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Abstract
The need for high-quality automated seizure detection algorithms based on elec-
troencephalography (EEG) becomes ever more pressing with the increasing use 
of ambulatory and long-term EEG monitoring. Heterogeneity in validation meth-
ods of these algorithms influences the reported results and makes comprehensive 
evaluation and comparison challenging. This heterogeneity concerns in particu-
lar the choice of datasets, evaluation methodologies, and performance metrics. In 
this paper, we propose a unified framework designed to establish standardization 
in the validation of EEG-based seizure detection algorithms. Based on existing 
guidelines and recommendations, the framework introduces a set of recommen-
dations and standards related to datasets, file formats, EEG data input content, 
seizure annotation input and output, cross-validation strategies, and performance 
metrics. We also propose the EEG 10–20 seizure detection benchmark, a machine-
learning benchmark based on public datasets converted to a standardized format. 
This benchmark defines the machine-learning task as well as reporting metrics. 
We illustrate the use of the benchmark by evaluating a set of existing seizure 
detection algorithms. The SzCORE (Seizure Community Open-Source Research 
Evaluation) framework and benchmark are made publicly available along with 
an open-source software library to facilitate research use, while enabling rigorous 
evaluation of the clinical significance of the algorithms, fostering a collective ef-
fort to more optimally detect seizures to improve the lives of people with epilepsy.
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1   |   INTRODUCTION

Scalp electroencephalography (EEG)-based seizure detec-
tion algorithms can optimize and facilitate the diagnostic 
workup performed in persons with epilepsy (PWE) to im-
prove patients' care and quality of life.1 Currently, such 
algorithms are primarily used during in-hospital long-
term video-EEG monitoring (LTM) performed in epilepsy 
monitoring units (EMUs) over periods of a few days to 
several weeks. Recordings can be processed online (i.e., 
in real time) or offline. Real-time detection helps inform 
the EMU staff about an ongoing seizure, thus promoting 
prompt intervention,2 whereas offline detection can re-
duce the physician's EEG reading workload and help de-
tect subtle seizures.

In the past decade, home-based video-EEG has been 
gradually developed as an alternative to EMU LTM, which 
enables the prospect of very long-term ambulatory EEG.3 
Home-based video-EEG has similar diagnostic objectives 
to EMU LTM but can last longer, thanks to lower daily 
cost and patient and health care system burden.4 It also 
benefits from automatic seizure detection, because it is 
performed without the permanent supervision of health 
care professionals, and generates large volumes of data.

Ultra long-term ambulatory monitoring, from months 
to years, has a different scope from LTM and home-based 
video-EEG recording.5-7 It can be used to inform PWE and 
their caregivers of an ongoing seizure to enable protec-
tive interventions, provide physicians with more precise 
seizure counts than what is recalled by PWE and their 
caregivers to optimize therapy, and document eventual re-
currence patterns, which may allow seizure forecasting.8

The field of EEG-based seizure detection has benefited 
from advances in machine learning and the provision of 
EEG datasets from PWE to train such models. Yet, such 
datasets with annotated seizures remain rare and often 
kept private as they must comply with strict legal require-
ments for personal health data. In contrast, datasets with 
permissive licenses are recognized as catalysts for develop-
ing machine-learning algorithms.9 The machine-learning 
task can be formulated as a segmentation problem that 
aims at identifying the start and end of each seizure event. 
However, current automated scalp EEG-based seizure de-
tection solutions do not meet the level of performance of 
human experts.10

A key obstacle hindering progress in the field is the 
lack of standardized protocols for the training and eval-
uation of seizure detection algorithms. When developing 
a novel algorithm, researchers can opt to reimplement se-
lected algorithms for comparison within their own evalua-
tion framework. Such a process is highly time-consuming, 
and often prone to error. Therefore, it is rarely done in 
practice, resulting in analyses relying on reported metrics 

that are not necessarily comparable.1 This issue has been 
tackled in other research fields by providing a standard 
machine-learning task definition and benchmark, effec-
tively leading to dramatic improvements in fields such as 
image classification,11 conversational agents,12 and com-
putational models of brain function.13

The validation of seizure detection algorithms lacks 
standardization in EEG datasets, evaluation methodology, 
and performance metrics, as discussed in detail below.

1.1  |  EEG datasets

EEG datasets collected for the purpose of individual stud-
ies are common in the field.1,14,15 Such private datasets 
prohibit direct comparison with studies on other datasets, 
as algorithm performance is highly data-dependent.16 To 
date, several datasets have been made publicly available, 
including Physionet CHB-MIT Scalp EEG Database,17,18 
TUH EEG Seizure Corpus,19 Physionet Siena Scalp EEG 
Database,17,20,21 and SeizeIT1.36 Working with multiple 
datasets is challenging owing to various data formats and 
standards, with disparities in EEG electrodes, reference 
electrodes, montage, channel nomenclature, channel se-
quence, sampling frequencies, and annotation formats. 
A previous community effort attempted to standardize 
reporting of EEG features for computer-based systems, 
suggesting the Standardized Computer-Based Organized 
Reporting of EEG (SCORE) nomenclature, which has 
been endorsed by the International League Against 
Epilepsy (ILAE) and International Federation of Clinical 
Neurophysiology (IFCN).22 Others have worked on a uni-
fied organization of brain imaging files and metadata, sug-
gesting the Brain Imaging Data Structure (BIDS), which 
is increasingly used in research23 and which was then 
extended to organize EEG data.24 Recent work has made 
SCORE machine readable and compatible with BIDS 
through the Hierarchical Event Descriptor (HED)-SCORE 
schema specification.25 In Section 2.1 of our framework, 

Key points

•	 Heterogeneity in the validation of seizure detec-
tion algorithms poses challenges for a compre-
hensive evaluation of these algorithms.

•	 Free datasets with permissive licenses and algo-
rithms with open-source code allow accessibil-
ity, transparency, and reproducibility of results.

•	 The proposed framework offers an impartial 
and standardized way to assess the performance 
of EEG-based seizure detection algorithms.
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we propose refinements of existing data formats for stor-
ing EEG and associated seizure annotations that are based 
on the EEG-BIDS standard and the HED-SCORE nomen-
clature. The data format provides standardized inputs and 
outputs for seizure detection algorithms, allowing any sei-
zure detection algorithm to be operated on any thus stand-
ardized dataset. Furthermore, this allows visualization 
and processing of output seizure annotations irrespective 
of the algorithm that produces them.

1.2  |  Evaluation methodology

The methodology used to evaluate seizure detection al-
gorithms has a large influence on reported results. Cross-
validation is a statistical method used in machine learning 
to estimate the performance of an algorithm on independ-
ent data.26 To perform cross-validation, the data are split 
into multiple folds, which are combined to yield pairs of 
training set test sets (in this paper, we do not cover the 
notion of a validation set that can be used to determine 
hyperparameters of a model). The performance of an al-
gorithm is reported as the average performance on all test 
sets after generating multiple models using different splits 
of training and test data. Many methods exist to split the 
data, but they do not necessarily meet the requirement of 
independence between the training and test sets, which 
could lead to overestimation of the performance of an 
algorithm. Overestimation of the accuracy of patient-
independent models can occur if some of the same subjects 
are present in both the training and test sets or when data-
sets are too small.27 Moreover, the chronology of record-
ings should be respected by only using data in the training 
set that was acquired prior to the acquisition of the data in 
the test set for personalized models.28 In Section 2.2, we 
propose recommendations for cross-validation of subject-
independent and personalized models.

1.3  |  Performance metrics

The choice of metrics is critical to estimate the perfor-
mance of automatic seizure detection. The current use of 
different metrics makes it difficult to perform comparisons 
between studies. Reported results use different combina-
tions of general performance metrics, such as sensitivity, 
specificity, precision, accuracy, area under the receiver 
operating characteristic curve, f1-score, and false alarm 
rate. These metrics are computed by comparing ground-
truth reference annotations provided by a human expert 
with hypothesis annotations provided by an algorithm. 
This comparison allows counting of “true positives” (TP; 
i.e., seizures correctly detected by the algorithm), “false 

positives” (FP; i.e., incorrectly labeled as seizures by the 
algorithm), and “false negatives” (FN; i.e., seizures missed 
by the algorithm).

However, TP, FP, and FN can be counted using either 
sample-based scoring or event-based scoring, which can 
result in very different interpretations of the performance 
metrics. Sample-based scoring computes performance 
metrics on a sample-by-sample basis and is sometimes 
referred to as epoch-based scoring29 or window-based 
scoring. Sample-based scoring is widely adopted by the 
machine-learning community, and it integrates tightly 
with standard training schemes. Although sample-based 
scoring captures the fine detail agreement between the 
reference and hypothesis annotations at the timescale of 
labels, it does not provide answers to the clinically rele-
vant questions “How many seizures did the patient have?” 
or “How many seizures were missed by the seizure detec-
tion algorithm?” or “How many false alarms were trig-
gered by the system?” Answering these questions requires 
a scoring method that operates at the granularity level of 
events (or epileptic seizures), that is, event-based scoring. 
This can be computed in different ways, such as “any-
overlap” or “time-aligned event scoring.”29 In Section 2.3, 
we propose metrics for the evaluation of seizure detection 
algorithms that are designed to address questions of the 
clinical community and requirements of the machine-
learning community.

In summary, the lack of common research practices 
regarding datasets, cross-validation methodologies, and 
performance metrics when validating seizure detection 
algorithms is a limiting factor for fair evaluation of algo-
rithms. In this paper, we propose an open framework for 
the validation of EEG-based seizure detection algorithms: 
Seizure Community Open-Source Research Evaluation 
(SzCORE). This framework is the result of discussions 
with stakeholders in the field, including PWE, physicians 
and other health care providers, engineers, computer sci-
entists, and other scientists working on the development 
of seizure detection algorithms. It aims to lift the techni-
cal barriers that slow down the development of new al-
gorithms, allowing them to operate on multiple datasets 
and to be assessed using a fair and objective methodol-
ogy. Based on the framework, we propose the 10–20 EEG 
seizure detection benchmark (Section 3) that defines the 
datasets, tasks, and performance evaluation of seizure de-
tection algorithms. In the future, other benchmarks that 
target other datasets and tasks can be constructed based 
on this work, for example, focusing on wearable sensors 
or intracranial EEG. Additionally, we provide an open-
source code library available on GitHub (https://​github.​
com/​esl-​epfl/​sz-​valid​ation​-​frame​work). The library is 
designed to allow continuous improvement by the com-
munity. The framework, benchmark, and supporting code 
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4  |      DAN et al.

library are described on an online platform (https://​esl-
web.​epfl.​ch/​epile​psybe​nchmarks), which also serves as 
the central hub for a community-built benchmark, where 
new seizure detection algorithms can be fairly compared.

2   |   SzCORE FRAMEWORK

2.1  |  EEG datasets and data format

Datasets should include raw EEG signals, recording specif-
ics, seizure annotations, and patient details, for example, 
according to EEG-BIDS specifications.23,24 They should 
be organized to allow computer systems to process them 
efficiently. An example of EEG-BIDS data file-structure 
organization for a dataset of PWE is provided in Data S1.

To allow algorithms to operate seamlessly on any data-
set, we propose standardization of EEG data that is at least 
consistent with the IFCN and ILAE minimum recording 
standards that are recommended for EEG.30 Recordings 
should be stored in .edf files. They should contain the 19 
electrodes of the international 10–20 system in a unipo-
lar common average montage. The recording should be 
resampled to 256 Hz for storage, and source data should 
be acquired with a sampling frequency of at least 256 Hz. 
We recommend providing the channels in the following 
order: Fp1-Avg, F3-Avg, C3-Avg, P3-Avg, O1-Avg, F7-Avg, 
T3-Avg, T5-Avg, Fz-Avg, Cz-Avg, Pz-Avg, Fp2-Avg, F4-
Avg, C4-Avg, P4-Avg, O2-Avg, F8-Avg, T4-Avg, T6-Avg.

The annotation format should be constructed so that it 
can be used for both source annotations (ground truth) and 
the output of seizure detection algorithms. The format we 
propose is a tab-separated values (.tsv) file that is human-
readable. It is a text file that uses a tab as a delimiter to 
separate the different columns of information, with each 
row representing one event. Each annotation file is asso-
ciated with a single EEG recording. A detailed description 

and an example of the information contained in annotation 
files is provided in  Supplementary material S1. These files 
adhere to the EEG-BIDS guidelines and use the hierarchi-
cal ILAE-based classification of seizures defined by HED-
SCORE.23,25,31 The seizure nomenclature is presented in 
Figure S3 in  Supplementary material S1.

2.2  |  Evaluation methodology

To evaluate seizure detection algorithms, a training set is 
used to determine the parameters of the machine learn-
ing algorithm, and an independent test set is used to esti-
mate its performance. These sets should be independent 
to guarantee that results can be generalized to other data. 
If data are only available from a single setting, the dataset 
can be split into a training set and a test set. This process 
is repeated multiple times (i.e., folds) to obtain robust esti-
mates of performance by rotating data between the train-
ing set and the test set, that is, cross-validation.26

2.2.1  |  Personalized models

Personalized models are trained for a specific patient. 
These models should successfully detect seizures in un-
known recording sessions that took place after the model 
was initially trained. To evaluate these models, at each 
fold, the training set should include only data that were 
acquired prior to the acquisition of the test set; this is re-
ferred to as time-series cross-validation (TSCV).

TSCV can be performed in two ways:

•	 Training data increase as the model is evaluated on fu-
ture test folds (variable number of data; Figure 1A).

•	 Training data keep a fixed size, with oldest folds re-
moved from the training data as the model is evaluated 

F I G U R E  1   Time series cross-validation for personalized models. Each box represents an epoch of data. Orange boxes are used for 
training; purple boxes are used for testing. Each row represents a cross-validation (CV) fold. The final results are calculated by appending 
all cross-validation folds (shown in the last row). (A) Cross-validation scheme with variable number of training data. (B) Cross-validation 
scheme with fixed number of training data.

 15281167, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/epi.18113 by E

th Z
urich, W

iley O
nline L

ibrary on [24/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://eslweb.epfl.ch/epilepsybenchmarks
https://eslweb.epfl.ch/epilepsybenchmarks


      |  5DAN et al.

on future folds (fixed number of data; Figure 1B). This 
approach ensures models are more sensitive to new data 
while keeping training complexity and time fixed.

2.2.2  |  Subject-independent models

Subject-independent models are designed to operate on 
data from any patient and seizure type. These models 
should successfully detect seizures in subjects whose data 
were not used to train the model. Several methods can be 
used to validate subject-independent models, provided 
that independence of subjects between training and test 
sets is maintained:

•	 Leave one subject out (LOO) is a technique in which 
many different models are trained.32 Each model is 
trained using all the data except those from one subject. 
The data from that subject are used for testing. This al-
lows maximization of the number of training data pro-
vided to the model. Final performance is reported by 
averaging the testing results of all subjects (each using 
their subject-independent model). This strategy also 
allows assessment of the performance of each subject, 
which can then be compared between different algo-
rithms. However, the technique is not appropriate for 
large datasets with many subjects, as training models 
can be computationally expensive and need to be re-
trained for every subject.

•	 K-fold cross-validation uses a similar strategy to LOO.32 
The dataset is split into a training and testing subset with 
a ratio of subjects of (K − �)∕K for the training set and 
�∕K for the test set. This split is repeated K times until 
all subjects are included once in the test set. For each 
split, a model is trained and performance is reported as 
an average of each model. This is faster to train and test 
and thus more appropriate for larger datasets, as the 

number of splits is determined by K, irrespective of the 
number of subjects. However, this method uses fewer 
data in the training set than LOO, which can lead to 
suboptimal models with larger variability in estimated 
performance. LOO is a special case of K-fold, where K is 
equal to the number of subjects.

•	 Fixed training and test sets with predetermined subjects 
in each set are appropriate for large datasets (e.g., TUH 
EEG Seizure Corpus). However, they can lead to more 
variability in estimated performance in small datasets.
Although cross-validation allows a fair assessment of al-
gorithms during development, the performance of algo-
rithms for real-world use should be evaluated on large 
independent datasets, which are currently missing in 
our community.

2.3  |  Performance metrics

To assess the performance of seizure detection algorithms, 
we propose two complementary scoring methodologies, 
sample-based and event-based scoring. Both of these scor-
ing metrics should be reported when communicating re-
sults of algorithms, as sampled-based metrics provide a 
high granularity to machine-learning experts and event-
based metrics provide clinically relevant results.

Sample-based scoring compares annotation labels, 
which are provided at a fixed frequency (we propose 1 Hz), 
sample by sample, to detect TP, FP, and FN, as shown in 
Figure 2. We propose a frequency of labels of 1 Hz, as it 
corresponds to the resolution expected by a human an-
notator. It should be noted that this frequency does not 
dictate the duration of data windows used to generate 
machine-learning predictions. These can use an arbitrary 
duration and overlap as long as they provide predictions at 
1 Hz. For annotation labels that overlap only partially with 
epileptic seizures, we propose assigning a “seizure” label 
to a sample if the overlap exceeds 50%.

F I G U R E  2   Sample-based scoring 
compares annotation labels sample by 
sample. Correct detections (green), false 
detections (red), and missed detections 
(blue) are shown. Seizure annotations are 
indicated in purple.
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Event-based scoring, in which events are seizures, 
relies on overlap between reference and hypothesis an-
notations (Figure 3). Overlap is considered as correct de-
tection, that is, TP. Hypothesis events that do not overlap 
with a reference event are counted as FP.

Accurate annotations of epileptic seizures marking 
a clear start and end are notoriously difficult. This may 
be complicated by gradual changes in EEG at the begin-
ning and end of seizures or by other factors, for exam-
ple, muscle or movement artifacts. Subtle EEG changes 
prior to the marked seizure onset or following marked 
offset are often detected by various algorithms.33,34 Some 
tolerance is therefore required with regard to the onset 
and duration of seizure to match annotations between 
two reviewers (e.g., computer algorithm and human ex-
pert). From a practical perspective, slight misalignment 
in seizure annotation onset and duration should not neg-
atively impact the estimated performance metrics. On 
the contrary, early detection could be beneficial to the 
patient when the detection algorithm serves as an alarm.

Another issue concerns seizure duration. As most sei-
zures do not occur in rapid succession, it is reasonable 
to merge annotations separated by only a few seconds. 
Finally, because seizures are only exceptionally longer 
than 5 min and longer events are defined as status epilep-
ticus,35 long events are split into multiple events of a max-
imum of 5 min.

These considerations are encoded into the following 
additional rules and parameters to count seizures:

•	 Minimum overlap between the reference and hypothe-
sis for a detection. We use any overlap, however short, to 
enhance sensitivity.

•	 Preictal tolerance, namely, tolerance with respect to the 
start time of an event that would count as a detection. 
We advise a 30-s preictal tolerance.

•	 Postictal tolerance, namely, tolerance with respect to 
the end time of an event that would still count as a de-
tection. We advise a 60-s postictal tolerance.

•	 Minimum duration between events resulting in merging 
events that are separated by less than the given duration. 
We advise merging events separated by <90 s, which cor-
responds to the combined pre- and postictal tolerance.

•	 Maximum event duration resulting in splitting events 
longer than the given duration into multiple events. We 
advise splitting events longer than 5 min.

2.3.1  |  Performance metrics

Both the sample-based scoring and event-based scor-
ing produce a count of correct detections (TP), missed 
detections (FN), and wrong detections (FP). These can 
be used to compute common performance metrics, as 
defined below. Specifically, sensitivity and precision are 
of high interest. F1-score is used as a combined meas-
ure containing information on both sensitivity and 
precision.

•	 Sensitivity: Percentage of reference seizures detected by 
the hypothesis. Computed as: TP∕(TP + FN).

•	 Precision: Percentage of correct detections over all hy-
pothesis events. Computed as: TP∕(TP + FP).

•	 F1-score: Harmonic mean of sen-
sitivity and recall. Computed as: 
2 × sensitivity × precision∕(sensitivity + precision).

•	 False alarms per day: Number of falsely predicted (FP) 
seizure events, averaged or interpolated to number per 
day.

We explicitly avoid using metrics that rely on a count 
of TN, such as specificity and accuracy. This is because in 
the context of event-based scoring, nonseizure events are 
ill-defined, and in the context of sample-based scoring, 
nonseizure samples are much more numerous than sei-
zure samples, given the rarity of seizures, resulting in ex-
tremely high scores for specificity and accuracy, with little 
clinical relevance.

F I G U R E  3   Event-based scoring 
is based on overlap. It defines a set of 
rules for event merging, tolerance before 
and after events, and maximum event 
duration. Correct detections (green) and 
false detections (red) are shown. Seizure 
annotations are indicated in purple.
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3   |   BENCHMARK

The framework described above allows building a standard 
by which seizure detection algorithms can be compared. 
Here, we propose a seizure detection benchmark for EEG 
recordings obtained with a 10–20 system that defines:

•	 The data that should be used when evaluating 
algorithms.

•	 The task and different scenarios that the algorithms 
should analyze.

•	 The performance metrics and reporting guidelines for 
these algorithms.

Datasets should be available to allow for transparent 
reproduction of results. Currently, four large public data-
sets are available,36,37 namely, Physionet CHB-MIT Scalp 
EEG Database, TUH EEG Seizure Corpus, Physionet Siena 
Scalp EEG, and SeizIT1. A summary of the data contained 
in these datasets is provided in Table 1.

The currently available public EEG datasets do not 
all meet the minimum recording requirements of the 
framework. To use them, the following manipulations are 
required:

•	 EEG signals are resampled to 256 Hz.
•	 Channels are renamed and rereferenced to 10–20 EEG 

with a common average reference.
•	 Annotations are converted to EEG-BIDS-/HED-

SCORE-compliant .tsv files.
•	 Data are reorganized according to EEG-BIDS 

specifications.
•	 Some recordings of the TUH EEG Seizure Corpus do 

not contain all 19 electrodes from the 10–20 system. 
Missing electrodes are replaced by zero values.

An exception is the Physionet CHB-MIT Scalp EEG 
Database, which provides only bipolar channels, for which a 
conversion to the proposed unipolar montage is not possible. 
This dataset is analyzed with the source bipolar montage.

The machine-learning task can be formulated as a seg-
mentation problem that aims to identify the start and end 
of each seizure event. Three test scenarios are proposed 
for the evaluation of seizure detection algorithms:

1.	 Personalized models.
2.	 Subject-independent models evaluated on a single 

dataset.
3.	 Subject-independent models evaluated across datasets.

Personalized models require sufficient data per sub-
ject in terms of number of seizures (≥ �; three seizures 
allow at least one seizure for training, validation, and test 
sets) and duration (≥ � � �� min; 2 h corresponds to 30 
min of data around each seizure) to be effectively trained 
and evaluated. For this reason, only the following data-
sets are considered for personalized models: CHB-MIT, 
Siena, and SeizeIT (TUH seizure dataset is excluded, as 
it does not contain enough data [10 min on average] per 
subject and fewer than three seizures per subject). TSCV 
with a variable number of data is used. The initial training 
set includes at least 5 h and a minimum of one seizure. 
Performance is evaluated on the following hour. The pro-
cess is repeated by successively adding 1 h of training data 
and testing on the next hour until the end of the record-
ing. Performance per subject is calculated for sample- and 
event-based metrics by aggregating all 1-h test sets. The 
performance of a dataset is computed as the average per-
formance of individual subjects.

Subject-independent models evaluated on a single 
dataset should use LOO or K-fold cross-validation as long 
as subject independence is guaranteed. Sample-based 
metrics aggregate all samples of individual subjects. 
Overall performance is reported as the average of all sub-
jects. Event-based metrics aggregate all events in the same 
manner. All four datasets can be evaluated.

Subject-independent models evaluated across datasets 
are trained on a single dataset and tested on the other 
datasets to verify generalization properties. Sample-based 
metrics aggregate all samples of individual subjects, and 

T A B L E  1   Publicly available scalp electroencephalographic datasets of people with epilepsy.

Dataset

Overview Recordings Data

Subjects, n Duration, h Seizures, n Files, n
Average duration, 
min Frequency, Hz Channels, n

CHB-MIT 23 982 198 686 60 256 22–38

TUH 675 1476 4029 7377 10 250–1000 17–128

Siena 14 128 47 41 150 512 35–45

SeizeIT1 42 4211 182 458 612 250 26

Abbreviations: CHB-MIT, Physionet CHB-MIT Scalp EEG Database; Siena, Physionet Siena Scalp EEG Database; TUH, TUH EEG Seizure Corpus.
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then calculate mean performance over all subjects. Event-
based metrics aggregate all events in the same manner.

The algorithm should report performance for sample-
based and event-based scoring including sensitivity, preci-
sion, F1-score, and false alarms per day for each individual 
subject (if possible) and overall average of all subjects. In 
addition, algorithms should provide enough details to 
allow result reproducibility, for example, in a model card 
including model description, software and environment 
documentation, data used, evaluation metrics, and re-
sults.38 An example of such a model card is provided in 
Figure S4. To help authors document and report results, 
we provide a checklist for reproducible SzCORE algo-
rithms, which can be found in Figure S5.

To test the validity of the framework and as an initial 
contribution to the benchmark, we ran SzCORE with 
three algorithms. The performance results of these algo-
rithms are presented in Supplementary material S1.

4   |   OPEN-SOURCE LIBRARY AND 
BENCHMARK PLATFORM

Along with a description of the framework and bench-
mark, we provide an open-source code library available on 
GitHub (https://​github.​com/​esl-​epfl/​sz-​valid​ation​-​frame​
work). At the time of writing, the library provides func-
tionality to perform the following actions.

•	 Convert EEG data from the main public datasets to 
standardized EEG-BIDS-compliant format (PyPi pack-
age: https://​pypi.​org/​proje​ct/​epile​psy2b​ids/​).

•	 Convert seizure annotations from the main public data-
sets to standardized HED-SCORE-compliant format.

•	 Compute the performance of algorithms using event- or 
sample-based metrics (PyPi package: https://​pypi.​org/​
proje​ct/​times​coring/​).

The framework, benchmark, and supporting code li-
brary are described on an online platform (https://​eslweb.​
epfl.​ch/​epile​psybe​nchmarks), which also serves as the cen-
tral hub for a community-built benchmark of seizure detec-
tion algorithms. The platform allows researchers to upload 
results of a seizure detection algorithm following the frame-
work and benchmark described in this work. All results are 
presented in comparative tables and charts. The platform is 
designed to allow continuous improvement by the commu-
nity. It is expected to grow with community submissions. 
We invite other researchers to contribute by providing feed-
back or new datasets, supporting the development of the 
framework and platform, or simply using the framework/
benchmark and submitting their algorithms. Details on dif-
ferent ways to contribute are listed in Data S1.

5   |   DISCUSSION

In this paper, we present SzCORE, a framework for the 
validation of EEG-based seizure detection algorithms, 
and suggest common future research practices, with the 
aim of allowing fair comparison of performance results 
and increasing reproducibility of studies. This frame-
work is the result of in-depth discussions with stake-
holders from both the medical and computer science 
communities.

The present framework defines standards for EEG 
datasets based on existing guidelines and recommenda-
tions. It also defines data formats for EEG and seizure 
annotations that comply with the EEG-BIDS data orga-
nization and HED-SCORE nomenclature. It provides rec-
ommendations and a checklist for sound cross-validation 
of algorithms and defines performance metrics for their 
evaluation.

Based on this framework, we propose the EEG 10–20 
seizure detection benchmark. The benchmark defines the 
dataset, task, and performance metrics to evaluate seizure 
detection algorithms. Additionally, we provide an open-
source library to convert data from the public datasets to 
a standardized data format along with code that imple-
ments the performance metrics.

Previous initiatives compared algorithms in the context 
of contests associated with signal processing congresses 
(e.g., Neureka IEEE SPMB 2020,39,40 ICASSP 2023 seizure 
detection challenge41,42). However, evaluation data were 
not always available after the event, precluding further 
elaboration or comparison with subsequent algorithms. In 
contrast, the present benchmark relies on public datasets, 
and it provides a fully transparent evaluation framework, 
which will hopefully enable continuing progress in the 
field.

The proposed benchmark could also be compared to 
existing commercial algorithms, which are still less per-
formant than human experts but have nonetheless already 
found some use in the clinic.10,43

The choice of 10–20 scalp EEG recording content that 
lies at the core of the present framework is restricted to 
the minimum recording standards that are recommended 
for EMU settings.30 These are, however, not met by some 
highly promising developments in long-term EEG, partic-
ularly ambulatory wearable EEG and subcutaneous EEG, 
which tend to use a low number of electrodes positioned 
in nonstandard locations.6,7 Whereas our choice appears 
to exclude such recordings, it can be argued that, when-
ever possible, recording data with the recommended EMU 
standards in addition to a novel EEG recording setup guar-
antees high-quality datasets while allowing for the devel-
opment of specific benchmarks, for example, targeting 
wearable EEG. This was the case for the SeizeIT dataset 
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and ICASSP 2023 seizure detection challenge, which in-
cluded electrodes positioned behind the ear in addition 
to standard 10–20 EEG electrodes.42 In the future, we can 
expect new guidelines for recording EEG in nonstandard 
locations or different applications that guarantee high-
quality datasets. These new recording standards can use 
the EEG data format defined in this framework such that 
they integrate seamlessly with the proposed SzCORE 
evaluation methodology and performance metrics. They 
will then be used to extend the online platform by setting 
up new datasets and benchmarks that specifically target 
those applications.

The presented framework extends previous work that 
defined seizure scoring29 by complementing sample-based 
with event-based scoring. The current choice of parame-
ters for these scoring methods is somewhat arbitrary if 
pragmatic. Ideally, the choice of these parameters should 
either correspond to a specific use of seizure detection al-
gorithms or be based on known uncertainty. Specific use 
may require high accuracy, for example, prompt interven-
tion triggered by seizure alarms. Other uses benefit from 
high tolerance, for example, offline review of recordings. 
In addition, human expert labeling (with is the current 
gold standard) shows variation,44 resulting in some un-
certainty in labeling the start and end time of seizures.33,34 
Our choice in this respect was dictated by the framework, 
which aims to be generic and fit a wide range of algorithms 
and applications. Some users of the framework might want 
to adapt some of the parameters to their own use case.

This work effectively addresses some current key is-
sues relating to the validation of seizure detection algo-
rithms,27,28 including the difficulty in comparing results 
from different datasets and risks associated with a lack of 
data independence in cross-validation. The best level of 
evidence for validation is reached when based on an inde-
pendent multicentric dataset with strong generalizability 
potential. Such a dataset would contain many recordings 
from different centers from many subjects, including a va-
riety of seizure types, recording equipment, and recording 
protocols. As this may be difficult to obtain, we give rec-
ommendation for cross-validation strategies that ensure 
independence within a single dataset. Future work from 
the community should aim at collecting a large multi-
centric dataset that can be used for the validation of sei-
zure detection algorithms.

6   |   CONCLUSIONS

This SzCORE framework and benchmark should foster re-
producible, transparent, and efficient research. Crucially, 
they allow the standardization of the validation of seizure 

detection algorithms. This will enable direct comparison 
of reported results that use this benchmark. We also pro-
vide well-described performance metrics that are tailored 
to both the machine-learning and medical communities. 
The framework, benchmark, and accompanying open-
source software libraries lower the technical and domain-
specific knowledge required for algorithm developers to 
work on seizure detection algorithms and test them on 
multiple datasets. The benchmark will also allow measur-
ing the state of the art of seizure detection algorithms and 
guiding new research venues.

To encourage the adoption of the framework, we have 
set up a community online platform to describe it and col-
lect results of algorithms that use it (https://​eslweb.​epfl.​
ch/​epile​psybe​nchmarks). We welcome any suggestions 
for new datasets, new tasks, or improvements to the meth-
odology or content.
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