the curve fixed, and
satisfies

LV (X)(t) = X(a) +

∫ t

a

V (X(s)) ds, ∀t ∈ [a, b]. (2.9)

From standard analysis concerning the existence and uniqueness of solutions to
ODEs, we know that the Picard iteration introduces a contraction in the space of
continuous functions. For our purposes, even a single Picard iteration is sufficient
to provide information about the proximity of the interpolation to the flow orbit.
A very important remark here, however, is that this notion only makes sense in
the Euclidean setting: on other spaces, there is no a priori way to integrate vector
fields arbitrarily.

Proof of Theorem 2.11. Let us fix t, T > 0 and define the curve λ =
LV (x|[t,t+T ]), which is the result of a Picard iteration applied to the [t, t + T ]-
segment of the interpolation x. The proof follows by showing that the Picard
curve is close to both interpolation and the orbit of flow; making the orbit and
interpolation close by the triangle inequality.

For any h ∈ [0, T ], define ϕ(h) = Φh(x(t)). We then have

∥ϕ(h)− x(t+ h)∥ ≤ ∥ϕ(h)− λ(h)∥+ ∥λ(h)− x(t+ h)∥. (2.10)

We bound each term from above individually. For the first term, we can use the
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integral representation of both the flow orbit and the Picard curve to get

∥λ(h)− ϕ(h)∥ =
∥∥∥∥∫ h

0

(V (x(t+ s))− V (ϕ(s))) ds

∥∥∥∥ ≤ L∫ h

0

∥x(t+ s)− ϕ(s)∥ ds,

where we used the Lipschitzness of the vector field V . The similarity of the right-
hand side of this bound with the left-hand side of (2.10) makes it convenient later
to use Grönwall’s lemma.

The second term of (2.10) is where the noise and bias come in. By the integral
formulation of the interpolation (2.8) and Lipschitzness of V , we have

∥x(t+ h)− λ(h)∥ =
∥∥∥∥∫ t+h

t

V (x(s)) + Z(s)− V (x(s)) ds

∥∥∥∥
= L

∫ t+h

t

∥x(s)− x(s)∥ ds+
∥∥∥∥∫ t+h

t

Z(s) ds

∥∥∥∥. (2.11)

Let us define

∆Z(t, T ) = sup
h∈[0,T ]

∥∥∥∥∫ t+h

t

Z(s) ds

∥∥∥∥ (2.12)

to be the worst-case effect of the accumulated noise and bias during the time
interval [t, t + T ]. We will treat this term later in Section 2.5.1, and show that
it vanishes almost surely as t → ∞. For now, let us assume that ∆Z(t, T ) → 0.
Continuing with the first integral in (2.11), we have to bound the distance of
the interpolation from the iterations inside each interpolating interval. For any
t ≤ s ≤ t+ T we have

∥x(s)− x(s)∥ =
∥∥∥∥∫ s

τm(s)

V (x(u)) + Z(u) du

∥∥∥∥.
Now we use the boundedness of the iterates or the vector field. Suppose that
supn∥V (xn)∥ ≤ K, which holds in either case. Then, we can bound the last term
further as ∥∥∥∥∫ s

τm(s)

V (x(u)) + Z(u) du

∥∥∥∥ ≤ Kα(s) +
∥∥∥∥∥
∫ s

τm(s)

Z(u) du

∥∥∥∥∥.
The first term vanishes as t→∞. The second term, however, needs some treatment.
While it is merely the effect of a single noise and bias term (and vanishes as t→∞
because of our assumptions), as we later take the supremum over h, it becomes
unclear if the supremum vanishes as well. Therefore, it is plausible to bound this
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term by something that only depends on t and T ; taking the supremum in this
case has no effect. For large enough t, we can assume that α(s) < 1, and we have∥∥∥∥∫ s

τm(s)

Z(u) du

∥∥∥∥ ≤ ∥∥∥∥∫ τm(s)

t−1

Z(u) du

∥∥∥∥+ ∥∥∥∥∫ s

t−1

Z(u) du

∥∥∥∥ ≤ 2∆Z(t− 1, T + 1).

Therefore,

sup
s∈[t,t+T ]

∥x(s)− x(s)∥ ≤ K sup
s∈[t,t+T ]

α(s) + 2∆Z(t− 1, T + 1).

Estimating the integral in (2.11) with the supremum of its argument gives

∥x(t+ h)− λ(h)∥ ≤ KLT sup
h∈[0,T ]

α(t+ h) + 2LT∆Z(t− 1, T + 1) + ∆Z(t, T ).

Let At be the right-hand side of the bound above. Putting it all together, we
obtain using Grönwall’s lemma that

∥x(t+ h)− ϕ(h)∥ ≤ L
∫ h

0

∥x(t+ s)− ϕ(s)∥ ds+At ≤ ehLAt.

Therefore,
sup

h∈[0,T ]

∥x(t+ h)− ϕ(h)∥ ≤ eTLAt.

Recalling that At → 0 almost surely as t→∞, finishes the proof.

2.5.1. Cancellation Property of Noise
The probabilistic part of the proof is controlling the worst-case (i.e., supremum)
accumulation of noise and bias from time t to t+ T and showing that for every
fixed T > 0, it almost surely vanishes as t→∞. We already have seen this term
in the proof above, where we introduced ∆Z in (2.12).

We begin by decomposing this error into separate noise and bias terms and
deal with the bias first, which is easier. For any fixed t ≥ 0 and T > 0, observe
that

∆Z(t, T ) ≤ sup
h∈[0,T ]

∥∥∥∥∫ t+h

t

U(s) ds

∥∥∥∥+ sup
h∈[0,T ]

∥∥∥∥∫ t+h

t

B(s) ds

∥∥∥∥.
As the bias is assumed to vanish almost surely (see (A2) in Theorem 2.11), we
have that sups≥t∥B(s)∥ =: B∗(t) → 0 almost surely as t → ∞. Therefore, as
the second term in the bound above is bounded by TB∗(t), it goes to zero with
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probability 1. Thus, we are left with the accumulation of the noise:

∆(t, T ) := sup
h∈[0,T ]

∥∥∥∥∫ t+h

t

U(s) ds

∥∥∥∥.
Note that controlling this term is essentially the same as (2.6) in (A3) by setting
n = m(t):

max

{∥∥∥∥∥
k−1∑
i=n

αi+1Ui+1

∥∥∥∥∥ : k = n+ 1, . . . ,m(τn + T )

}
(2.13)

The reason is that the curve h 7→
∫ t+h
t

U(s) ds is piecewise-linear and the supre-
mum of its norm is only attained at either of its endpoints or one of the times
{τk : t ≤ τk ≤ t+ T}.

Let us outline the strategy for controlling this quantity. First, we realize
that the sequence

∑k
i=n αnUn is a martingale (for k = n, n + 1, . . .). Then, we

control one of its moments via the Burkholder inequality—a generalization of
Doob’s maximal inequality for moments other than 2. The choice of moment
will be dictated by the rate of decrease of the step-size sequence {αn}. We then
use Markov’s inequality to control the probability that the maximum norm of
this martingale goes above some threshold. Converting this to an almost sure
convergence of the martingale is done via a simple Borel–Cantelli argument. Below,
we explain these steps in more detail.

Recall that a sequence of integrable random variables {Mn}n∈N is called a
martingale adapted to the filtration {Fn}, if

E[Mn+1 | Fn] =Mn, a.s. for all n.

A filtration is an increasing sequence of σ-algebras, i.e., Fn ⊆ Fn+1 for all n. For
simplicity, we assume all martingales start at 0, that is, M0 = 0, a.s.

Several martingale inequalities can be used to bound the excursions of stochastic
approximation processes. The first one is the Doob’s L2 inequality [see, e.g., Str10],
which states for all N ∈ N,

E
[
sup
n≤N
∥Mn∥2

]
≤ 4E ∥MN∥2.

This can be very useful, as it allows controlling the whole trajectory of the
martingale up until N via the law of MN only. A similar result for moments other
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than 2 is due to Burkholder [see Str10, Thm. 6.3.6] that states

E
[
sup
n≤N
∥Mn∥p

]
≤ Cpp E

( N∑
n=1

∥Mn −Mn−1∥2
)p/2, (2.14)

where Cp is some universal constant depending only on p. Notice that for p = 2,
the right-hand side of the Burkholder inequality becomes exactly the right-hand
side of Doob’s L2 inequality after setting Cp = 2; this is because

E[∥Mn+1 −Mn∥2 | Fn] = E[∥Mn+1∥2 | Fn]− 2⟨Mn,E[Mn+1 | Fn]⟩+ ∥Mn∥2

= E[∥Mn+1∥2 | Fn]− ∥Mn∥2,

and the summation becomes a telescopic sum.
Let us also remind the reader of the Borel–Cantelli’s lemma:

Lemma 2.12 (Borel–Cantelli). Let {A1, A2, . . .} be a set of events in some
probability space. If

∞∑
n=1

P[An] <∞,

then the probability that An happens infinitely often is zero. That is, there exists
some random N0, so that for all n ≥ N0, An does not happen.

Below, we show that the Burkholder inequality in tandem with Borel–Cantelli’s
lemma implies that ∆(t, T ) vanishes almost surely as t→∞.

Proposition 2.13 (Ben99, Prop. 4.2). Let Un be a martingale difference sequence
adapted to the filtration Fn. Suppose that for some p ≥ 2,

sup
n

E ∥Un∥p <∞, and
∞∑
n=1

α1+p/2
n <∞.

Then, for every fixed T > 0, the quantity ∆(t, T ) defined in (2.13) vanishes almost
surely as t→∞.

Proof. The proof is from Benaïm [Ben99]. Let n = m(t) and define the martingale
sequence for k ≥ n

Mk := αnUn + · · ·+ αkUk.

Recall the definition of ∆(t, T ):

∆(t, T ) := max
n≤k≤N

∥Mk∥,
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where we have defined N = m(τn + T ). Using the Burkholder inequality (2.14),
we get

E[∆(t, T )p] = E
[

max
n≤k≤N

∥Mk∥p
]
≤ Cpp E

( N∑
k=n

α2
k∥Uk∥2

)p/2. (2.15)

To get a simpler formulation of the right-hand side for the case where p > 2, we
use Hölder’s inequality1 in the following way: Let q = p/2 and δ ∈ (0, 1). Then,
rewrite α2

k∥Uk∥2 = xkyk, with xk = α
2(1−δ)
k ∥Uk∥2 and yk = α2δ

k . Thus,(
N∑
k=n

α2
k∥Uk∥2

)q
≤

(
N∑
k=n

α
2q(1−δ)
k ∥Uk∥2q

)(
N∑
k=n

α
2δq/(q−1)
k

)q−1

.

Choosing δ = (p− 2)/(2p) makes the exponent 2δq/(q − 1) = 1, and we get(
N∑
k=n

α2
k∥Uk∥2

)q
≤

(
N∑
k=n

α
1+p/2
k ∥Uk∥p

)(
N∑
k=n

αk

)p/2−1

≤ T p/2−1
N∑
k=n

α
1+p/2
k ∥Uk∥p.

Plugging this estimate back into (2.15) gives

E[∆(t, T )p] ≤ CppT p/2−1 E

[
N∑
k=n

α
1+p/2
k ∥Uk∥p

]
= CppT

p/2−1
N∑
k=n

α
1+p/2
k E ∥Uk∥p.

Since supn E ∥Un∥p <∞ by assumption, we have

E[∆(t, T )p] ≤ C(p, T )
N∑
k=n

α
1+p/2
k = C(p, T )

∫ t+T

t

α(s)p/2 ds, (2.16)

for some constant C(p, T ) depending on p and T . Notice that for p = 2, applying
Hölder’s inequality is not needed and one directly gets (2.16).

1 For all q > 1, let q̄ = q/(q − 1) to be the Hölder conjugate of q, that is, 1/q + 1/q̄ = 1. Then
for any two vectors x, y ∈ Rd, |⟨x, y⟩| ≤ ∥x∥q∥y∥q̄ . In other words,∣∣∣∑xiyi

∣∣∣q ≤
(∑

|xi|q
)(∑

|yi|q/(q−1)
)q−1
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Guided by our assumption that the series
∑
n α

1+p/2
n is summable, we are

in the position to apply the Borel–Cantelli argument. Summing over all time
windows of length T gives

∑
k≥0

E[∆(kT, T )p] ≤ C(p, T )
∫ ∞

0

α(s)p/2 ds = C(p, T )

∞∑
n=1

α1+p/2
n <∞.

Let ε > 0 be arbitrary. We have by Markov’s inequality

P[∆(kT, T ) ≥ ε] = P[∆(kT, T )p ≥ εp] ≤ E[∆(kT, T )p]

εp

Therefore, ∑
k≥0

P[∆(kT, T ) ≥ ε] <∞.

By the Borel–Cantelli lemma, there exists a k0 such that for all k ≥ k0, it holds
with probability 1 that ∆(kT, T ) < ε. This means that

lim
k→∞

∆(kT, T ) = 0

almost surely. This also implies that ∆(t, T ) → 0 as t → ∞, since for t ∈
[kT, (k + 1)T ), it holds

∆(t, T ) ≤ 2∆(kT, T ) + 2∆((k + 1)T, T ).



CHAPTER THREE

STOCHASTIC APPROXIMATION ON
RIEMANNIAN MANIFOLDS

In this chapter, we examine stochastic approximation algorithms that are defined
on Riemannian manifolds. These algorithms are either designed to find the zeros
of a vector field on a Riemannian manifold given noisy and incomplete evaluations
thereof, or model adaptive behavior on a Riemannian state space. Our main objec-
tive in this chapter is to formally define stochastic approximation on Riemannian
manifolds, and prove convergence to desirable limits under suitable conditions.
We specifically prove that under mild conditions, the iterates of these algorithms
form an asymptotic pseudo-trajectory of the underlying flow, and find sufficient
conditions that imply stability.

Originality. Main results of this chapter are published in the conference proceedings [Kar+22]
as an extended abstract. However, there are considerable differences between this chapter and
the mentioned publication, in notation, proofs, and content.
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LIST OF IMPORTANT RESULTS

▶ Theorem 3.4. The iterates of a stochastic approximation algorithm on a
Riemannian manifold constitutes an asymptotic pseudo-trajectory for the
corresponding flow.

▶ Corollary 3.5. If the iterates of a stochastic approximation algorithm on
a Riemannian manifold are precompact, they almost surely converge to an
internally chain-transitive set of the flow.

▶ Theorem 3.6. For a Hadamard manifold and weakly coercive and bounded
vector fields, the iterates of a stochastic approximation algorithm stay
bounded.

▶ Lemma 3.12. A comparison theorem bounding the difference between the
coordinates of a tangent vector in a normal and a parallel frame.
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3.1. INTRODUCTION

In this chapter, we delve into one of the fundamental problems of nonlinear
analysis: root-finding on Riemannian manifolds. Formally, our goal is to address
the problem:

Find p ∈M such that V (p) = 0, (∗)

whereM denotes a d-dimensional Riemannian manifold and V is a vector field
defined on M. Root-finding problems of this nature are not only theoretically
significant but also have a wide range of applications in various scientific fields. For
instance, local optimization falls into this category by setting V = −∇f for some
smooth function f onM. For comprehensive insights and foundational knowledge
about optimization algorithms on manifolds and their applications, the reader is
encouraged to consult the books by Absil, Mahony, and Sepulchre [AMS08] and
Boumal [Bou23].

The importance of the generalized root-finding problem (∗) extends beyond
traditional optimization tasks, encapsulating countless applications in machine
learning, game theory, and beyond. Practical instances include bi-level and saddle
point problems, dynamic programming, and equilibrium finding in games.

As we transition from Euclidean to Riemannian settings, it is crucial to note the
inherent complexities and differences that arise. Firstly, the iterative algorithms for
solving (∗) are influenced by the geometric structure of the manifold. For instance,
in the Euclidean context (M = Rd) the Robbins–Monro stochastic approximation
algorithm

xn+1 = xn + αn(V (xn) + Zn) (3.1)

is highly effective for root-finding and optimization. However, this update relies
heavily on the linear structure of the Euclidean space, making its direct application
in Riemannian settings infeasible. The curved geometry of Riemannian manifolds
necessitates modifications to the update rule—as well as the theoretical proofs—to
accommodate the manifold’s intrinsic properties.

Our primary aim in this chapter is to bridge the gap between Euclidean and
Riemannian stochastic approximation schemes. We achieve this by replacing the +
operation in (3.1) with the Riemannian exponential map, or more generally—and
often more feasibly—a retraction. In Riemannian optimization, this methodology
was first explored by Bonnabel [Bon13] for cases where the vector field V is the
Riemannian gradient of an objective function. Subsequent studies expanded on
Bonnabel’s results specifically for Riemannian stochastic gradient descent (SGD)
and Riemannian proximal point methods; see the bibliographic notes at the end
of this chapter for references and pointers to these studies.

This body of literature exclusively considers cases where V is a gradient field
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and the results do not apply to general, non-gradient instances. There are, however,
partial extensions to the non-gradient case. For instance, there is an array of works
studying Riemannian extra-gradient methods under the assumption of geodesic
monotonicity [see, e.g., FPN05]. Geodesic monotonicity is a strong, convexity-type
assumption asserting that V globally points towards its roots in a suitable sense.

In our work, we do not assume geodesic monotonicity. Instead, we directly
analyze the dynamics of Riemannian Robbins–Monro methods for general vector
fields. Our main contributions are as follows:

(1) We propose a generalized framework that encompasses all previously men-
tioned methods (Riemannian SGD, extra-gradient, proximal point method,
etc.) as special cases, and opens the possibility to introduce new stochastic
approximation schemes for the root-finding problem (∗).

(2) Under mild technical conditions on the manifold, we demonstrate that
the sequence of the iterates of the algorithm forms an asymptotic pseudo-
trajectory of an associated deterministic flow.

This result extends the foundational theory by Benaïm and Hirsch [BH96]
for Euclidean Robbins–Monro schemes to Riemannian settings, enabling us to
establish the almost sure convergence of Riemannian Robbins–Monro schemes
to the internally chain-transitive sets of the underlying Riemannian dynamics.
If V is gradient-like or strictly monotone, these internally chain-transitive sets
correspond to the roots of V , thus recovering many asymptotic convergence results
from earlier works, often under less restrictive assumptions. Furthermore, our
framework, as discussed in Section 3.3, applies to various settings beyond gradient
or monotone systems—such as non-convex potential games—and encompasses a
wider class of stochastic approximation algorithms.

Given the absence of linear structure on M, our primary challenge is the
lack of a coordinate system suitable for analyzing the trajectories of Riemannian
stochastic approximation algorithms. Unlike in Rd, points and vectors on manifolds
follow fundamentally different rules and must be compared with extra care. To
overcome this challenge, we introduce a Fermi coordinate system, inspired by
Manasse and Misner [MM63]. This framework allows us to demonstrate that
Riemannian stochastic approximation schemes achieve similar error bounds to
those in Euclidean spaces, albeit with some higher-order terms that diminish
over time. Controlling the aggregation and propagation of these errors involves
applying martingale theory, which ultimately results in the convergence properties
discussed.
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Chapter Roadmap
This chapter establishes the framework for formulating and analyzing stochastic
approximation algorithms within a Riemannian context.

We begin in Section 3.2 by reviewing foundational concepts and notations
in differential and Riemannian geometry. In Section 3.3, we provide specific
examples of stochastic approximation on Riemannian manifolds, illustrating the
practical relevance and challenges of nonlinear root-finding in machine learning
and games. In Section 3.4, we discuss the adaptation of iterative methods to
manifold settings, state our assumptions, and present two main theorems: one
regarding the asymptotic pseudo-trajectory property and one about the stability
of a stochastic approximation algorithm. An extensive proof of these two theorems
is presented in Sections 3.5 and 3.6. In Section 3.7, we analyze the convergence
behavior of four widely used stochastic approximation algorithms that satisfy our
assumptions. Section 3.8 discusses two algorithmic variations—retractions and
alternation—used in practice. Retraction is an approximation of the exponential
map, and alternation is relevant in multiplayer game settings where players update
their states sequentially. We show that these variations introduce extra bias, which
can be managed similarly to other types of bias. We explore practical implications
of our main theorems for optimization and games in Section 3.9 and conclude
the chapter in Section 3.10. References and further reading are provided in the
bibliographic notes at the end of the chapter.

3.2. A CRASH COURSE ON RIEMANNIAN GEOMETRY

In this section, we introduce some key concepts from differential and Riemannian
geometry. Our primary purpose is to establish notational conventions and briefly
mention essential ideas and notions that are used in the sequel. To maintain
clarity and conciseness, we opt for a presentation style that does not delve into
rigorous definitions for certain concepts. The content of this section reflects a
highly subjective selection and is by no means comprehensive. For readers seeking
a more thorough grounding in differential and Riemannian geometry, we strongly
recommend consulting the masterpieces of Lee [Lee12; Lee18], Jost [Jos17], and
do Carmo [Car92].

3.2.1. Charts and Tangent Vectors
We start with the basics of differential geometry. This includes the notion of a
smooth manifold, charts, and tangent vectors. The reader that is not acquainted
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with differential geometry can safely think about a smooth manifold as a “smooth”
subset of some Euclidean space.

Smooth manifolds. A d-dimensional topological manifold M is a topological
space that locally looks like some open set in Rd. This means that for every point
p ∈ M, there exists a neighborhood U ⊂ M and a homeomorphism φ between
U and some open set in Rd; that is, φ is a continuous bijection with continuous
inverse. We call (U , φ) a coordinate chart (or simply a chart), as it assigns d
coordinates to each point in U . A collection of charts whose domains coverM is
called an atlas forM.

To be able to do differential calculus on the manifold, we need to enforce some
differentiability conditions on the atlas. An atlas is called a smooth atlas if any two
charts (U , φ) and (V, ψ) in that atlas are smoothly compatible, which means that
either the domains of φ and ψ are disjoint, or the map ψ ◦φ−1 is a diffeomorphism
on its domain, i.e., ψ ◦ φ−1 : φ(U ∩ V) → ψ(U ∩ V) is a smooth bijection with
smooth inverse. The word “smooth” in this thesis means C∞. However, in many
contexts, one can replace C∞ with Ck for some k ≥ 1, and state the same results
for manifolds with a Ck atlas.

Tangent vectors. A function f : M → R is smooth if for any chart φ, the
function f ◦ φ−1 is smooth in the Euclidean sense. We denote by C∞(M) the set
of all smooth functions defined on the manifoldM. A linear map v : C∞(M)→ R
is called a derivation at p, if it satisfies the Leibniz rule:

v(fg) = f(p)v(g) + g(p)v(f), for all f, g ∈ C∞(M).

The set of all derivations at p is called the tangent space at p and is denoted by
TpM. We call a derivation v ∈ TpM a tangent vector at p. It turns out that the
tangent space at any point is a vector space of the same dimension as M.

In the special case where M = Rd, there are d derivations that we know from
calculus: for a ∈ Rd, define the derivations ∂/∂x1|a, . . . , ∂/∂xd|a via

∂

∂xi

∣∣∣∣
a

f =
∂f

∂xi
(a) for i = 1, . . . , d and all f ∈ C∞(Rd), (3.2)

where the right-hand side is the usual partial derivative. In this case, {∂/∂xi|a}
forms a basis of TaRd.

Let F :M→N be a smooth map between two manifolds M and N . That is,
for any point p ∈M along with a chart φ around p, and a chart ψ around F (p)
in N , the function ψ ◦ F ◦ φ−1 is a smooth function between two open sets in
the Euclidean sense. The differential of F at the point p ∈ M evaluated at the
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tangent vector v ∈ TpM is the derivation dFp(v), defined as

dFp(v)(f) = v(f ◦ F ), for all f ∈ C∞(N ). (3.3)

This means that dFp : TpM → TF (p)N . As a coordinate chart (U , φ) is a dif-
feomorphism between U and φ(U), its differential dφp : TpM→ Tφ(p)Rd at any
point p becomes a vector space isomorphism. Let ∂/∂x1|φ(p), . . . , ∂/∂xd|φ(p) be
the basis for Tφ(p)Rd defined as in (3.2). The preimage of these tangent vectors
under dφp forms a basis for TpM, denoted by the similar notation ∂/∂xi|p:

∂

∂xi

∣∣∣∣
p

= (dφp)
−1

(
∂

∂xi

∣∣∣∣
φ(p)

)
= d(φ−1)φ(p)

(
∂

∂xi

∣∣∣∣
φ(p)

)
.

We also write ∂i|p for ∂/∂xi|p. The basis {∂/∂x1|p, . . . , ∂/∂xd|p} is sometimes
called the basis of TpM induced by the coordinate chart φ. The action of these
basis vectors on smooth functions is simply

∂

∂xi

∣∣∣∣
p

f =
∂

∂xi

∣∣∣∣
φ(p)

(f ◦ φ−1) =
∂f̂

∂xi
(p̂), for all f ∈ C∞(U),

where f̂ = f ◦ φ−1 and p̂ = φ(p) are the coordinate representations of f and p,
respectively. We can also express any tangent vector in this basis: v =

∑
vi ∂
∂xi |p,

and call vi the ith component of v in this basis. The components can be computed
using the coordinate functions: writing φ(p) = (x1(p), . . . , xd(p)) with xi : U → R,
we have that

vi = v(xi). (3.4)

Curves and their velocity. By a smooth curve on M we mean a smooth
function γ from an open interval I ⊂ R toM. It is customary to denote the basis
tangent vector of I at t0 ∈ I by ∂/∂t|t0 . Being a smooth map, the differential
dγt0 : Tt0I → Tγ(t0)M satisfies

dγt0

(
∂

∂t

∣∣∣∣
t0

)
(f) =

∂

∂t

∣∣∣∣
t0

(f ◦ γ) = d(f ◦ γ)
dt

(t0), (3.5)

where the last quantity is the usual time derivative of the function f ◦ γ : I → R.
Inspired by this, we call the tangent vector dγt0(∂/∂t|t0) the velocity vector of γ
at time t0 and denote it by γ̇(t0).

Now consider a coordinate chart around γ(t0), and for t close to t0 let us denote
the coordinates of γ(t) as γ̂(t) = (γ1(t), . . . , γd(t)). Using Eqs. (3.4) and (3.5), we
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have

γ̇(t) =
∑

γ̇i(t)
∂

∂xi

∣∣∣∣
γ(t)

, with γ̇i(t) = γ̇(t)(xi) =
d(xi ◦ γ)

dt
=
dγi

dt
(t). (3.6)

This shows that γ̇(t) is essentially given by the same formula as in Euclidean
spaces: it is the tangent vector whose components in a coordinate basis are the
derivatives of the component functions of γ(t).

Vector fields. By “gluing” all tangent spaces at different points of a manifold
M, one obtains the tangent bundle TM. Concretely, the tangent bundle is the
disjoint union

TM =
⊔
p∈M

TpM,

and is a smooth manifold of dimension 2d. The elements of TM can be thought
of as tuples (p, v), where p ∈ M is called the base point of (p, v) and v ∈ TpM.
We let π to be the function that projects a point (p, v) in the tangent bundle to
its base point p. When the base point is clear from the context, we only use v to
denote an element of TM.

A smooth vector field is a “smooth assignment” of a tangent vector at every
point of the manifold. More precisely, it is a smooth function V fromM to TM,
such that π ◦ V is the identity map onM. We denote by X(M) the space of all
smooth vector fields onM.

There are two algebraic operations that relate vector fields to C∞(M). Firstly,
one can multiply a vector field V by a smooth function f to obtain a new vector
field:

(fV )(p) := f(p)V (p).

This operation simply scales the vector field at each point as dictated by the value
of the function at that point. Secondly, one can apply a vector field V to a smooth
function f to obtain a new smooth function:

(V f)(p) := V (p)(f).

That is, the value of the V f at the point p is the result of applying the derivation
V (p) to f . We usually denote by V (p) the value of the vector field at the point p.
In some places (for example, when describing the Fermi coordinates in Section 3.5),
we use the notation Vp, and reserve V (f) for the applying a vector field to a
function f for better readability.

For a smooth function f :M→ R and a pair of vector fields X,Y ∈ X(M),
consider the functions X(Y f) and Y (Xf). In general, these functions cannot be



§ 3.2 A CRASH COURSE ON RIEMANNIAN GEOMETRY 43

described as the application of one vector field to f , as they involve derivatives
of second order. However, if we consider X(Y f)− Y (Xf), it turns out that the
result is again a vector field, called the Lie bracket of X and Y and is denoted
by [X,Y ]. Lie brackets show up in different places, including the definition of
curvature, which we discuss below.

3.2.2. Riemannian Metrics
We now aim to establish a metric structure on a smooth manifold with the goal
of measuring length of curves and angles between tangent vectors. A Riemannian
metric on a smooth manifold M is an assignment of an inner product to each
tangent space TpM which depends smoothly on the base point p. A Riemannian
manifold is a smooth manifold equipped with a Riemannian metric. We will denote
the scalar product of v, w ∈ TpM by ⟨v, w⟩p, and drop the subscript p if it is clear
that v and w belong to which tangent space.

Consider a coordinate chart (U , φ) around p and let p̂ = φ(p). In these
coordinates, the metric at the point p is defined via a symmetric positive definite
matrix (gij(p̂))i,j=1,...,d, and for tangent vectors v =

∑
vi∂i|p and w =

∑
wj∂j |p

in TpM it holds
⟨v, w⟩p =

∑
i

∑
j

gij(p̂)v
iwj .

In particular, we have gij(p̂) = ⟨∂i|p, ∂j |p⟩.
The norm of a tangent vector v is defined as

|v| = ⟨v, v⟩1/2

and the length of a curve γ : I →M is therefore defined as

L(γ) =

∫
I

|γ̇(t)| dt =
∫
I

⟨γ̇(t), γ̇(t)⟩1/2 dt.

Notice that this definition is independent of the parameterization of the curve,
and can be extended to piecewise-smooth curves by defining the length of such
curves to be the sum of the lengths of their smooth parts. Having a notion of
length for curves, we can define the distance function on a Riemannian manifold:

d(p, q) = inf{L(γ) : γ : [a, b]→M, γ(a) = p, γ(b) = q},

where the infimum is over all piecewise-smooth curves with endpoints p and q.
One can show that this distance function satisfies the metric axioms, and the
topology induced by this metric coincides with the topology of the manifold.
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3.2.3. Connections and Covariant Derivatives
Geodesics, as we will see later, are generalizations of straight lines in Euclidean
spaces to Riemannian manifolds. A defining property of a straight line is that it
has zero acceleration. While this notion is easy to define in a Euclidean sense, it
turns out to be nontrivial for Riemannian manifolds. To make sense of acceleration
on a manifold, we have to introduce two new objects: an affine connection will give
us a set of rules for taking directional derivatives of vector fields, and a covariant
derivative allows us to make sense of time-derivative of a vector field along a curve.

Before getting into the definitions, let us build some intuition by considering a
simple example. Take a two-dimensional surface M⊂ R3, as well as a parameter-
ized smooth curve γ on M. Let V be a vector field along γ and tangent to M;
that is, V (t) ∈ Tγ(t)M for all t that γ(t) is defined. Our goal is to understand how
V changes over time by making sense of dV

dt (t). As everything lives in R3, we can
think of V (t) at different times as vectors in R3, and this allows us to define dV

dt (t)

in the usual Euclidean way: dVdt (t) = limh→0 h
−1(V (t+ h)− V (t)). However, as

the surface is curved, the resulting vector may not belong to the tangent plane at
the point γ(t). This means that differentiating a vector field in this way is not
an inherent geometric attribute withinM. To address this issue, we can project
dV
dt (t) onto the tangent space Tγ(t)M orthogonally, giving rise to what is known
as the covariant derivative, and is denoted by DtV . In other words, the covariant
derivative of V is the time-derivative of V from the manifold’s perspective.

To define the covariant derivative without resorting to embeddings and orthogo-
nal projections, we first need to define an affine connection. An affine connection ∇
is a mapping ∇ : X(M)× X(M)→ X(M) denoted as (X,Y ) 7→ ∇XY , satisfying
the following properties:

(1) ∇fX+gY Z = f∇XZ + g∇Y Z,

(2) ∇X(aY + bZ) = a∇XY + b∇XZ,

(3) ∇X(fY ) = f∇XY +X(f)Y ,

in which a, b ∈ R, X,Y, Z ∈ X(M) and f, g ∈ C∞(M). It turns out that the
value of ∇XY |p only depends on X(p) and values of Y in an arbitrary small
neighborhood around p; this makes ∇XY a local operator. In a local coordinate
chart, it is customary to define

∇∂i∂j =
∑
k

Γkij∂k,
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where Γkij are called the connection coefficients of ∇. With this notation we have

∇XY =
∑
k

(
X(Y k) +

∑
i,j

XiY jΓkij

)
∂k.

Let us now go back to our initial problem: differentiating vector fields along
curves. Suppose ∇ is an affine connection of M. Then, there exists a unique
correspondence that associates with every vector field V along a curve γ : I →M
another vector field DtV along γ, called covariant derivative of V along γ, such
that for any other vector field W along γ and a, b ∈ R, it holds

(1) Dt(aV + bW ) = aDtV + bDtW , and

(2) Dt(fV ) = df
dtV + fDtV for all smooth functions f : I → R.

Moreover, if V is the restriction of a vector field X ∈ X(M) to γ, that is,
V (t) = X(γ(t)), then

DtV (t) = ∇dγ/dtX|γ(t).

Let us compute the covariant derivative in local coordinates. By taking a chart
around γ(t), we can write V (t) =

∑
V i(t) ∂i|γ(t) and γ̇(t) =

∑
γ̇i(t) ∂i|γ(t). By

the properties of the covariant derivative, we have

DtV (t) =
∑
i

(
dV i

dt
(t) ∂i|γ(t) + V i(t)Dt(∂i)|γ(t)

)
.

As ∂i along γ(t) is the restriction of ∂i, Dt(∂i) = ∇γ̇(t)(∂i). Writing V̇ k for dV k

dt ,
we get the expression of covariant derivative in local coordinates:

DtV (t) =
∑
k

(
V̇ k(t) +

∑
i,j

γ̇i(t)V j(t)Γkij(γ(t))

)
∂

∂xk

∣∣∣∣
γ(t)

. (3.7)

3.2.4. The Levi-Civita Connection
The affine connection defines a notion of directional differentiation of vector
fields on Riemannian manifolds. However, this notion is not unique. By imposing
additional constraints that have to do with the Riemannian metric, a unique
connection, called the Levi-Civita connection, emerges.

We say a connection ∇ is compatible with the metric g (or it preserves the
metric g), if for any pair of vector fields V,W along a curve γ, the following holds:

d

dt
⟨V,W ⟩ = ⟨DtV,W ⟩+ ⟨V,DtW ⟩.
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Equivalently, for any vector fields X,V,W ∈ X(M), it should hold that

X⟨V,W ⟩ = ⟨∇XV,W ⟩+ ⟨V,∇XW ⟩.

This condition holds for the Euclidean space along with Euclidean differentiation.
We will see later that this condition has deep connections with the notion of
parallelism on Riemannian manifolds.

The other condition that facilitates the relation between the connection and
the Riemannian metric is symmetry. In Euclidean spaces, we can exchange ∂/∂xi
and ∂/∂xj , in the sense that for any smooth function f , we have ∂

∂xi
∂
∂xj f =

∂
∂xj

∂
∂xi f . This comes from the symmetry between differentiation along different

coordinates. The equivalent notion for Riemannian manifolds is to require

∇∂i∂j = ∇∂j∂i.

More generally, we call a connection ∇ symmetric (or torsion-free) if for any pairs
of vector fields X,Y ∈ X(M), it holds

∇XY −∇YX = [X,Y ] = XY − Y X.

This property implies the symmetric relation Γkij = Γkji on the connection coeffi-
cients of ∇.

The fundamental theorem of Riemannian geometry states that every Rieman-
nian manifold (M, g) has a unique connection ∇, called the Levi-Civita connection,
that is both compatible to the metric g and is symmetric. From this point onwards,
∇ will always denote the Levi-Civita connection for a Riemannian manifold, and
the metric coefficients Γkij are called the Christoffel symbols.

3.2.5. Parallel Transport
The covariant derivative defines a notion of parallelism in Riemannian manifolds.
We say a vector field V along the curve γ : I → M is parallel if its covariant
derivative vanishes everywhere, that is,

DtV (t) = 0, ∀t ∈ I.

Let us examine this property in a coordinate chart (U , φ). Suppose V (t) =∑
V i(t) ∂i|γ(t) and γ̇(t) =

∑
γ̇i(t) ∂i|γ(t). From (3.7) we obtain

V̇ k(t) +
∑
i,j

γ̇i(t)V j(t)Γkij(γ(t)) = 0, for all k = 1, . . . , d and t ∈ I. (3.8)
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This is a system of linear ODEs, and given some initial data, one can show that it
always has a unique solution. That is, for any tangent vector v ∈ Tγ(t0)M, there
exists a unique parallel vector field V along γ such that V (t0) = v. This vector
field is called the parallel transport of v along γ. Supposing that γ(t0) = p and
γ(t1) = q, we refer to the vector V (t1) as Pγp→q[v]. If the curve γ is clear from the
context, we just write Pp→q[v] without mentioning the curve.

A key property of parallel transport which we use frequently is that it creates
an isometry between tangent spaces. To see this, first observe that due to symmetry
of the Levi-Civita connection, for two parallel vector fields V,W along a curve γ
it holds

d

dt
⟨V,W ⟩ = ⟨DtV,W ⟩+ ⟨V,DtW ⟩ = 0.

This means that |V (t)| is constant along the curve, and if V (t) and W (t) are
orthogonal for some t, they are orthogonal for all t along the curve. Now, let
γ : [0, 1]→M be a curve between p, q ∈M, and consider an orthonormal basis
{E1, . . . , Ed} of TpM; this basis can be obtained by starting from an arbitrary
basis of TpM and running the Gram–Schmidt algorithm. Parallel transporting each
of these basis vectors along γ results in a basis {E1(t), . . . , Ed(t)} for Tγ(t)M for
all t ∈ [0, 1]; this is because the parallel transport keeps Ei(t) unit and orthogonal
to the rest. This implies that the map v 7→ Pγp→q[v] from TpM to TqM is a vector
space isomorphism, as well as an isometry. In short, for any v, w ∈ TpM, it holds
⟨v, w⟩p = ⟨Pγp→q[v],P

γ
p→q[w]⟩q for all v, w ∈ TpM.

3.2.6. Geodesics and the Exponential Map
A geodesic is a generalization of a straight line in Euclidean spaces to Riemannian
manifolds. As discussed before, the key defining property of a geodesic is that it
has zero acceleration. Now that we have a working notion of a covariant derivative,
this leads to the following definition: a curve γ : I →M is a geodesic if

Dtγ̇ = ∇γ̇ γ̇
∣∣
γ(t)

= 0, for all t ∈ I.

Note that this is equivalent to saying that the velocity vector of a geodesic is
parallel along the geodesic. This implies that a geodesic is always constant speed;
that is, |γ̇(t)| stays constant for t ∈ I.

A geodesic γ : [a, b]→M is not necessarily the shortest curve that connects
γ(a) and γ(b). Think of moving around the equator of Earth with constant speed
until you reach where you started. This movement has zero acceleration (in the
Riemannian sense), but surely is not the shortest curve connecting a point to itself.
It is the case, however, the shortest curve property holds locally. That is, for t close
enough to a, the curve γ restricted to [a, t] is the shortest curve connecting γ(a)
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to γ(t). We call a geodesic that is also the shortest curve between its endpoints a
minimizing geodesic.

In terms of coordinates, suppose we write γ̇(t) =
∑
γ̇i(t) ∂i|γ(t). From (3.8)

we have

γ̈k(t) +
∑
i,j

γ̇i(t)γ̇j(t)Γkij(γ(t)) = 0, for all k = 1, . . . , d and all t ∈ I. (3.9)

By the usual existence and uniqueness results for ODEs, one can show that for any
pair of initial values for position γ(t0) and velocity γ̇(t0), there exists a unique and
maximal solution to the system of ODEs above. Therefore, each initial point p ∈M
and each initial velocity vector v ∈ TpM determine a unique maximal geodesic,
which we denote by γv. We define the exponential map exp : E ⊆ TM→M as

exp(v) = γv(1),

where the domain E is defined as

E = {v ∈ TM : γv is defined on an interval containing [0, 1]}.

It turns out that exp is a smooth function between E andM. In the sequel, we
usually work with the restriction of exp to a tangent space of a point. We denote
by expp the map

expp(v) = exp(v) for v ∈ Ep,

where Ep = {v ∈ E : π(v) = p}. Note that for each v ∈ TpM, the geodesic γv is
given by

γv(t) = exp(tv)

for all t such that either side is defined.
A Riemannian manifold is called complete, if geodesics exist globally, or

equivalently, the exponential map is defined on the whole tangent bundle TM.
Throughout this chapter, we only work with complete manifolds, and therefore,
we adapt further notions and omit the discussions where the exponential map
might not be defined in some places.

Another important property of the exponential map is that its differential
d(expp)0 : T0(TpM)→ TpM at the vector 0 is the identity map of TpM. That is,
by identifying T0(TpM) with TpM, it holds

d(expp)0(v) = v.

This property will be crucial for using the inverse function theorem and the
construction of normal coordinates, which we describe next.
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3.2.7. Product Manifolds
The productM :=M1×M2 of two smooth manifoldsM1 andM2 is also a smooth
manifold. Most importantly, the tangent space at the point p = (p1, p2) ∈M is
(isomorphic to) the direct sum of the tangent spaces Tp1M1 and Tp2M2:

TpM∼= Tp1M1 ⊕ Tp2M2.

Therefore, we can think of v ∈ TpM as the pair (v1, v2) where vi ∈ TpiMi

for i = 1, 2. If M1,M2 are Riemannian manifolds, M can be turned into a
Riemannian manifold by defining the metric at the point p = (p1, p2) ∈M as

⟨v, w⟩p = ⟨v1, w1⟩p1 + ⟨v2, w2⟩p2 , ∀v = (v1, v2), w = (w1, w2) ∈ TpM.

Moreover, the exponential map at the point p for the tangent vector v = (v1, v2) ∈
TpM is equal to

expp(v) = (expp1(v1), expp2(v2)).

All these constructions can be generalized to an arbitrary product of finitely many
Riemannian manifolds.

3.2.8. Normal Coordinates
Normal coordinates are a specific coordinate chart around a point p that is “aligned”
with geodesics; in these coordinates, geodesics passing through p are mapped to
lines passing through the origin in the Euclidean space. This makes computing
the distance of p to the points in its neighborhood as easy as computing norms in
Euclidean spaces.

Before defining such coordinate system, we have to make sense of the inverse
of the exponential map; the map that assigns to each point q in the neighborhood
of p a tangent vector v, so that the geodesic starting from p in the direction v
meets q at time 1. As the differential d(expp)0 is the identity of TpM, by the
inverse function theorem one can find a star-shaped1 neighborhood V ⊆ TpM
around 0 such that expp is a diffeomorphism between V and expp(V). This implies
that the exponential map is invertible locally.

Now, choose an arbitrary orthonormal frame (E1, . . . , Ed) for TpM, that is,
⟨Ei, Ej⟩ = δij . Using the isomorphism B : Rd → TpM given by

B : (a1, . . . , ad) 7→ a1E1 + · · ·+ adEd,

1 A subset S of a vector space is said to be star-shaped with respect to a point x if for every
y ∈ S, the line segment from x to y is also contained in S.
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define the chart (U , φ) as

φ(q) = B−1(exp−1
p (q)),

where U is the image of a star-shaped V ⊆ TpM under expp for which expp is a
diffeomorphism. We call this chart a normal coordinate system centered at p. In
simpler words, if q = expp(v) with v =

∑
viEi ∈ V, the normal coordinates of q

will be (v1, . . . , vd) ∈ Rd.
A nice property of this coordinate system, as promised in the beginning, is

that the geodesic equation for the geodesic γv passing through p at t = 0 with
velocity v is simply

γ̂v(t) = (tv1, . . . , tvd).

This also implies that for any other point q ∈ U , we have

d(p, q) = ∥q̂∥2 := ((q̂1)2 + · · ·+ (q̂d)2)1/2.

3.2.9. Conjugate and Cut Points
To define the normal coordinates centered at p ∈M, it was essential to work with
star-shaped subsets of TpM on which the exponential map is a diffeomorphism
onto its image. This motivates considering the largest open ball (in TpM) centered
at 0 on which expp is a diffeomorphism. The injectivity radius at p ∈M, denoted
by rinj(p), is the supremum of all radii r > 0 such that expp is a diffeomorphism
from Br(0) ⊂ TpM onto its image. The injectivity radius of M, denoted by
inj(M), is defined to be the infimum of rinj(p) over all points p of the manifold.
Therefore, if inj(M) = r > 0, we are able to construct a normal neighborhood
around an arbitrary point p ∈M that is guaranteed to contain all points that are
r-close to p.

When expp fails to be a diffeomorphism, interesting (and very often, prob-
lematic) things happen. Let v ∈ TpM and γ = γv be the geodesic segment
γ(t) = expp(tv), and set q = γ(1). We say p and q are conjugate along γ if v is
a critical point2 of expp, that is, if d(expp)v is not surjective.3 It turns out that
if q is the first point along γ that is conjugate to p, then γ is not minimizing
past q. One example to keep in mind is that any pair of antipodal points on the
two-dimensional sphere (such as Earth) are conjugate points.

2 A point x is a critical point of a smooth map F , if the differential dFx is not surjective.
3 Conjugate points are usually defined using Jacobi fields. For example, Lee [Lee18] defines

conjugate points as follows: Let γ : I → M be a geodesic and p = γ(a), q = γ(b) for some
a, b ∈ I. We say that p and q are conjugate along γ if there is a nonzero Jacobi field along γ
vanishing at t = a and t = b. By [Lee18, Prop. 10.20, Thm. 10.26], our definition and the one
from Lee are equivalent.
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Let γ : [a, b] → M be a geodesic in M, and p = γ(a) and q = γ(b) be its
endpoints. Whether γ is a minimizing geodesic is a subtle question. If q is close to
p, then γ is the shortest curve connecting p to q. Moreover, as we saw above, γ
will never be minimizing after the first conjugate point of p along γ. Before the
first conjugate point of p, γ is shortest among nearby curves connecting p to q.
However, even if p has no conjugate point along γ, it is still possible that γ is not
the shortest curve connecting p to q. This leads to the definition of a cut point.

Let p ∈M and γ : [0,∞)→M be a geodesic with γ(0) = p. If

t0 := sup{t ≥ 0 : γ([0, t]) is a minimizing geodesic} <∞,

then we call γ(t0) the cut point of p along γ. We will denote by Cut(p) the set
of all cut points of p along all geodesics that emanate from p, and call it the cut
locus of p.

Suppose q = expp(v) is in the cut locus of p and γv be the geodesic p to q.
Then, a standard result [Lee18, Prop. 10.32] states that γ is minimizing, and one
or both of the following conditions hold:

(a) q is conjugate to p along γ, or

(b) there are two or more minimizing geodesics from p to q.

Going back to our example, two antipodal points on a two-dimensional sphere
satisfy both the conditions above, and therefore, are in the cut loci of each other.
Note also that any point on a compact Riemannian manifold has a nonempty cut
locus.

There is an interesting relation between the cut locus and the injectivity
radius at a point: The injectivity radius at p is the distance from p to its cut
locus provided that the cut locus is nonempty, and is infinite otherwise [Lee18,
Prop. 10.36].

In general, one should always be aware of cut loci when working with Rieman-
nian manifolds. The following proposition depicts an important example that how
things can go wrong when considering the distance function on a Riemannian
manifold [Pet16, Cor. 5.7.11]:

Proposition 3.1. Fix a point p ∈M and consider the (radial) distance to p, that
is, the function r(q) = d(p, q). Then r is differentiable onM\ (Cut(p) ∪ {p}).

3.2.10. Convex Neighborhoods
In many applications, normal neighborhoods are sufficient for a clean analysis of
the problem at hand. However, when comparing distances of points near a point
p, we also want the guarantee that (a) the points themselves are in the normal
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neighborhood centered at p, and (b) the minimizing geodesic connecting these
points lie in that neighborhood. This requirement is crucial when computing the
distance between two curves lying in a neighborhood of a point. We want all the
minimizing geodesics connecting the corresponding points on the two curves lie in
the neighborhood, constituting a smooth family of geodesics.

This motivates the definition of a convex subset. A subset U ⊆ M is called
convex if for any p, q ∈ U , there exists a (not necessarily unique) minimizing
geodesic connecting p and q whose image lies entirely in U . We call U strongly
convex if it is convex and the minimizing geodesic connecting each two of its
points is unique. We also require that any ε-ball lying entirely in U to be convex.

Similar to the injectivity radius, we define the convexity radius at p as the
radius of the largest geodesic ball centered at p that is strongly convex:

rconv(p) = sup{r > 0 : Bs(p) is strongly convex for all 0 < s < r},

The convexity radius of M, denoted by rconv(M), is then defined as the infimum
of the convexity radii of all points of M. The following theorem shows that if the
sectional curvatures ofM (see Section 3.2.11 below for a definition) is bounded
from above andM has a positive injectivity radius, it also has a positive convexity
radius.

Theorem 3.2 (CE08, Thm. 5.14). Suppose M is a complete, connected Rieman-
nian manifold with sectional curvature bounded above by K. Then,

rconv ≥
1

2
min{π/

√
K, inj(M)},

where π/
√
K is interpreted as +∞ if K ≤ 0.

The intuition behind this theorem is as follows: If the sectional curvature is
unbounded, points with high curvature will have cut loci that are closer to them.
This proximity of the cut loci makes it difficult for a geodesic ball to be strongly
convex. Recall that strong convexity requires unique minimizing geodesics between
any two points within the ball, a condition that may not hold for points on the
cut locus.

3.2.11. Curvature
Curvature is at the heart of Riemannian geometry and originates from the funda-
mental works of Gauss and Riemann. There are various notions of curvature for a
Riemannian manifold, all of which can be derived from the Riemann curvature
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tensor. Define the map R : X(M)× X(M)× X(M)→ X(M) by

R(X,Y )Z := ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,

and the Riemann curvature tensor as the map given by

Riem(X,Y, Z,W ) := ⟨R(X,Y )Z,W ⟩.

Let Π be a two-dimensional subspace of TpM spanned by the vectors v, w ∈ TpM.
The sectional curvature of Π is defined to be

sec(Π) = sec(v, w) :=
Riem(v, w, v, w)

|v ∧ w|2
,

where
|v ∧ w| =

√
|v|2|w|2 − ⟨v, w⟩

is the area of the two-dimensional parallelogram determined by the pair of vectors
v and w. Alternatively, the sectional curvature can be characterized by the
circumference of small circles. For sufficiently small r > 0, let Cr(p) denote the
image under expp of the circle of radius r in Π, and let ℓr(p) denote the length of
Cr(p). Then it holds that

ℓr(p) = 2πr

(
1− r2

6
sec(Π) +O(r3)

)
as r → 0.

The sectional curvature also coincides with the Gaussian curvature of the surface
expp(Π) ⊆M at point p; we omit the details of this correspondence for the sake
of brevity.

3.2.12. Gradients and Hessians
Let (U , φ) be a coordinate chart of M and let x1, . . . , xd be its components.
We saw in Section 3.2.1 that for any point p ∈ U , this chart induces a basis
{∂/∂x1|p, . . . , ∂/∂xd|p} for TpM. Now consider the dual space of TpM (in the
sense of vector spaces), denoted by T ∗

pM. An element in the dual space is a linear
functional on TpM, and is called a covector in differential geometry. The basis of
TpM induces a basis for the dual space, denote by dx1|p, . . . , dxd|p via

dxi
(

∂

∂xj

)
= δij , where δij =

{
1 if i = j

0 otherwise.

Similar to vector fields, a covector field is a smooth map that attaches to each
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point of the manifold a covector from its dual tangent space. The differential df
of a smooth function f :M → R is an example of a covector field; recall from
Section 3.2.1 that dfp : TpM→ Tf(p)R ∼= R is the map

dfp(v)(h) = v(h ◦ f), ∀v ∈ TpM and h : R→ R.

Identifying the tangent space of R at any point with R and taking h above to be
the identity map, we see that dfp(v) = v(f), which implies dfp ∈ T ∗

pM. In terms
of coordinates, we get

df =

d∑
i=1

df

(
∂

∂xi

)
dxi =

d∑
i=1

∂f

∂xi
dxi.

To be more precise, by ∂f
∂xi (p) we mean ∂f̂

∂xi (p̂), where we recall the notation
f̂ = f ◦φ−1 and p̂ = φ(p) for the coordinate representation of f and p, respectively.

In Euclidean spaces, there is a natural correspondence between the differential
of a smooth function and its gradient. Let us reiterate this correspondence with
the hope of defining a Riemannian analogue of gradients. For a differentiable
function f : Rd → R, its gradient at a point x ∈ Rd is the (tangent) vector ∇f(x)
defined as

∇f(x) =
d∑
i=1

∂f

∂xi
(x)

∂

∂xi

∣∣∣∣
x

.

We use the “manifold notation” here to keep similarity with our previous discussions.
Notice that in this case, the Euclidean gradient and differential are dual to each
other: For any smooth vector field V , it holds that

df(V ) = ⟨∇f, V ⟩.

We now extend this construct to the Riemannian case. Take a coordinate chart
(U , φ) and suppose f :M→ R is differentiable. We want to define the Riemannian
gradient of f in such a way that a similar duality relation hold. That is, we want
to define the vector field grad f such that for any smooth vector field V ∈ X(M),
it holds

⟨grad f, V ⟩ = df(V ) = V (f).

The left-hand side of the equality above in terms of coordinates is

⟨grad f, V ⟩ =
d∑
i=1

d∑
j=1

gij(grad f)
iV j ,
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and the right-hand side in terms of coordinates is

df(V ) =

d∑
j=1

∂f

∂xj
V j .

Setting these two expressions to be equal, we get an expression for the gradient:

grad f =

d∑
i=1

d∑
j=1

gij
∂f

∂xi
∂

∂xj
,

where gij is the (i, j) entry of the inverse of the matrix (gij). While this construction
relied on a local coordinate system, it can be shown that grad f is independent of
the choice of the local coordinates, and therefore, is an intrinsic notion.

Similarly, we define the Hessian of a smooth function f :M→ R to be the
covariant 2-tensor field4 Hess f , which for any pair of vector fields V,W ∈ X(M),
satisfies

Hess f(V,W ) = ⟨∇V grad f,W ⟩.

To get a better feeling of the Hessian, consider a geodesic γ : (−ε, ε)→M with
γ(0) = p and γ̇(0) = v. Then it turns out that

d2

dt2

∣∣∣∣
t=0

f(γ(t)) = (Hess f)p(v, v).

3.3. INTRODUCTORY EXAMPLES

In this section, we bring a handful of examples that are specifically related to
stochastic approximation on Riemannian manifolds. Some of these problems are
inherently defined on a Riemannian manifold (see Example 3.1 and Section 3.3.2),
while others are described initially for Euclidean spaces but shown to have more
computational benefits when considered on a Riemannian manifold (see Exam-
ples 3.2 and 3.3).

4 A covariant 2-tensor is a multilinear map that eats two vectors and gives a number. A
covariant 2-tensor field is a smooth assignment of a covariant 2-tensor to each point of the
manifold.
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3.3.1. Optimization Problems on Manifolds
We start with the more familiar optimization problem. LetM be a Riemannian
manifold and f be a smooth function on M. Consider the following minimization
problem, which encapsulates a wide range of practical and theoretical problems:

Minimize f(p) such that p ∈M. (3.10)

A natural generalization of the Robbins–Monro scheme for solving (3.10) is

xn+1 = expxn
(αn(−∇f(xn) + Zn)), (3.11)

where αn is a sequence of step-sizes with αn → 0 as n → ∞ and
∑
αn = ∞,

and Zn captures the noise and bias in evaluation of ∇f(xn). Below, we list three
examples of such problems.

▷ Example 3.1 (Rayleigh Quotient). Let M = Sd−1 be the (d− 1)-dimensional
sphere embedded in Rd; that is,

M =
{
x ∈ Rd : (x1)2 + · · ·+ (xd)2 = 1

}
.

The tangent space TxM at x ∈M is the (d−1)-dimensional hyperplane consisting
of vectors v ∈ Rd that v⊤x = 0. We equip M with the metric induced by the
embedding in Rd; that is, the inner product of two tangent vectors is computed
in the Euclidean sense. One can show that the geodesics ofM are arcs of great
circles of M, and that the exponential map can be computed as

expx(v) = x cos∥v∥+ v

∥v∥
sin∥v∥.

Let A be a d× d symmetric matrix, and consider the function

f :M→ R, f(x) = x⊤Ax,

known as the Rayleigh quotient. The gradient of f (in the Riemannian sense) can
be obtained by projecting the Euclidean gradient of f on the tangent bundle of
M. Concretely, for x ∈M,

∇f(x) = (I − xx⊤)(2Ax),

where (I − xx⊤) is the projection onto TxM, and 2Ax is the gradient of f in the
Euclidean sense.

For simplicity, suppose that A has d distinct eigenvalues λ1 < · · · < λd, and
suppose v1, . . . , vd are the corresponding eigenvectors which are assumed to be
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x∗

Sd−1

Figure 3.1. A few iterations of the stochastic approximation algorithm (3.11) for
finding the smallest eigenvalue of a symmetric matrix A, given noisy
access to A at each iteration. Due to the symmetry of eigenvectors, there
are two optimal solutions (one is depicted by a star and the other is its
antipodal point), and the algorithm converges to one of them.

orthonormal. It is well-known [see, e.g., AMS08, Prop. 4.6.2] that ±v1 are the
global minimizers, and ±vn are the global maximizers of f on M. Moreover, ±vi
for i = 2, . . . , (d − 1) are all saddle points of f . Therefore, to find the smallest
eigenvalue and eigenvector of A, we can solve (3.10). Suppose we do so iteratively,
and in each iteration we only observe a noisy version of A and compute the
gradient based on the noisy A. Figure 3.1 shows a few iterations of this simple
algorithm for d = 3. As observed, the iterates converge to an optimal solution,
which is an eigenvector corresponding to the smallest eigenvalue. ◁

▷ Example 3.2 (Natural Policy Gradient). Consider a finite Markov Decision
Process (MDP) and assume all policies π considered are ergodic, in the sense that
they admit a unique stationary distribution ϱπ over the states. Let the average
(undiscounted) reward be defined as

η(π) =
∑
s,a

ϱπ(s)π(a | s)R(s, a),

where a and s denote an action and a state, respectively, and R(s, a) is the reward
obtained from choosing action a in the state s.

Consider the case where each policy is parameterized by some θ ∈ Rd, and
write π(a | s; θ) for the probability assigned to the action a at the state s by the
policy πθ that is parameterized by θ. Our task is to find the parameters θ such
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that the corresponding policy πθ maximizes the average reward. We solve this
task using gradient ascent with respect to θ. The gradient of η(θ) := η(πθ) with
respect to θ in the Euclidean sense is

∇η(θ) =
∑
s,a

ϱπ(s)∇π(a | s, θ)Qπ(s, a),

where Qπ(s, a) = Eπ[
∑∞
t=0R(st, at) − η(π) | s0 = s, a0 = a] is the state-action

value and ∇ denotes the Euclidean gradient. Kakade [Kak01] realized that using
such a gradient for gradient ascent is not “natural,” as it depends on the specific
parameterization of the policy space Π := {πθ : θ ∈ Rd}. In other words, different
parameterizations of the set Π lead to different algorithms. Building up on ideas
of Amari [Ama83], one can look at Π as a Riemannian manifold, whose metric
is given by the Fisher information matrix. Specifically, for each state s, we can
define a Riemannian metric (in the Euclidean chart)

Gs(θ) = Eπ(a|s,θ)
[
∇ log π(a | s, θ)∇ log π(a | s, θ)⊤

]
,

which is the Fisher information matrix of the probability distribution over actions
given by the policy πθ at state s. This metric is defined for each state, and is
independent of the transition probabilities of the underlying MDP. As shown
by Amari [Ama83], the Fisher information matrix, up to a scale, is an invariant
metric (in the sense that it defines the same distance between two distributions
regardless of the choice of parameterization) on the space of the parameters of
probability distributions—hence that name natural metric. Taking expectation
with respect to the stationary distribution ϱπθ over the states, we get the following
metric on Π:

G(θ) = Eϱπθ [Gs(θ)].

Kakade uses this metric to compute Riemannian (or natural) gradients. When
expressed in the Euclidean coordinates, the resulting update rule is

θn+1 = θn + αnF (θn)
−1∇η(θn). ◁

In Section 3.7 we demonstrate various stochastic approximation algorithms that
can be used to solve Riemannian optimization problems, and in Proposition 3.20
we prove a general result regarding convergence of these algorithms.

3.3.2. Games on Manifolds
We now consider games on Riemannian manifolds. By a Riemannian game, we
mean a game between N players, the space of strategies of which is a Riemannian
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manifold. The space of all configurations of the game is then the product manifold
M = M1 × · · · × MN , where Mi is the strategy space of the ith player. Let
ui : M → R be the payoff function of the ith player, and the goal of the ith
player is to maximize their payoff—for applications and a detailed discussion, see
[RBS14] and references therein.

Let us note that a min-max optimization problem on a Riemannian manifold
is a simple instance of the Riemannian game defined above: Let M and N be
two manifolds, and ℓ :M×N → R be a smooth function. Letting u1 = −ℓ and
u2 = ℓ results in the following problem for the players:

min
p∈M

max
q∈N

f(p, q).

Besides min-max problems on Riemannian manifolds (such as those on matrix
manifolds or hyperbolic spaces), we can also consider those problems that do
not inherently possess a Riemannian structure. It turns out that endowing the
strategy space of these problems with a Riemannian structure will be advantageous
in many scenarios. These advantages include geodesic convexity of the strategy
space and payoffs, as well as simplified determination of Nash equilibria. The
Riemannian structure further facilitates the gradient-based methods by leveraging
the manifold’s geometry, leading to more efficient and accurate solutions.

Before delving deep into the examples, we have to introduce a generalization
of Nash equilibria to the Riemannian setting: the Nash–Stampacchia equilibrium
[Kri14]. In the following, define the vector field V = (V1, . . . , VN ) with Vi =
∇piui(p1, . . . , pN ) to be the direction of improvement for each player.

Definition 3.3. We say that the point p∗ := (p∗1, . . . , p
∗
N ) ∈ M1 × · · · ×MN

is a Nash–Stampacchia equilibrium of V if it satisfies the system of variational
inequalities

⟨Vi(p∗), exp−1
p∗i

(pi)⟩ ≥ 0, for i = 1, . . . , N and all pi ∈Mi. (3.12)

Recall from Section 3.2.7 that M has a Riemannian structure and its expo-
nential map is evaluated as

expp(v) = (expp1(v1), . . . , exppN (vN )).

Using this, Kristály [Kri14, Rem. 2.1 and Rem. 4.1] shows that the Nash–
Stampacchia condition (3.12) is equivalent to the simpler condition

⟨V (p∗), exp−1
p∗ (p)⟩p∗ :=

N∑
i=1

⟨Vi(p∗), exp−1
p∗i

(pi)⟩p∗i ≥ 0, for all p ∈M. (3.13)
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p

q

M1

Figure 3.2. Example of a non-convex set in R2, which, if equipped with the metric
of the hyperbolic space, becomes geodesically convex. The Euclidean line
segment between points p and q leaves M1, while the geodesic connecting
them—the arc of a circle centered on the x-axis—is contained in M1.

It also turns out that if the utility functions are Lipschitz, then the set of Nash–
Stampacchia equilibria is a superset of the set of Nash equilibria, and if the utilities
are convex, the two solution concepts coincide [see Kri14, Thm. 3.1].

Note that the choice of the Riemannian metric on Mi does not affect the
concept of Nash equilibrium, while it is a defining piece of Nash–Stampacchia
equilibrium. Below, we present an example inspired from Kristály [Kri14], which
demonstrates this principle in action.

▷ Example 3.3. Let M1 = {(x, y) ∈ R2
+ : x2 + y2 ≤ 4 ≤ (x − 1)2 + y2} and

M2 = [−1, 1] ⊂ R be the strategy space of two players. It is evident that M1

is not a convex set in the Euclidean sense. However, by looking at M1 as a
subset of the upper-plane model of the hyperbolic space,M1 becomes geodesically
convex; see Fig. 3.2. Guided by the variational inequalities (3.12) or (3.13), one
can effectively find Nash–Stampacchia equilibria (and consequently, the set of
possible Nash equilibria) in a game defined overM1 ×M2; something that is a
priori a non-trivial task. ◁

This Riemannian viewpoint provides a profound understanding of the familiar
Replicator dynamics, commonly used to model evolutionary systems. In their
seminal paper, Mertikopoulos and Sandholm [MS18] illustrate that by defining
a specific Riemannian metric, known as the Shahshahani metric, the replicator
dynamics transforms into a Riemannian game dynamics. This transformation
essentially reinterprets the replicator dynamics as the flow of the tangential
component of the payoff vector field. This in turn broadens our comprehension of
the underlying dynamics. For a detailed explanation and more implications, the
reader is encouraged to consult the original article [MS18].



§ 3.4 RIEMANNIAN ROBBINS–MONRO SCHEMES 61

In Sections 3.7 and 3.8 we demonstrate various stochastic approximation
algorithms, along with practical variations thereof, that can be used to solve
Riemannian games, and in Propositions 3.21 and 3.22 we prove general results
regarding convergence of such stochastic approximation schemes for a class of
monotone games and non-convex potential games.

3.4. RIEMANNIAN ROBBINS–MONRO SCHEMES

In this section, we define a class of stochastic approximation algorithms on Rie-
mannian manifolds called Riemannian Robbins–Monro schemes, and translate
the main objects of Chapter 2 into the language of Riemannian geometry. In
Section 3.4.1, we bring our main assumptions and a discussion about their gener-
ality. Sections 3.4.2 and 3.4.3 state the main results of this chapter, namely the
asymptotic pseudo-trajectory theorem and the stability theorem.

Let us start by defining the basic template of Riemannian Robbins–Monro
algorithms. The main difference of a Riemannian stochastic approximation algo-
rithm with its Euclidean counterpart is that addition along straight lines in a
Euclidean space is replaced by the Riemannian exponential map, or in general,
a retraction. We will discuss retractions later in Section 3.8.1, and focus on the
exponential map for now.

Throughout this chapter, letM be a Riemannian manifold. We call the update
rule of the form

xn+1 = expxn
(αn(V (xn) + Zn)) (RRM)

a Riemannian Robbins–Monro scheme, where

(1) xn ∈M denotes the state of the algorithm at each iteration n = 1, 2, . . .,

(2) V is a vector field on the manifold,

(3) Zn ∈ Txn
M is an error term, described in detail below,

(4) and αn > 0 is the method’s step-size.

In the above, we assume that the error term Zn is generated after xn. In addition,
to differentiate between “random” (zero-mean) and “systematic” (non-zero-mean)
errors, it will be convenient to further decompose Zn as

Zn = Un +Bn, (3.14)

where Un = Zn−E[Zn | Fn] captures the zero-mean part and Bn = E[Zn | Fn] rep-
resents the systematic component of Zn. Here, the σ-algebra Fn = σ(x1, . . . ,xn)
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contains all the information until iteration n. We will see in Sections 3.7 and 3.8
that allowing for a nonzero systematic error Bn enables us to fit various algorithms
into the (RRM) template. For brevity, we will also write

Vn = V (xn) + Zn. (3.15)

In this way, Vn can be seen as a noisy—and potentially biased—estimate of V (xn).

Flows and orbits

A complete vector field V induces a flow on the manifold, which is the map
Φ : R×M→M, with Φ0 = Id and

d

dt
Φt(p) = V (Φt(p)), ∀p ∈M, t ∈ R. (3.16)

Recall that a vector field is complete if its corresponding flow is global, i.e., the
solution of the ODE (3.16) exists for all t ∈ R and all p ∈ M. The orbit of Φ
starting at p is denoted by ϕp(t) := Φt(p), and we omit p and simply write ϕ(t) if
the starting point p is clear from the context.

Geodesic interpolation

To compare the iterates {xn}n∈N of (RRM) with the orbits of the flow Φ, we have
to first construct a continuous-time interpolation of the iterates. In the Euclidean
setting of Section 2.5, we connected the points in the sequence {xn}n∈N by line
segments. Concretely, by defining the effective time till iteration n as

τ1 = 0, and τn =

n−1∑
k=1

αk,

we constructed the interpolation

x(t) = xn +
t− τn

τn+1 − τn
(xn+1 − xn) for all t ∈ [τn, τn+1], n ∈ N.

Of course, this definition is not meaningful in a Riemannian setting. Instead,
guided by the formulation of (RRM), we construct the interpolation by following
the geodesic emanating from xn in the direction Vn until reaching xn+1. With
this in mind, we define the geodesic interpolation x(t) of {xn} as

x(t) = expxn
((t− τn)Vn) for all t ∈ [τn, τn+1], n ∈ N. (GI)
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By construction, x(τn) = xn for all n, and each segment of x(t) is a geodesic.

3.4.1. Technical Assumptions
We now state our blanket assumptions that underlie the rest of this chapter. These
are as follows:

▷ Assumption 3.1 (on the manifold). The manifold M is a complete, connected,
Riemannian manifold without boundary and has a positive injectivity radius
inj(M) > 0. The sectional curvature of M at any point is bounded from below
and above by κlow and κup, respectively.

Remark. A few remarks are in order:

(1) Recall that a manifold is complete if it is complete as a metric space. That is,
every Cauchy sequence inM converges to a limit inM. By the Hopf–Rinow
theorem [Pet16, Thm. 16], a complete Riemannian manifold satisfies the
Heine–Borel property—that is, any bounded closed set is compact—and
is geodesically complete, i.e., the exponential map is defined on the entire
tangent bundle. If the manifold is also connected, any two points can be
connected via a minimizing geodesic. We use all these properties in our
analysis: We connect points via minimizing geodesics to compute their
distance, and require continuous functions to be bounded on bounded sets,
needing precompactness of bounded sets.

(2) The injectivity radius at a point p ∈M is the radius of the largest ball in
TpM centered at 0 such that the exponential map expp is a diffeomorphism
onto its image. The injectivity radius of M is the infimum of these radii;
see Section 3.2.9 for a reminder. Having positive injectivity radius ensures
that the exponential map at every point is invertible on a ball of some
fixed radius. This removes local topological complications and, together with
bounded curvature, ensures a nonzero convexity radius (see Theorem 3.2
in Section 3.2.10); a property we use later to prove a local version of the
asymptotic pseudo-trajectory property.

(3) Comparing vectors living in different tangent spaces usually involves studying
certain Jacobi fields. Sectional curvature bounds allow us to use comparison
theorems to bound these Jacobi fields by those on a manifold with constant
curvature. Note, however, that curvature bounds are not sufficient to ensure
the injectivity radius is bounded away from zero; see Berger spheres in
[Pet16, Sec. 4.4.3] for a counterexample. ♢

▷ Assumption 3.2 (on the vector field). The vector field V is differentiable, com-
plete, and L-Lipschitz in the Riemannian sense.
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Remark. Let us make the following remarks:

(1) Recall that a vector field is complete if the solution of the corresponding
ODE (3.16) exists for all times. This property is obviously required in a
stochastic approximation analysis, as we need the existence of orbits of the
flow for arbitrary long time intervals.

(2) We use the notion of Lipschitzness defined in [Bou23, Def. 10.44]: a vector
field V is called L-Lipschitz in the Riemannian sense, if for all p, q ∈ M
with q in the injectivity radius of p, it holds

|Pp→q[V (p)]− V (q)| ≤ L · d(p, q), (3.17)

where the parallel transport is along the unique minimizing geodesic con-
necting p to q. If V is also C1, we have for any v ∈ TpM,

|∇vV (p)| ≤ L|v|. (3.18)

Consequently, for any smooth curve γ connecting p to q,

|Pγp→q[V (p)]− V (q)| ≤ L · L(γ),

where L(γ) is the length of γ. See [Bou23, Prop. 10.46] for a proof.

(3) Smoothness of V allows us to bound the distance between the integral curves
of its flow using (3.18); see Lemma A.4. ♢

▷ Assumption 3.3 (on the step-sizes). The step-size sequence {αn}n∈N of (RRM)
satisfies the Robbins–Monro summability conditions

∞∑
n=1

αn =∞ and
∞∑
n=1

α2
n <∞.

The step-size assumption is crucial for controlling the impact of noise and bias,
as well as the effect of discretizing the flow.

Recall the error terms Zn in (RRM) and their decomposition into the zero-
mean part Un and the systematic part Bn in (3.14). In the sequel, we refer to Un
and Bn as the noise and bias terms, respectively. In our analysis, we regularly
work with upper bounds on the second moments of the noise and bias terms.
Define U∗

n and B∗
n to be Fn-adapted (real-valued) sequences, satisfying

E[|Bn|2 | Fn] ≤ (B∗
n)

2 and E[|Un|2 | Fn] ≤ (U∗
n)

2 a.s. ∀n ∈ N. (3.19)
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▷ Assumption 3.4 (on the noise). When inj(M) =∞, we assume

∞∑
n=1

α2
n E[(U∗

n)
2] <∞. (3.20)

If inj(M) <∞, we assume that the noise terms Un in (3.14) are a.s. bounded in
norm: There exists some U∗ ∈ F∞ such that

|Un| ≤ U∗ a.s. for all n ∈ N. (3.21)

▷ Assumption 3.5 (on the bias). We assume that the upper bounds B∗
n for the

bias terms satisfy

∞∑
n=1

αn(E[(B∗
n)

2])1/2 <∞, and B∗
n → 0 a.s. (3.22)

Moreover, if inj(M) <∞, we further assume that |Bn| is a.s. uniformly bounded
by some finite B∗ ∈ F∞.

Remark. A few remarks are in order:

(1) Variants of the above assumptions are standard in the context of (Euclidean)
Robbins–Monro methods; see, for example, [KC78; Ben99] and references
therein. While Assumption 3.3 lies under the explicit control of the algorithm
designer, Assumptions 3.4 and 3.5 are implicit and depend on the specific
problem at hand, namely the mechanism providing access to V , the specific
form of (RRM), and so on. We show in Section 3.7 that Assumptions 3.4
and 3.5 are indeed satisfied for a wide range of practical algorithms that
adhere to the general template of (RRM).

(2) Assumptions 3.4 and 3.5 distinguish between cases where inj(M) is finite or
infinite. The reason is that if inj(M) <∞, unbounded noise or bias prevents
ensuring that consecutive iterates of (RRM) remain close together within
a short (but fixed) time window. This constraint is pivotal for subsequent
analysis, raising whether the boundedness assumption may be relaxed. See
Section 3.10 for further discussion. ♢

To exclude cases where (RRM) becomes unstable over time, a standard practice
in the literature is to assume that the sequence {xn}n∈N is contained in a compact
subset of M, a property known as precompactness or stability [see, e.g., KC78;
BMP90; Ben99].

▷ Assumption 3.6 (Precompactness). The set of iterates {xn}n∈N has compact
closure in M, almost surely.
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Remark. Assumption 3.6 may be difficult to verify ifM itself is not compact. To
account for this, we introduce in Section 3.4.3 a set of sufficient conditions which
guarantee that precompactness holds. ♢

3.4.2. Theorem on the Dynamics
The limit set theorem (Theorem 2.6) provides a fundamental link between asymp-
totic pseudo-trajectories and the long-run behavior of the flow (3.16) as captured
by its internally chain-transitive sets. That being said, the asymptotic pseudo-
trajectory property itself may be difficult to verify from first principles, so the
application of Theorem 2.6 to Riemannian Robbins–Monro algorithms can be
just as difficult. In the Euclidean case (M = Rd), we saw in Section 2.5 how
Benaïm and Hirsch address this issue via a series of criteria under which standard
(Euclidean) Robbins–Monro methods give rise to an asymptotic pseudo-trajectory
of the associated mean dynamics. Unfortunately, however, in a Riemannian setting,
these criteria cannot be used because they are deeply tied to the affine structure
of Rd; as a result, it is not clear how to leverage Theorem 2.6 to obtain a theory of
stochastic approximation for Robbins–Monro methods on Riemannian manifolds.
We tackle this question below:

▶ Theorem 3.4. Suppose that Assumptions 3.1–3.6 hold. Then, with probability 1,
the geodesic interpolation (x(t))t≥0 of the sequence of iterates {xn}n∈N of (RRM)
is an asymptotic pseudo-trajectory of the flow Φ.

The proof of Theorem 3.4 is rather long and involved, and we dedicate the entire
Section 3.5 to it. As we require the iterates to be precompact in Assumption 3.6,
the following corollary is a straightforward application of the limit set theorem:

▶ Corollary 3.5. Suppose that Assumptions 3.1–3.6 hold. Then, xn almost surely
converges to an internally chain-transitive set of the flow Φ.

3.4.3. Stability Theorem
The main convergence result requires the algorithm’s iterates to be contained
in some compact set with probability 1. In the literature, this is known as
the stability of the algorithm. There are several stability criteria for algorithms
in Euclidean spaces, each applicable under specific restrictions and sometimes
motivated by specific applications for which they are designed for. We refer to
[Bor08, Ch. 3] for two such examples, and [Phe93; FP03] for more general criteria
in the Euclidean setting. Below, we study stability in the context of Riemannian
stochastic approximation algorithms.

Note that if the manifold itself is compact, there is nothing left to do. In this
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chapter, we establish a novel stability theorem that applies to Hadamard manifolds.
These are a class of non-compact manifolds commonly used in applications;
examples include Stiefel, Grassmannian, and other standard matrix manifolds,
hyperbolic spaces, and so on.

▶ Theorem 3.6. SupposeM is a complete Hadamard manifold and V is weakly
coercive and bounded. Then, under Assumptions 3.4 and 3.5, the iterates of
(RRM) are almost surely precompact.

We postpone the related definitions and the proof of Theorem 3.6 to Section 3.6.

3.5. PROOF OF THE APT PROPERTY

In this section, we proof Theorem 3.4. In short, this theorem states that under
some assumptions, the (geodesic) interpolation of the iterations of a Riemannian
Robbins–Monro scheme is an asymptotic pseudo-trajectory of the underlying
mean dynamics.

Because the proof of Theorem 3.4 and the geometric scaffolding required are
long and delicate, we have divided the proof into seven steps outlined below. For
each step, we give a high-level overview of the main difficulties and technical
challenges involved.

(1) Localization: The definition of an asymptotic pseudo-trajectory requires
comparison of the geodesic interpolation x and the flow orbit at arbitrary
large time-scales T . As it is challenging to compare distances at large on an
arbitrary Riemannian manifold, we prove that it is sufficient to show the
asymptotic pseudo-trajectory property for an arbitrary small T .

(2) The Picard curve: The geodesic interpolation is a stochastic curve affected
by noise and bias. Comparing this curve directly with the orbits of the flow
turns out to be challenging. Inspired by the concept of Picard iteration and
the Euclidean proof, we construct the Picard curve, which combines the
favorable aspects of both flow orbits and the interpolation, and use it as a
“bridge” between the orbit and the interpolation.
For any t, we consider the flow orbit ϕ and the Picard curve λ, both
starting at x(t), and decompose the distance between the flow orbit and the
interpolation into

d(x([t, t+ T ]), ϕ([0, T ]))

≤ d(x([t, t+ T ]), λ([0, T ])) + d(λ([0, T ]), ϕ([0, T ])).
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Due to the desirable properties of the Picard curve λ, we show in the
following steps that both terms of this decomposition vanish as t→∞.

(3) Boundedness of the curves: When inj(M) <∞, we show that all these
curves, namely the flow orbit, the Picard curve, and the [t, t+T ]-segment of
the interpolation, stay in a small geodesic ball around x(t) when T is small
enough. By the localization argument in the first step, the proof reduces to
a convex neighborhood of x(t), removing topological complexities arising
from cut points.

(4) The Fermi normal coordinates: To compute the sup distance between two
curves, it is natural to “move along” one curve and “look” at the other, while
tracking the distance. This is precisely what the Fermi normal coordinate
system allows us to do. We consider this coordinate system along the geodesic
interpolation and “look at” the flow and Picard curves.

(5) From Fermi to parallel: Comparing tangent vectors (in our case, the
velocity vector of curves) is challenging in normal coordinates while being
an easy task in parallel coordinates. Since everything thus far is expressed
in terms of Fermi normal coordinates, we show how to relate them with
parallel coordinates. Using this idea, we control the distance of the flow
orbit to the Picard curve. We develop along the way a comparison result
(Lemma 3.12) based on sectional curvature bounds. This lemma might be of
independent interest.

(6) Picard curve vs. geodesic interpolation: In this step, we deal with
the noise and bias in the geodesic interpolation. We use a combination of
Fermi-to-parallel and parallel transport arguments to give a bound on the
distance of the Picard curve to the geodesic interpolation.

(7) Finishing the proof: We conclude the proof by putting all bounds together
and applying Grönwall’s lemma, showing the asymptotic pseudo-trajectory
property.

Step 1. Localization
Recall that the curve x is an asymptotic pseudo-trajectory of the flow Φ if for all
T > 0,

lim
t→∞

sup
0≤h≤T

d(x(t+ h),Φh(x(t))) = 0. (3.23)

To show this property, we have to compare the geodesic interpolation x and
the flow orbit at arbitrary large time-scales T . Effectively, this comparison boils
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down to constructing a family of (minimizing) geodesics connecting x(t+ h) and
Φh(x(t)) for h ∈ [0, T ] and studying the evolution of the length of these geodesics.

This method works well in the Euclidean case but may cause significant
topological challenges in a Riemannian manifold. Specifically, the points Φh(x(t))
may go beyond the cut locus of x(t+ h), which can make the family of geodesics
non-smooth. It is unclear if the set of non-differentiability times is even discrete,
as the cut locus has a complex structure.5

To avoid these difficulties, we show in this step that it is sufficient to verify
(3.23) for an arbitrary small T , chosen in a way that ensures no curve passes the
cut locus of another. By an induction-like argument, we show that if (3.23) holds
for some T , it also holds for 2T . Our argument formalizes [Sha21, Claim 1].

Lemma 3.7. Let V be a C1 vector field and Φ be its corresponding flow. If a
continuous piecewise-smooth curve x satisfies (3.23) for some T > 0, then it is an
asymptotic pseudo-trajectory of the flow Φ.

We prove this lemma in Appendix A.2. An essential piece of the proof is the
fact that the integral curves of the flow of a Lipschitz, C1 vector field cannot get
too far from each other if started at different points. Lemma A.4 in the same
appendix formalizes this intuition.

Step 2. The Picard Curve
In the Euclidean proof of Section 2.5, we used the Picard iteration to construct
a better approximation of the flow orbit starting from the interpolation. Let
us reiterate this construction here. Picard’s iteration is a method of creating
successive approximations to the solution of the initial value problem

ẋ = V (x), x(0) = x0. (3.24)

One starts with an arbitrary initial curve c : [0, 1]→ Rd with initial value c(0) = x0,
and in each iteration, constructs a new curve λ = LV (c) from c via

λ(t) = c(0) +

∫ t

0

V (c(s)) ds. (3.25)

Under some regularity conditions on V (such as Lipschitzness), the sequence of
Picard iterations c,LV (c),LV (LV (c)), . . . converges (uniformly) to the solution

5 The situation is more straightforward when one is interested in the distance of a curve to a
fixed point. In this case, Figalli and Villani [FV08] show that one can arbitrarily approximate
the curve in C2 topology so that the resulting curve passes the cut locus of the fixed point in
a discrete set of times. In our case, we are interested in two curves and the set of times that
one curve passes the cut locus of the other.
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of the initial value problem (3.24).
Inspired by this, our goal in this step of the proof is to perform one step of

Picard iteration on the geodesic interpolation x, hoping that the resulting curve is
not far away from x and is closer (than x) to the integral curve ϕ. This, however,
needs some special treatment for Riemannian manifolds, as one cannot integrate
vectors living in different tangent spaces as in (3.25).

In other words, our goal is to construct the “integral of V along c” in a
Riemannian sense, namely

“
∫ t

0

V (c(s)) ds ,”

for a curve c : [0, 1]→M and a vector field V ∈ X(M). Instead of defining this
integral, we resort to a differential characterization. Notice that in (3.25), the
curve λ can be described equivalently as the solution of the initial value problem

λ̇(t) = V (c(t)), λ(0) = c(0).

Unfortunately, this ODE also does not make sense in a Riemannian sense as λ̇(t)
is a tangent vector at λ(t), while V (c(t)) lives in Tc(t)M. To resolve this issue, we
parallel transport the vector V (c(t)) along the minimizing geodesic connecting
c(t) to λ(t), that is, we formally consider the following ODE on the manifold:

λ̇(t) = Pc(t)→λ(t)[V (c(t))], λ(0) = c(0). (3.26)

In Proposition 3.8 below, we show that this ODE is well-defined and has a unique
solution. We call this solution the Picard curve starting at c(0) and denote it by
λc(0). If c(0) is clear from the context, we drop the superscript and only write λ.

To prove this proposition, we work in a strongly convex neighborhood of c(0);
see Section 3.2.10 for a definition. In short, strong-convexity of a neighborhood
guarantees that the minimizing geodesics between any two points in the neigh-
borhood is unique and is entirely contained in the neighborhood. In other words,
for any two points p and q in the neighborhood, p is in a normal neighborhood
centered at q and vice versa.

Proposition 3.8. Let c : [0, a] → M be a smooth curve and V be a smooth
vector field along c; let U be a strongly convex neighborhood of c(0) containing
a ball Br(c(0)). Define texit = inf{s : c(s) /∈ U} to be the first time of c from U .
Then there exists a unique solution to the ODE (3.26) defined on [0, t], with

t ≥ min
{ r

V ∗ , texit

}
, where V ∗ = max

t∈[0,a]
|V (c(t))|.

Proof. Without loss of generality, let us assume that the image of c is contained
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entirely in U (otherwise, one can do the analysis below up to the first exit time
of c from U). For p ∈ U and t ∈ [0, a] define F (t, p) = Pc(t)→p[V (c(t))] to be the
parallel transport of V (c(t)) from c(t) to p along the minimizing geodesic. Note
that the image of this geodesic is entirely contained in U due to strong-convexity.
By Lemma A.1, F depends smoothly on both t and p. Therefore, by the existence
and uniqueness theorem of smooth ODEs, there exists a unique curve λ defined
on some maximal open interval I (containing 0), satisfying λ(0) = c(0) and
λ̇(t) = F (t, λ(t)). We now show that the solution of this ODE cannot exit Br(c(0))
for t ≤ r/V ∗, that is, r/V ∗ ∈ I. For this, observe that at any t ∈ I, we have

|λ̇(t)| = |Pc(t)→λ(t)[V (c(t))]| = |V (c(t))| ≤ V ∗,

where in the second equality we used the fact that parallel transport is an isometry
between tangent spaces. Therefore,

d(λ(t), c(0)) ≤
∫ t

0

|λ̇(s)| ds ≤ tV ∗.

Thus, as long as t < r/V ∗, we have that λ(t) ∈ Br(c(0)) ⊂ U .

We use Proposition 3.8 to construct the Picard curve for the geodesic interpo-
lation x, with the property that for all t > 0, the Picard curve starting at x(t) is
defined up to some arbitrary small but fixed T > 0. For this, we have to show that

(a) there is some r > 0 such that for all p ∈M, the ball Br(p) is contained in
some strongly convex neighborhood of p,

(b) the vector field is uniformly bounded on the entire geodesic interpolation x
by some V ∗, and

(c) the Picard curve λx(t) is still well-defined for the piecewise-smooth curve x.

For (a), it is enough to see that Assumption 3.1, together with Theorem 3.2
imply that the manifoldM has a positive convexity radius rconv(M). Therefore,
we can take r in the proposition above to be rconv.

As the geodesic interpolation x is a continuous piecewise-smooth curve, we
can construct the Picard curve on each smooth piece, and “glue” the pieces to
obtain a continuous, piecewise-smooth curve λ, thus resolving (c).

To verify (b), we show that the image of the geodesic interpolation is precom-
pact; we then take V ∗ to be the maximum of |V | on the compact set containing
(x(t))t≥0. Recall that Assumption 3.6 requires the iterates {xn}n∈N to be in a
compact set. If we show that the geodesic segments in x are not too long, then
including all the geodesic segments between the iterates would not violate precom-
pactness. As the length of the nth segment of x is αn|Vn| (recall the definition
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(3.15) of Vn), we thus have to show that αn|Vn| is uniformly bounded, almost
surely. We actually show in the lemma below that αn|Vn| → 0.

Lemma 3.9. It holds that

lim
n→∞

αn|Vn| = 0, almost surely. (3.27)

As a result, the image of the geodesic interpolation x is a precompact set in M.

Proof. Let us decompose the norm of Vn as

αn|Vn| ≤ αn|V (xn)|+ αn|Un|+ αn|Bn|.

As the iterates {xn}n∈N are precompact and V is continuous, |V (xn)| is uniformly
bounded. Therefore, αn|V (xn)| vanishes as n→∞ because αn → 0.

Let ε > 0 be arbitrary. By Markov’s inequality,

∞∑
n=1

P(αn|Un| ≥ ε) ≤
1

ε2

∞∑
n=1

α2
n E[|Un|2] ≤

1

ε2

∞∑
n=1

α2
n E[(U∗

n)
2] <∞,

where we used Assumption 3.4 and the fact that E[|Un|2] = E[E[|Un|2 | Fn]] ≤
E[(U∗

n)
2]. Thus, by Borel–Cantelli lemma, we can almost surely find an n0 such

that αn|Un| < ε for all n ≥ n0. Since ε was arbitrary, we see that αn|Un| converges
to 0 as n→∞ with probability 1. The same argument works for bias terms Bn,
after observing that Assumption 3.5 implies

∑
α2
n E[(B∗

n)
2] <∞.

Having (3.27), it is now not difficult to show that the geodesic interpolation
x is a precompact subset of M. To see this, fix some arbitrary point p ∈ M
and choose a radius R > 0 such that xn ∈ BR(p) for all n ∈ N (one can do this
as the manifold is assumed to have Heine–Borel property; see the remark after
Assumption 3.1). Also choose n0 such that αn|Vn| < R for all n ≥ n0. Then, for
any point x(t) on the geodesic interpolation with t ≥ τn0

we have

d(x(t), p) ≤ d(x(t),xm(t)) + d(xm(t), p) < R+R = 2R,

where m(t) is the largest integer n such that τn ≤ t. Thus,

sup
t≥0

d(x(t), p) ≤ max

{
2R, sup

t∈[0,τn0
]

d(x(t), p)

}
<∞.
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Step 3. Boundedness of the Constructs
Our next step is to show that we can choose T > 0 small enough, so that for every
t ≥ 0, the flow orbit ϕx(t) and the Picard curve λx(t) started at x(t), as well as
the [t, t+ T ]-segment of the geodesic interpolation x all stay in a strongly convex
neighborhood of x(t). Note that this step is only required for manifolds M with
inj(M) < ∞; the boundedness considerations of this step of the proof are not
needed for manifolds that are diffeomorphic to Rd.

Let r(p) := d(p,x(t)) be the distance to x(t), also called the radial distance if
we consider x(t) as the origin. A common technique to bound the distance of some
curve to x(t) is to bound the derivative of the radial distance r along that curve,
and then integrating that upper bound. Special care has to be taken, however,
when considering the derivative of r along a curve, as the curve might pass through
the cut locus of x(t); The radial distance might cease to be differentiable on the
cut locus (see Proposition 3.1 in Section 3.2.9).

Let us fix t and choose T > 0 so that the Picard curve λ started at x(t)
is defined up to time T . As the flow orbit and the Picard curve are absolutely
continuous, we can use the metric derivative formula (see Lemma A.2) to obtain

r(ϕ(h))− r(ϕ(0)) = r(ϕ(h)) ≤
∫ h

0

|ϕ̇(s)| ds =
∫ h

0

|V (ϕ(s))| ds.

Adding and removing Pϕ(0)→ϕ(s)[V (ϕ(0))] from V (ϕ(s)) gives

|V (ϕ(s))| ≤ |V (ϕ(s))− Pϕ(0)→ϕ(s)[V (ϕ(0))]|+ |V (ϕ(0))|

and since V is L-Lipschitz and bounded on the precompact curve x,

≤ Lr(ϕ(s)) + V ∗.

Using Grönwall’s inequality, we obtain the bound

sup
0≤h≤T

r(ϕ(h)) ≤ TV ∗ + LV ∗
∫ T

0

s eL(T−s) ds = V ∗(eLT − 1)/L. (3.28)

Similarly, for the Picard curve λ we have that

|λ̇|(h) =
∣∣Px(t+h)→λ(h)[V (x(t+ h))]

∣∣ = |V (x(t+ h))| ≤ V ∗
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for almost every h ∈ [0, T ]. Therefore, Lemma A.2 implies

sup
0≤h≤T

r(λ(h)) ≤ sup
0≤h≤T

∫ h

0

V ∗ ds = TV ∗. (3.29)

Therefore, we can choose T > 0 small enough so that both of the bounds (3.29)
and (3.28) are smaller than rconv, implying that both the flow orbit and the Picard
curve lie entirely a strongly convex neighborhood of x(t).

For the geodesic interpolation, we use Assumptions 3.4 and 3.5 for the case of
inj(M) <∞ and get

sup
0≤h≤T

d(x(t),x(t+ h))

≤ {αn − (t− τn)}|Vn|+ αn+1|Vn+1|+ · · ·+ {αk + (t+ T − τk)}|Vk|
≤ ({αn − (t− τn)}+ αn+1 + · · ·+ {αk + (t+ T − τk)}) · (V ∗ + U∗ +B∗)

= T (V ∗ + U∗ +B∗),

where n = m(t) and k = m(t+ T ).
To summarize, we claim that it is sufficient to take

T ≤ min

{
1

2L
log

(
Lrconv
V ∗ + 1

)
,

rconv
2(V ∗ + U∗ +B∗ + 1)

}
to ensures that the Picard curve is defined up to T , and that ϕ([0, T ]) and λ([0, T ]),
as well as x([t, t+ T ]) are contained in Brconv(x(t)), uniformly for all t ≥ 0. This
is because the exit time of the geodesic interpolation from Brconv(x(t)) is at least
rconv/(V

∗ +U∗ +B∗), and by Proposition 3.8, the choice of T above ensures that
the Picard curve is well-defined up to time T .
Remark. Since T is chosen in such a way that the flow orbits and Picard curves
are at most rconv far away from their initial points, we can enlarge the compact
set containing the geodesic interpolation (resulting from Lemma 3.9) so that it
includes, for all t ≥ 0, the flow and Picard curves starting at x(t), while remaining
compact. For brevity, we reuse the notation V ∗ for the maximum norm of V on
this enlarged compact set. ♢

For the rest of the proof, we choose T in the following way: When inj(M) <∞,
we set

T ≤ min

{
1

2L
log

(
Lrconv
V ∗ + 1

)
,

rconv
2(V ∗ + U∗ +B∗ + 1)

,
π

2
√
κup

}
, (3.30a)
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and when inj(M) =∞, we only assume

T ≤ min
{
π/2
√
κup,+∞

}
. (3.30b)

In both cases, we set 1/
√
κup = +∞ if κup ≤ 0.

Digression: The Fermi Normal Coordinates
Recall the notion of normal coordinates as discussed in Section 3.2.8. Normal
coordinates are suitable for computing distance to a fixed point locally. However,
in a situation like ours, we have to compute pointwise distance of two curves,
namely the flow orbit and the geodesic interpolation. The Fermi coordinate system
(FCS) [MM63], roughly speaking, is a system of normal coordinates along a curve,
and turns out to be the right tool for our computations. As we encounter Fermi
coordinates several times in the rest of the proof, it is no waste of time to make a
short digression in order to give a short overview of their construction and their
key attributes. It is imperative to direct the reader’s attention to the foundational
concepts and notations related to coordinate charts and tangent vectors, reviewed
in Section 3.2.1. A thorough comprehension of these preliminary notions is essential
for accurately interpreting and assimilating the following discussions.

Let I = [0, T ] and consider a smooth curve c : I → M with an arbitrary
orthonormal frame (E1(0), . . . , Ed(0)) for Tc(0)M. We obtain a system of orthonor-
mal frames (Ei(t)) for t ∈ [0, T ] by parallel transporting each Ei(0) from Tc(0)M
to Tc(t)M along c. For each t ∈ I, let Ut ⊆M be a normal neighborhood around
c(t). The Fermi normal coordinates along the curve c is then a diffeomorphism ψ
between U =

⋃
t∈I({t} × Ut), which is a neighborhood of the curve t 7→ (t, c(t)) in

the product manifold I ×M,6 and some neighborhood V in I × Rd of the curve
t 7→ (t, 0), and is given by the relation7

ψ
(
t, expc(t)

(∑
xiEi(t)

))
= (t, (x1, . . . , xd)). (3.31)

In other words, for a fixed t ∈ I, ψ(t, ·) is the normal coordinate chart centered
at c(t) with the basis (Ei(t)). We define xi = xi(t, p) to be the ith coordi-
nate of the point p in the normal coordinates ψ(t, ·), and write x = x(t, p) =
(x1(t, p), . . . , xd(t, p)) ∈ Rd. See Fig. 3.3 for an illustration.

The coordinate chart ψ induces the basis {∂/∂t, ∂/∂x1, . . . , ∂/∂xd} on the

6 In the literature, U is sometimes called a tubular neighborhood of the (one-dimensional)
submanifold {(t, c(t)) : t ∈ I} of I ×M [Lee18, p. 139].

7 There are two equivalent ways to define the Fermi coordinates. If one defines coordinate charts
to be from open sets in Rd to neighborhoods on the manifold (which is the choice of do Carmo
[Car92]), one has to replace ψ with ψ−1 in the definitions above. Our choice is merely for
consistency with the rest of this chapter and that of Lee [Lee18].
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c(t)
E1(0)

E2(0)

E2(t)

Tc(t)M

Tc(0)M

c(0)

p E1(t)

(t, 0)(0, 0)

Rd Rd

x(0, p)

x(t, p)

ψ

Figure 3.3. Fermi coordinates along the curve c. Left: An arbitrary orthonormal basis
{Ei(0)} is chosen for Tc(0)M (shown as gray rectangles), and then parallel
transported along c to get {Ei(t)}. Any point p ∈ M that is in the normal
neighborhood of c(t) will get normal coordinates (xi(t, p))di=1. The dashed
line represents the geodesic connecting points on c to p, and the black
arrow represents the initial velocity of this geodesic. Right: The coordinates
of the point p at two different times 0 and t.

tangent space of each point (t, p) in U ⊂ I ×M, in the sense that for any smooth
function f on U we have

∂

∂t

∣∣∣∣
(t,p)

f =
∂

∂t

∣∣∣∣
(t,x)

(f ◦ ψ−1) =
∂(f ◦ ψ−1)

∂t
(t, x), (3.32)

with the right-hand side interpreted in the Euclidean sense. Similar relation holds
for ∂/∂xi|(t,p).

To do computations within the Fermi coordinate system, we have to be able
to compute the components of tangent vectors in TU . Let us start by computing
the components of a vector field V on M in the Fermi coordinate chart ψ. As we
work with the product manifold I ×M, we first extend V to a vector field on
I ×M by defining its action at (t0, p0) on smooth functions f : I ×M → R to
be the same as the action of Vp0 on the function p 7→ f(t0, p). We use the same
symbol V to denote this extended vector field. Expanding V(t0,p0) in the basis of
T(t0,p0)U gives

V(t0,p0) = a(t0, p0)
∂

∂t

∣∣∣∣
(t0,p0)

+

d∑
i=1

V i(t0, p0)
∂

∂xi

∣∣∣∣
(t0,p0)

.
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Observe that the component corresponding to ∂/∂t is zero, as

a(t0, p0) = V(t0,p0)((t, p) 7→ t) = Vp0(p 7→ t0) = 0,

and for the component corresponding to ∂/∂xi we have

V i(t0, p0) = V(t0,p0)(x
i) = Vp0(p 7→ xi(t0, p)),

which is precisely the ith component of the vector field V in the normal coordinates
ψ(t0, ·).

Now suppose (t0, p0) ∈ U . Besides the tangent vector ∂/∂t|(t0,p0), which
corresponds to differentiation with respect to t in the coordinates defined by ψ
(see (3.32)), we can also consider differentiation with respect to the time variable
directly on the product manifold I ×M. The corresponding tangent vector is
the velocity vector of the curve β : t 7→ (t, p0) ∈ I ×M at t = t0. We denote
this tangent vector by (∂/∂t)R to distinguish it from ∂/∂t. Thus, for any smooth
function f defined on U we have

∂

∂t

R∣∣∣∣
(t0,p0)

f =
d

dt

∣∣∣∣
t=t0

(f ◦ β)(t) = d

dt

∣∣∣∣
t=t0

f(t, p0).

The following lemma from Fujita and Kotani [FK82] gives the components of this
tangent vector in the Fermi normal coordinates. We have adapted the notation of
the original lemma to match ours.

Lemma 3.10 (FK82, Lem. 1.2). Let c : I →M be a smooth curve and consider
the Fermi normal coordinates ψ : U → V along c defined as above. Let ci(s; t) be
the ith component of c(s) in the normal coordinate ψ(t, ·) and define

(c′)i(t) =
d

ds

∣∣∣∣
s=t

ci(s; t) = lim
s→t

ci(s; t)− ci(t; t)
s− t

. (3.33)

Then it holds

∂

∂t

R∣∣∣∣
(t,p)

=
∂

∂t

∣∣∣∣
(t,p)

−
d∑
i=1

{
(c′)i(t) + εi(t, x)

} ∂

∂xi

∣∣∣∣
(t,p)

, (3.34)

where x = x(t, p) and εi(t, x) are smooth functions satisfying

max
t∈I
|εi(t, x)| = O(∥x∥22) as ∥x∥ → 0,

where O(·) hides constants that only depend on the Riemannian curvature tensor.
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It is worth reiterating the key point from Lemma 3.10. When considering the
time derivative in the Fermi coordinate chart, (3.34) tells us that we have to take
the movement of the center c(t) of the coordinate system into account. Intuitively,
this means that the velocity of a moving point, as seen from a moving observer c(t),
is approximately its instantaneous velocity minus the observer’s instantaneous
velocity. Moreover, due to the manifold’s nonlinearity, this approximation worsens
when the moving point gets farther from the observer.

To make this intuition more precise, below we compute the expression of the
velocity of one curve in the Fermi coordinates around the other. This computation
turns out to be a simple corollary of Lemma 3.10, and is essential for the rest of
the proof of Theorem 3.4.

Corollary 3.11. Consider the Fermi coordinate system ψ : U → V around the
curve c : [0, T ]→M. Let β : [0, T ]→M be another smooth curve onM such that
β(t) ∈ Ut for all t ∈ [0, T ]. Let β̂(t) = x(t, β(t)) be the normal coordinates of β(t)
in the chart ψ(t, ·). Moreover, let β̇i(t) be the ith component of the velocity vector
of β(t) in this normal coordinates. Then the velocity of the curve t 7→ β̂(t) ∈ Rd is
given by the vector (

˙̂
β1(t), . . . ,

˙̂
βd(t)) ∈ Rd with

˙̂
βi(t) = β̇i(t)− (c′)i(t) +O(∥β̂(t)∥22),

where (c′)i(t) is defined in (3.33).

Proof. Let I = [0, T ]; consider the curve c : I → U defined as c(t) = (t, β(t)).
The velocity vector of c at time t0 ∈ I is by definition ċ(t0) = (dc)t0((∂/∂t)

R|t0).
Since c is a smooth map to a product manifold, its differential has a product form
(dc)t0 = Id⊕ (dβ)t0 .8 Therefore, ċ(t0) = (∂/∂t)R|(t0,β(t0))+ β̇(t0). The components
of this tangent vector in the normal coordinates centered at c(t0) can be computed
via Lemma 3.10 and the definition of β̇i(t0):

ċ(t0) =
∂

∂t

R∣∣∣∣
(t0,β(t0))

+

d∑
i=1

β̇i(t0)
∂

∂xi

∣∣∣∣
(t0,β(t0))

=
∂

∂t

∣∣∣∣
(t0,β(t0))

+

d∑
i=1

{
β̇i(t)− (c′)i(t0)− εi(t0, β̂(t0))

} ∂

∂xi

∣∣∣∣
(t0,β(t0))

.

This implies that the velocity of the curve (t, β̂(t)) = ψ(t, β(t)) in I × Rd is the
vector (1, ˙̂β1(t), . . . ,

˙̂
βd(t)) with ˙̂

βi(t) given as in the statement of the corollary.

8 We are using the identification TtI × TpM ∼= T(t,p)(I ×M) [Lee12, Prop. 3.14].
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Remark 3.1. We can compute (c′)i(t) defined in (3.33) explicitly when the curve
c is a geodesic. Observe that in this case, for s close to t we have

c(s) = expc(t)((s− t) ċ(t)).

Therefore, in the normal coordinates ψ(t, ·), the ith coordinate of c(s) will be

ci(s; t) = (s− t)⟨ċ(t), Ei(t)⟩.

Taking the derivative with respect to s at s = t yields

(c′)i(t) = ⟨ċ(t), Ei(t)⟩.

Moreover, as the frame (Ei(t)) is parallel along c, ⟨ċ(t), Ei(t)⟩ is constant and
independent of t. Therefore, for all t ∈ [0, T ] and i = 1, . . . , d,

(c′)i(t) = (c′)i(0) = ⟨ċ(0), Ei(0)⟩. (3.35)

We will use this formula in the proof that follows. ♢

Step 4. Controlling distances
After this brief digression, let us return to our original problem of computing
pointwise distances between two curves. Recall that our objective is to bound

sup
h∈[0,T ]

d(x(t+ h),Φh(x(t)))

by a function of t that vanishes as t→∞. Following the argument in Section 3.5,
we take T to be small enough (see (3.30)), so that all the curves of our interest (the
geodesic interpolation x([t, t+ T ]), the Picard curve λ([0, T ]), and the flow orbit
ϕ([0, T ])) fall in a strongly convex neighborhood of x(t). We bound the desired
distance by decomposing it into the distance from x to λ and the distance from λ
to ϕ, doing all the computations in an appropriate Fermi coordinate system.

Let us begin with an arbitrary orthonormal frame (Ek(0))
d
k=1 at Tx(0)M,

and parallel transport this frame along x to obtain (Ek(t)) for all t ≥ 0. This
is possible since x is a piecewise-smooth curve [Lee18, Cor. 4.33]. We consider
each time interval where x is smooth, and in each of these intervals, we construct
the Fermi coordinates ψ centered around x using the frames (Ek(·)). Similar to
Corollary 3.11, we will express the coordinate representation of a curve c in the
Fermi coordinate system with ĉ, so that ĉ(t) is the normal coordinates of c(t) in
the chart ψ(t, ·).
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Suppose x is smooth in I = [a, b] ⊂ [t, t + T ]. For any h ∈ [a − t, b − t] we
compute

d(x(t+ h),Φh(x(t))) = d(x(t+ h), ϕ(h)) = ∥ϕ̂(h)∥2
≤ ∥ϕ̂(h)∥2 + ∥λ̂(h)∥2
≤ ∥ϕ̂(h)− λ̂(h)∥2 + 2∥λ̂(h)∥2.

(3.36)

To avoid confusion with the (Riemannian) norm of tangent vectors, we use ∥·∥2
for the usual Euclidean norm of a vector in Rd.

As ϕ̂ and λ̂ are smooth in I (recall from Proposition 3.8 that λ is smooth
wherever x(t + ·) is smooth), we can bound their distance by integrating the
difference of their velocities, that is,

∥ϕ̂(h)− λ̂(h)∥2 − ∥ϕ̂(a)− λ̂(a)∥2 =

∥∥∥∥∫ h

a

(
˙̂
ϕ(s)− ˙̂

λ(s)) ds

∥∥∥∥
2

.

By Corollary 3.11 and the definition of the flow orbit (3.16) and the Picard curve
(3.26), we can compute the velocities in Fermi coordinates

˙̂
ϕi(s) = ϕ̇i(s)− (x′)i(t+ s) +O(∥ϕ̂(s)∥22), and
˙̂
λi(s) = λ̇i(s)− (x′)i(t+ s) +O(∥λ̂(s)∥22),

where (x′)i(t+ s) is defined as in (3.33). We recall that ϕ̇(s) (resp. λ̇(s)) is the
velocity vector of the flow orbit ϕ(·) (resp. Picard curve λ(·)) at time s, and its
components in the normal coordinate system ψ(t+s, ·) centered at x(t+s) is ϕ̇i(s)
(resp. λ̇i(s)). In what follows, it is useful to pack the components of a tangent
vector into a Euclidean vector and compare vectors in the Euclidean sense. For
this, we use the notation vec(·). For example, vec(ϕ̇i(s)) is a vector in Rd with
components (ϕ̇1(s), . . . , ϕ̇d(s)). With this notation, we have

∥ϕ̂(h)− λ̂(h)∥2 − ∥ϕ̂(a)− λ̂(a)∥2 =

∥∥∥∥∫ h

a

(
˙̂
ϕ(s)− ˙̂

λ(s)) ds

∥∥∥∥
2

≤
∥∥∥∥∫ h

a

(vec(ϕ̇i(s))− vec(λ̇i(s))) ds

∥∥∥∥
2

+

∫ h

a

R1(s) ds, (3.37)

where the remainder term R1(s) = O(∥ϕ̂(s)∥22 + ∥λ̂(s)∥22). Similarly, for the other
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term in the decomposition (3.36) we have

∥λ̂(h)∥2 − ∥λ̂(a)∥2

≤
∥∥∥∥∫ h

a

(vec(λ̇i(s))− vec((x′)i(t+ s))) ds

∥∥∥∥
2

+

∫ h

a

R2(s) ds (3.38)

with R2(s) = O(∥λ̂(s)∥22). Note that by our choice of T , we have

∥λ̂(s)∥2 = d(x(t+ s), λ(s)) ≤ d(x(t+ s),x(t)) + d(x(t), λ(s)) ≤ 2rconv,

and similarly for ∥ϕ̂(s)∥2. Therefore,

R1(s) = O(rconv(∥ϕ̂(s)∥2 + ∥λ̂(s)∥2)) = O(∥ϕ̂(s)∥2 + ∥λ̂(s)∥2),

and similarly, R2(s) = O(∥λ̂(s)∥2).
Remark 3.2. We remark that we can glue the curves ϕ̂ and λ̂ defined on sub-
intervals that x(t+ ·) is smooth, to obtain the continuous piecewise-smooth curves
ϕ̂, λ̂ : [0, T ]→ Rd. This is possible as we use the same normal coordinate system at
the boundary of each sub-interval to define ϕ̂ and λ̂. We can therefore combine the
inequalities (3.37) and (3.38) by summing over all sub-intervals that x is smooth
to obtain for all h ∈ [0, T ],

∥ϕ̂(h)− λ̂(h)∥2 ≤
∥∥∥∥∫ h

0

(vec(ϕ̇i(s))− vec(λ̇i(s))) ds

∥∥∥∥
2

+

∫ h

0

R1(s) ds, (3.39)

and

∥λ̂(h)∥2 ≤
∥∥∥∥∫ h

0

(vec(λ̇i(s))− vec((x′)i(t+ s))) ds

∥∥∥∥
2

+

∫ h

0

R2(s) ds, (3.40)

where we used the fact that ϕ̂(0) = λ̂(0) = 0 as ϕ(0) = λ(0) = x(t). The only
caveat to bear in mind is that we have to refer to the FCS at the corresponding
time interval to make sense of the meaning of ϕ̂ and λ̂. Moreover, vec(ϕ̇i(s)) and
vec(λ̇i(s)) are defined everywhere except on a discrete set of times. ♢

Step 5. From Fermi to Parallel Frames
So far, we have reduced the proof to bounding (3.39) and (3.40) from above.
However, the components ϕ̇i and λ̇i in these equations are not amenable to
further computation as they are given by a normal coordinate system. This is the
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main downside of using normal coordinates, as normal coordinate systems do not
necessarily induce an orthonormal basis for tangent spaces other than that of the
center of the coordinate system.

To remedy this, we first consider frames at λ(s) and ϕ(s) that are parallel to
(Ek(t+ s)). In these frames, we will see shortly that we can easily compare the
vectors λ̇(s) and ϕ̇(s). We then show that this comparison is close to the desired
comparison in normal coordinates.

Concretely, let (E′
k(s)) be an orthonormal basis of Tλ(s)M obtained by parallel

transporting (Ek(t+ s)) from x(t+ s) to λ(s) along the minimizing geodesic. The
ith component of λ̇(s) in this frame, denoted by λ̇i,q(s), is simply

λ̇i,q(s) = ⟨λ̇(s), E′
i(s)⟩

= ⟨Px(t+s)→λ(s)[V (x(t+ s))], E′
i(s)⟩

= ⟨Px(t+s)→λ(s)[V (x(t+ s))],Px(t+s)→λ(s)[Ei(t+ s)]⟩
= ⟨V (x(t+ s)), Ei(t+ s)⟩.

Similarly define (E′′
k (s)) to be an orthonormal basis of Tϕ(s)M obtained by parallel

transporting (Ek(t+ s)) from x(t+ s) to ϕ(s) along the minimizing geodesic, and
let ϕ̇i,q(s) be the ith component of ϕ̇(s) in this frame. Then,

ϕ̇i,q(s)− λ̇i,q(s) = ⟨V (ϕ(s)), E′′
i (s)⟩ − ⟨V (x(t+ s)), Ei(t+ s)⟩

= ⟨Pϕ(s)→x(t+s)[V (ϕ(s))]− V (x(t+ s)), Ei(t+ s)⟩

Therefore, since (Ei(t+ s)) is orthonormal,

∥vec(ϕ̇i,q(s))− vec(λ̇i,q(s))∥2 = |Pϕ(s)→x(t+s)[V (ϕ(s))]− V (x(t+ s))|
≤ Ld(ϕ(s),x(t+ s))

= L∥ϕ̂(s)∥2. (3.41)

We would like to replace vec(ϕ̇i(s))− vec(λ̇i(s)) in (3.39) with vec(ϕ̇i,q(s))−
vec(λ̇i,q(s)). This is not straightforward, though, as these components are coming
from two different frames, one being orthonormal, and the other coming from
a normal coordinate system. In Lemma 3.12 below, we show a way to compare
coordinates in these two frames.

▶ Lemma 3.12. Suppose the sectional curvatures of M are bounded between κlow
and κup; let p, q ∈M with q within the injectivity radius of p. If κup > 0, assume
further that d(p, q) < π/2

√
κup. Consider an orthonormal frame (Ei) for TpM

and the parallel frame (E′
i) obtained by parallel transporting (Ei) from p to q

along the minimizing geodesic. Let v ∈ TqM; let the components of v in the
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frames induced by the normal coordinates and the parallel frame (E′
i) be vi and

vi,q respectively. Then one has the estimate

∥vec(vi)− vec(vi,q)∥2 ≤
π

2
· κmax · fκlow

(d(p, q)) · |v|,

where κmax = max(|κup|, |κlow|) and fκlow
is defined as

fκlow
(a) =


a2

6 if κlow = 0,

r2
(
1− sin(a/r)

a/r

)
if κlow = 1

r2 > 0,

r2
(

sinh(a/r)
a/r − 1

)
if κlow = − 1

r2 < 0.

Proof. Let w ∈ TpM be such that q = expp(w) and |w| = d(p, q). First, observe
that ∂/∂xi|q = (d expp)w(Ei). Therefore,

v = (d expp)w
(∑

viEi
)
.

Define the tangent vector ṽ ∈ TpM as ṽ =
∑
viEi. From the linearity of parallel

transport we obtain
Pp→q[ṽ] =

∑
viE′

i.

Thus, v − Pp→q[ṽ] =
∑

(vi,q − vi)E′
i and

∥vec(vi)− vec(vi,q)∥2 = |v − Pp→q[ṽ]|
= |(d expp)w(ṽ)− Pp→q[ṽ]|q
≤ κmax · fκlow

(|w|) · |ṽ|,

where we used Lemma A.3. We are thus left with bounding |ṽ|p in terms of |v|q.
For this, we decompose ṽ into ṽ⊥ + ṽtan, where ṽ⊥ is perpendicular to w and ṽtan
is parallel to it. We have by Gauss’s lemma that

⟨(d expp)w(ṽtan), (d expp)w(w)⟩ = ⟨ṽtan, w⟩

and
|(d expp)w(ṽtan)| = |ṽtan|. (3.42)

Moreover, as |w| = d(p, q) ≤ π/2
√
κup (if κup > 0), we can use Rauch’s lower

bound [BK81, Prop. 6.4] to obtain

|ṽ⊥| ≤ |(d expp)w(ṽ⊥)| ·
|w|

sκup
(|w|)

, (3.43)
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where sκ : R→ R is defined as

sκ(a) =


a if κ = 0,
1
r sin(ra) if κ = 1

r2 > 0,
1
r sinh(ra) if κ = − 1

r2 < 0.

Thus, when κup > 0, (3.43) reduces to

|ṽ⊥| ≤
π

2
· |(d expp)w(ṽ⊥)|,

as x
sin x ≤ π/2 for x ∈ [0, π/2], and when κup < 0, it becomes

|ṽ⊥| ≤ |(d expp)w(ṽ⊥)|,

as x
sinh x ≤ 1 for x ∈ R. By combining these two cases, we obtain

|ṽ|2 = |ṽ⊥|2 + |ṽtan|2 ≤
π2

4

(
|(d expp)w(ṽ⊥)|2 + |(d expp)w(ṽtan)|2

)
=
π2

4
|(d expp)w(ṽ)|2 =

π2

4
|v|2.

Using Lemma 3.12 and the fact that the time horizon T is chosen in such a
way that d(ϕ(s),x(t+ s)) < π/2

√
κup when κup > 0, we obtain the bound

∥vec(ϕ̇i(s))− vec(ϕ̇i,q(s))∥2 ≤
π

2
· κmax · fκlow

(∥ϕ̂(s)∥2) · |ϕ̇(s)|. (3.44)

What is left is to bound fκlow
. Lemma A.3 in the appendix shows that fκlow

is
dominated by f−κmax . Using the inequalities (sinhx)/x ≤ ex for all x ≥ 0, and
eax − 1 ≤ x · (eaR − 1)/R for x ∈ [0, R], we get

fκlow
(∥ϕ̂(s)∥2) ≤

1

κmax

(
e
√
κmax ∥ϕ̂(s)∥2 − 1

)
≤ e2rconv

√
κmax − 1

2rconv κmax
· ∥ϕ̂(s)∥2,

(3.45)

where we used the fact that ϕ(s) is in the ball Brconv(x(t)), and therefore, its
distance to x(t+ s) is at most 2rconv. Combining (3.45) with (3.44) and recalling
that the vector field V (and hence |ϕ̇(s)|) is bounded from above by V ∗, we get

∥vec(ϕ̇i(s))− vec(ϕ̇i,q(s))∥2 =: R3(s) = O(∥ϕ̂(s)∥2), (3.46)
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where O hides constants depending on V ∗, κmax, and rconv. Similarly, for the
Picard curve we obtain

∥vec(λ̇i(s))− vec(λ̇i,q(s))∥2 =: R4(s) = O(∥λ̂(s)∥2). (3.47)

We are now in a position to use the results of this step and bound (3.39)
further. Using Eqs. (3.41), (3.46) and (3.47), we obtain

∥ϕ̂(h)− λ̂(h)∥2

≤

∥∥∥∥∥
∫ h

0

(vec(ϕ̇i(s))− vec(λ̇i(s))) ds

∥∥∥∥∥
2

+

∫ h

0

R1(s) ds,

≤
∫ h

0

∥vec(ϕ̇i(s))− vec(λ̇i(s))∥2 ds+
∫ h

0

R1(s) ds,

≤
∫ h

0

∥vec(ϕ̇i,q(s))− vec(λ̇i,q(s))∥2 ds+
∫ h

0

(R1 +R3 +R4)(s) ds,

≤ L
∫ h

0

∥ϕ̂(s)∥2 ds+
∫ h

0

(R1 +R3 +R4)(s) ds. (3.48)

The resulting bound is very promising, as its first term reminds us of the Grönwall’s
lemma. However, we have to keep the remainder terms under control.

Step 6. Distance of the Picard Curve to the Interpolation
As promised in the beginning of the proof, in this step, we deal with the noise
and bias in the algorithm. Similar to the Euclidean proof in Section 2.5, it
will be convenient to introduce objects that relate continuous-time constructs
to their discrete-time counterpart. We have already seen the effective time τn
and the continuous-to-discrete counter m(t) = sup{n ≥ 1 : τn ≤ t}. For an
arbitrary process A1, A2, . . ., let us define the continuous-time, piecewise-constant
interpolation A(t) as

A(t) = An, t ∈ [τn, τn+1). (3.49)

Using this notation, we can write the geodesic interpolation (GI) in differential
form:

ẋ(t) = Px
xn→x(t)

[
V (x(t)) + U(t) +B(t)

]
, t ∈ [τn, τn+1).

In the spirit of the martingale convergence theorem in Euclidean spaces, we
show that Assumptions 3.3 and 3.4 imply a similar property for the noise terms
Un. Unlike in a Euclidean setup, however, we cannot simply add up the noise
terms and form a martingale. Instead, we consider a set of orthonormal frames at
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each iterate of (RRM) and verify the cancellation property for the coordinates of
the noise terms in these frames. This turns out to be enough for our asymptotic
pseudo-trajectory result to hold.

Concretely, For each n ∈ N, consider an arbitrary Fn-measurable orthonormal
frame (Ek(n))

d
k=1 for Txn

M and consider the components U in of Un in this basis,
that is,

Un =
∑

U inEi(n), with U in = ⟨Un, Ei(n)⟩,

and pack these components into a Euclidean vector vec(U in) ∈ Rd. It is then
evident that

E[vec(U in) | Fn] = 0

and
E[∥vec(U in)∥22 | Fn] = E[|Un|2 | Fn].

In other words, vec(U in) becomes a martingale difference sequence in Rd. For
t, T ≥ 0, define the cumulative noise from time t up to t+ T as

∆(t, T ) = sup
0≤h≤T

∥∥∥∥∫ t+h

t

vec(U(s)i) ds

∥∥∥∥
2

.

Given Assumption 3.4, a similar argument as in Section 2.5.1 implies that for all
fixed T > 0,

lim
t→∞

∆(t, T ) = 0, almost surely. (3.50)

Note that the property (3.50) is independent of the choice of the frames (Ek(n)).
Let us now consider the bias terms Bn. Recall from (3.19) that E[|Bn|2 | Fn] ≤

(B∗
n)

2. Define
B∗(t, T ) := sup

0≤h≤T
B∗(t+ h).

Assumption 3.5 readily implies that for any fixed T > 0,

lim
t→∞

B∗(t, T ) = 0, almost surely. (3.51)

This control over the bias terms turns out to be enough for our purposes.
We now turn to the distance of the Picard curve to the interpolation, which we

bounded by (3.40). Our first task is to obtain an expression for (x′)i(t+ s). Let
n = m(t+s) and consider the interpolation between xn and xn+1. By construction
of (GI), the curve x is a geodesic when restricted to [τn, τn+1]. It then follows
from (3.35) in Remark 3.1 that

(x′)i(t+ s) = ⟨ẋ(τn), Ei(τn)⟩.
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Now observe that (GI) already specifies ẋ(τn):

ẋ(τn) = V (x(τn)) + Un +Bn.

Let U i,qn and Bi,qn be the components9 of the noise and bias vectors in the frame
(Ei(τn)), and define the Euclidean vectors vec(U i,qn ) and vec(Bi,qn ). With the
notation for piecewise-constant interpolations (3.49), we can write

vec((x′)i(t+ s)) = vec(V i(x̄(t+ s))) + vec(Ū i,q(t+ s)) + vec(B̄i,q(t+ s)). (3.52)

Using (3.52), we can now bound (3.40) further:

∥λ̂(h)∥2 ≤
∫ h

0

∥vec(λ̇i(s))− vec(V i(x̄(t+ s)))∥2 ds

+

∥∥∥∥∫ h

0

vec(Ū i,q(t+ s)) ds

∥∥∥∥
2

+

∥∥∥∥∫ h

0

vec(B̄i,q(t+ s)) ds

∥∥∥∥
2

+

∫ h

0

R2(s) ds.

By the comparison (3.47) between Fermi and parallel coordinates and the defini-
tions of cumulative noise ∆(t, T ) and B∗(t, T ), we obtain

∥λ̂(h)∥2 ≤
∫ h

0

∥vec(λ̇i,q(s))− vec(V i(x̄(t+ s))∥2 ds

+∆(t, T ) +B∗(t, T ) +

∫ h

0

(R2 +R4)(s) ds

(3.53)

With an identical argument to (3.41), the first term in (3.53) can be bounded as

∥vec(λ̇i,q(s))− vec(V i(x̄(t+ s))∥2
= |V (x(t+ s))− Px̄(t+s)→x(t+s)[V (x̄(t+ s))]|
≤ Ld(x(t+ s), x̄(t+ s)).

(3.54)

The interpolations x and x̄ agree at m(t+s) = τn. Hence, as x is a constant-speed

9 We kept the tradition of putting q next to the coordinate, suggesting that the coordinates are
in the (parallel) frame (Ei(τn)).
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geodesic in the interval [τn, τn+1], we have

d(x(t+ s),xn) ≤
∫ t+s

τn

|ẋ(u)| du

= (t+ s− τn)|V (x̄(t+ s)) + Ū(t+ s) + B̄(t+ s)|
≤ α∗(t)(V ∗ +B∗(t, T )) + (t+ s− τn)|Ū(t+ s)|,

where α∗(t) = supu≥t ᾱ(u). For t large enough, we can assume that α∗(t) < 1,
and from the definition of ∆(t, T ), we have that

(t+ s− τn)|Ū(t+ s)| =
∥∥∥∥∫ t+s

τn

vec(Ū i,q(u)) du

∥∥∥∥
2

≤
∥∥∥∥∫ τn

t−1

vec(Ū i,q(u)) du

∥∥∥∥
2

+

∥∥∥∥∫ t+s

t−1

vec(Ū i,q(u)) du

∥∥∥∥
2

≤ 2∆(t− 1, T + 1).

Combining these bounds with Eqs. (3.53) and (3.54) then gives

∥λ̂(h)∥2 ≤ Lh[α∗(t)(V ∗ +B∗(t, T )) + 2∆(t− 1, T + 1)]

+ ∆(t, T ) +B∗(t, T ) +

∫ h

0

(R2 +R4)(s) ds.
(3.55)

Finishing the Proof
We can now finish the proof. Recall the decomposition (3.36):

d(x(t+ h),Φh(x(t))) ≤ ∥ϕ̂(h)− λ̂(h)∥2 + 2∥λ̂(h)∥2.

Using (3.48) and (3.55) we obtain

∥ϕ̂(h)− λ̂(h)∥2 + 2∥λ̂(h)∥2 ≤ L
∫ h

0

∥ϕ̂(s)∥2 ds+
∫ h

0

(R1 +R3 +R4)(s) ds

+ 2Lh[α∗(t)(V ∗ +B∗(t, T )) + 2∆(t− 1, T + 1)]

+ 2∆(t, T ) + 2B∗(t, T ) + 2

∫ h

0

(R2 +R4)(s) ds.
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As (R1+R2+R3+R4)(s) = O(∥ϕ̂(s)∥2+∥λ̂(s)∥2) and ∆(t, T ) ≤ 2∆(t−1, T +1),
we get for some C1, C2 > 0,

∥ϕ̂(h)∥2 + ∥λ̂(h)∥2 ≤ C1

∫ h

0

(∥ϕ̂(s)∥2 + ∥λ̂(s)∥2) ds

+ hC2(α
∗(t) +B∗(t, T ) + ∆(t− 1, T + 1)). (3.56)

Grönwall’s inequality then implies

∥ϕ̂(h)∥2 + ∥λ̂(h)∥2 ≤ hC2(α
∗(t) +B∗(t, T ) + ∆(t− 1, T + 1)) ehC1 .

From this, we conclude that

lim
t→∞

sup
h∈[0,T ]

d(x(t+ h),Φh(x(t)))

≤ lim
t→∞

sup
h∈[0,T ]

(∥ϕ̂(h)∥2 + ∥λ̂(h)∥2)

≤ lim
t→∞

TC2(α
∗(t) +B∗(t, T ) + ∆(t− 1, T + 1)) eTC1

= 0 a.s.,

since α∗(t) → 0, and by (3.51) and (3.50), ∆(t, T ) and B∗(t, T ) vanish with
probability 1 as t→∞.

3.6. PROOF OF THE STABILITY THEOREM

In this section, we give a complete proof for the stability theorem, stated in
Theorem 3.6, which gives conditions for the iterates of a Riemannian Robbins–
Monro algorithm to be precompact. Recall that if the manifold is compact, stability
holds without any further assumptions. In this section, we focus on a wide class
of non-compact manifolds, called Hadamard manifolds.

Let us begin with some definitions. We sayM is a Hadamard manifold , if it is
a complete simply connected Riemannian manifold with non-positive sectional
curvatures. Recall that a topological spaceM is simply connected if and only if it
is path-connected, and whenever c : [0, 1]→M and c′ : [0, 1]→M are two paths
with the same start and endpoint, then c can be continuously deformed into c′
while keeping both endpoints fixed. Fix an arbitrary base point o ∈ M. Define
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the radial distance function r(p) := d(p, o), and let

k(p) :=
1

2
d2(p, o) =

1

2
r2(p). (3.57)

We see below that on a Hadamard manifold, one has a notion of “outward-pointing
radial direction” given by the gradient of squared radial distance ∇k, that is,

∇k(p) = − exp−1
p (o).

Using this notion, we can further formalize when a vector field tends to “keep
iterates stable” by pushing them “inwards.”

p

o

∇d2(p, o)

V (p) BR(o)

M

Figure 3.4. A weakly coercive vector field. For all points p outside the geodesic ball
BR(o), the vector field V should have negative inner product with the
radial velocity at p. The dashed line depicts the geodesic from o to p.

We say that the vector field V is weakly coercive, if for all p ∈ M \ BR(o)
outside a closed geodesic ball of radius R > 0 and centered at o it holds

⟨V (p),∇k(p)⟩ ≤ 0. (3.58)

See Fig. 3.4 for an illustration. Weak coercivity may be viewed as a Riemannian
relaxation of the coercivity condition in Euclidean spaces:

lim
p→∞

⟨V (p), p⟩
∥p∥2

= −∞.

The condition above posits that the inward-pointing component of V grows
unbounded at infinity, a property which is frequently used to ensure the stability
of Euclidean iterative algorithms [Phe93; FP03]. In our Riemannian setting, the
role of the radial field is played by the gradient of the squared distance function
∇k. In addition, it is important to bear in mind that weak coercivity does not
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impose any growth requirements on the radial component of V ; it only requires
that V does not have a consistent outward-pointing component that could lead
the process to diverge. Therefore, it is significantly weaker in that respect than
Euclidean coercivity (hence the adjective “weak”).

Let us now turn our attention to the proof of Theorem 3.6. We heavily rely on
the structure of the squared radial distance function k defined in (3.57) along with
its gradient and Hessian. The following theorem, which is adapted from [Jos17],
shows that k is smooth and gives a control on its Hessian.

Theorem 3.13 (Jos17, Thm. 6.6.1). Suppose o ∈M is an arbitrary base point
in a Hadamard manifold M, and let r and k be defined as in (3.57). Moreover,
suppose that the sectional curvature ofM is non-positive and bounded from below
by (−κ2). Then k is smooth on M and

∇k(p) = − exp−1
p (o).

Additionally, |∇k(p)| = r(p) and

(Hess k)p(v, v) ≤ κ · r(p) · coth(κ · r(p)) · |v|2

for all p ∈M and v ∈ TpM.

Remark. Since M is simply connected and complete, it holds that inj(M) =∞
[Jos17, Cor. 6.9.1], and we can deduce the result above from [Jos17, Thm. 6.6.1]. ♢

Proof of Theorem 3.6. Our proof relies on constructing a suitable energy
function that serves as a proxy for the distance of the iterates of (RRM) from an
arbitrarily chosen base point o. This function is of the form

E(p) = f(r(p)) (3.59)

where f : R→ R is a C∞ non-negative function with f(x) = 0 for all x ≤ R and
satisfies

0 ≤ f ′(x) ≤ C1, f ′′(x) ≤ C2 (3.60)

for all x ≥ R. Moreover, we require f(x) = Ω(x) as x → ∞ so that an upper
bound on f implies a bound on x; see Fig. 3.5. The gradient of E can be computed
as

∇E(p) =

{
0 if r(p) ≤ R,
f ′(r(p))
r(p) ∇k(p) if r(p) > R.

(3.61)

Our first result is that E = f ◦ r has a bounded Hessian and is smooth. For a
proof, see Appendix A.3.
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R

f(x)

Figure 3.5. An example of a function f satisfying (3.60), with f(x) = 0 when x ≤ R,
and f(x) ∼ x when x → ∞. Lemma A.5 gives a concrete formula for f .

Lemma 3.14. Let E be defined as in (3.59). Then E is negatively correlated with
V everywhere, in the sense that

⟨∇E(p), V (p)⟩ ≤ 0, ∀p ∈M. (3.62)

Moreover, there exists a constant C > 0 such that (HessE)p(v, v) ≤ C|v|2 and

E(p′) ≤ E(p) + ⟨∇E(p), exp−1
p (p′)⟩+ C

2
d2(p, p′), ∀p, p′ ∈M. (3.63)

We now proceed to the main argument, where we use E to control the distance
of the iterates xn to o. Letting En = E(xn) and using Lemma 3.14, we have

En+1 = E
(
expxn

(αnVn)
)
≤ En + αn⟨∇E(xn), Vn⟩+

Cα2
n

2
|Vn|2

≤ En + αn⟨∇E(xn), Un +Bn⟩+
3Cα2

n

2

(
|V (xn)|2 + |Un|2 + |Bn|2

)
,

where the second line follows from the negative correlation of E and V , the
definition (3.15) of Vn, and the Cauchy-Schwarz inequality. Conditioning on
Fn = σ(x1, . . . ,xn) and taking expectations, we obtain

E[En+1 | Fn] ≤ En + αn|∇E(xn)| · E[|Bn| | Fn] + 3
2Cα

2
n

[
(V ∗)2 + (U∗

n)
2 + (B∗

n)
2
]
,

where V ∗ is the bound on |V |, and U∗
n and B∗

n are defined in (3.19).
Using (3.61), we see that |∇E(xn)| ≤ C1

r(xn)
|∇k(xn)| = C1. Moreover, as

E[|Bn| | Fn] ≤ B∗
n, we obtain

E[En+1 | Fn] ≤ En + αnC1B
∗
n + 3

2Cα
2
n

[
(V ∗)2 + (U∗

n)
2 + (B∗

n)
2
]
. (3.64)

To proceed, let εn = αnC1B
∗
n + 3

2Cα
2
n

[
(V ∗)2 + (U∗

n)
2 + (B∗

n)
2
]

be the residual
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term in (3.64). Notice that

∞∑
n=1

εn ≤ C1

∞∑
n=1

αnB
∗
n +

3C

2

∞∑
n=1

α2
n((V

∗)2 + (U∗
n)

2 + (B∗
n)

2), (3.65)

and hence, by Assumptions 3.3–3.5 and the dominated convergence theorem, we
infer that E[

∑
εn] <∞.10 Next, consider the auxiliary process

E′
n = En + E[

∑∞
k=n εk | Fn]

adapted to the same filtration as En. By (3.64), we have

E[E′
n+1 | Fn] = E

[
En+1 + E

[∑∞
k=n+1 εk

∣∣Fn+1

] ∣∣Fn]
≤ En + εn + E

[
E
[∑∞

k=n+1 εk
∣∣Fn+1

] ∣∣Fn]
= En + E[

∑∞
k=n εk | Fn]

= E′
n.

This shows that E′
n is a supermartingale adapted to (Fn)n∈N. Therefore, E[E′

n] ≤
E[E′

1] < ∞, which implies that E′
n is uniformly bounded in L1, and by Doob’s

supermartingale convergence theorem, E′
n converges almost surely to some finite

random limit E′
∞. Hence, En = E′

n − E[
∑∞
k=n εk | Fn] converges almost surely to

some random finite limit. From this and the fact that En = Ω(r(xn)), we conclude
that lim supn r(xn) <∞, as claimed.

3.7. EXAMPLES OF RIEMANNIAN STOCHASTIC
APPROXIMATION ALGORITHMS

In this section, our main goal is to demonstrate how a variety of algorithms can
be viewed as specific instances of (RRM), thus allowing us to apply Theorem 3.4
and Corollary 3.5 to analyze their convergence behaviors. For clarity, we will
discuss algorithms that operate with indirect access to the vector field V through
what is known as a stochastic first-order oracle (SFO). In essence, when an SFO
is invoked at a point p on the manifold M, given an independent random seed ω
from a set of seeds Ω, it produces a random vector Ṽ (p;ω) in the tangent space

10 Note that Assumption 3.5 states that
∑
αn(E[(B∗

n)
2])1/2 < ∞. By Jensen’s inequality,∑

αn E[B∗
n] <∞, and as the terms in the series are positive, we also get

∑
α2
n E[(B∗

n)
2] <∞.
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TpM which is of the form

Ṽ (p;ω) = V (p) + U(p;ω), (SFO)

where the error term U(p;ω) ∈ TpM is assumed to be zero-mean and have
bounded second moments:

Eω[U(p;ω)] = 0 and Eω[|U(p;ω)|2] ≤ σ2, ∀p ∈M. (3.66)

Below, we list four different algorithms that are used for Riemannian root-
finding problems. We first cast each of the algorithms to the Riemannian Robbins–
Monro (RRM) framework by stating what is the value of noise Un and bias Bn
in the error decomposition (3.14) of (RRM). Finally, we state a proposition, in
which we show that the convergence result of Theorem 3.4 and Corollary 3.5 holds
for these algorithms under the mentioned assumptions.
Remark. We note that certain algorithms presented below are intended for
optimization purposes, hence the SFO yields a “stochastic gradient.” It is important
to emphasize that within our framework, there is no necessity for V to be a gradient.
Nevertheless, we will employ the same terminology and occasionally refer to Ṽ as
a “stochastic gradient.” ♢

The first algorithm, which is the simplest of all four, is the Riemannian analogue
of the famous stochastic gradient descent method:

▷ Algorithm 3.1. The Riemannian stochastic gradient method [Bon13] queries the
SFO at each iteration and proceeds as

xn+1 = expxn
(αnV (xn;ωn)). (RSGM)

This is clearly an RRM scheme by setting Un = U(xn;ωn) and Bn = 0. ◁

The next algorithm is inspired by the proximal point method in Euclidean
optimization [Mar70; Roc76].

▷ Algorithm 3.2. The (deterministic) Riemannian proximal point method [FO02]
is an implicit update rule of the form

exp−1
xn+1

(xn) = −αnV (xn+1). (RPPM)

The RRM representation of (RPPM) may then be obtained by taking Un = 0 and

Bn = Pxn+1→xn
[V (xn+1)]− V (xn). ◁

Remark 3.3. Our formulation of (RPPM) is inspired by the proximal point
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method for convex optimization. Concretely, let f :M→ R be a differentiable,
geodesically convex function. The proximal point method constructs its iterates
by the so-called proximal step:

xn+1 = argmin
p∈M

{
f(p) +

1

2αn
d2(p,xn)

}
.

Ferreira and Oliveira [FO02, Thm. 5.1] show that whenM is a Hadamard manifold,
the optimal solution of the proximal step satisfies

exp−1
xn+1

(xn) = αn∇f(xn+1).

Replacing −∇f with V in this relation gives the update rule (RPPM). ♢

▷ Algorithm 3.3. Inspired by the original work of Korpelevich [Kor76], the Rie-
mannian stochastic extra-gradient method [TH12; NSS16] proceeds as

xn+1/2 = expxn

(
αnṼ (xn;ωn)

)
,

xn+1 = expxn

(
Pxn+1/2→xn

[αnṼ (xn+1/2;ωn+1/2)]
) (RSEG)

where ωn and ωn+1/2 are independent seeds for (SFO). To recast (RSEG) in the
RRM framework, simply take{

Un = Pxn+1/2→xn
[U(xn+1/2;ωn+1/2)], and

Bn = Pxn+1/2→xn [V (xn+1/2)]− V (xn).
◁

Compared to (RSGM), the scheme (RSEG) involves two oracle queries per
iteration. Building on an original idea by Popov [Pop80], the last oracle query
can be “recycled,” leading to a more efficient method, known in other contexts as
optimistic gradient variant:

▷ Algorithm 3.4. The Riemannian optimistic gradient method proceeds as

xn+1/2 = expxn

(
αnV (xn−1/2;ωn−1)

)
,

xn+1 = expxn

(
Pxn+1/2→xn

[αnV (xn+1/2;ωn)]
)
.

(ROG)

As such, (ROG) may be seen as a special case of (RRM) by taking{
Un = Pxn+1/2→xn

[U(xn+1/2;ωn)], and

Bn = Pxn+1/2→xn [V (xn+1/2)]− V (xn).
◁

In view of Theorem 3.4 and Corollary 3.5, the convergence analysis of Algo-
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rithms 3.1–3.4 above boils down to verifying Assumptions 3.1–3.6. The following
proposition summarizes this.

Proposition 3.15. Suppose that

(H1) M is either a compact or a Hadamard manifold satisfying Assumption 3.1,

(H2) the vector field V is bounded and satisfies Assumption 3.2,

(H3) V is weakly coercive (3.58) in case M is not compact,

(H4) and the errors U of the SFO for V are zero-mean and have bounded second
moments (3.66). IfM is compact, the errors are further assumed to be a.s.
uniformly bounded in norm.

Then, with probability 1, the iterates of Algorithms 3.1–3.4 converge to an inter-
nally chain-transitive set of the flow (3.16).

Note that the precompactness of the iterates (Assumption 3.6) follows readily
from (H1), (H2), (H3), and Theorem 3.6. Therefore, for each algorithm, we only
have to verify the noise and bias conditions of Assumptions 3.4 and 3.5. The proof
can be found in Appendix A.4.

3.8. ALGORITHMIC VARIATIONS

In the last section, we mentioned a few basic algorithms for solving Riemannian
root-finding problems. However, these algorithms can be further modified to be
more computationally efficient. In this section, we show two different ways to
modify a Riemannian Robbins–Monro algorithm.

3.8.1. Retractions
One of the critical operations in (RRM) is computing the exponential map at
each iteration. While the exponential map can be computed in closed form for
standard manifolds (such as spheres, hyperbolic spaces, or some matrix manifolds),
its computation for a general manifold is computationally prohibitive: one has
to solve the geodesic equation (3.9), which is a second-order ODE. This can be a
computation bottleneck, as the exponential map is needed for every iteration of
(RRM).

A popular alternative to computing the exact exponential map is to use a
so-called retraction map [AMS08; Bou23]. This method is especially effective for
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manifolds embedded in a Euclidean space. Let us explain the idea of a retraction
map for this latter case. SupposeM⊂ RN is a d-dimensional manifold embedded
in RN . In this case, the tangent space TpM at any point p ∈M can be seen as a
d-dimensional affine subspace of RN . The idea of a retraction map is that instead
of computing the exponential map expp(v) for a tangent vector v ∈ TpM, we
compute p+ v in RN and project this point back onto the manifold. If v is small,
the resulting point will be a good approximation of expp(v) [see AMS08, Sec. 4.1].

▷ Example. In our introductory examples, we saw the geodesic equation for a
two-dimensional unit sphere in Example 3.1:

expx(v) = x cos∥v∥+ v

∥v∥
sin∥v∥.

The following retraction, however, is much simpler to implement:

Rx(v) :=
x+ v

∥x+ v∥
. ◁

Concretely, a retraction map is a smooth map R from the tangent bundle to
the manifold that agrees with the exponential map up to the first order, that is,

Rp(0) = p and
d

dt

∣∣∣∣
t=0

Rp(tv) = v for all (p, v) ∈ TM. (3.67)

In our framework, replacing the exponential map with a retraction can be
viewed as a source of bias in computing the vector field. To see this, suppose we
are running Algorithm 3.1 for the vector field V using the stochastic first-order
oracle Ṽ , and at each iteration, instead of using the exponential map, we use a
retraction R. The new update rule becomes

xn+1 = Rxn
(αnṼ (xn;ωn)) = Rxn

(αn{V (xn) + U(xn;ωn)}). (3.68)

Defining the tangent vector vn ∈ Txn
M via

expxn
(αnvn) = xn+1 or αnvn = exp−1

xn
(xn+1),

we see that the difference of vn and Ṽ (xn;ωn) is a form of bias; that is, by defining
Bn := vn − Ṽ (xn;ωn), the iteration (3.68) can be written in (RRM) form as

xn+1 = expxn
(αn{V (xn) + U(xn;ωn) +Bn}). (3.69)

Our goal in the rest of this section is to find conditions so that the bias term Bn
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satisfies Assumption 3.5. If that is the case, the same convergence guarantees hold
for all the Riemannian Robbins–Monro schemes that use retractions, without any
extra effort.

Before stating our results, we need to introduce the notion of a totally re-
tractive neighborhood, as well as some local properties of retractions on these
neighborhoods. Inspired by strongly convex neighborhoods, we call a neighborhood
U totally retractive for a retraction R [HAG15], if there exists some δ > 0 so that
for any p ∈ U , the retraction R is a diffeomorphism from Bδ(0) ⊂ TpM to its
image under R, and Rp(Bδ(0)) ⊇ U . Existence of a totally retractive neighborhood
can be shown along the lines of [Car92, Thm. 3.3.7].

In a compact neighborhood that is both strongly convex and totally retractive,
one can show that the inverse of the exponential map and the retraction map are
close to each other, in a sense made precise by the following lemma:

Lemma 3.16 (ZS20, Lem. 3). Let U be a compact, strongly convex, totally
retractive neighborhood. Then there exists a constant C > 0 such that for all
points p, p′ ∈ U ,

|R−1
p (p′)− exp−1

p (p′)| ≤ C d(p, p′)2 = C |exp−1
p (p′)|2.

As the retraction is a first-order approximation of the exponential map, it
is rather intuitive to expect that the distance travelled by the retraction map
is comparable to that of the exponential map. The following lemma makes this
intuition precise:

Lemma 3.17 (HAG15, Lem. 3). Let R be a retraction onM. For each p ∈M
there are constants c1, C2 > 0 and δc1,C2

> 0 such that for all q in a sufficiently
small neighborhood of p and all v ∈ TqM with |v| ≤ δc1,C2 ,

c1|v| ≤ d(q,Rq(v)) ≤ C2|v|.

Note that |v| = d(q, expq(v)).

Lemmas 3.16 and 3.17 describe the local behavior of a retraction; all the
constants depend on a compact neighborhood of a point p ∈ M. To streamline
our discussion, let us assume that the local results of these lemmas hold globally
over the manifold, with some global constants.

▷ Assumption 3.7 (on the retraction). There exists some radius rretr > 0 so that
every point q ∈ M has a totally retractive neighborhood containing Brretr(q).
Moreover, there exists some global constant C > 0 such that for any two points
p, p′ ∈ Brretr(q),

|R−1
p (p′)− exp−1

p (p′)| ≤ C1 d(p, p
′)2. (3.70)
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Additionally, there exists some global constant C2 > 0 such that for any p ∈
Brretr(q) and v ∈ TpM with |v| ≤ rretr,

d(p,Rp(v)) ≤ C2|v|. (3.71)

Note that if the manifold is compact, Assumption 3.7 is automatically satisfied.
For non-compact manifolds, one has to impose sufficient regularity on the retraction
so that these uniform bounds hold.

As it turns out, to replace the exponential map in Algorithms 3.1–3.4 with a
retraction, we only need to slightly strengthen our assumptions on the noise of
the SFO:

Proposition 3.18. Suppose that the error term of (SFO) has bounded fourth
moments, i.e., there is some C > 0 such that Eω[|U(p;ω)|4] ≤ C2 for all p ∈ M.
Then Proposition 3.15 holds as stated if the exponential map in Algorithms 3.1–3.4
is replaced by a retraction satisfying Assumption 3.7.

Proof. We proof this proposition only for Algorithm 3.1; the proof for the rest of
the algorithms is similar. What we have to show is that the bias term in (3.69)
satisfies Assumption 3.5.

Recall the definition of the tangent vector vn in (3.69). From Assumption 3.7,
we have

|αnBn| = |αnvn − αnṼ (xn;ωn)|
= |exp−1

xn
(xn+1)−R−1

xn
(xn+1)|

≤ C1d(xn,xn+1)
2 by (3.70)

≤ C1C
2
2 |αnṼ (xn;ωn)|2 by (3.71).

Thus, |Bn| ≤ O(αn|Ṽ (xn;ωn)|2) ≤ O(αn) +O(αn|U(xn;ωn)|2). A similar Borel–
Cantelli argument as in the proof of Lemma 3.9 shows that the bounded fourth
moments of U(xn;ωn) imply |Bn| → 0, almost surely. The summability condition
in Assumption 3.5 is similarly satisfied.

3.8.2. Alternating Algorithms
In the context of multiplayer games, the iterative process (RRM) plays the role
of defining the evolution of players’ strategies over time, where xn symbolizes
the array of strategies—or the strategy profile—adopted by all players at a given
iteration n. The conventional interpretation of (RRM) suggests a simultaneous
update mechanism, where the transition from one strategy profile to the next
is instantaneous, affecting all players concurrently. Another common variant is
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where the strategy update process is sequential. In this setting, each player,
in a predetermined order, revises their strategy based on the latest available
information, which includes the most recent updates from preceding players.
Consequently, what is theoretically modeled as a single, collective stride in (RRM),
unfolds through a series of individual steps; one per player.

Let us explain the general idea for a two-player min-max game. The same
reasoning works for N -player games with a more involved notation. LetM and
N be Riemannian manifolds representing the space of strategies for each player.
Consider the function ℓ :M×N → R and the min-max game

min
p∈M

max
q∈N

ℓ(p, q).

A strategy profile in this game is simply a pair (p, q) ∈M×N .
For a Riemannian Robbins–Monro algorithm for solving the min-max game

above, instead of updating the strategy profiles xn = (pn, qn) ∈M×N simulta-
neously, consider the following alternating update:

pn+1 = exppn(αn{V
(1)(pn, qn) + Z(1)

n }),

qn+1 = expqn(αn{V
(2)(pn+1, qn) + Z(2)

n }),
(RRM-alt)

where V (1) = −∇pℓ(p, q), V (2) = ∇qℓ(p, q), and Z
(i)
n are the error terms for the

update of each player’s strategy.
The key idea to use our theory for this instance is to cast (RRM-alt) as a

biased simultaneous update. Concretely, by defining the vector field V on the
product manifold M×N as

V (p, q) = (V (1)(p, q), V (2)(p, q)) = (−∇pℓ(p, q),∇qℓ(p, q)),

it is easy to observe that (RRM-alt) is equivalent to the simultaneous update

xn+1 = expxn
(V (xn) + Zn), xn = (pn, qn),

where the error term Zn includes the error of each player, as well as the error
induced by converting the sequential update to a simultaneous one:

Zn =

(
Z

(1)
n

Z
(2)
n + V (2)(pn+1, qn)− V (2)(pn, qn)

)
∈ T(pn,qn)(M×N ). (3.72)

As it turns out, with all our assumptions in place, this bias is also negligible
and vanishes when n → ∞. Therefore, we get the following result for RRM
Algorithms 3.1–3.4 with sequential updates:
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Proposition 3.19. Consider the alternating variant (RRM-alt) and assume that
V (i) are bounded and L-Lipschitz in both of their arguments. Under the same
hypotheses, the result of Proposition 3.15 holds as stated for the alternating
variant of Algorithms 3.1–3.4.

Proof. We only have to show that the extra bias term in (3.72) vanishes with
probability 1. As V (1) is bounded, the same argument as in Lemma 3.9 implies
that

lim
n→∞

αn|V (1)(pn, qn) + Z(1)
n | = 0, a.s.

Therefore, for n large enough, pn+1 lies in the injectivity radius of pn. Using
Lipschitzness of V (2), we get

|V (2)(pn+1, qn)− V (2)(pn, qn)| ≤ Ld(pn+1, pn) = L · αn|V (1)(pn, qn) + Z(1)
n |,

which vanishes as n→∞. The summability (3.22) of this bias term also follows
by the boundedness of V (1) and summability of Z(1)

n .

3.9. APPLICATIONS TO LEARNING AND GAMES

We close this chapter by bringing some concrete implications of our general theory
to the specific examples of Section 3.1. As seen below, the generality of (RRM)
schemes allows us to not only unify several existing results, but also provide
completely new ones.

3.9.1. Optimization on Manifolds
Recall the minimization problem

min
p∈M

f(p)

where f : M → R is a smooth function which is not necessarily geodesically
convex. Finding the minimum of f in many cases is an intractable problem and
one is usually satisfied with a critical point of f , which is a point p such that
∇f(p) = 0. This hints using the gradient flow of f ; the flow of the vector field
V = −∇f . This flow has the special property that the objective function f itself
is a Lyapunov function for the set of its critical points.

Concretely, let Φ be the gradient flow of f and denote by Λ the set of critical
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points of f . It is clear that

d

dt
f(Φt(p)) = −|∇f(Φt(p))|2 ≤ 0,

where the equality holds if and only if Φt(p) ∈ Λ. This means that Λ is the set
of equilibria of the flow Φ and f is a strict Lyapunov function for the set Λ.
Moreover, by Sard’s theorem [Ste99], the set of critical values of f , that is, f(Λ),
is of measure zero (and therefore, has empty interior). Therefore, Theorem 2.10
implies that every internally chain-transitive set of the gradient flow Φ is contained
in a set of critical points of f on which f is constant. To use Sard’s theorem,
however, we have to assume that f and M are at least d times differentiable,
where d = dimM.

Having characterized the internally chain-transitive sets of the gradient flow,
we are now ready to apply our general asymptotic pseudo-trajectory theory to
the optimization problem (3.10).

Proposition 3.20. Let M be a d-dimensional Riemannian manifold and f be a
smooth function, both of class Cd. Suppose that we run Algorithms 3.1–3.4 for the
vector field V = −∇f with an SFO satisfying (H4). Then, under Assumptions 3.1,
3.3 and 3.6, the induced sequence of iterates converges almost surely to a component
of critical points of f on which f is constant. Additionally, if supp E[|U(p;ω)|4] <∞,
the conclusions above apply to all retraction-based variants of Algorithms 3.1–3.4.

Let us note that several Euclidean algorithms are known to avoid undesirable
solutions [see, e.g., CB19]. In [Hsi+23], we demonstrate that the general avoidance
theory can be applied to Riemannian manifolds as well, indicating that many
iterative Riemannian methods (including those based on retraction) converge with
probability 1 solely to local minimizers.

3.9.2. Games on Manifolds
Recall the setup of Section 3.3.2 for games on manifolds: The space of all configu-
rations of the game a product manifold M =M1 × · · · ×MN , where Mi is the
strategy space of the ith player, and ui :M → R is the payoff function of the
ith player. Our first result below concerns the convergence of Algorithms 3.2–3.4
in a general class of (Riemannian) monotone games known as α-accretive games
[Wan+10]. The proof is an immediate consequence of Propositions 3.15, 3.18
and 3.19, along with the main result of [Kri14].

Proposition 3.21. Let V = [∇piui] be an α-accretive game field for some α > 0.
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This means that for all r ≥ 0,

(1 + αr) d(p, p′) ≤ d
(
expp(rV (p)), expp′(rV (p′))

)
.

Then Algorithms 3.1–3.4, as well as their alternating or retraction-based variants,
converge to the game’s set of Nash–Stampacchia equilibria.

To the best of our knowledge, most of the algorithms we consider are new in
the setting of Riemannian monotone games except for the deterministic gradient
and extra-gradient methods [TH12; NSS16; FQT20; Kha+20; CLC21].

While being quite general, accretivity is a strong, convexity-like assumption
about the games. In our next result, we prove general convergence for a class
of non-convex potential games [KK02; ME05]. The proof is immediate from
combining Propositions 3.15–3.19.

Proposition 3.22. Let V = [∇piui] be a game field associated with a Riemannian
potential game. Then Algorithms 3.1–3.4, as well as their alternating or retraction-
based variants, converge to the critical points of the game potential.

For Riemannian potential games, the convergence of the continuous-time
dynamics (3.16) is well known, but we are not otherwise aware of a similar result
for stochastic, discrete-time Riemannian Robbins–Monro methods. Our theory
bridges this gap by showing that the same guarantees are in fact achieved by a
wide array of RRM schemes.

3.9.3. Limit Cycles
We conclude this section by showing that, in complement to the convergence
results above, our theory can also be used to derive convergence to limit cycles
that arise in more general Riemannian settings.

▷ Example 3.4. The following example is taken from [DM21]: Consider the vector
field on the 2-sphere S2 := {p = (x, y, z) ∈ R3 : x2 + y2 + z2 = 1}, defined by

V (p) =

−yx
0

+

(
z2 − 1

4

) −xz−yz
x2 + y2

 . (3.73)

By using spherical coordinates, one can see that the associated flow has two
limit cycles and two equilibrium points; see Fig. 3.6. Therefore, the internally
chain-transitive sets of V in (3.73) contain an attracting periodic orbit. Our
Propositions 3.15 and 3.19 then imply that any RRM scheme driven by V also
has a chance to get trapped in the limit cycle. To the best of our knowledge,
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Figure 3.6. The flow induced by the game field (3.73). Left and middle: The two limit
cycles are shown as two bands (white is repelling and black is absorbing).
The equilibria are shown as black dots on the north and south pole. Right:
Two trajectories starting from the same point, following a noisy estimate
of V . The orange trajectory gets trapped in the limit cycle on the bottom,
and the green trajectory goes to the absorbing equilibrium point at the
north pole.

this is the first rigorous example of a cycling problem for Riemannian stochastic
approximation in the literature. ◁

3.10. CONCLUSIONS AND DISCUSSIONS

To conclude, our theory offers a comprehensive framework for analyzing the
convergence of Riemannian Robbins–Monro schemes that initially appear quite
disparate. By checking simple conditions on the error terms Zn as specified in
Assumptions 3.4 and 3.5, our analysis allows us to infer the algorithm’s long-term
behavior by studying the deterministic dynamics of the flow (3.16). Despite the
versatility of our results, they merely scratch the surface of the full potential of
(RRM), leaving several vital research avenues open:

(1) In numerous applications, particularly in game theory and sequential online
learning, direct access to V may not be feasible, necessitating the use
of zeroth-order or bandit optimization methods. A significant question is
whether a Riemannian Kiefer–Wolfowitz algorithm [KW52] can be analyzed
within the (RRM) framework and whether there are fundamental differences
compared to the Euclidean context.

(2) Our analysis relies heavily on the diminishing step-size assumption, which
is applicable in many practical scenarios. However, many algorithms employ
constant step-sizes, which our current theory does not address. It would be
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valuable to explore if existing techniques for constant step-size stochastic
approximation schemes [KH81; KY97] can be extended to a manifold setting.

(3) There is a dichotomy between the case where inj(M) is∞ or not. This shows
up specifically in our assumptions on noise and bias. While our analysis
cannot tolerate unbounded noise or bias when inj(M) <∞, it is interesting
to see if this is merely an artifact of our analysis, or there could be some
counterexamples.

(4) The retraction conditions of Assumption 3.7 impose uniform estimates for
comparison with the exponential map. We believe that enough regularity
of the retraction is sufficient for these estimates to hold, but the exact
formulation of this regularity is an open question.

BIBLIOGRAPHIC NOTES

The foundational work of Bonnabel [Bon13] marked the inception of using re-
tractions in Riemannian optimization by exploring scenarios in which the vector
field V is the Riemannian gradient of a certain objective function. Subsequent
studies [ZS16; Tri+18; BAC19; CB19; Lez20; Wan+21b] have elaborated on these
initial findings, specifically for Riemannian stochastic gradient descent. Meanwhile,
a parallel stream of research [FO02; LLM09; BFM17; HW21] obtain analogous
results for the Riemannian proximal point method.

These works predominantly concern scenarios where V embodies a gradient
field and thus, do not extend to non-gradient contexts. Nevertheless, an array
of studies [FPN05; TH12; NSS16; FQT20; Kha+20; CLC21] has provided a
limited generalization to non-gradient cases by examining Riemannian extra-
gradient methods under geodesic monotonicity assumptions. This assumption,
akin to convexity conditions, anticipates that V consistently orients towards its
set of roots (which is a connected set in this case) in a suitable, geodesic sense,
facilitating convergence through methodologies paralleling monotone operator
theory in Hilbert spaces [BC17].

An alternative approach aiming to confirm the asymptotic pseudo-trajectory
property within Riemannian stochastic approximation schemes is presented by
Shah [Sha21]. However, there are several limitations in Shah’s argument that
diminish its overall applicability.

In [Sha21, p. 1131], the author asserts that proving the asymptotic pseudo-



106 S.A. ON RIEMANNIAN MANIFOLDS CH. 3

trajectory property involves demonstrating that

lim
t→∞

sup
h∈[0,T ]

∥x̄(t+ h)− x̂τn(h)∥ → 0.

Here, x̄ denotes a linear interpolation in the coordinate space Rd between the co-
ordinates of successive iterates of the algorithm, and x̂τn represents the coordinate
representation of the flow orbit initiated at time τn.

While the primary objective is to demonstrate that the distance between
the geodesic interpolation and the flow orbit diminishes, the distance under
consideration is between the linear interpolation and the flow orbit within an
arbitrary coordinate chart. This approach implicitly assumes that the distance in
terms of the linear interpolation within Euclidean space sufficiently controls the
geodesic distance, an assertion that remains unclear.

The existence of such coordinate charts throughout the manifold suggests
its global flatness [Ili06], thus making the analysis excessively restrictive and
unsuitable for authentic Riemannian contexts. This concern was a significant
motivation for our effort to provide a more rigorous treatment of this problem.

Finally, recent works by Durmus et al. [Dur+20; Dur+21] consider a generic
version of RRM schemes, incorporating both diminishing and constant step-sizes.
However, the analysis of schemes with a constant step-size in [Dur+21] is unable
to assert almost sure convergence and has an ergodic interpretation—a perspective
that diverges from the main focus of this thesis. The setting of [Dur+20] is closer
in spirit to our work, especially in considering bias impacts on V ; still, their
deductions are confined to dynamics permitting a Lyapunov function.

Durmus et al. [Dur+20] also delve into the sensitivity of general RRM schemes
under bias influences. Central findings therein assert that an RRM scheme’s
error is bounded by the worst-case bias encountered. In contrast, our Theorem 3.4
demonstrates that the error magnitude can indeed be moderated by the asymptotic
bias. Hence, while prior works assert mere boundedness of errors in algorithms like
the Riemannian extra-gradient or proximal point method, our result substantiates
their convergence to zero. Another notable difference lies in our methodological
approach; unlike previous studies that presume the existence of a Lyapunov
function, we derive one within our analysis of Theorem 3.6.



CHAPTER FOUR

STOCHASTIC APPROXIMATION FOR
LANGEVIN-TYPE SDES

In this chapter, we explore a new set of stochastic approximation algorithms that
arise from discretizing certain stochastic differential equations, and are often used
for sampling from probability distributions and simulating stochastic models, even
with noisy and incomplete information. Our main objective is to adapt these
algorithms into a framework defined on the space of probability measures. We
will show that, under certain conditions, these algorithms converge to compact,
connected, attractor-free sets in Wasserstein distance. Specifically, we will prove
that these algorithms form an asymptotic pseudo-trajectory in the space of
probability measures equipped with Wasserstein metric, and identify the necessary
conditions for their convergence.

Originality. Main results of this chapter are published in the conference proceedings [KHK23a].
There are considerable differences between this chapter and the mentioned publication, in
notation, proofs, and content.
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LIST OF IMPORTANT RESULTS

▶ Corollary 4.7. A set of probability measures with bounded second moments
is compact in the (2− ε)-Wasserstein space for all ε ∈ (0, 1].

▶ Theorem 4.9. An SDE discretization with noise and bias in the evaluation
of the drift constitutes an asymptotic pseudo-trajectory in the quadratic
Wasserstein space for the flow corresponding to the Fokker–Planck equation
of the SDE.

▶ Lemma 4.10. The only internally chain-transitive set for the flow of the
Langevin diffusion is the singleton consisting of the target measure.

▶ Theorem 4.13. For dissipative and Lipschitz drifts and Lipschitz diffusion
coefficients, the iterates of an SDE discretization have uniformly bounded
second moments under some conditions on the diffusion coefficient, noise, and
bias.

▶ Lemma 4.14. The only internally chain-transitive set for the flow of the
dual mirror Langevin diffusion is the singleton consisting of the pushforward
of the target measure under the mirror map.

▶ Lemma 4.15. The only internally chain-transitive set for the flow of the
(primal) mirror Langevin diffusion is the singleton consisting of the target
measure.



§ 4.1 INTRODUCTION 109

4.1. INTRODUCTION

In this chapter, we consider the time-homogeneous stochastic differential equation

dXt = v(Xt) dt+ σ(Xt) dWt, (4.1)

as well as various methods for its discretization. Here, v is a drift, σ is a diffusion
coefficient, and Wt is a Brownian motion. Our primary objective is to understand
the asymptotic behavior of these discretization schemes. By asymptotic behavior,
we refer to the analysis of whether the probability law of the discretization at
iteration n converges to some target distribution as n→∞.

One can think of two scenarios where the asymptotics of an SDE and a
discretization thereof is important:

Sampling from a known distribution

The first scenario involves starting from an SDE which is known to have a desired
and unique stationary distribution. This means that starting from an initial
distribution, say standard Gaussian, the probability law of the solution to the
SDE converges to the stationary distribution. This scenario is particularly relevant
to the problem of sampling, where the goal is to produce a random variable with
a given probability distribution.

A particularly efficient method for sampling is to use SDEs such as (overdamped
or underdamped) Langevin diffusion and mirror Langevin diffusion. These SDEs
share the property that the probability law of their solution converges towards
a desired target distribution that is baked into the SDE itself. Notably, these
SDEs depend on the target measure only through the score function, which is
the gradient of the log-density of the target. This feature is significant because it
eliminates the necessity of knowing the normalization constant for a density, a
notoriously challenging problem in high-dimensional spaces.

The relevant question here is whether a discretization of an SDE demonstrates
similar convergence behavior as the original SDE. While basic discretizations
usually exhibit this behavior, it is desirable to determine if convergence holds
for alternative algorithms used in practice. Notably, demonstrating that an SDE
converges to the stationary distribution typically requires very mild conditions; see,
for instance, the classical result of [RT96b, Thm. 2.1] for the Langevin diffusion.
However, the difficulty increases for discretizations, especially those incorporating
noise and bias, necessitating more structural assumptions about the target density,
such as log-concavity or adherence to specific functional inequalities.
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Modeling phenomena

In the second scenario, SDEs are used to model phenomena. Famous examples
include modeling the movement of a molecule in a viscous fluid by the underdamped
Langevin diffusion in physics, and dynamics of the price of a stock in the Black–
Scholes options pricing model by the geometric Brownian motion in mathematical
finance. Another class of examples are mean-field models, where the evolution of
an entire population comprising an infinite number of “particles” is of interest.
By considering one representative particle from the population, one can derive
the McKean–Vlasov process, which is an SDE with both the drift and diffusion
terms dependent on the probability density of the population at each time. These
equations are particularly useful for modeling systems of interacting particles. An
example in physics is the kinetic equation

dXt = −∇f(Xt) dt− (∇g ∗ ϱt)(Xt) dt+
√
2 dWt,

where ϱt denotes the population density at time t, f represents a potential energy,
and g denotes an interaction energy; g(x− y) captures the interaction between a
particle located at x and another at y, and its gradient is the force one puts on
the other. Another relevant example is the training of an infinitely wide two-layer
neural network via stochastic gradient descent. By modeling each neuron as a
particle, one can show that the resulting evolution adheres to a McKean–Vlasov
process; see [KHK23b] and references therein for more examples.

In order to simulate a McKean–Vlasov process, a two-level discretization
approach is required. Initially, one estimates the population with N particles,
transforming the mean-field equation into a system of N coupled SDEs. Next,
a step-sizing rule is applied to each SDE in this system, resulting in a system
of recursive equations that involve noise and bias, depending on the chosen
discretization algorithm.

The dynamics of this discrete-time system may markedly differ from the
original McKean–Vlasov equation, and it is crucial to determine if there are
any similarities between the two. This turns out to be a complex question and
has spawned its own body of literature known as propagation of chaos results.
Essentially, these results show that if N is sufficiently large, the distribution of the
continuous-time N -particle approximation will be close to the mean-field solution.
For time discretization, however, we have to see whether the probability law of a
discretization converges to the same targets as the continuous-time SDE or not.

Both of these scenarios underscore our main objective in this chapter: under-
standing the asymptotics of an SDE discretization. In this chapter, we focus on
studying SDEs of the form (4.1), which we call Langevin-type SDEs . For mean-field
applications and systems of coupled SDEs, we refer the reader to [KHK23b].
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Root-finding and SDEs

Our insight from previous chapters indicates that when dealing with noisy and
biased update rules, we enter the realm of stochastic approximation. In stochastic
approximation, the objective is to find the zeros of a vector field (or a function) by
incorporating stochastic information. For the case of this chapter, we show that
many of the examples mentioned before have a root-finding formulation under the
hood. To gain intuition, we begin with the sampling problem and subsequently
extend this intuition to general Langevin-type SDEs.

Analysis via the Fokker–Planck equation

Suppose that the goal is to sample from the target distribution µ ∝ e−f . Many
practical sampling algorithms are based on the overdamped Langevin diffusion

dXt = −∇f(Xt) dt+
√
2 dWt. (4.2)

The main method for understanding the behavior of this SDE is to find the
probability distribution function as a function of time using the Fokker–Planck
equation, which is a deterministic PDE describing how the probability density ϱt
of Xt evolves in time:

∂tϱt = ∇ · (ϱt∇f) + ∆ϱt = ∇ ·
(
ϱt∇ log

ϱt
µ

)
. (4.3)

Many properties of the SDE can be read from the Fokker–Planck equation. For
example, if ϱt = µ, we see that the right-hand side becomes zero, implying ∂tϱt = 0;
this shows that µ is a stationary distribution of the Langevin diffusion.

Geometry of the Fokker–Planck equation

A profound way to comprehend the Fokker–Planck equation (4.3) is through
gradient flows in the Wasserstein space. Let us briefly mention how this is possible.
In their influential paper, Jordan, Kinderlehrer, and Otto [JKO98] showed that by
endowing the space of probability measures with the Wasserstein distance—a dis-
tance originating from optimal transport theory—and defining a notion of gradient
flow of a functional defined on this space, the Fokker–Planck equation becomes
the gradient flow of the relative entropy functional ϱ 7→ H(ϱ |µ). Later, Otto
[Ott01] studied similar PDEs and realized that one could impose a Riemannian
structure on the Wasserstein space by defining tangent spaces, inner product, and
so on, turning the Wasserstein space of distributions into an infinite-dimensional
Riemannian manifold. This Riemannian structure facilitates defining gradients of
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functionals, transforming the gradient flow into the (formal) ODE1

ϱ̇t = −∇W2
H(ϱt |µ).

Here, ∇W2
denotes the gradient in the sense of Otto. This formalization implies a

trend towards (a unique) equilibrium: the relative entropy becomes a Lyapunov
function, with its only critical point being µ.

Inspired by this observation, various authors studied Langevin diffusion dis-
cretizations through the lens of Fokker–Planck equation and gradient flows. These
works use relative entropy as the Lyapunov function and assess the “dissipation of
entropy” across iterations. Specifically, they measure the reduction in the Lyapunov
function at each iteration by comparing it to the original Fokker–Planck equation.
Works such as [VW19] derive a Fokker–Planck equation for a single iteration of
the sampling algorithm and perform comparative analysis with the corresponding
PDE of the Langevin diffusion. This approach facilitates deriving non-asymptotic
bounds on the distance between Langevin diffusion and its discretization. Such
analyses typically rely on functional inequalities (since they are conducted at
PDE level), such as Log-Sobolev or Poincaré inequalities, and measure closeness
of distributions via relative entropy.

Our take on the result of Otto is the following: An SDE effectively induces a
semi-flow on the space of probability measures; starting from any initial distribution
forX0, the solution of the Fokker–Planck equation traces a curve in the Wasserstein
space, corresponding to an orbit of the semi-flow. Furthermore, a discretization
algorithm (such as a sampling algorithm) implicitly constructs a sequence of
points within this space, i.e., the law of the consecutive iterates of the algorithm
correspond to a sequence of points in the Wasserstein space. Given that the
semi-flow is well-structured (for example, it exhibits a gradient flow structure
in the case of Langevin diffusion) and converges to some target measure, our
task is to demonstrate that the law of the iterates of the discretization algorithm
forms an asymptotic pseudo-trajectory of the semi-flow. As established in previous
chapters, showing this property ensures that noise and bias do not adversely affect
the asymptotic behavior of the algorithm.

Recall that the notion of an asymptotic pseudo-trajectory makes sense for a
continuous curve in a metric space. Otto’s Riemannian structure on the space of
probability distributions closely aligns with the Wasserstein geometry. Indeed, by
endowing the space of probability distributions with the quadratic Wasserstein

1 There are two ways of writing the gradient flow, depending on how the tangent space is defined.
For example, in the sense of Ambrossio, Gigli, and Savaré [AGS05], the gradient flow writes as

∂tϱt = −∇ · (ϱt∇W2
H(ϱt |µ)).
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distance, one obtains the same distance function as the one derived from Otto’s
Riemannian structure. Therefore, within the Wasserstein space, we first show that
any Langevin-type SDE induces a semi-flow. We then construct an interpolation
between the iterates of the discretization algorithm in this space, obtaining a
continuous curve. Finally, we verify the asymptotic pseudo-trajectory property of
this curve.

Convergence conditions and compactness

To ensure convergence, we need to demonstrate that the law of the algorithm’s
iterates forms a precompact set. In the Wasserstein space, compact sets possess a
structure that facilitates this. Specifically, well-known conditions such as dissipa-
tivity can lead to precompactness of the law of the iterates. Since dissipativity is
a reasonable assumption for any relevant Langevin-type SDE, we can thus ensure
that meaningful convergence criteria are satisfied.

Chapter Roadmap
In Section 4.2, we review the necessary background knowledge for this chapter. This
includes parts of stochastic calculus, Fokker–Planck equations, and Wasserstein
spaces. Section 4.3 sets up the stage for a stochastic approximation analysis of
SDE discretization algorithms. This includes specifying the basic template for a
discretization algorithm, describing how to interpolate between the iterates, as well
as identifying the flow corresponding to the SDE. In Section 4.4, we bring the main
theorem of this chapter: Theorem 4.9, which states that under some conditions,
the law of the iterates of an SDE discretization algorithm forms an asymptotic
pseudo-trajectory of the flow corresponding to the SDE. This section also identifies
the internally chain-transitive sets of the Langevin diffusion. Section 4.5 is all
about stability conditions; those that imply precompactness of the iterates of the
algorithm. We show that dissipativity-type conditions are sufficient for stability. In
Section 4.6, we go over six different sampling algorithms used in practice, and show
that they all follow the template mentioned earlier. These examples include the
mirror Langevin algorithm, that simulates the mirror Langevin diffusion instead
of the Langevin diffusion. We prove there that the mirror Langevin diffusion
also has similar internally chain-transitive sets as the Langevin diffusion. We
conclude this chapter in Section 4.7 and bring extra pointers to the literature in
the bibliographic notes at the end of the chapter.
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4.2. A PRIMER ON SDES AND WASSERSTEIN
GEOMETRY

In this short section, we review basic concepts related to SDEs and Wasserstein
spaces. The interested reader is referred to the book of Le Gall [Le 16] for
background in stochastic calculus, the book of Villani [Vil03] or Santambrogio
[San15] for an introduction to optimal transport and Wasserstein spaces, and the
book of Ambrossio, Gigli, and Savaré [AGS05] for a rigorous treatment of gradient
flows in metric and Wasserstein spaces.

4.2.1. Itô Calculus
We work withing a filtered probability space (Ω,F , (Ft)t≥0,P). For a process
(Nt)t≥0 and a stopping time τ , we define the stopped process Nτ to be Nτ

t = Nt
if t ≤ τ and Nτ

t = Nτ if t > τ . A continuous adapted process (Mt)t≥0 is a local
martingale if there exists a sequence τ1, τ2, . . . of stopping times such that τk →∞
almost surely, and for all k ≥ 1, Mτk is a continuous martingale. A process (Zt)t≥0

is a continuous semimartingale if it can be written as Zt =Mt + Vt where M is a
local martingale in this filtered probability space, and V is the difference between
two adapted continuous nondecreasing processes started from 0. The process V is
usually called the finite variation part of the semimartingale Z.

For a local martingale (Mt)t≥0, the quadratic variation process ⟨M⟩ is the
a.s. unique adapted nondecreasing process such that ((Mt)

2 − ⟨M⟩t)t≥0 is a local
martingale. The quadratic variation of a semimartingale is defined to be the
quadratic variation of its local martingale part. For two processes (Mt)t≥0 and
(Nt)t≥0, the cross-variation ⟨M,N⟩ is defined via

⟨M,N⟩t =
1

4
(⟨M +N⟩t + ⟨M −N⟩t).

One of the most important theorems in stochastic calculus is the Itô’s formula:

Theorem 4.1 (Itô’s Formula). Let Z be a continuous semimartingale with decom-
position Z =M + V , and assume that Zt ∈ D ⊆ Rd a.s. for all t ≥ 0. Let F be a
C2 real-valued function defined on D. Then F (Zt) is a continuous semimartingale,
and almost surely

F (Zt) = F (Z0) +

d∑
i=1

∫ t

0

∂iF (Zs) dZ
i
s +

1

2

∑
1≤i,j≤d

∫ t

0

∂2ijF (Zs) d⟨M i,M j⟩s.
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Corollary 4.2. Let X be a semimartingale satisfying the SDE

dXt = vt(Xt) dt+ σt(Xt) dWt,

where v : R+×Rd → Rd, σ : R+×Rd → Rd×k, and W is a standard k-dimensional
Brownian motion. Then, for F ∈ C2(Rd) we have

F (Xt) = F (X0) +

∫ t

0

⟨∇F (Xs), vs(Xs)⟩ ds+
1

2

∫ t

0

⟨∇2F (Xs), Gs(Xs)⟩ ds

+

∫ t

0

∇F (Xs)
⊤σs(Xs) dWs

where Gt(x) = σt(x)σt(x)
⊤.

Remark. If the local martingale part of (F (Xt))t≥0 is a martingale, then

E[F (Xt)] = E
∫ t

0

⟨∇F (Xs), bs(Xs)⟩ ds+
1

2
E
∫ t

0

⟨∇2F (Xs), Gs(Xs)⟩ ds. ♢

An important property of Itô processes is the following lemma, known as Itô
isometry :

Lemma 4.3. Let (Wt)t≥0 be a standard Brownian motion in Rk. For any matrix-
valued process H ∈ Rd×k adapted to the same filtration as W , it holds

E
[∥∥∥∥∫ t

0

Hs dWs

∥∥∥∥2] = E
[∫ t

0

∥Hs∥2F ds
]
,

where ∥Hs∥F is the Frobenius norm of the matrix Hs.

4.2.2. The Fokker–Planck Equation
We continue with some basic notions regarding SDEs and their laws. We say that
the SDE

dXt = v(Xt) dt+ σ(Xt) dWt, (4.4)

admits a strong solution, if, for a given standard k-dimensional Brownian motion
(Wt)t≥0 in some filtered probability space and x0 ∈ Rd, there exists a continuous
semimartingale (Xt)t≥0 adapted to the same filtration, such that for all t ≥ 0,

Xt = x0 +

∫ t

0

v(Xs) ds+

∫ t

0

σ(Xs) dWs.
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This means that a strong solution is fully determined by the Brownian motion in
the equation and uses no other randomness. There are several sufficient conditions
that imply existence and uniqueness of strong solutions for SDEs. Here, we mention
a simple criterion that is the analogue of Picard–Lindelöf theorem for ODEs:

Theorem. Given is a filtered probability space along a with a k-dimensional
Brownian motion (Wt)t≥0. Suppose that v and σ are Lipschitz functions with
values in Rd and Rd×k, respectively. Then:

(i) For all x0 ∈ Rd, there exists a continuous semimartingale X adapted to the
same filtration as W such that for all t ≥ 0,

Xt = x0 +

∫ t

0

v(Xs) ds+

∫ t

0

σ(Xs) dWs.

(ii) If Y is another semimartingale such that for all t ≥ 0,

Yt = x0 +

∫ t

0

v(Ys) ds+

∫ t

0

σ(Ys) dWs,

then X = Y almost surely.

If the initialization x0 is a random variable independent of the σ-algebra of the
Brownian motion, the result of the theorem is still valid, with the difference
that the strong solution is adapted to the larger filtration that contains both the
σ-algebra of the Brownian motion and x0.

The Fokker–Planck equation describes the evolution of the law of a solution of
an SDE. Assume that x0 has a density ϱ0 with respect to the Lebesgue measure,
and let (Xt)t≥0 be the strong solution of (4.4) starting at x0. It turns out that
Xt admits a density ϱt for all t ≥ 0, and these densities solve the PDE

∂

∂t
ϱt(x) = −

d∑
i=1

∂

∂xi
(ϱt(x)vi(x)) +

1

2

d∑
i=1

d∑
j=1

∂2

∂xi∂xj
(ϱt(x)Gij(x)),

where G(x) := σ(x)σ(x)⊤ ∈ Rd×d. Letting ∇ ·w denote the divergence of a vector
field w, ∇2h denote the Hessian of h, and ⟨A,B⟩ := tr(AB⊤), we can write the
equation above in a more compact way:

∂tϱt = −∇ · (ϱtv) +
1

2
⟨∇2, ϱtG⟩. (4.5)
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Remark. One can also consider weak solutions of the PDE (4.5), therefore
removing the necessity of existence of smooth densities. We say (ϱt)t≥0 is a weak
solution of the Fokker–Planck PDE (4.5), if for all T > 0 and all test functions
ψ ∈ C∞

c ((0, T )× Rd), it holds∫ T

0

∫
Rd

(∂tψ) dϱt dt =

∫ T

0

∫
⟨∇ψ, v⟩ dϱt dt+

1

2

∫ T

0

∫
⟨∇2ψ,G⟩ dϱt dt.

See [San15, Def. 4.1] for a rigorous treatment. ♢

While much of the theory we develop works for weak solutions, here and in
the sequel, we tacitly assume that all measures have a density with respect to the
Lebesgue measure, and we identify a measure with said density. We also denote
by P2,ac(Rd) the space of all probability measures that have second moments and
are absolutely continuous with respect to the Lebesgue measure.
Remark. The Fokker–Planck equation can be seen as a special case of the more
general continuity equation. For a velocity field w : R+ × Rd → Rd, the continuity
equation is the PDE

∂tϱt +∇ · (ϱtwt) = 0

with no-flux boundary conditions. This equation encodes mass-preservation of ϱt:

d

dt

∫
Rd

ϱt(x) dx = −
∫

Rd

∇ · (ϱt(x)wt(x)) dx = 0.

The continuity equation is also known as the transport equation for the following
reason: Define the flow of the non-autonomous ODE generated by wt, that is,

∂Ψ

∂t
(t, x) = wt(x)

Ψ(0, x) = x.

Then it turns out that ϱt = Ψt#ϱ0 [see, e.g., San15, Thm. 4.4]. This means that
the mass cannot teleport, and no “source” or “sink” of mass exists; mass only
moves continuously according to the flow Ψ. A rigorous treatment of the continuity
equation and the Fokker–Planck equation can be found in [San15, Ch. 4]. ♢

Let us go back to the Fokker–Planck equation. For the matrix-valued function
G : Rd → Rd×d, define the divergence ∇ ·G(x) to be the vector in Rd whose ith
component is the divergence of the ith row of G(x). With this notation,

⟨∇2, G(x)⟩ = ∇ · (∇ ·G)(x) =
d∑
i=1

d∑
j=1

∂2Gij(x)

∂xi∂xj
.
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Thus, ∇ · (ϱtG) = G∇ϱt + ϱt∇ ·G = ϱt(G∇ log ϱt +∇ ·G), and we can rewrite
the Fokker–Planck equation (4.5) in the form of a continuity equation:

∂tϱt +∇ ·
(
ϱt
{
v − 1

2G∇ log ϱt − 1
2∇ ·G

})
= 0. (4.6)

With the aid of this formulation, we will later define a semi-flow on the space of
probability measures.

4.2.3. Wasserstein Spaces
Let µ and ν be two probability measures on Rd. A probability distribution π on
Rd × Rd is called a coupling between µ and ν if its first marginal is µ and its
second marginal is ν; that is, for all bounded continuous functions f and g,∫∫

f(x) dπ(x, y) =

∫
f(x) dµ(x), and

∫∫
g(y) dπ(x, y) =

∫
g(y) dν(y).

We denote by Π(µ, ν) the set of all couplings between µ and ν. For any p ≥ 1,
define the p-Wasserstein distance of µ to ν as

Wp(µ, ν) := inf
π∈Π(µ,ν)

(∫
∥x− y∥p dπ(x, y)

)1/p

.

This distance satisfies the axioms of a metric and is well-defined for all probability
measures with finite p-moments, that is, the set

Pp(Rd) :=
{
µ ∈ P(Rd) :

∫
∥x∥p dµ(x) <∞

}
,

The p-Wasserstein space is the space Pp(Rd) equipped with the p-Wasserstein
distance. It is a remarkable fact that this space is a complete metric space, in the
sense that any Cauchy sequence has a limit.

In the sequel, we mostly work with the 2-Wasserstein space, also called the
quadratic Wasserstein space, or simply, the Wasserstein space.

4.2.4. Precompact Sets in the Wasserstein Space
An important building block in the analysis of stochastic approximation algorithms
is the precompactness of the iterates. In this short section we bring sufficient
conditions for a set to be precompact in the Wasserstein topology.

The following proposition, extracted from [AGS05, Prop. 7.1.5], gives a com-
plete characterization of precompact sets in Pp(Rd):
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Proposition 4.4. A set K ⊂ Pp(Rd) is precompact (in the metric topology of
the p-Wasserstein distance) if and only if

(i) it is tight, that is, for each ε > 0, there exists a compact set Kε ⊂ Rd such
that

sup
µ∈K

µ(Rd \Kε) ≤ ε, (4.7)

(ii) it has uniformly integrable p-moments, that is, for each ε > 0, there is some
R > 0 such that

sup
µ∈K

∫
{∥x∥>R}

∥x∥p dµ(x) < ε. (4.8)

Let us remark that by Prokhorov’s theorem [see, e.g., Bil99, Thm. 5.1], tight-
ness of K implies its precompactness in the topology of narrow convergence
(convergence against bounded continuous functions). The additional uniform inte-
grability condition ensures precompactness in the p-Wasserstein topology, which
is a stronger topology compared to the narrow topology.

It turns out that having bounded moments is a sufficient condition for tightness
of a set of probability measures. This follows from the following lemma [see also
AGS05, Rem. 5.1.5]:

Lemma 4.5. If there is a function g : Rd → R+ such that {g ≤ λ} is compact
for any λ ∈ R and

∫
g dµ ≤ C for all µ ∈ K, then K is tight. Consequently, if

supµ∈K
∫
∥x∥p dµ(x) <∞ for some p ≥ 1, then K is tight.

Proof. Fix ε > 0 and set λ = C/ε. Then, by Markov’s inequality

µ({g > λ}) ≤ 1

λ

∫
g dµ ≤ C

λ
= ε.

Since Kε := {g ≤ λ} is compact, we have proven the tightness of K. Letting
g(x) = ∥x∥p shows the second claim of the lemma.

A useful criterion for checking p-uniform integrability condition (4.8) is the
following [AGS05, Eqn. (5.1.20)]:

Lemma 4.6. Let K ⊂ P(Rd). If supµ∈K
∫
∥x∥q dµ(x) <∞ for some q > p, then

K is p-uniformly integrable.

Proof. Let Mq = supµ∈K
∫
∥x∥q dµ(x) and notice that 1∥x∥>R < ∥x∥q−p/Rq−p.

Therefore, for any µ ∈ K,∫
∥x∥p1∥x∥>R dµ(x) <

1

Rq−p

∫
∥x∥q dµ(x) ≤ Mq

Rq−p
.
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Letting R > (Mq/ε)
p−q makes the above less than ε.

Combining these two lemmas, we can derive a sufficient condition for precom-
pactness in Wasserstein topology as follows:

▶ Corollary 4.7. If a sequence of measures {µn}n∈N has uniformly bounded second
moments, it is precompact in the (2− ε)-Wasserstein space for any 0 < ε ≤ 1.

Proof. Lemma 4.5 implies that the sequence {µn}n∈N is tight. Lemma 4.6 shows
that this sequence is p-uniformly integrable for any p < 2. Thus, Proposition 4.4
shows that the sequence is precompact in all (2 − ε)-Wasserstein spaces with
0 < ε ≤ 1.

It is instructive to give an example of a set of probability measures in Pp(Rd)
with uniformly bounded p-moments that is not precompact (i.e., it does not have
uniformly integrable p-moments).

▷ Example 4.1. For p ≥ 1, consider the sequence of probability measures defined on
the real line: µn = (1−n−p)δ0+n−pδn. Firstly, it is evident that the p-moment of
all these measures is equal to 1, and thus, is uniformly bounded. Additionally, the
p-Wasserstein distance between µn and δ0 is equal to 1 for all n ∈ N. This means
that this sequence is a subset of the closed ball B1(δ0) in Pp(Rd). However, despite
these properties, this family does not have uniformly integrable p-moments:

sup
n≥1

∫
|x|>R

|x|p dµn(x) = 1,

for any given R > 0. Consequently, the family {µn} is not precompact in the
p-Wasserstein space. An alternative perspective on this is to note that although
µn converges narrowly to δ0, any subsequence converging in Wp would require the
p-moment converge to the p-moment of δ0, which is 0; this is impossible for the
given family of measures, since the p-moment of all µn is 1. ◁

4.3. LANGEVIN–ROBBINS–MONRO SCHEMES

We consider discretizations of the time-homogeneous SDE

dXt = v(Xt) dt+ σ(Xt) dWt, (4.9)

where v : Rd → Rd is a vector field, called the drift , σ : Rd → Rd×k is the diffusion
matrix , and (Wt)t≥0 is a k-dimensional standard Brownian motion. We have
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already seen an example of this SDE: the Langevin diffusion (4.2) corresponds to
setting v = −∇f and σ ≡

√
2 Id×d in (4.9).

A general template for discretizing the SDE (4.9) is as follows: Starting from
an initial point x0 ∈ Rd, the iterates {xn}n∈N follow the recursion

xn+1 = xn + γn+1{v(xn) + Zn+1}+
√
γn+1 σ(xn) ξn+1, (LRM)

where

(1) xn ∈ Rd denotes the state of the algorithm at iteration n,

(2) ξn+1’s are i.i.d. standard Gaussian random variables in Rk,

(3) Zn+1 is a (random or deterministic) error term,

(4) and γn+1 is the algorithm’s step-size policy.

If Zn = 0 for all n ∈ N, the resulting scheme is known as the Euler–Maruyama
discretization. In the above, we assume that the error terms and the standard
Gaussians are generated after xn and use a similar indexing convention as in
Section 2.5. We will later decompose the error term into noise and bias. However,
this needs a bit of measure-theoretic care, which we will discuss below.

4.3.1. Stochastic Interpolation
An essential step in a dynamical system analysis for a stochastic approximation
algorithm is interpolating consecutive iterates to obtain a continuous curve. In
Euclidean spaces, we did so by using straight line segments, and in Riemannian
manifolds with geodesics. As in this chapter we focus on the law of the iterates,
we need to devise a method to connect the laws of consecutive iterates using
a continuous curve in the Wasserstein space. Our approach is to construct a
stochastic process whose initial and terminal laws correspond to the law of two
consecutive iterates. This construction facilitates comparison with the SDE (4.9).

We start by interpolating the terms √γn+1 ξn+1 in (LRM) with a standard
Brownian motion. Let (Wt)t≥0 be a standard Brownian motion defined on a filtered
probability space with the filtration (FWt )t≥0 satisfying the usual conditions,2
and let τn =

∑n
k=1 γk be the effective time that has elapsed up to iteration n. As

the Brownian motion has stationary and independent increments, if follows that
the sequence of random variables {(Wτ1 −W0), (Wτ2 −Wτ1), (Wτ3 −Wτ2), . . .}
are independent Gaussian random variables and

Wτn+1
−Wτn ∼ N (0, (τn+1 − τn)I)

law
=
√
γn+1 ξn+1.

2 We say a filtration satisfies the usual conditions if it is right-continuous and complete, i.e., for
all t ≥ 0, Ft =

⋂
ε>0 Ft+ε, and each Ft contains all P-null sets.
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Interpolating the error terms Zn+1 across iterations is more intricate due to
the extra randomness in Zn+1 that might not be adapted to the natural filtration
of the Brownian motion, as well as possible dependency of the error term on the
Brownian path. We will see shortly that if all the extra randomness (such as the
random seeds used for generating stochastic gradients via a stochastic first-order
oracle) is created at the beginning of each iteration and before the creation of
ξn+1, then there exists a continuous interpolation for the error terms that has our
desirable properties. Let us formalize this assumption, which is easily verified for
all our examples in Section 4.6 under the condition of using a SFO; see Section 3.7
for a reminder about SFOs.

▷ Assumption 4.1. For each iteration n ≥ 1, all the extra noise involved in Zn+1

can be injected at the start of the iteration. This means that there exists a
σ-algebra Gn+1, independent of the Brownian motion after τn, so that Zn+1 is
(Gn+1 ∨ FWτn+1

)-measurable.

An example of an error term that satisfies the assumption above is when Zn+1

is a measurable function of the current iterate xn, some extra randomness ωn+1

(which is Gn+1-measurable), and the Brownian path in the interval [τn, τn+1].
We construct the interpolation for the error terms satisfying the assumption

above based on the classical martingale representation theorem, which we recall
below [see, e.g., RW00, Thm. 36.1]:

Theorem 4.8. Let (Wt)t≥0 be a k-dimensional Brownian motion defined on
the filtered probability space (Ω,F , (Ft)t≥0,P), and suppose that (Ft)t≥0 is the
natural filtration generated by W and F0; i.e., Ft = σ(Ws : s ≤ t) ∨ F0. Then,
for any T ≥ 0 and every square integrable random variable Y ∈ FT , there exists
predictable processes β1, . . . , βk satisfying E[

∫ t
0
(βis)

2 ds] <∞ for all t ∈ [0, T ], so
that the following continuous representation holds:

E[Y | Ft] = E[Y | F0] +

k∑
i=1

∫ t

0

βis dW
i
s , 0 ≤ t ≤ T.

Let us illustrate how to use this theorem for constructing an interpolation
for the first iteration of (LRM). We are given Z1, which by Assumption 4.1 is
(G1 ∨FWγ1 )-measurable. By enlarging the natural filtration of the Brownian motion
at time 0 with G1, we obtain the right-continuous filtration (Ft). Theorem 4.8
then implies that E[Z1 | Ft] interpolates between E[Z1 | F0] and Z1 by a continuous
process, as t ranges over [0, γ1]. Based on this, we can interpolate between the
first two iterates x0 and x1 as

Xt = x0 + tv(x0) + tE[Z1 | Ft] + σ(x0)Wt, t ∈ [0, γ1].
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Similarly, by iteratively enlarging the filtration at times {τn}n≥0, we construct
the stochastic interpolation of the iterates {xn}n∈N as

Xt = xn + (t− τn)(v(xn) + E[Zn+1 | Ft]) + σ(xn) (Wt −Wτn), (4.10)

for t ∈ [τn, τn+1].
Remark. It is straightforward to see that the law of the stochastic interpolation
(4.10) forms a continuous curve in the Wasserstein space. What we have to show
is that W2(Xt+δ, Xt) can get arbitrarily small provided that δ is chosen small.
Suppose that t, t+ δ ∈ [τn, τn+1]. We have

W2(Xt+δ, Xt) ≤ E ∥Xt+δ −Xt∥2

≤ O(δ) + E
[
∥(t+ δ)E[Zn+1 | Ft+δ]− tE[Zn+1 | Ft]∥2

]
The second term on the right-hand side can be bounded using the properties
of the interpolation. For brevity, let Mt be the jth coordinate of E[Zn+1 | Ft].
Theorem 4.8 and Itô isometry (Lemma 4.3) then imply that

E[((t+ δ)Mt+δ − tMt)
2] ≤ 2(t+ δ)2 E[(Mt+δ −Mt)

2] + 2δ2 E[(Mt)
2]

≤ 2(t+ δ)2 E

[
d∑
i=1

∫ t+δ

t

(βis)
2 ds

]
+ 2δ2 E[(Zjn+1)

2].

By the continuity of the local martingales
∫ t
0
βis dW

i
s [see RW00, Thm. 36.5],

this term can get as small as desired by choosing δ small enough, showing the
continuity of the law of (Xt)t≥0 in the Wasserstein space. ♢

Remark. One might think of using geodesic interpolation between the iterates in
the following sense. Suppose µn and µn+1 are the laws of xn and xn+1. Assuming
that µn has a density, we can consider the optimal transport map T, such
that T#µn = µn+1. Then, the continuous curve (ϱt)t∈[0,1], defined as ϱt =
((1 − t)Id + tT)#µn is an interpolation (called the displacement interpolation).
In a geometric sense, this interpolation is the minimizing geodesic connecting µn
and µn+1, which is reminiscent of (but not the same as) the interpolation used in
Chapter 3. The catch, however, is that this interpolation requires the knowledge
of the optimal transport map, which is hard to guess given that the update in
(LRM) involves noise and bias. Moreover, using this interpolation followed by a
Riemannian argument in the Wasserstein space turns out to be very complicated
and needs careful assessment of regularity. ♢
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4.3.2. Flows in the Wasserstein Space
The ODE method for stochastic approximation requires identifying the mean
dynamics (or the flow) associated with the algorithm (LRM). Recall that in the
Euclidean case, the usual way to obtain this ODE is to “average away” all the
noise and tend the step-size to zero. This can be done in this case by eliminating
all the noise, as well as the Gaussians ξn. What we end up with is the ordinary
differential equation dXt = v(Xt) dt defined on Rd. While this ODE captures
some behavioral aspects of the iterates in (LRM), it does not offer a complete
dynamical picture. Specifically, one can show that the iterates of (LRM) do not
form an asymptotic pseudo-trajectory for the flow of this ODE. The reason is
that the order of the noise is roughly √γn rather than γn, due to the presence of
the Gaussian noise.

As our primary focus in this chapter is the asymptotic behavior of the law
of xn (rather than xn as a point in Rd), we demonstrate below that the SDE
(4.9) indeed induces a flow within the Wasserstein space, thereby enabling the
application of the ODE method.

With the aid of the Fokker–Planck equation (see Section 4.2.2), we can define
the flow corresponding to the SDE (4.9) as the function Φ : [0,∞)×P2,ac(Rd)→
P2,ac(Rd) with

Φ0 = Id, ∂tΦt(ϱ) = −∇ · (Φt(ϱ) v) +
1

2
⟨∇2,Φt(ϱ)G⟩. (4.11)

In other words, Φt(ϱ) is the solution of the Fokker-Planck equation with initial
datum ϱ at time t.

Working within the space of probability measures has its own intricacies, and
one usually prefers doing the analysis at the level of random variables instead.
It turns out that we only need some strong solution to the SDE (4.9) whose
distribution evolves as what the flow prescribes. This process will have enough
information to allow us giving a result at the level of distributions.

Using the same Brownian motion (Wt)t≥0 used for interpolating the iterates
{xn}n∈N, we construct the flow process as follows: For a fixed t ≥ 0, let (W (t)

h )h≥0

be the Brownian motion “restarted at t,” i.e., W (t)
h =Wt+h −Wt, and define the

flow process ϕ(t) starting at time t to be the strong solution of the SDE (4.9)
started at Xt. In other words,

ϕ
(t)
h = Xt +

∫ h

0

v(ϕ(t)s ) ds+

∫ h

0

σ(ϕ(t)s ) dW (t)
s . (4.12)

The flow process ϕ(t) has the property that law(ϕ
(t)
h ) = Φh(law(Xt)). Notice that
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by using the same Brownian motion, the interpolation and the flow processes
become synchronously coupled. This property will be useful later, when we consider
the difference of the interpolation and the flow process. If it is clear from the
context, we drop the (t) from the flow process and simply write ϕ.

4.4. DYNAMICS OF LANGEVIN–ROBBINS–MONRO
SCHEMES

We are now ready to state the main dynamical result of this chapter. What we show
is that if the iterates of (LRM) have uniformly bounded second moments, that is,
if supn≥0 E ∥xn∥2 <∞, then, under some assumptions, the law of the stochastic
interpolation becomes an asymptotic pseudo-trajectory of the flow induced by
the SDE (4.9). We see later that uniformly bounded second moments is a form
of stability of the algorithm, and prove that it is implied by dissipativity-type
conditions on the drift.

Let us state our blanket assumptions that underlie the rest of this chapter.
These are as follows:

▷ Assumption 4.2. The drift v is Lv-Lipschitz and the diffusion matrix σ is
Lσ-Lipschitz in Frobenius norm, i.e., ∥σ(x)− σ(y)∥F ≤ Lσ∥x− y∥.

▷ Assumption 4.3. The Robbins–Monro summability conditions hold, i.e.,∑
γn =∞ and

∑
γ2n <∞. (4.13)

▷ Assumption 4.4. The error terms Zn+1 satisfy Assumption 4.1. Moreover, there
exists a decomposition Zn+1 = Un+1+Bn+1 of the error into noise and bias terms,
such that

E[Un+1 | Fτn−] = 0 and sup
n∈N

E ∥Un+1∥2 <∞, (4.14)

and3

E[∥Bn+1∥2 | Fn] ≲ γ2n+1∥v(xn)∥2 + γn+1. (4.15)

Remark 4.1. A few remarks are in order:

(1) Global Lipschitzness of v and σ ensure that the SDE (4.9) has globally
defined strong solutions. This is similar to Chapter 3, where we assumed
Lipschitzness and completeness of the vector field to have a globally-defined
flow. While this assumption can be restrictive in some scenarios, we remark

3 We write a ≲ b if there exists some universal constant C > 0 such that a ≤ C · b.
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that is a standard assumption in the context of stochastic approximation;
see Section 2.5.

(2) The noise condition (4.14) simply states that the noise terms form a martin-
gale difference sequence with bounded second moments. The bias assumption
(4.15) prevents the bias Bn+1 from overpowering v(xn). ♢

The main theorem of this chapter is:

▶ Theorem 4.9. Suppose that the drift v and diffusion matrix σ are Lipschitz
continuous. Consider the sequence of iterates {xn}n∈N of (LRM)

xn+1 = xn + γn+1{v(xn) + Zn+1}+
√
γn+1 σ(xn) ξn+1,

where the step-sizes γn satisfy Robbins–Monro conditions (4.13), and the error
terms Zn satisfy Assumption 4.4. Moreover, assume that the second moments of
the iterates {xn}n∈N are uniformly bounded. Then, almost surely, the stochastic
interpolation (Xt)t≥0 of {xn}n∈N is an asymptotic pseudo-trajectory of the flow
of the SDE

dYt = v(Yt) dt+ σ(Yt) dWt

in the quadratic Wasserstein space.

We prove this theorem in Section 4.4.1 below. An important implication of
Theorem 4.9 is almost sure last-iterate convergence in Wasserstein distance for
many sampling algorithms. This follows from the structure of the internally chain-
transitive sets of the corresponding SDE, the limit-set theorem (Theorem 2.6), and
Corollary 4.7. Below, we show that for the Langevin diffusion, the only internally
chain-transitive set is the singleton {µ}, where µ is the stationary distribution of
(4.2). Later, in Lemmas 4.14 and 4.15, we show a similar structure holds for the
mirror Langevin diffusion—another SDE that is used for sampling from probability
distributions.

▶ Lemma 4.10. Consider the Langevin diffusion

dXt = −∇f(Xt) dt+
√
2 dWt. (4.16)

Then, the only internally chain-transitive set for the flow corresponding to this
SDE is the singleton {µ ∝ e−f}.

Proof. Define the functional V (·) = H(· | µ) to be the relative entropy with
respect to µ. We show that V is a Lyapunov function for {µ} in the sense of
Definition 2.9. Let µt be the density of the solution of the Langevin diffusion
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(4.16) and observe that

d

dt
V (µt) =

d

dt

∫
log

µt(x)

µ(x)
µt(x) dx =

∫
log

µt(x)

µ(x)
∂tµt(x) dx.

Using the Fokker-Planck equation, we can replace ∂tµt(x):

d

dt
V (µt) =

∫
log

µt(x)

µ(x)
∇ ·

(
µt(x)(∇f(x) +∇ logµt(x))

)
dx

=

∫
log

µt(x)

µ(x)
∇ ·

(
µt(x)∇ log

µt(x)

µ(x)

)
dx

= −
∫ ∥∥∥∥∇ log

µt(x)

µ(x)

∥∥∥∥2 µt(x) dx.
The second equality follows from the fact that ∇f = −∇ logµ, and the last
equality is due to the integration by parts. The last quantity, called the relative
Fisher information, is strictly positive for all measures other than µ. Thus, V is
Lyapunov for {µ}. Theorem 2.10 then shows that the only point in the internally
chain-transitive set of Φ is µ. As a bonus, this also shows the uniqueness of the
stationary distribution of (4.16).

4.4.1. Proof of Theorem 4.9
The proof of Theorem 4.9 employs similar ideas as that of Theorem 3.4 in Chapter 3.
We construct the Picard process, similar to (3.26) in Chapter 3, to “lie in between”
the stochastic interpolation and the flow process. Later, we decompose the distance
of the interpolation to the flow process to the sum of their distances to the Picard
process. While in Chapter 3, the construction of the Picard process was done by
“integrating” the vector field along the interpolation’s trajectory, here we construct
an adapted process that is coupled to both the flow process and the stochastic
interpolation. This coupling allows us to easily bound the distances from the
Picard process to the flow process and the stochastic interpolation. The treatment
of error terms are also similar to Chapter 3, with the upside that we do not need
to deal with different coordinate systems.

Before diving into the proof of Theorem 4.9, let us populate some facts and
inequalities that we use throughout the proof.

• Suppose A ∈ Rd×k and ξ is a zero-mean Gaussian vector in Rk with covari-
ance matrix aIk. Then, E ∥Aξ∥2 = E tr(A⊤Aξξ⊤) = a∥A∥2F.

• For vectors v1, . . . , vk, it holds ∥v1 + · · ·+ vk∥2 ≤ k(∥v1∥2 + · · ·+ ∥vk∥2).
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• For random vectors X and Y , it holds E ⟨X,Y ⟩ ≤ (E ∥X∥2 E ∥Y ∥2)1/2.

• For positive numbers a1, . . . , ak, it holds
√
a1 + · · ·+ ak ≤

√
a1 + · · ·+

√
ak.

• For any integrable vector-valued function a, it follows by Cauchy-Schwarz
that ∥∥∥∥∫ t

0

a(s) ds

∥∥∥∥2 ≤ t∫ t

0

∥a(s)∥2 ds.

Proof of Theorem 4.9. Recall the construction of the interpolation (4.10) and
the flow process (4.12). Central to our analysis is the Picard process started at
time t, defined as

Y
(t)
h = Xt +

∫ h

0

v(Xt+s) ds+

∫ h

0

σ(Xt+s) dW
(t)
s . (4.17)

Similar to (4.12), W (t)
s =Wt+s −Wt is the Brownian motion restarted at time t.

It is important to note that we are reusing the same Brownian motion, making
the Picard process adapted and synchronously coupled to both the flow process
and the stochastic interpolation. Intuitively, we think of the Picard process as
one step of the Picard iteration for successive approximations to solve ODEs. It
is thus expected that its trajectory is close to the original interpolation, as well
as to that of the flow process, playing the role of a “bridge.” In the sequel, if t is
known from the context, we only write Yh instead of Y (t)

h .
Let us fix t, T > 0, and for h ∈ [0, T ] decompose the distance between the

stochastic interpolation and the flow process as

E ∥Xt+h − ϕh∥2 ≤ 2E ∥Yh − ϕh∥2 + 2E ∥Xt+h − Yh∥2. (4.18)

We now bound each term of this decomposition. Throughout the proof, we denote
by L = max{Lv, Lσ}.

The first term controls how close is the Picard process to the flow process.
Using Itô isometry (Lemma 4.3), Lipschitzness of v and σ, and h ≤ T , we have

E ∥Yh − ϕh∥2

= E

∥∥∥∥∫ h

0

(v(ϕs)− v(Xt+s)) ds+

∫ h

0

(σ(ϕs)− σ(Xt+s)) dW
(t)
s

∥∥∥∥2
≤ 2h

∫ h

0

E[∥v(ϕs)− v(Xt+s)∥2] ds+ 2E
[∫ h

0

∥σ(ϕs)− σ(Xt+s)∥2F ds
]

≤ 2(T + 1)L2

∫ h

0

E[∥ϕs −Xt+s∥2] ds. (4.19)
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The last term on the right-hand side gives us a hint for using Grönwall’s lemma
later.

Similar to Section 2.5, let us define the continuous-to-discrete counter m(t) =
sup{n ≥ 1 : τn ≤ t}. Also, define the continuous-time, piecewise-constant, adapted
processes

Xt = xn, γt = γn+1, Zt = Zn+1, ∀t ∈ [τn, τn+1).

To bound the distance between the Picard process and the stochastic interpolation
(i.e., the second term in (4.18)), we can use the piecewise-constant processes above
and write

Xt+h − Yh =

∫ t+h

t

v(Xs)− v(Xs) ds+

∫ t+h

t

(σ(Xs)− σ(Xs)) dWs +∆Z(t, h),

where ∆Z(t, h) is the accumulation of error from time t to t+ h and is equal to

∆Z(t, h)

= −(t− τk)E[Zk+1 | Ft] +
n−1∑
i=k

γi+1Zi+1 + (t+ h− τn)E[Zn+1 | Ft+h], (4.20)

with k = m(t) and n = m(t + h). As one might guess, ∥∆Z(t, h)∥ eventually
becomes negligible as t→∞, since the step-size becomes small. The next lemma,
whose proof can be found in Appendix B.1, confirms this intuition:

Lemma 4.11. Suppose that Assumptions 4.1–4.4 hold and the iterates have
uniformly bounded second moments. Then, for any fixed T > 0, it holds

lim
t→∞

sup
0≤h≤T

E ∥∆Z(t, h)∥2 = 0.

Therefore, using the bounds

E

∥∥∥∥∫ t+h

t

(v(Xs)− v(Xs)) ds

∥∥∥∥2 ≤ h∫ t+h

t

E ∥v(Xs)− v(Xs)∥2 ds

and

E

∥∥∥∥∫ t+h

t

(σ(Xs)− σ(Xs)) dWs

∥∥∥∥ ≤ E
[∫ t+h

t

∥σ(Xs)− σ(Xs)∥2F ds
]
,

we obtain
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E ∥Xt+h − Yh∥2 ≤ 3(h+ 1)L2

∫ t+h

t

E ∥Xs −Xs∥2 ds+ 3E ∥∆Z(t, h)∥2. (4.21)

Thus, it remains to control how far (on average) the stochastic interpolation gets
from the iterates during one iteration. Let n = m(s) so that Xs = xn. We can
then compute

E ∥Xs − xn∥2

= E
[
∥(s− τn){v(xn) + E[Zn+1 | Fs]}+ σ(xn) (Ws −Wτn)∥2

]
≤ 3γ2n+1 E ∥v(xn)∥2 + 3γ2n+1 E

[
∥E[Zn+1 | Fs]∥2

]
+ 3E ∥σ(xn) (Ws −Wτn)∥2

and since conditional expectation is a projection in L2,

≤ 3γ2n+1 E ∥v(xn)∥2 + 3γ2n+1 E ∥Zn+1∥2 + 3E ∥σ(xn) (Ws −Wτn)∥2,

and by Lemma B.1,

≤ 3γ2n+1 E ∥v(xn)∥2 + 3γ2n+1 E ∥Zn+1∥2 + 3γn+1 E ∥σ(xn)∥2F. (4.22)

Moreover, as v and σ are Lipschitz and the iterates have bounded second moments,
it follows that E ∥v(xn)∥2 and E ∥σ(xn)∥2F are bounded by constants. This is
because

1

2
E ∥v(xn)∥2 ≤ E ∥v(xn)− v(0)∥2 + ∥v(0)∥2 ≤ L2

v sup
k≥0

E ∥xk∥2 + ∥v(0)∥2,

and similarly for E ∥σ(xn)∥2F. Thus, by Assumption 4.4 on the error terms,

E ∥Zn+1∥2 ≤ 2E ∥Un+1∥2 + 2E ∥Bn+1∥2 ≲ γ2n+1 E ∥v(xn)∥2 + γn+1 +O(1).

Plugging this estimate into (4.22) shows that E ∥Xs − Xs∥2 ≤ C γs for some
constant C not depending on s. Hence, continuing from (4.21), we have

E ∥Xt+h − Yh∥2 ≤ 3(h+ 1)L2C

∫ t+h

t

γs ds+ 3E ∥∆Z(t, h)∥2

≤ 3(h+ 1)L2Ch sup
s∈[t,t+h]

γs + 3E ∥∆Z(t, h)∥2

≤ 3(T + 1)2L2C sup
s∈[t,t+T ]

γs + 3 sup
s∈[0,T ]

E ∥∆Z(t, s)∥2.
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Taking supremum over h ∈ [0, T ] and noticing that the right-hand side is indepen-
dent of h, together with Lemma 4.11 yields

At := sup
0≤h≤T

E ∥Xt+h − Yh∥2 ≲ sup
s∈[t,t+T ]

γs + sup
h∈[0,T ]

E ∥∆Z(t, h)∥2, (4.23)

implying At → 0 almost surely as t → ∞. Therefore, the Picard process gets
arbitrary close to the original interpolation.

Let us return to the decomposition (4.18). By taking expectation and using
(4.19) and (4.23), an application of Grönwall’s lemma gives

E ∥Xt+h − ϕh∥2 ≤ 2(T + 1)L2

∫ h

0

E ∥Xt+s − ϕs∥2 ds+ 2At

≤ 2At exp
(
s(T + 1)L2

)
≤ 2At exp(T (T + 1)L2),

Thus,
lim
t→∞

sup
h∈[0,T ]

E ∥Xt+h − ϕh∥2 = 0.

Recall that the quadratic Wasserstein distance between (the laws of) Xt+h and ϕh
is the infimum of expected distance squared over the set of all of their couplings.
As ϕh has the same marginal as the Langevin diffusion started from Xt at time h
and the synchronous coupling of the interpolation and the flow process induces a
specific coupling between them, we directly get

W2(Xt+h, ϕh) ≤ E[∥Xt+h − ϕh∥2]
1
2 ,

which implies

lim
t→∞

sup
s∈[0,T ]

W2(law(Xt+h),Φh(law(Xt))) = 0.

4.5. STABILITY VIA DISSIPATIVITY

Theorem 4.9 and Corollary 4.7 in tandem show that under Assumptions 4.1–4.4
and uniformly bounded second moments, the desirable last-iterate convergence of a
Langevin–Robbins–Monro scheme in any (2− ε)-Wasserstein space is immediately
attained. Therefore, in this section, we turn our focus to establishing the bounded
moment condition for Langevin–Robbins–Monro schemes.
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There is a long history on conditions that ensure bounded moments for iterative
algorithms, which has culminated in the so-called dissipativity properties. We
consider one such example below.

Definition 4.12. The drift v is called (α, β)-dissipative for some constants α > 0
and β ≥ 0, if for all x ∈ Rd,

⟨x, v(x)⟩ ≤ −α∥x∥2 + β. (4.24)

It is well established that dissipativity ensures the boundedness of the second
moments for the basic Euler–Maruyama discretization of Langevin dynamics,
whether employing deterministic or stochastic gradient oracles [Hal88; MT93;
RT96a; LP02; Lem05; TTV16; RRT17]. However, these studies do not address
the broader class of Langevin–Robbins–Monro schemes, particularly when a non-
zero bias is present. As we will demonstrate in Section 4.6, this bias is vital for
integrating more sophisticated discretization schemes. To this end, our next result
shows that for a wide class of Langevin–Robbins–Monro schemes, the moment
bounds essentially come for free under dissipativity.

Theorem 4.13. Let v be an (α, β)-dissipative Lipschitz drift and σ be a Lipschitz
diffusion matrix; let {xn}n∈N be the iterates of a Langevin–Robbins–Monro scheme.
Assume that limn→∞ γn = 0 and the bias satisfies the condition (4.15). Then
either of the following conditions imply supn E ∥xn∥2 <∞:

(i) The Lipschitz constant Lσ of σ satisfies L2
σ < α.

(ii) The diffusion coefficient σ is bounded in Frobenius norm.

At a first glance, condition (i) in Theorem 4.13 seems artificial. It turns out,
however, that for SDEs with multiplicative noise, a bound on Lσ is necessary for
contraction. We defer this discussion to Remark 4.2 in Section 4.6.

Proof of Theorem 4.13. For brevity, let us write Fn instead of Fτn and En[·]
instead of E[· | Fn]. Expanding xn+1 as

∥xn+1∥2 = ∥xn + γn+1{v(xn) + Zn+1}+
√
γn+1σ(xn) ξn+1∥2

and ignoring every term that has zero mean under En[·], we get

En[∥xn+1∥2] = ∥xn∥2 + 2γn+1 En[⟨xn, v(xn) +Bn+1⟩]
+ γ2n+1 En[∥v(xn) + Zn+1∥2] + γn+1 En[∥σ(xn) ξn+1∥2]

+ 2γ
3/2
n+1 En[⟨σ(xn) ξn+1, Bn+1⟩].
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Note that we used the fact that Un+1 is independent of ξn+1 given Fn.
Let us now focus on case (i), where σ is assumed to satisfy Lσ < α. By

repeatedly using the bias condition (4.15), the fact that

En[∥Bn+1∥] ≤ (En[∥Bn+1∥2])1/2 ≲ γn+1∥v(xn)∥+
√
γn+1,

the dissipativity of v, Lipschitzness of v in the sense that ∥v(x)∥ ≤ Lv∥x∥+∥v(0)∥
and similarly for σ, and the Cauchy-Schwarz inequality, we obtain the following
recursive bound on an := E ∥xn∥2:

an+1 ≤
(
1− 2γn+1(α− L2

σ) + o(γn+1)
)
an +O(γn+1)

√
an +O(γn+1). (4.25)

We now show that there is some positive S > 0 and n0 ∈ N such that an ≤ S for
all n ≥ n0. Let us rewrite the inequality above as

an+1 ≤ an(1− en) + gn
√
an + hn.

For n0 large enough, it holds for all n ≥ n0 that

c1γn+1 ≤ en ≤ C1γn+1, gn ≤ C2γn+1, hn ≤ C3γn+1. (4.26)

Now observe that it is sufficient for S to satisfy

(1− en)S + gn
√
S + hn ≤ S,

or equivalently, −enS + gn
√
S + hn ≤ 0. As the left-hand side is a quadratic

equation in terms of
√
S with negative leading coefficient, it suffices to have a

uniform (in n) upper bound on its larger root; taking S larger than that root
gives us the desired upper bound on an. The larger root computes as

gn +
√
g2n + 4hnen
2en

≤ C2 +
√
C2

2 + 4C1C3

2c1
,

where we used the bounds (4.26). Taking S larger than the right-hand side of the
inequality above satisfies our desiderata.

For case (ii), where σ is assumed to be bounded, by a similar computation
that leads to (4.25) in case (i), we can derive the recursion

an+1 ≤ (1− 2γn+1α+ o(γn+1)) an +O(γn+1)
√
an +O(γn+1).

The rest of the argument is the same as in case (i).

Remark. With the techniques developed by Durmus and Moulines [DM17], we
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are able to prove boundedness of the second moments of the iterates under milder
conditions using specific Foster–Lyapunov drift conditions. Specifically, for the
sampling problem via Langevin diffusion or dual mirror Langevin diffusion, if
we assume that the drift satisfies weak dissipativity , in the sense that for some
α, β > 0 and 0 < κ ≤ 1,

⟨x, v(x)⟩ ≤ −α∥x∥1+κ + β, ∀x ∈ Rd,

and if the noises involved are sub-Gaussian, we can get the desired boundedness
property. As opposed to dissipativity, which requires quadratic growth of f outside
a compact set when v = −∇f , weak dissipativity only entails super-linear growth
and therefore, is considerably weaker. While the analysis for this case is interesting,
it requires different machinery from those we discussed in this chapter; therefore,
we choose not to mention them in this thesis, and refer the interested reader to
Theorem 4 and its proof in [KHK23a]. ♢

4.6. SAMPLING ALGORITHMS

The generality of the Langevin–Robbins–Monro template allows us to capture
many existing algorithms used for sampling from probability distributions, and
suggests ways to design new ones. In the following subsections, we showcase
instances of (LRM) that are typically used for sampling in practice.

Let µ ∝ e−f be the target distribution. Similar to Chapter 3, we will discuss
algorithms that operate with indirect access to the gradient ∇f through a stochas-
tic first-order oracle. In essence, when an SFO is invoked at a point x ∈ Rd, given
a random seed ω from a set of seeds Ω, it produces a random vector ∇̃f(x;ω)
that is of the form

∇̃f(x;ω) = ∇f(x) + U(x;ω), (4.27)

where the noise term U(x;ω) is assumed to be zero-mean and have bounded
second moments:

Eω[U(x;ω)] = 0 and Eω[∥U(x;ω)∥2] ≤ CU , ∀x ∈ Rd. (4.28)

4.6.1. Basic Discretizations
Similar to the stochastic gradient descent algorithm for optimization, the classic
Stochastic Gradient Langevin Dynamics [WT11] uses the vanilla Euler–Maruyama
discretization of (4.2), but employs stochastic gradients. This algorithm is mostly
used in Bayesian learning and sampling from posterior distributions, as the log-
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likelihood function is in the form of a sum over all data points in a dataset;
stochastic gradients are obtained by selecting a subset of data points uniformly at
random in each iteration, leading to the algorithm

xn+1 = xn − γn+1∇̃f(xn) +
√

2γn+1 ξn+1, (SGLD)

where ∇̃f is the gradient of the negative log-likelihood of a random batch of the
data. Setting Un+1 := ∇̃f(xn)−∇f(xn) and Bn+1 = 0 makes (SGLD) the first
(and simplest) example of an Langevin–Robbins–Monro scheme.

If (SGLD) is the forward Euler–Maruyama method for discretizing (4.2), the
Proximal Langevin Algorithm [Wib19] would be the backward one:

xn+1 = xn − γn+1∇f(xn+1) +
√
2γn+1 ξn+1. (PLA)

In practice, this method is useful if one can solve (PLA) for xn+1; the proximal
operator should be easy to compute. Setting Bn+1 := ∇f(xn+1) − ∇f(xn),
we see that this algorithm also follows the Langevin–Robbins–Monro template.
Lemma B.2 in Appendix B.2 shows that the bias of (PLA) satisfies the bias
condition (4.15).

4.6.2. Randomized Mid-point Method
The Randomized Mid-point Method [SL19] is an alternative discretization scheme to
Euler–Maruyama and has been proposed for both underdamped and overdamped
Langevin diffusions. Let us describe this method for the overdamped Langevin
diffusion (4.2); in doing so we closely follow the argument of [HBE20].

Suppose the algorithm starts at the point x0. Having the step-size γ in mind,
we explicitly solve the (overdamped) Langevin diffusion (4.2) initialized at x0 for
γ amount of time and arrive at the point x∗(γ) which satisfies

x∗(γ) = x0 −
∫ γ

0

∇f(x∗(s)) ds+
√
2Wγ . (4.29)

Surely we cannot explicitly compute the integral above, and our goal is to estimate
it. For this, we look at the integral from 0 to γ as an expected value of a uniformly
distributed random variable and approximate it using one sample. Concretely,
we let α to be a random variable uniformly distributed in [0, 1], independent of
everything else, and use the unbiased estimate∫ γ

0

∇f(x∗(s)) ds = γ Eα[∇f(x∗(γα))] ≈ γ∇f(x∗(αγ))
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as an approximation of the integral. The Randomized Mid-point method then
proceeds by estimating x∗(αγ) by the Euler–Maruyama discretization:

x∗(αγ) ≈ x0 − αγ∇f(x0) +
√
2Wαγ .

It is important to mention that we have used the same Brownian motion as (4.29).
By properties of the Brownian motion, given α, the covariance of Wγ and Wαγ

is αγI. Therefore, writing Wγ =:
√
γ ξ and Wαγ =:

√
αγ ξ′, it holds that ξ and

ξ′ are standard Gaussian, and given α, their cross-covariance is E[ξ′ξ⊤] =
√
α I.

Using these variables, we can define the Randomized Mid-point Method’s iterates{
xn+1/2 = xn − γn+1αn+1∇̃f(xn) +

√
2γn+1αn+1 ξ

′
n+1,

xn+1 = xn − γn+1∇̃f(xn+1/2) +
√

2γn+1 ξn+1,
(RMM)

where {αn}n∈N are independent and uniformly distributed in [0, 1], and are
independent of everything else, and ξn+1 and ξ′n+1 are standard Gaussian random
variables with cross-covariance √αn+1I. As in the previous examples, we also
allow noisy evaluation of the gradients.

To cast (RMM) into the Langevin–Robbins–Monro template, we set

Bn+1 := ∇f(xn+1/2)−∇f(xn), and

Un+1 := ∇̃f(xn+1/2)−∇f(xn+1/2).

Lemma B.3 in Appendix B.2 shows that the bias of (RMM) satisfies the bias
condition (4.15).

Inspecting the update rule of (RMM), we see that it requires two gradient
oracle calls at each iteration. Inspired by the optimistic gradient methods in
optimization and online learning, we propose to “recycle” the past gradients:{

xn+1/2 = xn − γn+1αn+1∇̃f(xn−1/2) +
√
2γn+1αn+1 ξ

′
n+1

xn+1 = xn − γn+1∇̃f(xn+1/2) +
√
2γn+1 ξn+1,

(ORMM)

where αn+1, ξn+1, ξ
′
n+1, and ∇̃f are the same as in (RMM). This algorithm

again falls into the category of Langevin–Robbins–Monro schemes with the same
noise and bias as (RMM). Lemma B.4 in Appendix B.2 shows that the bias of
(RMM) satisfies the bias condition (4.15). Let us remark that (ORMM) requires
one gradient oracle, thereby halving the per-iteration cost of (RMM). To our
knowledge, the scheme (ORMM) is new.
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4.6.3. Stochastic Runge–Kutta Method
In addition to the simple (stochastic) Euler–Maruyama discretization, there is a
class of more sophisticated discretization methods of (4.2) known as higher-order
integrators. The Stochastic Runge–Kutta method [Li+20] is an example of an
order 1.5 integrator, with iterates

h1 = xn +
√
2γn+1

(
( 12 + 1√

6
) ξn+1 +

1√
12
ξ′n+1

)
h2 = xn − γn+1∇̃f(xn) +

√
2γn+1

(
( 12 −

1√
6
) ξn+1 +

1√
12
ξ′n+1

)
,

xn+1 = xn − 1
2γn+1(∇̃f(h1) + ∇̃f(h2)) +

√
2γn+1 ξn+1,

(SRK)

where ξn+1 and ξ′n+1 are independent standard Gaussian random variables. This
algorithm is a Langevin–Robbins–Monro scheme with

Bn+1 := 1
2 (∇f(h1) +∇f(h2))−∇f(xn), and

Un+1 := 1
2 (∇̃f(h1)−∇f(h1)) +

1
2 (∇̃f(h2)−∇f(h2)).

Lemma B.5 in Appendix B.2 shows that the bias of (RMM) satisfies the bias
condition (4.15).

Finally, similar to (ORMM), we remark that one can recycle the past gradients
of the Stochastic Runge–Kutta method to save oracle calls at each iteration. Since
the idea is entirely the same, we omit the details.

4.6.4. Mirror Langevin Algorithm
The Mirror Langevin algorithm [Hsi+18; Zha+20; AC21], which is the sampling
analogue of the celebrated mirror descent scheme in optimization [NJ83; BT03], is
an example of using an SDE different from the Langevin diffusion for the task of
sampling. This algorithm uses a strictly convex function φ, known as the Bregman
potential, to change the Euclidean geometry to a favorable local geometry. This
can be useful for sampling from bounded domains (where the support of the target
distribution is not the whole Rd), or in cases where a local change of variables
improves the conditioning of the problem. In short, using the gradient of φ, one
maps the original primal space into the dual space, and performs the desired
operations (such as gradient steps or adding a Gaussian noise) in the dual. Below,
we make this precise. A more general and complete picture of mirror descent is
given in the next chapter, where we discuss a generic mirror descent scheme in
the space of measures.
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In the dual space, the iterates of the Mirror Langevin algorithm are

xn+1 = xn − γn+1∇f(∇φ⋆(xn)) +
√

2γn+1(∇2φ⋆(xn)
−1)1/2 ξn+1, (ML)

where φ⋆ is the Fenchel conjugate of φ (see [Roc97] or (5.4) in Chapter 5 for a
definition). This iteration is the Euler–Maruyama discretization of the mirror
Langevin diffusion

dXt = −∇f(∇φ⋆(Xt)) dt+
√
2 (∇2φ⋆(Xt)

−1)1/2 dWt. (4.30)

In our framework, (ML) fits into (LRM) by taking v = −∇f ◦ ∇φ⋆ and σ =
(∇2φ⋆)−1/2, making it an example with state-dependent diffusion matrix.

It is worthwhile to translate our assumptions on the drift v and diffusion σ
into conditions on f and σ. As it turns out, these conditions are the same as (or
weaker than) those mentioned in the mirror Langevin literature [Li+22].

Let X ⊆ Rd be an open convex set and suppose that φ : X → Rd is a twice-
differentiable strictly convex function, so that ∇φ is a bijection between X and
Rd, and ∥∇φ(x)∥ → ∞ as x approaches the boundary of X . In this case, it holds
for all x ∈ Rd that

∇φ(∇φ⋆(x)) = x, and (4.31)

(∇2φ⋆)−1(∇φ(x)) = ∇2φ(x). (4.32)

(1) The Lv-Lipschitzness of the drift v corresponds to f being Lv-smooth relative
to φ [Li+22, (A2)]:

∥∇f(x)−∇f(y)∥ ≤ Lv∥∇φ(x)−∇φ(y)∥

This simply follows from (4.31) and surjectivity of ∇φ; letting x′ = ∇φ(x)
gives

−v(x′) = ∇f(∇φ⋆(x′)) = ∇f(∇φ⋆(∇φ(x))) = ∇f(x).

Invoking Lipschitzness of v gives the desired inequality.

(2) The Lσ-Lipschitzness of σ in Frobenius norm corresponds to modified self-
concordance with parameter L2

σ [Li+22, (A1)]:

∥∇2φ(x)1/2 −∇2φ(y)1/2∥F ≤ Lσ∥∇φ(x)−∇φ(y)∥. (4.33)

This follows from (4.32) and surjectivity of ∇φ similar to the previous item.

(3) As far as the knowledge of the author goes, α-dissipativity of the drift v does
not correspond to a previously known condition on f and φ in the mirror
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Langevin literature. However, dissipativity is implied by (and therefore, is
weaker than) α-strong convexity of f with respect to φ [Li+22, (A3)]; that
is, if

⟨∇f(x)−∇f(y),∇φ(x)−∇φ(y)⟩ ≥ α∥∇φ(x)−∇φ(y)∥2. (4.34)

Using (4.31), this condition can be equivalently written as

⟨v(x)− v(y), x− y⟩ ≤ −α∥x− y∥2.

To see why this condition implies dissipativity, suppose that v(x∗) = 0 for
some x∗ ∈ Rd; such a point exists, since ∥∇f(x)∥ → ∞ as x→ ∂X .

⟨v(x)− v(x∗), x− x∗⟩ = ⟨v(x), x− x∗⟩ ≤ −α∥x− x∗∥2.

Thus,
⟨v(x), x⟩ ≤ −α∥x∥2 + 2α⟨x, x∗⟩ − α∥x∗∥2 + ⟨x∗, v(x)⟩.

As v is Lipschitz, the right-hand side is ≤ −α∥x∥2 + g∥x∥ + h, for some
g, h ≥ 0. It is then evident that there is some α′, β > 0 such that the
right-hand side is ≤ −α′∥x∥2 + β; in other words, v is (α′, β)-dissipative.

Thus far, we have shown that the mirror Langevin algorithm (ML) fits into the
Langevin–Robbins–Monro scheme, and that we can interpret the assumptions on
the drift and diffusion solely in terms of the target potential f and the Bregman
potential φ. For the limits of the algorithm, however, we have to identify the
internally chain-transitive sets of the flow corresponding to mirror Langevin
diffusion (4.30). However, since the iterations of (ML) and the SDE evolve in
the dual space, its stationary distribution µ̃ is going to be the pushforward of
the target measure µ ∝ e−f under the mirror map ∇φ, that is, µ̃ := (∇φ)#µ
[Li+22, Sec. 2.3]. In Lemma 4.14 below we show that the dual mirror Langevin
diffusion indeed has µ̃ as its stationary measure and that {µ̃} is the only internally
chain-transitive set for the corresponding flow. Next, in Lemma 4.15 we show
a similar result, but for the primal mirror Langevin diffusion, showing that its
stationary distribution is µ and {µ} is its only internally chain-transitive set.

▶ Lemma 4.14. The only internally chain-transitive set for the flow corresponding
to the Mirror Langevin diffusion in its dual form (4.30) is the singleton {µ̃}, where
µ̃ = (∇φ)#µ.

Proof. Before proving this lemma, let us find the density of µ̃. Using the change
of variables formula, we can obtain [see Li+22, Sec. 2.3]

log µ̃(x) = −f(∇φ⋆(x))− log det(∇2φ⋆)−1(x) + constant.
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Therefore,

∇ log µ̃(x) = −(∇2φ⋆)(x)∇f(∇φ⋆(x))−∇2φ⋆(x)∇ · (∇2φ⋆)−1(x). (4.35)

For mirror Langevin diffusion, it is more convenient to work with the χ2

divergence. Recall that for two probability densities ϱ and ν, the χ2 divergence of
ϱ from ν is defined as

χ2(ϱ | ν) =
∫
ϱ(x)2

ν(x)
dx− 1.

Define the functional V (·) = χ2(· | µ̃). Similar to the case for Langevin diffusion,
we show that V is a Lyapunov function for {µ̃} in the sense of Definition 2.9. Let
µt be the density of the solution of the mirror Langevin diffusion (4.30). Then µt
satisfies the Fokker–Planck equation ∂tµt = −∇ · (µtwt) with

wt = −∇f ◦ ∇φ⋆ − (∇2φ⋆)−1∇ logµt −∇ · (∇2φ⋆)−1.

Comparing with (4.35), we see that

wt = (∇2φ⋆)−1∇ log µ̃− (∇2φ⋆)−1∇ logµt = −(∇2φ⋆)−1∇ log
µt
µ̃
.

Therefore, for µt ̸= µ̃, it holds

d

dt
χ2(µt | µ̃) =

d

dt

∫
µt(x)

2

µ̃(x)
dx = 2

∫
µt(x)

µ̃(x)
∂tµt(x) dx

= −2
∫ 〈
∇ log

µt(x)

µ(x)
, (∇2φ⋆)−1∇ log

µt
µ̃

〉
< 0,

where we used integration by parts, and the inequality is due to the fact that
φ is strictly convex. A similar use of Theorem 2.10 shows that V is a Lyapunov
function for {µ̃}, as well as that µ̃ is the unique stationary distribution of the
dual mirror Langevin dynamics.

For illustrative purposes, let us do a similar proof for the mirror Langevin
diffusion in the primal form. Firstly, this diffusion can be obtained by Itô’s formula
for the process Yt = ∇φ⋆(Xt), where Xt follows the dual mirror Langevin diffusion;
see also [Wib19, App. A].
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▶ Lemma 4.15. Consider the Mirror Langevin diffusion in its primal form:

dYt = (∇ · (∇2φ(Yt)
−1)−∇2φ(Yt)

−1∇f(Yt)) dt

+
√
2 (∇2φ(Yt)

−1)1/2 dWt. (4.36)

Then, the only internally chain-transitive set for the flow corresponding to this
SDE is the singleton {µ}, where µ ∝ e−f .

Proof. Define the functional V (·) = χ2(· |µ). Similar to Lemma 4.14, we show
that V is a Lyapunov function for {µ}. Let µt be the density of the solution of the
mirror Langevin diffusion (4.36). Then, µt satisfies the Fokker-Planck equation
∂tµt = −∇ · (µtwt) with

wt = ∇ · (∇2φ)−1 − (∇2φ)−1∇f − (∇2φ)−1∇ logµt −∇ · (∇2φ)−1

= −(∇2φ)−1∇f − (∇2φ)−1∇ logµt

= −(∇2φ)−1∇ log
µt
µ
.

See also [Wib19, Lem. 3] for a similar derivation. Therefore, for µt ̸= µ, it holds

d

dt
χ2(µt |µ) =

d

dt

∫
µt(x)

2

µ(x)
dx = 2

∫
µt(x)

µ(x)
∂tµt(x) dx

= −2
∫ 〈
∇ log

µt(x)

µ(x)
, (∇2φ)−1∇ log

µt
µ

〉
< 0,

where we used integration by parts, and the inequality is due to the fact that φ is
strictly convex. Similar to Lemma 4.14 we get the desired result.

We finish this section with the following remark on the Lipschitz constant of
the diffusion matrix which we postponed in the discussion of our assumptions in
Theorem 4.13 for the stability theorem.
Remark 4.2. In the context of Mirror Langevin algorithm, we remark that the
condition (i) in Theorem 4.13 (namely, L2

σ < α) is merely asserting a positive
contraction rate for mirror Langevin diffusion. Contraction is a powerful tool used
in proving convergence (as well as obtaining non-asymptotic mixing times) of
sampling algorithms. We say the SDE

dXt = v(Xt) dt+ σ(Xt) dWt

is contractive with rate r > 0 if, for any two strong solutions Xt and X ′
t that are

synchronously coupled (i.e., they share the same Brownian motion), there is a



142 S.A. FOR LANGEVIN-TYPE SDES CH. 4

t0 > 0 such that

E ∥Xt −X ′
t∥2 ≤ e−2rt E ∥X0 −X ′

0∥2, ∀t ∈ (0, t0).

If an SDE is contractive, it has a stationary distribution. It turns out [see Li+22,
Lem. 4] that the Mirror Langevin Diffusion in dual form (4.30) is contractive
with rate α − L2

σ, where we recall that α is the dissipativity constant of the
drift (or the strong-convexity parameter of f with respect to φ as in (4.34)) and
Lσ is the Lipschitz constant of the diffusion matrix (or the square root of the
modified self-concordance parameter of φ as in (4.33)). In general, a bound on Lσ
is necessary for an SDE with multiplicative noise to contract; see [Li+22, App. C]
for a worked-out example regarding the Geometric Brownian motion. ♢

4.7. CONCLUSIONS

In this chapter, we introduced a new, unified framework for analyzing a wide
range of discretization schemes for SDEs, and in particular, sampling algorithms
based on the Langevin diffusion, thus laying the theoretical ground for using them
in practice, as well as motivating new and more efficient algorithms that enjoy
rigorous guarantees. We built on the ideas from dynamical system theory present
in the previous chapters, and gave a rather complete picture of the asymptotic
behavior of many first-order discretization algorithms. In short, our results help
with the following:

(1) Validating existing methods: Methods like mirror Langevin and ran-
domized mid-point method currently lack even asymptotic guarantees in
fully non-convex scenarios, such as sampling from neural network-defined
distributions. Our work fills this gap by offering the first rigorous justifica-
tion for these schemes, supporting practitioners in utilizing these methods
confidently.

(2) Facilitating new algorithm design: Our work motivates novel sampling
methods through a straightforward verification of Assumptions 4.1–4.4. An
illustrative instance involves the randomized mid-point method and the
Runge–Kutta integrators, wherein a substantial 50% reduction in compu-
tation per iteration can be achieved without compromising convergence by
simply recycling past gradients, shown in (ORMM). The balance between
the benefits of saving gradient oracles and potential drawbacks remains an
open question, necessitating case-by-case practical evaluation. Nevertheless,



§ 4.7 BIBLIOGRAPHIC NOTES 143

our theory provides a flexible algorithmic design template that extends
beyond the current literature’s scope.

While our asymptotic pseudo-trajectory result holds under very mild conditions,
a severe limitation of our current framework is that it only applies to algorithms
based on discretizing SDEs, whereas there are numerous practical sampling
schemes, such as Metropolis–Hastings, that are not immediately linked to an SDE.
Lifting such constraint is an interesting future work.

Another significant direction for future research is the analysis of discretizations
with constant step-size. In practice, many of the algorithms discussed in this chapter
utilize a constant step-size due to its robustness and potential for faster initial
convergence, particularly with larger step-sizes. Such an approach is especially
beneficial in data-scarce scenarios where maximizing the use of available data is
critical, and small increments are less effective.

A promising theoretical approach for constant step-size is the averaging of
iterates. By employing larger than usual gains and relying on offline averaging
to mitigate the increased noise from the larger step-size, substantial overall
improvement can be achieved. However, the tools and analysis required for this
approach differ from those presented in this chapter. Therefore, we defer this
intriguing line of research to the future.

BIBLIOGRAPHIC NOTES

The field of structured non-convex sampling is extensive. A structured non-convex
problem is one that involves additional assumptions on the target density, such
as strong convexity outside a ball or specific functional inequalities like the log-
Sobolev or Poincaré inequalities. Under these conditions, researchers have derived
non-asymptotic rates for sampling algorithms that are based on the Langevin
diffusion [see, e.g., RRT17; Che+18; Xu+18; Li+19; VW19; ZXG19; MMS20;
Che+21; Ma+21; Mou+22]. This chapter focuses on generic Langevin-type SDE
discretization, with sampling as a special case. For the case of sampling, we
essentially work with a generic non-convex sampling problem, which is NP-hard
and its convergence is asymptotic at best.

Key related works [LP02; TTV16; BBC17; DM17; Bal+22] focus on the
asymptotic convergence of sampling algorithms based on the Langevin diffusion,
with minimal regularity assumptions on the potential function f . In comparison,
our results either improve upon or are distinct from these studies, as discussed
below.
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Guarantees for discretization schemes. Lamberton and Pages [LP02] and
Lemaire [Lem05] analyze the Euler–Maruyama discretization of the Langevin
diffusion (4.2) with deterministic gradients (i.e., Zn+1 ≡ 0), proving weak conver-
gence of the average iterates under a moment condition that is slightly weaker
than bounded second moments. Although the moment condition in [LP02; Lem05]
is stated in a weaker form than boundedness of the second moments, it is typically
only verified on a special case that is equivalent to dissipativity, and thus implies
the required boundedness of the moments [see e.g., LP02, Rem. 3]. Their analysis
is further extended by Teh, Thiery, and Vollmer [TTV16] to incorporate stochas-
tic gradients. Later, the last-iterate convergence of the simple Euler–Maruyama
discretization of (4.2) is studied by Durmus and Moulines [DM17], who prove the
convergence in the total variation distance under weak dissipativity. Another work
on a similar setting as [DM17] is by Benaïm, Bouguet, and Cloez [BBC17], where
the convergence criterion is given in terms of an integral probability metric of the
form

dB(µ, ν) := sup
ψ∈B
|Eµ[ψ]− Eν [ψ]|

for a certain class of test functions B that is known to imply weak convergence,
but not convergence in total variation or Wasserstein distances.

Compared to these results, our guarantees possess the following desirable
features:

• The convergence is always on the last iterates instead of the average iterates.

• As we tolerate biased algorithms, the class of discretization schemes we
consider is significantly more general than the ones in existing work.

Finally, we note that our results are incomparable to the recent work of Bala-
subramanian et al. [Bal+22], who derive the same result as in [LP02; Lem05], i.e.,
average-iterate, weak convergence of deterministic Euler–Maruyama discretiza-
tion. A remarkable feature of the analysis in [Bal+22] is that it does not require
any bounded moments, and in particular, their bounds can be applied to target
distributions with unbounded variance. However, the downside of [Bal+22] is
that, in the presence of noise and bias, their analysis produces a bound that does
not vanish as n → ∞ [see Bal+22, Thm. 15]. In contrast, our framework can
tolerate quite general noises and biases, and gives stronger asymptotic guarantees
(Wasserstein vs. weak convergence; last-iterate vs. average-iterate).

Mean-Squared-Error analysis. A powerful framework for quantifying the
global discretization error of a numerical algorithm is the mean-squared-error
analysis framework [MT04]. This framework furnishes a general recipe for con-
trolling short- and long-term integration errors. For sampling, this framework has
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been applied to prove convergence rates for Langevin Monte-Carlo (i.e., the Euler–
Maruyama discretization of the Langevin diffusion (4.2)) in the strongly convex
setting [Li+20; LZT22]. Similar to our work, the convergence obtained in these
works is last-iterate and in Wasserstein distance. One of the essential ingredients
in the latter work is the contraction property of the SDE, which is ensured by
the strong convexity assumption. This, in turn, implies strong non-asymptotic
convergence guarantees.

Sampling as optimization. One of the main themes in proving error bounds
for sampling is the natural relation between sampling and optimization in the
Wasserstein space. This point of view, when applied to strongly convex potentials,
has produced numerous non-asymptotic guarantees; see [DK19; Che23] for a recent
account and the references therein. Note that strong convexity is crucial for the
analysis used in the aforementioned work. Moreover, the error bounds for biased
and noisy discretizations do not decrease with the step-size or iteration count; see
[DK19, Thm. 4, Eqn. (14)]. This means that while the bound is non-asymptotic, it
does not automatically result in an asymptotic convergence. Finally, we stress that
these approaches are orthogonal to our techniques: We view a sampling algorithm
as a (noisy and biased) discretization of a dynamical system (and not necessarily a
gradient flow), and use tools from dynamical system theory to provide asymptotic
convergence results.

While, to our knowledge, our framework is significantly different from previous
works on sampling, we acknowledge that similar ideas of creating an auxiliary
process in-between the iterates and the continuous-time flow is not entirely new
and has been touched upon in the literature [see, e.g., BEL18; Cha+21]. That being
said, our specific approach in building the Picard process and its development into
a wider array of algorithms, i.e., Langevin–Robbins–Monro schemes, undoubtedly
plays a pivotal role in our analysis. Moreover, the integration of the Picard process
with the theory of asymptotic pseudo-trajectories offers dual benefits to our study,
and we view these as our unique contributions to this area of research.





CHAPTER FIVE

STOCHASTIC APPROXIMATION FOR
ENTROPIC OPTIMAL TRANSPORT

In the previous chapters, we looked at stochastic approximation algorithms where
the corresponding continuous-time flow was clear from the algorithm and straight-
forward to construct. For example, in Chapter 3, we examined algorithms that find
the root of a vector field V on a Riemannian manifold, which the V itself created
a flow on the manifold, allowing us to analyze the algorithm’s behavior using
stochastic approximation. Similarly, in Chapter 4, we used the Fokker–Planck
equation of an SDE to construct a flow in Wasserstein space.

However, some practical algorithms do not come with an obvious continuous-
time flow, which is essential for using methods like the ODE method or similar
stochastic approximation techniques. In this chapter, we will explore two such
algorithms: the Sinkhorn algorithm for solving Entropic Optimal Transport prob-
lems, and the iterative proportional fitting procedure for solving Schrödinger
Bridge problems. These algorithms are widely used in practice, usually with noisy
and incomplete data. To really understand how these algorithms work, we need a
thorough stochastic approximation analysis.

Originality. Main results of this chapter are published in the conference proceedings [KHK24].
There are considerable differences, in notation and content, between this chapter and the
mentioned publication.
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LIST OF IMPORTANT RESULTS

▶ Lemma 5.6. A recursive formulation of the step-sized Sinkhorn iteration,
similar to the original Sinkhorn algorithm in its primal form.

▶ Lemma 5.7. The dual formulation of the step-sized Sinkhorn iteration, giving
an update rule for the Schrödinger potentials.

▶ Proposition 5.9. The dual step-sized Sinkhorn iteration is a dual mirror
descent iteration.

▶ Proposition 5.10. The infinitesimal behavior of the step-sized Sinkhorn
iteration in terms of both the coupling and the Schrödinger potentials. This
leads to the definition of the Sinkhorn and dual Sinkhorn flows.

▶ Theorem 5.12. Convergence rate of O(t−1) for the Sinkhorn flow and its
dual flow in continuous-time.

▶ Theorem 5.13. Convergence of the step-sized Sinkhorn algorithm under
noisy evaluations of the gradients. The proof is similar to (but not the same
as) the one for stochastic mirror descent.

▶ Theorem 5.14. The iterates of the step-sized Sinkhorn algorithm using
noisy and biased gradient evaluations form an asymptotic pseudo-trajectory
of the Sinkhorn flow. Precompactness of the iterates (here, the Schrödinger
potentials) ensure last-iterate convergence.

▶ Theorem 5.20. The explicit drift formula for the step-sized IPF iteration.
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5.1. INTRODUCTION

Many contemporary challenges in machine learning can be reframed as an entropic
optimal transport (EOT) problem in the space of probability measures. EOT
involves adding an entropy regularization term to the classic optimal transport
(OT) problem. This regularization not only stabilizes computational algorithms
but also produces smoother and more interpretable transport plans.

One prominent application of EOT is the Schrödinger bridge (SB) problem,
which aims to dynamically transform one probability measure into another over
time. This concept has shown to be particularly useful in various fields that require
an understanding of complex continuous-time stochastic systems.

In machine learning, EOT has found widespread applications. EOT is used
to improve generative modeling algorithms [GPC17]. The addition of entropy
regularization mitigates the issue of overfitting to noisy datasets and facilitates the
learning of smoother probability distributions. This makes models like Generative
Adversarial Networks and Variational Autoencoders more effective and robust. It
is also used for aligning distributions from different domains to improve model
generalizability [Cou+16].

Beyond machine learning, EOT has significant applications in the sciences. In
molecular biology, it aids in modeling the dynamical behavior of molecular systems,
providing insights into state transitions in complex biochemical processes. For
example, EOT can model how proteins fold or how molecular reactions proceed
over time, offering valuable information for drug development and biochemical
research. In the study of single-cell dynamics, EOT helps in understanding the
progression and differentiation of cells over time. By examining how probability
distributions of cell states evolve, researchers can map out developmental pathways
and identify critical regulatory mechanisms [Sch+19; Bun+23].

Traditionally, the entropic optimal transport problem is solved in practice
using the Sinkhorn algorithm. This algorithm has been primarily viewed as
an alternating projection method and have been extensively studied from this
perspective. However, recent work has reinterpreted the Sinkhorn algorithm
for discrete probability distributions as a mirror descent scheme—a well-known
optimization algorithm—thereby providing new insights into understanding the
Sinkhorn algorithm through classical optimization theory. This perspective has
also been extended to continuous probability measures. These results show that
Sinkhorn iterations can be regarded as mirror descent steps, specifically with
step-size 1.

Building on this perspective, this chapter introduces a novel step-sized, as well
as a continuous-time, variant of the Sinkhorn algorithm on the space of probability
measures. The two main objectives are: First, to deepen the understanding of
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Sinkhorn iterates by demonstrating that convergence relies on the choice of
the mirror map, objective function, and constraints, rather than the previously
emphasized step-size 1. Using stochastic mirror descent analysis, this new algorithm
maintains convergence even in the presence of noise. Second, to employ the ODE
method and perform stochastic approximation analysis for solving entropic optimal
transport with noisy and biased data.

We frame our findings within the Schrödinger bridge context and provide a
mirror descent interpretation of the Iterative Proportional Fitting procedure—a
sibling of Sinkhorn algorithm commonly used for solving the Schrödinger bridge
problem in the machine learning community. Additionally, we demonstrate that
these new mirror descent iterations can be described via stochastic differential
equations with explicit drift formulas. These contributions collectively advance
both theoretical understanding and practical methodologies in the application of
mirror descent and Sinkhorn algorithms to machine learning and related fields.

Outline of the Chapter
The mirror descent algorithm plays a pivotal role in this chapter; we review
its essential ideas in Section 5.2. This section is intended for a reader without
background knowledge in mirror descent.

In the previous chapter, we looked at the space of probability measures as a
complete metric space by using the Wasserstein distance. This chapter, however,
we work with the linear structure of the space of (signed) measures, and most
importantly, convexity. In Section 5.3, we review the basics of (infinite-dimensional)
topological vector spaces, dual pairs, and bits of convex analysis. We specifically
bring essential properties of the relative entropy functional (or the Kullback–Leibler
divergence), which plays a central role in this chapter.

In Section 5.4 we introduce the entropic optimal transport problem, some of
the important properties of its optimal solution, as well as the Sinkhorn algorithm,
a method to find the optimal solution.

In Section 5.5, a step-sized variant of the Sinkhorn algorithm is derived based
on the discrete-time mirror descent scheme. This variant includes original Sinkhorn
iterations as a special case when the step-size is set to be 1. Letting the step-sizes
to zero, we derive a continuous-time flow in Section 5.6, which comprises primal
and dual Sinkhorn flows . We prove convergence of these continuous-time flows to
the optimal solution of EOT and derive a rate of convergence.

Section 5.7 is all about the convergence of the introduced schemes. We show
strong asymptotic and non-asymptotic guarantees for the discrete-time schemes
based on stochastic mirror descent analysis and stochastic approximation analysis.

We finish this chapter with mentioning the Schrödinger bridge problem in
Section 5.8 and deliver a mirror descent interpretation of the iterative proportional
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fitting procedure. Further to this, we establish that the new mirror descent
iterations can be expressed via SDEs with explicit drifts.

A short review of the related works, as well as extra pointers to the literature
is provided in the bibliographic notes section at the end of the chapter.

5.2. MIRROR DESCENT ESSENTIALS

In this section, we revisit the fundamental components of the classical mirror
descent scheme of Nemirovsky and Judin [NJ83]. For ease of understanding, we
will focus on mirror descent in the Euclidean setting. In the next section, we
mention how these concepts extend beyond this scope and show how they can be
applied to the infinite-dimensional space of measures.

5.2.1. Minimizing Movement Interpretation
Let F : Rd → R ∪ {±∞} be a convex objective function that is differentiable on
its domain, and C ⊆ Rd be a convex set. The idea of the mirror descent algorithm
is to change the underlying Euclidean metric to facilitate solving the constrained
minimization problem

minimize F (x) subject to x ∈ C. (5.1)

This change of metric is done via a so-called Bregman potential , which is assumed
to be a strictly convex differentiable function φ : Rd → R. Concretely, the mirror
descent (MD) algorithm produces the iterates x0, x1, x2, . . ., where x0 ∈ C is
arbitrary, and

xn+1 = argmin
x∈C

{
F (xn) + ⟨∇F (xn), x− xn⟩+

Dφ(x |xn)
γn

}
. (5.2)

Here, γn is a sequence of step-sizes, and Dφ(· | ·) is the Bregman divergence
associated with φ, defined as

Dφ(x
′ |x) := φ(x′)− φ(x)− ⟨∇φ(x), x′ − x⟩. (5.3)

The iteration (5.2) has a minimizing movement interpretation: At each step, we
linearize the objective F at the current iterate and minimize it while staying “close”
to the current iterate. The measure of closeness is determined by the Bregman
divergence.



152 S.A. FOR ENTROPIC OPTIMAL TRANSPORT CH. 5

5.2.2. Mirror Descent Dual Iterations
Besides the minimizing movement interpretation, a particularly insightful approach
for studying MD is through convex duality. Before getting into the details, let us
recall the basics of convex duality in Euclidean setting.

Suppose f : Rd → R∪{±∞} is a proper closed convex function. The function f
is proper if it never attains the value−∞ and its domain dom f = {x : f(x) < +∞}
is nonempty, and it is closed if its sublevel sets {x : f(x) ≤ a} are closed subsets of
Rd for all a ∈ R. The Fenchel conjugate of f is the function f⋆ : Rd → R ∪ {+∞}

f⋆(y) = sup
x∈Rd

{⟨x, y⟩ − f(x)}. (5.4)

An important property of the Fenchel conjugate is that it is a proper closed convex
function, and that it satisfies the Fenchel–Young inequality

f⋆(y) + f(x) ≥ ⟨x, y⟩, ∀x, y ∈ Rd.

A vector v is a subgradient of f at x ∈ dom f if

f(y) ≥ f(x) + ⟨v, y − x⟩, ∀y ∈ Rd.

We denote the set of all subgradients of f at x by ∂f(x) and call it the subdifferential
of f at x. The following theorem shows the importance of the Fenchel–Young
inequality in identifying subgradients of both f and its Fenchel conjugate f⋆.

Theorem 5.1 (Roc97, Thm. 23.5). For any proper convex function f and any
vector x, the following conditions on a vector y are equivalent to each other:

(a) y ∈ ∂f(x);

(b) f(x) + f⋆(y) ≤ ⟨x, y⟩;

(c) f(x) + f⋆(y) = ⟨x, y⟩.

Moreover, if f is closed, the conditions above are equivalent to

(d) x ∈ ∂f⋆(y).

As the optimization problem (5.1) that we are considering is constrained, it
will be useful to define a “constrained version” of the Bregman potential φ. For
this, let IC be the convex indicator function of the set C, defined as

IC(x) =

{
0 if x ∈ C,
+∞ if x /∈ C,
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Figure 5.1. Mirror Descent dual iteration (5.7). The function ∇φ, known as the mirror
map, links the primal space C to the dual space, and ∇φ⋆

C, known as the
dual mirror map, is the link from the dual to the primal space.

and define the constrained version of φ as φC := φ+ IC . The Fenchel conjugate of
φC satisfies

φ⋆C(y) = sup
x∈Rd

{⟨x, y⟩ − (φ+ IC)(x)} = sup
x∈C
{⟨x, y⟩ − φ(x)}, (5.5)

which is strictly convex because φ is strictly convex. Therefore, φ⋆C is essentially
differentiable1 [Roc97, Thm. 26.3], and by Danskin’s theorem [Dan67], its gradient
is

∇φ⋆C(y) = argmax
x∈C

{⟨x, y⟩ − φ(x)}, ∀y ∈ int(domφ⋆C). (5.6)

This is one of the key components that makes it possible to define the dual mirror
descent iteration.

After this short digression, let us go back to the study of mirror descent. We
shall call any x ∈ C a primal point and any y ∈ dom(∇φ⋆C) a dual point . As it will
shortly become clear, ∇φ⋆C and ∇φ act as links between the primal space C and
dual space dom(∇φ⋆C). Using these links, we derive an equivalent iteration in the
dual space, made precise below.

Let x0 ∈ C and y0 ∈ dom(∇φ⋆C) be a pair of primal and dual points satisfying
x0 = ∇φ⋆C(y0). One can take, for example, x0 ∈ C to be arbitrary and let
y0 = ∇φ(x0); see (5.8) in Remark 5.1 below. The following recursion is called the

1 A proper convex function f is essentially differentiable if the interior of its domain D :=
int(dom f) satisfies the conditions (a) D is nonempty, (b) f is differentiable in D, (c) and for
any sequence x1, x2, . . . converging to the boundary of D, it holds limn→∞∥∇f(xn)∥ = +∞.
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mirror descent dual iterations:{
yn+1 = yn − γn∇F (xn),
xn+1 = ∇φ⋆C(yn+1).

(5.7)

Let us spell out what this iteration does: First, the gradient of the objective F is
evaluated at the current primal iterate xn. This gradient is then used to update
the current dual iterate yn to yn+1; this makes sense, as gradients essentially live
in the dual space.2 Finally, to obtain the next primal iterate xn+1, one maps yn+1

back to C via the link ∇φ⋆C, and therefore, closing the loop. Moreover, one can
forget about the primal variables altogether and rewrite the dual iteration (5.7)
solely in terms of the dual variables:

yn+1 = yn − γn∇F (∇φ⋆C(yn)).

Although the dual MD update seems simpler compared to the primal update
(5.2), one can show that under certain conditions, the primal and dual iterations
coincide; see [BT03]. Figure 5.1 illustrates the first iterations of the dual mirror
descent update (5.7).

▷ Example 5.1. As a warm-up for the rest of this chapter, let us instantiate the
theory developed above in a concrete and well-known example. We will see that
the ubiquitous exponential weights algorithm is an instance of the mirror descent
algorithm.

Suppose C is the (d− 1)-dimensional probability simplex in Rd, i.e.,

C = {x ∈ Rd : x1 + · · ·+ xd = 1 and xi ≥ 0 ∀i = 1, . . . , d}.

Define the Bregman potential φ as φ(x) =
∑d
i=1 x

i log xi. Computing the Fenchel
conjugate of the constrained version φ⋆C is rather straightforward:

φ⋆C(y) = sup
x∈C
{⟨x, y⟩ − φ(x)} = log

d∑
i=1

exp(yi).

Moreover, the maximizer of the above maximization is

∇φ⋆C(y) =
(
exp(y1)

Z
, . . . ,

exp(yd)

Z

)
, Z =

d∑
i=1

exp(yi).

2 ∇F (xn) is the Riesz representative of the derivative of F at xn, i.e., DF (xn)[v] = ⟨∇F (xn), v⟩
for all primal vectors v.
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Let F be an arbitrary differentiable function we wish to minimize over the
simplex and whose domain includes the simplex. Letting gn = ∇F (xn), the mirror
descent dual update (5.7) updates the ith coordinate of xn as xin+1 ∝ exp(yin+1) =
exp(yin − γngin) ∝ xin · exp(−γngin), which means

xn+1 ∝ xn ⊙ exp(−γngn) ∝ x0 ⊙ exp(−
∑n
k=1 γkgk).

Here, ⊙ is elementwise multiplication of vectors. This update is exactly the
exponential weights algorithm: One keeps a weight vector (a vector of positive
numbers), and updates it at each iteration by elementwise multiplication with
the exponential of the loss vector −γ∇F . After re-normalizing, one obtains the
current primal iterate on the simplex. ◁

Remark 5.1. A dual point y uniquely identifies a primal point x = ∇φ⋆C(y),
but several dual points might be associated to the same primal point x (i.e., the
map ∇φ⋆C might not be injective). It is, however, always the case that ∇φ(x) is
associated with x. To see this, notice that (5.6) implies

∇φ⋆C(∇φ(x)) = argmax
x′∈C

{⟨x′,∇φ(x)⟩ − φ(x′)} = argmin
x′∈C

Dφ(x
′ |x) = x. (5.8)

In other words, ∇φ⋆ is the left inverse of ∇φ on C. An example for the case where
∇φ⋆C is not injective is the one in Example 5.1: For any a ̸= 0 and y ∈ Rd, it holds
that ∇φ⋆C(y + a1) = ∇φ⋆C(y). ♢

In this section we discussed the mirror descent algorithm on Euclidean spaces
for pedagogical reasons. Indeed, the majority of the concepts discussed above
can also be directly applied to the space of measures, albeit with additional
considerations. Specifically, one must treat differentiability with caution, as all
the objective functions and Bregman potentials we will be considering in this
chapter are not differentiable in the usual sense. This primarily has to do with
topological nuances, given that the domain of these functions has an empty interior.
Section 5.3 below explains how to deal with these issues and highlights the parts
of the discussion above that are different from the Euclidean case.

5.3. CONVEX ANALYSIS IN THE SPACE OF
MEASURES

In this section, we bring necessary elements from convex analysis in infinite
dimensional spaces and specifically, topological vector spaces. This exposition
is merely to bring all the necessary material in one place, and is not at all a
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reference to learn this subject. The reader is encouraged to consult a functional
analysis book with a focus on convexity, such as the excellent book of Aliprantis
and Border [AB06] or Attouch, Buttazzo, and Michaille [ABM14]. It is assumed
that the reader is acquainted with basic notions of topology.

5.3.1. Dual Pairs and the Weak Topology
A dual pair of spaces is a pair ⟨X,X ′⟩ of vector spaces together with a bilinear
functional (x, x′) 7→ ⟨x, x′⟩ from X ×X ′ to R that separates the points of X and
X ′; that is, if ⟨x, x′⟩ = 0 for all x′ ∈ X ′, then x = 0, and similarly, if ⟨x, x′⟩ = 0 for
all x ∈ X, then x′ = 0. The bilinear map ⟨·, ·⟩ is sometimes called the duality of the
pairing. In a dual pair, each space can be interpreted as a space of linear functionals
on the other. For example, for each x ∈ X we can associate the linear functional
x′ 7→ ⟨x, x′⟩. Therefore, X can be identified with a vector subspace of RX

′
and

inherits its product topology.3 We refer to this topology as the weak topology on
X and denote it by σ(X,X ′). Therefore, a sequence {xn} ⊂ X converges weakly
(i.e., in the weak topology) to x ∈ X if and only if ⟨xn, x′⟩ → ⟨x, x′⟩ in R for all
x′ ∈ X ′. An important property of dual pairs is that the topological dual4 of
(X,σ(X,X ′)) is X ′.

We now construct the main dual pair used in this chapter, namely ⟨L1, L∞⟩.
Fix a compact set X ⊂ Rd and a finite, regular, positive measure µ on X . Let M
be the set of all finite (signed) measures on X that are absolutely continuous with
respect to µ. By the Radon–Nikodym theorem, this space is nothing other than
L1(µ), in the sense that every measure ν ∈M is identified with its density with
respect to µ:

ν ∈M←→ dν

dµ
∈ L1(µ).

Consider the dual pair ⟨L1(µ), L∞(µ)⟩ with the duality

⟨f, g⟩ :=
∫
X
fg dµ ∀f ∈ L1(µ), g ∈ L∞(µ).

This duality induces the weak topology σ(L1, L∞) on L1(µ) which in the sequel
we refer to as the weak topology. Note that with the identification M∼= L1(µ),

3 Recall that the product topology on the space RX of real-valued functions on X is the weakest
topology that evaluation functions are continuous. This topology is also known as topology of
pointwise convergence.

4 The topological dual of a topological vector space X is the space of all continuous linear
functionals on X, where continuity is meant with respect to the topology of X.
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the duality above can also be written between measures and functions:

⟨ν, g⟩ =
∫

dν

dµ
g dµ =

∫
g dν.

5.3.2. Convex Functions and Derivatives
We now study convex functions and different notions of derivatives of functions
on topological vector spaces. In Section 5.3.3, we instantiate these results on the
relative entropy functional.

Let (X, τ) be a topological vector space with topology τ . A function f :
X → R ∪ {±∞} is called τ -lower semi-continuous (l.s.c.) if its sublevel sets
{x : f(x) ≤ a} are τ -closed for all a ∈ R. Equivalently, f is τ -l.s.c. if for any
sequence (or more precisely, any net) xn → x, it holds that lim inf f(xn) ≥ f(x).
One of the main properties of l.s.c. functions is that on a τ -compact set, a τ -lower
semi-continuous function attains its minimum. This is a generalization of the
Weierstrass theorem to l.s.c. functions.

A function f : X → R ∪ {±∞} is called proper if it never assumes the value
−∞ and its domain dom f = {x ∈ X : f(x) < ∞} is nonempty. A remarkable
property of proper convex functions and convex sets in a normed vector space is
that lower semi-continuity and closeness is the same with respect to the weak or
norm topology:

Theorem 5.2 (ABM14, Thms. 3.3.2 and 3.3.3). A nonempty convex subset of a
normed vector space is closed for the norm topology if and only if it is closed for
the weak topology. Similarly, a proper convex function on a normed vector space
is l.s.c. with respect to the weak topology if and only if it is l.s.c. with respect to
the norm topology.

As the norm topology is stronger than the weak topology (i.e., it has more
closed sets), the main usage of this theorem is getting lower semi-continuity (resp.
closedness) with respect to the weak topology for free when a convex function
(resp. a convex set) is l.s.c. (resp. closed) in the norm topology; something that is
usually easier to assess.

For a proper convex function f : X → R ∪ {±∞}, let us define the one-sided
directional derivative at x ∈ X and in the direction v ∈ X as

d+f(x)(v) = lim
λ↓0

f(x+ λv)− f(x)
λ

∈ R ∪ {±∞}.

Convexity of f implies that the difference quotients f(x+λv)−f(x)
λ are nonincreasing

as λ decreases, so the limit above exists (though it might be −∞). Moreover,
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it can be shown that the function v 7→ d+f(x)(v) is a positively homogeneous
convex function. If the sublinear function d+f(x)(·) is actually linear (and finite
valued), it is called the Gâteaux derivative of f at x, denoted by ∇f(x).

The directional derivative is closely related to subgradients of f , which we
shall discuss next. In a dual pair ⟨X,X ′⟩, we say x′ ∈ X ′ is a subgradient of a
proper convex function f at the point x, if

f(y) ≥ f(x) + ⟨y − x, x′⟩ for all y ∈ X.

The subdifferential of f at x is the set of all subgradients of f at x and is denoted
by ∂f(x). One can show [see AB06, Thms. 7.15-7.17] that x′ ∈ X ′ is a subgradient
of f at x if and only if x′(·) ≤ d+f(x)(·). Moreover, the subdifferential of f at x
is a singleton if and only if d+f(x)(·) is the Gâteaux derivative of f at x.

5.3.3. The Relative Entropy
We now instantiate the notions introduced above for the relative entropy functional.
In what follows, we consider a compact set X ⊂ Rd equipped with a positive
regular reference measure µ, and consider the dual pair ⟨L1(µ), L∞(µ)⟩. Recall
that the space of signed measures that are absolutely continuous with respect to µ
can be identified with L1(µ). Define the relative entropy functional Hµ : L1(µ)→
R ∪ {+∞} as

Hµ(f) :=

∫
X
{f(x) log f(x) + 1− f(x)} dµ(x) (5.9)

if the integral is defined and otherwise, Hµ(f) := +∞. Note that if both µ and
the measure dν = f dµ corresponding to f are probability measures, the definition
above boils down to

Hµ(f) = H(ν |µ) =
∫
X
log

dν

dµ
dν, (5.10)

and is called the Kullback–Leibler divergence.
It is well known that Hµ is a proper strictly convex function and is non-negative.

Another important property of the relative entropy is that it is weakly l.s.c. and
its level sets are weakly compact.

Theorem 5.3 (Egg93, Lem. 2.1, Cor. 2.2, Lem. 2.3). The relative entropy Hµ

is lower semi-continuous in the weak topology of L1(µ); that is, its sublevel sets
{f ∈ L1(µ) : f ≥ 0, Hµ(f) ≤ a} are weakly closed subsets of L1(µ) for all a ≥ 0.
Moreover, these sublevel sets are convex and weakly compact.
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We can also compute the directional derivative of the relative entropy. In
special cases, it turns out that this functional has subgradients and is even
Gâteaux differentiable. This is rather surprising, as in general, the interior of the
domain of the relative entropy with respect to the norm topology of L1(µ) is
empty. The monotone convergence theorem allows us to compute the directional
derivative of Hµ as

d+Hµ(f)(v) =

∫
X
v(x) log f(x) dµ(x) (5.11)

whenever the integral is finite [Res05, Lem. 4.1]. Moreover, ∂Hµ(f) is nonempty
if and only if f ∈ L∞

+ (µ) and is bounded away from zero; in this case,

∂Hµ(f) = {log f}. (5.12)

Denote by L∞
++(µ) the set of all non-negative functions f ∈ L∞

+ (µ) that are
bounded away from zero. As the subdifferential ∂Hµ(f) is a singleton, d+Hµ(f)(·)
is indeed the Gâteaux derivative of Hµ at f , meaning that it is a linear functional
with finite values. Since for f ∈ L∞

++(µ), it holds that log f ∈ L∞(µ), (5.11) shows
further that and for all v ∈ L1(µ)

∇Hµ(f)(v) = d+Hµ(f)(v) = ⟨v, log f⟩, (5.13)

making the Gâteaux derivative a continuous linear functional, where continuity is
understood in the weak topology on L1(µ).

Disintegration and the Chain Rule of Relative Entropy

In the sequel, we also use the relative entropy of a marginal of a joint distribution
with respect to some reference measure. Before we mention the corresponding
properties, it is helpful to review some measure-theoretic notions that help us
work with joint distributions.

Suppose X and Y are Polish spaces (complete separable metric spaces). The
disintegration of measure theorem allows one to write a probability measure on
X × Y as an average of probability measures on {x} × Y for x ∈ X . In particular,
if π is a probability measure on X × Y with X -marginal µ, then there exists a
measurable map x 7→ π(· | x) from X to P(Y), uniquely determined dµ(x)-almost
everywhere, such that

π =

∫
X
(δx ⊗ π(· | x)) dµ(x).
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Here, δx is a Dirac mass at x. In other words, for every f ∈ Cb(X × Y ), it holds∫
X×Y

f(x, y) dπ(x, y) =

∫
X

[∫
Y
f(x, y) dπ(y | x)

]
dµ(x).

Suppose X and Y are equipped with their Borel σ-algebras. Let π, π′ be two
Borel probability measures on X ×Y , and suppose that π is absolutely continuous
with respect to π′. By [Léo13b, Thm. 1.6], it holds that the X -marginal of π,
denoted by πx, is also absolutely continuous with respect to the X -marginal of π′,
and one has the following decomposition of the Radon–Nikodym derivative of π
with respect to π′:

dπ

dπ′ (x, y) =
dπx
dπ′

x

(x)
dπ(· | x)
dπ′(· | x)

(y).

Moreover, one has the chain rule of the relative entropy [Léo13a, App. A]:

H(π |π′) = H(πx |π′
x) +

∫
X
H(π(· | x) |π′(· | x)) dπx(x) (5.14)

Therefore, H(π |π′) ≥ H(πx |π′
x) with equality if and only if π(· | x) = π′(· | x)

for dπx(x)-almost every x ∈ X .
After this short digression, let us go back to the properties of relative entropy

of marginals of joint distributions. Specifically, let X and Y be compact sets in Rd

and π be a positive measure on X × Y with X -marginal µ. Define the functional
F : L1(π)→ R ∪ {+∞} as

F (π′) = Hµ(π
′
x).

Here, we abused the notation and used the same symbol for the measure π′ and
its density with respect to π. By a similar computation as in (5.11) and (5.12),
we get for all v ∈ L1(π)

d+F (π′)(v) =

∫
X×Y

v(x, y) log
dπ′

x

dµ
(x) dπ(x, y) (5.15)

if the integral is finite. Moreover, the subdifferential ∂F (π′) is nonempty if and
only if π′

x ∈ L∞
++(µ), and in this case,

∂F (π′) =

{
log

dπ′
x

dµ

}
,

which similarly implies that F is Gâteaux differentiable at π′, with its Gâteaux
derivative being a continuous linear functional on L1(π).
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5.4. ENTROPIC OPTIMAL TRANSPORT AND THE
SINKHORN ALGORITHM

In this section, we review the central properties of the entropic optimal transport,
also known as entropy-regularized optimal transport, and the Sinkhorn algorithm.
The results mentioned here are classical, and the interested reader is referred to
the book of Peyré and Cuturi [PC20] and the survey of Nutz [Nut22] for further
details on the subject.

5.4.1. Entropic Optimal Transport
Suppose X and Y are compact subsets of Rd, equipped with probability measures
µ and ν, respectively. Consider the product space Ω := X × Y with the product
measure µ⊗ ν and consider the space of measures L1(µ⊗ ν) along with the weak
topology induced by the duality with L∞(µ⊗ ν); see Section 5.3 for the related
terminology. For brevity, we write L1(Ω) instead of L1(µ⊗ ν). For a cost function
c ∈ L∞(Ω) and a regularization parameter ε > 0, the entropic optimal transport
(EOT) problem is the minimization

OTε(µ, ν) := min
π∈Π(µ,ν)

{∫
Ω

c dπ + εH(π |µ⊗ ν)
}
, (OTε)

where Π(µ, ν) ⊂ L1(Ω) is the set of all probability measures on Ω with marginals
µ and ν, and H is the relative entropy functional defined in (5.10). One reason for
considering such regularized optimization is to solve (OTε) for small ε > 0 and
obtain an approximation of the (unregularized) optimal transport problem that
corresponds to setting ε = 0 in (OTε):

OT(µ, ν) := min
π∈Π(µ,ν)

∫
Ω

c dπ. (OT0)

Besides, the problem (OTε) is of its own interest, and has connections to other
important problems, such as the Schrödinger bridge problem, which we shall
discuss next. See the introduction of this chapter and the bibliographic notes at
the end for more applications of the entropic optimal transport problem.

Using the cost c and ε, let us define the reference measure Rε on Ω as

dRε ∝ e−c/ε d(µ⊗ ν). (5.16)
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We can then rewrite the objective in (OTε) using Rε as∫
c dπ + εH(π |µ⊗ ν) = ε

∫ (
c

ε
+ log

dπ

d(µ⊗ ν)

)
dπ

= εH(π |Rε)− ε log
∫
e−c/ε d(µ⊗ ν).

As the second term in the last equation is independent of π, (OTε) is equivalent
to the following optimization problem, known as the static Schrödinger problem:

min
π∈Π(µ,ν)

H(π |Rε). (Sstatic)

This problem is referred to as “static” because it seeks a one-shot coupling, π, that
transforms µ into ν. In Section 5.8, we explore the Schrödinger bridge problem
in greater detail and also introduce a “dynamic” version. Note that the reference
measure Rε encodes all the data about the regularization parameter ε, as well as
the cost c. Without loss of generality, we assume in the sequel that the cost c is
normalized in such a way that equality holds in (5.16).

It is easy to see that Π(µ, ν) is a strongly closed, convex subset of L1(Ω), and
by Theorem 5.2, it is also weakly closed. As H is weakly l.s.c. and has weakly
compact sublevel sets (Theorem 5.3), the problem (Sstatic) admits a minimizer.
Moreover, since H is strictly convex, this minimizer is unique, and we denote it by
πε,opt. This optimal solution admits the following “dual representation” [Nut22,
Thm. 4.2]: There exists potential functions f ∈ L∞(µ) and g ∈ L∞(ν), unique up
to constants, such that

dπε,opt = exp
(
f ⊕ g − c

ε

)
d(µ⊗ ν) = exp(f ⊕ g) dRε. (5.17)

Here, we use the notation (f ⊕ g)(x, y) = f(x) + g(y), and call f and g the
Schrödinger potentials5 of πε,opt. Moreover, the reverse direction also holds: If a
probability measure π on Ω has marginals µ and ν, i.e., if π ∈ Π(µ, ν), and is of
the form (5.17), then it is the optimal solution of OTε(µ, ν).

The Schrödinger potentials f and g together define the optimal coupling for
(Sstatic). However, because of the special structure of the optimal coupling, it turns
out that given one of f or g, we can derive the other. As the Y-marginal of πε,opt

5 Beware that some authors (such as Nutz and Wiesel [NW21]) prefer writing the dual rep-
resentation as dπopt

ε = exp{(f ⊕ g − c)/ε} d(µ ⊗ ν), and call these f and g Schrödinger
potentials.
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is ν, it holds for any test function ϕ ∈ Cb(Y) that∫
Y
ϕ(y) dν(y) =

∫
Ω

ϕ(y) dπε,opt(x, y)

=

∫
Y
ϕ(y)

∫
X
ef(x)+g(y)−c(x,y)/ε dµ(x) dν(y)

=

∫
Y
ϕ(y) eg(y)

[∫
X
ef(x)−c(x,y)/ε dµ(x)

]
dν(y).

This means that for dν(y)-almost every y ∈ Y,

g(y) = − log

∫
X
ef(x)−c(x,y)/ε dµ(x). (5.18a)

With a similar argument for the X -marginal, it holds for dµ(x)-almost every
x ∈ X ,

f(x) = − log

∫
Y
eg(y)−c(x,y)/ε dν(y). (5.18b)

The pair of coupled equations (5.18) is called the Schrödinger equations. It is
straightforward to see that if a pair of potentials (f, g) satisfy the Schrödinger
equations, then they are the Schrödinger potentials corresponding to the optimal
solution of (OTε).

Existence of a pair of Schrödinger potentials for the optimal solution of EOT
is a consequence of a property of the optimal solution called cyclical invariance.
While we do not use this concept in this chapter, it is instructive to see a different
perspective to Schrödinger potentials. Following [Nut22], we call a probability
measure π on Ω cyclically invariant with respect to Rε, if it is absolutely continuous
with respect to Rε and its density satisfies for any set of pairs {(xi, yi) ∈ Ω : i =
1, . . . , k},

k∏
i=1

dπ

dRε
(xi, yi) =

k∏
i=1

dπ

dRε
(xi, yi+1).

By convention, we define yk+1 to be y1. It turns out that a measure π is cyclically
invariant if and only if its density with respect to Rε has the form

dπ

dRε
= exp(f ⊕ g),

for some measurable functions f and g [Nut22, Lem. 2.7]. From the discussion
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above, it follows that a measure in Π(µ, ν) is cyclically invariant if and only if it
is the optimal solution of (OTε). In the sequel, we let Πc,ε to be the set of all
cyclically invariant measures with respect to Rε. In other words, Πc,ε are those
measures that are the optimal solution of EOT for their own marginals:

Πc,ε = {π ∈ P(Ω) : π ≪ Rε and π is optimal for OTε(πx, πy)}. (5.19)

Remark. There are strong parallels between EOT and OT. Let us recall the
Kantorovich duality for OT. Assume for the moment that the cost c is continuous
and bounded. Then, the dual of (OT0) is the maximization

sup

{∫
X
f dµ+

∫
Y
g dν : f ∈ L1(X ), g ∈ L1(Y), f ⊕ g ≤ c

}
, (5.20)

where f and g can be taken to be continuous functions. It turns out that strong
duality holds and the value of the dual problem (5.20) is equal to the value of
the primal problem (OT0). The maximizers of (5.20) are called the Kantorovich
potentials, denoted by f0 and g0. A special property of these potentials is that
they satisfy the pair of equations

f0(x) = inf
y∈Y
{c(x, y)− g0(y)},

g0(y) = inf
x∈X
{c(x, y)− f0(x)}.

(5.21)

In the optimal transport jargon, they are a pair of conjugate c-concave functions
[Vil03, Rem. 1.12].

Let us now mention an intuitive connection between (5.21) and the Schrödinger
equations (5.18). To avoid confusion, denote the Schrödinger potentials of (OTε)
by fε and gε. By looking at (5.18a) as a “Log-Sum-Exp” applied to fε(·)+c(·, y)/ε,
we can expect that

εgε(y) = −ε log
∫

exp([εfε(x)− c(x, y)]/ε) dµ(x)

≈ −ε sup
x
{[εfε(x)− c(x, y)]/ε} = inf

x
{c(x, y)− εfε(x)}.

Thus, (εfε, εgε) satisfy (5.21) approximately. Moreover, as ε gets smaller, the
approximation of Log-Sum-Exp by maximum gets better, and one can expect that
εfε → f0 and εgε → g0 as ε→ 0. While our argument here is merely intuitive and
informal, this result is indeed true; see [Nut22, Sec. 5.4] for a rigorous statement
and a proof. ♢
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Πc,ε

Π(µ, ∗)
Π(∗, ν)

πε,opt

π0

π0

Figure 5.2. An intuitive depiction of the dependence of Sinkhorn iterates and their
limit on the initialization. The planes represent the subspaces of the space
of measures that have the X - (resp. Y-) marginals set to µ (resp. ν). The
thick black curve is the set of all cyclically invariant couplings. When
initialized on this set, the fate of the iterates is going to be πε,opt. Two
of such trajectories are depicted; one solid and one dashed. The entropic
projection is a nonlinear projection, therefore it is depicted as curved lines.

5.4.2. The Sinkhorn Algorithm
A popular method for solving (OTε) is the Sinkhorn algorithm [SK67; Cut13]:
Starting from π0 ∈ Πc,ε defined in (5.19), the Sinkhorn algorithm in its primal
formulation produces the iterates

πn+1/2 := argmin
π∈Π(∗,ν)

H(π |πn),

πn+1 := argmin
π∈Π(µ,∗)

H(π |πn+1/2).
(Sink1)

Here, Π(µ, ∗) denotes the set of all probability measures in L1(Ω) whose X -
marginal is µ, and Π(∗, ν) is defined similarly. Each iteration of (Sink1) is an
entropic projection onto Π(∗, ν) followed by an entropic projection onto Π(µ, ∗),
making it similar to alternating projection algorithms used in constrained convex
optimization. We use the notation πn+1 = Sin1(π

n) to represent a full Sinkhorn
iteration. Later in Section 5.5, we will see that this iteration is an instance of
mirror descent with constant step-size 1, hence the subscript 1 in Sin1.

A key attribute of the Sinkhorn algorithm is that all the information concerning
the cost c and the regularization parameter ε is encoded in the initialization π0;
the operator Sin1 itself is independent of c and ε; see Fig. 5.2. Moreover, each
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step of (Sink1) is of the form of a rescaling:

dπn+1/2

dπn
(x, y) =

dν

dπny
(y), (5.22a)

dπn+1

dπn+1/2
(x, y) =

dµ

dπ
n+1/2
x

(x), (5.22b)

where πx is the X -marginal of the coupling π and πy is the Y-marginal. The
rescaling property (5.22) is a simple consequence of the chain rule of relative
entropy (5.14). For example, to show (5.22a), we write

H(π |πn) = H(πy |πny ) +
∫
Y
H(π(· | y) |πn(· | y)) dπy(y)

As πn+1/2 is the minimizer of H(π |πn) among all couplings in Π(∗, ν), we shall
have πn+1/2(· | y) = πn(· | y) for dν(y)-almost every y. This in turn implies for
d(µ⊗ ν)(x, y)-almost every (x, y) ∈ Ω,

dπn+1/2

dπn
(x, y) =

dπ
n+1/2
y

dπny
(y)

dπn+1/2(· | y)
dπn(· | y)

(x) =
dν

dπny
(y),

which is (5.22a). The other rescaling (5.22b) can be obtained similarly. The
relations (5.22) readily translate into a relation between Schrödinger potentials,
as described in the lemma below.

Lemma 5.4. The iterates πn, n ≥ 0, of the Sinkhorn algorithm (Sink1) are of
the form

dπn = exp(fn ⊕ gn) dRε,

where fn ∈ L∞(µ) and gn ∈ L∞(ν). Furthermore, fn can be obtained from gn via
(5.18b), and πn can be recovered solely from gn.

Note that the same property also holds for the half-iterates πn+1/2, n ≥ 0,
with the difference that gn+1/2 can be obtained from fn+1/2 via (5.18a), and that
πn+1/2 can be recovered from fn+1/2.

Lemma 5.4, together with (5.22), gives a recursion for the Schrödinger poten-
tials:

exp
{
fn+1/2(x) + gn+1/2(y)− fn(x)− gn(y)

}
=

dν

dπny
(y).

As the right-hand side is a function of y, it holds for dµ(x)-almost every x that

fn+1/2(x) = fn(x),



§ 5.5 ENTROPIC OT AND THE SINKHORN ALGORITHM 167

and similarly, (5.22b) implies that for dν(y)-almost every y,

gn+1(y) = gn+1/2(y).

In short, the Sinkhorn algorithm updates g in half-iterations, and updates f
in integer iterations. This is summarized in the dual Sinkhorn iteration, which
describes the whole process only in terms of the Schrödinger potentials:

gn+1(y) = − log

∫
X
efn(x)−c(x,y)/ε dµ(x),

fn+1(x) = − log

∫
Y
egn+1(y)−c(x,y)/ε dν(y).

(Dual-Sink1)

Remark 5.2. Let us remark briefly on how (Dual-Sink1) is used in practice to
solve EOT for measures with finite support. Suppose µ and ν are supported on
{x1, . . . , xk} and {y1, . . . , yℓ}, respectively. Let K ∈ Rk×ℓ+ be the matrix with
entries

Ki,j = e−c(xi,yj)/ε µ(xi) ν(yj);

let µ⃗ = (µ(x1), . . . , µ(xk)) and ν⃗ = (ν(y1), . . . , ν(yℓ)) be the probability vectors
for the measures µ and ν. Then, the dual iteration can be equivalently described
as follows: Define the sequence un ∈ Rk+ and vn ∈ Rℓ+ as un = efn and vn = egn .
Then, (Dual-Sink1) becomes

vn+1 =
ν⃗

K⊤un
, un+1 =

µ⃗

Kvn+1
, (5.23)

where division of vectors is meant to be elementwise. One can also recover each
primal iteration of (Sink1) as

πn = diag(un)K diag(vn). ♢

In Section 5.5.3 below, we demonstrate another way to think about the
Schrödinger potentials and their relation to the primal iterates in Lemma 5.4.
Specifically, in Proposition 5.8 we show that retrieving πn from gn is the same as
applying the “dual mirror map” to gn.
Remark 5.3. Another implication of Lemma 5.4 is that the iterates πn of the
Sinkhorn algorithm are all absolutely continuous with respect to Rε (and therefore,
with respect to µ ⊗ ν), and their densities are bounded, positive, and bounded
away from zero. This will be important later in Section 5.5, as the relative entropy
functional is Gâteaux differentiable at points in L∞

++(Ω); see Section 5.3. ♢
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5.5. STEP-SIZED SINKHORN

Besides the classic alternating projection viewpoint mentioned in the previous
section, it has been recently pointed out by a series of works [Mis19; Lég20;
AKL22] that the Sinkhorn iteration (Sink1) has a mirror descent interpretation.
Mishchenko [Mis19] made the connection between Sinkhorn and MD for the case
of finitely supported measures. Later, Léger [Lég20] showed that the Sinkhorn
algorithm can be viewed as a mirror descent iteration in the space of probability
measures, and was able to show rates of convergence even in situations where
classical results, such as [FL89], do not provide meaningful convergence rates. Later,
Aubin-Frankowski, Korba, and Léger [AKL22] made this result more rigorous and
studied, in a general context, mirror descent with relative smoothness in the space
of probability measures.

In this section, we first bring the general idea of interpreting Sinkhorn as
MD in the space of measures. We then generalize the Sinkhorn algorithm into a
step-sized algorithm. Our generalized algorithm has both primal and dual forms.
We heavily use the machinery of mirror descent, convex duality and analysis in
the space of measures, and refer the reader to Sections 5.2 and 5.3 for the related
background.

5.5.1. Sinkhorn as Mirror Descent
Let us start by mentioning the concrete framework of mirror descent in the space
of probability measures. Recall that X and Y are compact subsets of Rd, and
Ω = X × Y. We work with the dual pair ⟨L1(Ω), L∞(Ω)⟩, where we write L1(Ω)
as a shorthand for L1(µ⊗ ν) and similarly for L∞(Ω). For an objective function
F : L1(Ω)→ R∪{+∞}, a Bregman potential φ : L1(Ω)→ R∪{+∞}, a constraint
set C ⊂ L1(Ω), and a step-size sequence {γn}n∈N, the Mirror Descent iteration in
its primal form is defined via the recursion

πn+1 = argmin
π∈C

{
F (πn) + d+F (πn)(π − πn) + Dφ(π |πn)

γn

}
, (5.24)

where the Bregman divergence Dφ(· | ·) is also defined with the help of directional
derivatives:

Dφ(π
′ |π) = φ(π′)− φ(π)− d+φ(π)(π′ − π).

Existence and uniqueness of the minimizers in this scheme shall be verified in
a case-by-case basis; here we only do so for the specific case of the Sinkhorn
algorithm and its step-sized version.

A specific choice of the objective function F , the Bregman potential φ, the
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constraint set C, and the step-size sequence {γn}, renders the iteration (5.24) into
the Sinkhorn algorithm (Sink1). Specifically, if one sets

F (π) := H(πy | ν), φ(π) := H(π |Rε), C := Π(µ, ∗), and γn ≡ 1, (5.25)

it is shown in [AKL22, Prop. 5] that the full iteration (Sink1) can be written as the
mirror descent update (5.24). It is instructive and useful for later computations
to show why this relation holds.

Consider the iterations {πn} of the Sinkhorn algorithm (Sink1). What we show
is that these iterations satisfy (5.24) for the specific choices made in (5.25). Recall
from Remark 5.3 that πn ∈ L∞

++(Ω) for all n. Therefore, as in (5.13), φ has a
Gâteaux derivative at πn and

d+φ(πn)(π − πn) = ⟨∇φ(πn), π − πn⟩ =
∫
Ω

log
dπn

dRε
d(π − πn).

Substituting this in the definition of the Bregman divergence gives

Dφ(π |πn) = H(π |πn).

Moreover, as mentioned in (5.15), the directional derivative of the objective F
computes as

d+F (πn)(π − πn) = ⟨∇F (πn), π − πn⟩ =
∫
Ω

log
dπny
dν

(y) d(π − πn)(x, y).

Thus, the objective of the mirror descent update evaluates as

F (πn) + ⟨∇F (πn), π − πn⟩+Dφ(π |πn)

=

∫
Y
log

dπny
dν

dπny +

∫
Ω

log
dπny
dν

d(π − πn) +
∫
Ω

log
dπ

dπn
dπ

=

∫
Ω

log
dπny
dν

dπ +

∫
Ω

log
dπ

dπn
dπ

=

∫
Ω

log
dπn

dπn+1/2
dπ +

∫
Ω

log
dπ

dπn
dπ

= H(π |πn+1/2),

where the penultimate equality follows from (5.22a). Taking argmin over C gives
the full iteration (Sink1).
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5.5.2. Sinkhorn with Arbitrary Step-sizes
Thus far, we have seen that the Sinkhorn iteration (Sink1) is an instance of
the general (primal) MD iteration (5.24) with constant step-size 1. Once this
connection to MD is established, we can use arbitrary step-sizes to get a new
Sinγ-iteration, defined as follows:

Definition 5.5 (Sinγ-iteration). Let F (π) = H(πy | ν), φ(π) = H(π |Rε), and
C = Π(µ, ∗) be the same as in (5.25), and {γn}n∈N be a sequence of step-sizes
satisfying γn ≤ 1 for all n. Starting from π0 ∈ Πc,ε, the Sinγ-iterates are defined
as

πn+1 = argmin
π∈C

{
⟨∇F (πn), π − πn⟩+ Dφ(π |πn)

γn

}
, (Sinkγ)

and write πn+1 = Sinγn [π
n].

Existence and uniqueness of the Sinγ-iterates follow in the exact same way as
for Sinkhorn iterates [AKL22]: As the directional derivative of F is linear and
continuous at πn and Dφ(· | ·) is the relative entropy, the function in the argmin of
(Sinkγ) becomes l.s.c. and therefore, has weakly compact level-sets. This shows the
existence of a minimizer. Uniqueness follows from strict convexity of the Bregman
divergence.

It turns out that the Sinγ-iteration has a simpler formulation that resembles
the original Sinkhorn algorithm in its primal form (Sink1):

▶ Lemma 5.6. The Sinγ-iterates πn defined in (Sinkγ) satisfy the recursion

πn+1/2 := argmin
π∈Π(∗,ν)

H(π |πn), (5.26a)

πn+1 := argmin
π∈Π(µ,∗)

{
γnH(π |πn+1/2) + (1− γn)H(π |πn)

}
. (5.26b)

Proof. The proof follows by computing the objective of (Sinkγ):

F (πn) + ⟨∇F (πn), π − πn⟩+ Dφ(π |πn)
γn

=

∫
dπn log

dπny
dν

+

∫
d(π − πn) log

dπny
dν

+
H(π |πn)

γn

=

∫
dπ log

dπny
dν

+
H(π |πn)

γn
.
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Now define πn+1/2 as in (5.26a). Since this step is shared with (Sink1) iteration,
we can use the rescaling property (5.22a) and find that the last equation is

=

∫
dπ log

dπn

dπn+1/2
+
H(π |πn)

γn

=

∫
dπ log

{
dπn

dπn+1/2
·
(
dπ

dπn

)1/γn
}

=
1

γn

∫
dπ log

{(
dπn

dπn+1/2

)γn
·
(
dπ

dπn

)γn
·
(
dπ

dπn

)1−γn
}

=
1

γn

∫
dπ log

{(
dπ

dπn+1/2

)γn
·
(
dπ

dπn

)1−γn
}

=
1

γn

{
γnH(π |πn+1/2) + (1− γn)H(π |πn)

}
.

As the factor 1/γn is irrelevant for the minimization, we get the desired result.

The new iteration (5.26) becomes exactly (Sink1) by setting γn = 1 for all
n ∈ N. For step-sizes γn < 1, however, the behavior of (5.26) becomes more
interesting, as the second step becomes a regularized projection onto Π(µ, ∗),
and the regularization gets more powerful when γn gets smaller. This introduces
a form of stability in the algorithm, and enables us later to prove convergence
of (5.26) under noisy updates; something that does not necessarily hold for the
original Sinkhorn algorithm.

5.5.3. Dual Sinkhorn Iteration
Similar to the Sinkhorn algorithm, the Sinγ-iteration admits a dual representation.
This enables us to construct an efficient algorithm for this new iteration, and
later in Section 5.6, allows us to define a novel flow in the space of probability
measures.

To derive the dual iteration we first show that the step-sized iteration (Sinkγ)
admits a rescaling interpretation, similar to (5.22). This will then result in an
update for the corresponding Schrödinger potentials, which automatically leads
us to the dual algorithm.

Let us start from the primal formulation (5.26). As the first step (5.26a) is
shared with the original Sinkhorn algorithm, we readily know that the rescaling
(5.22a) holds. For the other step (5.26b), after conditioning on x and using the
chain rule of relative entropy, we obtain that the conditional distribution πn+1(· | x)
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shall minimize

γn

∫
X
H(π(· | x) |πn+1/2(· | x)) dµ(x) + (1− γn)

∫
X
H(π(· | x) |πn(· | x)) dµ(x),

which is equivalent to minimizing∫
X
dµ(x)

∫
Y
dπ(y | x) log

{(
dπn+1/2(y | x)
dπn(y | x)

)1−γn dπ(y | x)
dπn+1/2(y | x)

}
.

For dµ(x)-almost every x, define the probability measure ϱ(· | x) via

dϱ(y | x)
dπn+1/2(y | x)

∝
(

dπn(y | x)
dπn+1/2(y | x)

)1−γn
.

Then, after removing terms not depending on π(· | x), the objective above becomes∫
X H(π(· | x) | ϱ(· | x)) dµ(x), whose minimizer is ϱ(· | x). Therefore, the rescaling

form of (Sinkγ) is

dπn+1/2

dπn
(x, y) =

dν

dπny
(y), (5.27a)

dπn+1

dπn+1/2
(x, y) ∝ dµ

dπ
n+1/2
x

(x)

(
dπn(y | x)

dπn+1/2(y | x)

)1−γn
. (5.27b)

This readily implies the existence of Schrödinger potentials, as well as a dual
formulation of the Sinγ-iterates. The proof is straightforward and is omitted.

▶ Lemma 5.7. The Sinγ-iterates πn defined in (Sinkγ) admit the representation

dπn = exp(fn ⊕ gn) dRε, (5.28)

with fn ∈ L∞(µ) and gn ∈ L∞(ν). Moreover, the potentials gn satisfy the recursion

gn+1 = gn − γn log
dπny
dν

, (5.29)

and fn+1 is computed from gn+1 in the same way as in (5.18b). Consequently, the
Sinγ-iteration admits the dual formulation:

gn+1(y) = (1− γn) gn(y)− γn log
∫
X
efn(x)−c(x,y)/ε dµ(x),

fn+1(x) = − log

∫
Y
egn+1(y)−c(x,y)/ε dν(y).

(Dual-Sinkγ)
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Remark 5.4. The dual iteration for the step-sized Sinkhorn algorithm admits
an efficient implementation for measures with finite support. Using the same
notation as in Remark 5.2, it is straightforward to see that by defining un = efn

and vn = egn , the iteration (Dual-Sinkγ) becomes

vn+1 = v1−γnn ⊙
(

ν⃗

K⊤un

)γn
, un+1 =

µ⃗

Kvn+1
, (5.30)

where ⊙ is elementwise product of vectors. ♢

5.5.4. Dual Mirror Descent Interpretation
We now take a step further and make a connection between the dual Sinkhorn
iteration (Dual-Sinkγ) and the dual mirror descent iteration (5.7) in Section 5.2.

Let L∞
++(Ω) ∩ C ⊂ L1(Ω) be the primal space and L∞(Ω) be the dual space.

The Gâteaux derivative of φ creates a link from the primal to the dual space, in
the sense that ∇φ maps a measure π in the primal space to log dπ

dRε
, which is,

by construction, in L∞(Ω). The map from the dual space to the primal space is
obtained formally by applying the Gâteaux derivative of φ⋆C (if it exists) to a dual
point h ∈ L∞(Ω).

To have a complete dual MD picture, we have to first verify that φ⋆C admits
a Gâteaux derivative, and show that plugging this derivative into the MD dual
iteration (5.7) gives back the dual Sinγ-iteration (Dual-Sinkγ). Proposition 5.8
below gives a formula for the Fenchel conjugate φ⋆C and shows that it indeed
Gâteaux differentiable.

Proposition 5.8. The Fenchel conjugate of φC = φ+ IC evaluated at h ∈ L∞(Ω)
is given by φ⋆C(h) = ⟨π̂, h⟩ −H(π̂ |Rε), where π̂ ∈ C ∩ L∞

++(Ω) satisfies

dπ̂

dRε
(x, y) =

eh(x,y)∫
Y e

h(x,y′)e−c(x,y′)/ε dν(y′)
. (5.31)

Moreover, φ⋆C has a Gâteaux derivative at h ∈ L∞(Ω), which is given by

∇φ⋆C(h) = π̂. (5.32)

Proof. Recall that

φ⋆C(h) = sup
π∈C
{⟨π, h⟩ −H(π |Rε)} = − inf

π∈C
{H(π |Rε)− ⟨π, h⟩}.
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As h ∈ L∞(Ω), define the probability measure dϱ ∝ eh dRε and write

H(π |Rε)− ⟨π, h⟩ =
∫ (

dπ

dRε
− h
)
dπ = H(π | ϱ) + log

∫
eh dRε.

The second term is independent of π, thus,

φ⋆C(h) = − inf
π∈C

H(π | ϱ).

Since C is weakly closed and H is strictly convex with weakly compact sublevel
sets, this minimization has a unique minimizer π̂. By the chain rule of relative
entropy and using π̂ ∈ C, we obtain

H(π̂ | ϱ) = H(µ | ϱx) +
∫
H(π̂(· | x) | ϱ(· | x)) dµ(x).

Consequently, for dµ(x)-almost every x, it should hold π̂(· | x) = ϱ(· | x). However,
by the properties of Radon–Nikodym derivative, we know

dϱ(· | x)
dν

(y) =
dϱ

d(µ⊗ ν)
(x, y)

/
dϱx
dµ

(x)

and
dϱx
dµ

(x) =

∫
Y

dϱ

d(µ⊗ ν)
(x, y) dν(y) =

∫
Y e

he−c/ε dν∫
Ω
eh dRε

.

Putting it all together, we obtain

dπ̂(· | x)
dν

(y) =
eh(x,y)e−c(x,y)/ε∫

Y e
h(x,y′)e−c(x,y′)/ε dν(y′)

.

Thus, as π̂x = µ, it holds that dπ̂x/dµ = 1 and

dπ̂

d(µ⊗ ν)
(x, y) =

eh(x,y)e−c(x,y)/ε∫
Y e

h(x,y′)e−c(x,y′)/ε dν(y′)
,

proving (5.31).
We now show (5.32). As the set C is weakly closed, its convex indicator IC is

weakly l.s.c., implying lower semi-continuity of φC . By Theorem 5.1, π ∈ ∂φ⋆C(h)
if and only if

φC(π) + φ⋆C(h) = ⟨π, h⟩.

As for any fixed h ∈ L∞(Ω) the maximizer of supπ∈C{⟨π, h⟩−H(π |Rε)} is unique,
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it holds that ∂φ⋆C(h) = {π̂}. As the subdifferential is a singleton, the subgradient
is indeed the Gâteaux derivative of φ⋆C at h. Moreover, as π̂ is in L∞(Ω), this
Gâteaux derivative is continuous.

Remark 5.5. Let us make the important remark that the values of the Fenchel
conjugate φ⋆C(h) and its first variation ∇φ⋆C do not change if one adds a function of
the x variable to h. Concretely, for any u ∈ L∞(X ), it holds that φ⋆C(h+u) = φ⋆C(h)
and ∇φ⋆C(h+u) = ∇φ⋆C(h). This is because the additional u in (5.31) gets cancelled
out from the numerator and denominator. Specifically, if h = f ⊕ g, then

φ⋆C(f ⊕ g) = φ⋆C(g), ∇φ⋆C(f ⊕ g) = ∇φ⋆C(g). ♢

We are now in the position to translate the dual Sinγ-iteration (Dual-Sinkγ)
into the language of mirror descent. More precisely, we show in Proposition 5.9 be-
low that (Dual-Sinkγ) is precisely the dual mirror descent iteration (5.7) described
in Section 5.2.

▶ Proposition 5.9. Let {πn}n≥0 be the Sinγ-iterates starting from π0 ∈ Πc,ε,
and let fn and gn be the corresponding Schrödinger potentials, evolving as in
(Dual-Sinkγ). Let π̃0 = π0 and g̃0 = g0, and define π̃n and g̃n for n ≥ 1 via the
recursion {

g̃n+1 = g̃n − γn∇F (π̃n),
π̃n+1 = ∇φ⋆C(g̃n+1).

(5.33)

Then, for all n ≥ 0, it holds that π̃n = πn and g̃n = gn.

Proof. Consider a sequence of potentials f̃n ∈ L∞(X ), which together with g̃n
satisfy dπ̃n = exp(f̃n⊕ g̃n) dRε. We show via induction that f̃n and g̃n are updated
exactly in the same way as in (Dual-Sinkγ), thus proving the lemma.

Suppose by induction hypothesis that π̃n = exp(f̃n⊕ g̃n) dRε and that π̃n = πn

and g̃n = gn (and hence, f̃n = fn). The first step of (5.33) is

g̃n+1(y) = gn(y)− γn∇F (πn)(y) = gn(y)− γn log
dπny
dν

(y)

= gn(y)− γn log egn(y)
∫
efn(x)−c(x,y)/ε dµ(x)

= (1− γn)gn(y)− γn log
∫
efn(x)−c(x,y)/ε dµ(x),

which is precisely the first step of dual Sinγ-iteration (Dual-Sinkγ). This shows
g̃n+1 = gn+1. The next step of (5.33) is π̃n+1 = ∇φ⋆C(g̃n+1) = ∇φ⋆C(gn+1). By
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Proposition 5.8, we have

dπ̃n+1

dRε
(x, y) =

egn+1(y)∫
Y e

gn+1(y′)e−c(x,y′)/ε dν(y′)
=: exp(f̃n+1 ⊕ gn+1)(x, y),

where we defined

f̃n+1(x) := − log

∫
Y
egn+1(y)e−c(x,y)/ε dν(y).

Observe that this is exactly the same as the second step in (Dual-Sinkγ), showing
that f̃n+1 = fn+1. We thus conclude that π̃n+1 = πn+1. Therefore, the dual MD
iteration gives the same iterates as the dual Sinkhorn iteration.

5.6. SINKHORN FLOWS

We now study the limiting behavior of the operator Sinγ as γ → 0. This allows
us to define two continuous-time flows: one on the space of probability measures,
and another one in the dual space. To avoid unnecessary measure-theoretic
complications, we focus on the following two scenarios throughout this section:

(1) The probability measures µ and ν are absolutely continuous with respect
to the Lebesgue measure with continuous and bounded densities, and the
cost c is continuous and bounded. It is easy to see that in this case, all Sinγ-
iterates admit bounded and continuous densities; specifically, the Schrödinger
potentials are also continuous and bounded.

(2) The probability measures µ and ν have finite support.

5.6.1. Sinkhorn Flow as a Mirror Flow
We start by computing the limit of the Sinγ operator defined in Definition 5.5.
While the Sinγ-iteration can be initialized at any measure in Πc,ε, here we only
consider those initial measures that have the correct X -marginal µ. This will
remove the disparity of the initialization and the rest of the iterates, which all have
their X -marginal equal to µ by construction. This helps us later when defining a
continuous flow.
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▶ Proposition 5.10. Fix a coupling π ∈ Π(µ, ∗)∩Πc,ε. For γ > 0, let πγ = Sinγ [π]
be the result of one step of (Sinkγ) with step-size γ applied to π. Then,

d

dγ

∣∣∣∣
γ=0

πγ(x, y) = −π(x, y) log dπy
dν

(y) + π(x, y)

∫
Y
log

dπy
dν

(y′) dπ(y′ | x).

Moreover, if dπ = exp(f ⊕ g) dRε for some f ∈ Cb(X ) and g ∈ Cb(Y), then
dπγ = exp(fγ ⊕ gγ) dRε, and fγ and gγ satisfy

d

dγ

∣∣∣∣
γ=0

gγ(y) = − log
dπy
dν

(y),

d

dγ

∣∣∣∣
γ=0

fγ(x) =

∫
Y
log

dπy
dν

(y′) dπ(y′ | x).

Proof. Since π ∈ Πc,ε, it is readily implied that dπ = exp(f ⊕ g) dRε for some
f ∈ Cb(X ) and g ∈ Cb(Y). Lemma 5.7 then implies that πγ is also of the same
form: dπγ = exp(fγ ⊕ gγ) dRε.

By the recursion (5.29), we see that 1
γ (gγ − g) = − log

dπy

dν . Taking the limit
as γ → 0 gives the desired formula for d

dγ

∣∣
γ=0

gγ .
From the second step of (Dual-Sinkγ) and taking derivative with respect to γ

at γ = 0, we get

d

dγ

∣∣∣∣
γ=0

fγ(x) =

∫
Y
log

dπy
dν

(y′) eg(y
′)−c(x,y′)/ε dν(y′)

/∫
Y
eg(y

′)−c(x,y′)/ε dν(y′)

=

∫
Y
log

dπy
dν

(y′) ef(x)+g(y
′)−c(x,y′)/ε dν(y′)

=

∫
Y
log

dπy
dν

(y′) dπ(y′ | x),

where for the second equality we used the fact that π ∈ Π(µ, ∗) and (5.18b), and
in the last equality we used the disintegration of π:

dπ(· | x)
dν

(y′) · dπx
dµ

(x) =
dπ

dµ⊗ ν
(x, y′).

Having the derivatives of fγ and gγ with respect to γ, it is straightforward to
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compute the derivative of log πγ :

d

dγ

∣∣∣∣
γ=0

log
dπγ

dRε
(x, y) =

d

dγ

∣∣∣∣
γ=0

(fγ(x) + gγ(y))

= − log
dπy
dν

(y) +

∫
Y
log

dπy
dν

(y′) dπ(y′ | x).

Subsequently, using d
dγ

∣∣
γ=0

πγ(x, y) = π(x, y) ddγ
∣∣
γ=0

log πγ(x, y), we obtain the
result of the lemma.

In view of Proposition 5.10, we are now ready to define the Sinkhorn and the
dual Sinkhorn flows.

Definition 5.11. For any π0 ∈ Π(µ, ∗) ∩ Πc,ε, construct the curve (πt)t≥0 in
L1(Ω) whose velocity is determined by

d

dt
πt(x, y) = −πt(x, y) log

dπty
dν

(y) + πt(x, y)Eπt(·|x)

[
log

dπty
dν

]
. (5.34)

We call the mapping (t, π0) 7→ πt the Sinkhorn flow . Similarly, if dπ0

dRε
= exp(f0 ⊕

g0), we call the mapping (t, g0) 7→ gt the dual Sinkhorn flow , which describes the
evolution of the Schrödinger potential gt corresponding to πt:

d

dt
gt = − log

dπty
dν

. (5.35)

As the Sinkhorn and dual Sinkhorn flows emerge from driving the step-size of
an MD iteration to zero, it is natural to anticipate a mirror flow interpretation.
Indeed, using the formulas for the mirror map ∇φ and its dual ∇φ⋆C, we can
define a mirror flow as follows. Fix π0 ∈ Πc,ε ∩Π(µ, ∗) and any h0 ∈ L∞(Ω) that
satisfies ∇φ⋆C(h0) = π0. Consider the evolution

d

dt
ht = −∇F (πt),

πt = ∇φ⋆C(ht),
(5.36)

which can be equivalently written as

d

dt
ht = −(∇F ◦ ∇φ⋆C)(ht). (5.37)

As mentioned in Remark 5.5, we can take h0 to be a function of the y variable
only; this is possible since π0 ∈ Πc,ε. The specific choice of h0 = g0 yields the
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evolution (5.35), therefore confirming our anticipation that dual Sinkhorn flow is
a dual mirror flow.
Remark 5.6. Following Remarks 5.2 and 5.4, let us mention how the Sinkhorn
and dual Sinkhorn flows look like for measures with finite support. We continue
using the notation in the mentioned remarks. Define the vectors ut := eft and
vt := egt , where ft and gt are the Schrödinger potentials for the Sinkhorn flow.
From (5.35), it follows that the dual Sinkhorn flow in this case is

v̇t = −vt ⊙ log
ν⃗

vt ⊙ (K⊤ut)
.

This can also be verified by taking the limit γ → 0 in (5.30). Similarly,

u̇t =
ut
Kvt

⊙K
(
vt ⊙ log

ν⃗

vt ⊙ (K⊤ut)

)
.

Given ut and vt, we have the evolution for πt as

π̇t = diag(u̇t)K diag(vt) + diag(ut)K diag(v̇t). (5.38)

See Fig. 5.3 on page 180 for an example depicting an entropic optimal transport
problem, along with the flow values at different settings. ♢

We end this section with convergence properties of the continuous-time Sink-
horn and dual Sinkhorn flows. In the next section, we see how these flows enable
us to use the stochastic approximation machinery employed in previous chapters.

5.6.2. Convergence of Sinkhorn Flows
Let us now establish the convergence rate of the Sinkhorn flows. Theorem 5.12
below shows that the continuous-time Sinkhorn flow (and similarly its dual flow)
converge at a rate of O(1/t) to the optimal solution of (OTε). While our proof
is guided by the mirror flow formalism presented in the previous section, it does
not follow directly from existing results for mirror flows such as [KBB15; Tze+23].
This is primarily due to the presence of the additional constraint set C, which is
absent in conventional mirror flow analyses.

▶ Theorem 5.12. Starting from π0 ∈ Πc,ε ∩ Π(µ, ∗), consider the Sinkhorn flow
(πt)t≥0 and the corresponding dual flow (gt)t≥0, as defined in (5.34) and (5.35).
Then, for any t > 0,

F (πt) ≤
Dφ⋆

C
(g0 | gopt)
t

= O
(
t−1
)
,
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µ ν

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5.3. An entropic optimal transport problem for measures µ and ν shown in
(a). The measure µ is a Gaussian and ν is a mixture of two Gaussians.
The product measure µ⊗ ν is shown in (b). Figures (c) and (d) show the
optimal coupling for ε = 10−2 and ε = 10−4, respectively. Observe that for
larger ε, the optimal solution is “blurry”, while for smaller ε, the optimal
solution looks more like an optimal transport map. The next two rows
show a coupling π on top and the corresponding time derivative π̇, as in
(5.38), underneath it. (e) and (i): For ε = 10−2 at initialization. (f) and
(j): For ε = 10−2 after 10 iterations of Sinkhorn. (g) and (k): For ε = 10−4

at initialization. (h) and (l): For ε = 10−4 after 100 iterations of Sinkhorn.
In all the figures, except (a), the vertical axis is X and the horizontal is Y.
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where gopt is a Schrödinger potential of the optimal coupling for (OTε). In other
words, the Y-marginal of πt converges (in relative entropy) to ν with a rate of 1/t.

Proof. First, we show that the objective function F is decreasing along the flow:

d

dt
F (πt) =

〈
∇F (πt), d

dt
πt
〉
=
〈
∇F (πt), πt d

dt
log πt

〉
=

∫
Ω

log
dπty
dν

(y)

[∫
Y
log

dπty
dν

(y′) dπt(y′ | x)
]
dπt(x, y)

−
∫
Ω

(
log

dπty
dν

(y)

)2

dπt(x, y). (5.39)

Defining k(x) =
∫
Y log

dπt
y

dν (y′) dπt(y′ | x), we see that the first term above is∫
Ω

log
dπty
dν

(y) k(x) dπt(x, y) =

∫
X

[∫
Y
log

dπty
dν

(y) dπt(y | x)
]
k(x) dµ(x)

=

∫
X
k(x)2 dµ(x).

Now, by Jensen inequality, we have∫
X
k(x)2 dµ(x) =

∫
X

[∫
Y
log

dπty
dν

(y) dπt(y | x)
]2
dµ(x)

≤
∫
X

[∫
Y

(
log

dπty
dν

(y)

)2

dπt(y | x)
]
dµ(x)

=

∫
Ω

(
log

dπty
dν

(y)

)2

dπt(x, y).

Plugging this back into (5.39) shows that

d

dt
F (πt) ≤ 0. (5.40)

For a Schrödinger potential g and its corresponding coupling π = ∇φ⋆C(g), define

V (g) := Dφ⋆
C
(g | gopt) = φ⋆C(g)− φ⋆C(gopt)− ⟨∇φ⋆C(gopt), g − gopt⟩

= φ⋆C(g)− φ⋆C(gopt)− ⟨πopt, g − gopt⟩ (5.41)
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and observe that ∇V (g) = ∇φ⋆C(g) − ∇φ⋆C(gopt) = π − πopt. We treat V as a
Lyapunov function for the dual mirror flow. For that, we compute

d

dt
V (gt) = ⟨∇V (gt),

d

dt
gt⟩ = −⟨πt − πopt,∇F (πt)⟩ ≤ F (πopt)− F (πt),

where the inequality is due to convexity of F . Thus,

V (πt)− V (π0) =

∫ t

0

d

ds
V (πs) ds ≤

∫ t

0

F (πopt)−F (πs) ds ≤ t(F (πopt)−F (πt)),

where the last inequality is because F (πt) is nonincreasing. Since V is a Bregman
divergence, V ≥ 0, and we obtain the result.

Let us remark that this shows the convergence of the Y-marginal of the flow
to the correct distribution ν (the X -marginal is always µ by construction). Given
that the cost c is bounded, this convergence can be translated into a stronger
convergence of the Schrödinger potentials gt and the coupling πt itself. While we
do not consider this type of convergence in this thesis, the reader is referred to
[Nut22, Thm 6.15] for general ideas regarding proving this type of result.

5.7. STOCHASTIC APPROXIMATION FOR EOT

In this section, we illustrate how to leverage our theory to enhance the convergence
of Sinkhorn schemes in scenarios involving noisy and biased gradients. In entropic
optimal transport, neural networks are commonly used to parameterize transport
plans. The Sinkhorn iterations (Sink1) require solving an (infinite-dimensional)
optimization problem that is approximated via multiple stochastic gradient steps
over neural networks. However, inherent stochasticity in computations can prevent
convergence. This necessitates a remedy to overcome the convergence issues, as
proposed by Hanzely and Richtárik [HR21].

In this section, we introduce two improvements offered by our framework to
address these challenges. First, Theorem 5.13 shows that our step-sized method
(Sinkγ) with constant step-size γ = O(n−1/2), results in a convergence rate of
O(n−1/2), when the “stochastic gradients” remain unbiased with finite variance.
Second, Theorem 5.14 establishes asymptotic last-iterate convergence when one
employs noisy and biased gradient estimates. We remark that these results are
theoretical, and one has to adapt them to the desired practical scenario.
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5.7.1. Convergence of Sinkhorn under Noise
We start with stochastic unbiased gradients. In this case, the Sinγ-iteration
becomes

πn+1 = argmin
π∈C

{
⟨∇̃F (πn), π − πn⟩+ Dφ(π |πn)

γn

}
, (5.42)

where ∇̃F is an unbiased noisy estimate of the Gâteaux derivative ∇F . Theo-
rem 5.13 shows that the ergodic averages of this sequence converges to the optimal
coupling for (OTε), in expectation.

▶ Theorem 5.13. Suppose that ∇̃F is a stochastic estimate of ∇F such that
E[∇̃F (π)] = ∇F (π) and E ∥∇̃F (π)∥2∞ ≤ σ2 <∞ for all π. Consider the iterations
πn generated by (5.42) using a fixed step-size γ. Then, with π̄n := 1

n

∑n−1
k=0 π

k,
we have

E[H(π̄ny | ν)] ≤
H(πε,opt |Rε)

γn
+ γσ2. (5.43)

The proof of Theorem 5.13 is established by combining our framework with
the smoothness result of [AKL22] and a classical analysis of stochastic Bregman
schemes [DEH21; HR21].

Proof. Since F is convex and 1-smooth relative to φ [AKL22, Lem. 6], by [HR21,
Thm. 4.5] we have

1

n

n−1∑
k=0

E[F (πk)− F (πopt)] ≤ 1

γn
Dφ(π

opt |Rε) + σ2γ.

Since πε,opt ∈ Π(µ, ν), it holds that F (πopt) = H(πopt
y | ν) = 0. Moreover,

Dφ(π
opt |Rε) = H(πopt |Rε). The proof follows by the convexity of F :

1

n

n−1∑
k=0

E[F (πk)] ≤ E[F ( 1n
∑n−1
k=0 π

k)] = E[H(π̄ny | ν)].

Suppose we intend to run (5.42) for n iterations. Then, (5.43) immediately
yields an O(n−1/2) convergence rate by choosing the step-size γ = O(n−1/2).

5.7.2. Convergence of Sinkhorn under Noise and Bias
There are two significant drawbacks in Theorem 5.13. First, since the stochastic
estimate ∇̃F aims to capture noise introduced during the intermediate optimization
procedures for neural networks, the unbiasedness assumption is rather restrictive.
Second, even if ∇̃F is unbiased, we are still required to produce an ergodic iterate
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π̄n, whereas in practice, the last iterate πn is often the most utilized. To address
these issues, we leverage stochastic approximation analysis, which relies on the
continuous-time convergence in Theorem 5.12.

Let {πn}n≥0 be the sequence of measures generated by (5.42) with step-
sizes γn and a noisy and biased oracle ∇̃F , and let {gn}n≥0 be the sequence of
corresponding Schrödinger potentials. As in previous chapters, define the effective
time τn to be τn :=

∑n
k=0 γk, which is the time that has elapsed up to the nth

iteration of the discrete-time process gn. Using τn, we consider the continuous-time
piecewise-linear interpolation g(t) of gn:

g(t) := gn +
t− τn

τn+1 − τn
(gn+1 − gn), t ∈ [τn, τn+1].

Note that each g(t) is a function in L∞(Y), and by our considerations in the
beginning of Section 5.6, we can take g(t) ∈ Cb(Y). We make the following
standard assumptions:

▷ Assumption 5.1. Let πn and g(t) be given as above. We assume that (a) ∇F
is Lipschitz and bounded on a neighborhood of (πn)n∈N, and (b) (g(t))t≥0 is a
precompact set in the topology of uniform convergence of Cb(Y).

It is worth highlighting that Assumption 5.1 is a relatively mild technical
condition that finds applicability in a wide range of practical scenarios. For
example, it remains satisfied when employing bounded and Hölder continuous
neural networks to parameterize distributions with compact support as a result of
Arzelà–Ascoli theorem; see, for example, [WG24].

▶ Theorem 5.14. Let πn be given as above. Suppose Assumption 5.1 holds and
the step-size rule γn satisfies the Robbins–Monro conditions

∑
γn = ∞ and∑

γ2n <∞. Denote by Fn the filtration generated by the stochastic algorithm up
to iteration n, and the noise and bias by

Un := ∇̃F (πn)− E[∇̃F (πn) | Fn],
Bn := E[∇̃F (πn) | Fn]−∇F (πn).

Then, the Schrödinger potential gn converges to gopt if the following holds almost
surely:

lim
n→∞

∥Bn∥∞ = 0 and sup
n

E ∥Un∥2∞ ≤ σ
2 <∞. (5.44)

Theorem 5.14 offers two advantages over Theorem 5.13. First, it replaces
ergodic convergence with the more desirable last-iterate convergence. Secondly, if
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we consider the bias as the error during the optimization of the neural network
at each step of (5.42), then Theorem 5.14 allows for a level of flexibility where
the precision of the intermediate steps may progressively improve, instead of
always requiring perfect optimization as stipulated by the unbiased assumption in
Theorem 5.13. However, we acknowledge that these advantages come at the cost
of losing a non-asymptotic rate.

Proof. Assumption 5.1 and (5.44) ensure that g(·) is a precompact asymptotic
pseudo-trajectory of the associated continuous-time dual flow given in (5.35);
the proof is the same as the Euclidean case in Section 2.5. It follows from this
association that the iterates (gn)n≥0 converge almost surely to an internally chain-
transitive set of the dual flow. On the other hand, within the course of our proof
for Theorem 5.12, we have established the existence of a Lyapunov function for the
dual flow V (g) := Dφ⋆

C
(g | gopt); see (5.41). Consequently, Theorem 2.10 implies

that the only possible internally chain-transitive set is the set {gopt}. This, in
turn, implies that almost surely, gn → gopt in Cb(Y). This immediately implies
the weak convergence of πny to ν, almost surely.

5.8. SCHRÖDINGER BRIDGES

In Sections 5.5 and 5.6, we established the step-sized and continuous-time variants
of the Sinkhorn algorithm for solving (OTε), which pertains to the “static” entropic
optimal transport. In this section, we broaden our scope to encompass the dynamic
scenario, often referred to as the Schrödinger bridge problem. Beyond adapting
the results in Sections 5.5 and 5.6 to Schrödinger bridges, we provide additional
insights by demonstrating that each time point in both the step-sized algorithm
and the continuous-time flow can be characterized as a stochastic differential
equation with a well-defined drift formula.

5.8.1. Review of Schrödinger Bridges
We start by reviewing some basic properties of the SB problem. Most of the
material here are borrowed from the survey of Léonard [Léo13a] and the interested
reader is referred to that survey for a more in-depth exposition.

By a path measure we mean a positive measure on the space of continuous
functions. For instance, consider the space Ω = C([0, 1];Rd) of all continuous
Rd-valued functions on the interval [0, 1]. Then, a stochastic process with almost
sure continuous sample paths (such as a Brownian motion or any Langevin-type
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SDE) induces a probability measure on Ω. The σ-algebra on Ω is generated by
time projections:

Xt(ω) := ωt, ω = (ωs)s∈[0,1] ∈ Ω, t ∈ [0, 1].

The mapping X = (Xt)t∈[0,1] is sometimes called the canonical process. Moreover,
the topology of uniform convergence turns Ω into a Polish space. We denote by
P(Ω) the space of probability measures on Ω.

Given two probability measures µ0, µ1 on Rd, the Schrödinger bridge (SB)
problem refers to the following entropy minimization over the space of all path
measures over [0, 1]:

min
P∈P(Ω)

{H(P |R) : P0 = µ0, P1 = µ1}. (Sdyn)

Here, Pt(·) := P (Xt ∈ ·) is the marginal of P at time t, and R is a given path
measure, referred to in the sequel as the reference measure. It is noteworthy to
mention that (Sdyn) is a convex optimization problem with convex constraints.
Moreover, since H(· |R) is strictly convex, the solution of (Sdyn) is unique, if it
exists.

It turns out that solving (Sdyn) is intimately related to solving the static
Schrödinger problem (Sstatic). Concretely, if P̂ is the optimal solution of (Sdyn),
then π̂ := P̂01 is the optimal solution of

min
π∈Π(µ0,µ1)

H(π |R01), (5.45)

which is the same as (Sstatic). Notice the notation P̂01(·) := P̂ ((X0, X1) ∈ ·).
Moreover, P̂ disintegrated over its marginals at times 0 and 1 has the form:

P̂ (·) =
∫

Rd×Rd

Rxy(·) dπ̂(x, y),

where Rxy(·) := R( · | X0 = x,X1 = y). Note that this disintegration also
shows how to construct the optimal solution to (Sdyn) via a solution of (Sstatic):
The optimal solution to the (Sdyn) has the same “bridges” (i.e., Rxy) as the
reference measure, and the bridges are mixed via the optimal solution of the static
Schrödinger problem.

A common choice for R is the law of a reversible Brownian motion. It is the
Brownian motion whose forward dynamics is as usual, but its random initial
position is “uniformly distributed on Rd.” In other words, R(·) =

∫
RdWx(·) dx,

where Wx is the law of the (usual) Brownian motion started at x. In some sense,
the reversible Brownian motion can model a Brownian motion for which we lack
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knowledge about the starting position. Note that R has infinite mass and needs
special treatment; we do not deal with the reversible Brownian motion in this
thesis and only bring it as an example. We refer the interested reader to [Léo13a;
Léo13b] for more details regarding unbounded path measures.

▷ Example. Let R be a reversible Brownian motion with diffusion parameter σ;
the initial law is the Lebesgue measure on Rd and the forward dynamics is given
by the law of a Brownian motion with diffusion matrix σI. It is straightforward
to see that the joint distribution of times 0 and 1 satisfies

dR01(x, y) ∝ exp(−∥x− y∥2/2σ2) dx dy.

Therefore, (5.45) becomes an instance of EOT with marginals µ0 and µ1, cost
c(x, y) = 1

2∥x − y∥2, and ε = σ2. This shows that (Sdyn) can be viewed as
the dynamic formulation of (OTε) where, instead of merely seeking an optimal
coupling, one solves for an entire stochastic process that transforms µ0 into µ1. ◁

5.8.2. IPF and its Interpretation as Mirror Descent
The classical algorithm for solving (Sdyn) is the iterative proportional fitting (IPF)
procedure, which is the dynamic version of the Sinkhorn scheme: Starting from
P (0) = R, define for n ≥ 0,

P (n+1/2) = argmin{H(P |P (n)) : P1 = µ1}
P (n+1) = argmin{H(P |P (n+1/2)) : P0 = µ0}.

(IPF1)

Similar to the Sinkhorn algorithm, we show that IPF can be interpreted through
the lens of mirror descent. Specifically, we show that it is equivalent to an MD
iteration with constant step-size 1. This finding serves as the dynamic counterpart
to [AKL22, Prop. 5]. The proof is similar to the case of Sinkhorn and is omitted;
see Section 5.5.1.

Proposition 5.15. The iterations P (n) of (IPF1) satisfy

P (n+1) = argmin
P∈C

{⟨∇F (P (n)), P − P (n)⟩+Dφ(P |P (n))}, (5.46)

with F (P ) := H(P1 |µ1), φ(P ) := H(P |R), and C := {P : P0 = µ0}.

Upon recognizing that IPF can be interpreted as MD iterations with a step-size
of 1, we can proceed to investigate the MD iteration (5.46) with an arbitrary
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step-size γn:

P (n+1) = argmin
P∈C

{
⟨∇F (P (n)), P − P (n)⟩+ Dφ(P |P (n))

γn

}
. (5.47)

A similar calculation to that of Lemma 5.6 reveals that (5.47) can be equivalently
expressed as:

P (n+1/2) = argmin
P1=µ1

{H(P |P (n))},

P (n+1) = argmin
P0=µ0

{γnH(P |P (n+1/2)) + (1− γn)H(P |P (n))}.
(IPFγ)

In analogy to the Sinγ-iteration, we call the update rule above the IPFγ-iteration.

5.8.3. The SDE Representation of IPFγ-iterates
In this section, we assume that the reference measure R is induced by the law of
the SDE

dZt = bt(Zt) dt+ σ dWt. (5.48)

We first recall the important fact that for this reference measure, the IPF iterates
can be expressed in terms of the time-reversal of SDEs, whose drift terms can
be computed in practice via score-matching techniques. Next, we show a similar
property for IPFγ-iterates, making them amenable to computations. For this,
we draw connections to stochastic optimal control, resulting in SDEs killed at
random times. Before diving deep into the results of this section, let us make a
short digression, discussing three important properties of diffusions.

Digression: Time-Reversal and Relative Entropy of Diffusions

Suppose (Zt)t∈[0,1] is a diffusion process in Rd, that is, a solution of the SDE

dZt = vt(Zt) dt+ σt(Zt) dWt,

where (Wt)t∈[0,1] is a standard Brownian motion in Rd. Let Zt := Z1−t be the
time-reversed process. It turns out that under mild conditions, the reverse process
Zt is still a diffusion process with explicit drift and diffusion coefficients. Below, we
bring a simplified version of this result for the case of constant diffusion σt(z) ≡ σ.

Theorem 5.16 (HP86, Thm. 2.1). Let (Zt)t∈[0,1] be the strong solution of dZt =
vt(Zt) dt+ σ dWt, and assume Zt has a density ϱt for all t ∈ [0, 1]. Then, under
some regularity conditions, the reverse process Zt := Z1−t is a Markov diffusion
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process: Defining the drift

wt(x) = −v1−t(x) + σ2∇ log ϱ1−t(x),

there exists a Brownian motion W t in some probability space such that Zt is a
solution to

dZt = wt(Zt) dt+ σ dW t, Z0 ∼ ϱ1. (5.49)

See [HP86, (A)] for sufficient regularity conditions. Let us remark further that
the reverse diffusion is a solution to a martingale problem, and hence, is a weak
solution; it lives in a (possibly) different probability space. We refer the reader to
[BGL14, Ch. 1] for the notions of the martingale problem and weak solutions.
Remark. A rigorous proof for Theorem 5.16 is not straightforward. We note
that the time-reversal of a Markov process remains a Markov process. The proof
involves demonstrating that the infinitesimal generator of this Markov process
coincides with that of the time-reversed SDE (5.49). However, in this context, we
will not follow this argument. Instead, we provide some intuition through heuristic
computations.

Let δ ≪ 1. We compute the conditional law of Zt given Zt+δ = zt+δ for
time-homogeneous drift v and constant diffusion σ. By the Bayes theorem, we
have

P(Zt ∈ dz | zt+δ) ∝ ϱt(z) exp
{
−∥zt+δ − (z + δv(z))∥2

2σ2δ

}
,

where we approximated v(zt+s) = v(z) for 0 ≤ s ≤ δ. Using the Taylor approxi-
mation of log ϱt around zt+δ, we have

ϱt(z) ≈ ϱt(zt+δ) exp ⟨∇ log ϱt(zt+δ), z − zt+δ⟩.

Therefore,

P(Zt ∈ dz | zt+δ) ∝ exp

{
−∥z − (zt+δ − δv(zt+δ) + σ2δ∇ log ϱt(zt+δ))∥2

2σ2δ

}
,

which corresponds to the transition of an SDE with the same diffusion σ and drift

−v(z) + σ2∇ log ϱt(z). ♢

Next, we focus on absolute continuity of laws of diffusions. Let us begin with
an illuminating example:

▷ Example. Suppose Wt is a standard Brownian motion on R, and let P and Q
be the laws of (Wt)0≤t≤1 and (2Wt)0≤t≤1, respectively. We claim that Q is not
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absolutely continuous with respect to P . To see this, consider the event A that
consists of continuous functions f satisfying lim supt↓0 f(t)/(2t log log t)

1/2 = 1.
Then, by the law of the iterated logarithm of Lévy, it holds that Q(A) = 0 and
P (A) = 1. In other words, by just looking at one sample path (i.e., one trajectory),
we can decide whether it is from a Brownian motion or of the twice a Brownian
motion by checking if it is in A or not. ◁

The Cameron–Martin–Girsanov theorem states under which conditions the
law of two semimartingales are absolutely continuous with respect to each other,
and provides a formula for their Radon–Nikodym derivative. We bring here a
simplified version of a general Girsanov formula in [Léo12, Thm. 1].

Theorem 5.17 (Girsanov). Let P be a path measure, under which the canonical
process (Xt)t≥0 has the semimartingale decomposition

Xt = X0 +

∫ t

0

bs ds+ σWt,

with Wt being a Brownian motion. Suppose the path measure Q is absolutely
continuous with respect to P and H(Q |P ) <∞. Then there exists an Rd-valued
adapted process βt with EQ[

∫ 1

0
∥βt∥2 dt] <∞, such that X has the semimartingale

decomposition

Xt = X0 +

∫ t

0

(bs + βs) ds+ σWQ
t , Q-a.s.,

where WQ is a Q-Brownian motion. Moreover,

dQ

dP
(ω) =

dQ0

dP0
(ω0) · exp

{
1

σ

∫ 1

0

⟨βt, dWt⟩ −
1

2σ2

∫ 1

0

∥βt∥2 dt
}
.

As a corollary, the last result gives an expression for the relative entropy of
the law of two Markov diffusion processes:

Corollary 5.18. Let P and Q be two path measures with H(Q |P ) <∞. More-
over, assume that under P , the canonical process X has the semimartingale
decomposition

Xt = X0 +

∫ t

0

bs ds+ σWP
t ,
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where WP is a P -Brownian motion, and under Q,

Xt = X0 +

∫ t

0

cs ds+ σWQ
t ,

where WQ is a Q-Brownian motion. Then,

H(Q |P ) = EQ

[
log

dQ

dP

]
= H(Q0 |P0) +

1

2σ2
EQ

[∫ 1

0

∥ct − bt∥2 dt
]
.

After this brief digression, let us return to our original problem of representing
the iterations of IPF and IPFγ as the laws of SDEs with explicit drifts. We begin
by the first step of (IPF1) (which is shared between IPF and IPFγ). This result
is already established in [De +21, Prop. 6]; we provide a proof for completeness.

Theorem 5.19. Suppose P (n) is the law of the SDE

dZt = vt(Zt) dt+ σ dWt, Z0 ∼ µ0, (5.50)

and the time-reversal of P (n+1/2) is given by the SDE

dYt = w1−t(Yt) dt+ σ dW t, Y0 ∼ µ1. (5.51)

Then the drift wt satisfies

wt(x) = −vt(x) + σ2∇ log ϱnt (x), (5.52)

where ϱnt is the density of P (n)
t .

Proof. Let P̄ (n) be the law of the time-reversal of P (n). Since the time-reversal
of P (n+1/2) solves argmin{H(P | P̄ (n)) : P0 = µ1}, its SDE representation is the
same as the one for P̄ (n) with its initial distribution set to µ1. By the time-reversal
formula (Theorem 5.16), P̄ (n) corresponds to

dYt =
(
−v1−t(Yt) + σ2∇ log ϱn1−t(Yt)

)
dt+ σ dWt, Y1 ∼ µ0,

where ϱnt is the density of P (n)
t . This means that this should coincide with the

SDE for time reversal of P (n+1/2), giving the result of the theorem.

We are now ready to state the main result of this section: the drift formula of
the SDE representation for the second step of γ-IPF. For pedagogical reasons, we
walk through the proof and state the final result in the end. The impatient reader
is referred to Theorem 5.20 for the statement of the theorem we prove below.
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Let P (n) be given by the scheme (IPFγ), and let vnt be the (forward) drift
corresponding to the SDE representation of P (n). Theorem 5.19 together with
Theorem 5.16 show that the path measure P (n+1/2) corresponds to the time-
reversal of the SDE (5.51), which is a process with the drift

v
n+1/2
t := −wt+σ2∇ log ϱ

n+1/2
t = vnt +σ

2∇ log
ϱ
n+1/2
t

ϱnt
= vnt +σ

2∇ log ℓnt , (5.53)

with ϱn+1/2
t being the density of P (n+1/2)

t and ℓnt := ϱ
n+1/2
t /ϱnt .

The next step of (IPFγ) is given by

P (n+1) = argmin
P0=µ0

{γnH(P |P (n+1/2)) + (1− γn)H(P |P (n))}.

Let us make the ansatz that P (n+1) corresponds to an SDE of the form

dXu
t = (bγt (X

u
t ) + ut) dt+ σ dWt, Xu

0 ∼ µ0, (5.54)

where we define the drift bγt as

bγt := γv
n+1/2
t + (1− γ)vnt ,

which by (5.53) is equal to

bγt = vnt + γ · σ2∇ log ℓnt .

The reason that we take such SDE representation for P (n+1) is that, firstly, it
should be a diffusion with the same diffusion coefficient to be absolutely continuous
with respect to P (n), and its drift shall be a “weighted average” of the drifts of
P (n+1/2) and P (n) with some correction ut. Notice that this ansatz only helps us
to embed our intuition in the formulation of the drift and imposes no restrictions;
ut can be any adapted process. Our goal in what follows is to find ut.

By the relative entropy formula for diffusions (Corollary 5.18), we have for
P = P (n+1),

H(P |P (n)) =
1

2σ2
EP

[∫ 1

0

∥bγt (Xu
t ) + ut − vnt (Xu

t )∥2 dt
]
,
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since P0 = P
(n)
0 = µ0. Likewise,

H(P |P (n+1/2)) = H(µ0 |P (n+1/2)
0 )

+
1

2σ2
EP

[∫ 1

0

∥bγt (Xu
t ) + ut − vn+1/2

t (Xu
t )∥2 dt

]
.

Taking the weighted average of the two equations above and noticing that
H(µ0 |P (n+1/2)

0 ) is merely a constant not depending on P , we see that

γH(P |P (n+1/2)) + (1− γ)H(P |P (n))

.
=

1

σ2
EP

[∫ 1

0

1

2
∥ut∥2 dt+

γ(1− γ)
2

∫ 1

0

∥vn+1/2
t (Xu

t )− vnt (Xu
t )∥2 dt

]
=

1

σ2
EP

[∫ 1

0

1

2
∥ut∥2 dt+

σ4γ(1− γ)
2

∫ 1

0

∥∇ log ℓnt (X
u
t )∥2 dt

]
.

Therefore, the minimization problem in (IPFγ) reduces to the following: Find an
adapted process (ut)t∈[0,1] such that the following cost functional is minimized:

J [u] := EP

[∫ 1

0

1

2
∥ut∥2 + ct(X

u
t ) dt

]
, (5.55)

where ct(x) := σ4γ(1 − γ)∥∇ log ℓnt (x)∥2/2. It is not hard to see that this is an
instance of a stochastic optimal control problem with zero terminal cost, where u
is “controlling” the stochastic process Xu

t such that the Stein score is minimized
while spending the least amount of energy. The structure of this control problem
suggests that the optimal control is of feedback type and is equal to the negative
gradient of the value function. It therefore remains to find the value function.

The value function Vt(x) of the optimal control problem shall satisfy the
Hamilton–Jacobi–Bellman (HJB) equation, which writes as

∂tVt(x) + min
u∈Rd

{
⟨bγt (x) + u,∇Vt(x)⟩+

σ2

2
∆Vt(x) +

1

2
∥u∥2 + ct(x)

}
= 0,

along with V1(x) = 0 for all x ∈ Rd. The optimal value u∗ of the inner optimization
problem is u∗(t, x) = −∇Vt(x), asserting that the optimal control is of feedback
type. Plugging this value in the HJB equation gives

∂tVt(x)−
1

2
∥∇Vt(x)∥2 +

σ2

2
∆Vt(x) + ⟨bγt (x),∇Vt(x)⟩+ ct(x) = 0, V1(x) = 0.
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Inspired by Fleming’s logarithmic transformation [Fle77, Sec. 2], let us make the
change of variables Vt(x) = −σ2 logEt(x) in the equation to get

∂tEt(x) +
σ2

2
∆Et(x) + ⟨bt(x),∇Et(x)⟩ =

1

σ2
Et(x) ct(x), E1(x) = 1. (5.56)

This PDE admits a probabilistic representation similar to Feynman–Kac formula.
Following Pra and Pavon [PP90], we see that

Et(x) = Et,x
[
exp

(
− 1

σ2

∫ 1

t

cs(Ys) ds

)]
,

where (Ys)s∈[t,1] is the solution to the uncontrolled SDE dYt = bγt (Yt) dt+ σ dWt

and Et,x is expectation with respect to the law of Y started at time t from x.
Remark. One has to invoke an appropriate verification theorem to ensure the
optimality of the mentioned control. This turns out to be straightforward for the
stochastic optimal control problem (5.55); we refer the reader to [ØS19]. ♢

Putting everything together, we thus have proved the main theorem of this
section, stated below:

▶ Theorem 5.20. Let P (n) be given by the scheme (IPFγ), and let vnt be the
(forward) drift corresponding to its SDE representation. Then vnt satisfies the
following recursion:

vn+1
t (x) = vnt (x) + γ · σ2∇ log ℓnt (x)−∇V nt (x), (SDEγ)

where

V nt (x) = −σ2 logEt,x
[
exp

{
−σ

2γ(1− γ)
2

∫ 1

t

∥∇ log ℓns (Ys)∥
2
ds

}]
, (5.57)

and the expectation is with respect to the law of the process (Ys)s∈[t,1] starting at
Yt = x and following the uncontrolled SDE

dYs =
(
vns (Ys) + γ · σ2∇ log ℓns (Ys)

)
ds+ σ dWs. (5.58)

When γn ≡ 1, the ∇Vt term in (SDEγ) disappears, and the result of Theo-
rem 5.20 becomes Theorem 5.19 applied twice, recovering the iterative formula
for the SDE representation of IPF [De +21, Prop. 6].

We close this section by mentioning a few remarks about the proof, compu-
tational aspects of Theorem 5.20, as well as a formal flow corresponding to the
IPFγ-iterations.
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Computational aspects

Although this thesis focuses on the theoretical understanding of the Sinkhorn and
IPF iterates, let us briefly remark how the formula in Theorem 5.20 admits a
practical implementation. To see this, notice that the ∇ log ℓnt term in (SDEγ) is
the standard Stein score ratio that can be estimated by various diffusion models
and is present in most practical training procedures of SB. On the other hand,
the computation of the additional term involving Vt needs some extra treatment.

A common practice is to connect the value function via the Feynman–Kac
formula to SDEs with killing. Concretely, since the cost ct in (5.56) is non-
negative, one can simulate the uncontrolled SDE (5.58), and kill it at a rate
ct/σ

2 = γ(1−γ)
2 ∥∇ log ℓnt ∥

2, that is,

P[Yt+h is killed | Yt] =
γ(1− γ)

2
∥∇ log ℓnt (Yt)∥

2
+ o(h).

These procedures are already employed in the SB community in other contexts
[Liu+22; Par+23].

Another way is to use the Girsanov theorem (Theorem 5.17) and formulate Vt
in terms of expectations with respect to a standard Brownian motion. That is,

Vt(x) = − logE
[
exp

(
1

σ

∫ 1

t

⟨bγs (x+ σWs−t), dWs−t⟩

− 1

2σ2

∫ 1

t

∥bγs (x+ σWs−t)∥2 + cs(x+ σWs−t) ds

)]
,

where the expectation is with respect to a standard Brownian motion (Wt)t≥0.
Given ∇ log ℓnt , which is given by the usual score matching procedure in SB
training, one can compute the value function using approximation techniques in
control theory for integration with respect to standard Brownian motion [ZC22].

Schrödinger flows

Let us remark on how the results in this section naturally lead to a flow of SDEs,
that is, an evolution of path measures (P s)s≥0 where each P s is the law of an
SDE with a certain drift vst and diffusion coefficient σ.

To streamline the exposition, we make the simplifying assumption that σ = 1
and the reference measure R is given by the law of the reversible Brownian motion.
Our conclusions remain applicable in the general case, with the cost of more
involved notation.

Consider the static SB problem in (5.45), which is nothing but (OTε) with
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cost function c(x, y) = 1
2∥x − y∥

2 and ε = 1. Let fs and gs be the Schrödinger
potentials of the Sinkhorn flow (5.34). For each s ≥ 0, define the path measures
P s on Ω = C([0, 1];Rd) by

dP s

dR
(ω) = exp(fs(ω0) + gs(ω1)), ω ∈ Ω. (5.59)

Similar to the static case, these path measures are known to solve the SB problem
for their corresponding marginals µs0, µs1 [Léo13a, Thm. 2.5] and, since fs and gs
come from the Sinkhorn flow, µs0 = µ0 for all s ≥ 0.

We can now formally define an evolution of the path measures P s, where at
each time s, P s admits an SDE representation which can be described using the
Schrödinger potentials fs, gs: For each s, define the function Gs on [0, 1]× Rd by

Gs(t, z) := logE[exp(gs(R1)) |Rt = z] (5.60)

so that Gs(1, ·) = gs(·). Then Léonard [Léo13a, Prop. 6] implies that P s is the
law of the SDE:

dXs
t = ∇Gs(t,Xs

t ) dt+ dWt, Xs
0 ∼ µ0. (5.61)

As a result, the mapping s 7→ (Gs(t, ·))t∈[0,1] can be regarded as the dynamic
dual Sinkhorn flow associated with (gs)s≥0, while (5.61) can be considered as the
continuous-time limit of the SDE representation of (IPFγ), as γ → 0.

5.9. CONCLUSIONS

In summary, this chapter introduced the continuous-time Sinkhorn algorithm as
a novel approach to design schemes that maintain convergence in the presence
of noise and bias. We extend these insights to Schrödinger bridges and the
Iterative Proportional Fitting procedure. Our work paves the way for several
promising avenues for future research. For instance, one direction involves exploring
connections with other existing dynamics, such as those introduced by Conforti,
Lacker, and Pal [CLP23], the Wasserstein mirror flow of Deb et al. [Deb+23], and
mean-field Schrödinger dynamics of Claisse et al. [Cla+23]. The connection to
the mirror flow also opens up the possibility of introducing momentum terms to
achieve acceleration [KBB15; WWJ16]. These questions offer rich opportunities
for further investigation.
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BIBLIOGRAPHIC NOTES

The Sinkhorn algorithm was introduced by Sinkhorn and Knopp [SK67]. A modern
account with additional historical notes can be found in the book of Peyré and
Cuturi [PC20]. Traces of the iterative proportional fitting procedure can be found
in the works of Fortet [For40] and Kullback [Kul68]. Classical analysis of the
Sinkhorn algorithm—seen as an alternating projection method—can be found in,
e.g., [Cut13; CGP16; PC20; GN22].

Mirror Descent was introduced by Nemirovsky and Judin [NJ83]. Later, Beck
and Teboulle [BT03] showed that it is essentially a nonlinear projected subgradient
method; this is the viewpoint we chose in the chapter.

For applications of Schrödinger Bridges in sampling, see [Ber+19; Hua+21]. For
application in generative modeling see [Bor+21; CLT21; Wan+21a]. For molecular
biology applications see, e.g., [Hol+23], and for single-cell dynamics see, e.g.,
[Bun+23] and references therein. For applications in mean-field games and deep
reinforcement learning, see [Liu+22].





CHAPTER SIX

CONCLUSION AND OUTLOOK

This thesis has presented a comprehensive investigation into stochastic approxima-
tion algorithms through the lens of dynamical systems. By drawing on foundational
theories and expanding into new contexts, this work offers both theoretical insights
and practical algorithms. Below, we provide a summary of the key contributions
from each chapter and outline directions for future research.

In Chapter 3, we extended the theoretical framework of Benaïm and Hirsch to
Riemannian manifolds by adapting stochastic approximation algorithms to the
manifold settings. Through examples in machine learning and game theory, we
highlighted the practical relevance and challenges associated with nonlinear root-
finding. A rather complete picture of the asymptotics of root-finding algorithms is
given in the context of two main theorems: one showing the asymptotic pseudo-
trajectory property, and other proving stability of the iterates in non-compact
Hadamard manifolds. We also studied practical variations, namely retractions and
alternations, and showed that these variations do not change the asymptotics of
the algorithm.

Chapter 4 explored stochastic approximation algorithms in the Wasserstein
space for analyzing discretizations of stochastic differential equations. We presented
a unified framework showing that SDE discretization algorithms converge to the
same limits as continuous SDEs. The results of this chapter have direct implications
for a wide range of Langevin-based sampling algorithms, as well as those based
on the mirror Langevin diffusion, namely last-iterate asymptotic convergence of
the law of the iterates to the target distribution in Wasserstein distance.

In Chapter 5, we delved into the linear structure and convexity in the space of
signed measures, focusing on the relative entropy functional. The step-sized Sink-
horn algorithm and its continuous-time counterpart were introduced, illustrating
convergence to optimal solutions is possible amid noise and bias. The chapter
also connected the Schrödinger Bridge problem and Iterative Proportional Fitting
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procedure to mirror descent techniques, offering rigorous convergence guarantees
for their practical implementations.

Overall, our unified framework underscores that the convergence of various
seemingly different stochastic approximation schemes can be analyzed through
the deterministic dynamics of flows, provided certain criteria are met regarding
noise and bias terms. This approach validates existing algorithms and facilitates
the design of new ones.

Future Research Directions
While this thesis provides crucial insights and lays a solid theoretical foundation,
several open questions and research directions remain:

(1) Zeroth-Order Optimization: Kiefer–Wolfowitz algorithms are essential
in situations where it is not possible to access vector fields directly. This
is particularly important in game theory and sequential online learning
contexts. Although there is an extensive literature on Euclidean domains
and some focused specifically on Riemannian optimization, a comprehensive
theory like the one developed in Chapter 3 is lacking.

(2) Constant Step-Size Algorithms: Our analysis currently does not cover
constant step-size stochastic approximation schemes, which are frequently
used in practical applications. This is a significant limitation, especially
for real-world implementations of these algorithms. Although the theory
underlying constant step-size stochastic approximation differs substantially
from that of diminishing step-size methods, we believe there may be potential
to extend the existing Euclidean theory to the domains discussed in this
thesis.

(3) Beyond SDE-based Algorithms: Practical sampling schemes such as
Metropolis–Hastings do not immediately link to an SDE discretization. The
main challenge is the “accept-reject” step, which is essentially a projection
onto the set of reversible Markov processes. Incorporating these algorithms
into the framework of stochastic approximation within the Wasserstein
space is a promising future research direction. This theoretical approach can
provide a more comprehensive understanding of sampling problems.

(4) Continuous-Time Sinkhorn Extensions: In our study [KHK24], we es-
tablished preliminary links between the continuous-time Sinkhorn algorithm
and significant dynamics including the Wasserstein mirror flow and mean-
field Schrödinger dynamics. Future research could explore these connections
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further and incorporate momentum terms for acceleration, thereby enhanc-
ing our comprehension of various flows in Wasserstein space. This could
also aid in developing new, more efficient algorithms for solving Schrödinger
bridges and entropic optimal transport problems.

In conclusion, this thesis advances the understanding and application of stoch-
astic approximation algorithms across various complex settings. The insights
gained herein suggest numerous promising avenues for future research, aiming to
solve more intricate problems with robust, theoretically-backed methods.





APPENDIX A

PROOFS FOR CHAPTER 3

In this appendix, we bring missing proofs in Chapter 3. Appendix A.1 includes
those results that are of a general geometric nature, and are used in the proofs
and arguments in the chapter. The rest of the sections are organized by the
corresponding theorems.

A.1. GENERAL GEOMETRIC RESULTS

Lemma A.1. Let U ⊂M be a normal neighborhood around p ∈M; let q ∈ U .
Then, the parallel transport of a tangent vector v ∈ TpM from p to q along the
minimizing geodesic depends smoothly on p, q, and v.

Proof. This lemma is folklore, and can possibly be found in some Riemannian
geometry textbooks. We give a proof here for the sake of completeness.

We consider the normal coordinate system φ : V ⊆ Rd → U centered at
p. In this chart, the minimizing geodesic between p and q is the line segment
t 7→ (tw1, . . . , twd), where w = (w1, . . . , wd) is the coordinate expression of
exp−1

p (q). Consider the parallel vector field V (t) along this geodesic with V (0) = v.
When expressed in φ, V (t) =

∑
k V

k(t)∂i
∣∣
γ(t)

satisfies the system of ODEs

V̇ k(t) = −
∑
i,j

Γkij(sw
1, . . . , swd)wi V j(t), k = 1, . . . , d, (A.1)

with initial conditions V k(0) = vk. Now define a set of new auxiliary functions
W k, k = 1, . . . , d and consider the parallel transport as the system of ODEs in 2d
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functions (V 1, . . . , V d,W 1, . . . ,W d){
V̇ k(t) = −

∑
i,j Γ

k
ij(tW

1(t), . . . , tW d(t))W i(t)V j(t)

Ẇ k(t) = 0
(A.2)

with initial conditions {
W k(0) = wk,

V k(0) = vk.

As the solutions of smooth ODEs depend smoothly on initial conditions, as well
as time, the solutions to (A.2) can be written as smooth functions V k(t, w, v)
and W k(t, w, v). It follows immediately from the form of the equations that
W k(t) ≡ wk, and therefore, V k coincides with the solution of (A.1). Therefore,
we obtain that V k(1), which is the parallel transport of v along the minimizing
geodesic connecting p to q depends smoothly on both q and v. Smoothness in p
follows by considering the parallel transport from q to p.

Lemma A.2. Let r be the radial distance function from a fixed point p ∈ M,
i.e., r(q) = d(p, q). Then, for any absolutely continuous curve γ : [a, b]→M with
metric derivative |γ̇| ∈ L1(a, b), it holds

|r(γ(b))− r(γ(a))| ≤
∫ b

a

|γ̇|(t) dt.

Proof. The result follows from [AGS05, Thm. 1.2.5] by noticing that r is 1-
Lipschitz continuous.

Lemma A.3 ([Lez20, Thm 3.12] or [CB21, Prop. A.3]). LetM be a Riemannian
manifold whose sectional curvatures are in the interval [κlow, κup], and let κmax =
max(|κup|, |κlow|). For v ∈ TpM, consider the geodesic γ(t) = expp(tv). If γ is
defined and has no interior conjugate point on the interval [0, 1], then

∀w ∈ TpM, |(d expp)v(w)− Pp→γ(1)[w]| ≤ κmax · fκlow
(|v|) · |w⊥| (A.3)

where w⊥ := w− ⟨v,w⟩
⟨v,v⟩ v is the component of w orthogonal to v. The function fκlow

in (A.3) is defined as

fκlow
(a) =


a2

6 if κlow = 0,

r2
(
1− sin(a/r)

a/r

)
if κlow = 1

r2 > 0,

r2
(

sinh(a/r)
a/r − 1

)
if κlow = − 1

r2 < 0.
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x(t)

x(t+ T )
x(t+ T + h)

ΦT (x(t))

ΦT+h(x(t))

Φh(x(t+ T ))

a○ b○

c○

Figure A.1. Induction argument for proving the asymptotic pseudo-trajectory property
(see Lemma 3.7).

Moreover, the function fκlow
is dominated by the case κlow < 0; for all a ∈ R+,

fκlow
(a) ≤ f−κmax(a). (A.4)

A.2. AUXILIARY RESULTS FOR THEOREM 3.4

Lemma 3.7. Let V be a C1 vector field and Φ be its corresponding flow. If a
continuous piecewise-smooth curve x satisfies (3.23) for some T > 0, then it is an
asymptotic pseudo-trajectory of the flow Φ.

Proof. It is clear that (3.23) holds for all 0 < T ′ ≤ T . We show that it holds for
2T , and thus concluding the lemma. First, observe that

sup
h∈[0,2T ]

d(x(t+ h),Φh(x(t))) ≤ sup
h∈[0,T ]

d(x(t+ h),Φh(x(t)))

+ sup
h∈[T,2T ]

d(x(t+ h),Φh(x(t))).

See Fig. A.1 for an illustration. By the induction hypothesis, the first term vanishes
as t→∞ (part a○ in the figure). So we only deal with the second term. We have
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by the triangle inequality

sup
h∈[T,2T ]

d(x(t+ h),Φh(x(t))) = sup
h∈[0,T ]

d(x(t+ T + h),ΦT+h(x(t)))

≤ sup
h∈[0,T ]

d(x(t+ T + h),Φh(x(t+ T )))

+ sup
h∈[0,T ]

d(Φh(x(t+ T )),ΦT+h(x(t))).

Again, by the induction hypothesis, the first term (corresponding to part b○ of
the figure) vanishes as t→∞. For the second term, notice that by the semigroup
property of the flow,

d(Φh(x(t+ T )),ΦT+h(x(t))) = d(Φh(x(t+ T )),Φh(ΦT (x(t)))).

The term on the right-hand side (corresponding to part c○ in the figure) can be
bounded using Lemma A.4 by

sup
h∈[0,T ]

d(Φh(x(t+ T )),ΦT+h(x(t))) ≤ eLT d(x(t+ T ),ΦT (x(t)))

which also vanishes as t → ∞ by assumption. We thus have shown the desired
property.

Lemma A.4. Let p, q ∈ M and consider two integral curves Φs(p) and Φs(q),
s ∈ [0, T ], of the flow Φ of a C1, L-Lipschitz, and complete vector field V . Then,
one has the estimate

sup
s∈[0,T ]

d(Φs(p),Φs(q)) ≤ eTLd(p, q).

Proof. First, we recall the fact that the flow Φ, as a function of both t and p,
is smooth. This follows from the fundamental theorem of flows on Riemannian
manifolds [Lee12, Thm. 9.12], which shows the existence of a unique maximal
smooth global flow (here, smoothness is both in time and space variables). Since for
a complete vector field the flow is global, this implies that Φ is smooth everywhere.

Connect p and q by a minimizing geodesic γ : [0, 1] → M. Consider the
one-parameter family of curves c : [0, T ]× [0, 1]→M , defined as

c(s, t) = Φs(γ(t)).

See Fig. A.2 for an illustration. As the flow Φ is globally smooth, one has that
c is a smooth mapping. We denote ∂sc(s, t) := (dc)( ∂∂s ) and likewise for ∂tc. By
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p

q

γ(t)

c(s, t)

s

V (c(s, t))

Figure A.2. Construction of a one-parameter family of curves using the flow of the
vector field V starting at the geodesic γ (see Lemma A.4).

construction, we have ∂sc(s, t) = V (c(s, t)). Now compute

d

ds

1

2
|∂tc(s, t)|2 = ⟨Ds∂tc(s, t), ∂tc(s, t)⟩

= ⟨Dt∂sc(s, t), ∂tc(s, t)⟩ (torsion-free)
= ⟨DtV (c(s, t)), ∂tc(s, t)⟩
≤ |DtV (c(s, t))| · |∂tc(s, t)|

≤ L|∂tc(s, t)|2,

where in the last line, we used the Lipschitzness of V , in the sense that for any
tangent vector v, we have |∇vV | ≤ L|v|; see the remark after Assumption 3.2.
Integrating the above equation and using Grönwall inequality gives

|∂tc(s, t)|2 ≤ e2LT |∂tc(0, t)|2 = e2LT d(p, q)2.

Now, for each s ∈ [0, T ], define the energy

E(s) =
1

2

∫ 1

0

|∂tc(s, t)|2 dt.

Note that for any smooth curve β : [0, 1] → M, we have L(β)2 ≤ E(β) by the
Cauchy-Schwarz inequality. Thus, for each s ∈ [0, T ],

d(Φs(p),Φs(q)) ≤ L(c(s, ·)) ≤ E(c(s, ·)) 1
2 ≤ eTLd(p, q).
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A.3. AUXILIARY RESULTS FOR THEOREM 3.6

Lemma 3.14. Let E be defined as in (3.59). Then E is negatively correlated with
V everywhere, in the sense that

⟨∇E(p), V (p)⟩ ≤ 0, ∀p ∈M. (3.62)

Moreover, there exists a constant C > 0 such that (HessE)p(v, v) ≤ C|v|2 and

E(p′) ≤ E(p) + ⟨∇E(p), exp−1
p (p′)⟩+ C

2
d2(p, p′), ∀p, p′ ∈M. (3.63)

Proof. We begin by recalling that the gradient of E is given by

∇E(p) =

{
0 if r(p) ≤ R,
f ′(r(p))
r(p) ∇k(p) if r(p) > R.

By assumption, f ′(r(p))/r(p) ≥ 0 so ⟨∇E(p), V (p)⟩ and ⟨∇k(p), V (p)⟩ have the
same sign if r(p) > R and otherwise ⟨∇E(p), V (p)⟩ = 0 if r(p) ≤ R. We thus
conclude that E and V are negatively correlated, as claimed.

Now, to compute the Hessian of E, notice that

HessE(p)[v, v] = ⟨∇v∇E(p), v⟩.

Hence,

HessE(p)[v, v] = ∇v
f ′(r(p))

r(p)
· ⟨∇k(p), v⟩+ f ′(r(p))

r(p)
⟨∇v∇k(p), v⟩

=

〈
∇f

′(r(p))

r(p)
, v

〉
· ⟨∇k(p), v⟩︸ ︷︷ ︸

a○

+
f ′(r(p))

r(p)
Hess k(p)[v, v]︸ ︷︷ ︸

b○

. (A.5)

Here we use the same notation for directional derivative of a scalar function and
the covariant derivative. With this in mind, the first step in computing a○ is the
observation that

∇f
′(r(p))

r(p)
=

(
f ′′(r(p))− f ′(r(p))

r(p)

)
1

r2(p)
∇k(p), (A.6)
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and hence

a○ =

(
f ′′(r(p))− f ′(r(p))

r(p)

)
1

r2(p)
⟨∇k(p), v⟩2

≤ C2

r2(p)
|∇k(p)|2|v|2 = C2 |v|2.

For b○, as x cothx ≤ 1 + x for x ≥ 0, we obtain

b○ ≤ f ′(r(p))

r(p)
(1 + κr(p))|v|2 ≤ C1 (1/R+ κ) |v|2.

Summing up everything, we obtain

HessE(p)[v, v] ≤ (C2 + C1/R+ C1κ)|v|2 =: C|v|2, (A.7)

that is, E has bounded Hessian. Moreover, E is smooth as a composition of
smooth functions. Let p, p′ ∈M be arbitrary, and let γ : [0, 1]→M be a geodesic
connecting the two. By Taylor’s remainder theorem, there exists some t ∈ (0, 1)
such that

E(p′) = E(p) + ⟨∇E(p), γ̇(0)⟩+ 1

2
HessE(γ(t))[γ̇, γ̇].

Thus, invoking (A.7) and noting that |γ̇| = d(p, p′) and γ̇(0) = exp−1
p (p′), we

obtain (3.63) and our proof is complete.

Lemma A.5. Let h : R→ R be the function

h(x) =


0 if x ≤ 0

e−1/x

e−1/x + e−1/(1−x) if x ∈ (0, 1)

1 if x ≥ 1,

(A.8)

and, for R > 0, let

f(x) =

∫ x

0

h(s−R) ds.

Then f is C∞ and it satisfies the conditions (3.60) with C1 = 1 and C2 = 2. In
addition, one has f(x) ≥ x− (R+ 1), and hence f(x) = Ω(x).

Proof. As h(x) ∈ [0, 1], we obtain that f ′(x) ∈ [0, 1]. By a straightforward
computation, one observes that the first derivative of h is bounded as 0 ≤ h′(x) ≤ 2,
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so
f ′′(x) = h′(x−R) ≤ 2.

To complete our proof, simply notice that, for x ≥ R + 1, we have f(x) =∫ x
0
h(s−R) ds ≥

∫ x
R+1

1 ds = x− (R+ 1) = Ω(x), as claimed.

A.4. PROOF OF PROPOSITION 3.15

Proposition 3.15. Suppose that

(H1) M is either a compact or a Hadamard manifold satisfying Assumption 3.1,

(H2) the vector field V is bounded and satisfies Assumption 3.2,

(H3) V is weakly coercive (3.58) in case M is not compact,

(H4) and the errors U of the SFO for V are zero-mean and have bounded second
moments (3.66). IfM is compact, the errors are further assumed to be a.s.
uniformly bounded in norm.

Then, with probability 1, the iterates of Algorithms 3.1–3.4 converge to an inter-
nally chain-transitive set of the flow (3.16).

Proof. The proof boils down to verifying noise and bias conditions in Assump-
tions 3.4 and 3.5, which we do so in a case-by-case basis.

Algorithm 3.1 (RSGM). As Un = U(xn;ωn) and Bn = 0, given (H4) we are
done.

Algorithm 3.2 (RPPM). We only have to deal with the bias since Un = 0.
First, observe that for n large enough (so that γn < injM

V ∗ ), xn+1 falls in the
injectivity radius of xn. Using Lipschitzness of V , we have

|Bn| = |Pxn+1→xn [V (xn+1)]− V (xn)| ≤ L · d(xn+1,xn).

It follows from (RPPM) that

|Bn| ≤ Lγn|V (xn+1)| = O(γn),

which is sufficient to ensure summability requirement of Assumption 3.5.
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Algorithm 3.3 (RSEG). Notice that

|Un| = |Pxn+1/2→xn
[U(xn+1/2;ωn+1/2)]|

= |U(xn+1/2;ωn+1/2)|,

which satisfies Assumption 3.4 by (H4). For the bias, an argument identical to the
proof of Lemma 3.9 implies that γn|Ṽ (xn;ωn)| → 0 almost surely. Thus, xn+1/2

falls in the injectivity radius of xn for large enough n and we have

|Bn| = |Pxn+1/2→xn
[V (xn+1/2)]− V (xn)|

≤ L · d(xn+1/2,xn)

= L · γn · |Ṽ (xn;ωn)|.

Hence, |Bn| → 0 with probability 1. For the summability, we see that by (H2)
and (H4),

E[|Bn|2 | Fn] ≤ 2L2γ2n((V
∗)2 + σ2) = O(γ2n) =: (B

∗
n)

2,

and therefore, B∗
n → 0 as n→∞ and

∑
γn E[(B∗

n)
2]1/2 = O(

∑
γ2n) <∞.

Algorithm 3.4 (ROG). The proof is exactly the same as for RSEG.





APPENDIX B

PROOFS FOR CHAPTER 4

B.1. AUXILIARY RESULTS FOR THEOREM 4.9

Lemma 4.11. Suppose that Assumptions 4.1–4.4 hold and the iterates have
uniformly bounded second moments. Then, for any fixed T > 0, it holds

lim
t→∞

sup
0≤h≤T

E ∥∆Z(t, h)∥2 = 0.

Proof. Let k = m(t) and n = m(t+ h), and by Assumption 4.4, decompose the
error terms into noise and bias. This implies that ∆Z(t, h) = ∆U (t, h) + ∆B(t, h),
where ∆B is the same as ∆Z with Z replaced by B:

∆B(t, h)

= −(t− τk)E[Bk+1 | Ft] +
n−1∑
i=k

γi+1Bi+1 + (t+ h− τn)E[Bn+1 | Ft+h],

and

∆U (t, h) = −(t− τk)Uk+1 +

n−1∑
i=k

γi+1Ui+1 + (t+ h− τn)Un+1. (B.1)

The reason for this simpler formulation is that Un+1 is Fτn+-measurable; we can
therefore remove all the conditional expectations.

Let us first show that ∆B(t, h) vanishes as t→∞. Without loss of generality,
suppose that t is large enough so that γs ≤ 1 for all s ≥ t. Let us also write
B̃t := E[Bt | Ft]. By the triangle inequality applied to the definition of ∆B(t, h),
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we obtain

∥∆B(t, h)∥2 ≤
(n−1∑
i=k

γi+1∥Bi+1∥+ (t+ h− τn)∥B̃t+h∥+ (t− τk)∥B̃t∥
)2

which, by the Cauchy-Schwarz inequality, as well as
∑n−1
i=k γi+1 ≤ h + 1 and

γk+1, γn+1 < 1,

≤ (h+ 3)

(n−1∑
i=k

γi+1∥Bi+1∥2 + γn+1∥B̃t+h∥2 + γk+1∥B̃t∥2
)
,

Since conditional expectation is a projection in L2, we have E ∥B̃t+h∥2 ≤ E ∥Bn+1∥2
and E ∥B̃t∥2 ≤ E ∥Bk+1∥2. Letting l = m(t+ T ), we get

sup
h∈[0,T ]

E ∥∆B(t, h)∥2 ≤ (3 + T ) ·

( l−1∑
i=n

γi+1 E ∥Bi+1∥2 + sup
k≤j≤l+1

γj+1 E ∥Bj+1∥2 + γk+1 E ∥Bk+1∥2
)

Since the second moment of the iterates are assumed to be bounded, the bias
condition (4.15) along with Lipschitzness of v implies that E ∥Bn+1∥2 = O(γn+1).
Thus,

sup
h∈[0,T ]

E ∥∆B(t, h)∥2 ≲ (3 + T )

( l−1∑
i=k

γ2i+1 + sup
k≤j≤l+1

γ2j+1 + γ2k+1

)
. (B.2)

Observe that

l−1∑
i=k

γ2i+1 ≤
(

sup
k≤i≤l−1

γi+1

) l−1∑
i=k

γi+1 ≤ T sup
k≤i≤l−1

γi+1.

Since the step-sizes vanish as t→∞, all the three terms in (B.2) vanish. Therefore,

lim
t→∞

sup
h∈[0,T ]

E ∥∆B(t, h)∥2 = 0.

We now show that the same property holds for ∆U (t, h). Recall that by
Assumption 4.4, the noise terms have bounded second moments, which we call
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CU . We first decompose (B.1) in L2:

∥∆U (t, h)∥2 ≤ 3

∥∥∥∥n−1∑
i=k

γi+1Ui+1

∥∥∥∥2 + 3γ2n+1∥Un+1∥2 + 3γ2k+1∥Uk+1∥2.

Letting l = m(t+ T ), taking expectations and supremum over h ∈ [0, T ] gives

sup
h∈[0,T ]

E ∥∆U (t, s)∥2 ≤ 3 sup
k<n≤l

{
E

∥∥∥∥n−1∑
i=k

γi+1Ui+1

∥∥∥∥2 + 3(γ2n+1 + γ2k+1)CU

}
.

Since {Un} is a martingale difference sequence, {
∑n−1
i=k γi+1Ui+1}n>k is a martin-

gale. Thus, by the martingale property and boundedness of the second moments
of Un, we get

E

∥∥∥∥n−1∑
i=k

γi+1Ui+1

∥∥∥∥2 =

n−1∑
i=k

γ2i+1 E ∥Ui+1∥2 ≤ CU
n−1∑
i=k

γ2i+1.

Hence,

lim
n→∞

sup

{
E

∥∥∥∥n−1∑
i=k

γi+1Ui+1

∥∥∥∥2 : k < n ≤ l
}
≤ lim
n→∞

CU

∞∑
i=k

γ2i+1 = 0,

as the step-size sequence is square-summable. This shows that

lim
t→∞

sup
h∈[0,T ]

E ∥∆U (t, h)∥2 = 0.

Lemma B.1. Let A be an Fs-measurable matrix and t ≥ s. Then, it holds

E ∥A (Wt −Ws)∥2 = (t− s)E[tr(A⊤A)].

Proof.

E ∥A (Wt −Ws)∥2 = E[(Wt −Ws)
⊤A⊤A (Wt −Ws)]

= E[tr
(
A⊤A (Wt −Ws)(Wt −Ws)

⊤)]
= E[E[tr(A⊤A (Wt −Ws)(Wt −Ws)

⊤) | Fs]]
= (t− s)E[tr(A⊤A)].
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B.2. AUXILIARY LEMMAS FOR SAMPLING
ALGORITHMS

Lemma B.2. The bias of the Proximal Langevin algorithm (PLA) satisfies the
bias condition (4.15).

Proof. Using Lipschitzness of ∇f we can write

E[∥Bn+1∥2 | Fn] = E[∥∇f(xn+1)−∇f(xn)∥2 | Fn]
≤ L2 E[∥xn+1 − xn∥2 | Fn]
= L2 E[∥−γn+1∇f(xn+1) +

√
2γn+1 ξn+1∥2 | Fn]

≤ 2L2γ2n+1 E[∥∇f(xn+1)∥2 | Fn] + 4L2dγn+1.

Now, notice that ∥∇f(xn+1)∥2 ≤ 2∥∇f(xn+1)−∇f(xn)∥2 + 2∥∇f(xn)∥2. Since
γn+1 → 0 as n→∞, we can assume that 4L2γ2n+1 <

1
2 . This gives

E[∥Bn+1∥2 | Fn] ≤
1

2
E[∥Bn+1∥2 | Fn] + 4L2γ2n+1∥∇f(xn)∥2 + 4L2dγn+1,

which implies

E[∥Bn+1∥2 | Fn] ≤ 8L2γ2n+1∥∇f(xn)∥2 + 8L2dγn+1

≲ γ2n+1∥∇f(xn)∥2 + γn+1.

Lemma B.3. The bias of the randomized mid-point method (RMM) satisfies the
condition (4.15).

Proof. Let ∇̃f(xn) = ∇f(xn) + U(xn;ωn) and ∇̃f(xn+1/2) = ∇f(xn+1/2) +
U(xn+1/2;ωn+1/2). Using the Lipschitzness of ∇f and αn+1 ≤ 1, we get

E[∥Bn+1∥2 | Fn] = E[∥∇f(xn+1/2)−∇f(xn)∥2 | Fn]
≤ L2 E[∥xn+1/2 − xn∥2 | Fn]
≤ 2L2

(
γ2n+1 E[∥∇f(xn) + U(xn;ωn)∥2 | Fn] + 2γn+1d

)
≤ 4L2γ2n+1 ∥∇f(xn)∥2 + 2L2γ2n+1C

2
U + 4L2dγn+1

≲ γ2n+1∥∇f(xn)∥2 + γn+1.

Lemma B.4. The bias of the optimistic Randomized Mid-point method (ORMM)
satisfies the condition (4.15).



§B.2 AUXILIARY LEMMAS FOR SAMPLING ALGORITHMS 217

Proof. We have

E[∥Bn+1∥2 | Fn] = E[∥∇f(xn+1/2)−∇f(xn)∥2 | Fn]
≤ L2 E[∥xn+1/2 − xn∥2 | Fn]
= L2 E[∥−γn+1αn+1∇̃f(xn−1/2) +

√
2γn+1αn+1ξ

′
n+1∥2 | Fn]

≤ 2L2γ2n+1 E[∥∇f(xn−1/2)∥2 | Fn] + 2L2γ2n+1C
2
U + 4L2dγn+1,

where we used αn+1 ≤ 1. Similar to the proof of Lemma B.2 for (PLA), notice
that ∥∇f(xn−1/2)∥2 ≤ 2∥∇f(xn−1/2)−∇f(xn)∥2+2∥∇f(xn)∥2. Since γn+1 → 0

as n→∞, we can assume that 4L2γ2n+1 <
1
2 , and we get

E[∥Bn+1∥2 | Fn] ≤ 8L2γ2n+1∥∇f(xn)∥2 + 8L2γ2n+1C
2
U + 8L2dγn+1

≲ γ2n+1∥∇f(xn)∥2 + γn+1.

Lemma B.5. The bias of (SRK) satisfies the condition (4.15).

Proof. We have

E[∥∇f(h1)−∇f(xn)∥2 | Fn] ≤ 4L2dγn+1

(
( 12 + 1√

6
)2 + 1

12

)
= O(γn+1),

and similarly,

E[∥∇f(h2)−∇f(xn)∥2 | Fn] ≲ γ2n+1∥∇f(xn)∥2 + γn+1.

Therefore,

E[∥Bn+1∥2 | Fn] ≤ E[ 12∥∇f(h1)−∇f(xn)∥
2 + 1

2∥∇f(h2)−∇f(xn)∥
2 | Fn]

≲ γ2n+1∥∇f(xn)∥2 + γn+1.





BIBLIOGRAPHY

[AMS08] Pierre-Antoine Absil, Robert Mahony, and Rodolphe Sepulchre.
Optimization Algorithms on Matrix Manifolds. Princeton University
Press, 2008.

[AC21] Kwangjun Ahn and Sinho Chewi. “Efficient constrained sampling via
the mirror-Langevin algorithm”. In: Advances in Neural Information
Processing Systems 34 (2021), pp. 28405–28418.

[AB06] Charalambos D. Aliprantis and Kim C. Border. Infinite Dimensional
Analysis: A Hitchhiker’s Guide. eng. 3rd ed. 2006. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006.

[Ama83] Shun-Ichi Amari. “A Foundation of Information Geometry”. In:
Electronics and Communications in Japan (Part I: Communications)
66.6 (1983), pp. 1–10.

[AGS05] Luigi Ambrossio, Nicola Gigli, and Giuseppe Savaré. Gradient Flows:
In Metric Spaces and in the Space of Probability Measures. Lectures
in Mathematics ETH Zürich. Basel: Birkhäuser-Verlag, 2005.

[ABM14] Hedy Attouch, Giuseppe Buttazzo, and Gérard Michaille. Variational
Analysis in Sobolev and BV Spaces. Philadelphia, PA: Society for
Industrial and Applied Mathematics, 2014. eprint: https://epubs.
siam.org/doi/pdf/10.1137/1.9781611973488.

[AKL22] Pierre-Cyril Aubin-Frankowski, Anna Korba, and Flavien Léger.
“Mirror Descent with Relative Smoothness in Measure Spaces, with
Application to Sinkhorn and EM”. In: Advances in Neural Informa-
tion Processing Systems 35 (2022), pp. 17263–17275.

[BGL14] Dominique Bakry, Ivan Gentil, and Michel Ledoux. Analysis and
geometry of Markov diffusion operators. Vol. 103. Springer, 2014.

https://epubs.siam.org/doi/pdf/10.1137/1.9781611973488
https://epubs.siam.org/doi/pdf/10.1137/1.9781611973488


220 BIBLIOGRAPHY

[Bal+22] Krishna Balasubramanian, Sinho Chewi, Murat A. Erdogdu, Adil
Salim, and Shunshi Zhang. “Towards a theory of non-log-concave
sampling: first-order stationarity guarantees for Langevin Monte
Carlo”. In: Conference on Learning Theory. PMLR. 2022, pp. 2896–
2923.

[BC17] Heinz H. Bauschke and Patrick L. Combettes. Convex Analysis and
Monotone Operator Theory in Hilbert Spaces. 2nd ed. New York,
NY, USA: Springer, 2017.

[BT03] Amir Beck and Marc Teboulle. “Mirror Descent and Nonlinear
Projected Subgradient Methods for Convex Optimization”. In: Op-
erations Research Letters 31.3 (2003), pp. 167–175.

[Ben99] Michel Benaïm. “Dynamics of Stochastic Approximation Algorithms”.
In: Séminaire de Probabilités XXXIII. Ed. by Jacques Azéma, Michel
Émery, Michel Ledoux, and Marc Yor. Lecture Notes in Mathematics.
Berlin, Heidelberg: Springer, 1999, pp. 1–68.

[BBC17] Michel Benaïm, Florian Bouguet, and Bertrand Cloez. “Ergodicity
of inhomogeneous Markov chains through asymptotic pseudotrajec-
tories”. In: The Annals of Applied Probability 27.5 (2017), pp. 3004–
3049.

[BH96] Michel Benaïm and Morris W. Hirsch. “Asymptotic Pseudotrajecto-
ries and Chain Recurrent Flows, with Applications”. In: Journal of
Dynamics and Differential Equations 8.1 (1996), pp. 141–176.

[BFM17] Glaydston Bento, Orizon Ferreira, and Jefferson Melo. “Iteration-
complexity of gradient, subgradient and proximal point methods on
Riemannnian manifolds”. In: Journal of Optimization Theory and
Applications 173.2 (2017), pp. 548–562.

[BMP90] Albert Benveniste, Michel Métivier, and Pierre Priouret. Adaptive
Algorithms and Stochastic Approximations. Springer, 1990.

[Ber+19] Espen Bernton, Jeremy Heng, Arnaud Doucet, and Pierre E. Jacob.
Schrödinger Bridge Samplers. 2019. arXiv: 1912.13170 [stat].
preprint.

[Ber96] Dimitri P Bertsekas. Neuro-Dynamic Programming. Anthropological
Field Studies. Athena Scientific, 1996.

[Bil99] Patrick Billingsley. Convergence of probability measures. 2nd ed.
Wiley Series in Probability and Statistics. John Wiley & Sons, 1999.

[Bon13] Silvere Bonnabel. “Stochastic Gradient Descent on Riemannian
Manifolds”. In: IEEE Transactions on Automatic Control 58.9 (2013),
pp. 2217–2229. arXiv: 1111.5280 [cs, math, stat].

https://arxiv.org/abs/1912.13170
https://arxiv.org/abs/1111.5280


BIBLIOGRAPHY 221

[Bor08] Vivek S. Borkar. Stochastic Approximation. Hindustan Book Agency,
2008.

[Bor+21] Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud
Doucet. “Diffusion Schrödinger Bridge with Applications to Score-
Based Generative Modeling”. In: Advances in Neural Information
Processing Systems. 2021.

[Bou23] Nicolas Boumal. An Introduction to Optimization on Smooth Mani-
folds. 1st ed. Cambridge University Press, 2023.

[BAC19] Nicolas Boumal, Pierre-Antoine Absil, and Coralia Cartis. “Global
rates of convergence for nonconvex optimization on manifolds”. In:
IMA Journal of Numerical Analysis 39.1 (2019), pp. 1–33.

[BEL18] Sébastien Bubeck, Ronen Eldan, and Joseph Lehec. “Sampling from
a log-concave distribution with projected Langevin Monte Carlo”.
In: Discrete & Computational Geometry 59 (2018), pp. 757–783.

[Bun+23] Charlotte Bunne, Ya-Ping Hsieh, Marco Cuturi, and Andreas Krause.
“The Schrödinger Bridge between Gaussian Measures Has a Closed
Form”. In: International Conference on Artificial Intelligence and
Statistics. 2023.

[BK81] Peter Buser and Hermann Karcher. Gromov’s almost flat manifolds.
Astérisque 81. Société mathématique de France, 1981.

[Car92] Manfredo Perdigão do Carmo. Riemannian geometry / Manfredo do
Carmo ; translated by Francis Flaherty. eng. Mathematics. Theory
and applications. Boston: Birkhäuser, 1992.

[Cha+21] Ngoc Huy Chau, Éric Moulines, Miklos Rásonyi, Sotirios Sabanis,
and Ying Zhang. On stochastic gradient Langevin dynamics with
dependent data streams: the fully non-convex case. 2021. arXiv:
1905.13142 [math.ST].

[CE08] Jeff Cheeger and David Ebin. Comparison Theorems in Riemannian
Geometry. Vol. 365. AMS Chelsea Publishing. American Mathemati-
cal Society, 2008.

[CLC21] Junfeng Chen, Sanyang Liu, and Xiaokai Chang. “Modified Tseng’s
extragradient methods for variational inequality on Hadamard man-
ifolds”. In: Applicable Analysis 100.12 (2021), pp. 2627–2640.

[CLT21] Tianrong Chen, Guan-Horng Liu, and Evangelos Theodorou. “Likeli-
hood Training of Schrödinger Bridge Using Forward-Backward SDEs
Theory”. In: International Conference on Learning Representations.
2021.

https://arxiv.org/abs/1905.13142


222 BIBLIOGRAPHY

[CGP16] Yongxin Chen, Tryphon Georgiou, and Michele Pavon. “Entropic
and displacement interpolation: a computational approach using the
Hilbert metric”. In: SIAM Journal on Applied Mathematics 76.6
(2016), pp. 2375–2396.

[Che+18] Xiang Cheng, Niladri S. Chatterji, Yasin Abbasi-Yadkori, Peter
L. Bartlett, and Michael I. Jordan. “Sharp convergence rates for
Langevin dynamics in the nonconvex setting”. In: arXiv preprint
arXiv:1805.01648 (2018).

[Che23] Sinho Chewi. Log-Concave Sampling. 2023.

[Che+21] Sinho Chewi, Murat A. Erdogdu, Mufan Bill Li, Ruoqi Shen, and
Matthew Zhang. “Analysis of Langevin Monte Carlo from Poincaré
to Log-Sobolev”. In: arXiv preprint arXiv:2112.12662 (2021).

[Cla+23] Julien Claisse, Giovanni Conforti, Zhenjie Ren, and Songbo Wang.
Mean Field Optimization Problem Regularized by Fisher Information.
2023. arXiv: 2302.05938 [math.PR].

[CLP23] Giovanni Conforti, Daniel Lacker, and Soumik Pal. Projected Langevin
dynamics and a gradient flow for entropic optimal transport. 2023.
arXiv: 2309.08598 [math.PR].

[CG24] Dario Corona and Roberto Giambò. “Global Models of Collapsing
Scalar Field: Endstate”. In: Symmetry 16.5 (2024), p. 583.

[Cou+16] Nicolas Courty, Rémi Flamary, Devis Tuia, and Alain Rakotoma-
monjy. Optimal Transport for Domain Adaptation. 2016. arXiv:
1507.00504 [cs.LG].

[CB19] Christopher Criscitiello and Nicolas Boumal. “Efficiently escaping
saddle points on manifolds”. In: Advances in Neural Information
Processing Systems 32 (2019), pp. 5987–5997.

[CB21] Christopher Criscitiello and Nicolas Boumal. An Accelerated First-
Order Method for Non-Convex Optimization on Manifolds. 2021.
arXiv: 2008.02252 [cs, math]. preprint.

[Cut13] Marco Cuturi. “Sinkhorn Distances: Lightspeed Computation of
Optimal Transport”. In: Neural Information Processing Systems.
2013.

[DK19] Arnak S. Dalalyan and Avetik Karagulyan. “User-friendly guaran-
tees for the Langevin Monte Carlo with inaccurate gradient”. In:
Stochastic Processes and their Applications 129.12 (2019), pp. 5278–
5311.

https://arxiv.org/abs/2302.05938
https://arxiv.org/abs/2309.08598
https://arxiv.org/abs/1507.00504
https://arxiv.org/abs/2008.02252


BIBLIOGRAPHY 223

[Dan67] John M. Danskin. The Theory of Max-Min and its Application to
Weapons Allocation Problems. Springer Berlin Heidelberg, 1967.

[De +21] Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud
Doucet. “Diffusion Schrödinger Bridge with Applications to Score-
Based Generative Modeling”. In: Advances in Neural Information
Processing Systems. Vol. 34. 2021, pp. 17695–17709.

[Deb+23] Nabarun Deb, Young-Heon Kim, Soumik Pal, and Geoffrey Schiebinger.
Wasserstein Mirror Gradient Flow as the Limit of the Sinkhorn Al-
gorithm. 2023. arXiv: 2307.16421 [math, stat]. preprint.

[DEH21] Radu Alexandru Dragomir, Mathieu Even, and Hadrien Hendrikx.
“Fast stochastic bregman gradient methods: Sharp analysis and vari-
ance reduction”. In: International Conference on Machine Learning.
PMLR. 2021, pp. 2815–2825.

[DM21] Theodore D. Drivas and Alexei A. Mailybaev. “‘Life after Death’ in
Ordinary Differential Equations with a Non-Lipschitz Singularity”.
In: Nonlinearity 34.4 (2021), p. 2296.

[Dur+21] Alain Durmus, Pablo Jiménez, Éric Moulines, and Salem Said. “On
Riemannnian Stochastic Approximation Schemes with Fixed Step-
Size”. In: International Conference on Artificial Intelligence and
Statistics. PMLR. 2021, pp. 1018–1026.

[Dur+20] Alain Durmus, Pablo Jiménez, Éric Moulines, Salem Said, and Hoi-To
Wai. Convergence analysis of Riemannnian stochastic approximation
schemes. 2020. arXiv: 2005.13284. preprint.

[DM17] Alain Durmus and Eric Moulines. “Nonasymptotic convergence anal-
ysis for the unadjusted Langevin algorithm”. In: The Annals of
Applied Probability 27.3 (2017), pp. 1551–1587.

[Egg93] P. P. B. Eggermont. “Maximum Entropy Regularization for Fred-
holm Integral Equations of the First Kind”. In: SIAM Journal on
Mathematical Analysis 24.6 (1993), pp. 1557–1576.

[FP03] Francisco Facchinei and Jong-Shi Pang. Finite-Dimensional Varia-
tional Inequalities and Complementarity Problems. Springer Series
in Operations Research. Springer, 2003.

[FQT20] Jingjing Fan, Xiaolong Qin, and Bing Tan. “Tseng’s extragradient
algorithm for pseudomonotone variational inequalities on Hadamard
manifolds”. In: Applicable Analysis (2020), pp. 1–14.

[FO02] OP Ferreira and PR Oliveira. “Proximal point algorithm on Rie-
mannnian manifolds”. In: Optimization 51.2 (2002), pp. 257–270.

https://arxiv.org/abs/2307.16421
https://arxiv.org/abs/2005.13284


224 BIBLIOGRAPHY

[FPN05] Orizon Pereira Ferreira, LR Lucambio Pérez, and Sándor Zoltán
Németh. “Singularities of monotone vector fields and an extragradient-
type algorithm”. In: Journal of Global Optimization 31.1 (2005),
pp. 133–151.

[FV08] Alessio Figalli and Cedric Villani. “An Approximation Lemma about
the Cut Locus, with Applications in Optimal Transport Theory”. In:
Methods and Applications of Analysis 15.2 (2008), pp. 149–154.

[Fle77] Wendell H. Fleming. “Exit Probabilities and Optimal Stochastic
Control”. In: Applied Mathematics and Optimization 4.1 (1977),
pp. 329–346.

[For40] Robert Fortet. “Résolution d’un système d’équations de M. Schrö-
dinger”. In: Journal de mathématiques pures et appliquées (1940).

[FL89] Joel Franklin and Jens Lorenz. “On the Scaling of Multidimensional
Matrices”. In: Linear Algebra and its Applications (1989).

[FK82] Takahiko Fujita and Shin-ichi Kotani. “The Onsager-Machlup Func-
tion for Diffusion Processes”. In: Journal of Mathematics of Kyoto
University 22.1 (1982), pp. 115–130.

[GPC17] Aude Genevay, Gabriel Peyré, and Marco Cuturi. Learning Gener-
ative Models with Sinkhorn Divergences. 2017. arXiv: 1706.00292
[stat.ML].

[GN22] Promit Ghosal and Marcel Nutz. On the Convergence Rate of Sink-
horn’s Algorithm. 2022. arXiv: 2212.06000 [math]. preprint.

[Hal88] Jack K. Hale. “Asymptotic Behavior of Dissipative Systems”. In:
Aerican Mathematical Society. 1988.

[HR21] Filip Hanzely and Peter Richtárik. “Fastest Rates for Stochastic
Mirror Descent Methods”. In: Computational Optimization and Ap-
plications 79.3 (2021), pp. 717–766.

[HP86] U. G. Haussmann and E. Pardoux. “Time Reversal of Diffusions”.
In: The Annals of Probability 14.4 (1986), pp. 1188–1205.

[Hay86] Simon S. Haykin. Adaptive filter theory. Prentice-Hall information
and system sciences series. Prentice-Hall, 1986.

[HBE20] Ye He, Krishnakumar Balasubramanian, and Murat A Erdogdu.
“On the Ergodicity, Bias and Asymptotic Normality of Randomized
Midpoint Sampling Method”. In: Advances in Neural Information
Processing Systems. Vol. 33. Curran Associates, Inc., 2020, pp. 7366–
7376.

https://arxiv.org/abs/1706.00292
https://arxiv.org/abs/1706.00292
https://arxiv.org/abs/2212.06000


BIBLIOGRAPHY 225

[Hol+23] Lars Holdijk, Yuanqi Du, Ferry Hooft, Priyank Jaini, Bernd Ensing,
and Max Welling. Stochastic Optimal Control for Collective Variable
Free Sampling of Molecular Transition Paths. 2023. arXiv: 2207.
02149 [physics, q-bio]. preprint.

[Hsi+23] Ya-Ping Hsieh, Mohammad Reza Karimi, Andreas Krause, and
Panayotis Mertikopoulos. “Riemannian Stochastic Optimization
Methods Avoid Strict Saddle Points”. In: Advances in Neural Infor-
mation Processing Systems (NeurIPS). 2023.

[Hsi+18] Ya-Ping Hsieh, Ali Kavis, Paul Rolland, and Volkan Cevher. “Mir-
rored Langevin dynamics”. In: Advances in Neural Information Pro-
cessing Systems 31 (2018).

[Hua+21] Jian Huang, Yuling Jiao, Lican Kang, Xu Liao, Jin Liu, and Yanyan
Liu. Schrödinger-Föllmer Sampler: Sampling without Ergodicity.
2021. arXiv: 2106.10880 [stat]. preprint.

[HAG15] Wen Huang, P.-A. Absil, and K. A. Gallivan. “A Riemannian Sym-
metric Rank-One Trust-Region Method”. In: Mathematical Program-
ming 150.2 (2015), pp. 179–216.

[HW21] Wen Huang and Ke Wei. “Riemannnian proximal gradient methods”.
In: Mathematical Programming (2021), pp. 1–43.

[Ili06] Bozhidar Z Iliev. Handbook of normal frames and coordinates. Vol. 42.
Springer Science & Business Media, 2006.

[JKO98] Richard Jordan, David Kinderlehrer, and Felix Otto. “The Vari-
ational Formulation of the Fokker–Planck Equation”. In: SIAM
Journal on Mathematical Analysis 29.1 (1998), pp. 1–17.

[Jos17] Jürgen Jost. Riemannian Geometry and Geometric Analysis. Uni-
versitext. Cham: Springer International Publishing, 2017.

[Kak01] Sham M Kakade. “A Natural Policy Gradient”. In: Advances in
Neural Information Processing Systems. Vol. 14. MIT Press, 2001.

[KHK23a] Mohammad Reza Karimi, Ya-Ping Hsieh, and Andreas Krause. “A
Dynamical System View of Langevin-Based Non-Convex Sampling”.
In: Advances in Neural Information Processing Systems (NeurIPS).
2023.

[KHK23b] Mohammad Reza Karimi, Ya-Ping Hsieh, and Andreas Krause.
“Stochastic Approximation Algorithms for Systems of Interacting
Particles”. In: Advances in Neural Information Processing Systems
(NeurIPS). 2023.

https://arxiv.org/abs/2207.02149
https://arxiv.org/abs/2207.02149
https://arxiv.org/abs/2106.10880


226 BIBLIOGRAPHY

[KHK24] Mohammad Reza Karimi, Ya-Ping Hsieh, and Andreas Krause.
“Sinkhorn Flow as Mirror Flow: a Continuous-Time Framework for
Generalizing the Sinkhorn Algorithm”. In: Proceedings of The 27th
International Conference on Artificial Intelligence and Statistics
(AISTATS). 2024.

[Kar+22] Mohammad Reza Karimi, Ya-Ping Hsieh, Panayotis Mertikopoulos,
and Andreas Krause. “The Dynamics of Riemannian Robbins-Monro
Algorithms”. In: Proceedings of 35th Conference on Learning Theory
(COLT). 2022.

[Kha+20] Konrawut Khammahawong, Poom Kumam, Parin Chaipunya, Jen-
Chih Yao, Ching-Feng Wen, and Wachirapong Jirakitpuwapat. “An
extragradient algorithm for strongly pseudomonotone equilibrium
problems on Hadamard manifolds”. In: Thai Journal of Mathematics
18.1 (2020), pp. 350–371.

[KW52] J. Kiefer and J. Wolfowitz. “Stochastic Estimation of the Maximum
of a Regression Function”. In: The Annals of Mathematical Statistics
23.3 (1952), pp. 462–466.

[KK02] Eric Klavins and Daniel E Koditschek. “Phase regulation of decen-
tralized cyclic robotic systems”. In: The International Journal of
Robotics Research 21.3 (2002), pp. 257–275.

[Kor76] G. M. Korpelevich. “The extragradient method for finding saddle
points and other problems”. In: Èkonom. i Mat. Metody 12 (1976),
pp. 747–756.

[KBB15] Walid Krichene, Alexandre Bayen, and Peter L Bartlett. “Accelerated
Mirror Descent in Continuous and Discrete Time”. In: Advances
in Neural Information Processing Systems. Ed. by C. Cortes, N.
Lawrence, D. Lee, M. Sugiyama, and R. Garnett. Vol. 28. Curran
Associates, Inc., 2015.

[Kri14] Alexandru Kristály. “Nash-type equilibria on Riemannian manifolds:
A variational approach”. In: Journal de Mathématiques Pures et
Appliquées 101.5 (2014), pp. 660–688.

[Kul68] S. Kullback. “Probability Densities with Given Marginals”. In: The
Annals of Mathematical Statistics 39.4 (1968), pp. 1236–1243. JS-
TOR: 2239692.

[KC78] Harold J. Kushner and Dean S. Clark. Stochastic Approximation
Methods for Constrained and Unconstrained Systems. Springer New
York, 1978.

http://www.jstor.org/stable/2239692


BIBLIOGRAPHY 227

[KH81] Harold J. Kushner and Hai Huang. “Asymptotic Properties of Stoch-
astic Approximations with Constant Coefficients”. In: SIAM Journal
on Control and Optimization 19.1 (1981), pp. 87–105. eprint: https:
//doi.org/10.1137/0319007.

[KY97] Harold J. Kushner and G. G. Yin. Stochastic approximation algo-
rithms and applications. Springer-Verlag, 1997.

[LP02] Damien Lamberton and Gilles Pages. “Recursive computation of the
invariant distribution of a diffusion”. In: Bernoulli (2002), pp. 367–
405.

[Le 16] Jean-François Le Gall. Brownian Motion, Martingales, and Stochas-
tic Calculus. Springer International Publishing, 2016.

[Lee12] John M. Lee. Introduction to Smooth Manifolds. Vol. 218. Graduate
Texts in Mathematics. New York, NY: Springer, 2012.

[Lee18] John M. Lee. Introduction to Riemannian Manifolds. Vol. 176. Grad-
uate Texts in Mathematics. Cham: Springer International Publishing,
2018.

[Lég20] Flavien Léger. A Gradient Descent Perspective on Sinkhorn. 2020.
arXiv: 2002.03758 [math]. preprint.

[Lem05] Vincent Lemaire. “Estimation récursive de la mesure invariante d’un
processus de diffusion.” PhD thesis. Université de Marne la Vallée,
2005.

[Léo12] Christian Léonard. “Girsanov Theory Under a Finite Entropy Condi-
tion”. In: Séminaire de Probabilités XLIV. Ed. by Catherine Donati-
Martin, Antoine Lejay, and Alain Rouault. Springer, 2012, pp. 429–
465.

[Léo13a] Christian Léonard. “A Survey of the Schrödinger Problem and Some
of Its Connections with Optimal Transport”. In: Discrete and Con-
tinuous Dynamical Systems 34.4 (2013), pp. 1533–1574.

[Léo13b] Christian Léonard. Some Properties of Path Measures. 2013. arXiv:
1308.0217 [math]. preprint.

[Lez20] Mario Lezcano-Casado. Curvature-dependant global convergence rates
for optimization on manifolds of bounded geometry. 2020. arXiv:
2008.02517 [math.OC]. preprint.

[LLM09] Chong Li, Genaro López, and Victoria Martín-Márquez. “Monotone
vector fields and the proximal point algorithm on Hadamard mani-
folds”. In: Journal of the London Mathematical Society 79.3 (2009),
pp. 663–683.

https://doi.org/10.1137/0319007
https://doi.org/10.1137/0319007
https://arxiv.org/abs/2002.03758
https://arxiv.org/abs/1308.0217
https://arxiv.org/abs/2008.02517


228 BIBLIOGRAPHY

[Li+22] Ruilin Li, Molei Tao, Santosh S. Vempala, and Andre Wibisono.
“The Mirror Langevin Algorithm Converges with Vanishing Bias”.
In: Proceedings of The 33rd International Conference on Algorithmic
Learning Theory. International Conference on Algorithmic Learning
Theory. PMLR, 2022, pp. 718–742.

[LZT22] Ruilin Li, Hongyuan Zha, and Molei Tao. “Sqrt(d) Dimension Depen-
dence of Langevin Monte Carlo”. In: The International Conference
on Learning Representations. 2022.

[Li+20] Xuechen Li, Denny Wu, Lester Mackey, and Murat A. Erdogdu.
Stochastic Runge-Kutta Accelerates Langevin Monte Carlo and Be-
yond. 2020. arXiv: 1906.07868 [cs, stat]. preprint.

[Li+19] Xuechen Li, Yi Wu, Lester Mackey, and Murat A. Erdogdu. “Stoch-
astic runge-kutta accelerates langevin monte carlo and beyond”. In:
Advances in neural information processing systems 32 (2019).

[Liu+22] Guan-Horng Liu, Tianrong Chen, Oswin So, and Evangelos Theodorou.
“Deep Generalized Schrödinger Bridge”. In: Advances in Neural In-
formation Processing Systems. 2022.

[Lju77] Lennart Ljung. “Analysis of recursive stochastic algorithms”. In:
IEEE Transactions on Automatic Control 22.4 (1977), pp. 551–575.

[LS83] Lennart Ljung and Torsten Söderström. Theory and practice of
recursive identification. MIT press, 1983.

[Ma+21] Yi-An Ma, Niladri S. Chatterji, Xiang Cheng, Nicolas Flammarion,
Peter L. Bartlett, and Michael I. Jordan. “Is there an analog of
Nesterov acceleration for gradient-based MCMC?” In: Bernoulli 27.3
(2021), pp. 1942–1992.

[MMS20] Mateusz B. Majka, Aleksandar Mijatović, and Łukasz Szpruch.
“Nonasymptotic bounds for sampling algorithms without log-concavity”.
In: The Annals of Applied Probability 30.4 (2020), pp. 1534–1581.

[MM63] FK Manasse and Charles W Misner. “Fermi normal coordinates
and some basic concepts in differential geometry”. In: Journal of
mathematical physics 4.6 (1963), pp. 735–745.

[Mar70] B. Martinet. “Brève communication. Régularisation d’inéquations
variationnelles par approximations successives”. In: Revue française
d’informatique et de recherche opérationnelle. Série rouge 4.R3
(1970), pp. 154–158.

[MS18] Panayotis Mertikopoulos and William H. Sandholm. “Riemannian
game dynamics”. In: Journal of Economic Theory 177 (2018), pp. 315–
364.

https://arxiv.org/abs/1906.07868


BIBLIOGRAPHY 229

[MT93] Sean P. Meyn and Richard L. Tweedie. “Stability of Markovian pro-
cesses III: Foster–Lyapunov criteria for continuous-time processes”.
In: Advances in Applied Probability 25.3 (1993), pp. 518–548.

[MT04] Grigori N Milstein and Michael V Tretyakov. Stochastic numerics
for mathematical physics. Vol. 39. Springer, 2004.

[Mis19] Konstantin Mishchenko. Sinkhorn Algorithm as a Special Case of
Stochastic Mirror Descent. 2019. arXiv: 1909.06918 [cs, math,
stat]. preprint.

[Mou+22] Wenlong Mou, Nicolas Flammarion, Martin J. Wainwright, and
Peter L. Bartlett. “Improved bounds for discretization of Langevin
diffusions: Near-optimal rates without convexity”. In: Bernoulli 28.3
(2022), pp. 1577–1601.

[ME05] Abubakr Muhammad and Magnus Egerstedt. “Decentralized coordi-
nation with local interactions: Some new directions”. In: Cooperative
Control. Springer, 2005, pp. 153–170.

[NJ83] Arkadii Semenovich Nemirovsky and David Borisovich Judin. Prob-
lem complexity and method efficiency in optimization. eng. Wiley-
Interscience series in discrete mathematics. J. Wiley, 1983.

[NSS16] JX Cruz Neto, PSM Santos, and PA Soares. “An extragradient
method for equilibrium problems on Hadamard manifolds”. In: Opti-
mization Letters 10.6 (2016), pp. 1327–1336.

[Nut22] Marcel Nutz. “Introduction to Entropic Optimal Transport”. Lecture
Notes. 2022.

[NW21] Marcel Nutz and Johannes Wiesel. Entropic Optimal Transport: Con-
vergence of Potentials. 2021. arXiv: 2104.11720 [math]. preprint.

[ØS19] Bernt Øksendal and Agnès Sulem. Applied Stochastic Control of
Jump Diffusions. Springer International Publishing, 2019.

[Ott01] Felix Otto. “The Geometry of Dissipative Evolution Equations:
The Porous Medium Equation”. In: Communications in Partial
Differential Equations 26.1-2 (2001), pp. 101–174.

[Par+23] Matteo Pariset, Ya-Ping Hsieh, Charlotte Bunne, Andreas Krause,
and Valentin De Bortoli. “Unbalanced Diffusion Schrödinger Bridge”.
In: ICML Workshop on New Frontiers in Learning, Control, and
Dynamical Systems. 2023.

[Pet16] Peter Petersen. Riemannian Geometry. Vol. 171. Graduate Texts in
Mathematics. Cham: Springer International Publishing, 2016.

https://arxiv.org/abs/1909.06918
https://arxiv.org/abs/1909.06918
https://arxiv.org/abs/2104.11720


230 BIBLIOGRAPHY

[PC20] Gabriel Peyré and Marco Cuturi. Computational Optimal Transport.
2020. arXiv: 1803.00567 [stat]. preprint.

[Phe93] Robert Ralph Phelps. Convex Functions, Monotone Operators and
Differentiability. 2nd ed. Lecture Notes in Mathematics. Springer-
Verlag, 1993.

[Pop80] Leonid Denisovich Popov. “A modification of the Arrow–Hurwicz
method for search of saddle points”. In: Mathematical Notes of the
Academy of Sciences of the USSR 28.5 (1980), pp. 845–848.

[PP90] Paolo Dai Pra and Michele Pavon. “On the Markov Processes of
Schrödinger, the Feynman-Kac Formula and Stochastic Control”.
In: Realization and Modelling in System Theory: Proceedings of
the International Symposium MTNS-89, Volume I. Ed. by M. A.
Kaashoek, J. H. van Schuppen, and A. C. M. Ran. Boston, MA:
Birkhäuser, 1990, pp. 497–504.

[RRT17] Maxim Raginsky, Alexander Rakhlin, and Matus Telgarsky. “Non-
convex learning via stochastic gradient langevin dynamics: a nonasymp-
totic analysis”. In: Conference on Learning Theory. PMLR. 2017,
pp. 1674–1703.

[RBS14] Lillian J. Ratliff, Samuel A. Burden, and S. Shankar Sastry. On
the Characterization of Local Nash Equilibria in Continuous Games.
2014. arXiv: 1411.2168 [math.OC].

[Res05] Elena Resmerita. “Regularization of Ill-Posed Problems in Banach
Spaces: Convergence Rates”. In: Inverse Problems 21.4 (2005), p. 1303.

[RM51] Herbert Robbins and Sutton Monro. “A Stochastic Approximation
Method”. In: The Annals of Mathematical Statistics 22.3 (1951),
pp. 400–407.

[RT96a] Gareth O. Roberts and Richard L. Tweedie. “Exponential conver-
gence of Langevin distributions and their discrete approximations”.
In: Bernoulli (1996), pp. 341–363.

[RT96b] Gareth O. Roberts and Richard L. Tweedie. “Exponential conver-
gence of Langevin distributions and their discrete approximations”.
In: Bernoulli 2.4 (1996), pp. 341–363.

[Roc97] R Tyrrell Rockafellar. Convex analysis. Vol. 11. Princeton university
press, 1997.

[Roc76] R. Tyrrell Rockafellar. “Monotone Operators and the Proximal Point
Algorithm”. In: SIAM Journal on Control and Optimization 14.5
(1976), pp. 877–898.

https://arxiv.org/abs/1803.00567
https://arxiv.org/abs/1411.2168


BIBLIOGRAPHY 231

[RW00] L. C. G. Rogers and David Williams. Diffusions, Markov Processes
and Martingales. Cambridge University Press, 2000.

[San15] Filippo Santambrogio. Optimal Transport for Applied Mathemati-
cians: Calculus of Variations, PDEs, and Modeling. Springer Inter-
national Publishing, 2015.

[Sch+19] Geoffrey Schiebinger, Jian Shu, Marcin Tabaka, Brian Cleary, Vidya
Subramanian, Aryeh Solomon, Joshua Gould, Siyan Liu, Stacie Lin,
Peter Berube, Lia Lee, Jenny Chen, Justin Brumbaugh, Philippe
Rigollet, Konrad Hochedlinger, Rudolf Jaenisch, Aviv Regev, and
Eric S. Lander. “Optimal-Transport Analysis of Single-Cell Gene
Expression Identifies Developmental Trajectories in Reprogramming”.
In: Cell 176.6 (2019), p. 1517.

[Sha21] Suhail M. Shah. “Stochastic Approximation on Riemannian Mani-
folds”. In: Applied Mathematics & Optimization 83.2 (2021), pp. 1123–
1151.

[SL19] Ruoqi Shen and Yin Tat Lee. The Randomized Midpoint Method
for Log-Concave Sampling. 2019. arXiv: 1909.05503 [cs, math,
stat]. preprint.

[SK67] Richard Sinkhorn and Paul Knopp. “Concerning Nonnegative Ma-
trices and Doubly Stochastic Matrices”. In: Pacific Journal of Math-
ematics 21.2 (1967), pp. 343–348.

[Ste99] Shlomo Sternberg. Lectures on differential geometry. Vol. 316. Amer-
ican Mathematical Society, 1999.

[Str10] Daniel W Stroock. Probability theory: An Analytic View. 2nd ed.
Cambridge University Press, 2010.

[SB98] Richard S Sutton and Andrew G Barto. “Reinforcement Learning:
An Introduction”. In: (1998).

[TH12] Guo-ji Tang and Nan-jing Huang. “Korpelevich’s method for varia-
tional inequality problems on Hadamard manifolds”. In: Journal of
Global Optimization 54.3 (2012), pp. 493–509.

[TTV16] Yee Whye Teh, Alexandre H. Thiery, and Sebastian J. Vollmer. “Con-
sistency and fluctuations for stochastic gradient Langevin dynamics”.
In: Journal of Machine Learning Research 17 (2016).

[Tri+18] Nilesh Tripuraneni, Nicolas Flammarion, Francis Bach, and Michael I
Jordan. “Averaging stochastic gradient descent on Riemannnian man-
ifolds”. In: Conference On Learning Theory. PMLR. 2018, pp. 650–
687.

https://arxiv.org/abs/1909.05503
https://arxiv.org/abs/1909.05503


232 BIBLIOGRAPHY

[Tze+23] Belinda Tzen, Anant Raj, Maxim Raginsky, and Francis Bach. Varia-
tional Principles for Mirror Descent and Mirror Langevin Dynamics.
2023. arXiv: 2303.09532 [math.OC]. preprint.

[VW19] Santosh Vempala and Andre Wibisono. “Rapid convergence of the
unadjusted langevin algorithm: Isoperimetry suffices”. In: Advances
in neural information processing systems 32 (2019).

[Vil03] Cédric Villani. Topics in optimal transportation. American Mathe-
matical Society, 2003.

[Wan+21a] Gefei Wang, Yuling Jiao, Qian Xu, Yang Wang, and Can Yang. “Deep
Generative Learning via Schrödinger Bridge”. In: Proceedings of the
38th International Conference on Machine Learning. International
Conference on Machine Learning. PMLR, 2021, pp. 10794–10804.

[Wan+10] JH Wang, G López, Victoria Martín-Márquez, and Chong Li. “Mono-
tone and accretive vector fields on Riemannian manifolds”. In: Jour-
nal of optimization theory and applications 146.3 (2010), pp. 691–
708.

[WG24] Tao Wang and Ziv Goldfeld. Neural Estimation Of Entropic Optimal
Transport. 2024. arXiv: 2405.06734 [math.ST].

[Wan+21b] Xi Wang, Zhipeng Tu, Yiguang Hong, Yingyi Wu, and Guodong
Shi. “No-regret Online Learning over Riemannnian Manifolds”. In:
Thirty-Fifth Conference on Neural Information Processing Systems.
2021.

[WT11] Max Welling and Yee Whye Teh. “Bayesian Learning via Stochas-
tic Gradient Langevin Dynamics”. In: Internation Conference on
Machine Learning. 2011, p. 8.

[Wib19] Andre Wibisono. Proximal Langevin Algorithm: Rapid Convergence
Under Isoperimetry. 2019. arXiv: 1911.01469 [cs, math, stat].
preprint.

[WWJ16] Andre Wibisono, Ashia C. Wilson, and Michael I. Jordan. “A vari-
ational perspective on accelerated methods in optimization”. In:
Proceedings of the National Academy of Sciences 113.47 (2016),
E7351–E7358.

[Xu+18] Pan Xu, Jinghui Chen, Difan Zou, and Quanquan Gu. “Global
convergence of Langevin dynamics based algorithms for noncon-
vex optimization”. In: Advances in Neural Information Processing
Systems 31 (2018).

https://arxiv.org/abs/2303.09532
https://arxiv.org/abs/2405.06734
https://arxiv.org/abs/1911.01469


BIBLIOGRAPHY 233

[ZS16] Hongyi Zhang and Suvrit Sra. “First-order methods for geodesically
convex optimization”. In: Conference on Learning Theory. PMLR.
2016, pp. 1617–1638.

[Zha+20] Kelvin Shuangjian Zhang, Gabriel Peyré, Jalal Fadili, and Marcelo
Pereyra. “Wasserstein control of mirror Langevin Monte Carlo”. In:
Conference on Learning Theory. PMLR. 2020, pp. 3814–3841.

[ZC22] Qinsheng Zhang and Yongxin Chen. “Path Integral Sampler: A Stoch-
astic Control Approach For Sampling”. In: International Conference
on Learning Representations. 2022.

[ZS20] Xiaojing Zhu and Hiroyuki Sato. “Riemannian Conjugate Gradient
Methods with Inverse Retraction”. In: Computational Optimization
and Applications 77.3 (2020), pp. 779–810.

[ZXG19] Difan Zou, Pan Xu, and Quanquan Gu. “Sampling from non-log-
concave distributions via variance-reduced gradient Langevin dynam-
ics”. In: The 22nd International Conference on Artificial Intelligence
and Statistics. PMLR. 2019, pp. 2936–2945.





CURRICULUM VITAE

Personal Data
Name Mohammad Reza Karimi Jaghargh

Date of Birth December 31, 1992
Place of Birth Tehran, Iran

Citizen of Iran

Education
2019–2024 Eidgenössische Technische Hochschule (ETH),

Zürich, Switzerland
Final degree: Doctor of Science

2016–2019 Eidgenössische Technische Hochschule (ETH),
Zürich, Switzerland
Final degree: Master of Science in Computer Science

2011–2016 Sharif University of Technology,
Tehran, Iran
Final degree: Bachelor of Science in Computer Engineering
and Pure Mathematics

Employment
2016–2019 Research assistant

Learning and Adaptive Systems group,
Zürich, Switzerland

Summer 2015 Research intern
Max Planck Institute for Software Systems,
Kaiserslautern, Germany





INDEX

(α, β)-dissipative, 132
(δ, T )-pseudo-orbit, 19
α-accretive game field, 102
Sinγ-iteration, 170
p-Wasserstein distance, 118
p-Wasserstein space, 118
asymptotic pseudo-trajectory, 21
Riemannian Robbins–Monro scheme,

61

affine connection, 44
alpha limit point, 17
atlas, 40
attractor, 17

basin, 17
basis induced by a coordinate chart,

41
Bregman divergence, 151
Bregman potential, 151

canonical process, 186
chain-recurrent point, 19
chain-transitive, 19
chart, 40
Christoffel symbols, 46
closed function, 152
compatible with the metric, 45
complete, 48, 62, 121

component, 41
conjugate along γ, 50
connection coefficients, 45
continuity equation, 117
contractive, 141
convex, 52
convex indicator function, 152
convexity radius at p, 52
convexity radius of M, 52
coordinate chart, 40
covariant 2-tensor, 55
covariant derivative, 44
covariant derivative of V along γ, 45
covector, 53
covector field, 53
critical point, 50, 101
cross-variation, 114
cumulative noise, 86
cut locus of p, 51
cut point of p along γ, 51
cyclically invariant, 163

derivation at p, 40
diffeomorphism, 40
differential, 40
diffusion matrix, 120
diffusion process, 188
disintegration of measure theorem,

159



238 INDEX

displacement interpolation, 123
distance function, 43
drift, 120
dual pair, 156
dual point, 153
dual Sinkhorn flow, 178
dual Sinkhorn flows, 150
dual Sinkhorn iteration, 167
duality, 156

equilibrium, 17
essentially differentiable, 153
Euler–Maruyama, 121
exponential map, 48
exponential weights, 155

Fenchel conjugate, 138, 152
Fenchel–Young inequality, 152
Fermi normal coordinates along the

curve c, 75
flow, 16, 124
flow process ϕ(t), 124
Fokker–Planck equation, 116
forward orbit of x, 17
fundamental neighborhood, 17

geodesic, 47
geodesic interpolation, 62
gradient flow, 101
gradient-like system, 25
Gâteaux derivative, 158

Hadamard manifold, 89
Hessian, 55
homeomorphism, 40

injectivity radius at p ∈M, 50
injectivity radius ofM, 50
internally chain-recurrent, 20
internally chain-transitive, 20
invariant, 17

Kantorovich duality, 164
Kantorovich potentials, 164
Kullback–Leibler divergence, 158

Langevin-type SDEs, 110
length of a curve, 43
Levi-Civita connection, 46
Lie bracket, 43
limit set theorem, 22
Lipschitz in the Riemannian sense,

64
local martingale, 114
Lyapunov function for Λ, 24

martingale, 31
McKean–Vlasov process, 110
minimizing geodesic, 48
mirror descent dual iterations, 154
Mirror Descent iteration, 168
mirror flow, 178
Mirror Langevin algorithm, 137
mirror Langevin diffusion, 138

Nash–Stampacchia equilibrium, 59
norm of a tangent vector, 43
normal coordinate system centered

at p, 50

omega limit point of x, 17
one-sided directional derivative, 157

parallel, 46
parallel transport of v along γ, 47
path measure, 185
Picard curve starting at c(0), 70
Picard iteration, 28
Picard process started at time t, 128
positively invariant, 17
precompactness, 65
primal, 137, 150
primal point, 153
product topology, 156



INDEX 239

propagation of chaos, 110
proper function, 152, 157
Proximal Langevin Algorithm, 135

quadratic variation, 114

radial distance, 73
Randomized Mid-point Method, 135
reference measure, 186
relative entropy, 158
retraction map, 96
Riemann curvature tensor, 53
Riemannian game, 58
Riemannian manifold, 43
Riemannian metric, 43
Riemannian stochastic gradient method,

94
right-continuous, 121

Schrödinger equations, 163
Schrödinger potentials, 162
sectional curvature, 53
semi-flow, 16
semimartingale, 114
simply connected, 89
Sinkhorn algorithm, 165
Sinkhorn flow, 178
smooth, 40
smooth atlas, 40
smooth curve, 41
smooth vector field, 42
smoothly compatible, 40
stability, 27, 65, 66
star-shaped with respect to a point

x, 49
static Schrödinger problem, 162
Stochastic Gradient Langevin Dynam-

ics, 134
stochastic interpolation, 123
Stochastic Runge–Kutta method, 137
strict Lyapunov function, 25

strong solution, 115
strongly convex, 52
structured non-convex problem, 143
subdifferential of f at x, 152, 158
subgradient, 152, 158
symmetric, 46

tangent bundle, 42
tangent space at p, 40
tangent vector at p, 40
topological dual, 156
topological manifold, 40
topologically conjugate, 23
totally retractive, 98

velocity vector of γ at time t0, 41

weak dissipativity, 134
weak topology, 156
weakly coercive, 90






	Abstract
	Zusammenfassung
	Acknowledgements
	1 Introduction
	Thesis Roadmap
	List of Publications
	Collaborators
	General Notation

	2 Dynamical Systems and Stochastic Approximation
	2.1 Flows on Metric Spaces
	2.2 Chain Recurrence
	2.3 Asymptotic Pseudo-trajectories and the Limit Set Theorem
	2.4 Gradient-like Systems
	2.5 Euclidean Stochastic Approximation

	3 Stochastic Approximation on Riemannian Manifolds
	3.1 Introduction
	3.2 A Crash Course on Riemannian Geometry
	3.3 Introductory Examples
	3.4 Riemannian Robbins–Monro Schemes
	3.5 Proof of the APT Property
	3.6 Proof of the Stability Theorem
	3.7 Examples of Riemannian Stochastic Approximation Algorithms
	3.8 Algorithmic Variations
	3.9 Applications to Learning and Games
	3.10 Conclusions and Discussions
	Bibliographic Notes

	4 Stochastic Approximation for Langevin-type SDEs
	4.1 Introduction
	4.2 A Primer on SDEs and Wasserstein Geometry
	4.3 Langevin–Robbins–Monro Schemes
	4.4 Dynamics of Langevin–Robbins–Monro Schemes
	4.5 Stability via Dissipativity
	4.6 Sampling Algorithms
	4.7 Conclusions
	Bibliographic Notes

	5 Stochastic Approximation for Entropic Optimal Transport
	5.1 Introduction
	5.2 Mirror Descent Essentials
	5.3 Convex Analysis in the Space of Measures
	5.4 Entropic Optimal Transport and the Sinkhorn Algorithm
	5.5 Step-sized Sinkhorn
	5.6 Sinkhorn Flows
	5.7 Stochastic Approximation for EOT
	5.8 Schrödinger Bridges
	5.9 Conclusions
	Bibliographic Notes

	6 Conclusion and Outlook
	A Proofs for Chapter 3
	A.1 General Geometric Results
	A.2 Auxiliary Results for Theorem 3.4
	A.3 Auxiliary Results for Theorem 3.6
	A.4 Proof of Proposition 3.15

	B Proofs for Chapter 4
	B.1 Auxiliary Results for Theorem 4.9
	B.2 Auxiliary Lemmas for Sampling Algorithms

	Bibliography
	Curriculum Vitae
	Index

