mzuriCh ETH Library

Analysis of the .NET CLR
Exception Handling Mechanism

Report

Author(s):
Fruja, Nicu Georgian; Borger, Egon

Publication date:
2005

Permanent link:
https://doi.org/10.3929/ethz-a-006787690

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Technical Report / ETH Zurich, Department of Computer Science 489

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-006787690
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Analysis of the
.NET CLR Exception Handling Mechanism

Nicu G. Fruja Egon Borger
Computer Science Department, ETH Zurich Dipartimento di Informatica, Universita di Pisa
fruja@inf.ethz.ch boerger@di.unipi.it
ABSTRACT

We provide a complete mathematical model for the exception handling mechanism of the Common Language Run-
time (CLR), the virtual machine underlying the interpretation of .NET programs. The goal is to use this rigorous
model in the corresponding part of the still-to-be-developed soundness proof for the CLR bytecode verifier.

Keywords
exception handling, .NET CLR, .NET CIL, bytecode

1 INTRODUCTION exception handling mechanism of CLR is to be found

. . o L in the numerous non-trivial problems we encountered
This work is part of a larger projectl[6] which aims j, 5 atempt to fill in the missing parts on exception

at establishing Some outstanding properties 0aad handling in the ECMA standardl[1]. Already in JVM
CLR by mathematical proofs. Examples are the cor- the most difficult part for the correctness proof of the

rectness of the bytecode verifier of CLR, the type p iacqde verifier was the one dealing with exception

safety (along the Iings. of the.first author’s correctness handling (se€ [15;16]). This holds in a stronger sense
proof [12] for the definite assignment rules afithe 554 for CLR. The concrete purposes we are pursuing

correctness of a general compilation scheme. We try;, this paper are twofold. First we want to define a
to reuse as much as possible and to extend where ”ecfigorous ground model for the CLR exception mech-
essary similar work which has been done for Java and 5igm 1o be used as reference model for that part of
the Java Virtual Machine (JVM) [15]. As part of this 6 g4ill to be developed correctness proof for the byte-
effort, in [8] an abstract interpreter has been developed .. 4e verifier. Secondly we want to clarify the numer-
for C, including a thread and memory model [9]; see ;s jssues concerning exception handling which are

also [10] for a comparative view of the abstract inter- |4 open in the ECMA standard, but which are rele-
preters for Java and forfC)) ~vant for a correct understanding of the CLR mecha-
In [I7] an abstract model is defined for the CLR vir- nism. We do not discuss here its design rationale nor
tual machine without the exception handling instruc- any design alternatives.
tions, but including all the constructs which deal with The ECMA standard for CLR contains only a few
the interpretation of the procedural, o.bject—oriented yet incomplete paragraphs about the exception han-
and unsafe constructs of .NET compatible languagesjjing mechanism. A more detailed description of the
such as € C++, Visual Basic, VBScript, etc. The mechanism can be found in almost the only document
reason that we present here a separate model for they, the CLR exception handlingl[2]. The CLR mecha-
— _ : ~ nism has its origins in the Windows NT Structured Ex-
Permission to make digital or hard copies of all part of this ception Handling (SEH). An interested reader can find
work for personal or classroom use is granted without feey|| the insights of the SEH if [3]. What we are striving
provided that copies are not made or distributed for profit orfor the CLR type safety, is proved for a subset of CLR
commercial advantage and that copies bear this notice angh [4]. However, that approach does not consider the
the full citation on the first page. To copy otherwise, of re- exception handling classified in [#4] asa fairly elab-
publish, to post on servers or to redistribute to lists, requiresgrate model that permits a unified view of exceptions
prior specific p?rmiSSiO” and/or fee. ' in C++, ¢, and other high-level languageSo far, no
‘NET Technologies'200%onference proceedings, formal model has been developed for the CLR excep-
ISBN 80-903100-4-4 tion handling. The JVM exception mechanism, which
Copyright UNION Agency — Science Press, Plzen, Czech Repu[lblic differs a lot from the one of CLR, has been formalized
in [16,[15].

We use three different methods to check the faith- Notational conventionsin the paper, beside the usual
fulness with respect to CLR of the modeling decisions list operations (e.gpush pop, top, length f], we use
we had to take where the ECMA standard exhibits de- a different operation: for a lidt, split(L,1) splits off
plorable gaps. First of all we made a series of experi- the last element of. More exactly,split(L,1) is the
ments with CLR, some of which are made available in pair (L', [x]) whereL’ - [x] = L.
[5] to allow the reader redoing and checking them. We The paper is organized as follows. We list in Sec-
hope that these programs will be of interest to the prac- tion [2 a few notations defined inl[7] and which are
titioner and compiler writer, as they show border cases used throughout the rest of the paper. Sedtion 3 gives
which have to be considered to get a full understand- an overview of the CLR exception handling mecha-
ing and definition of exception handling in CLR. Sec- nism. The elements of the formalization are intro-
ondly, to provide some authoritative evidence for the duced in Sectiofi]4. Sectidd 5 defines the so-called
correctness of the modeling ideas we were led to by StackWallkpass of the exception mechanism. The other
our experiments, over the Fall of 2004 the first author two passed)nwindandLeaveare defined in Sectidr] 6
had an electronic discussion with Jonathan Keljo, the and Sectior] |7, respectively. The execution rules of
CLR Exception System Manager, which essentially CLRg are introduced in Sectidn 8. Sectiph 9 con-
confirmed our ideas about the exception mechanismcludes.
issues left open in the ECMA documents. Last but not
least a way is provided to test the internal correctness?2 PRELIMINARIES
of the model presented in this paper and its confor-
mance to the experiments with CLR, namely by an ex-
ecutable version of the CLR model, using AsmLI[18].

In this section, we summarize briefly the notations
introduced in[[7] which are relevant for the exception

Upon completion of the AsmL implementation of the handling mechanism. For detailed description we refer

entire CLR model the full details will be made avail- € readertdlzl.
able in [12]. A call frame consists of a program counfer: Pc,

local variables addresséscAdr : Map(Local, Adr),

arguments addressesgAdr : Map(Arg, Adr), an
evaluation sta@ evalStack : List(Valug, and a
method referenceneth : MRef. The frame denotes
the currently executed frame. Accordingpg gives
the program counter of the current franh@cAdr the

local variables addresses of the current frame, etc.

Since the focus of this paper is the exception mech-
anism of CLR, we assume the reader to be knowledge-
able about (or at least to have a rough understand-
ing of) CLR. For the sake of precision we refer in
this paper without further explanations to the model
EXECCLRy defined in [7], which describes what the
machine does upon its "normal” (exception-free) exe- ;
cution. Our model for CLR together with the excep- The stack of call frames is denoted by

tion mechanism comes in the form of an Abstract State Eartnetshta::kand Is d?ﬁntid as a t“?t of iramefr.]
Machine (ASM) CLR;. ote that we separate the current frame from the

stack of call frames, i.e.frameis not contained in
grameStack

The macros BsHFRAME and POPFRAME are used
to push and pop thizame respectively.

Since the intuitive understanding of the ASMs ma-
chines as pseudo-code over abstract data structures i
sufficient for the comprehension of CLLRwe abstain
here from repeating the formal definition of ASMs
which can be found in the AsmBook [17]. How-
ever, for the readers convenience we summarize here
the most important concepts and notations that are| PUSHFRAME = push{frameStackframe)
used in the ASMs throughout this paper. An abstract
state of an ASM is given by a set of dynamic func-
tions. Nullary dynamic functions correspond to ordi-
nary state variables. Formally all functions are total.
They may, however, return the special elememtef

POPFRAME =
let (frameStack
[(pc, locAdr, argAdr, evalStack metH)])
= split(frameStackl) in

if they are not defined at an argument. In each step, pc = pc

the machine updates in parallel some of the functions locAdr := locAdr’

at certain arguments. The updates are programmed us argAdr = argAdr

ing transition rule$, Q with the following meaning: evalStack := evalStack
meth = meth

f(s) :=t updatef atstot frameStack= frameStack

if o then P elseQ if ¢, then execut®, elseQ

|F;,[QX —tinP z)s((;(;urttdt:;a).(n;n% I,[r;]ggr:)l(lscl:u@ 1The “” denotes the operaticappendfor lists.

2In order to simplify the exposition we describe here the
P seqQ executeP and therQ evalStackas a list of values thougl][7] defines it as a list of pairs
PorQ executeP or Q from Value x Type

Fig. 1 The CLRg machine Common Intermediate Language (CIL) bytecode. As

CLRy = we will see, thdilter handlers bring a lot of com-
if switch= ExcMechthen plexity to the exceptions mechanism.
EXCCLR The ECMA standard does not clarify what happens
elseif switch= Noswitchthen if the execution of thédilter or of a method called
INITIALIZE CLASS or EXECCLRg(cod€pc)) by it throws an exception. The currently handled ex-

ception is known as aputer exceptiomvhile the newly
occured exception is called @amer exceptionAs we
3 THE OVERALL PICTURE will see below, the outer exception is not discarded but
its context is saved bgxcCLR while the inner ex-
ception becomes the outer exception.

If a match is not found in théaulting frame i.e. the
frame where the exception has been raised, the calling
method is searched, and so on. This search eventu-
ally terminates since thexcHAof the entrypoint
method has as last entry a so-callegickstop entry
placed by the operating system. When a match is
found, the first pass terminates and in the second pass,
called “unwinding of the stack”, CLR walks once
more through the stack of call frames to the handler
determined in the first pass, but this time executing

Every time an exception occurs, the control is trans-
fered from “normal” execution (iEXECCLRE) to a
so-called “exception handling mechanism” which we
model as a submachirexcCLR. To switch from
normal execution (read: in moddoswitch to this
new component, the mode is set to, sawitch :=
ExcMechwhich interruptsExecCLRg and triggers
the execution cEXCCLR. The machinEXEcCLRg
is an extension of the exception-handling-free machine
EXECCLRy by a submachine which executes instruc-
tions related to exceptions (likehrow, Rethrow etc.);
it will be defined in Fig[#. Due to the very weak con- _ . .
ditions imposed by tt?(—}D‘ECMA standardyon class ini- thefinally andfault E]handlers and bopping their
tialization, the overall structure of CLRhas to fore- frames. It then starts the corresponding exception han-
see that the initialization of beforefieldinit Bl dler. .
class may start at any moment as analyzed in de- 1he reader might ask why there are two passes,
tail in [L1]; this explains the definition of CLR i.e. why the handling mechanism does not proceed
as a machine which, in the normal execution mode, In @ Single pass by executing also tieally and

non-deterministically chooses whether to start a classfault ~handlers. The answer is to be found in th? ori-
initialization or to execute the current instruction 9ins of the CLR exception handling mechanism: the

coddpc) pointed at by the program countpc (see WO pass model was invented for Windows NT, before
Fig.[). the CLR was ever envisioned. There are two advan-

The exception handling mechanism proceeds in [29€s Of a 2-pass model:

two passes. In the first pass, the run-time sys-
tem runs a “stack walk” searching, in the possibly e it allows afilter to update the exception con-

empty exception handling array associateckgHA: text and to then continue the faulting exception;
Map(MRef, List(Exc)) to the current method, for the
first handler that might want to handle the exception: e it allows for better debugging, since one can of-
ten detect that an exception will go unhandled in
e acatch handler whosgypeis a supertype of the the first pass, without any second pass backout
type of the exception, or disturbing the exception context;
o afilter handler — to see whetherféter 4 THE GLOBAL VIEW OF EXCCLR

wants to handle an exception, one has first to exe-

cute (in the first pass) the code in the filter region: |n this section, we provide some detail on the el-

if it returns 1, then it is chosen to handle the ex- ements, functions and predicates needed to turn the

ception; if it returng), this handler is not good to overall picture into a rigorous model.

handle the exception. The elements of an exception handling array
excHA : Map(MRef, List(Exc)) are known as

Visual Basic and Managed C++ have special nandlersand can be of four kinds. They are elements
catch blocks which can *filter” the exceptions based f 5 setExc

on the exception type and/or any conditional expres-
sion. These are compiled intitter handlers in the

3The ECMA standard states ial[1, Partition §8.9.5] that, if
a class is marketheforefieldinit , then the class initializer 4Currently, no language (other than CIL) exposaslt han-
method is executedt any time beforghe first access to any static dlers directly. Afault handler is simply dinally handler that
field defined for that class. only executes in the exceptional case.

ClauseKind = catch | filter
| finally | fault

Exc = Exc(clauseKind : ClauseKind
tryStart Pc
tryLength N
handlerStart : Pc
handlerLength : N
type . ObjClass
filterStart Pc)

Any 7-tuple of the above form describes a handler
of kind clauseKindwhich “protects” the regi(ﬁi\that
starts atryStartand has the lengtinyLength handles
the exception in an area of instructions that starts at
handlerStartand has the lengthandlerLength- we
refer to this area as theandler region if the han-
dler is of kind catch , then thetype of exceptions

it handles is provided while if the handler is of kind
filtker , then the first instruction of thiéiter re-
gion is atfilterStart In case of dilter handler,
the handler region starting dandlerStartimmedi-
ately follows thefilter region — consequently we
have filterStart < handlerStart We often refer to
the sequence of instructions betwefterStart and
handlerStart— 1 as thefilter region We assume
that afilterStartis defined for a handler if and only if
the handler is of kindilter ~ , otherwisdfilterStartis
undefined.

To simplify the further presentation, we define the
predicates in Fid.]2 for an instruction located at pro-
gram counter positiopos € Pc and a handleh €
Exc Note that if the predicatésinFilter is true,
then filterStart is defined and therefork is of kind
filtler . Based on the lexical nesting constraints of
protected blocks specified inl[1, Partitio§12.4.2.7],
one can prove the following property:

Disjointness 1 The predicates isInTry, isinHandler
and isInFilter are pairwise disjoint.

We assume all the constraints concerning the lexical
nesting of handlers specified in the standard [1, Par-
tition 1,§12.4.2.7]. The ECMA standardl[1, Partition
1,612.4.2.5] ordering assumption on handlers is:

Ordering assumption If handlers are nested, th
most deeply nested try blocks shall come in the px-
ception handling array before the try blocks that
enclose them.

Only one handler region per try block? The
ECMA standard specifies ir[1, Partitior§12.4.2]

5We will refer to this region aprotected regiorortry block.

that a singletry block shall have exactly one han-
dler region associated with it. But the IL assembler
ilasm does accept alsmy blocks with more than
onecatch handler block. This discrepancy is solved
if we assume that everiry block with more than
one catch block which is accepted by théasm

is translated in a semantics preserving way as follows:

try | try |

Dlock = .tr)tl)loci

} catch bloclky

catch block, } catch block

} catch block,

To handle an exception, thexcCLR needs to record:

¢ the exception referenaxg
e the handlingpass

e a stackCursor— i.e. the position currently
reached in the stack of call frames (a frame)
and in the exception handling array (an index in
excHA,

the suitablehandlerdetermined at the end of the
StackWallpass (if any) is the handler that is go-
ing to handle the exception in the padawind

— until the end of thestackWallkpass handleris
undefined;

According to the ECMA standard, every normal ex-
ecution of atry block or acatch ffilter handler
region must end with aeavépog instruction. When
doing this,exCCLR has to record the currepassand
stackCursotogether with theéargetup to which every
includedfinally code has to be executed.

ExcRec
ExcRedq exc ObjRef
pass {StackWallunwind}
stackCursor Framex N
handler Framex N)
LeaveRe&
LeaveRe¢ pass {Leave
stackCursor Framex N
target Pc)

We list some constraints which will be needed below
to understand the treatment of thdseaveinstruc-
tions.

Fig. 2 The predicatessInTry, isinHandlerandisInFilter
isInTry(pos h) < tryStartth) < pos< tryStart'h) + tryLength(h)
isinHandlerlpos h) < handlerStarth) < pos< handlerStarth) + handlerLengtlh)
isInFilter(pos h) < filterStart(h) < pos< handlerStarth)

ued at the invoker frame. This means to reset the

Syntactic constraints:) ;
y stackCursotto point to the invoker frame.

1. Itis not legal to exit with d_eaveinstruction

afilter region, afinally /fault han- SEARCHINVFRAME() =

iz rEE: _ _ let _ - [f',f] - = frameStack [framé in
2. Itis not legal to branch with &eaveinstruc- RESET(stackCursorf’)

tion into a handler region from outside the re¢-

gion.

There are three groups of possible handlérs

S ILIE Rl e @l WD 2LEANEE CalEn EXCCLR is looking for in a given frame during its

handler region and branch to any instruction

within the associatetty block, so long as StackWalk
that branch target is not protected by yetan- o 3catch handler whosery block protects the
othertry block. program countepc of the frame pointed at by
stackCursorand whoseypeis a supertype of the
The nesting of passes determimescCLR to main- exception type;

tain an initially empty stack of exception or leave
records for the passes that are still to be performed.

matchCatclipos t, h) <

isInTry(pos h) A clauseKingh) = catch A
passRecStackList(ExcRedJ LeaveRep t < typgh)
passRecStack []

o afilter handler whoséry block protects the
In the initial state ofeExCcCLR, there is no pass to pc of the frame pointed at bstackCursoy
be executed, i.gpass= undef
We can now summarize the overall behavior of
EXCCLR, which is defined in Fig[|3 and analyzed
in detalil in the following sections, by saying that if
there is a handler in the frame defineddtsgickCursor

matchFiltepos h) <
isInTry(pos h) A clauseKindh) = filter

then ExCCLR will try to find (when StackWallng) o afilter handler whosdilter region con-
or to execute (wheJnwindng) or to leave (when tainspc of the frame pointed at bgtackCursor
Leaveng) the corresponding handler; otherwise it will This corresponds to an outer exception and will
continue its work in the invoker frame or end iteave be described in more detail below.

pass at théarget
The order of théf clauses in théet statement from the

5 THE StackWalkPASS rule StackWallis not important. This is justified by the

)) following property:
During aStackWallpass exCCLR starts in the cur-

rentframeto search for a suitable handler of the cur- Disjointness 2 For every type t, the predicates
rent exception in this frame. Such a handler exists if matchCatch matchFilter and isinFilter are pairwise
the search position in the current frame has not yet disjoinf]

reached the last element of the handlers aeegHA

of the corresponding methor The above property can be easily proved using the def-

initions of the three predicates and the propddig-

jointnessll.
If the handler pointed to by th&ackCursornamely
existsHanWithinFramg-, -, -, -, -, m),n) < hanWithinFramé(_, _, _, _, -, m),n) = excHAm)(n),
n < length{excHAm)) is not of any of the above types, tis¢ackCursoris
incremented to point to the next handler in theHA

If there are no (more) handlers in the frame poin_ted 6By matchCatchwe understand the predicate defined by the set
to by stackCursoy then the search has to be contin- {(pos h) | matchCatch(pos,t,h)

Fig. 3 The exception handling machiexcCLR

EXCCLR =
match pass
StackWalk—
if existsHanWithinFramestackCursoy then
let h = hanWithinFraméstackCursoy in
if matchCatclipos actualTypeOfexg), h) then
FOUNDHANDLER
ResEeT(stackCursorframe)

GOTONXTHAN = stackCursor= (f,n+ 1)
where stackCursor= (f, n)

The Ordering assumptiorstated in Sectiof]4 and

the lexical nesting constraints stated fin [1, Partition elseifmatchFilte(pos h) then EXECFILTER(h)
1,§12.4.2.7] ensure that, if theackCursompoints to a elseifisInFilter (pos h) then EXITINNEREXC
handler of one of the above types, then this handler is elseGOTONXTHAN
he first handler in the exception handling array (start- else SEARCHINVFRAME(T)
F e AR p 9 y where stackCursor= (f,_) andf = (pos -, _, -,)
ing at the position indicated in tretackCursoy of any
of the above types. .
Unwind —
If the handler pointed to by thetackCursoris if existsHanWithinFramstackCursoy then
a matching catch , then this handler becomes the let h = hanWithinFraméstackCursoj in
k L. . if matchTargetHathandler, stackCursoy then
handlerto handle the exception in the padswind ExECHAN (h)
The stackCursoris reset to be reused for tténwind elseif matchFinFaulfpc, h) then
pass: it shall point to the faulting frame, i.e. the cur- EXETCFLAN(:)
: OTONXTHAN
rer_1tframe Note tr_lat durlngStackWa_karam_ealways elseifisinHandler(pc, h) then
points to the faulting frame except in casélter ABORTPREVPASSREC
region is executed. However, the frame built to execute GOTONXTHAN
afilter is never searched for a handler correspond- e'sgg:ﬂ?ﬁﬂt:é(lffg;)é‘cen
ing to the current exception. clseGOTONXTHAN
else
POPFRAME

SEARCHINVFRAME (frame)

= Leave—

FOUNDHANDLI-ER B if existsHanWithinFramtackCursoy then
pizE= LInie let h = hanWithinFraméstackCursoy in
handler:= stackCursor if isFinFromTd(h, pc, target) then

ExecHAN (h)
RESET(S,f) = s:= (f,0) if isRealHanFromT¢h, pc, target) then
ABORTPREVPASSREC
GOTONXTHAN
else
pc := target
PoPREC
If the handler is afilter , then by means of switch:= Noswitch

EXECFILTER its filter region is executed. The ex-
ecution is performed in a separate frame constructed

especially for this purpose. However this important

detail is omitted by the ECMA standard [1]. The cur- | EXECFILTER(h) =
rently to be executed frame becomes the frame for pc := filterStart(h)
executing thefilter region. The faulting excep- evalStack= [exd
tion frame is pushed on theameStack The current locAdr := locAdr
frame points now to the method, local variables and argAdr := argAdr
arguments of the frame in whicstackCursoris, it meth:= metH

has the exception reference on the evaluation stack PUSHFRAME
evalStackand the program countgrc set to the be- switch:= Noswitch
ginningfilterStart of thefilter region. Theswitch where stackCursor=
is set toNoswitchin order to pass the control to the ((-,locAdr, argAdr, _, metH),)
normal machin&EXecCLRg.

Exceptions infilter region? It is not documented
in the ECMA standard what happens if an (inner) ex-

"We use theactualTypeOffunction defined in[[7] to determine ception is thrown while executing tfiter r.egion
the run-time type of the exception. during theStackWalkpass of an outer exception. The

following cases are to be considered:

o if the exception is taken care of in tHigter
region, i.e. it is successfully handled by a
catch ffilter handler or it is aborted because
it occured in yet anothefilter region of a
nested handler (see trenFilter clause), then the
given filter region continues executing nor-
mally (after the exception has been taken care of);

if the exception is not taken care of in the
filter region, then the exception is not prop-
agated further, but itStackWalkis exited (see
Fig.[3). The exception will be discarded but only
after theexcCLR runs itsUnwind pass to exe-
cute all thefinally andfault handlers (see
Tests 6, 8 and 9 in[[5]).

EXITINNEREXC =
pass:= Unwind
ResET(stackCursorframe)

6 THE Unwind PASS

As soon as the passStackWalk terminates,
the EXCCLR starts the Unwind pass with the
stackCursorpointing to the faulting exception frame.
Starting there one has to walk down to tiendlerde-
termined in theStackWalk executing on the way ev-
ery finally /fault handler region. This happens
also in caséhandleris undef. WhenUnwindng, the
EXCCLR searches for

¢ the matching target handler, i.e. thandlerde-
termined at the end of th&tackWalkpass (if
any) —handlercan beundefif the search in the
StackWallkhas been exited because the exception
was thrown in dilter region. Also the two
handlerandstackCursorframes in question have
to coincide. We say that two frames are the same
if the address arrays of their local variables and
arguments as well their method names coincide.

matchTargetHa((f1,n1), (f2,n2)) <
sameFram@ 1,f2) A nl = n2

sameFramé 1,f2) <
prz(fl) = prz(fz)aVI € {27375}

e a matchindinally /fault handler whose as-
sociatedry block protects thec;

matchFinFaul{pos h) <
isInTry(pos h) A

clauseKindh) € {finally ,fault

}

e a handler whose handler region contgies

o afilter handler whosédilter

tainspc;

region con-

The order of the last thréeclauses in théet statement
from the ruleUnwindis not important. It matters only
that the first clause is guarded matchTargetHan

Disjointness 3 The following predicates are pairwise
disjoint: matchFinFault, isinHandler and isInFilter.

The property can be proved using the definitions of the
predicates and the propemdjsjointnessl].

The Ordering assumptiorin Section[# and the
lexical nesting constraints given iril[1, Partition
1,6§12.4.2.7] ensure that, if th@tackCursormpoints to a
handler of one of the above types, then this handler is
the first handler in the exception handling array (start-
ing at the position indicated in tretackCursoy of any
of the above types.

If the handler pointed to by thstackCursoris the
handlerfound in theStackWalkits handler region is
executed through B=CHAN: the pcis set to the be-
ginning of the handler region, the exception reference
is loaded on the evaluation stack (wWheRHEHAN is
applied for executindinally ~ /fault handler re-
gions the current exception is not pushectwalStack
and the control switches ®XECCLRE.

ExecHAN(h) =
pc := handlerStarth)
evalStack=
if clauseKindh) € {catch |filter
fexq
else

[]

switch:= Noswitch

} then

If the handler pointed to by thetackCursoris a
matchingfinally ~ /fault handler, its handler re-
gion is executed with initially empty evaluation stack.
At the same time, thestackCursoris incremented
through GO TONXTHAN.

Let us assume that the handler pointed to by
stackCursoris an arbitrary handler whose handler re-
gion containgc.

Exceptions in handler region? The ECMA standard
does not specify what should happen if an exception is
raised in a handler region. The experimentation |n [5]
can be resumed by the following rules of thumb for
exceptions thrown in a handler region similarly to the
case of nested exceptionsfitier code:

o if the exception is taken care of in the han-
dler region, i.e. it is successfully handled by a

catch /ffilter handler or it is discarded (be-
cause it occured in filter region of a nested
handler), then the handler region continues exe-
cuting normally (after the exception is taken care
of);

if the exception is not taken care of in the handler
region, i.e, escapes the handler region, then

— the previous pass 0EXCCLR is aborted
through ABORTPREVPASSREC;

ABORTPREVPASSREC = pop(passRecStagk

— the exception is propagated further, i.e. the
Unwind pass continues via G ONXTHAN (see
Fig.[3) which sets thestackCursorto the next

handler inexcHA

The execution of a handler region can occur only
wheneXcCLR runs in theUnwind andLeavepasses:

in Unwind handler regions of any kind are executed
while in Leaveonly finally handler regions are
executed. If the raised exception occured while
EXCCLR runs anUnwind pass for handling an outer
exception, theJnwind pass of the outer exception is

stopped and the corresponding pass record is poppe

from passRecStadiseeTests 1, 3 and 4 in[[5]). If
the exception has been thrown whd& CCLR runs a
Leavepass for executindinally handlers on the
way from aleaveinstruction to its target, then this

pass is stopped and its associated pass record is popps

off passRecStadseeTest 2 in [5]).

In this way an exception can go “unhandled” without
taking down the process, namely if an outer exception
goes unhandled, but an inner exception is successfully

CONTINUEOUTEREXC =
PoOPFRAME
PoPREC seqGOTONXTHAN

POPREC =
if passRecStack [] then
SETRECUNDEF
switch:= Noswitch
else let(passRecStatKr]) =
split(passRecStack) in
if r € ExcRedhen

let (exd, pass, stackCursof, handlef) = r in
exc = exc
pass := pass
stackCursor.= stackCursof
handler := handlef

if r € LeaveRethen
let (pass, stackCursof, target) = r in

pass := pass$
stackCursor.= stackCursor
target := target

passRecStack= passRecStatk

SETRECUNDEF =
exc := undef
pass := undef
stackCursor.= undef
target := undef
handler := undef

If the handler pointed to by thetackCursois not of
any of the above types, tlstackCursois incremented

handled (see the second case of the preceding case dige point to the next handler in trexcHA

tinction).

If the handler pointed to by thetackCursoris
a filter handler whosdilter region contains
pc, then the current (inner) exception is aborted and

the filter considered as not providing a handler
for the outer exception. So there is no way to
exit afilter region with an exception. This en-

sures that the frame built by XeCFILTER for exe-
cuting afilter region is used only for this pur-
pose. The handling of the outer exception is con-
tinued through ©NTINUEOUTEREXC (see Fig[B)
which pops the frame built for executing thiker

region, pops from theassRecStacthe pass record

corresponding to the inner exception and reestablishesTypelnitializationException

the pass context of the outer exception, but with
the stackCursormointing to the handler following the
just inspectedilter handler. The updates of the
stackCursoiin PoPREC and GOTONXTHAN are done
sequentially such that the update inGGONXTHAN
overwrites the update indPREC.

If the Unwind pass exhausted all the handlers in the
frame indicated irstackCursorthen the current frame
is popped fronframeStackand theUnwind pass con-
tinues in the invoker frame of the current frame.
Exceptions in class initializers?If an exception oc-
curs in a class initializeicctor , then the class shall
be marked as being in a specific erroneous state and
a TypelnitializationException is thrown.
This means that an exception can and will escape
the body of an initializer only by the specific ex-
ceptionTypelnitializationException . Any
further attempt to access the corresponding class in
the current application domain will throthe same
object. Un-
fortunately, these details are not specified by the
ECMA standard but it seems to correspond to the ac-
tual CLR implementation and it complies with the
related specification for {Cin the ECMA standard
(seeTest 7 in [5]). Therefore we assume that the
code sequence of evergctor is embedded into

a catch handler. Thiscatch handler catches ex-
ceptions of typeObject , i.e. any exception, oc-
curedin.cctor , discards it, creates an object of type
TypelnitializationException Bl and throws
the new exception.

7 THE LeavePASS

The ExcCLR machine gets into théeave pass
whenEXECCLRE executes & eaveinstruction upon
the normal termination of &ry block or of a
catch [ffilter handler region. One has to exe-
cute the handler regions of dihally handlers on
the way from thelLeaveinstruction to the instruc-
tion whose program counter is given by theave
target parameter. ThatackCursorused in theLeave
pass is initialized by thé.eaveinstruction. In the
Leavepass, th&excCLR machine searches for

o finally handlers that are “on the way” from
thepcto thetarget,

e real handlers, i.ecatch /filter handlers that
are “on the way” from th@cto thetarget— more
details are given below.

If the handler pointed to bystackCursoris a
finally handler on the way fromcto thetargetpo-
sition of the current.eavepass record, then the han-
dler region of this handler is executed (see Flg. 3). If
the stackCursormpoints to acatch ffilter handler
on the way frompc to target, then the previous pass
record onpassRecStadk discarded (see Fip] 3). The
discarded record can only be referring tol@nwind
pass for handling an exception. By discarding this
record, the mechanism terminates the handling of the
corresponding exception.

isFinFromTdh, pos, pos,) <
isInTry(pos;, h) A clauseKindh) = finally
—isInTry(pos,, h) A —isinHandler(pos,, h)

A

isRealHanFromTh, pos , pos,) <
clauseKingh) € {catch ,filter } A
isinHandler(pos , h) A —isInHandler(pos,, h)

For each handleexcCLR inspects also the next
handler inexcHA When the handlers in the current
method are exhaustefg is set totarget, the context
of the previous pass record passRecStadk reestab-
lished and the control is passed to normeaECCLREg
execution (see Fi§] 3).

8In the real CLR implementation, the exception thrown
in .cctor is embedded as an inner exception in the
TypelnitializationException We do not model
this aspect here.

8 THE RULES OF EXECCLRg

The rules oEXECCLRg in Fig.[4 specify the effect
of the CIL instructions related to exceptions. Each of
these rules transfers the controle@CcCLR. Throw
pops the topmost evaluation stack element (Ree
mark below), which is supposed to be an exception
reference. It loads oeXCCLR the pass record as-
sociated to the given exception: tlsgackCursoris
initialized by the currenframe and 0. If the ex-
ception mechanism is already working in a pass, i.e.
pass# undef, then the current pass record is pushed
on passRecStack

LOADREC(r) =
if r € ExcPasghen
let (exd, pass, stackCursof, handlef) = r in

exc := exc
pass := pass
stackCursor.= stackCursor
handler := handlef
else let(pass, stackCursof, target) = r in
pass := pas$
stackCursor.= stackCursofr
target := target

if pass# undefthen PUSHREC

PUSHREC =
if pass= Leavethen
pushpassRecStackpass stackCursortarget))
elsepushpassRecStack
(exg pass stackCursorhandler))

If the exception reference popped from the
evalStack by the Throw instruction is null , a
NullReferenceException is thrown. For a

given classc, the macro RISE(c) is defined by the
following code templaf®

RAISE(C) =
NewObjc :: .ctor
Throw

)

This macro can be viewed as a static method defined in
classObject . Calling the macro is then like invoking
the corresponding method.

The ECMA standard states in [1, Partition §4,23]
that theRethrowinstruction is only permitted within
the body of acatch handler. However, the same in-
struction is allowed also within a handler region of
afilter (seeTest 5 in [5]) even if this does not

9The NewObjinstruction called with an instance constructor
c:.ctor creates a new object of classand then calls the con-
structor.ctor

Fig. 4 The rules ofeEXECCLRg
EXECCLRE (instr) =
EXECCLRy (instr)
match instr
Throw — let r = top(evalStack in
if r Znull then
LoAaDREC((r, StackWalk(frame, 0), undef))
switch:= ExcMech
elseRAISE(NullReferenceException)
Rethrow— LOADREC((ex¢ StackWalk(frame, 0), undef))
switch:= ExcMech

EndFilter — let val = top(evalStack in
if val = 1 then
FOUNDHANDLER
ResET(stackCursortop(frameStack)
elseGOTONXTHAN
POPFRAME
switch:= ExcMech

EndFinally — evalStack= []
switch:= ExcMech

Leavépos) — evalStack= []
LoADREC((Leave (frameg 0), pos))
switch:= ExcMech

match the previous statement. It throws the same ex-

ception reference that was caught by this handler, i.e.
the current exceptioaxcof EXCCLR. Formally, this
means that the pass record associatezktis loaded
onEXCCLR.

In a filter region, there should be exactly one
EndFilter instruction. This has to be the last instruc-
tion in thefilter region. EndFilter takes an inte-
ger val from the stack that is supposed to be either
0 or 1. In the ECMA standard) and1 are assim-
ilated with “continue search” and “execute handler”,
respectively. There is a discrepancy betwéeén [1, Parti-
tion 1,§12.4.2.5] which stateBxecution cannot be re-
sumed at the location of the exception, except with a
user-filtered handleand [1, Partition 111§3.34] which
states that the only possible return values from the
filter are “exceptioncontinue search”() and “excep-
tion_executehandler’(l). In other words, resumable
exceptions are not (yet) supported contradicting Parti-
tion I.

If val is 1, then thefilter handler to which
EndFilter corresponds becomes thandlerto handle
the current exception in the pathwind Remem-
ber that thefilter handler is the handler pointed
to by the stackCursor The stackCursoris reset to
be used for the pasgnwind it will point into the
topmost frame orframeStackwhich is actually the
faulting frame. Ifvalis 0, the stackCursoris incre-
mented to point to the handler following ofiiter
handler. Independent ofl, the current frame is dis-
carded to reestablish the context of the faulting frame.
Note that we do not explicitly pop theal from the
evalStacksince anyway the global dynamic function

evalStackis updated anyway in the next step through
PoPFRAME to theevalStackof the faulting frame.

The EndFinally instruction terminates the execu-
tion of the handler region oftnally ~ /fault han-
dler. It empties theevalStackand transfers the con-
trol to EXCCLR. A Leaveinstruction empties the
evalStackand loads orexcCLR a pass record cor-
responding to deavepass.

Remark The reader might ask why the instruc-
tions Throw, Rethrowand EndFilter do not set the
evalStack The reason is that this set up, i.e. the emp-
tying of theevalStackis supposed to be eithersale-
effect(the case of th&@hrowandRethrowinstructions)

or ensured for @orrectCIL (the case of th&ndFilter
instruction). Thus, th&hrowandRethrowinstructions
pass the control t&xCCLR which, in a next step,
will execut@acatch ffinally /fault handler re-
gion or afilter code or propagates the exception
in another frame. All these “events” will “clear” the
evalStack In case ofEndFilter, the evalStackmust
contain exactly one item (ant32 which is popped
off by EndFilter). Note that this has to be checked by
the bytecode verifier and not ensured by the exception
handling mechanism.

9 CONCLUSION

We have defined an abstract model for the CLR ex-
ception handling mechanism. On one hand, this paper
has laid the ground to mathematically prove the cor-
rectness of the CLR bytecode verifier. On the other
hand, through the analysis of the mechanism, we dis-
covered a few gaps in the ECMA standard for CLR.
Our model fills in these gaps and precisely specifies
the behavior of the mechanism in all the subtle but crit-
ical cases.

10 ACKNOWLEDGMENT
We are thankful to Jonathan Keljo for the useful dis-
cussion.
References
(1]

Common Language Infrastructure, Standard ECMA-335.

http://www.ecma-international.org/ . 2002.

[2] Chris Brumme. The Exception Model.

Blog athttp://blogs.msdn.com/cbrumme/ , 2003.

[3] Matt Pietrek. A Crash Course on the Depths of wikg2
Structured Exception Handling. Microsoft Systems Journal,
January 1997.

[4] Andrew D. Gordon and Don Syme. Typing a Multi-Language

Intermediate Code. Technical Report Microsoft, MSR-TR-
2000-106, December 2000.

190ne can formally prove that there is such a “step” in the further
run of theexcCLR.

http://www.ecma-international.org/
http://blogs.msdn.com/cbrumme/

[5] N. G. Fruja. Experiments with CLR. Exam- [12] N.G. Fruja. The Correctness of the Definite Assignment Anal-

ple programs to determine the meaning of CLR fea- ysis in &. Journal of Object Technology, vol. 3, no. 9, 2004.
tures not specified by the ECMA standard. Available

at |http://www.inf.ethz.ch/personal/fruja/ [13] H. V. Jula and N.G. Fruja. An Executable Specification of
publications/cirexctests.pdf Ct. Proceedings of the Workshop on Abstract State Machines,

ASM'05 France.
[6] N.G. Fruja. Type Safety infCand .NET CLR. PhD Thesis in
preparation. [14] C. Marrocco. An Executable Specification of the .NET CLR.
Diploma Thesis supervised by N. G. Fruja, ETHrich, 2005.
[7] N. G. Fruja. A Modular Design for the .NET CLR Architec-
ture. Proceedings of the Workshop on Abstract State Machines, [15] R. F. Strk, J. Schmid, E. Brger. Java and the Java Vir-
ASM’'05 France. tual Machine—Definition, Verification, Validation. Springer—
Verlag, 2001.
[8] E. Borger, N. G. Fruja, V. Gervasi, R. F.8k. A High—Level
Modular Definition of the Semantics ofiCJournal Theoretical [16] E. Borger and W. Schulte. A Practical Method for Specifica-

Computer Science, June, 2005. tion and Analysis of Exception Handling — a Java JVM Case
Study. IEEE Transactions of Software Engineeringl. 26,
[9] R. F. Strk and E. Brger. An ASM Specification of C# 2000.

Threads and the .NET memory model. Proceedings of the .)
Workshop on Abstract State Machine&SM’04 Germany, [17] E.Borger and R. F. &rk. Abstract State Machines—A Method
Springer LNCS 3052 (2004) pag. 38-60. for High-Level System Design and Analysis. Springer-Verlag,
2003.
[10] E. Borger and R. F. @&rk. Exploiting Abstraction for Speci-
fication Reuse: The Java/C# Case Study. Formal Methods for [18] Abstract State Machine Language (AsmL), Founda-
Components and Objects: Second International Symposium, tions of Software Engineering Group, Microsoft Research,
FMCO’'03, The Netherlands, Springer LNCS 3188 (2004), .
pag. 42-76. Web pages at |http://research.microsoft.com/
foundations/AsmL/
[11] N. G. Fruja. Specification and Implementation Problems for
Ct. Proceedings of the Workshop on Abstract State Machines
ASM’'04 Germany, Springer LNCS 3052, pag. 127-143.

http://www.inf.ethz.ch/personal/fruja/publications/clrexctests.pdf
http://www.inf.ethz.ch/personal/fruja/publications/clrexctests.pdf
http://research.microsoft.com/foundations/AsmL/
http://research.microsoft.com/foundations/AsmL/

