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Abstract

In the face of growing environmental concerns, the demand for sustain-
able computing practices has never been more urgent. The environmental
footprint of the cloud industry is rapidly growing due to the evermore com-
puting required for today’s tasks and complex workflows. At the same time,
carbon emissions from energy production still vary greatly, both geograph-
ically and temporally. The question arises whether it is possible to use
the differences in grid carbon intensities to lower cloud applications’ car-
bon emissions by optimizing the geospatial deployment of today’s prevalent
workflows. Serverless computing, a paradigm of mostly stateless computing
gaining widespread acceptance among users and providers alike, is an exam-
ple of the modern cloud workflow landscape that offers itself as a proving
ground for geospatial deployment due to the relative ease of migration.

This thesis introduces Caribou as a holistic framework that enables the
dynamic and fine-grained offloading of complex serverless workflows over
geo-distributed regions, taking advantage of differences in grid carbon inten-
sities for sustainable computing practices. Caribou dynamically adapts to
the ever-changing realities of energy grids and applications, where a change
in input size or computational load can lead to significant differences in op-
timal deployment. We empower developers to utilize the framework with
minimal effort, providing a simple API for developing complex workflows
that require no change from the providers’ side. The developer can de-
fine fine-grained location and metric constraints and multiple objectives to
maximize customizability. This allows the developer to communicate the
complexities of their workflow requirements and, at the same time, enables
a large host of applications to benefit from offloading.

This thesis shows how our framework can reduce operational carbon
emissions by up to 90.2% across Europe. Additionally, we evaluate how
the framework observes the developer-defined constraints when making de-
ployment decisions. Implementing the Caribou framework provides the
infrastructure for future research into the individual components. It proves
that building such a framework is both feasible and beneficial for the goal
of sustainable computing. By showcasing the feasibility of carbon-aware
geospatial deployment, Caribou pushes the boundaries of existing cloud
application research in a new direction.
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Chapter 1

Introduction

In these globally uncertain times, one topic remains constant: the grow-
ing environmental impact of humans on this planet. The global research
community broadly agrees that energy consumption, and specifically energy
usage, needs to become more sustainable and efficient. Significant dispari-
ties in both production carbon impact and usage still exist. Cloud applica-
tions, similar to most other industries, such as aviation, are similarly under
scrutiny. The global environmental footprint of the ICT sector must be ob-
served and reduced. Recent studies put the sector’s contribution to global
carbon emissions at approximately 1.8% to 3.9% [1,40,159,163]. While the
ICT sector encompasses much more than cloud applications that execute
in data centers, it is still an indicator of the community’s relative weight
and corresponding responsibility. With the rise of computing requirements
due to artificial intelligence [102], streaming, and remote work [156, 177],
the electricity usage numbers are rising again after a mid-2000 plateau [60].
According to the International Energy Agency, the electricity usage of data
centers will double by 2026 from 460 Terawatt-hours (TWh) in 2022 to 1’000
TWh [106]. Sustainable energy sources such as wind and solar alone can
not cover this increase in usage [184]. On the contrary, the instability of re-
newable energy sources due to the dependency on weather and climate and
lengthy processes for getting permissions [76] create new issues regarding ser-
vice stability [82]. Even though electricity grid operators add new battery
capacities at rapid rates to flatten the production peaks of renewables [176],
these only help to a certain extent. The increased energy consumption is un-
evenly distributed and focuses on specific population-heavy locations where
the current approach of deploying computing close to the customers gener-
ates heavy loads on data centers that are frequently not situated in the least
carbon-intensive electricity grids [198].

To believe that providers will solve the problem for the customers is
naive. While the providers increasingly claim carbon neutrality or have net-
zero goals [23, 92], they achieve these primarily through Renewable Energy
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Credits (RECs) or similar accounting strategies that, while improving the
situation by providing capital for future renewable investments, do not en-
sure the actual usage of renewable energy [2,87]. Cloud service providers rely
on the local energy grid, tapping into the same sources with the same car-
bon intensity as everyone else, adding more strain on the grid in peak times.
While we, as researchers from the outside, need more information on the
inner workings of a commercial data center to work in that direction, we do
have information on the daily and seasonally fluctuating carbon intensities
of electrical grids. This fluctuating carbon presents a viable opportunity
to shift cloud application workloads to data centers located in grids with
lower carbon intensity, thereby leveraging grid variations over time and in a
broader sense.

Cloud service providers might shift internal workloads across regional
boundaries, but the providers do not pursue this for client workflows [39,223]
because the developers of workflows cannot communicate priorities and
tolerances. Internally, cloud providers such as Google have already been
practicing moving workloads to regions with a higher share of renewable
energy sources since 2021 [90]. While cloud service providers have made
strides in helping customers understand and manage their carbon footprint,
as seen at Amazon Web Services (AWS) [9], Google [94], Microsoft [152],
and IBM [104], no cloud provider offers the dynamic workload shifting so
far. From a customer perspective, the deployment and regional allocation
of resources remain static and manual, where the cloud providers may in-
dicate what data centers are greener [93] without any dynamic tooling to
adapt to changes in grid intensities. Shifting cross-regionally could yield
more substantial improvements than staying confined to the regional bor-
ders. However, it would introduce many new challenges, such as compliance
constraints or end-to-end latency tolerances, that must be solved.

Today, prevalent applications are likely to be highly interconnected and
complex constructs, exemplified in the popular micro-service architecture [44,
121]. These complex workflows consist of many smaller functions, each solv-
ing an application logic problem while benefiting from parallelization and
load balancing. Serverless computing is a modern paradigm where the de-
veloper is supported by not worrying about provisioning and paying by
usage. The function as a service offering represents stateless and short-lived
functions for logic execution, providing a valuable testing ground for cloud
applications more broadly. The statelessness and independence of serverless
computing units, usually functions, make them a great candidate as they
simplify moving the execution to beneficial regions.

Compliance constraints, such as GDPR [74] in Europe or HIPAA [166] in
the US, may lead to requiring parts of the computation to remain in ”sticky”
regions where offloading is impossible. The current approach of mandating
that the whole workflow remains in this ”sticky” region, where the work-
load can not be moved out of, might result in significant carbon overhead.
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Requiring a fast response to client requests adds another dimension where
latency tolerances might not allow offloading due to added transmission la-
tency.

This thesis introduces Caribou1 to provide a proof-of-concept that a
framework that enables cross-regional offloading while remaining overhead
aware is possible and feasible. To efficiently facilitate the geospatial shifting,
the framework must be able to take advantage of constantly shifting carbon
intensities while accounting for any tolerance or constraint communicated by
the workflow developer. Caribou must additionally consider the structure
or workloads of workflows, latency, cost, transmission carbon overheads,
external data accesses, and carbon swings by the grid.

The framework sits between existing cloud service providers and develop-
ers, utilizing the providers’ products while enabling developers to create and
deploy serverless workflows. The serverless workflows are deployed geospa-
tially by Caribou to take advantage of carbon fluctuations while solving
regulatory and logistical challenges. The API of the framework allows de-
velopers to create and deploy complex workflows to the cloud providers.
Caribou actively manages these workflows by automatically re-deploying
them fine-grained per workflow stage to beneficial regions according to the
developer-defined constraints and tolerances. While re-deploying workflows,
the framework takes advantage of regions’ carbon, cost, and end-to-end la-
tency differences. Caribou requires minimal changes from the developers
to their existing workflows while requiring no change from the provider. The
proposed framework is our proving ground to answer the following research
questions in an initial version:

The core question for this thesis based on the outlined challenges for
geospatial carbon reduction is: Can we reduce the carbon emis-
sions of complex cloud workflows by optimizing the geospatial
deployment fine-granularly?
More specific questions defining this thesis are:

• ”How can developers efficiently communicate tolerances, objec-
tives, and constraints and define complex workflows in source
code?”

• ”What metrics are required to model the application regarding
objectives and tolerances, what data are these based on, and
how do we transform the raw data to be useful for an end-to-
end modeling of complex workflows?”

• ”When and in what way is a geospatial deployment generated
to maximize the carbon reduction while minimizing the frame-
work’s overhead?”

1Carbon Aware SeRverless GeospatIal Balancing DeplOyment Utility
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• ”How can a complex serverless workflow be deployed, migrated,
and executed cross-regionally without requiring developer input
or changes to the defined application?”

Contributions

The contributions of this thesis focus on the implementation of a framework
that enables us to answer the above research questions while offering a com-
prehensive solution to fine-grained geospatial serverless function deployment
to overcome current limitations and showcase a new avenue of research:

• Identifying shortcomings of existing deployment solutions with carbon
as a primary objective

• Conducting the required research into cloud application carbon mod-
eling to identify functions to provide the carbon emissions when given
a complex workflow.

• Introducing three metrics the framework can operate as tolerances
and objectives: carbon, cost, and end-to-end latency. For each, we
developed the corresponding modeling of the metrics.

• Developing a way to model complex workflows based on past empirical
data.

• Creating the required theoretical model that allows the abstraction of
the workflows.

• Providing an easy-to-use developer interface that enables the definition
of complex workflow structures while providing tools to communicate
tolerances, objectives, and constraints.

• Implementing tools to deploy and migrate serverless workflows geospa-
tially, requiring no manual steps from end-users or developers.

• Solving the question of how to determine the optimal deployment and
when to do so.

• Creating the framework with extensibility in mind; adding new lan-
guages, metrics, and components must remain simple and require little
effort to provide the infrastructure for future research.

• Evaluating the framework comprehensively regarding the research ques-
tions while not being blinded by shortcomings.

Organization

The remainder of this thesis is structured as follows:

• Chapter 2: Background on the fundamental mechanisms of elec-
trical grids, complex applications, serverless applications, and appli-
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cation modeling required to enable a framework to take advantage of
the potential benefits of geospatial deployment.

• Chapter 3: Motivate the specific comprehensive solution imple-
mented in this thesis by showcasing desired properties, limitations in
the existing solutions, and a motivational example application.

• Chapter 4: Outline the design of our framework regarding workflows
the framework needs to support, required functionalities, and outline
high-level design decisions.

• Chapter 5: Introduce the implementation of the framework by
showcasing how the components interact, when and how the subparts
execute, and outlining specific component-wise implementation chal-
lenges that need to be solved.

• Chapter 6: Evaluation of the improvements our framework offers
over static, single-region deployments to answer the research question
while comparing to other solutions and illustrating the framework over-
head.

• Chapter 7: High-level discussion of the results and the limitations
of our framework.

• Chapter 8: Introducing related works that offer serverless applica-
tion deployment and other solutions for carbon-reduction techniques
concerning deployment.

• Chapter 9: Conclusion and potential future avenues of research.

Definition 1. Definitions that are reused throughout the thesis and
represent essential non-trivial concepts are highlighted in green boxes
and introduced when we first use them.

Insight 1. During the background chapter, we will regularly summa-
rize the most important insights to highlight the relevant findings that
either motivated or guided framework design aspects or the research
questions.
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Chapter 2

Background

Before we delve into the concrete motivation of our proposed solution and
outline the design, we first need to provide a background on the essential
concepts we must consider when building a framework for geospatial cloud
application offloading. We will first introduce and investigate electrical grids’
role in carbon emissions and highlight the fundamental regional differences
that enable us to effectively offload (§2.1). Following, we outline the prop-
erties of cloud service providers relevant for geospatial offloading and how
they relate to the underlying electrical grids (§2.2). Next, we characterize
cloud applications to gather insights into what applications may benefit from
offloading while also introducing the techniques used for modeling the car-
bon emissions of cloud application executions (§2.3). We will continue with
serverless and introduce different characteristics of serverless that enable it
as an ideal candidate for offloading (§2.4). Succeeding, we will discuss cur-
rent cloud application abstractions required to split a complex workflow into
smaller, offloadable tasks to enable fine-grained offloading (§2.5). Lastly, we
will talk about data transmissions within cloud applications from a latency
and carbon perspective. We will highlight that a framework must address
these when offloading complex interconnected workflows (§2.6).

2.1 Carbon Variances and Electrical Grids

Offloading cloud applications is motivated by the existence of different elec-
trical grids and the respective differences in carbon intensities between the
grids. In the following subsection, we will first give some background on the
makeup of electrical grids (§2.1.1), connect them to their respective carbon
intensity (§2.1.2), and study the effective differences, highlighting where the
differences would be favorable for offloading (§2.1.3).
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2.1.1 Electrical Grids

Electrical grids consist of electricity sources, a distribution grid, and con-
sumers. Each consumer is connected to a specific grid provider that produces
energy through one or more different energy sources [105]. The energy mix
can consist of renewable energy such as solar, wind, and hydroelectric power
or fossil-based energy such as coal or gas. Different grids may exchange en-
ergy in production or consumption spikes. However, these exchanges are
known, regulated, and quantifiable for accounting purposes [64,209].

Carbon intensity (gCO₂eq/kWh)

0 300 600 900 1200 1500

Figure 2.1: Outline of the different electricity grids in Europe. The color
indicates the carbon intensity of each grid from green (low) to brown (high).
Screenshot taken on Wednesday, 18th of April 2024 at 10:30 am Pacific
Daylight Time (PDT) (source: Electricity Maps [73]).

2.1.2 Carbon Intensity of the Electrical Grid

Now that we have a broad perspective on electrical grids, we want to esti-
mate the respective carbon intensity of a grid and outline how this intensity
is calculated. Related research into electrical grids uses gCO2-eq/kWh to
estimate the electrical grid’s carbon intensity.

Definition 2. gCO2-eq/kWh: gCO2 equivalent per kilowatt hour of
the emission of different greenhouse gases based on the global-warming
potential over 100 years of these gases

Notably, most grid providers publish their respective energy mix. By
knowing the mix and estimating the carbon intensity of energy sources,
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a model for the carbon intensity of a grid at a specific time can be pro-
vided [189, 197]. Electricity Maps [73] publishes the historical data of grid
carbon intensities, which we used for our evaluation, under an Open Database
License (ODbL) [167]. This historical data will allow us to focus on other
contributions instead of requiring us to spend time modeling this. Elec-
tricity Maps additionally offers an API where, given a location, the API
returns a live carbon intensity estimate or historical data for the past seven
days. Given a grid provider’s energy mix, Electricity Maps models the car-
bon intensity, measured in gCO2-eq/kWh, of that specific grid over time.
If current data is unavailable, Electricity Maps forecasts an estimated car-
bon intensity. Electricity Maps calculates the carbon intensity of the whole
lifecycle of different electricity sources based on the IPCC (2014) Fifth As-
sessment Report [29].

2.1.3 Carbon Intensity Variances

Knowing how the carbon intensity is modeled allows us to evaluate the
effective differences between electrical grids, highlighting the potential ben-
efits of offloading workloads to different grids. Based on Figure 2.1 that
already shows stark differences at a specific time, we can take a more an-
alytical approach and give some additional background on the variances in
carbon intensities over region and time. We will highlight the eight regions:
Germany, Ireland, Northern Italy, the UK, Spain, Switzerland, France, and
Sweden. We selected these regions for an in-depth discussion in this section
for multiple reasons, including their large population densities, large sec-
ondary or tertiary industry sectors, proximity, availability of compute hubs,
different regulatory zones, and varied energy sources. We list the energy
sources for the example year 2022 in Table 2.1. We chose the year 2022
since some government agencies did not produce reports for 2023 until the
deadline of this thesis. While there is a general trend towards more carbon-
neutral energy sources, the general patterns of 2022 can also be observed in
2023.

Country Primary Energy Source Secondary Energy Source

Germany [68] Coal (33.3%) Wind (24.1%)

Ireland [165] Gas (41%) Wind (28%)

Northern Italy [199] Gas (63.9%) Hydroelectric (10.6%)

UK [80] Gas (38.4%) Wind (24.7%)

Spain [66] Gas (29.5%) Wind (22.4%)

Switzerland [81] Hydroelectric (48.2%) Nuclear (39.9%)

France [67] Nuclear (71.2%) Various Renewables (17.7%)

Sweden [4] Hydroelectric (41%) Nuclear (29%)

Table 2.1: Energy mix by country in 2022.
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Figure 2.2: The carbon intensity of the European countries discussed so
far from the 29th of June 2023 to the 1st of January 2024. We chose two
week-long windows to highlight better short-term variability (data source:
Electricity Maps [73]).

We illustrate the electricity grids’ carbon intensity over a year’s times-
pan. This illustration allows us to investigate how the eight regions fare
concerning carbon intensities. For this investigation, we will use Figure 2.2
to draw insights from these regions:

• Grid carbon intensity varies widely due to the local energy sources
of each location. Sweden, France, and Switzerland enjoy low carbon
intensities because their primary energy sources are hydro and nuclear
power. Germany, Ireland, and Northern Italy have the highest carbon
intensities due to their reliance on fossil energy sources. Still, they
are all in densely populated areas, meaning many potential customers
live nearby. Alternatively, for example, Ireland [206] is favored for data
centers due to the access to both the European market and the British
market due to special post-Brexit agreements and low corporate taxes.

• Carbon intensity follows a daily pattern. Germany exemplifies this
pattern by relying on wind and solar as renewable energy sources.

• Carbon footprints and patterns vary across nearby regions. Even
though Northern Italy and Switzerland are only about 217 KM apart,
their carbon intensity varies up to sixfold, highlighting a significant
gap in the optimization space.
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Insight 2. Considerable differences exist between the carbon intensi-
ties of electrical grids, even those close to each other. Notably, these
differences in carbon intensities are not random but follow distinct
seasonal and daily patterns. If we harness these differences in daily
and seasonal patterns by moving work to a region with lower carbon
intensity at a specific time, we could offer significant reductions in
carbon intensity.

2.2 Cloud Service Providers

A cloud service provider is a company that provides on-demand, scalable
computing resources. In the following subsections, we will outline the char-
acteristics of cloud service providers relevant to this thesis’s scope (§2.2.1)
as well as connect the providers to the discussion about carbon intensities
of electrical grids (§2.2.2). This thesis focuses on AWS since it is the most
popular and geographically distributed cloud service provider. While con-
sidering additional cloud service providers might be interesting in the future,
AWS, with its diverse set of globally distributed regions, suffices to showcase
the beneficial effects of offloading.

2.2.1 Cloud Service Provider Regions

Most large cloud service providers geographically spread out their operations
over multiple locations. These diverse locations are chosen based on regula-
tory requirements on data residency, locality to a cluster of customers, and
additional disaster recovery. The offerings in these geographically diverse
locations are mostly indistinguishable and homogeneous with slight differ-
ences in offerings and service architecture [57,195]. The terms in this section
refer to AWS, but similar concepts and terms apply to all major providers.
AWS distributes computing resources globally in multiple geographical areas
called a region. A region comprises multiple availability zones, each isolated
for local disaster recovery and availability reasons. The locations are kept
private due to security concerns, as this is a critical system infrastructure.
An approximation is sufficient to map regions to electricity grids.

All previously introduced regions (§2.1.3) also correspond to AWS re-
gions. We illustrate the approximate locations in Figure 2.3 and list the
mapping in Table 2.2

2.2.2 Cloud Service Providers Energy Sources

All major cloud service providers either have extensive documentation [9,
90, 104, 152] or sometimes offer calculation tools [94] to estimate the car-
bon footprint of their applications. In this documentation, cloud service
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Country Region Code
Germany eu-central-1

Ireland eu-west-1

Northern Italy eu-south-1

UK eu-west-2

Spain eu-south-2

Switzerland eu-central-2

France eu-west-3

Sweden eu-north-1

Table 2.2: Country to Cloud Service Provider Region Mapping.

Carbon intensity (gCO₂eq/kWh)

0 300 600 900 1200 1500

eu-north-1eu-west-1

eu-west-2 eu-central-1

eu-south-1
eu-south-2

eu-west-3

eu-central-2

Figure 2.3: Approximate locations of the eight public European AWS re-
gions. Screenshot taken on Wednesday, 18th of April 2024 at 10:30 am PDT
(source: Electricity Maps [73]).

providers generally do not specifically disclose information on their energy
sources. Furthermore, while some providers, such as AWS, build and main-
tain their renewable energy projects [8], only some are fully self-sustaining,
given the complexity of energy production. Moreover, while providers such
as Google have made strides in enabling more efficient and transparent ways
to enable cloud service providers to buy cleaner energy [91], more work from
both energy providers and consumers is needed to ensure genuinely 100%
carbon neutral operations.

All cloud service providers participate in so-called RECs [210], time-
based energy attribute certificates (T-EACs) [58, 164], offset markets, or
similar accounting practices. The basic methodology is that every MWh
of renewable energy produced creates one certificate. These certificates give
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the owner the right to claim to use renewable electricity. Offsets are a similar
accounting method; however, they count metric tons of CO2 saved outside
the company’s utilization scope. The discussion happening extensively in
corresponding expert communities [43, 45, 172, 229] about the legitimacy of
such carbon accounting systems and effectiveness is out of the scope of
this thesis. However, the methodology only works as a theoretical carbon
offset. The overproduction of renewable energy during one period has yet
to be efficiently transferred to another, even though advances in battery
technology are promising [176]. Additionally, since the data center and
the renewable source may not necessarily be in the same grid, the data
center still consumes the potentially ”dirty” local energy. Primarily since
building renewable energy capacity far away from actual usage centers will
not ensure an efficient energy distribution due to a lack of power lines [154]
and an antiquated power grid [198]. Thus, if the cloud service providers
claim a decrease in net operational carbon emissions from using and buying
renewable energy, it is not the same as using solely renewable energy sources
at all times [52,218,219]. It is legitimate to take the energy mix at the time
of energy consumption as the base of the energy source.

By guessing the location at the granularity of an electrical grid, we can
estimate the current energy mix used by a specific cloud service provider’s
data center. Subsequently, using the methodology introduced (§2.1.2), the
carbon intensity per kWh can be calculated.

Insight 3. Cloud service providers offer mostly homogeneous services
in globally distributed regions. These homogenous offerings present a
significant opportunity for workloads hosted in the cloud to be relo-
cated to regions with the lowest carbon intensity, potentially reducing
carbon emissions. Even though the service providers claim and aim
to reduce their carbon footprint, they still rely on the underlying elec-
trical grid to power their data centers. More than relying on cloud
providers and their green data centers is required; considering the un-
derlying grid, a more fine-grained approach is necessary.

2.3 Cloud Applications

Since we now have an understanding of the electricity grids (§2.1) as well as
the connection to the cloud service providers (§2.2.2), we now have to talk
about the workloads that run at these providers. Cloud service providers
nowadays offer a broad host of services, each with their specialties and differ-
ences. For example, Infrastructure as a Service (IaaS), Platform as a Service
(PaaS), Software as a Service (SaaS), or Function as a Service (FaaS) are
just a few fundamental cloud service offerings. AWS, for example, currently
offers around 200 fully featured services. The development, let alone the
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configuration of both the deployment and execution of a modern cloud ap-
plication, is non-trivial.

Additionally, many applications are nowadays interconnected and com-
plex [121, 140]. Dependencies between both instances of the same service
and other services are common, and most cloud applications’ architectures
feature many different components. Academia offers tools to alleviate the
problem of cloud application complexities in general and, more specifically,
regarding multi-cloud deployments [77, 220]. The complexity of a modern
application makes the search space for optimization regarding deployment
and resource usage estimation a complex problem for individual developers.

2.3.1 Characterization of Cloud Applications

In addition to their application logic, cloud applications can be defined by
their end-to-end latency, carbon intensity, and corresponding cost. These
represent the three metrics for a cloud application that we consider essential
in the context of this thesis. Each of these metrics, in the broadest sense,
comprises execution and transmission, where execution is the actual com-
putation done by the application and transmission is any data transmitted
as part of the application process. All three metrics additionally depend on
the cloud application characterization. While there is yet to be a consensus
on the exact terminology when categorizing cloud applications, we focus on
the following:

Duration

Generally, there are three categories of the duration of cloud applications:
(1) continuous: These kinds of applications are up and running as long as
the application exists. These usually offer user-facing logic that needs to
be able to serve requests. Applications in this category usually fall into
the IaaS or PaaS category, where the client sets up a server for the hosted
infrastructure or platform that serves requests. They usually do not have
an end date and run until canceled. (2) long running : While these ap-
plications, similarly to the continuous, run for a longer time, they usually
have an end date. Applications in this category are usually categorized
to take up to several days to finish. However, these kinds of applications
can use many resources as they are more likely to be over-provisioned con-
cerning memory and compute requests [138]. Examples of this application
include machine learning training, simulations, and big data analysis appli-
cations. (3) short running : most cloud applications fall into this category.
For example, traces from Alibaba [138] show that 90% of batch jobs, which
make up a significant portion of short-running applications, run less than
15 minutes. These applications, due to their short-lived nature, are usually
time-sensitive. Examples include FaaS applications, CI/CD pipelines, and
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nightly deployments. Another complexity is introduced by the timing of ap-
plication executions, namely service level objectives (SLOs) and agreements
(SLAs). Many applications include SLAs with their end-users that guar-
antee a specific end-to-end latency upon invocation [169]. SLOs introduce
latency tolerances that need to be observed in the applications [69].

Time of Execution

This category is defined by when an application is executed relative to the
submission of its specification or an invocation. There are generally two
categories in this dimension: (1) ad-hoc: applications that need to run im-
mediately upon a particular event or trigger happening. These applications
usually do not tolerate a significant delay in execution, and forecasting the
invocation timing of such applications is a topic of its own. Examples in-
clude FaaS invocations, CI/CD runs, machine learning training, and exten-
sive data analysis. (2) scheduled : These are applications where the developer
defines the execution date at task submission. These applications usually
range from start to end in terms of latency tolerance. They can include
nightly deployments, analysis jobs, and simulations.

Preemptibility

When an application is preemptible, its execution can be stopped and con-
tinued later. Such applications either write checkpoints or have another way
to ensure statefulness if required. Composite and stateless applications are
usually preemptible due to the nature of the application architecture. How-
ever, not every composite or stateless application is delay-tolerant about
finishing time. Thus, whether an application is preemptible depends on the
application structure and latency delay tolerance.

Location Stickiness

An application is sticky to a location if there is any reason from a contrac-
tual or data residency perspective why this application cannot be moved out
or into another region. A location can be a specific country, encompassing
multiple regions or region-specific. Examples of why an application might
be location sticky include HIPAA in the U.S. [166], PIPEDA in Canada [98],
or GDPR [74] in the European Union. Additionally, the banking or health
sector is usually closely regulated regarding client data [205]. Location stick-
iness can also be partial. Since the application consists of multiple parts,
some steps of the application logic may be sticky and need to be executed
in a specific region, while others are less locality-sensitive.
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Applications Ability to Offload

When we discuss offloading to the extent of this thesis, we refer to applica-
tions that can be moved from one cloud service provider region to another.
This discussion necessitates some characteristics of an application. In Ta-
ble 2.3, we outline which qualities applications need to have to be offloadable.

Duration Time of Execution Preemptibility Location Stickiness

Continuous Ad-hoc ✓ Preemptible ✓ Location-Sticky

Long Running ✓ Scheduled ✓ Non-Preemptible ✓ Non-Location-Sticky ✓

Short Running ✓ Continuous Partially Location-Sticky ✓

Table 2.3: The qualities Required for Application Offloading are highlighted
with a checkmark. Any application that combines these qualities is theoret-
ically offloadable.

2.3.2 Modeling Cloud Application Carbon Emissions

After identifying what applications are off loadable, we need to model an ap-
plication’s carbon emissions to calculate the potential improvement we can
gain from offloading. Even though the spectrum of available, different appli-
cations is broad, all applications if broken down to their core, are hosted on
physical machines in data centers and auxiliary buildings spread across the
globe. While the level of virtualization on top of the physical machine varies
from service to service, introducing different levels of unknown factors and
overheads, every application relies on similar computing, storage, memory,
and IO components. This knowledge, together with the provided informa-
tion about memory, computing, IO, and storage consumed, gives us a good
idea of the makeup of a cloud application and its most basic components.

The exact setup of the utilized software and hardware stack for one of
the services is proprietary on different levels. However, one can still make
assumptions based on the open-source components and information publicly
shared about the approximate makeup of the underlying architecture and
machines [37]. We can estimate the resource usage, specifically the consumed
kWh of a cloud application.

We can break down the resource usage of any cloud application into two
categories: (1) operational emissions: encompassing the resources used to
execute an application [122] and (2) embodied emissions: the lifecycle car-
bon emitted by the hardware components and infrastructure needed to host
the application [108]. In the interest of this thesis, we will focus on the
operational emissions rather than the embodied emissions. This choice was
made by us because, on the one hand, the data is scarcer on the involved
hardware components, and, secondly, we assume that the computer architec-
ture used by the same provider, AWS, should be more or less homogenous,
as evaluated by related research into workload placements [57,213].
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Prior research on estimating the carbon emissions of a cloud application,
or any application, can be grouped into several categories. Existing overview
studies [65] highlight the many modeling approaches that exist. One cat-
egory of carbon emission modeling in research [56, 228] has abstracted the
carbon emissions of application executions using the fossil fuel percentage
of a region times runtime and memory used for a comparative study of
regions. Another research cluster has approached the problem more gran-
ularly and proposed a power times the carbon intensity of the grid per
kWh model. Specific research has focused on the power consumption of
a particular server or operation, quantifying it as a function of time spent
processing times power of computer host [145], a function of the rate of han-
dling service requests [84], per CPU of a specific cluster [182], or as complex
models of energy charges [61]. Additionally, research into the energy usage
of Deep Learning [201] and Machine Learning [123] has provided models
to quantify the usage of computation workloads. Some research has out-
lined a carbon emission model based on computing unit (CPU), memory,
storage, and network to quantify the carbon footprint of computation [124],
decide on where to schedule serverless functions [48], for sustainable resource
management [88], or exploring power-performance tradeoffs in database sys-
tems [217]. We want to highlight the second model since it presents the
most reliable estimation base when given the public information available
to FaaS applications, memory (Emem), CPU (Ecomp), IO (EIO), and storage
(Estorage). Additionally, the power usage effectiveness (PUE) as well as the
grid carbon intensity (Igrid) must be taken into account when calculating
the overall carbon emissions. Equation 2.1 summarizes the findings of these
models to a generalized model.

Carbonex = Igrid × (Ecomp + Emem + EIO + Estorage)× PUE (2.1)

Insight 4. Modern Cloud Applications are complex constructs with
per-component level dependencies and tolerances. The characteristics
an application needs to show to enable offloading the whole or parts
of the applications show a wide range of potential beneficiaries for
offloading. Moving an entire application from one region to another
is often challenging due to end-to-end latency tolerances, compliance,
or the invocation pattern. Calculating the execution carbon inten-
sity is possible under some assumptions about a cloud application’s
underlying resources and data center architecture. The three metrics
of an application that we will focus on, carbon intensity, end-to-end
latency, and cost can be most broadly subcategorized into execution
and transmission.
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2.4 Serverless

We introduce the serverless service paradigm to outline a specific type of
workload that is a good proof-of-concept candidate for offloading. Serverless
computing is an emerging paradigm in cloud computing. Rob Sutter, a
senior developer advocate at AWS for serverless, provides four functional
characteristics of serverless computing [204]:

1. No infrastructure provisioning, no management,

2. Automatic scaling,

3. Pay for value, and

4. Highly available and secure.

If we say serverless, we do not mean the software is not running on
servers. Instead, the end user does not care about the specifics of the in-
frastructure involved. If the developer does not have to worry about infras-
tructure provisioning, this frees up resources for developers to focus on the
application logic.

A critical aspect of the serverless paradigm is an abstraction of the in-
volved cost model. In serverless computing, the client pays for the services
used instead of continuously paying for resources regardless of their usage.
This pay-per-use scheme allows for a fine-grained cost accounting where
resources used directly impact the cost incurred. The exact cost model
depends on the actual serverless service model. Additionally, serverless ser-
vices are often stateless, allowing for more effortless movement of where
computation occurs.

FaaS is one specific cloud service model that is serverless. In the FaaS
service model, developers write code in high-level languages such as Python,
Go, Node.js, Java, and many more. The developer can upload their code
directly to a provider or package into a container, such as Docker images.
Packaging the code into containers allows for easier function migration and
gives the developer more power to control the execution environment. They
then additionally configure an event that triggers the execution of this code,
together with potential input. Examples of triggers include HTTP requests,
messages in distributed messaging queues, and more. Developers can deploy
at the granularity of functions, where each function represents a piece of
code. For each serverless function, the developer needs to define a handler
function. This handler function is invoked when an end-user invokes the
FaaS instance.

The cost model of serverless functions is similar for all providers. There
is a cost per invocation and a cost associated with the computing resources
used. The cost per computing resource is expressed as gigabyte seconds of
memory used. The rounding granularity regarding the used GB-seconds of
memory is different between the different providers, from 1ms at AWS [18] to
100ms at most other providers [95], which is also why concepts such as Sky
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Computing [33,56,220] utilizing these differences for cost gains have gained
traction. Since the client pays per GB-second, the provider is also directly
incentivized to report time spent on a function, enabling a fine-grained ac-
counting of the latency (execution time) of a FaaS function. Higher-level
middleware providers can offer significant cost savings with a holistic ap-
proach to the resource FaaS. We aim to present a similar vision regarding
the serverless resource focusing on carbon; however, we can transfer some
insights from cost- and latency-focused studies.

Characterizations of serverless functions [72,196] have shown that:

1. most serverless functions observe short execution times; 90% execute
for less than 10s,

2. functions have a small memory footprint, usually below a few GB.

These results are not surprising, given the pricing model and current
tolerances of the serverless service model. One could now conclude that
serverless functions do not contribute significantly enough to the global re-
source consumption of cloud service providers; however, they are a growing
part of the service offering of all cloud service providers with significant
adoption across all major cloud service providers [62]. Thus, the resource
impact of serverless functions will only increase, given the current trajectory.

One serverless function can already represent a serverless workflow; how-
ever, developers increasingly connect functions to represent larger workflows.
Serverless functions thus fit well into the argument of the ever-increasing
complexity of cloud applications (§2.3). By abstracting away the actual
server resources and additionally working as an interface to usage-driven,
stateless backend services, FaaS functions are often used as glue and con-
nected to form more complex workflows. However, complex serverless func-
tion workflows exist [127,142] and have benefits concerning task parallelism,
prolonging the maximal execution time, or fine-grained error logging.

Serverless functions provide many aspects necessary for seamless cross-
regional migration. Since an event invokes a usually stateless function, the
location of the execution does not matter. Storage is mainly disaggregated
from execution, where the storage offering is usually a serverless service such
as dynamoDB [16], a distributed key-value store offered by AWS or S3 [19],
AWSs blob storage solution. The migration of a Docker image represent-
ing the application logic of a serverless function is relatively simple, as the
whole execution environment, including all dependencies, is packaged. Fur-
thermore, the cloud providers’ offerings of FaaS are relatively heterogeneous
within the same provider. So, executing a serverless function in one region
will behave similarly to running it in another. The short-lived nature and
popularity of serverless functions [112, 143, 196] enables us to characterize
serverless functions specifically faster than comparable service offerings, and
sub-optimal decisions with regards to offloading do not have long-lasting ef-
fects on both carbon intensity and end-to-end latency. Serverless workflows’
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flexibility and ease of characterization make them ideal candidates for a
proof of concept and the first step in showcasing the geospatial offloading of
larger cloud applications.

2.4.1 AWS Lambda

As a case study for one serverless function model hosted on one specific
provider, we will discuss the system architecture of AWS Lambda, a server-
less function service provided by AWS, in more detail.

Essentially, a Lambda function uses a share of the resources of the un-
derlying Firecracker worker [3], the virtualization system used at AWS for
hosting the functions. Developers can configure AWS Lambda functions
with a minimum of 128 MB and up to 10,240 MB of memory. The amount
of configured memory determines the virtual CPU (vCPU) available to a
function (nvCPU = memory

1,769 ) [24]. A vCPU represents the ability to run
one processing thread at a time. The maximum execution time of a lambda
function is 15 minutes. Depending on its physical architecture, a Firecracker
worker can collocate many AWS Lambda functions. The cost model of AWS
Lambda is determined by the number of invocations and the total Gigabytes
the function consumes, which is the product of total memory and duration.
The price is determined by each millisecond of execution time, offering a
fine-grained billing approach.

Given this information and the background we introduced for modeling
(§2.3.2), we can also model the resource usage of serverless functions. Any
estimation concerning resource usage of FaaS functions, especially carbon
estimations of said workflows, must only be used comparatively. Since we
estimate many variables due to a lack of information, we cannot claim to
provide any absolute numbers on FaaS’s carbon emissions. Additionally, we
hope this and similar work in this area will incentivize the cloud providers
to share more information concerning the carbon intensities of services pro-
vided.

2.4.2 Serverless Workflows

Serverless functions rarely function independently and are often connected
to larger applications. We introduce the term serverless workflow to encom-
pass both a single function and a sizeable interconnected net of functions.
The workflows are scalable because if one part receives more load, that
specific function can scale out without scaling the complete workflow. It
also allows for function-level optimizations concerning resource usage and
requests and allows for complex deployment configurations. Additionally,
it allows workflow developers to own their functions from development to
deployment, reducing the organizational strain introduced by the separa-
tion of concerns. Optimizing resources and workflow latency soon becomes
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intangible due to hidden connections and unknown dependencies.
To mitigate the issues of evermore complex workflows, providers now

offer tools to manage complex state diagrams that comprise multiple in-
terconnected components, such as AWS Step Functions [20], Google Cloud
Workflows [96] or Azure Logic Applications [32]. These tools introduce
concepts like conditional executions, synchronization points, fan-outs, and
more. These are well-known concepts to workflow developers, and many use
cases require these concepts to be functional. This development of sophis-
ticated tools is an essential step toward the serverless ecosystem’s maturity,
showing that workflow requirements are becoming increasingly complex. At
the same time, there is a real need for tools that automate the meticulous
deployment task, invoke functions, and control flow.

Serverless Workflow Use-Cases

To get a better idea of the type of workflow that developers usually de-
ploy as a serverless workflows [101], we present three categories of common
workflows:

1. Parallel functions: workflows that take advantage of task-level paral-
lelism, such as those that use a divide-and-conquer approach to solve
problems like weather forecasting.

2. Glue-code: Workflows that connect are usually also serverless in design
and services. The workflow might also apply some processing logic
before handing it off to another service.

3. Compositions and pipelines: As previously mentioned, there is an in-
creasing interest in more complicated serverless workflows in complex
compositions with control flows.

Examples of workflows that fall into these categories are data visualiza-
tion tasks, image processing pipelines, small-scale text-to-speech or video
processing, and more complex implementations of popular paradigms such
as MapReduce. These examples have also informed our benchmark selection
(§6.2).

2.4.3 Serverless Workflow Execution Latency Prediciton

As outlined (§2.3.2), our primary unknown regarding modeling the resource
usage is the execution latency of a workflow, more specifically, in the case
of serverless workflows, the latency of an individual step of the workflow.
Attempts to estimate the execution latency based on input sizes become
challenging, for example, in cryptographic workflows, where the same input
may result in very different execution times. Characterizations show that
the execution latency is not a simple result of any specific factor [111, 222].
Even assigning a different underlying processor [57] can result in variances.
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Previous work has estimated the execution latency based on past invoca-
tions and complex solutions exist [71, 129]. Since latency prediction is not
a primary contribution of this thesis, we can rely on the assumption that
the execution latency of a function can, to a certain amount, be estimated
based on previous executions. Since many unknown factors may delay or
speed up a function execution, making more fine-granular claims would be
ignoring the reality of the problem.

Insight 5. Serverless workflows are a good example of modern cloud
applications. Serverless functions are an example of easily migratable
workloads. Many of the necessary qualities to facilitate cross-regional
offloading are engrained in their service offering, making them ideal
candidates for this thesis’s work. The fine-granular accounting from a
cost and latency perspective, as well as the disaggregation of execution
and storage, help account for a good approximation of carbon incurred
on an invocation level and for migrating workloads without causing
the workflow logic to break.

2.5 Application Abstraction

Much prior research has been focused on abstracting away application logic,
whether for latency, bottleneck, or dependency analysis. A standard method
of abstracting an application involves breaking down the source code into
parts that abstract their actual execution, often represented by comparative
numbers like latency. The level of abstraction and what data is essential to
maintain from the building blocks of abstraction depends on the problem.

As we previously outlined (§2.3.2) to model the resource usage of a cloud
application, we mainly require application information regarding end-to-end
latency since everything else depends on it. Application latency analysis
of linear and parallel execution is a well-known problem [202] with exist-
ing solutions. The following subsection introduces one such solution that
informed our workflow model. Relevant applications are parallel and high-
performance computing and cloud computing.

2.5.1 Data Dependency Graphs

One abstraction widely used in parallel computing is the dataflow represen-
tation of an application [41,192]. In a dataflow graph, the application logic
is abstracted away, and the primary resource is data, which flows between
computation steps. These dataflow graphs introduce many concepts, such as
conditional execution and synchronization points, which are very valuable
in representing complex, micro-services-like architectures. They also em-
power the visualization of complex architectures through data dependency
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analysis, as shown by recent comparative studies [97]. Related research into
choreographies [187] introduces similar data flow-based models.

Since an application’s data flow is one-directional in the context of time,
the specific graph structure representing the data dependency is a Directed
Acyclic Graph (DAG). The components of these DAGs are nodes repre-
senting computation or execution and edges representing data transmis-
sion. Parallel application research has long ago embraced the DAG struc-
ture to represent applications [79]. Representing applications as DAGs en-
ables graph optimizations on top of the DAGs while maintaining the ap-
plication’s semantics. Researchers use these DAGs for end-to-end runtime
research [149] also required for a per complex workflow accounting model
and scheduling [161], similar to our use-case. Furthermore, DAG analysis
of complex microservice architecture has given the most accurate insight
into application behavior and end-to-end latency [140, 141]. Another ab-
straction also based on DAGs is choreographies, introducing a language for
describing complex workflows at a high level of abstraction [186] offering
many translatable concepts concerning application abstraction. Lastly, the
OASIS Topology and Orchestration Specification for Cloud Applications
(TOSCA) [130] standard helps define applications as graphs for enhancing
cloud applications’ portability and operational management.

Insight 6. We can abstract applications into building blocks of ex-
ecution and transmission. Doing so simplifies the accounting model
and enables discussions of application offloading on a per-execution
building block without losing any dependency information concerning
transmission. Data dependency graphs enable various operations and
reasoning on applications abstracted into these two components.

2.6 Data Transmission

Global-scale cloud applications only exist with the Internet, which is a net-
work of interconnected machines that transmit data between themselves in
its most simplified form. Like computing, data transmission is essential to
every cloud service offering. In the following subsections, we will highlight
the two relevant aspects of data transmission when considering geospatial
offloading: latency and transmission cost/carbon.

2.6.1 Data Transmission Latency

Data centers are interconnected globally via high-speed links, and transmit-
ting data from one location to another is incredibly fast compared to a few
years ago. In Figure 2.4, we summarize the one-way ping speed between
data centers for the European AWS data center locations.
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Figure 2.4: Mean one-way ping in milliseconds between European AWS data
centers. Data taken on Thursday, 4th of May 2024 at 11:30 am CET (source:
CloudPing [54] and WonderNetwork [185]).

Thus, connecting cloud services locally within an availability zone and
cross-regionally becomes an opportunity since the applications’ low latencies
allow for moving data in and out of regions with relatively low latency over-
head. These low latencies become especially interesting in use cases where
this latency overhead can be hidden away through function-level parallelism
or with applications with some tolerance for response latency.

2.6.2 Data Transmission Cost

All popular cloud service providers usually do not charge ingress fees for
incoming data. However, egress fees may apply [109,120]. AWS, for example,
charges egress fees per GB of data transmitted outside of a region [28].
These fees must be addressed when considering the geospatial distribution
of complex applications.

2.6.3 Data Transmission Carbon Emissions

While transmission latency between clients and services and between ser-
vices has always been of primary concern to cloud application developers,
data transmission’s carbon emissions have yet to receive the attention they
deserve. Data transmissions’ carbon emissions deserve additional attention.
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They deserve especially attention in geospatial offloading with carbon emis-
sion reduction goals, where the carbon emissions of data transmissions might
counteract our stated goal. Prior research on the carbon intensity of data
transmission between two geographical locations is relatively scarce. Most
research evaluates end-to-end user traffic, which integrates data transmis-
sion carbon emissions between and within data centers [137], or derive and
report power consumption irrespective of transfer distance [30, 34, 178], or
both [194]. The consensus is that the carbon intensity depends on the size of
the data moved (S), the energy consumption of the transfer (EFtrans), and
the carbon intensity of the traversed grid points (Iroute). Effectively giving
us Equation 2.2.

Carbontran = Iroute × EFtrans × S (2.2)

Estimates of EFtrans vary significantly across studies as illustrated in
Table 2.4.

Year Energy Consumption (kWh/GB) Source
2022 0.0053 [36]
2021 0.002 to 0.007 [78]
2020 0.001 [146]
2018 0.00333 [178]
2015 0.06 [30]
2024 0.00025 [147]

Table 2.4: Energy Consumption of data transmission per GB in different
studies.

Insight 7. Data transmission latency between data centers goes be-
yond a simple function of input size. Any viable solution for workload
offloading must consider data transmission’s carbon intensity when
determining where to deploy a function. The carbon intensity of data
transmission is especially critical when considering the data dependen-
cies between the building blocks of a partially offloaded application.

2.7 Summary and Contextualization

In this chapter, we introduced the necessary background to motivate the
research for this thesis further and outlined the context relevant to the rest
of the research. To provide the background necessary to answer the thesis
questions, we discussed carbon variances in electrical grids, which open the
possibility for optimization. We also highlighted that cloud providers are
connected to the local electrical grids, and carbon offsetting or credit sys-
tems do not lead to less carbon intensity at the moment of consumption.
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Then, by introducing the different types of cloud applications, we showed
which ones are offloadable, motivating what sort of applications we are tar-
geting. If we approach the applications as workflows that can be split into
smaller parts, we increase the number of offloadable applications, necessi-
tating fine-grained strategies. Serverless is an exemplified cloud workload
encompassing serverless workflows, the ideal candidate for geospatial offload-
ing. By showcasing the current research into carbon modeling for execution
and transmission, we established that any improvement in execution carbon
might be offset by transmission carbon, requiring a holistic system aware of
both.
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Chapter 3

Motivation

The carbon variances investigated in the background chapter (§2.1.3) to-
gether with the knowledge that offloadable applications, and specifically
serverless workflows lend themselves as excellent examples, exist (§2.3.1)
under the caveat that transmission carbon (§2.6.3) must be taken into ac-
count already provide a strong motivation for a framework that answers the
research question as outlined in the introduction (§1). This chapter starts
with a motivating example and a vision of what a framework for geospatial
offloading should achieve (§3.1). Next, we will outline the factors necessary
to enable a framework for geospatial shifting (§3.2), motivating further de-
sign and implementation specifics. Lastly, we outline the state of the art
in frameworks for serverless workflow offloading for execution carbon reduc-
tion (§3.3) where especially the limitations (§3.3.3) additionally motivate
the work of this thesis by identifying a gap for a new framework.

3.1 Motivational Example

Text To
Speech

Profanity
Detection

Encoding

Censor

Can be
Offloaded

Latency
Sensitive

Regulation
Sensitive 

Validation

Client   

Text Upload 

Compression

Figure 3.1: Motivational example application with both regulation-sensitive
tasks and parallel, non-latency-sensitive tasks.

To motivate the research question and the framework built as part of
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this thesis, we will commence with a motivational example workflow and
then showcase what we envision a framework could achieve by geospatially
offloading said workflow. Let us introduce an example workflow that turns
text into speech and censors profanity. In Figure 3.1, we outline the work-
flow’s structure with all its logic blocks and data dependencies between
them. When uploaded, the text first goes through a hate speech filter to
remove any text passages that are illegal in the jurisdiction of the country
of the uploader [83]. Since the workflow developer commits a crime if the
workflow turns the text containing hate speech into actual speech, this step
is sticky, and a solution is not allowed to offload this step to another region.
Any subsequent steps only handle the cleaned text and can thus safely be
offloaded to other countries, which offers an avenue of carbon optimizations.
After this, two tracks of work happen in parallel:

1. The text is turned into speech using the Google text-to-speech API [89],
then encoded into the .wav format, and finally compressed as a chain
of tasks.

2. Profanity detection using a profanity detector library [42] that gener-
ates text indices that contain profanity.

A censoring step then gathers all the information from the previous par-
allel work tracks and censors the speech, returning the censored speech to
the client.

This example highlights multiple concepts that motivate the framework
built during this thesis:

• Location-stickiness: The validation step can not be moved outside
of one jurisdiction and is thus location-sticky; this motivates a fine-
grained deployment approach. A solution might miss many potential
carbon emission optimizations if it only considers offloading the whole
application.

• Latency Sensitive: The application has a latency-sensitive hot path
and two parallel tasks that are relatively latency-non-sensitive. We
need a per-task deployment to different regions considering the impact
of end-to-end latency on decisions; otherwise, we might violate exist-
ing SLOs that the developer should be able to communicate through
tolerances.

If we envision a scenario with three regions where we could deploy the
Text2Speech Censoring workflow, the state-of-the-art would be to confine
the whole workflow to one region, which may not even be the best region
with regards to carbon intensity (Figure 3.2a). Our motivation stems from
the need for a comprehensive solution that is adaptive to changing carbon
intensities and application workloads and empowers us to shift regions of
the tasks that can be offloaded as needed. Additionally, the solution needs
to be able to fine-grainedly deploy tasks so that offloading does not interfere
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a. Status Quo b. Carbon-Aware 
Deployment Hour A

c. Carbon-Aware
Deployment Hour B

Figure 3.2: State-of-the-art is to deploy the Text2Speech Censoring workflow
in one region. This thesis proposes a framework that can dynamically and
carbon-awarely deploy the same workflow, taking advantage of the structure
and carbon intensities in the available regions.

with tolerances or location constraints. Figure 3.2b & 3.2c shows how we
envision our solution based on the motivation. In this vision, the fine-grained
offloading decision for the profanity detection changes between two hours
based on the carbon grid intensity due to changes in grid carbon intensities
due to the renewable energy sources used.

3.2 Feasability of Geospatial Shifting

Any solution that wants to provide an answer to the research question as
outlined in the introduction (§1) by enabling geospatial shifting must take
into account the following factors:

• Compatibility: The underlying hardware may vary from location to
location. The execution environment of a workload must be guaran-
teed; otherwise, the outcome of a computation may vary significantly.

• Cost: As both execution and transmission of data vary from region
to region and between providers, a viable solution enabling geospatial
shifting must be aware of cost differences.

• Latency: Shifting from one region to another naturally causes a la-
tency overhead, exaggerated by traffic sources/sinks and sticky data.
Additionally, latency differences introduced by different hardware, soft-
ware, and loads (relative pressure by co-tenants) in various regions will
cause different results. Any framework that wants to offer real value
to the end-user with low latency tolerances must be aware of these
implications.

• Carbon: Carbon must be approached holistically. Both execution and
transmission carbon must be considered, especially when considering
the data size of transmissions. Depending on the workload, application
structure, and data transmissions, offloading may cause more carbon
overhead than it saves.
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• Compliance: Enabling the developers to communicate restrictions
on specific data/compute movements for compliance reasons is a nec-
essary feature, especially when shifting geospatially.

These factors motivate a comprehensive framework that considers all
these implications while being able to optimize for multiple objectives. How-
ever, since these factors vary between different applications, at various times,
and for different users, a system needs to be able to adjust and adapt. A
holistic solution that intricately balances the trade-offs between carbon ef-
ficiency, latency implications, cost overheads, data compliance, and the op-
erational implications of complex cloud applications is needed to present a
feasible answer to the research question.

3.3 Existing Solutions

The increased interest in reducing the carbon intensity of cloud applications
has already produced a significant research output. The academic commu-
nity has approached optimizing the carbon intensity of cloud workloads pri-
marily from two directions: (1) users and developers that deploy workloads
at the cloud providers and deeply understand the domain-specific challenges
of their developed applications. While they might care about their appli-
cation’s carbon intensity, they need more resources to investigate the best
possible deployment or a deep understanding of the proprietary software
systems that host their applications. (2) cloud service providers that run
the workloads. Cloud service providers understand the architecture, deploy-
ment optimizations, resource usage patterns, and more. However, without
the user explicitly telling them, they have very little knowledge about the
tolerances the applications they host have, such as latency and regulatory
requirements. Currently, clients cannot communicate such tolerances in the
confines of the major cloud providers.

We categorize the state-of-the-art into two approaches: (1) temporal and
(2) geospatial shifting.

3.3.1 Temporal Shifting

Temporal shifting means delaying or expediting a job in the temporal dimen-
sion. After seeing the daily carbon variances, shifting work to a beneficial
time concerning the involved carbon intensity seems sensible. Previous re-
search shows that moving a workload to a less carbon-intensive time slot
can benefit the workflow’s overall carbon intensity. Cloud workflows that
are not latency sensitive, such as CI/CD pipelines or nightly deployments,
can be moved around in a given time window and are perfect candidates for
this approach. Prior research such as ”Let’s Wait a While” [214], among
others [61,134,139,191] attempted at such frameworks, while also highlight-
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ing clear limitations. Their dependence on temporally shiftable workflows
limits all of these frameworks. Workflows that can benefit from temporal
shifting fall into the categories of long or short running, scheduled, and pre-
emptible workflows. Continuous workflows are not shiftable by nature, while
ad-hoc workflows also by nature expect an immediate execution, which rules
out temporal shifting in most cases. Non-preemptible workflows are theo-
retically also temporally shiftable when the execution is relatively short or
predictable.

3.3.2 Geospatial Shifting

The diagram of carbon intensities in different regions (Figure 2.2) moti-
vates geospatial shifting. Frameworks such as ”GreenCourier” [48] showed
that implementing a geospatially aware scheduling policy in Kubernetes for
scheduling serverless workflows can result in reducing the carbon intensity of
serverless function invocations by an average of 13.25%. Cordingly et al. [56]
introduces a proxy design where serverless function invocations are routed
to the least carbon-intensive provider and region, showcasing substantial
carbon intensity reductions. However, both studies ignore the carbon in-
tensity of data transmission while also not offering an avenue to optimize
larger-scale workflows since the studies focus on scheduling functions and
ignoring dependencies or only being able to work with synchronous calls
to single serverless functions. Research has primarily focused on the de-
ployment problem from a cloud provider perspective and approached the
problem solely as a resource scheduling problem, such as optimizing the
workload in geographically distributed data centers [5], load balancing with
renewables as part of the balancer [132, 133, 208], or exploiting otherwise
wasted renewable energy by colocating data centers and connecting them
over a dedicated network to get a ”free lunch” [6]. The cloud provider
perspective could bring the best results if feasible and implemented. How-
ever, due to a lack of tools for developers to communicate limitations such
as region stickiness and end-to-end latency tolerances, more research into a
global deployment framework is necessary to showcase the potential benefits
of cross-regional migration.

While shifting simple workflows has been investigated in prior research,
prior work has yet to adequately characterize the scope of more complex
workflows required to answer the research question. Cloud workflows could
benefit from geospatial shifting when looking back at the cloud workflows
characterization (§2.3.1). Especially short running workflows with an ad-
hoc time of execution, and that is non-preemptible. Other categories work as
well, such as long running, scheduled, and preemptible workflows. However,
geospatial shifting offers a unique opportunity to benefit from differences in
grid intensities without waiting for the grid to improve but rather to move
to less carbon-intensive regions.
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Geospatial shifting is especially effective when the workflow is flexible
concerning execution location. However, if these only apply to subparts
of a workflow, then a fine-grained approach may still yield optimizations
regarding carbon intensity. Shifting and workload migration also come at a
cost that a framework attempting to provide a geospatial shifting solution
must consider. While temporal shifting does not incur any additional cost
by delaying or expediting a job, geospatial shifting incurs both a cost in
latency between locations, monetary from egress to a different region, and,
most importantly, carbon from the transmission. Every solution additionally
creates overhead by the framework itself and by solving. Given the carbon
swings, a static solution of finding the best deployment once and staying
there is not feasible.

3.3.3 Limitations

While recent work in both temporal and geospatial shifting has highlighted
the potential for reducing carbon intensity by shifting workflows to more
favorable data center regions, there is still a gap for a comprehensive, cross-
regional framework. A framework incorporating transmission and execution
carbon while also being overhead-sensitive has yet to be built. The provider
perspective offers many avenues for optimization; however, tolerances must
be effectively communicated between developers and providers to overcome
the current regional boundaries of optimization. We want to highlight the
following limitations additionally that we encountered in the state of the art
that we were aware of at the date of submission:

Ignoring Transmission Carbon: Currently, no solutions consider
transmission carbon in calculating offloading decisions. Ignoring it is the
wrong approach, even if it may look like the transmission carbon overhead
is negligible. As shown in Section 2.6.3, the carbon intensity of transmissions
exists and can not be ignored. Moreover, especially in geospatial shifting,
taking carbon emissions from transmission into account is required.

Missing Comprehensive Solution for Cross-Regional Deploy-
ment: A framework that distributes workloads globally also needs to move
application logic from one region to another. If the developer is respon-
sible for moving the workflow, the framework will never be able to react
automatically to new deployments. Additionally, deploying and migrating
cross-regionally should be made as simple as possible so that the overhead
caused by this functionality is kept as small as possible, both in the work
required by the developer and in the computing necessary.

Non-Existing Framework for Cross-Regional Application Exe-
cution: The fine-grained geospatial distribution of complex workflows re-
quired to answer the research question adequately necessitates a solution
that can handle cross-regional application execution, which has latency, in-
terfaces, and reliability challenges. No other proposed framework currently
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can handle this fine-granular execution, where most solutions propose a de-
ployment and run in the most favorable region without being flexible enough
to offload on a per-function level while maintaining defined dependencies.

Lack of accurate Carbon Forecasting: Forecasting carbon inten-
sities in the relevant regions is paramount to the framework’s deployment
decision quality. The existing solutions do not accurately account for carbon
fluctuations and react passively to changes in carbon intensity, lacking the
ability to forecast carbon intensities based on past data.

Single-Tolerance and Single-Objective Aware Deployment Al-
gorithm: Any algorithm aiming at finding the best solution for the deploy-
ment problem of a cloud application needs to incorporate both tolerances
and objectives and be able to handle multiple tolerances and objectives.
Any solution that only focuses on one objective while ignoring tolerances or
vice versa can not be called comprehensive and is most likely only usable
for some developers’ use cases. While objectives usually attract significant
interest, a multi-layered approach to tolerances, function, and application
level is lacking. However, such a multi-layered approach is necessary for the
complex applications deployed in today’s cloud environment.

Lacking Latency and Execution Predictions: Currently, no frame-
work comprehensively incorporates existing research in latency or execution
prediction into the scheduling algorithm. The fine line of offloading an ap-
plication is between the gains of offloading the execution and the additional
cost of further transmission. A solution that could model the end-to-end
latency can claim to capture the complexities of applications.

Focusing on Singular Objective-Data Sources: None of the exist-
ing frameworks incorporate carbon, latency, and cost data in their deploy-
ment algorithm. Usually, the extensiveness is limited to one objective and
its associated data. A comprehensive framework needs to be able to retrieve
and model all three metrics that influence the optimal deployment of an
application in a geospatial setting.

Not Minimizing Solution Overhead: Lastly, no existing solution
considers the overhead incurred from running the algorithms and deploy-
ment when running the solution. A solution that does not consider its
own cost might incur more carbon intensity than it saves. A dynamic and
workflow-specific approach that considers workflow structure and workload
is required.
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Chapter 4

Framework Design

To answer the questions outlined in Chapter 1, while being aware of the
factors required for a feasible solution (§3.2) and overcoming existing solu-
tions limitations (§3.3.3), we developed the Caribou framework. Caribou
is a features-rich framework that leverages carbon grid variations across re-
gions for sustainable serverless workflow deployment and enables a large
host of future research. We designed the framework to enable an initial
answer to the subquestions, which would answer the main question, ”Can
we reduce the carbon emissions of complex cloud workflows by
optimizing the geospatial deployment fine-granularly?” while also
being extensible for future improvements. We specifically decided to sketch
out our solution as a framework rather than a system because a framework
is defined as a set of tools designed to help developers build software appli-
cations while highlighting that the framework is extensible and changeable
through its component-wise architecture. Following this paragraph, we will
reiterate the relevant research questions and show where and how we answer
them. Then, we will introduce the desired properties, provide a framework
overview, and briefly highlight the component interactions. Lastly, we will
delve deeper into the individual components.

The following research questions guided our work when designing a
framework for carbon-aware geospatial shifting of serverless workflows:

• Structure: What application structures (§4.3) can be defined, and
how does this structure relate to the geospatial deployment?

• Metrics: Whatmetrics (§4.4) should a policy for geospatial workflow
deployment rely on?

• Policy: How (§4.5) andwhen (§4.6) should the framework determine
a new geospatial deployment that enables carbon reductions while re-
maining overhead and tolerance aware given the workflow constraints?

• Enforcement: How to materialize the above policy to geospatially
deploy (§4.7) and to invoke (§4.8) the applications?
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4.1 Desired Properties

A comprehensive framework should adopt the properties outlined in this sec-
tion to effectively reduce the carbon intensity of cloud applications through
geospatial deployment decisions. These properties outline our design ap-
proach to this framework and should act as solid guidelines without inhibit-
ing further research by being too stringent.

• Developer friendly interface and framework usage for managed server-
less applications that support the developer by providing a rich set of
tools while minimizing the framework code footprint in the developer’s
code.

• Adaptive to changing applications, workloads, and underlying data
such as carbon. The main difference between carbon as an objective
and the existing objectives of latency and cost is that while the prior
two rely on application structure and workload, they are both static
in their nature of underlying data. On the other hand, as we have
shown, carbon fluctuates diurnally, regionally, and seasonally, intro-
ducing a new dimension of complexity. To be able to adapt to this
added complexity becomes a major desired property of any compre-
hensive framework.

• Modularity of components. No single component should be non-
replaceable; on the contrary, the components should interact over de-
fined interfaces, and if any component becomes a bottleneck, replacing
it should be relatively easy and fast.

• Reliable execution of the serverless application. The application ex-
ecution should be the same even if the framework deployed the appli-
cation geospatially over multiple regions.

• Minimized overhead of the carbon, cost, and runtime framework.
Our framework needs to be lightweight and relatively cheap to run. It
should also do a certain level of carbon accounting to self-adapt the
strategy when running for a given application.

4.2 Framework Overview

In Figure 4.1, we present the overview of the framework we developed as the
contribution to this thesis. Caribou as a framework contains three distinct
spaces, where we define a space as a separate region of component interac-
tion. Each space has a particular responsibility, two of which are ”outside”
facing and offer APIs to communicate with the framework. It is important
to note that the components of the framework space themselves, which are
more than an API, are actual entities invoked in a specific, to be effective
low-carbon, region. We built the components and their interactions to be
executed only when required, fully embracing the benefits of the serverless
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Figure 4.1: Caribou framework overview: We indicate the three spaces
where the colors additionally highlight the difference between client-facing
API (red) and the framework components (blue). Orange and yellow high-
light data sources and data processing steps.

service paradigm to reduce the framework’s overhead. The three spaces and
their respective responsibilities are:

• Developer Space: The interaction with application developers who
must indicate tolerances and objectives and create the applications
with all their dependencies. The interaction happens through the pro-
vided package to be imported and used as an API to define and deploy
workflows.

• End-User Space: This is the end-user interface part of the provided
Python package. We simplify the prerequisites for developers by offer-
ing endpoints to route end-user requests correctly.

• Framework space: The framework components that facilitate the
tasks to optimize all workflows currently deployed to the framework
geospatially. With its components in this space, the framework pro-
vides initial implementations that answer the research questions and
provide the infrastructure for further research.

In the following sections, we will give more insights into the design of
the different components while keeping the bigger picture in mind. Some
sections do not directly have a representation in the framework overview
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as they represent internal concepts such as the workflow model (§4.3) or
represent actions such as workflow executions (§4.8). The components com-
municate asynchronously using distributed key-value stores that define clear
interfaces. We decided on this mode of component interaction to decouple
the individual components. Specific actions and triggers asynchronously ex-
ecute all components when necessary or sensible. None of the tasks in the
framework space is on the hot path of application execution. The framework
optimizations should not impact the end-user when running in the back-
ground to determine a new optimal deployment of the workflow invoked.
The components and respective sections are:

• Metrics Manager (§4.4)
• Deployment Solver (§4.5)
• Deployment Manager (§4.6)
• Deployment Utility (§4.7.1)
• Deployment Migrator (§4.7.2)
• Invocations (§4.8)

4.3 Workflow Model

As we previously introduced, complex workflows combine individual server-
less functions. There is no inherent upper limit on the number of functions;
the lower limit is one. We will abstract all these variants of workflows to
enable one comprehensive term for both single functions and complex, multi-
stage workflows. The workflow model defines how the framework internally
represents the workflows as defined by the developers. It additionally de-
fines the possible scope of deployable workflows using our framework. The
developers implicitly indicate the workflow structure in their code by us-
ing the API we will introduce in Section 5.4.1. The Deployment Utility
then generates the workflow by static code analysis (§5.5.4). We require the
workflow model for both the Deployment Solver and Metrics Manager, as
well as for invocations, but only on the framework side. The model reflects
the internal representation, whereas the developers only implicitly define the
structure of their workflows. We decided on this split to reduce the mental
work required by the developer to annotate in code and define in configu-
ration files and to allow developers to continue their work inside the same
programming language without switching between the context of workflow
definition and workflow development. The solver requires the model to gen-
erate new deployments, the Metrics Manager to return the metrics for a
workflow deployment, and invocations to understand the current invocation
location inside the DAG and where to route a subsequent call.

Existing application modeling solutions, some previously outlined (§2.5.1),
either were too domain-specific as in the example of ”Ray” [155], for static
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deployment such as the model for ”SkyPilot” or ”TOSCA” [216, 220] or
lacked support for adequately modeling conditional data transmission edges
such as in ”AFCL” [186, 187] for our purposes. To enable a robust set
of workflows while incorporating concepts such as conditional invocations
and dynamic changes to the metric data while remaining flexible for future
changes, we introduce the workflow model. We define a workflow as a DAG
G = (N,E), where N is a set of nodes and E is a set of edges. The edge
eij ∈ E represents execution dependencies between nodes ninj ∈ N , inspired
by the modeling of complex workflows in high-performance computing [41].
Each node ni ∈ N represents an execution stage in the application where
computation happens and represents a serverless function invocation. Fig-
ure 4.2 outlines an example workflow DAG with five nodes and five edges.

n0

n1

n2

n3 n4

Figure 4.2: Example workflow DAG with nodes n0, n1, n2, n3, n4 and corre-
sponding edges. The edges e13 and e23 are conditional, indicated by dotted
lines.

4.3.1 Source Code Functions

Each source code function (sk) can be associated with multiple execution
stages in the workflow. We represent each execution stage as a separate
node (ni) in the DAG to make the workflow representation acyclic. The
model itself does not restrict the source code but will be used to determine
the DAG; thus, Section 5.4.1 outlines how the developer uses the provided
API functions to indicate the DAG structure in the source code. The cor-
responding source code functions for the DAG introduced in Figure 4.2 are
outlined in Figure 4.3, showcasing that four source code functions can lead
to a DAG with a different number of nodes.

4.3.2 Deployment

Definition 3. Deployment: Outlines the geospatial deployment of ev-
ery execution stage of a workflow.

Each source code function sk ∈ S is potentially deployed in R regions,
where R is defined by the cloud service providers currently supported by

37



s0 s1 s2 s3

Figure 4.3: Source code functions corresponding to the DAG introduced in
the previous subsection. The source code represents no DAG structure but
presents the basic underlying logic blocks. These blocks are source code
from which the Deployment Utility generates the DAG structure through
source code analysis.

the framework. The developer can restrict R at each source code and work-
flow level. Every node (ni) is mapped to a source code function (sk) where
the mapping is many to one, giving the mapping Rallowed : N 7→ R that
returns the allowed regions, given node ni. Each node (ni) has an associ-
ated deployment region r ∈ Rallowed(ni). Let ψ : N 7→ Rallowed(N) be the
mapping of DAG nodes to regions. When invoking the workflow given the
deployment indicated by ψ, the source code (sk) associated with this node
(ni) is invoked in this region. This mapping is referred to as a deployment
in this thesis and is always part of a larger construct called a Deployment
Plan (DP) (§5.3). This deployment is required to solve twofold problems:

1. at the invocation of an application, each node (ni) needs to know where
(r) to route subsequent invocations to,

2. When the Deployment Solver generates a new deployment, the De-
ployment Migrator needs to know the change to adapt any source
code deployment to potential new regions correctly.

4.3.3 Directed Edges

Every node (ni) has a set of incoming and a set of outgoing edges, Ein(ni)
and Eout(ni), respectively. Every edge in a DAG has a direction. If Ein(ni) =
∅, the node is a start node. We only consider workflows with precisely one
start node since this is the most common structure in workflow DAGs. Ad-
ditionally, if |Ein(ni)| > 1, the node is a synchronization node. Any edge eij
is annotated with a boolean value that captures if the edge has been invoked
by node ni, giving us mapping C : E 7→ {0, 1}.

In the example shown in Fig. 4.2, there are five directed edges, two
conditional, indicated by the dotted line. At an invocation of this workflow,
the values for C will be determined dynamically based on the actual variable
values, where by default C(eij) = ∅ if an edge is not yet reached by node
ni, C(eij) = 1 if reached and conditionally invoked by ni, and C(eij) = 0 if
reached but conditionally not-invoked by ni.
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4.3.4 Paths

A DAG implicitly introduces the concept of a path. A path, Path(ni, nj),
is defined as two nodes ni and nj connected by a sequence of directed edges
that allows traversal from ni to nj . The start node has a path to every node
of the DAG. In Figure 4.4, we highlight a specific path from node n2 to n4.

n0

n1

n2

n3 n4

Figure 4.4: Highlighting the path from n2 to n4.

4.3.5 Start Node

The start node serves two purposes: it is the sole entry point for invocations
into the DAG and determines the initial incoming edge at an invocation since
its location is trivially known. The implications of this will become apparent
when executing a workflow where the current location of a successor node
in the DAG is passed along.

4.3.6 Synchronization Node

When invoking an edge eij to a synchronization node nj , the predeces-
sor node ni is required to atomically update an annotation associated with
C(eij) = 0 if reached and not invoked or C(eij) = 1 if reached and invoked.
After updating the annotation, ni must check if the condition for executing
nj is True, and if so, execute nj ; otherwise, do nothing. The condition for
executing the synchronization node is:

(∀eij ∈ Ein(nj), C(eij) ̸= ∅) ∧ (∃ekj ∈ Ein(nj) : C(ekj) = 1) (4.1)

In Figure 4.2 the synchronization node is n3 since Ein(n3) = {n1, n2}.
The node n3 is thus dependent on both predecessors reaching the edges e13
and e23 where at least one of them needs to be invoked (C(ei3) = 1∀i ∈ 1, 2.

4.3.7 Conditional Edge

The above semantics enable conditional branches needed to support condi-
tional DAGs in serverless [136, 188]. Handling the case where all incoming
edges to a node are unconditional, i.e., always taken (∀eij ∈ Ein(nj), C(eij) =
1), is straightforward: the last predecessor of nj invokes the edge and thus
executes the node when all other predecessors also marked their respective
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edges as invoked. For a conditional branch (eij), a predecessor node (ni)
marks C(eij) = 0, meaning edge eij is non-invoked but reached when the
trigger condition of the edge is not satisfied. In this case:

1. for all paths between nj to any synchronization node ns, set C(ets) = 0
if nt is on Path(nj , ns) and has edge ets;

2. ni checks if ns now fulfills the condition, if yes execute ns.

The above-discussed logic is required to make sure that conditionally
not invoking a node does not block any successor synchronization node. To
illustrate the abovementioned logic, we will introduce a slightly more com-
plex workflow, including two synchronization nodes and chained conditional
edges.

n0 n2 n4

n5n1

n3

Figure 4.5: More complex example workflow DAG with nodes
n0, n1, n2, n3, n4, n5 and corresponding edges. Nodes n4 and n5 are syn-
chronization nodes. The edges e15, e24, e45 are conditional.

In Figure 4.5, we see two chained synchronization nodes with additional
conditional edges e15, e24, e34, e45. The execution order is n0, n1, n3, n2, n4, n5
where C(e15) = 1, C(e24) = 0, C(e34) = 0, C(e45) = 0. Responsible for in-
voking both n4 and n5 is n2, since n2 is the last to reach and annotate the
edge e24 it needs to check the condition from Equation 4.1, which will result
in false and n2 does not execute n4. Additionally, since there is Path(n2, n5),
n2 also needs to set C(e45) = 0 which will lead n5 to fulfill the condition of
Equation 4.1, meaning n2 will need to invoke n5.

4.4 Metrics

When given a DAG as well as date and time, theMetrics Manager (MM),
a component activated upon triggers for data collection and modeling, must
be able to estimate the metrics of this specific DAG. The Deployment Solver
uses the modeled metrics to determine an optimal deployment (§4.5) where
it requests the metrics from the MM by passing a deployment for a workflow
DAG as well as the hour of the day, which is required for more fine-grained
solved deployments, which can be up to hourly granularity. This hourly
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granularity is required to capture the diurnal differences in carbon intensities
of electricity grids. Metrics modeling requires retrieving metrics values based
on the collected empirical data for each node and edge in a graph for all
necessary metrics. We kept the MM extensible, so adding additional metrics
is a relatively low effort. Each metric added to the framework needs to be
able to provide a function for execution (node) and transmission (edge) and
may require any number of internal or external data sources to model said
metrics according to the function. We introduce the specific data sources
and aggregations in the implementation sections (§5.5.7). At the same time,
we focus here on how the manager models the metrics workflow end-to-end
latency, carbon, and cost.

4.4.1 End-to-End Modeling

Estimating the end-to-end latency, cost, and carbon emissions of complex
conditional application DAG is a challenging task [38] warranting more re-
search. To reduce the complexity, we decided to model the end-to-end met-
rics using Monte Carlo simulations [150]. Previous work has done this sim-
ilarly to estimate the end-to-end latency of complex DAGs [35,71,128,129].

The MM bases the Monte Carlo simulation on past workflow invocations.
These provide the data for per-node execution runtimes for the regions where
the workflow’s source code functions have been deployed and invoked. Ad-
ditionally, the past workflow invocation data provides per-edge conditional
probabilities and latencies between nodes and between regions. The data is
only available for the regions where the corresponding source code functions
were deployed to and invoked, which we group by transmission size where
the relative weights of sizes are maintained. In addition to edges between all
nodes, the simulation also considers the transmission latency between the
end user and the start node, which is maintained as an incoming edge in
the DAG with a corresponding list of transmission sizes and corresponding
latencies. Each simulation iteration generates a version of the DAG, where
the edges are activated or deactivated based on random sampling of the
conditional edge probabilities. The MM models the metrics of this DAG
version for both the nodes and edges:

• Nodes: In the simulations of the metrics of node executions, all met-
rics are related to the execution runtime. When simulating, the man-
ager thus samples a random execution runtime, which allows it to
calculate the corresponding cost and carbon of this node’s execution
according to the later introduced functions.

• Edges: The edges metrics depend primarily on the data size of the
transfer since this also indicates the latency. The MM samples a trans-
fer size to retrieve transmission latency, cost, and carbon according to
the functions when simulating the edges.
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n1
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n3 n4

[3, 4, 3, 6]

[10, 7, 9, 8]

[11, 12, 7, 12]
[2, 3, 2, 5] [6, 5, 8, 9]

{ 2: [1, 4], 3: [2, 6] }

{ 5: [5, 8], 6: [7, 11] } { 3: [3, 1], 2: [2, 1] }

{ 6: [3, 3], 8: [4, 6] }

{ 1: [4, 2], 3: [5, 3] }
0.8

0.4{ 1: [4, 1], 
2: [3, 2] }

Figure 4.6: Example of a Monte Carlo simulation iteration where MM sam-
ples the red highlighted numbers in this iteration. Additionally, one condi-
tional edge was activated (green) and one not (red). The resulting DAG has
an end-to-end runtime of 47, and the MM uses the values of all executed
nodes and edges for carbon and cost modeling.

In Figure 4.6, we give an example of a Monte Carlo simulation iteration
where the data shown is from previous workflow runs. A different deploy-
ment might mean different data on edges or nodes. When simulating the
DAG for one Monte Carlo iteration, the MM sums up the individual cost
and carbon as the end-to-end carbon and cost. Similarly, the manager deter-
mines the end-to-end latency by identifying the critical path of the current
DAG version.

The Monte Carlo simulations are conducted in batches of 1,000, contin-
uing until the confidence interval of 95% has a relative width of less than
5% for end-to-end latency, cost, and carbon footprint or until a maximum
of 20,000 samples is reached. For these distributions, the 95th percentile is
the ”tail case” used to determine tolerance violations for satisfying the QoS
(§4.5.1), and the mean represents the ”average case” used for deployment
objective ordering (§4.5.2).

4.4.2 Carbon

Since carbon reduction is the primary objective of our framework, we require
a comprehensive data model for carbon that goes further than existing so-
lutions. As we previously introduced, many solutions exist for execution
carbon (§2.3.2); however, transmission carbon is underdeveloped (§2.6.3).
We will introduce our data modeling regarding both, which will entail con-
cretizing the formulas introduced in the background on modeling the carbon
emissions of cloud application executions (§2.3.2) and the background on
modeling data transmission carbon emissions (§2.6.3). We base the carbon
intensity data on the ElectricityMaps API [73], retrieving the carbon data
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for the past seven days and forecasting for the next 24 hours in an hourly
granularity, where the hour used for modeling is determined by the hour
for that the solver is requesting the metrics. Forecasting is required since
carbon data does not remain static. Predicting the carbon data for the next
24 hours is essential for good metric estimation.

Execution Carbon

We model execution carbon with Equation 4.2, including compute and mem-
ory, and we omit the contribution of storage as it has shown to be negli-
gible [124]. For this initial version of the framework, we considered IO’s
carbon intensity to be part of the transmission carbon. How and where to
correctly model this remains an open research question. The power usage
effectiveness (PUE) we decided on is 1.11, the average of the 1.07-1.15 range
reported for AWS datacenters [7].

Carbonex = Igrid × (Ecomp + Emem)× PUE (4.2)

We calculate the energy usage of memory with Equation 4.3. For memory
energy usage, we estimate Pmem to be 3.725e-4 kW/GB, which is in line with
previous research [114,124].

Emem = Pmem ×mem× t

3600
(4.3)

Subsequently, the energy usage of computing (CPU) can be estimated
using Equation 4.4. The energy usage of compute can be estimated based
on the number of CPU, or vCPU in the specific case of serverless functions,
which at AWS, for example, is a function of requested memory (nvCPU =
mem
1′769) [24].

Ecomp = PvCPU × nvCPU ×
t

3600
(4.4)

We model the energy usage of IO (EIO) similarly to transmission carbon
(§2.6.3).

In our model, we calculate the power used by the CPU with Equa-
tion 4.5. Previous research has either used linear processor utilization-based
power model [65, 75] to model the power usage of a CPU or estimated the
power usage by thermal design power (TDP) [123,124,217]. We decided to
use the linear processor utilization-based model because it provides the most
accurate energy usage estimation based on the public data we can access.
The average vCPU utilization [51,212], which varies between each workflow
stage, can be obtained using the extended logging functionality AWS In-
sights. This logging functionality reports the average CPU time. The power
draw per core in AWS datacenters required for the linear utilization-based
power model is estimated to be 7.5e-4 kW when idle (Pmin) and 3.5e-3 kW
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when fully utilized (Pmax) [207]. We summarize the variables used through-
out this section in Table 4.1.

PvCPU = Pmin +
cpu total time

t× nvCPU
× (Pmax − Pmin) (4.5)

Parameter Description Units

Carbonex Carbon Footprint of Function Execution g CO2e

Igrid Carbon intensity of the Power Grid g CO2e per kWh

Ecomp Energy Consumption from Compute kWh

Emem Energy Consumption from Memory kWh

EIO Energy Consumption from IO kWh

PUE Power Usage Effectiveness Ratio

Pmem Power consumption per GB of memory kW per GB

mem Amount of Requested Memory of Function GB

t Function Execution Duration Seconds

PvCPU Power consumption per vCPU kW per vCPU

nvCPU Number of CPUs vCPU

Pmax Average Power per vCPU when server is Idle kW

Pmin Average Power per vCPU when server is fully utilized kW

cpu total time Time spent using CPU Seconds

Table 4.1: Units and Descriptions for modeling cloud application carbon
emissions.

Transmission Carbon

We present a transmission carbon model, as seen in Equation 4.6, based on
recent research [36,78,194].

Carbontrans = Iroute × EFtrans × S (4.6)

As previously outlined, the estimates for EFtrans vary greatly over past
conducted studies and years as outlined in Table 2.4. Additionally, the en-
ergy efficiency of data transfer approximately doubles every two years [30,
36]. Therefore, we conservatively extrapolate EFtrans based on past studies
to be in the 0.001 to 0.005 kWh/GB range. To provide a confident model
based on research, it makes sense to consider both the best and worst cases
regarding the transmission carbon overhead of offloading. The best case is
0.001 kWh/GB, which applies when the data transfer is within a region or
cross-regional. Thus, staying in the home region incurs a similar transmis-
sion carbon overhead to moving somewhere else, depending on Iroute. On
the other hand, the worst case is 0.005 kWh/GB and incurring no carbon
overhead when staying in the same region, leading to the most minor incen-
tive for offloading due to expensive transmissions when targeting carbon as
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an objective for offloading. We calculate Iroute based on a segment approach
where the route between two data centers is split into smaller segments, and
the carbon intensity is averaged over the segments. Table 4.2 additionally
lists the variables used in the function.

Definition 4. The Home Region is defined as the developer-defined
default location that precedes the framework’s dynamic deployments
and acts as a fallback and a baseline.

Parameter Description Units

Carbontrans Transmission Carbon footprint g CO2e

S Size of Data Transfer GB

Iroute Carbon intensity of Route g CO2e per kWh

EFtrans Energy consumption of the transfer kWh per GB

Table 4.2: Units and Descriptions for modeling data transmission carbon
emissions.

4.4.3 Cost

Function invocations cause costs both at execution and transmission. We
outline the sources and corresponding functions below. Many providers
offer so-called free-tier offerings, a certain number of resource usages that
do not incur costs. We omit the AWS free tier [17] in our calculation as
our framework currently does not support the fine-granular accounting for
deployed workflows required to model this dimension accurately.

Execution Cost

The execution cost is modeled based on execution time (t), configured mem-
ory size (mem) in megabytes, and a fixed per-invocation fee [18]. Addition-
ally, a workflow incurs cost at the start of each invocation through one addi-
tional DynamoDB access introduced to facilitate geospatial shifting through
retrieving the current deployment, which costs depending on where the ini-
tial function is located [11] and is a function of the deployment size. We
emit this additional function from the Equation 4.7 for brevity.

Costex = cinvocation + (t ∗mem ∗ clambda) (4.7)
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Transmission Cost

We calculate the transmission cost from the associated outbound data trans-
fer (egress), the same as data transfer from AWS EC2 to the internet [12],
differing from region to region. We additionally consider the transmission
costs incurred from cross-regional SNS messaging for both stage invocation
and synchronization nodes [14], again varying by region where the data orig-
inated. Both values are 0 if the transmission is within a region from one
AWS service to another. This gives us the following Equation 4.8:

Costtran = (cegress + csns)× S (4.8)

4.5 Determining Optimal Deployments

When given a workflow DAG and the per node allowed regions as well as
the interface to the Metrics Manager to retrieve values of the metrics of any
deployment, our framework component, the Deployment Solver (DS),
needs to be able to generate a deployment, i.e., where to deploy each work-
flow node. The DS bases the optimal deployment determination on the
framework’sMetrics Manager based on workflow information, namely struc-
ture, objectives, and tolerances, as well as on the metrics calculated on a
workflow level. We decided on this clear split of metrics (data model) and de-
termining the deployment since one should maintain the desired property of
independent, changeable components. For a workflow with execution stages
N and available regions R, the search space is |R||N |. The search space
grows exponentially with increasing number of nodes or regions. Node or
workflow level tolerances can narrow this search space, but only to a certain
extent. Raw computing is not a viable solution for this problem since one of
our desired properties is that the framework components, of which the DS
certainly is one, have a small carbon footprint. We attempted to keep the
computational requirements of the determination itself to a minimum. A
simple approach to tame the search space is to limit the deployment of all
DAG nodes to the same region, reducing the solver complexity to O(|R|).
This approach was outlined in multiple previous works [48,144] and renders
reasonable results. However, this approach can be globally suboptimal for
not (1) deploying nodes off the critical path to remote, low-carbon regions
and (2) deploying nodes without data compliance requirements to foreign,
low-carbon regions, effectively limiting the options by not being able to de-
ploy fine-grained.

Implementing the solver using a breadth-first search (BFS) strategy
proved intractable and resource-inefficient. To both keep our initial solution
simple but powerful, we decided on a Heuristic-biased Stochastic Sampling
(HBSS) algorithm [47, 100], outlined in detail in Section 5.5.3. It employs
heuristics to explore new deployments and tests for improvement, leveraging
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the information obtained as a region bias. The heuristic orients itself after
the primary objective of the specific workflow.

The DS thus returns a ”best” deployment when triggered, where best is
indicated by the developer while observing the tolerances set by the devel-
oper.

4.5.1 Tolerance Violations

The implemented deployment algorithm may generate many deployments
for the DAG. A generated deployment solution that violates a tolerance ac-
cording to the modeled ”tail case” (95th percentile of Monte Carlo sampled
distribution) is removed and not considered. Tolerances can be relative or
absolute, and the DS compares relative tolerances against the ”tail case”
of the home region deployment. An absolute tolerance can not invalidate
a home region deployment; the home region deployment must always be
valid regarding region constraints. Otherwise, the framework prohibits the
deployment of that workflow. Unrealistic absolute tolerances lead to only
deploying the workflow in the home region. To model this ”tail case” em-
powers the DS and, thus, the framework to support varying tolerances for
all metrics without theoretically violating the objectives. However, the tol-
erance violations are only based on modeling and are not actively monitored
once the DS selects a deployment. If violations occur due to relative pressure
or component failures at the cloud service provider, we currently have no
way of reacting ad hoc. A selected deployment that violates a deployment
will be replaced at the next deployment since the newly collected data will
make the modeling more accurate and reflect the reality of the situation.

4.5.2 Selecting the Optimal Deployment

The selection of the optimal deployment depends on the information the
developer provides regarding their objectives. The developer can indicate a
priority ordering for the current carbon, latency, and cost-supported objec-
tives. This priority order will lexicographically order the resulting deploy-
ments. The ”best,” according to the DS, will be selected and automatically
deployed by the Deployment Migrator. The newly selected deployment will
be stored as part of the workflow deployment plan (DP) in the DP staging
area, used to communicate with the Deployment Migrator (§4.7.2) to inform
of new deployment potentially requiring a migration of the workflow.

4.6 Dynamic Triggering of Policy Determination

Now that we know how to determine a policy, the next question is when to
trigger such a determination. Since carbon data is available in the granu-
larity of an hour forecasted based on the past seven days, a naive approach
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of triggering every hour would be wasteful of resources. On the other hand,
triggering with just enough frequency might avoid missing metrics and work-
flow invocation load shifts, such as transmission sizes and execution times.
Caribou has to offer a dynamic approach to fulfill the desired properties
that consider the underlying data while acknowledging workflow informa-
tion, such as the number of invocations. We implemented this dynamic
triggering in the Deployment Manager (DM), the only component fully
aware of all deployed workflows and with a per-workflow state it manages.

4.6.1 Framework Overhead

Caribou incurs overheads primarily from deployment generation (§4.5, com-
pute heavy), metrics collection and deployment migration (§4.4 and §4.7.2,
data transmission heavy). The framework’s deployment region and the fre-
quency of generating deployments influence these overheads. The carbon
savings gains must be more significant than these carbon overhead factors
to offer net gains.

4.6.2 Framework Gains

As outlined, the carbon differential between the home and potential offload
regions and the workflow traffic volume affect the potential carbon savings.
A workflow placed in a cluster of viable regions with significant carbon
intensity differences can save more than a workflow without viable offloading
locations. Similarly, an application requires a certain number of invocations
to warrant offloading, and the DM can not ignore this break-even point;
otherwise, the overhead per determination and migration might offset the
gains.

4.6.3 Dynamic Control Mechanism

A dynamic control mechanism to trigger the deployment determination is
required to balance the two effects of gains and overhead. To balance gener-
ating new, potentially more optimal deployments and the framework over-
head, Caribou uses a per workflow token bucket algorithm to self-regulate
the deployment generation frequency. The bucket’s inflow is a function of
workflow invocations since the last check and potential offload gains. Each
workflow will undergo regular token checks. The DM adapts the frequency
of the token checks to the bucket’s underflow or overflow in the past pe-
riod. Suppose a token check has passed, but the DM did not instruct the
Deployment Solver to determine a new deployment. In that case, the to-
ken check time will be adjusted later, depending on invocations in the past
period. If the token inflow rate increases, the time will be sooner, if the
rate decreases later. We opted for a conservative approach to not cause ex-
cess overhead in the case of, for example, an infrequently invoked workflow
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where a metric changed significantly. Tokens represent the carbon budget
for framework overhead, and the framework consumes them when the bucket
contains enough tokens for a deployment solution. The cost, or outflow of to-
kens, of a deployment generation is determined based on workflow structure
and the framework’s region carbon intensity.

4.6.4 Deployment Retirement

A deployment maintains validity for a specific time based on confidence in
the metrics data used to determine that deployment. We designed that ev-
ery framework-determined deployment will eventually be retired to prevent
missing out on significant metric shifts. At that point, the invocations will
all be routed back to the home region deployment. The active retirement of
deployments is a conservative design approach. In uncertainty, we default to
the home region deployment as if our framework were not in the loop. Since
a deployment might cause tolerance violations based on bad modeling, the
DM will likely replace that faulty deployment at the next token check. In a
future iteration, we envision the framework monitoring the executions more
actively and retiring violating workflows proactively.

4.7 Application Deployment and Re-Deployment

Any application that wants to benefit from geospatially distributed requires
the functionality to be deployed and re-deployed cross-regionally. Caribou
needs to dynamically adjust the deployment according to the carbon inten-
sities without requiring manual input to deploy functions to every region. It
must provide a utility for deployment and a component to re-deploy func-
tions to new regions without additional developer effort. In the following
subsection, we will highlight the design decisions in both deployment and
re-deployment.

4.7.1 Application Deployment

Application deployment should happen transparently to enable auditing but
abstracted away from the developer to reduce the strain from deploying com-
plex workflows with all their dependencies and ensure the workflow packages
have the expected structure for other parts of the framework. Addition-
ally, deployment should be flexible regarding dependencies and enable the
developer to have the same, if not an enhanced, experience compared to
the vanilla experience provided by a cloud service provider. We decided
to facilitate application deployment by creating the Deployment Util-
ity (DU), part of the framework package imported into a project like any
other third-party dependency offering a CLI interface. Our design is tar-
geted towards our language of choice, Python, since the Python ecosystem
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is large and both AWS and other providers for serverless functions support
the language. We will indicate the Python package as caribou to clarify the
difference between the developer-facing package and framework. Extending
the framework to additional languages requires relatively little effort. A fu-
ture maintainer must only port the Python-specific API implementation to
enable additional languages.

A deployed workflow is assigned a unique ID based on the workflow
name and version as defined by the developer. If an ID is already deployed
to the framework, the developer is prohibited from overwriting it and must
either remove the duplicate or change the name or version. We introduced
this versioning to allow for the possibility of deploying multiple versions
of the same workflow while allowing for a transparent versioning system.
Updating a workflow is not possible. The only option to update a workflow
is to remove the old version and deploy the new version with the same name
and version.

Definition 5. The workflow ID assigned is unique per framework and
a combination of name and version.

The deployment of a specific workflow consists of the following steps:

1. A workflow is created by the developer with the required interface
(§5.4.1) where the developer also indicates tolerances, objectives, home
region, and additional configurations,

2. The workflow developer invokes the DU,

3. The utility packages up the client’s code into a package and pushes it
to the home region

4. The DU creates the function and instantiates all auxiliary services
required in the home region,

5. The utility stores the home region deployment in the workflow’s de-
ployment information entry in the key-value store.

The home region deployment is always maintained. After these steps, an
application is officially deployed and invokable through the client (§5.5.6),
and the DU informs the Deployment Manager about this new workflow by
writing into the respective state table at the distributed key-value store.

4.7.2 Application Re-Deployment

Automating migrations to new regions is necessary to maximize carbon emis-
sion reductions without burdening developers. The Deployment Migra-
tor (DMi) solves this technical challenge by regularly checking whether
the migration of a function to a new region based on the latest deployment
is required. The component is invoked and runs as a serverless function
regularly. The migrator checks if a new deployment is required according
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to the Deployment Solver. Once our framework has determined a new de-
ployment, the currently deployed regions for all source code functions might
not equal the newly determined ones. In this case, the DMi will deter-
mine the difference and migrate the corresponding source code functions. If
a re-deployment is warranted, the migrator replays the process outlined in
Application Deployment, except step (3). In the third step, the migrator
copies the source code package instead of repackaging it. A new deployment
is activated once the migration has succeeded for all node deployment re-
gions. Activated means that it is retrievable upon an invocation of a work-
flow from the corresponding distributed key-value store. If any function
re-deployment fails, the framework defaults to the home region deployment,
preventing invocations from routing through an invalid deployment. This
process catches any potential issue with deployment, including region un-
availability due to increased traffic. The DMi will then retrieve and retry
the non-activated deployment later or, when a new deployment is solved
without the unavailable region, replace it with a newly solved deployment
initiated by the Deployment Manager.

4.8 Cross-Regional Workflow Execution

Caribou must be able to handle and enforce cross-regional workflow ex-
ecution and traffic routing. Executing a geospatially distributed applica-
tion should have the same interface and result as executing an application
deployed in the same region. No possible deployment should necessitate
changing the source code. To our knowledge, no other public framework
enables task-level, cross-regional workflow execution. Additionally, the chal-
lenge of control flow invocations and synchronization nodes, introduced in
Section 4.3, must be solved to enable a well-rounded framework. For this
purpose, we made two fundamental design decisions:

1. The caribou provided function and workflow wrapper hides the com-
plexity of the cross-regional execution

2. Application invocations are glued together using pub/sub messaging.

Following, we will outline the process that happens when invoking a
workflow (§4.8.1), what our process means for the possible message payload
(§4.8.2), how the invocation is routed throughout the workflow (§4.8.3),
what particular logic the synchronization nodes require during an invocation
(§4.8.4) and lastly how pub/sub glues together the invocations (§4.8.5).

4.8.1 Invoking a Workflow

As will be explained in Section 5.4.1, every source code deployed in theCari-
bou framework has to import the caribou package and wrap the workflow
as well as every function in a wrapper. This wrapper hides away the logis-
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tics of function invocations and routing. End-user workflow invocations can
be routed directly to the home-region deployed source code function of the
start node or through a proxy provided by the developer that calls the cari-
bou-provided CLI (§5.4.1) functionality that uses the Invocation Client
(IC) (§5.5.6) to kick off a workflow invocation. In any case, the wrapper
routes 10% of the workflow invocations to the home region for performance
benchmarking and continuous metric collection. The Metrics Manager col-
lects metrics in every region. However, maintaining up-to-date information
on the home region is critical for good deployment decisions since the home
region represents the baseline for defined tolerances. The initial node invo-
cation or the IC fetches the deployment plan (DP) containing the current
deployment from the distributed key-value store on a workflow invocation.
The retrieval of the deployment by the start node or IC is indicated on
the left of Figure 4.7. The wrapper defaults to choosing the home region
deployment unless a non-retired framework-determined deployment exists.

4.8.2 Message Payload

The payload size of an invocation is limited due to the pub/sub model uti-
lized for invoking successors, which is SNS in our case that limits the payload
to 256 KB [15]. Additionally, since the wrapper stores this data for a syn-
chronization node in the distributed key-value store, this adds another total
size limit. We opted for DynamoDB, whose item size limit is 400KB [27].
Recent studies have shown that the invocation of serverless DAGs usually
does not pass raw data but so-called intermediate data. Intermediate data
is small-scale information passed between DAG nodes to communicate data
through remote storage [142,143]. The wrapper then uses the intermediate
data to retrieve the actual data from blob storage, such as S3 in AWS or
other storage solutions.

4.8.3 Traffic Routing

The retrieved DP contains the deployment, which determines the current
workflow traffic routing by mapping each node to the deployment region.
Each node determines the deployment information of all successors, the
workflow DAG structure, and its location in the DAG based on the DP. The
value fetched from the distributed key-value store provides all this infor-
mation except the current location. Determining the current DAG location
during an invocation is a challenge that needs to be solved. As previously
discussed, the start node is the only node able to determine its location in-
tuitively from the DP without any additional logic since the location noted
in the DP will be the start node by default. The function wrapper in-
voking the successor must pass on the location information, which can be
calculated based on its location and the successor index. From the start
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Figure 4.7: Workflow invocation: The IC retrieves the DP from the dis-
tributed key-value store and then invokes the first node in the corresponding
region (region 1). Subsequent calls are routed by the corresponding work-
flow and function wrappers accordingly, where one part of the workflow is
deployed in region 2. The synchronization node logic is facilitated by its
predecessors, which synchronize using the distributed key-value store and
atomic updates.

node onwards, any subsequent node location is determined inductively by
passing that information to its successor. When invoking a successor, the
decorator provided in the wrapper copies the DP and notes the location of
the successor, piggybacking it on the invocation’s intermediate data sent to
the successor. The successor handler decorator retrieves the DP, and the
data is then passed to the defined function, ensuring it receives the data
as forwarded by its predecessor. This process is visualized by an example
in Figure 4.7, where the function wrapper at the start node retrieves the
deployment mapping and then invokes the successor in the correct regions,
passing on information such as the successor DAG location.
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4.8.4 Synchronization Nodes

For synchronization nodes, the logic outlined in Section 4.3.6 needs to ma-
terialize during a workflow invocation. All predecessors of a synchroniza-
tion node store first the intermediate data and then the annotation, which
marks whether a specific predecessor conditionally invoked the synchroniza-
tion node, to a table each in a distributed key-value store in the synchroniza-
tion nodes region. The tables are located in the synchronization nodes region
to reduce the latency of retrieving the information during the synchroniza-
tion nodes invocation. When updating the annotation table, the predecessor
will receive the current state of the annotations. The annotation write up-
date happens atomically [26], so the invocation count retrieved reflects the
number of invocations at this node’s update. The current annotation state
is then used by the predecessor using the DAG information to decide if all
the required annotations are present and, if so, invoke the synchronization
node. The synchronization node then retrieves the intermediate data from
the distributed key-value store. This can be seen in Figure 4.7 between n1,
n2, and n3 where the distributed key-value store holding the intermediate
data and annotations is in region 2 because the synchronization node is in
region 2.

4.8.5 Pub/sub for invoking a successor

The wrapper invokes function calls by posting a message to the respec-
tive function’s publisher/subscriber (pub/sub) messaging topic. By posting
the message to the correct region and topic that is part of the informa-
tion retrieved from the DP, the wrapper routes the invocation to the correct
successor deployment without requiring any code changes. We selected pub-
/sub as a geospatial offloading glue due to its availability at all major cloud
service providers (e.g., AWS SNS, Azure Service Bus, and Google Pub/Sub)
and its ability to support many programming languages, allowing for future
portability. Additionally, pub/sub services seamlessly integrate with server-
less functions as invocation triggers, ensuring dependable message delivery
as function execution triggers. Furthermore, the services provide a level of
reliability by requiring subscriber acknowledgment. If no acknowledgment is
received, the pub/sub service automatically retries to deliver the messages.
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Chapter 5

Framework Implementation

Following the design outline in the previous Chapter 4, we will now spend
more time on specific implementation details, highlighting specific challenges
we solved.

5.1 Overview

We implemented Caribou, both the developer API package as well as the
actual infrastructure components, in the Python programming language1.
A future maintainer can switch out any component if the interface func-
tionalities are maintained. We decided to actively practice the separation of
concerns pattern, which allows faster development, easier component-wise
testing, and interaction over clear interfaces. We also applied the template
pattern, where applicable, to simplify the extension for additional providers.
For an initial version of the framework, Python, one of the most popular
serverless languages [63,112], provided the most robust third-party support
and was a low-overhead language regarding the onboarding of the team
members. The code base of Caribou contains 16K source lines of code de-
veloped over approximately four months. The framework will be published
as an open-source Python package called caribou, containing the source
code for the API package usable by workflow developers and the code for the
infrastructure components. It is important to note that we will only use the
Python package name when referring to the API package. We implemented
the framework following standard Python testing and linting practices. The
framework code adheres to the practices set by the formatters black [180],
isort [59], pylint [135], and mypy [158]. The source code contains unit and
integration tests, boasting a test coverage of > 90%. Table D.1 highlights
the core component files and indicates the corresponding component they
implement.

1The framework source code can be found at https://github.com/ubc-cirrus-lab/
caribou
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5.1.1 Framework Architecture
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Figure 5.1: The framework is deployed in one region, whereas the devel-
oper and end-user might be in different regions. When required, the Met-
rics Collectors, Deployment Manager, and Deployment Migrator are run
as serverless functions. The communication between components happens
asynchronously using tables in distributed key-value stores, indicated as
databases.

The framework architecture outlined in Figure 5.1 is an extension from
the overview presented in Section 4.6.1 with more implementation details
added. The three components run as timed serverless functions can be de-
ployed independently and triggered based on timers. These three functions
optimally require at least the permissions outlined in Listing C.1. Cur-
rently, the framework and the workflow developers must be in the same
AWS organization or at least have permission to access the same resources.
A future iteration would improve this permission model to disaggregate the
two, potentially with a per-developer account to calculate the usage on a
per-account basis.
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Framework Component Triggered by Triggered when

Deployment Utility Developer Deploying workflow

Invocation Client End-User Invoking workflow

Deployment Manager Timer Every 24h

Deployment Solver Deployment Manager Solve required

Deployment Migrator Deployment Solver Migration requried

Metrics Manager Carbon Timer Every 24h

Metrics Manager Logs Deployment Manager Token check required

Metrics Manager Pricing Timer Once every two weeks

Metrics Manager Performance Timer Every 24h

Table 5.1: Component trigger timings.

5.2 Component Triggers

We implemented all components independently to be invoked as serverless
functions when triggered. Each component can run asynchronously and
independently, communicating over tables in a distributed key-value store
(§5.4.3). Each component’s invocation times (when) and triggers (by what)
vary depending on its function. Table 5.1 outlines each component’s trigger.

5.3 Deployment Plan

The deployment is the primary data required by many components to in-
teract with each other and is especially important for communicating the
workflow deployment according to the framework’s optimizations. Like all
other data used to communicate information within the framework, a de-
ployment plan (DP) is a JSON file representing all the relevant data for
deployment migration and routing invocations to the correct regions. The
workflow deployment plans are stored in the workflow placement deci-

sion table. An example can be seen in Listing B.1. The DP is structured
with the following top-level keys:

• instances: Representing DAG information such as nodes and edges.

• current instance name: Containing the information on the current
node in the DAG when reading the JSON used for invocation routing.

• workflow placement: Containing the home region deployment and
any framework-generated placements.

We decided to additionally store subcomponents of this information that
do not go out of sync, such as the DAG information, in additional tables at
the distributed key-value store. This replication in subtables is a measure
to reduce the costs of table accesses when only subparts of the informa-
tion are required. Since the DAG information does not change, no data
synchronization is needed.
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5.3.1 DAG Information

The DP contains information on the DAG, where the following information
is maintained for all nodes:

• Node name

• Node Region constraints

• Successor nodes

• Predecessor nodes

• Dependent Sync Successors

The dependent sync successors contain information on the incoming
edges of any synchronization node where a path from this node to the
synchronization exists. The workflow wrapper (§5.5.6) requires this path
information for the conditional invocation check for a synchronization node
(§4.3.7). This information is maintained statically to reduce DAG opera-
tions, such as retrieving paths on the hot path of a workflow execution.

5.3.2 Current Node Information

Additionally, the DP contains information on the current node. This in-
formation is trivially the start node in the version stored in the distributed
key-value store but will be adapted when the DP is passed from node to
node at invocation (§4.8.3).

5.3.3 Deployment Information

Lastly, the DP contains the workflow deployment information, including
the home region deployment and potentially framework-solved deployments.
A deployment includes all the information necessary for traffic routing to
the correct message publication channel (messaging queue) to which the
deployed source code function is subscribed, which is the messaging queue
identifier and region of all nodes of the DAG. The framework-generated
deployments also have a retirement date determined by the Deployment
Manager (§4.6.4). A framework-solved deployment can be granular from a
whole day to hourly.

5.4 Interactions

The components and users of the framework interact asynchronously. Thus,
listing these interactions and elaborating the details in the following listing is
beneficial. There are three types of interactions in the Caribou framework:

• Developer interactions (§5.4.1): Developers require a robust inter-
face to develop complex serverless workflows with the introduced con-
cepts of conditional invocations and synchronization points, as well as

58



being able to communicate constraints, tolerances, and additional de-
pendencies. Additionally, developers need to be able to manage their
respective workflows over a CLI that retrieves and updates values in
the corresponding distributed key-value tables.

• End-user interactions (§5.4.2): End-users require endpoints to in-
voke the geospatially deployed serverless workflows. These endpoints
must alleviate the overhead of manually fetching the current deploy-
ment, expecting the result of an invocation to be the same no matter
where the workflow was executed.

• Framework component interactions (§5.4.3): The framework needs
to communicate asynchronously to communicate the deployment de-
cisions as well as to update the source code deployments accordingly.

5.4.1 Developer Interface

Workflow developers who want to benefit from our framework’s adaptive
geospatial deployment functionalities must be able to communicate the re-
spective workflow structure to our framework and manage deployed work-
flows. The following subsection introduces how a workflow developer can
annotate their source code functions to represent a deployable workflow us-
ing our framework (§5.4.1). Following this, we introduce the provided CLI
functionalities enabling workflow developers to manage the deployed work-
flows (§5.4.1).

Workflow Declaration

A workflow developer must declare a workflow in their respective source
code to benefit from our framework’s capabilities for self-adaptive geospa-
tial workflow deployment. Source code annotations enable our framework
to infer the workflow’s DAG structure and enable invocation routing. Meta-
information is required to guide deployment generation concerning toler-
ances, objectives, and constraints. The developer declares a workflow by
defining two parts for each workflow:

1. Declare the workflow in the source code through the API provided by
the caribou Python package.

2. Declare the workflow deployment manifest, where the developer can
provide further deployment details such as tolerances, objectives, and
additional configurations.

We outline the expected project setup for a workflow in Listing 5.1.

Source Code API: To declare a workflow, a developer uses the lightweight
API functions provided by the caribou Python package. This declaration
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1 workflow/

2 .caribou/

3 config.yml

4 iam_policy.json

5 src/

6 app.py

7 requirements.txt

Listing 5.1: Directory structure of a workflow.

has to happen in the app.py file. We show an example of a workflow dec-
laration in source code in Listing 5.2. Additionally, developers can add any
source code files to the src directory that implement additional application
logic, which can then be imported into the app.py file and used there. The
workflow instance declared (line 2) provides three methods to define the
DAG and represents the workflow wrapper (§5.5.6).

1 from caribou import Workflow

2

3 workflow = Workflow(name="example", version="0.0.1")

Listing 5.2: Workflow declaration.

To declare a source code function part of this workflow, the developer
registers the function handler using a Python decorator as outlined in List-
ing 5.3. This decorator will wrap the source code function (§5.5.6). Inside
the decorator declaration, the developer can indicate whether the function
is a start node (line 3) of the workflow. The framework enforces one start
node per workflow when deploying the workflow. The developer can specify
function-level configurations, such as region constraints (allow/disallow), to
enforce function-level data compliance (lines 5-18). If any regions are al-
lowed then only these regions will be viable candidates for deployment. If
the workflow developer disallows any regions, all regions except these are
viable candidates. A region can never be allowed and disallowed, meaning
allowing regions is more restrictive than disallowing regions. In the decora-
tor, the developer can also configure the deployed serverless function on a
provider-specific level concerning specific parameters. We add the provider
specificity for future extensibility to additional providers apart from AWS. In
AWS, memory and timeout are possible options (lines 19-26). The function
parameter (event, line 29) holds the value passed in the invocation where
the value is either the workflow invocation parameter or passed from a pre-
vious source code function invoking this function. The workflow developer
is usually left to verify the parameter data structure, a practice common in
dynamically typed languages such as Python.

Using two API calls, the developer can implicitly create the DAG struc-
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1 @workflow.serverless_function(

2 name = "Example -Function",

3 entry_point=True ,

4 regions_and_providers = {

5 "allowed_regions":

6 [

7 {

8 "provider": "aws",

9 "region":"region\_1"

10 }

11 ]

12 },

13 "disallowed_regions": [

14 {

15 "provider": "aws",

16 "region": "region\_2",

17 }

18 ],

19 "providers": {

20 "aws": {

21 "config": {

22 "timeout": 120,

23 "memory": 512,

24 },

25 },

26 },

27 environment_variables =[{"key": "example_key", "value": "

example_value"}],

28 )

29 def example_function(event):

30 results = workflow.get_predecessor_data ()

31 workflow.invoke_serverless_function(

32 next_function , intermediate_data , conditional

33 )

Listing 5.3: Source code function declaration.

ture inside a source code function by indicating edges between source code
functions, flattened to a DAG at the static code analysis happening in the
Deployment Utility. A call to invoke serverless function (lines 31-33)
corresponds to an outgoing DAG edge. When calling, the handler of the
other function and intermediate data are passed as arguments to the func-
tion. The developer can optionally pass a boolean variable to indicate a
conditional invocation. When the source code function is executed as part
of an invocation, the workflow wrapper dynamically evaluates this boolean
at the invocation of the invoke serverless function function.

The developer can indicate a synchronization node in the source code
by calling the get predecessor data method (line 30). Since the developer
can not indicate what predecessor a synchronization is supposed to wait on,
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any source code function annotated as a synchronization node will act as
a barrier, waiting on all predecessors. Logically, it also requires that the
mapping between the node and source code functions be one-to-one. This
API call will, at execution, retrieve the predecessor intermediate data from
the distributed table and return them as a list of values, one value per
predecessor.

Deployment Manifest: The developer must additionally provide a de-
ployment manifest that consists of the config.yml, the iam policy.json,
and an optional requirements.txt file. In the requirements file, the devel-
oper can indicate Python third-party library dependencies. In the identity
access management (IAM) file, the developer can give workflow-specific per-
missions policies concerning services at the cloud service provider [25]. These
policies are associated with every deployed source code function linked to
the deployed serverless workflow.

The configuration file allows developers to define workflow-level objec-
tives, tolerances, and more. We outline an example configuration in List-
ing A.1 and a minimal example of the IAM file in Listing A.2. The developer
also specifies the ”home region”—the initial deployment region of the work-
flow. Additionally, the developer can define the tolerances on end-to-end
latency, carbon emission, and cost per invocation in this file. The Deploy-
ment Solver enforces these at deployment generation.

Lastly, developers can specify regions or providers eligible or prohibited
for deployment to enforce regulatory compliance on a workflow level, where
function-level configurations supersede workflow-level ones. The framework
defaults to considering all potential regions if no regions are explicitly al-
lowed or disallowed.

Framework Command Line Interface

After declaring a workflow, the developer can deploy said workflow. For
all the following actions, the developer requires a user with a specific set
of permissions in AWS to deploy and manage the workflows. We outlined
these permissions in Listing C.1. The workflow developer can initiate a
deployment using the framework’s command-line interface (CLI). The CLI
offers the following commands to interact with the framework:

• deploy: When either the current work directory in the command line
corresponds to the workflow directory or the path of the workflow
directory is provided using the --project-dir flag, the command de-
ploys a workflow to the framework. Running the deploy command
will kick off the process outlined in §5.5.4.

• list: List the currently deployed workflows in the framework.

• new workflow WORKFLOW NAME: Initiate a new workflow from a tem-
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plate with the passed workflow name at the current working directory.
This CLI functionality is provided to simplify the correct workflow
directory structure setup and will generate a default version of the
structure outlined in Listing 5.1.

• remove WORKFLOW ID: Removes a workflow with all its deployments
from the framework and all deployed regions. This action is destruc-
tive, and the workflow can no longer be invoked. The framework will
remove the workflow from all regions where any source code function
is currently deployed, and any workflow trace will be removed from all
communication tables.

• run WORKFLOW ID: Invoke a specific workflow using the Invocation Client
(§5.5.6). Additionally, the --argument flag can be used to pass a pa-
rameter to the invocation.

5.4.2 End-user invocation

After we outlined how workflow developers interact with our framework,
we want to introduce how end-users interact with and use the workflows
managed by the framework. End-user workflow invocations can be routed
directly to the source code function representing the start node at the home
region or through a proxy provided by the developer that calls the caribou-
provided CLI utility run command outlined. We envision adding support
for some REST endpoints that provide load-balancing functionality.

5.4.3 Framework Component Interaction

Next, we will examine the framework’s internals and outline how its compo-
nents interact to manage the workflows. The framework components interact
using distributed key-value stores. We chose DynamoDB because its table
functionalities are relatively simple to set up and relatively cheap, and sim-
ilar services are available at all major cloud service providers. We decided
to use the AWS-specific offering dynamoDB since it integrates easily with
the rest of the framework. Most importantly, no framework component in-
teraction requires real-time reactions from other components. Instead, all
interactions happen asynchronously, and specific components, such as the
Metrics Manager, might only update the underlying metrics data very infre-
quently. Handling every request for data synchronously by starting up the
corresponding components or, even worse, by having the framework up and
ready to accept calls all the time would go against the framework’s overhead
reduction design property. Thus, running the components only when needed
and storing the data required to communicate between the components in
a distributed key-value store, such as DynamoDB in AWS, is sufficient.

We abstracted the interactions of the components with the tables using
the RemoteClient class. This class is used by all components, providing
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the necessary API abstractions where required. For AWS, the remote client
class is a wrapper for the boto3 package [22], itself a wrapper of AWS API
calls. This double abstraction is necessary to make the framework flexible
to add additional providers and reduces the maintenance effort of boto3

within the code if boto3 changes any interface function. To interact with
the distributed key-value stores, the RemoteClient class provides create,
read, update, and delete (CRUD) functions. The communication tables all
have the same layout, with a key and a value where the key must be unique,
while the value is usually a string representation of the JSON data.

Table D.2 outlines all tables required for system interactions, the re-
spective keys and values, and which component uses them to communicate.
This simple interface underutilizes the strengths of querying in, for example,
DynamoDB. However, this simple interface is strong enough since most in-
teractions involve iterating over keys or requiring specific information with-
out sub-information. Additionally, by not tying ourselves too closely to
dynamoDB-specific features, we enable an easy extension to a more suitable
storage solution in the future.

5.5 Framework Components

In the following subsections, we will introduce all the components that make
up the framework behind the scenes, focusing on relevant implementation
details, highlighting interfaces with other components, and explaining the
implementation challenges. The components are:

• Workflow Configuration (§5.5.1)
• Deployment Manager (§5.5.2)
• Deployment Solver (§5.5.3)
• Deployment Utility (§5.5.4)
• Deployment Migrator (§5.5.5
• Invocation Client (§5.5.6)
• Workflow & function wrapper (§5.5.6)
• Metrics Manager (§5.5.7)

5.5.1 Workflow Configuration

One general component that is used by multiple components is the Work-

flowConfiguration class. We wrap the developer-defined configuration
YAML in this class for access and communication about the configuration.
This class also contains the workflow DAG structure obtained from the de-
ployment plan or another table. The workflow DAG structure is, for ex-
ample, required by the Deployment Manager that needs to ascertain the
complexity of the DAG for the token inflow.
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5.5.2 Deployment Manager

TheDeployment Manager (DM), as first introduced in Section 4.6, is re-
sponsible for the adaptive and overhead aware triggering deployment solves.
The DM is the only component aware of all workflows in one place and
manages workflow deployments by tracking the state of each workflow in
the framework. It additionally maintains the state of each workflow with a
token bucket, where the carbon reduction potential determines the inflow of
tokens, and the cost of a deployment solution determines the outflow. The
bucket is limited to the invocation data of the last 30 days, reflecting the
data collection period. The Deployment Utility informs the DM of a new
workflow by adding a corresponding key-value pair to the deployment re-

sources table (§5.5.4).
The DM then iterates over all workflows in this table and checks the

process outline below. The DM keeps a state of each workflow in the de-

ployment manager workflow info table, where it stores per workflow the
time of the last deployment solve, the token overflow from the previous
token check, and the time of the next token check. Figure 5.2 illustrates
the self-adaptive process orchestrated by the DM. When iterating over the
workflows, the DM goes through the following process:

1. If the workflow is new, meaning the DM has never checked it, it initi-
ates a metrics collection from the Metrics Manager.

2. If the workflow is not new, the DM checks whether the token check has
passed; if yes, initiates a metrics collection from the Metrics Manager ;
if no, continues with the following workflow at step 1.

3. After having collected the workflow-related metrics, the manager checks
how many invocations this workflow received in the past period since
the last check. A workflow must have been invoked at least ten times
in the past period. If this is not the case, the manager continues with
the following workflow at step 1.

4. If the minimal invocation count is present, the manager calculates
the positive inflow tokens based on invocations, workflow end-to-end
runtime, and standard deviation of carbon intensities of all regions,
representing a crude measure of potential offloading improvement.

5. The manager invalidates old tokens from the bucket (older than 30
days).

6. It then dynamically determines which deployment run is affordable
given the inflow plus leftover tokens from past periods. Eight deploy-
ment runs are possible, each with a different hourly granularity of the
corresponding deployment (one plan for the whole day up to a plan for
every hour). Increased hourly granularity increases token costs since
the overhead is proportionally higher.

7. If any deployment run is affordable, the DM kicks off a solve deploy-
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ment from the Deployment Solver, passing the deployment retirement
date and time calculated in step 8; if not, it directly continues to
determine the next token check time.

8. The next token check time is determined based on the delta between
the token generation rate and current bucket content, smoothed by a
sigmoid function, to ensure that the next check is appropriate based on
the invocation rate of the past period. This smoothing and adjustment
means that if the rate has changed from high to low, the next check
will be later; conversely, if the rate increases, the token check will be
later. Generally, the system attempts to stabilize new deployments; if
the rate has not changed significantly, the next check will be later than
the previous. If a deployment run has happened, the retirement date
and time of the deployment are the same as the next token check time.
The minimal next token check is 24 hours since no new carbon data will
have been collected by the Metrics Manager below this threshold. The
current maximum is seven days as the quality of carbon predictions
deteriorates afterward.
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Figure 5.2: Caribou dynamically determines the deployment generation
trigger frequency with a token bucket algorithm.

5.5.3 Deployment Solver

The Deployment Solver (DS), initiated by the Deployment Manager
(§5.5.2), will, given a DAG and information about tolerances and con-
straints, generate the requested deployments. The component uses an inter-
face to the Metrics Manager to retrieve the required end-to-end estimates
(§4.4.1) for any in the process generated deployment. The interface consists
of an instance of the DeploymentMetricsCalculator class, which accesses
the tables filled and maintained by the Metrics Manager containing the in-
formation required to calculate the metrics. More on this will follow in the
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corresponding Subsection 5.5.7. The calculator class then runs the Monte
Carlo simulation based on the DS-generated deployment.

We implemented the DS using a Heuristic-biased Stochastic Sampling
(HBSS) algorithm, which has proven to be a good compromise between
brute force and a coarse-grained solver. We will explain this further in the
following subsection. Based on the generated deployments, the component
will then select the best deployment based on the developer-indicated pri-
ority order (§4.5.2).

Heuristic-biased Stochastic Sampling

The DS initializes the HBSS algorithm with a simple approach: the entire
workflow is deployed to all allowed regions, where the regions need to be per-
mitted for all workflow nodes. If the DS is run without location constraints,
all available regions are retrieved from the available regions table. The
constraints can never be so strict that no region is possible for all nodes.
It must be possible to deploy the whole workflow to at least the home re-
gion, the developer’s defined default deployment region. Then, the heuristic
search begins. In every iteration, the algorithm generates new deployments,
retrieves the corresponding metrics values of this deployment from the De-

ploymentMetricsCalculator instance, tests them for any tolerance viola-
tion, and checks for improvement. The search terminates after exploring
the search space or after β iterations, where β depends on DAG size and re-
gion count. The parameters α, γ, δ represent the learning rate, temperature,
and bias probability. All parameters such as α, β, γ, δ are open for further
optimization. Based on a small-scale parameter search, we decided on the
values outlined in Algorithm 1.

Staging a Deployment

When the DS lexicographically selects the best deployment according to the
developer-defined objectives, the DS stages this deployment in the work-

flow placement solver staging area table for migration by the Deploy-
ment Migrator.

5.5.4 Deployment Utility

We implemented the Deployment Utility (DU) to reduce the manual
tasks required to deploy a complex serverless workflow. The workflow de-
veloper invokes the DU when the developer runs the deploy CLI command.
The utility executes on the workflow developers’ local machine. When given
the path to a source code directory, the DU statically analyzes the applica-
tion structure, identifies dependencies, packages up the function as a Docker
image, and creates the function and all necessary dependencies. The DU is
designed to automate the creation and deployment of a serverless workflow
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Algorithm 1 HBSS algorithm used for finding optimal deployments.

1: function HBSS(Deployments) ▷ Deployments will always be of size > 0
2: α← ⌈0.2× |N|⌉ ▷ At least 1
3: β ←]N| × |R| × 6 ▷ Learning rate
4: γ ← 1.0 ▷ Temperature
5: δ ← 0.2 ▷ Bias probability
6: i← 0
7: CurrentDeployment← Deployments[0] ▷ Initialise with home deployment
8: while i < β do
9: NewDeployment← GenNewDeplWBias(CurrentDeployment)

10: if ToleranceViolated(NewDeployment) then
11: continue
12: end if
13: if NewDeployment.metric < CurrentDeployment.metric or

StochasticMutation(γ,CurrentDeployment,NewDeployment) then
14: CurrentDeployment← NewDeployment
15: γ ← γ × 0.99 ▷ Cool down
16: Deployments.add(NewDeployment)
17: if len(Deployments) == |R||N | then ▷ No more deployments
18: break
19: end if
20: i++
21: end if
22: end while
23: end function
24: function GenNewDeplWBias(CurrentDeployment)
25: NewDeployment← CurrentDeployment
26: InstancesToMove← RandomSelectInstances(α)
27: for instance ∈ InstancesToMove do
28: ARegions← GetAllowedRegions(instance)
29: if Random < β ∧ ∃BiasRegion then
30: NewDeployment[instance]← SelectBiasedRegion(ARegions)
31: else
32: NewDeployment[instance]← RandomChoice(ARegions)
33: end if
34: end for
35: end function
36: function StochasticMutation(γ,CurrentDeployment,NewDeployment)
37: ∆← ∀|CD.metric−ND.metric|
38: return Random < e−

∆
γ

39: end function

with multiple functions. It eliminates the need for manual bootstrapping of
dependencies and steps, allowing developers to deploy their workflow quickly
and effortlessly. The actual deployment process happens inside the Deployer
class used by both the DU and Deployment Migrator since the processes for
both are very similar. At the end of a deployment, the DU will upload the

68



metadata to both the deployment resources table, which maintains all
deployed function information, as well as the home region, deployed image
locations, maintained in caribou workflow images table required by the
Deployment Migrator. Lastly, the DU stores the home region deployment
and all the other information in the workflow placement decision table

under the workflow ID.

Static Code Analysis

The DU statically analyzes the source code inside the passed directory, start-
ing from the app.py file, while including any additional functions imported
from the src directory in the analysis. Starting by adding the start node
of the workflow to a queue, the static analysis algorithm removes elements
from the front of the queue until the queue is empty. All outgoing edges are
added to the DAG for each node removed from the queue, and all edge des-
tinations and other source code functions are added as nodes to the queue
as long as there does not already exist a node with the same name in the
queue.

When adding a node to the DAG, the node will assigned a unique name
that serves two purposes:

1. Identify the node uniquely in the DAG.

2. Enable the identification of a successor node based on the current node
for the inductive process as outlined in the invocation design section
(§4.8.3).

The initial node will be named the following, where index in dag is
trivially 0:

<function_name >: entry_point:<index_in_dag >

All synchronization nodes are unique, and since the interface does not
specify which predecessor the sync node waits on, it must wait on all pre-
decessor nodes, requiring it to be unique to prevent cycles. The naming of
synchronization nodes is as follows:

<function_name >:sync:

Lastly, all other nodes are named as outlined, where successor of pre-

decessor index is defined by the number of outgoing edges of the prede-
cessor:

<function_name >:< predecessor_function_name >_<

predecessor_index_in_dag >_<successor_of_predecessor_index

>:<index_in_dag >

At the end of the static code analysis, the DU will have a JSON rep-
resentation of the DAG, where each node’s predecessors, successors, and
any dependent sync successors are stored. The workflow wrapper (§5.5.6)
requires the dependent sync successors for the conditional edge path check,
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where a node needs to update the annotation for all dependent synchroniza-
tion nodes in the case of a conditional non-invocation. At this point, the DU
also performs a cycle and compliance check to prevent the deployment of
impossible graphs according to our current workflow model. If the workflow
ID defined by the developer has already been deployed, the DU aborts any
further deployment.

Function Package

Any source code function part of a workflow, as deployed by the DU, needs
to be packaged up into a function package. If required, the Deployment-

Packager class packages the source code function instantiated in the De-

ployer class. In our implementation, a function package is a Docker image
containing all Python dependencies, the source code, the required frame-
work source code for both the function and workflow wrapper to route in-
vocations correctly, and any runtime environment dependencies, such as
additional software. We decided on function packages to ensure that the
execution environment is the same and independent of the region and un-
derlying software architecture. It additionally allows the developer to define
further framework-level dependencies such as ffmpeg [179] for audio and
video recording, conversion, and streaming not provided in all runtime envi-
ronments by default. It also enables future maintainers to effortlessly extend
to different programming languages since it decouples this part of the frame-
work implementation from a specific language. Thus, the function package
could still be deployed and migrated with the same framework code, even if
the source code function code is different. Lastly, Docker images have the
added benefit of being efficiently and reliably migratable cross-regionally.

Function Creation and Dependencies

A function deployed with our framework will consist of a function package, a
handler to the corresponding source code function required by the serverless
function service, a role associated with the permissions of this particular
function, and the messaging queue representing the publication vessel as well
as the corresponding subscription from the function to the queue. The DU
facilitates all these actions using the RemoteClient offering these functions.
The DU must set up all these components at the cloud service provider
to enable a seamless function execution. Furthermore, each region where
this function is deployed will have its registered function, role, messaging
queue, and a subscription from the function to the messaging queue. It is
important to note that all the components mentioned, except the role, are
region-specific concepts. That means they can not be migrated and must be
registered anew when a source code function is migrated to a new region. At
this point, the DU also uploads the workflow corresponding information to
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the deployment resources table and caribou workflow images table.

5.5.5 Deployment Migrator

When the framework has chosen a new region for a specific application func-
tion, it must be able to migrate the function package and all the necessary
dependencies to this new region. The Deployment Migrator (DMi) fa-
cilitates this migration by comparing the deployed workflows, maintained in
the deployment resources table with the newly required staged deploy-
ments according to the workflow placement solver staging area table.
The former table is also updated for each migrated function, ensuring an
accurate state of deployed regions per function persists. The deployment
migrator utilizes the same Deployer function to facilitate this migration
since many of the required steps are the same, with some simplifications
as not requiring rebuilding the Docker image. Thanks to how serverless
functions are packaged, this process is relatively straightforward and does
not require any change to the deployed code. This packaging also means
no framework component adapts the source code after being packaged on
the developer’s local device. When migrating a function from one region to
another, the framework needs to relocate the corresponding Docker image
to the new region and register the function and additional components in
that new region. Building a Docker image anew every time we migrate to
a new region would be counterintuitive and computationally expensive. It
would be against our design property of low overhead. Thus, we decided to
migrate the images by copying them from the region where we know this
application will always be deployed (home region) to any new region. Copy-
ing a Docker image is not a functionality available from the cloud service
providers themselves. Functionalities like multi-region replication exist, for
example, in AWS. However, they can not be retroactively applied. To fur-
ther reduce the DMi’s footprint, we decided to look for a solution that does
not require a Docker daemon for migration. Since we designed the DMi to
run as a serverless function, this would be impossible in AWS.

Given these constraints, the best solution is an open-source package
maintained by Google, and part of the Go language container registry called
crane [151]. It introduces a dependency to the Go programming language
required to run it; however, this dependency is much lighter and natively
supported on more machines than a full Docker daemon. The package crane
offers a simple command line interface for interacting with remote container
images and can also be used to migrate images from one container registry
to another. The DMi retrieves the name and location of the image from the
caribou workflow images table. We use this functionality to migrate the
source code image to the new region. Once the DMi migrated the deploy-
ment, the DMi removes the newly deployed deployment from the staging
area table and updates the corresponding framework deployment of the DP
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in the workflow placement decision table.

5.5.6 Execution

When executing a workflow, the framework needs to correctly route the call
to either the start node of the current deployment if there is a framework
deployment or to the home region. We opted for an Invocation Client to
facilitate this initial routing, which can be invoked using the CLI run com-
mand (§5.4.1). The client will then call the start node in the region, as
defined by either the home region or framework deployment. Each workflow
invocation will receive a unique run ID at the client to prevent conflicts
concerning synchronization nodes and uniquely identify an invocation for
debugging. Each node’s source code function is wrapped once as part of the
workflow to provide workflow-specific information and, secondly, as a func-
tion providing the logic required for cross-regional traffic routing (§4.8.3).

Invocation Client

The Invocation Client (IC) retrieves the current deployment plan (DP)
from the distributed key-value store table workflow placement decision -

table, determines if there is a framework deployment, and, if yes, retrieves
the deployment for the specific hour of invocation, depending on the frame-
work deployment granularity, the home region deployment naturally only
has one granularity. It then invokes the start node at the correct region
with the messaging topic by posting a message to the proper topic. In any
case, the client routes 10% of the workflow invocations to the home region
for performance benchmarking and metric collection.

Workflow Wrapper

All source code functions of a workflow are wrapped in the CaribouWorkflow
class, which provides methods needed by other components, such as the
Deployment Utility to interact with workflows and provides the API to the
workflow developer to declare a workflow. When a source code function is
deployed, this wrapper will be a specific instance for this function, providing
helper functions to the function executions for routing. In the context of
serverless functions, where the same execution environment is reused for
multiple successive invocations, this wrapper instance is also reused by AWS
for multiple node invocations. When accessing data that is only valid for
one run by the run ID, we must differentiate between runs. Following that,
we will provide more information about what happens behind the scenes of
these API functions. The three important API functions provided by the
workflow are:

• register function: The workflow developer can use this function
to register a source code function used for static code analysis at the
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Deployment Utility. The workflow wrapper stores each function as
an instance of the CaribouFunction class that captures the function-
specific data such as callable, name, region constraints, and other data
as specified in subsection 5.4.1. The list of source code functions reg-
istered is used by the Deployment Client for the static code analysis.

• invoke serverless function: The workflow developer can use this
function to indicate an outgoing edge from one source code function
to another where the target function to be called is passed together
with an optional conditional variable. Inside this function, the suc-
cessor node name is determined and used to determine the successor’s
region and messaging queue according to the deployment used. The
workflow wrapper copies the DP and copies the current node name in
the plan to the successor node’s name. The wrapper piggybacks the
copied DP on the intermediate data. Additionally, any logic required
when conditionally not invoking a successor is executed. The DP in-
cludes informing dependent successor synchronization nodes, which
can be retrieved from the DAG structure, of non-execution and po-
tentially invoking dependent synchronization nodes if required. If the
successor is a synchronization node, the workflow wrapper uploads the
intermediate data to sync messages table and the annotation to the
sync predecessor counter table in the region of the synchroniza-
tion node. Otherwise, the intermediate data will be directly forwarded
to the successor.

• get predecessor data: The workflow developer can use this function
to register a synchronization node that awaits the call from all prede-
cessor nodes. This function retrieves the intermediate data from the
sync messages table, where all predecessors stored their respective
intermediate data.

Node location determination: As previously outlined, determining the
node location when executing a source code function deployed in a region
is non-trivial. We had to resort to retrieving the successor by keeping track
of the outgoing edge index and knowing the current node and successor’s
names. Given our naming scheme for nodes, this information is sufficient
to uniquely determine the name of any successor node, which then gets for-
warded to this node. We call this procedure inductive because, by knowing
the start node location and its outgoing edges, we can inductively determine
the node locations of the whole DAG.

Data transmisison: Since we did not want to restrict the user’s ability
to send data but needed to wrap the intermediate data with the DP, we
had to implement a custom JSON encoder and decoder to handle any data
handed as payload.
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Synchronization nodes: The annotation table, sync predecessor coun

ter table, records which predecessors have called and, if called, have con-
ditionally invoked. Recording this information is done by storing a map
for each synchronization node where the predecessors store their name as a
key and the conditional as a value. When updating, the last updated value
is directly returned. Since AWS DynamoDB offers strong consistency for
writing, this ensures that the value returned will conform to the transaction
ordering. This table’s key is a concatenation of the workflow ID, the syn-
chronization node name, and the run ID of this invocation. On the other
hand, the synchronization intermediate data table (sync messages table)
stores the data for each synchronization node with the same key. Each pre-
decessor also updates this data with the intermediate data before updating
the annotation, ensuring transaction ordering and then read by the syn-
chronization node using a ConsistentRead parameter to ensure that the
complete data from all predecessors is read [26].

Function Wrapper

The source code function is wrapped in a decorator that runs before and
after the function invocation. This wrapper is hidden away through the dec-
orator that the workflow developer uses to register a source code function
(§5.4.1) Before the function, the wrapper retrieves and stores the current
DP from the payload retrieved from the predecessor to be used at a suc-
cessor invocation of this node. Additionally, it retrieves the current node
location required to determine any successor location. Lastly, this wrapper
logs information the Metrics Manager requires to collect all the necessary
information on a workflow.

5.5.7 Metrics Manager

The Metrics Manager (MM) collects, transforms, and aggregates the
data required to calculate the metrics. In Figure 5.3, we outline the archi-
tecture of the MM in more detail. The MM consists of two subcomponents:

1. End-to-End Modeling: The modeling is used to enable the Deploy-
ment Solver to access the necessary end-to-end modeled metrics to
make decisions about deployments.

2. Data Collection: Data must be collected from the required sources,
transformed, and then correctly aggregated in the tables required for
the end-to-end modeling.

End-to-End Modeling

The End-to-End modeling enables the Deployment Solver to make guided
decisions about potential deployments by returning the framework-supported
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Figure 5.3: Caribou MM component overview. Lines indicate data flow.
Yellow boxes indicate classes that retrieve and aggregate data, and orange
boxes indicate classes that load the data. Green tables are aggregated data,
and violet tables are intermediate data tables.

metrics when needed. The Deployment Solver passes a DAG, a deployment,
and a time of day to retrieve the corresponding metrics. The MM facilitates
the end-to-end modeling of all metrics in the MetricsModeler class using
a Monte Carlo simulation, as previously outlined (§4.4.1), which involves
sampling execution runtimes, data transfer sizes and latencies, and condi-
tional edges based on past workflow invocations. This sampling is done by
the MM using the corresponding access methods of the WorkflowLoader,
giving access to the past invocation samples in the required granularity (per
node-region deployment).

When a transmission latency between two regions is missing but required
for sampling latencies, we extrapolate the latency data between functions
based on existing measurements in the home region and then calculate the
delta between measured home region transmission latency and externally
retrieved data transmission latency. We then use this delta to extrapolate
the transmission time to other regions by multiplying it with the external
source value. For missing execution runtimes and transfer data sizes, the
home region data is used since we assume that the distribution remains more
or less homogenous for these data points.

When the MM through the MetricsModeler simulates a deployment at
a specific hour of the day, it calculates each metric’s corresponding node
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and edge values. The abstract class a metric needs to implement to provide
the calculation methods for both edges and values is the MetricCalculator
class. Metric-specific instances are then used in the MetricsModeler to
run the Monte Carlo simulation. Each calculator class has a corresponding
loader class instance, which accesses the data tables provided by the data
collection components.

The required data by each calculator is:

• End-to-end Latency Calculator: Requires workflow-specific data
on execution runtimes, transmission data sizes, latencies, and con-
ditional invocations. Additionally, we need additional information to
help fill this gap for all region-to-region latencies where the work-
flow still needs to be deployed. We split this data because if there
is workflow data on a region-to-region latency, this data always takes
precedence over the simulated data.

• Carbon Calculator: Requires the carbon intensity forecast for the
next 24 hours to model the carbon intensity for the required hourly
granularity. Additionally, the calculator requires the sampled exe-
cution runtimes and transmission sizes, which the MetricsModeler

passes as parameters based on the sampled data from the latency cal-
culation. Lastly, the carbon calculation must include the average CPU
utilization and node-specific IO usage.

• Cost Calculator: Requires the per-provider and region-specific cost
data as well as the sampled execution runtime and transmission sizes.

Data Collection

For all metrics that the MetricsModeler can model end-to-end, a subcom-
ponent must first retrieve the raw data required for this modeling. Following,
we will outline the four required DataCollector implementations to fill the
required data in the tables that the corresponding calculator retrieves for
end-to-end modeling.

Workflow Invocation Data: The information on a workflow level, in-
cluding CPU utilization, execution runtimes, transmission sizes and laten-
cies, and invocation probabilities, are collected utilizing extensive logging of
past invocations facilitated by the function wrapper and obtained through
AWS CloudWatch logs [10]. When the execution runtime for a new region
is unavailable, the corresponding calculator uses the home region’s execu-
tion time samples. The data is collected when triggered by a request from
the DM. The WorkflowCollector extracts the data by retrieving all logs
since the last synchronization iteratively. The raw logs are transformed
into invocation samples that contain all the information on one invocation,
maintaining all the information on one invocation in one place to maintain
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information such as deployment, invocation probability of edges, end-to-end
latency, and more. This granularity of keeping the logs requires a per-log
way of keeping or forgetting past information. Since we know the invoca-
tion date for every log and maintain the total number of logs, a fine-grained
forgetting strategy could be enabled. The MM maintains a list of every
workflow’s invocations in distributed storage for the last thirty days and, at
most, for the 5,000 latest workflow executions. Cold start data is filtered out
as tainted and not part of the invocations. If more than 5,000 invocations
are stored, it starts selectively forgetting the oldest ones. That means only
invocations representing DAG information (e.g., region-to-region latency)
not present in new data are maintained; the collector removes all others.
The collector aggregates the logs per workflow information on every node
and edge level, and execution or transmission regions are maintained. We
maintain the transfer size distribution as a list of sizes since this is relevant
for transmission carbon. This aggregation step provides the data to retrieve
a per-node and edge list of latencies run, times, and input sizes, which the
MM later retrieves for modeling the metrics.

Region to Region external Latency Data: Without historical data,
the framework defaults to using CloudPing [148], offering AWS-specific ping
data to estimate transmission latency and WonderNetwork [185] for missing
transmission latency data in CloudPing. Data may be missing from Cloud-
Ping if the data center is new or between regions that AWS turns off by
default, a cost-saving measure by AWS to prevent unwanted costs for the
customer. The PerformanceCollector stores 100 samples for each trans-
mission between two regions. The data is collected weekly to catch grave
performance swings in region-to-region latency.

Carbon Data: The CarbonCollector retrieves the carbon data for the
past seven days from the API provided by ElectricityMaps [73]. We main-
tain the data in an hourly granularity. Since past data alone cannot make
good future predictions, we have to apply carbon forecasting. Since the
Deployment Solver does not generate a new solution every hour for every
workflow, we need some window into the future. The collector needs to
forecast carbon as the diurnal patterns exhibited by several regions indi-
cate that the best deployment for carbon objectives might shift throughout
the day but have slow seasonal shifts. In that case, to ensure that infre-
quently solved deployments may still benefit from the Caribou framework,
carbon forecasting is used for reasonable future data prediction. The col-
lector accomplished this by utilizing Holt-Winters Forecasting Exponential
Smoothing [113] from Statsmodels [193] once every day using the hourly
carbon intensities of the last seven days of all regions for forecasting. The
data is collected every 24 hours at midnight for the next day to maintain
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the most up-to-date carbon data for any solution occurring in the next 24
hours.

Provider Data: The ProviderCollector retrieves the data from the
AWS price list interface [28] that returns the invocation, execution, SNS,
and egress costs per region. Additionally, this collector maintains the list
of available regions in the available regions table. The data is collected
irregularly since the pricing strategy needs to be updated more frequently
to warrant more regular updates.
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Chapter 6

Framework Evaluation

We established a complex framework with many components in the design
and implementation section. Since this thesis aims not to propose the most
efficient solution but to act as a proof of concept, we will focus on showing
the efficacy of a framework for reducing carbon by geospatial offloading
to answer our research question and our attempts to reduce the framework
overhead simultaneously. Future evaluations could go more fine-grained and
evaluated in detail, as well as component-wise efficiency and performance.
For this evaluation, we will keep a birds-eye perspective while considering
the uncertainties in modeling data transmission carbon (§2.6.3).

6.1 Experimental Setup

We undertake two kinds of evaluations: The first focuses on the effective-
ness of our framework in exploiting the regional carbon intensity differences
between regions. The second focuses on the framework’s overhead, which
we aimed to reduce to a required minimum.

Each experiment consists of two phases: The first phase is data gather-
ing, meaning we deploy the workflow to an initial home region. Unless stated
otherwise, we choose eu-central-1 and run approximately 200 invocations
for each benchmark in that region. We then run the workflow collector sub-
component of the metrics manager to collect and aggregate the workflow
invocation logs. We also expose the metrics manager’s carbon collector to
subsets of carbon data to generate corresponding carbon forecasts for the
experimentation days. The experimentation period is from October 15th to
21st, 2023, since we consider this a representative period concerning carbon
differences between the regions and outline the carbon intensities of that
period in Figure 2.2. Concerning the function execution IO carbon inten-
sity, we statically deploy the data access to the corresponding home region
and calculate the data transmission accordingly as part of the transmission
of carbon emissions. The second phase is running the solver to generate

79



deployments. The solver is, depending on the specific plot configuration,
able to offload up to five regions, eu-central-1, eu-south-1, eu-west-3,
eu-north-1, and eu-central-2 unless stated otherwise. In a second set
of experiments, we choose us-east-1 as home region and us-west-1, us-
west-2, and depending on experiment ca-central-1 as offloading regions
to gather additional insights and prove the viability of our framework in a
different setting. Then, we expose the deployment solver to the day-specific
metrics and run the solver to generate a deployment for that specific day
for every hour, generating the most fine-grained deployment for every hour
of the day. The solved deployments, the actual carbon data, the runtimes
for each node, and the latency data between the regions allow us to calcu-
late the carbon data reported in the plots. We refrain from showing actual
carbon numbers since the uncertainty in carbon modeling would not allow
for definitive statements, but we provide arguments for comparative evalu-
ations.

We additionally made the following decisions to ensure a fair evaluation:

1. We limit the evaluation period from the 15th to the 21st of October
for a fair cross-evaluation comparison.

2. We choose random subsamples of the indicated data sources in both a
”big” and ”small” size, showing two extremes concerning input sizes.

3. Requests originate from a fixed source (eu-central-1 or us-east-

1). Fixing the source traffic location is critical to present meaningful
results since end users and trigger sources do not move around to dif-
ferent regions when we offload a workflow in the real world. Geospa-
tial offloading can have significant transmission latency, cost, and car-
bon implications, which are especially highlighted when the invocation
source is fixed.

4. When comparing the frameworks against alternative solutions, we en-
sure that all solutions receive the same configuration and that the
solution-specific implementation overhead is minimal.

5. We control for the CPU architecture (Intel Xeon Processor @2.5GHz)
since this can vary depending on the AWS-assigned function execu-
tion environment and lead to very different results with regards to
execution runtime that would make comparable statements hard to
make [57].

6. Additionally, to control for performance fluctuations within regions
at different times of the day, we collect data in multiple regions for
each execution node. We use the whole set of data for the shown
plots. While this does not eliminate any cross-regional variations, it
is a best-effort attempt to control for such differences.

7. Wherever helpful, the experiments show the best and worst case model
regarding transmission carbon (§4.4.2.
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6.1.1 Experiment Data

We outline the data for the experiments per workflow in the workflow-specific
subsections. The input data used for all benchmarks exemplify realistic
workloads. We attempt to showcase the framework’s behavior in different
input cases by evaluating both a large and small input size. In reality, data
input size may vary significantly and undergo distribution shifts during the
lifetime of a workflow. The carbon database provides the ElectricityMaps
data with historical carbon data [73]. We collected the home region exe-
cutions between April 19th and April 26th, 2024. We use a uniform invo-
cation pattern to evaluate trade-offs and high-level aspects. Larger scale,
continuous evaluations were based on the 2021 Azure Functions invocation
trace [31,226].

6.2 Benchmark Workflows

We implemented five benchmark workflows, ranging from simple, single-
function workflows to complex, conditional workflows inspired by previous
research. These workflows exemplify serverless function use cases that may
exist in the real world.

6.2.1 DNA Visualization

Figure 6.1: DNA Visualization workflow structure.

DNA visualization [55] represents a simple, single-function workflow.
The workflow, when given a GenBank input file (.gb), visualizes the corre-
sponding DNA features using the DNA Features Viewer Python library [70].
The input DNA sequences are Borrelia burgdorferi B31 plasmid cp32-6
(69KB) and Nanoarchaeum equitans Kin4-M (1.1MB), respectively, from
the genetic sequence database provided by the National Library of
Medicine [162].

6.2.2 Image Processing

Figure 6.2: Image Processing workflow structure.

Image Processing [116] represents a pipeline of actions applied on an
input image using the Python imaging library fork of Pillow [53]. The steps
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are 1) flip, 2) rotate, 3) filter, 4) greyscale, and 5) resize. The input image
is an image of a painting by Daniel Long [174] downscaled (222KB) and in
full resolution (2.4MB).

6.2.3 Text2Speech Censoring

Figure 6.3: Text2Speech Censoring workflow structure.

Text2Speech Censoring [71] implements the motivational example out-
lined in section 3.1. The input is two random subsamples of the Yelp Re-
views dataset [221], specifically including reviews containing expletives of
size 1 KB and 12 KB, respectively.

6.2.4 Video Analytics

Figure 6.4: Video Analytics workflow structure.

Video Analytics [211] performs object recognition on video stream frames.
The workflow first splits the input video into four video sequences. The
workflow performs resizing, decoding, and object recognition parallel to the
four sequences. The object recognition task is done using SqueezeNet [103]
through torchvision [181]. The experiment video is based on the INO
video analytics dataset [107] with an example video of 206KB and 2.4MB,
respectively.

6.2.5 MapReduce

Figure 6.5: MapReduce workflow structure.
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MapReduce [85] implements the famous paradigm for analyzing large-
scale datasets. We shard the input dataset into smaller subsets. Based on
the input size, the start node determines the required number of workers and
schedules a workload of at least 12.8MB for each mapper. If fewer than the
six maximum workers are required, the others are conditionally not invoked
and thus do not generate costs or overheads. The workers are then assigned
subsets of the shared dataset that they download, and each applies a word
count function. The data is then forwarded to a synchronization node called
a ”shuffler.” This node assigns a subset to two reducers, which group and
count the words accordingly. The reducers forward the respective results to
an output processor that combines and stores the results. The input files
are two representative subsamples of the Yelp reviews dataset [221] of size
25.6MB, resulting in two mappers, and 256MB, resulting in six mappers,
respectively. As previously outlined, we had to manually adjust the IO
carbon emissions since our framework cannot collect that information from
the logs. This adjustment was especially relevant for MapReduce, where we
had to adjust the IO for the worker nodes that load significant data from
S3. As we will see in the figures, this results in significant carbon overheads
from transmission.

6.3 Carbon Related Evaluation

6.3.1 Effectiveness of Geospatial Shifting

Figure 6.6 shows the carbon savings compared with running everything in
eu-central-1 using manual static deployment and Caribou with different
sets of regions. For this specific experiment, we did not consider the dynamic
aspect of the system of solving only every couple of days based on the
number of invocations. Instead, we consider the carbon differences if the
framework would solve for a new deployment each time at midnight and use
this deployment for the next 24 hours. We can draw the following insights
from this overview:

• Insight 1: Static deployment to regions with lower carbon in-
tensity does not necessarily reduce a workflow’s carbon emis-
sions. All regions have lower average carbon intensity compared to
eu-central-1 in the experiment period. Naively deploying workflows
in either region without considering application-specific data transmis-
sion carbon overhead can lead to significant excess carbon emissions
depending on the input size and the transmission carbon scenario. The
cost of naively deploying is exemplified in Figure 6.6a where naively
deploying to eu-south-1 would lead to excess carbon in the worst case
model but being adaptive between eu-south-1 and eu-central-1 can
lead to carbon savings. Additionally, any static deployment misses out
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Figure 6.6: Normalized relative carbon to deploying the workflow in
eu-central-1 with the two sets of input sizes (small and large) and
the two data transmission carbon scenarios (translucent being energy
factor 0.005 kWh/GB, no within region carbon and fully colored being
0.001 kWh/GB and same within region).
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on leveraging cross-regional carbon intensity variations (§2.1.3).
• Insight 2: An adaptive framework is needed to control geo-
shifting across workflows or even for different inputs of the
same workflow. Caribou tames the spikes in excess carbon emis-
sions through not offloading data transmission heavy applications such
as MapReduce in the worst case, where a non-adaptive framework
can cause significant overhead. This example additionally shows that
adaptiveness is needed not only within an application but also depend-
ing on the input size given to that application. For example, Image
Processing as seen in Figure 6.6b under the worst-case model given a
small input could benefit from being singularly offloaded to eu-south-
1, however, given the large input sizes that strategy suddenly generates
more carbon than simply staying at home.

• Insight 3: Benefits of geospatial shifting depend on the mix
of available regions. The benefits of the mix are due to the different
and varying carbon intensity patterns in various regions (§2.1.3). Sup-
pose we zoom into the three two-region combinations for the Image
Processing benchmark. In that case, depending on the combination,
we observe that the reductions vary but are all greater than those of
any individual involved region. We see additional significant gains if
we extend the two-region combinations with a third, low-carbon region
such as eu-north-1. This offloading would not have happened with
compliance constraints.

• Insight 4: Holistic geospatial shifting offers substantial gains.
Caribou considers many novel aspects in determining carbon-optimal
deployments (§4.5). The significant carbon reduction offered by Cari-
bou – up to 90.2% (geometric mean) from the experiments conducted
for Figure 6.6 – warrants serious consideration of geospatial shifting.
More research is needed to unlock even more savings for serverless
workflows and, more importantly, pave the way for extending tech-
niques presented in this work to new workloads.

Additionally, we run the same experiments on the North American con-
tinent to retrieve additional insights from different sources. There the differ-
ence between the three US American regions, us-east-1, us-west-1, and
us-west-2 is much more minor with similar carbon intensity patterns such
as the UK or Spain due to a strong focus on Solar and Wind for renewables
(us-east-2 is in the same electrical grid as us-east-1 thus not explicitly
mentioned). The Canadian region, ca-central-1, has a pattern similar to
Sweden, thanks to a large amount of hydropower. The results, as seen in
Figure 6.7, from the same experiment as outlined in this section with us-

east-1 as the home region in the period from 15th to the 21st of October
2023 show similar results as in Europe, strengthening the insights gained.
Here, the geometric mean of maximal carbon reduction from this experi-
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Figure 6.7: Normalized relative carbon to deploying the workflow in
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two data transmission carbon scenarios (translucent being energy fac-
tor 0.005 kWh/GB, no within region carbon and fully colored being
0.001 kWh/GB and same within region).

ment is 87.9% due to slightly less stark carbon intensity differences between
the chosen home region and the best region.

6.3.2 Application Structure and Carbon Savings Potential
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Figure 6.8: Execution /Transmission ratio compared with potential carbon
savings when shifting geospatially.

The effectiveness of geospatial shifting depends on the application’s com-
pute-to-transmission ratio. A more transmission-heavy workflow will benefit
less from geospatial shifting than a compute-heavy one. Figure 6.8 addition-
ally showcases this relationship, where we compare the normalized carbon
savings over the execution to transmission ratio. For this experiment, the
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solver could offload to the European regions. We calculate the ratio using
our modeled energy usage data based on collected workflow execution data.

6.3.3 Carbon Efficiency and Latency Tolerances
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Figure 6.9: Carbon emissions under different latency tolerances when using
Caribou to determine optimal deployments by enabling the solver to po-
tential offload to all outlined regions (§6.1). The black dotted line represents
the QoS.

Tolerances are a feature of our framework that enables more developer
flexibility and is a tool to enforce QoS promises. Incorporating tolerances
on deployment generation, such as workflow end-to-end latency (§5.5.1) on
the generated deployments, enables developers to meet Quality of Service
(QoS) requirements while still benefitting from carbon reductions. In Fig-
ure 6.9, we evaluate how different workflow end-to-end latency tolerances
influence the deployment decisions made by the deployment solver given
complete flexibility to offload to the European regions, compared to a sin-
gle region deployment in eu-central-1. We showcase the effects of the
Image Processing and MapReduce benchmarks since they showcase inter-
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esting workflow structure characteristics. Image Processing is a chain of
functions with no parallel sections, while MapReduce has multiple paral-
lelized steps (both map and reduce). As the latency tolerance of workflow
execution increases (from 0% to 6% over the deployment in the home re-
gion eu-central-1), the freedom of the framework to offload parts or the
whole application to regions with lower carbon intensity also increases. The
framework generally observes the QoS tolerances, with minimal violations
in the MapReduce best-case scenario for large input sizes (less than 0.2The
decisions the Deployment Solver makes reflect a conservative end-to-end la-
tency modeling. Interestingly, even though the tolerances are very low, the
algorithm still offloads even in the Image Processing case where there is no
parallelization. We explain this behavior by the relative closeness of the
region where the algorithm offloads to eu-central-2. In Subsection 2.6.1,
we outlined that the ping between eu-central-1 and eu-central-2 is all
between 3.1ms and 4.9ms.
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Figure 6.10: Carbon emissions under different latency tolerances when using
Caribou to determine optimal deployments for us-east-1, us-west-1, us-
west-2, and ca-central-1. The black dotted line represents the QoS.

The evaluation is additionally supported if we consider the North Amer-
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ican regions previously introduced where the latencies are more significant
due to the longer distances (mean 17.7ms from ca-central-1 to us-east-1
according to CloudPing on May 4th, 2023 compared to 6.6ms within ca-

central-1). In Figure 6.10, we evaluate the resulting deployments from
increasing the latency constraints on the North American continent. Here,
the algorithm generally does not offload for small latency tolerances for Im-
age Processing since this benchmark does not offer any offloading of stages
off the critical path. Conversely, MapReduce offers offloading even at 0%
tolerance since it consists of parallel workflows. However, the large input size
makes it more sensitive to the data transmission scenario. While the viola-
tions incurred are more significant (0.9%), they mostly show that MapRe-
duce’s complexity has not been modeled accurately enough compared to the
experimental runs.

6.3.4 Efficiency of Self-Adaptive Re-Deployment
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Figure 6.11: Showcasing Caribou’s deployment decisions for MapReduce
using the large input size, normalized to mean carbon emission of execution
in eu-central-1. The line on top of each plot indicates our framework’s
deployment decisions.

Figure 6.11 captures the week-long operation and visualizes the decisions
made by the deployment solver over time. In this experiment, we simulate
the invocations based on a specific invocation pattern for one week. At
points determined by the metrics manager, we initiate a re-solve that gen-
erates new deployments for the next period. These deployments are then
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used to calculate the effective relative carbon emissions, as we report in the
figure, similar to the previous figures. The invocation pattern is a represen-
tative application of the Azure traces dataset [31] with approximately the
5th percentile invocation count reported from Azure characterizations [143].
We showcase only this here since MapReduce offered the most variability
between the two transmission scenarios. However, all other benchmarks are
listed in Appendix E.1. We mark new deployment generation points with
vertical lines as part of a deployment plan (DP). Initially, the framework en-
ters a learning phase, optimizing deployment regions daily and transitioning
to a lower frequency schedule, showcasing that a new solution would likely
bring slight improvement and that the system stabilizes. Generally, Cari-
bou generates deployments that offload the workflow to the lowest-carbon
region for that time, both in the best-case scenario where all three regions
are viable offloading options and under the worst-case scenario where, due to
the high transmission carbon overhead of the significant input, keeping the
workflow in eu-central-1 presents the sole feasible solution. The frame-
work deployment expired on the 18th after 6 pm, causing it to default to
the home region.
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Figure 6.12: Showcasing Caribou’s deployment decisions for MapReduce
when the region selection is limited to eu-central-1 and eu-south-1.

Similarly, to investigate the system’s feasibility when adapting between
regions with similar carbon intensity patterns, we limited another exper-
iment to eu-central-1 and eu-south-1. The evaluation shows that the
framework can go for the most feasible region at most times. Notably, the
defaulting to eu-central-1 on the 18th after 6 pm leads to a better result
since this region has the lower carbon intensity during that time frame.
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Figure 6.13: Showcasing Caribou’s deployment decisions for MapReduce
when the region selection is limited to us-east-1, us-west-1, us-west-2,
and ca-central-1.

If we compare the results with the North American framework deploy-
ment decisions, where the carbon intensities overlap, we get the result as
seen in Figure 6.13. Here, we can observe a notable limitation in carbon
emission forecasting on October 17th between 6 am and midday in the best-
case scenario, attributed to a carry-over from the previous day’s inaccurate
prediction. Additionally, identical to the previous evaluations, the deploy-
ment expired on the 18th after 6 pm, causing the framework to default to
the home region, us-east-1.

6.3.5 Feasability of Dynamic Deployment Solve

To evaluate the feasibility of our dynamic deployment solutions, we first have
to show that the carbon predictions using Holt-Winters Forecasting stay the
same if reused over multiple days. For this, we experiment during the same
period as all other experiments. We take the carbon forecast for a day and
calculate the mean absolute percentage error between the prediction and
the actual data for one to seven days. We observe in Figure 6.14 that while
the error does increase slightly for some regions, namely eu-central-1 and
eu-central-2, it has a slow upward trend where the prediction is the best
for the first 24 hours, as expected and then slowly becomes worse, up to 60%
MAPE. At the same time, the prediction for eu-south-1 and eu-north-1

do not follow a clear trend. These findings support our implementation,
where deployments can be reused over multiple days, but they also support
our conservative approach, which is to retire a deployment after a while.
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Figure 6.14: Evaluating the mean absolute percentage error of the carbon
forecast when reused for up to seven days.
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Figure 6.15: We normalized relative carbon to deploying the Image Process-
ing workflow in us-east-1 with different solving frequencies per week when
offering us-east-1, us-west-1, and us-west-2 as potential offloading lo-
cations. The solving frequency determines how many days a deployment is
reused before being replaced.

While we observed that the prediction quality does not significantly
worsen over time, it is essential to evaluate how many days a deployment
can be reused and whether this reuse influences a workflow’s normalized rel-
ative carbon emissions. In Figure 6.15, we are doing just that by changing
the frequency of deployment solve per week between one and seven, where
one means we reuse the same deployment for a whole week, whereas seven
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means the deployment solver generates a new deployment every day. We fo-
cus on the Image Processing benchmark; the results are similar for all other
benchmarks. We choose the regions us-east-1, us-west-1, and us-west-

2 as offloading locations since these three vary overlappingly over a week,
as we can observe in Figure 6.13. We observe no clear trend of better or
worse results when solving more per week. This insight supports the idea
that having an adaptive approach influenced by the number of invocations
makes sense since solving less will not result in significantly worse results.

6.4 Other Objectives

While reducing the carbon emissions from cloud applications through geospa-
tial deployment was the primary goal of this thesis and necessary to answer
the research question, a stated side objective was to provide a comprehensive
framework that can help developers reach their objectives. Besides carbon,
we support end-to-end latency and cost as objectives. We have already
shown that the tolerances the developers can define work (§6.3.3). However,
we also want to explain briefly whether the other objectives work. The main
difference between carbon and the other objectives is that the other two are
relatively more static. The cost of invocations and executions change over
time, but very slowly, and AWS rarely uproots its pricing strategy overnight.
Similarly, execution times and transmission latencies might change due to
relative pressure at a data center or transmission cable, but unless these
changes follow a clear pattern that we can capture with our past data ap-
proach, we currently have no way to model them; doing so would go beyond
the scope of this thesis. Additionally, since we do no explorative deploy-
ment, meaning collecting data from locations we have no data in, if there is
no clear indication from our obtained latency, cost, or carbon data that this
region is beneficial, we cannot capture this new data. In this section, we
attempt to convey that our fundamental strategy still works by showcasing
the very static case of the cost objective. Let us take cost as the number
one objective. In this case, the deployment algorithm shifts the deployment
decisions to all remain in the home region of eu-central-1 since this re-
gion, same as eu-north-1, eu-west-1, eu-west-2, and eu-west-2, has the
lowest cost in Europe and additionally causes no egress fees. We test and
verify the behavior in tests, and the solver can correctly make this deci-
sion. Similarly, if end-to-end latency is the primary objective, the work will
remain in eu-central-1 since this does not incur any transmission over-
head. However, suppose the end-user calls to shift to a different region. In
that case, the framework adapts wherever incoming calls can be handled the
fastest, incurring the lowest end-user-to-framework latency. Thus, we prove
that the framework can also handle the more static objectives.
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6.5 Framework Overhead

When evaluating the overhead of our proposed framework, we must prove
that the framework itself does not generate excessive cost, carbon, and end-
to-end latency overhead. Otherwise, running a workflow with the framework
will never be viable. All the following overheads are calculated by running
the evaluation in ca-west-1 to control for the hardware more strictly across
implementation variants. The processor in that region is always an Intel(R)
Xeon(R) Processor @ 2.90GHz.

6.5.1 Invocation End-to-end Latency Overhead

We evaluate the framework’s latency impact by comparing the benchmarks
implemented with the AWS-specific workflow orchestration tool, AWS Step
Functions, and a simple SNS-powered solution for invoking successor func-
tions. The latter prohibits us from implementing any workflows with syn-
chronization nodes since implementing that logic would again propose a spe-
cific solution and most likely need more insight. However, evaluation against
it in the non-framework benchmark allows us to quantify the overhead of our
function and workflow wrappers compared to a vanilla SNS implementation.
AWS Step Functions is a first-party service by AWS that is explicitly for
serverless workflow orchestration. It offers a rich toolset without the option
to offload to different regions other than deploying the whole workflow to
another region.
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Figure 6.16: Comparison of workflow execution time between AWS Step
Functions, Amazon SNS, and Caribou. SNS is the function-to-function
messaging channel in Caribou but does not support synchronization.

Figure 6.16 shows that AWS Step Functions offers the lowest workflow
execution times, geometric mean 4.97% and 3.21% faster than the SNS-only
implementation for small and large input sizes, respectively. We argue that
this difference comes from AWS’s ability to cluster the function executions
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closer together since they know the order of execution that needs to be in-
dicated when creating a step function. Access to the whole stack allows
AWS to perform optimizations on the provider level that are unavailable for
clients. Caribou conversely introduces geometric mean 5.09% and 3.20%
overhead over the SNS-only implementation, showcasing the additional log-
ging and logic the function and workflow wrapper introduces. Additionally,
the start node and any synchronization node need to make additional calls
to the distributed key-value store dynamo DB. This overhead can be hidden
away by long execution times, as seen when switching from small to large
input sizes. Additionally, as expected from the additional computation, the
relative overhead is more significant for complex workflows such as MapRe-
duce with two synchronization nodes and conditional invocations than DNA
visualization.

6.5.2 Invocation Cost Overhead
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Figure 6.17: Comparison of workflow cost per invocation between AWS Step
Functions, Amazon SNS, and Caribou.

Similarly to the end-to-end latency overhead, we compare the frame-
work’s impact on cost by comparing the five benchmarks with AWS Step
Functions and a vanilla SNS implementation.

Figure 6.17 shows the cost overhead of running the workflows with our
framework. AWS Step Functions is not always the cheapest solution, with a
geometric mean cost of 0.59% and 2.17% more than the SNS-only implemen-
tation for small and large input sizes, respectively. This difference is mainly
due to the additional duration cost of using step functions. AWS Step Func-
tions incur additional charges (on top of the AWS Lambda charges) where
the execution time is rounded to 100ms compared to the AWS Lambda
1ms as well as charging for 64-MB chunks of memory instead of the more
fine-grained approach is solely pure Lambda [21]. While Caribou adds ge-
ometric mean 6.23% and 2.58% overhead for small and large input sizes over
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the vanilla SNS solution by firstly being slower and additionally introducing
overheads for fetching the deployment plan as well as additional overhead
for the synchronization points in Text2Speech Censoring and MapReduce.
The overhead is relatively small, especially for long-running functions with
few synchronization points. In contrast, the overhead difference between
Caribou and AWS Step Function is less significant than the runtime over-
head thanks to the more fine-grained billing and the low-cost overheads of
the additional components introduced. We also have to consider the cost of
running the solver, which is amortized over the number of invocations.

6.5.3 Invocation Carbon Overhead
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Figure 6.18: Comparison of workflow relative carbon per invocation between
AWS Step Functions, Amazon SNS, and Caribou.

When evaluating the carbon overhead of invoking a workflow deployed in
the framework, we must compare the added data transmissions and execu-
tion runtimes, similar to the previous overhead experiments. Given the lack
of information about how AWS Step Functions implements synchronization
points, we make a best-case assumption. In this scenario, we assume no
additional carbon overhead is added, which could potentially lead to a sig-
nificant underestimation of the actual carbon overhead. We assume that
data transmission for all technologies adds the same overhead. We chose
the best-case scenario for offloading since all deployed source code functions
are in the same region. Thus, choosing the worst case would result in no
carbon overhead from any data transmission. Approximately the same data
size is transmitted from one function to another, with a slight overhead for
our framework, which we account for in our evaluation since we are forward-
ing the deployment plan (DP). The synchronization nodes for Caribou add
another overhead of storing and fetching annotation and intermediate data.
However, the added carbon emissions are negligible since the data sizes are
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tiny. We assume that the overhead of SNS to the transmission technology
used for Step Functions is similar since we have no way of modeling that
overhead at this point. The evaluation gives a geometric mean of 4.97% and
3.21% for small and large input sizes, respectively, for more carbon emissions
from the SNS implementation compared to Step Functions and a geometric
mean of 18.27% and 11.85% for small and large input sizes when comparing
Step Functions to Caribou. We also assume data locality, where all the
data remains in the home region, and we assume the best case for offload-
ing with the transmission coefficient at 0.001. In Figure 6.18, we compare
the relative execution carbon to AWS Step Functions. The main differences
compared to the execution time plot are the additional overhead of trans-
mitting data as part of either synchronization nodes (small overhead due
to tiny data sizes) or the overhead of the DP transmission (relative impact
depending on workflow executions and transmissions). Overall, the over-
head is most significantly visible for the Video Analytics workflow due to
the number of transitions where the DP has to be forwarded and the large
size of the DP for the same reason. The DP forwarding adds relatively less
overhead for the significant inputs since the carbon emissions of execution
overshadow any transmission.

6.5.4 Framework Solve and Migration Overhead

To evaluate the feasibility of solving and migrating in the current framework,
we deploy all benchmarks to one region and run ten solves to obtain an
average time to solve for a 24-hour deployment (different deployment for
each hour of the day) when given the five European regions to offload to.
Then, we run a migration each where the whole workflow is redeployed to a
new region, one per source code function. We extract the transmission size
(image size) and solving/migration time from these experiments. We run the
solver and migrator as an AWS Lambda function with 1024MB of memory.
We assume the solver to run in eu-central-2 since it offers stable and
low-carbon energy and the workloads are migrated from eu-central-1 to
eu-north-1. As we assume every invocation to this function will incur a cold
start, we will need to bill an additional approximate 650ms. Transferring
data into the container registry and using the image within the same region
for AWS services is free; migrating an image from one region to another cost
$0.09 per GB [13]. The storage cost for the registry is $0.10 per GB per
month and thus comparably negligible. Using this, we calculated the cost
of such a cycle and the carbon emissions. The latter and the deployment
resulting in the lowest carbon emissions were used to calculate the break-
even (iterations after which we saved more carbon by offloading compared
to the solve and migration). The location where the framework components
are run impacts the number of invocations required to break even due to
the carbon intensity used to calculate the framework overhead. We only
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consider the best case for offloading in this estimation. It becomes apparent
that for workflows such as MapReduce, even solving once will not be feasible
if the worst case is assumed since no carbon savings can be achieved due to
the large input size.

Benchmark Time Solve
& Migration
(seconds)

Image
Size
(MB)

Cost Solve
& Migration
(USD)

Carbon
Solve &
Migration
(gCO2-eq)

Mean Carbon
Reduction
(Large /
Small)

Nr. Invoca-
tions to Break
Even (Large /
Small)

DNA Visualization 9 + 42 309.4 0.0086 + 0.0278 0.3289 + 0.1017 93.89% / 92.82% 48 / 1126

Image Processing 281 + 160 244.9 0.0074 + 0.0220 2.8126 + 0.0803 86.22% / 93.81% 817 / 1619

Text2Speech Censoring 334 + 285 462.2 0.0103 + 0.0416 3.9462 + 0.1520 96.06% / 96.06% 161 / 3074

Video Analytics 1481 + 744 3184.4 0.0371 + 0.2866 14.1740 + 1.04075 95.60% / 95.91% 150 / 546

MapReduce 805 + 193 241.0 0.0166 + 0.0217 6.3599 + 0.0793 62.50% / 73.39% 71 / 405

Table 6.1: Benchmark Solve and Migration overhead numbers.

We list the results from these experiments in Table 6.1. For a reference
point, driving a petrol car (6.5 l/100km) a kilometer emits around 260 gCO2-
eq [157]. We observe that:

• Structure of the DAG is important. Simpler DAGs result in fast
solutions and migrations since fewer nodes and functions are involved.
For example, DNA Visualization is almost 98% faster in solving and
migration than Video Analytics.

• Image size, an indication of the complexity of the involved dependen-
cies, plays a role. Video Analytics with torchvision as a dependency
causes significantly more overhead from migration compared to other
benchmarks.

• Invocation Data Size directly impacts the number of invocations
required to break even. Large input sizes generally break even faster
since more carbon is saved from offloading, while the carbon saved for
solving and migrating remains the same. This difference in input sizes
to carbon savings indicates that adding this to the adaptive approach
might also be valuable.

Generally, this evaluation shows once again that a dynamic approach
is required that considers the workflow’s complexity, potential cost, cost of
solver, and potential carbon savings. This insight strengthens our argument
for a dynamic solver trigger and opens avenues for further improvements.
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Chapter 7

Discussion

In this chapter, we aim to outline the broader impact of the results of this
thesis, as summarized in Chapter 6. Additionally, we want to highlight
specific limitations we have encountered and discuss particular aspects of
the framework that have yet to receive attention.

7.1 Results

When we compare our results to static deployments in the home region,
representing the status quo, and to single-region improvements, we show
that a dynamic framework is required. In the best case, any other attempt
would show similar improvements to our framework. In the worst case, it
would cause significantly more overhead, specifically from transmission data
carbon. Thus, a viable framework needs to be comprehensive and adjust
dynamically to the realities of changing carbon emissions. Our framework
can account for transmission carbon, making the correct deployments de-
pending on the transmission overhead and changing application load and
structure. Additionally, we have shown that our framework can adjust to
changes in circumstance, be it a different carbon model, hourly carbon data,
or different region selection, by remaining adaptive and fine-granular in its
deployments. Furthermore, by supporting complex constraints and toler-
ances and being objective aware, our proposed framework enables workflow
developers to communicate significant information instead of simply deploy-
ing a workflow. Our results showed that while our modeling is imperfect,
resulting in minor tolerance violations and not actively reacting to tolerance
violations, our framework still offers significant benefits that offset these
shortcomings.

At the same time, building any framework creates overheads that we
must address. In our evaluation, we quantify these overheads and how they
can be significant if wholly ignored. Thus, we showcased that our framework
does cause overheads while also minimizing their effects by considering when
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and how to solve a new deployment. By evaluating the specific overhead
per invocation, we also showcased what overhead our framework has to
counteract to be viable. When implementing this overhead-aware decision-
making, we showed that we know the framework’s shortfalls and have tried
our best to mitigate them. We intentionally did not spend much effort on
efficiently deploying and bootstrapping the framework; instead, we relied
on being able to deploy the framework itself as serverless functions for a
low-resource framework that only incurs costs when required.

Our evaluations are thorough and simulate as many eventualities as pos-
sible. While we ran all benchmarks and collected run data, it’s important to
note that the comprehensive results maintain a somewhat synthetic nature
due to the absence of a whole week or longer run of the framework. The
deployment solver generated the deployments based on actual data, and the
calculated carbon is based on real runs. However, the carbon emissions of
an invocation were calculated from the collected data in the home region,
such as execution runtimes, transmission size, and the carbon intensity of
the deployment regions. A full deployment to all regions for all deployments
would have been possible, but it may not have rendered much better or more
insightful results. We refrained from running the benchmarks with all the
generated deployments since the number of possible deployments and cor-
responding runs would have led to immense experiments, which would have
been infeasible in the given period. Such a long-term study of the effect of
our framework is outstanding. The evaluations shown as part of this thesis
are sufficient to prove that offloading is feasible. However, a fully-fledged
real-time study of a complex application over a more extended period might
showcase results pointing to additional potential improvements or limita-
tions of the current framework.

While we could have made many more evaluations regarding the inde-
pendent components, we specifically wanted to highlight the framework as
a whole; we leave individual improvements up to future iterations of the
existing framework implementation. We provided specific insights from our
evaluations along the way. Our results showcase the benefits of our frame-
work and provide the environment for many more research questions.

Our implementation and the corresponding evaluation have provided the
foundation to answer the thesis question, ”Can we reduce the carbon
emissions of complex cloud workflows by optimizing the geospatial
deployment fine-granularly?”, with a yes with caveats. Such a system is
realistic and possible, and we present the first version of it in this thesis. Our
results matter since we have shown that overcoming the limitations posed by
existing solutions is possible and feasible. Additionally, extending existing
solutions for cross-provider deployments could benefit from our efforts in for-
malizing serverless workflows, the end-to-end modeling of complex workflows
for the three relevant metrics, our solution for deploying, re-deploying, and
executing complex workflows cross-regionally, as well as from our insights
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into both carbon emissions of execution as well as transmission. Lastly, ex-
isting solutions could benefit from considering the overhead posed by their
solutions themselves, which we showed to be possibly quite significant.

7.2 Limitations

While our framework is a comprehensive proof-of-concept, we must highlight
the following limitations.

7.2.1 Data Transmission from Access

One major limitation of the framework’s current design is that we do not
model data access within a function. Data transmission, even if within the
same region, adds latency, carbon, and potential cost overheads that we
currently do not track outside of added latency to the function execution.
For our evaluation, we manually added an execution’s IO based on infor-
mation from our experimental setup. We currently only account for input
data for the transmission data, while we do not account for any data access
within the function. While this is sufficient to answer our research question,
there are better options for a fully functioning framework. Since we can
not assume that the data accessed within a function is replicated in all po-
tential regions, this would generate additional carbon overhead from down-
and uploading the data from and to the distributed data stores such as S3
or DynamoDB. We argue that extending the API and the workflow model
would not require significant changes to the current implementation. In the
interest of time, this was not pursued as part of this thesis and is left open
for future work.

7.2.2 Electrical Grid Influences

Based on our discussions with power and sustainable computing experts, we
know one additional limitation of our proposed geospatial shifting vision.
Our work assumes that the carbon intensity of electrical grids is independent
of workload shifting. If our framework becomes overly popular and migrates
significant workloads to specific regions, we assume this does not influence
that region’s carbon intensity. This assumption only holds if the power
consumption of the shifted workload is small enough compared to the overall
scale of computing in that region. However, if the shifted workloads cause
unexpected traffic peaks and additional, mostly fossil, energy sources must
be used to mitigate those spikes, the carbon reduction effects might be
inverse. While this dynamic can (and should) be modeled, unfortunately,
there is currently no way to associate the marginal carbon intensity of grids
with a specific consumer. Additionally, since we have no internal data on
the power usage of regions or specific data centers, we need more data to

101



model this effect accurately. Connecting compute usage with specific energy
usage spikes remains an open research question for energy and computing
experts.

7.2.3 Performance Variations

During our development and evaluations, we have experienced shifts in per-
formance, both within regions and cross-regionally. While these shifts are
well-known and researched, a deployment-oriented framework cannot ac-
curately predict these performance variations. Additionally, suppose the
framework becomes overly popular, and shifts work to a few specific regions.
These regions might become unavailable for new deployments or cause per-
formance slowdowns through relative co-tenant pressure on the data center.
Being able to both model and consider these effects is an open research
question for data center and performance experts.
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Chapter 8

Related Work

8.1 Serverless Workflow Deployment

Table 8.1 compares Caribou with other frameworks for serverless workflow
deployment. These frameworks can be broadly categorized into the following
categories:

• Provider-specific, proprietary solutions for workflow deployment such
as AWS Step Functions [20], GCP Workflows [96], or Azure LogicAp-
plications [32], offering a rich toolset for complex applications with
additional concepts such as fan-outs. However, these solutions are
naturally vendor-locked and do not support any objectives, and de-
ployments can only happen on a per workflow basis to one region.

• Deployment and provisioning of workflow choreographies such as
xAFCL [187, 224] and topologies such as OpenTOSCA [216], offering
rich environments for modeling of complex cloud workflows. These
works most closely resemble our workflow model and provide many
similar concepts, such as multi-stage applications with control flows
and synchronization points, while also adding support for additional
modeling. Specifically, xAFCL also allows the fine-grained deployment
of a choreography based on a solved, statically optimal plan regard-
ing latency or cost. However, they lack the automated migration ap-
proach, requiring manual deployment, and their application modeling
is explicit using either a modeling language or a graphical user inter-
face. In contrast, developers define the workflow structures implicitly
in our approach.

• Proof-of-concept ideas and initial implementation for multi-cloud server-
less deployment [227] promising a framework that can be deployed
fine-grained without adding any complex workflow support.

• Solutions that consider carbon for workflow deployment, such asGreen-
Courier [48] or Carbon Aware GSLB [144], but lack the support for
the more fine-grained, comprehensive approach since they focus on
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carbon aware function scheduling from a serverless function provider
perspective. They focus on offloading the execution of singular server-
less functions geospatially, do not consider transmission carbon, and
do not support DAGs.

Framework Objectives
Deployment
Granularity

Automated
Workflow
Migration

Geo-
spatial

Multi-
Stage

Control
Flow

Sync
Nodes

Transmission
Overhead

Supported
Providers

AWS Step
Functions [20]

✗ Coarse ✗ ✗ ✓ ✓ ✓ ✗ AWS

GCP
Workflows [96]

✗ Coarse ✗ ✗ ✓ ✓ ✓ ✗ Google

Azure Logic
Apps [32]

✗ Coarse ✗ ✗ ✓ ✓ ✓ ✗ Azure

Serverless
Multicloud [227]

Latency
Cost

Fine ✗ ✗ ✓ ✗ ✗ ✗
AWS, Google,

Alibaba
BPMN4FO

[224]
✗ Coarse ✗ ✗ ✗ ✓ ✗ ✗

AWS, Azure,
IBM

xAFCL [187]
Latency
Cost

Fine ✗ ✓ ✓ ✓ ✗ ✗
AWS, Azure,
IBM, Google,

Alibaba
OpenTOSCA

[216]
✗ Coarse ✗ ✗ ✓ ✓ ✓ ✗

AWS, Azure,
IBM, Google,...

Carbon Aware
GSLB [144]

Carbon ¨ Coarse ✗ ✓ ✗ ✗ ✗ ✗ Azure

GreenCourier
[48]

Carbon ¨ Fine ✗ ✓ ✗ ✗ ✗ ✗ Google

Caribou
Carbon ¨
Latency
Cost

Fine ✓ ✓ ✓ ✓ ✓ ✓ AWS

Table 8.1: Overview of different capabilities of frameworks for serverless
cloud workflow deployment.

8.2 Sky Computing

Sky Computing [115, 200], where compute resources are seen as decoupled
from specific providers and become a utility with a homogenous service layer,
proposed as a middleware system [173, 220] that connects workloads with
providers, offered inspirations for this work. By abstracting the specific
service offerings and being able to send work where it is cheapest [153]
or most carbon neutral [56], Sky Computing will lead the way to a more
customer-driven pricing and carbon strategy of the providers. The concept
has already been evaluated for serverless as well [33], which is, as we have
shown, a great candidate for these workloads. We hope to have contributed
to this discussion by building a framework that shows that the basic idea of
not being tied to cloud providers’ limitations is worthwhile and that could be
easily extended or integrated into a more Sky Computing-like architecture.
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8.3 Provider Perspective

While solutions such as the one proposed by this thesis are limited to the in-
formation accessible from the outside, frameworks that could access insider
information into the provider’s scheduling and resource allocation could fur-
ther improve carbon gains. While the unsolved question of communicating
constraints and tolerances currently prohibits a full cross-regional implemen-
tation, intra-regional workload shifting has already shown promise. Works
that have gone intra-regional scheduling and allocation have shown addi-
tional gains [48]. Additionally, work approaching the problem from a pro-
visioning angle rather than a deployment side shows further promises [49].
More specifically, colocating centers with greener energies and scheduling
virtual machines according to renewable energy production, showcasing the
adaptability to changes in power grids, to exploit a ”free lunch” [6] or to load-
balance with also taking carbon emissions from energy into account [133]
shows that similar approaches can be made even more efficient when having
access to provider internal data.

8.4 Edge Computing

There are additional optimization avenues to reduce carbon emissions when
considering geospatial deployments. Much computing is happening on edge
devices [50, 190], especially with the advance of federated learning [203,
215]. Expanding and accounting for carbon emissions when pushing com-
putation to the edge [110, 117, 125] introduces another complex dimension,
where embodied carbon [175] through the heterogeneity of involved devices,
data locality [46, 131, 183], data privacy and security [225], become addi-
tional important factor for deployment determination [118]. Very recent
research [126] has specifically combined the question of resource allocation
and serverless edge computing with intermediate energy harvesting servers,
modeling the energy usage of mobile users as a Stackelberg game and provid-
ing further interesting ideas for extending the current work. Another work
has explored the deployment of both serverless functions to edge devices as
well as the corresponding key-value state in geographically distributed envi-
ronments, indicating a direction this research could take to tackle the data
locality problem [160].
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Chapter 9

Conclusion

When we commenced our work on this thesis in November 2023, we started
with the provided map overview of different grid carbon intensities. The dif-
ferences were quite stark and visible. We asked ourselves, ”What if we move
the execution of cloud workloads to the greenest regions?”. Leading with
this question, specifically aiming to increase the sustainability of cloud ap-
plications, we did our first back-of-the-envelope calculations, which showed
that significant carbon reductions were theoretically possible. However, we
have to account for more than just the carbon emitted from the execution
of cloud applications. Depending on what research we take as the ground
truth, data transmissions will also more or less significantly impact the car-
bon emissions of cloud applications. These calculations and our knowledge of
modern cloud applications’ complexity, interconnectedness, and complex re-
quirements sparked our interest. While shifting workloads to greener regions
was not necessarily new, current approaches still had significant limitations.
A comprehensive review of the state of the art revealed that no prior research
has attempted to build a comprehensive framework that would move work
to the greenest region in a fine-granular, transmission-aware manner while
being multi-objective and tolerance-aware. We considered these paramount
to offering a comprehensive solution to maximize the number of applications
that could benefit from geospatial offloading. This comprehensive solution
would enable workflow developers to tell us their requirements on where and
how their workflows should be deployed. Thus, we formulated the following
research question: ”Can we reduce the carbon emissions of complex
cloud workflows by optimizing the geospatial deployment fine-
granularly?”. To answer the research question, we built Caribou that
enabled us to answer the question while providing us with many engineering
and research challenges. We specifically focused on serverless workflows as
great candidates for cloud workloads. These offer many features that enable
us to answer the research question within the given period. By solving these
challenges, such as how to model a complex workflow end-to-end or how
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a workflow developer could communicate their complex workflow structure
with the framework, we presented a comprehensive system that optimizes
the geospatial serverless deployment of complex workflows regarding carbon
emissions.

The research conducted in this thesis started by solving the fundamental
problems of efficiently allowing developers to declare a workflow structure in
source code, deploying and migrating workflows cross-regionally, and execut-
ing them across regional boundaries. All of this required us to formalize the
possible structures we wanted to be able to handle as part of the framework
as DAGs. When we solved these questions, we needed a way to generate
deployments that, while being objective aware, also considered the devel-
oper requirements. To build a solver that can generate such deployments
without being blind to the direction of what to solve for, we first needed to
model the relevant metrics end-to-end for a given DAG and potential de-
ployment. This process of guiding the solver started with modeling carbon
for the workflow stages and transitions. While we expected much research
on the carbon emissions of transmitting data, we quickly learned that do-
main experts still need to solve this question. This research gap led us to
a two-scenario solution that showcases a best-case and worst-case scenario.
As with the rest of the proposed framework, we do not aim to answer and
solve all domain-specific problems. Instead, we provide the scaffolding to
run experiments and gather initial results as a proof of concept. While solu-
tions exist for modeling the end-to-end latency or cost of a complex server-
less workflow, adding this to our framework to keep the concerns separate
proved challenging. The Monte Carlo simulation approach we implemented
for end-to-end modeling allows a solver to efficiently generate and select de-
ployments for fine-grained geospatial serverless deployment while remaining
tolerance- and objective-aware by providing specific metric values for each
deployment. These simulated metrics allow the solver to have a heuristic
to solve for, thus guiding the deployment search for our heuristic-biased
stochastic sampling algorithm. This component, which generates deploy-
ments, is managed by an overhead-aware super-component that tracks the
framework state and initiates new deployment-solving runs when reasonable
from an overhead perspective.

When evaluating our framework to answer our research question, we
showed that we can reduce the carbon emissions of complex cloud workflows.
More specifically, we observed that for five specific benchmark workflows,
our framework could reduce carbon emissions by handling the different com-
plexities of a single-function workflow to a complex, conditional MapReduce
implementation. Furthermore, our framework can handle the complexity
fine-granularly while remaining overhead-aware from a framework perspec-
tive and not causing significant invocation overheads compared to existing
solutions. While our framework has limitations since it does cause over-
heads, we are aware of these shortcomings. We can mitigate them in future
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iterations, where we provide some ideas for future work in the following sub-
section. Ultimately, our most significant contribution was to build a compre-
hensive overhead-aware framework that can deploy, manage, migrate, and
invoke complex serverless workflows geospatially to reduce the environmen-
tal footprint of cloud workloads.

9.1 Future Work

Building the framework also allows us to glance to the future with many
more open questions remaining that can be solved within the confines of our
framework since we have laid the foundation. The future work remaining
can be categorized into two areas:

1. Addressing limitations of the current solution:

• While the workflow model is a comprehensive approach to com-
plex workflows, it currently needs more tools to model for data
sinks and sticky external data. Especially with the increasing in-
terest in analytics applications in the context of serverless work-
flows, data locality, and corresponding performance overheads
become evermore important [119, 142]. In a future iteration, the
framework’s maintainers should extend the workflow model by
adding data nodes that act as representations. The necessary
changes are straightforward and can be implemented without dis-
rupting the framework workflow. While optional for answering
the fundamental question, this extension can significantly en-
hance the model’s capabilities. The extension could easily be
integrated into the developer API.

• We implemented the framework to answer the research question
of this thesis foremost in mind. We wanted to build the frame-
work as a proof-of-concept, where efficiency was considered sec-
ondary for now. Even the selected language for the framework,
Python, could be more energy-efficient [170, 171]. While we de-
veloped the framework with efficiency in mind, removing many
of the low-hanging efficiency overheads should be one of the fol-
lowing steps to improve the efficiency component-wise.

• We additionally identified scaling issues with the current Monte
Carlo Simulation approach where future work needs to look into
caching, required iterations, and utilization of more efficient pro-
gramming languages.

• Our current implementation does not react to any active viola-
tions for developer-defined tolerances. The ad-hoc reaction would
be required to provide better guarantees to developers and react
to the changing pressures on the cloud infrastructure.
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2. Extending the framework to answer additional questions:

• We are approaching the problem of the cost of a function invoca-
tion conservatively and globally, where we assume all developers
exist within the same AWS account and all free-tier of this ac-
count is used up. To extend the architecture into an effective
middleware architecture, an additional account layer must be in-
troduced where the framework has access to account information
and specific privileges; however, the source code and AWS billing
remain on the developer or their organization account while the
middleware charges separately per developed framework.

• Currently, all roles that interact with the framework, including
the framework itself, must be within the same AWS organization
or at least have access to the same resources. This model is suffi-
cient for a proof-of-concept. However, to transform the proposed
framework into a fully-fledged middleware solution, more work
will be required on accounts, usages, and billing.

• While AWS is a good candidate for an initial proof-of-concept,
offering the most diverse set of regions globally, extending the
framework to consider additional providers might allow for fur-
ther research into carbon efficiency differences between providers
and eventually increase the competitiveness between providers
regarding their carbon efficiency.

• Extending the framework to optimize in another dimension of
temporal shifting together with geospatial shifting and allowing
developers to communicate their tolerance to temporal shifting
efficiently might allow for additional research questions and opti-
mizations for carbon reduction.
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ski, and Lionel Villard. Triggerflow: trigger-based orchestration of
serverless workflows. In Proceedings of the 14th ACM International
Conference on Distributed and Event-Based Systems, DEBS ’20, page
3–14. ACM, 2020.

[137] Pauline Loygue, Khaldoun Al Agha, and Guy Pujolle. Carbon foot-
print of cloud, edge and internet of edges. Green Communications,
2023.

[138] Chengzhi Lu, Kejiang Ye, Guoyao Xu, Cheng-Zhong Xu, and Tongxin
Bai. Imbalance in the cloud: An analysis on alibaba cluster trace. In
2017 IEEE International Conference on Big Data (Big Data), pages
2884–2892, 2017.

122

https://pylint.pycqa.org/en/latest/user_guide/usage/run.html
https://pylint.pycqa.org/en/latest/user_guide/usage/run.html


[139] Jianying Luo, Lei Rao, and Xue Liu. Temporal load balancing with
service delay guarantees for data center energy cost optimization.
IEEE Transactions on Parallel and Distributed Systems, 25(3):775–
784, 2013.

[140] Shutian Luo, Huanle Xu, Chengzhi Lu, Kejiang Ye, Guoyao Xu, Lip-
ing Zhang, Yu Ding, Jian He, and Chengzhong Xu. Characterizing
microservice dependency and performance: Alibaba trace analysis. In
Proceedings of the ACM Symposium on Cloud Computing, pages 412–
426, 2021.

[141] Shutian Luo, Huanle Xu, Chengzhi Lu, Kejiang Ye, Guoyao Xu, Lip-
ing Zhang, Jian He, and Chengzhong Xu. An in-depth study of mi-
croservice call graph and runtime performance. IEEE Transactions on
Parallel and Distributed Systems, 33(12):3901–3914, 2022.

[142] Ashraf Mahgoub, Li Wang, Karthick Shankar, Yiming Zhang, Huang-
shi Tian, Subrata Mitra, Yuxing Peng, Hongqi Wang, Ana Klimovic,
Haoran Yang, et al. {SONIC}: Application-aware data passing for
chained serverless applications. In 2021 USENIX Annual Technical
Conference (USENIX ATC 21), pages 285–301, 2021.

[143] Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick Shankar, Eshaan
Minocha, Sameh Elnikety, Saurabh Bagchi, and Somali Chaterji.
WISEFUSE: Workload characterization and DAG transformation for
serverless workflows. Proc. ACM Meas. Anal. Comput. Syst., 6(2), jun
2022.

[144] Diptyaroop Maji, Ben Pfaff, Vipin PR, Rajagopal Sreenivasan, Victor
Firoiu, Sreeram Iyer, Colleen Josephson, Zhelong Pan, and Ramesh K
Sitaraman. Bringing carbon awareness to multi-cloud application de-
livery. In Proceedings of the 2nd Workshop on Sustainable Computer
Systems, pages 1–6, 2023.

[145] Marc X Makkes, Arie Taal, Anwar Osseyran, and Paola Grosso. A
decision framework for placement of applications in clouds that mini-
mizes their carbon footprint. Journal of Cloud Computing: Advances,
Systems and Applications, 2:1–13, 2013.

[146] Jens Malmodin. Science & society forum: Växande ikt-sektor och fler
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Appendix A

Workflow Configuration
A.1 Configuration File

1 workflow_name: "example"

2 workflow_version: "0.0.1"

3 environment_variables:

4 - key: "ENV_VAR_1"

5 value: "value_1"

6 iam_policy_file: "iam_policy.json"

7 home_region:

8 provider: "aws"

9 region: "region_1"

10 constraints:

11 hard_resource_constraints:

12 cost:

13 type: "absolute" # Absolute value as ’absolute ’ (in USD)

14 value: 100

15 runtime:

16 type: "relative" # Percentage from deployment at home regions ,

such as 102 for 2% tolerance

17 value: 102

18 carbon: null

19 soft_resource_constraints:

20 cost: null

21 runtime: null

22 carbon: null

23 priority_order:

24 - carbon

25 - cost

26 - runtime

27 regions_and_providers:

28 allowed_regions:

29 - provider: "aws"

30 region: "region_1"

31 disallowed_regions:

32 - provider: "aws"

33 region: "region_2"

34 providers:

35 aws:

36 config:

37 timeout: 60

38 memory: 128

39 additional_docker_commands:

40 - "yum update -y"

41 - "yum install -y tar gzip"

42 - "yum install -y xz"

Listing A.1: Example workflow configuration file.
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A.2 IAM Policy File
1 {
2 "aws": {
3 "Version": "2012 -10 -17",

4 "Statement": [

5 {
6 "Action": [

7 "logs:CreateLogGroup",

8 "logs:CreateLogStream",

9 "logs:PutLogEvents"

10 ],

11 "Resource": "arn:aws:logs :*:*:*",

12 "Effect": "Allow"

13 },
14 {
15 "Action": ["sns:Publish"],

16 "Resource": "arn:aws:sns :*:*:*",

17 "Effect": "Allow"

18 },
19 {
20 "Action": ["dynamodb:GetItem", "dynamodb:UpdateItem"],

21 "Resource": "arn:aws:dynamodb :*:*:*",

22 "Effect": "Allow"

23 }
24 ]

25 }
26 }

Listing A.2: Minimal IAM Policy File.
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Appendix B

Deployment Plan
B.1 Example Deployment Plan

1 {
2 "instances": {
3 "text_2_speech_censoring -0_0_1 -GetInput:entry_point :0": {
4 "instance_name":

↪→ "text_2_speech_censoring -0_0_1 -GetInput:entry_point :0",

5 "regions_and_providers": {
6 "allowed_regions": [

7 { "provider": "aws", "region": "us -east -1" },
8 { "provider": "aws", "region": "us -east -2" },
9 { "provider": "aws", "region": "us -west -1" },
10 { "provider": "aws", "region": "us -west -2" },
11 { "provider": "aws", "region": "ca -central -1" }
12 ],

13 "disallowed_regions": null ,

14 "providers": {
15 "aws": {
16 "config": {
17 "timeout": 300,

18 "memory": 1024,

19 "additional_docker_commands": [

20 "yum update -y",

21 "yum install -y tar gzip",

22 "yum install -y xz",

23 ]

24 }
25 }
26 }
27 },
28 "succeeding_instances": [

29 "text_2_speech_censoring -0_0_1 -Text2Speech :...",

30 "text_2_speech_censoring -0_0_1 -Profanity :..."

31 ],

32 "preceding_instances": [],

33 "dependent_sync_predecessors": [

34 [

35 "text_2_speech_censoring -0_0_1 -Compression :...",

36 "text_2_speech_censoring -0_0_1 -Censor:sync:"

37 ],

38 [

39 "text_2_speech_censoring -0_0_1 -Profanity :...",

40 "text_2_speech_censoring -0_0_1 -Censor:sync:"

41 ]

42 ]

43 },
44 ...
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45 },
46 "current_instance_name":

↪→ "text_2_speech_censoring -0_0_1 -GetInput:entry_point :0",

47 "workflow_placement": {
48 "home_deployment": {
49 "text_2_speech_censoring -0_0_1 -GetInput:entry_point :0": {
50 "identifier": "example_identifier",

51 "provider_region": { "provider": "aws", "region": "us -east -1"

↪→ },
52 "function_identifier": "example_function_identifier"

53 },
54 ...

55 }
56 }
57 }

Listing B.1: Example deployment plan based on the Text2Speech Censoring
Workflow.
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Appendix C

Developer Permissions
C.1 Required Permissions for Framework Devel-

oper Access
1 {
2 "Version": "2012 -10 -17",

3 "Statement": [

4 {
5 "Action": [

6 "logs:CreateLogGroup",

7 "logs:CreateLogStream",

8 "logs:PutLogEvents"

9 ],

10 "Resource": "arn:aws:logs :*:*:*",

11 "Effect": "Allow"

12 },
13 {
14 "Action": [

15 "sns:Publish"

16 ],

17 "Resource": "arn:aws:sns :*:*:*",

18 "Effect": "Allow"

19 },
20 {
21 "Action": [

22 "dynamodb:GetItem",

23 "dynamodb:UpdateItem"

24 ],

25 "Resource": "arn:aws:dynamodb :*:*:*",

26 "Effect": "Allow"

27 },
28 {
29 "Action": [

30 "s3:GetObject",

31 "s3:PutObject"

32 ],

33 "Resource": "arn:aws:s3:::*",

34 "Effect": "Allow"

35 },
36 {
37 "Sid": "Statement1",

38 "Effect": "Allow",

39 "Action": [

40 "iam:AttachRolePolicy",

41 "iam:CreateRole",

42 "iam:CreatePolicy",

43 "iam:PutRolePolicy",
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44 "ecr:CreateRepository",

45 "ecr:GetAuthorizationToken",

46 "ecr:InitiateLayerUpload",

47 "ecr:UploadLayerPart",

48 "ecr:CompleteLayerUpload",

49 "ecr:BatchGetImage",

50 "ecr:BatchCheckLayerAvailability",

51 "ecr:DescribeImages",

52 "ecr:DescribeRepositories",

53 "ecr:GetDownloadUrlForLayer",

54 "ecr:ListImages",

55 "ecr:PutImage",

56 "ecr:SetRepositoryPolicy",

57 "ecr:GetRepositoryPolicy",

58 "ecr:DeleteRepository",

59 "lambda:GetFunction",

60 "lambda:AddPermission",

61 "pricing:ListPriceLists",

62 "pricing:GetPriceListFileUrl",

63 "logs:FilterLogEvents"

64 ],

65 "Resource": "*"

66 },
67 {
68 "Sid": "Statement2",

69 "Effect": "Allow",

70 "Action": [

71 "iam:GetRole",

72 "iam:PassRole"

73 ],

74 "Resource": "arn:aws:iam :::*"

75 }
76 ]

77 }

Listing C.1: Outlining the minimal permissions required by the AWS role
of the developer user and frameworkf component functions.
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Appendix D

Framework Implementation
Details
D.1 Framework Source Code Files

Implementation File Location in framework Architecture

caribou/common/models/remote client/

remote client.py All Components (§5.4.3)
caribou/common/models/remote client/

aws remote client.py All Components

caribou/monitors/deployment manager.py Deployment Manager (§5.5.2)
caribou/deployment solver/deployment algorithms/

deployment algorithm.py Deployment Solver (§5.5.3)
caribou/deployment solver/deployment algorithms/

stochastic heuristic deployment algorithm.py Deployment Solver

caribou/deployment/client/cli/cli.py Framework Command Line Interface (§5.4.1)
caribou/deployment/client/caribou workflow.py Deployment Utility (§5.5.4) & Execution (§5.5.6)
caribou/deployment/client/caribou function.py Deployment Utility & Execution

caribou/deployment/common/deploy/deployer.py Deployment Utility & Deployment Migrator (§5.5.5)
caribou/deployment/common/deploy/

workflow builder.py Deployment Utility & Deployment Migrator

caribou/deployment/common/deploy/executor.py Deployment Utility & Deployment Migrator

caribou/deployment/common/deploy/

deployment packager.py Deployment Utility

caribou/deployment/common/deploy instructions/

deploy instructions.py Deployment Utility & Deployment Migrator

caribou/deployment/common/deploy instructions/

aws deploy instructions.py Deployment Utility & Deployment Migrator

caribou/monitors/deployment migrator.py Deployment Migrator

caribou/deployment/server/re deployment server.py Deployment Migrator

caribou/deployment solver/workflow config.py Multiple Components (§5.5.1
caribou/deployment solver/deployment input/

input manager.py Metrics Manager (§5.5.7)

Table D.1: Main implemented Python files as part of the framework archi-
tecture and their corresponding component.
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D.2 Framework Component Interaction

Table Name Used by Key Value

workflow placement solver -

staging area table

Deployment Solver,
Deployment Migrator

Workflow ID New deployment
placement

workflow placement decision -

table

Workflow & Function
Wrapper, Invocation
Client, Deployment
Manager

Workflow ID Deployment Plan

deployment manager workflow -

info table

Deployment Manager Workflow ID Workflow state & con-
fig

deployment resources table Deployment Utility,
Deployment Migrator

Workflow ID Deployed function in-
formation

sync messages table Workflow & Function
Wrapper

Workflow ID +
Run ID + Sync
Node Name

Intermediate Data

sync predecessor counter table Workflow & Function
Wrapper

Workflow ID +
Run ID + Sync
Node Name

Conditional annoca-
tion data

caribou workflow images table Deployment Utility,
Deployment Migrator

Workflow ID Home region image
names

available regions table Deployment Solver,
Metrics Manager

Region ID Availability informa-
tion

carbon region table Metrics Manager Region ID Carbon forecasts for
the next 24h from last
update

performance region table Metrics Manager Region ID Region to region
latency data from
CloudPing

provider region table Metrics Manager Region ID Provider per region
information such as
pricing

provider table Metrics Manager Provider ID Provider general infor-
mation

workflow instance table Metrics Manager Workflow ID Aggregated past invo-
cation data

workflow summary table Metrics Manager Workflow ID Collected Logs

Table D.2: Component interaction tables.
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Appendix E

Extended Evaluation Plots

E.1 Extended Efficiency of Self-Adaptive
Re-Deployment

E.1.1 DNA Visualization
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Figure E.1: Showcasing Caribou’s deployment decisions for DNA Visual-
ization using the large input size, normalized to mean carbon emission of
execution in eu-central-1.
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E.1.2 Image Processing
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Figure E.2: Showcasing Caribou’s deployment decisions for Image Pro-
cessing using the large input size, normalized to mean carbon emission of
execution in eu-central-1.

E.1.3 Text2Speech Censoring
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Figure E.3: Showcasing Caribou’s deployment decisions for Text2Speech
Censoring using the large input size, normalized to mean carbon emission
of execution in eu-central-1.
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E.1.4 Video Analytics
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Figure E.4: Showcasing Caribou’s deployment decisions for Video Ana-
lytics using the large input size, normalized to mean carbon emission of
execution in eu-central-1.

142


