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Introducing Fairness in Lane-Free Traffic: The
Application of Karma Games to Enforce Fair

Collaboration of CAVs
Kimia Chavoshi, Antonella Ferrara, and Anastasios Kouvelas

Abstract—The present paper proposes a collaborative con-
trol strategy for CAV movement in a lane-free environment,
where CAVs have different priority values. The priority values
are designed to introduce fairness, relying on the interaction
history of every CAV. These priority values are the output of
the Stationary Nash Equilibrium (SNE) of a modified Karma
game. The modification is proposed to tackle a proportional
resource allocation problem. The outcome of the modified Karma
game is then used to determine the priority of CAVs in their
interactions with the other vehicles in their neighborhood, which
may constitute potential threats, so-called Threatening Vehicle
Cluster (TVC). An MPC is designed at an upper level to enforce
an overall fair collaboration among CAVs so as to avoid collisions.
Finally, a simulation case study analyzes the proposed control
approach regarding performance, efficiency, and fairness.

Index Terms—Connected and Automated Vehicles, Karma
games, Lane-free traffic, Interaction-driven traffic.

I. INTRODUCTION

COLLABORATION is an inevitable feature of micro-
scopic traffic control in the era of Connected and Au-

tomated Vehicles (CAVs). CAVs are required to collaborate
for different purposes, such as reaching a consensus formation
(e.g., platoons or swarms), motion planning [1], or avoiding
collisions [2]. Although numerous control methods are already
presented in the literature for the optimal collaboration of
CAVs (such as [3]–[8]), few of them have considered fairness
in the collaboration.

The concept of fairness in CAVs collaboration can be
illustrated through a simple example. Suppose that two CAVs
on a two-lane road are moving at the same speed side by
side, each on a different lane. Assume that another CAV with
a higher speed approaches them. There are many feasible
solutions to avoid collision, such as, for instance, lowering
the speed of the third vehicle; manipulating the speed of two
front vehicles to create a gap between the two vehicles to allow
the third vehicle to overtake; changing the lane of one of the
front vehicles to free a lane for the third vehicle to pass. Each
of these solutions induces different costs for each CAV. Then,
an interesting research question is: Which is a fair distribution
of costs?
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Transport Planning and Systems, Department of Civil, Environmental
and Geomatic Engineering, ETH Zurich, CH-8093, Switzerland (e-mail:
kimiac@ethz.ch; kouvelas@ethz.ch).
Antonella Ferrara is with the Department of Electrical, Computer and
Biomedical Engineering, University of Pavia, 27100 Pavia, Italy (e-mail:
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From a broader perspective, each CAV engages in many
interactions with different groups of vehicles while moving in
traffic. Each interaction induces a cost for the CAV. Thus,
it is essential to consider the history of CAVs’ interaction
to address fairness. In this paper, we use the concept of
karma to track the history of interaction between CAVs. In
a Karma game, players trade karma to win priority [9] and
[10]. Similarly, one can assume that each CAV has a level
of karma and urgency. Every time CAVs get involved in an
interaction with other vehicles, they play the Karma game
to well structure the collaboration. The CAV offers a bid
according to its karma and urgency values to win a level of
priority (autonomy). The offered bid cannot be higher than the
CAV’s karma value. According to the outcome of the game,
CAV wins a level of priority and earns or pays karma to other
players. These priority levels are communicated to an upper-
level collaborative control that plans CAV movements.

In the present paper, the illustrated control structure is
implemented in a lane-free vehicular traffic framework [11]
and [12]. The research aims to design a fair collaborative
control algorithm for the safe movement of CAVs in such a
framework.

Firstly, we propose a threat detection algorithm to enable
CAVs to determine, within their communication area, the
vehicles with which they have a risk of collision (namely,
the threatening vehicles) and thus require interaction. Many
algorithms have been proposed in the literature for obstacle
detection (see, for instance, [13] and [14]). Our proposed
algorithm has similarities with the algorithms used in re-
ciprocal collision avoidance (such as [14], [15], and [16]).
Afterwards, we build the Threatening Vehicle Clusters (TVCs).
Implementing the concept of TVCs simplifies the optimization
problem solved at the upper level by removing unnecessary
relationships among vehicles in the communication range but
with no risk of collision. When a TVC is formed, the members
play a Karma game at the lower level of control to win priority
values. An MPC for controlling CAVs within the TVCs is
designed at the upper level. MPC has been widely used for
the safe motion planning of autonomous vehicles such as [17]
and [18]. The idea of designing a control method for the TVCs
is based on the ability and willingness of CAVs to cooperate
and take joint actions to avoid collision within each cluster.
The priority values of the Karma game are utilized as weights
for the MPC objective function. More specifically, a higher
priority is associated with a higher weight for the term in the
objective function, which accounts for the deviation from the
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CAV desired speed. The contributions of this work can be
listed as follows:

• Modifying Karma game for proportional resource alloca-
tion strategies.

• Designing a threat detection algorithm for CAVs.
• Developing an original control method for fair collabo-

ration of CAVs in the lane-free environment oriented to
avoid collisions and promote fairness.

The paper is organized as follows. The next section is devoted
to the literature review, briefly reviewing the relevance of lane-
free traffic and Karma games. In Section III, the upper-level
control strategy is introduced. Therein, the system dynamics
are depicted, and the possible threatening relationships be-
tween CAVs, with the corresponding concept of TVCs, are
introduced. Then, the proposed control approach for fair col-
laboration of CAVs with the objective of collision avoidance in
a lane-free environment is discussed. The modified version of
Karma games for a generic proportional resource allocation
problem is presented in Section IV, along with a detailed
description of the lower-level control strategy. In Section
V, the introduced concepts and designed control approach
are evaluated by multiple simulations. Finally, the research
is concluded, and future developments are discussed in the
Conclusions section.

II. LITERATURE REVIEW

Traffic management is an important application field of the
control systems (see, for instance, [19], [20], [21], and [22]).
The basic traffic principles are designed according to human-
driven vehicles. However, the advent of CAVs creates the op-
portunity to re-think those principles and design an alternative
traffic paradigm (see [23]). For instance, conventional lane-
based traffic was introduced to ensure safety, considering the
lack of communication and cooperation between human-driven
vehicles while compromising the higher capacity. Recent re-
search [24] has shown that introducing a lane-free environment
for CAV traffic will increase road capacity and smoothen CAV
movements. The concept is proposed by [11] and has been
quickly extended in various directions. An optimal trajectory
planning based on the nudging technique is designed by [25]
for CAVs in a lane-free environment. In [26], a cooperative
trajectory planning for lane-free autonomous vehicle traffic is
proposed and tested by conducting laboratory experiments.
To reduce chaos in a lane-free environment, [27] proposed
the potential lines, a lateral separation between vehicles with
significant differences in speed value. The concept of cruise
control for CAVs in lane-free environments is introduced by
[28] and [29]. The application of deep reinforcement learning
algorithms for autonomous deriving in lane-free traffic focus-
ing on reward function design is studied by [30]. Combining
the max-plus algorithm with potential fields, [31] designed a
collaborative multiagent decision-making algorithm for lane-
free autonomous driving. The internal boundary control prob-
lem for lane-free highways is addressed by [32] and [33]. The
bidirectional lane-free movement (laneless and directionless)
for CAVs is conceptualized in [12] and [34], which addition-
ally removes the conventional direction separation for CAV
traffic.

Despite all the research and developments on performance
improvement, fairness has not been addressed in lane-free
literature. The different concepts of fairness have been used
in the context of traffic control. For instance, fair travel time
[35] and fair merging time [36] in ramp metering control; fair
waiting time [37] or fair travel time [38] in traffic light control;
fair service quality [39] for congestion pricing (taxation);
and fair travel time [40] for route guidance. Fairness has
also been addressed in the CAV collaboration. In [41], a
reinforcement learning for CAV movement at the bottleneck
has been presented where the reward function has a term
related to fair travel time at the bottleneck. In [42], different
courtesy strategies are designed to study the gap creation
required in lane changing; the fairness in aggregated speed for
CAVs is considered as an evaluation measure. A reinforcement
learning for cooperative driving of CAVs in lane-based traffic
is designed in [43], where a constraint on the fair contribution
of CAVs within pairs can foster collaboration among them.

In this paper, we address the fair distribution of priorities
in CAV collaboration by implementing a modified version
of the Karma game. Game-based approaches have been used
extensively for controlling multiagent systems [44]. Different
games were developed to address the decision-making process
of CAVs [45], [46], [47], and [48]. Karma game belongs to
a new category of games, dynamic population games, that is
introduced by [9]. Karma is a repeated auction-based game.
In each iteration, two players will be randomly selected from
the population to compete over a resource. Every player has
a level of karma that limits its bid. Moreover, the player has
a time-varying urgency level that indicates the importance of
acquiring the resource. The player with the higher bid wins the
resource and pays karma to the loser or society. The existence
of the Stationary Nash equilibrium (SNE) for the Karma game
is studied in [10]. In general, dynamic population games have
various applications in different disciplines. For instance, [49]
employed a dynamic population game to model individual’s
decision-making behavior under epidemic situations. An early
application of the Karma game for intersection management is
proposed by [50]. A Karma-based traffic management method
for highways is developed by [51], where vehicles play Karma
game to access an uncongested priority lane.

III. UPPER-LEVEL CONTROL: MPC FOR CAV
COLLABORATION

Suppose a traffic flow of fully connected and automated
vehicles (CAVs) in a lane-free environment, where every
CAV has a desired speed. The CAVs are connected within
a communication radius and communicate information such
as location, speed, heading angle, etc. The goal is to design a
control method for CAVs in this environment with the two-fold
objective of safety and fairness. We design a threat detection
algorithm for CAVs. According to the threat relationships,
we categorize the CAVs into Threatening Vehicle Clusters
(TVCs). The CAVs with no threat will be managed separately.
In the next step, a bi-level control strategy is designed. At
the upper level, we develop an MPC-based control approach
for TVCs with the objective of collision avoidance. A similar
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MPC approach is also designed for the CAVs with no threats.
Assuming the objective of every CAV is to drive with its
desired speed, the priority values are implemented as weights
for the deviation of speed from its desired value in the MPC
cost function. Thus, CAVs with higher priority values can more
strongly impose their private objective on the other members
of the TVC. To ensure fairness in the collaborations, we design
a game at the lower level of control. For every newly formed
TVC, the CAVs play (based on the SNE policy) a modified
Karma game to win the priority values. The modified Karma
game is designed to fairly assign priority values to the CAVs,
considering their collaboration history.

Figure 1 shows the block diagram schematic of the method-
ology for CAV traffic, where XT (k) and UT (k) are the state
variables and control signals of all CAVs at time step k.
Suppose that M is the total number of possible TVCs in a
traffic flow of N CAVs. TVCs will be created at every time
step according to the threat detection algorithm. Thus, the
MPC modules related to the detected TVCs will be connected
(switched on) in the block diagram. The MPC modules for
the remaining CAVs (which do not belong to any TVC) will
also be switched on. An MPC module for CAV i receives state
variables of the CAV, Xi(k), and their desired values, Xd, as
inputs and calculates the future control signals Ui(k+1:k+p)
(p=m, the MPC prediction horizon equals control horizon) for
the CAV i. Likewise, the MPC module for TVC i receives
the related state variables XC

i (k) and desired values XC,d of
the CAVs inside TVC i as inputs; and calculates the future
control signals UC

i (k+1:k+p) for these CAVs. The Karma
SNE determines the priority parameters βKarma for the newly
formed TVCs. Hence, it is an event-triggered part of the TVC
control module. Finally, we update the CAVs state variables
by implementing the next step control signals UT (k+1).

Fig. 1: The block diagram schematic of the methodology.

A. Kinematic Bicycle Model

The CAV movement is modeled with a discrete-time kine-
matic bicycle model [52].

Fig. 2: The diagram of the CAV movement.



xi(k + 1) = xi(k) + Tvi(k) cos(θi(k))

yi(k + 1) = yi(k) + Tvi(k) sin(θi(k))

vi(k + 1) = vi(k) + Tai(k)

θi(k + 1) = θi(k) + T vi(k) tan(δi(k))
L

δi(k + 1) = δi(k) + Twi(k)

, (1)

where T (s) is the time step for the discretized model. The pair
of (xi(k), yi(k)) represents the location of the CAV centroid
in cartesian coordinate for CAV i with length L (m) at time
k. Variables vi(k) (m/s), θi(k) (Rad), and δi(k) (Rad) denote
speed, speed angle, and heading angle, respectively. Figure 2
demonstrates these variable states for CAV i. In this model,
acceleration, ai(k) (m/s2), and steering rate, wi(k) (Rad/s) are
the control signals for CAV i.

B. Threat Detection Algorithm

We assume CAVs within a communication range from each
other, so-called Neighbors, communicate their information,
such as current variable states and their desired speed and
direction. For CAV i, the neighbor set Ni is defined as:

Ni = {j|Di,j ≤ R}, (2)

Di,j =
»

(xi − xj)2 + (yi − yj)2 , (3)

where Di,j denotes the distance between CAVs i and j; and R
is the communication radius. Some neighbors show potential
for conflict and, if not managed correctly, will lead to a
collision, a so-called Threat. For CAV i, the threat set Ti which
is a subset of Ni is defined as follows:

Ti =

{
j|j ∈ Ni, sin(ηj,i) ≤

rm
Dj,i

,

Dj,i

sgn(cos(ηj,i))Sj,i
≤ Tc

}
,

(4)

where,
S⃗j,i = v⃗j − v⃗i. (5)

Thus, Sj,i is the magnitude of the relative speed between
CAVs j and i. The variable ηj,i denotes the angle between
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relative speed vector S⃗j,i and distance Dj,i as it is shown
in Figure 3. The parameter rm represents the safety margin
radius. Figure 3 shows an example of two threatening vehicles.
Suppose we draw tangent lines from the centroid of vehicle
j to the safety margin (the yellow circle around vehicle i).
In that case, the area covered between two tangent lines is
called the collision spectrum. Vehicle j will enter the safety
margin of vehicle i if the relative speed vector is inside the
collision spectrum. The parameter Tc is look-ahead time and
represents the finite time horizon used in the threat detection
algorithm. Only the vehicles that may collide within Tc time
horizon are considered threats. Two conditions are introduced
in equation (4) for CAV i to detect threatening vehicles among
neighbors. A neighbor j is a threat if the relative speed
is inside the collision spectrum and the estimated time to
collision is smaller than Tc.

Fig. 3: Threat detection. The yellow circle represents the
safety margin for the green CAV. The collision spectrum is
determined with dashed lines.

While every CAV can have multiple threats, each of these
threats can be involved in the other threat relationship. Con-
sidering this chain of threats, the CAVs are grouped as TVCs
(Threating Vehicle Clusters). Assume we draw a threat graph
with each CAV as a node. The nodes i and j are connected
with an edge only if j ∈ Ti. Two CAVs belong to the same
TVC if and only if a path exists in the threat graph connecting
the corresponding nodes.

C. Control Approach

We design a receding horizon nonlinear MPC controller for
every TVC Gl. At every time step t, a nonlinear optimization
problem for the prediction horizon of p is solved and defines
the control signals for the control horizon m. The computed
control signals for the first time horizon are applied to the
system, and variable states are updated for the next step. We
assume the same prediction horizon and control horizon for
the current problem. The objective function is presented in
equation (6), where the decision variables are the acceleration
a and steering rate w of CAVs within Gl. The optimization
problem is designed as follows:

min
ai,wi

(
t+p∑

k=t+1

Ä∑
i∈Gl

(αi(θi(k)− θdi )
2 + βKarma

i (vi(k)− vdi )
2

+ γiai(k)
2) +

NT∑
j=1

ζj
τ cj (t)

ϵj(k)
ä)

(6)

subject to state space model (1) and the following physical
constraints:

0 ≤ vi(k) ≤ vmax (7)

ymin +∆y ≤ yi(k) ≤ ymax −∆y (8)

amin ≤ ai(k) ≤ amax (9)

|ai(k)− ai(k − 1)| ≤ ∆a (10)

|θi(k)− θdi | ≤ ∆θ (11)

|δi(k)| ≤ ∆δ (12)

|wi(k)| ≤ ∆w (13)

where i denotes the index of the CAVs that belong to Gl. The
prediction horizon is denoted by p and is set to 40 time steps.
Conducting simulations with lower values for the prediction
horizon resulted in poor performance. Thus, the best setup
obtained for p equals 40. The road boundaries are denoted by
ymin and ymax. The objective function presented at (6) consists
of four terms, where αi, βKarma

i , γi, and ζi are the weights for
each term. The first and second terms minimize the deviation
of each CAV from its desired speed angle and speed. The third
term minimizes acceleration cost.

The last term is designed for collision avoidance. Every
threat group Gl contains NT number of threat pairs. The
following constraints are added to the optimization problem
to prevent collision between threat pairs. Assume threat pair
number j consists of CAVs e and f . These CAVs collide if
their distance gets smaller than the safety margin (see Fig. 3).
Thus, the collision avoidance constraint is defined as

De,f (k) ≥ rm, ∀j ∈ [1, NT ] (14)

According to equation (4), the relative speed is inside the
collision spectrum for the threat CAVs e and f . Considering
that, we design an extra soft constraint for collision avoidance.

sin(ηe,f )−
rm

De,f (k)
≥ −ϵj(k), (15)

ϵj ≥ 0, ∀j ∈ [1, NT ] (16)

where ϵj is minimized by the cost function. Constraint (15)
can be rewritten as

De,f (k) ≥
rm

sin(ηe,f ) + ϵj(k)
,

where in comparison to (14), put a higher minimum bound
for the distance. It forces CAVs to start action earlier, thus
smoothening the CAVs’ maneuver for collision avoidance. to
prioritize the more critical threat pairs, we weigth ϵj in the
cost function according to predicted time to collision τ cj .

τ cj (t) =
De,f (t)

Se,f (t) cos(ηe,f (t))
(17)

The weight selection involves normalizing the terms in the
objective function. The weights are tuned based on trial and
error to prevent unnecessary lateral movements and smoothen
the CAV reactions. A higher value is assigned to ζi, related
to the safety term. The outcome of the Karma game played
in the lower level control, βKarma

i , the so-called priority
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parameter is implemented as the weight for speed deviation.
The higher value of βKarma

i increases the cost of deviation
from the desired speed for CAV i. This leads to solutions
that put lower costs on CAVs with higher priority parameters.
Thus prioritizing the CAVs who achieved higher outcomes in
the Karma game.

Finally, to complete the control approach, it is crucial to
address the CAVs that do not pose any threat. For every CAV
i that does not belong to any TVC at time t, we design the
MPC problem formulation as follows:

min
ai,wi

t+p∑
k=t+1

αi(θi(k)−θdi )
2+βi(vi(k)−vdi )

2+γiai(k)
2 (18)

subject to state space model (1) and physical constraints (7)-
(13).

The developed optimization problems are solved with a
primal-dual interior point algorithm presented in [53].

IV. LOWER-LEVEL CONTROL: MODIFIED KARMA GAME

To incorporate fairness in the solution, we introduced pri-
ority parameters to be utilized in the objective function for
TVC at the upper-level control. In this section, we modify
the original Karma game (introduced in [10]) to compute
the priority parameters for every newly formed TVC. We
recommend interested readers study [10] to get familiar with
the Karma mechanism and the algorithm for obtaining SNE
(Stationary Nash Equilibrium). A summary of variables and
functions used in this section is provided in Table I.

We generalize the problem of assigning priority values to
CAVs within a TVC. Suppose a population of N agents
(CAVs). In every instance, a sub-population (TVC) of 2 ≤
Ns ≤ N agents are matched together in an Auction game
for a proportional resource allocation. Suppose the probability
of a sub-population with the size Ns appearing, Ps(Ns), is
known. Each agent i has a karma of ki ∈ W that limits the bid
(bi ∈ W) it can make 0 ≤ bi ≤ ki. Besides, every agent has an
urgency of ui ∈ N, which shows the internal valuation of the
agent for winning a higher share of the resource. According
to the offered bids, player i wins a portion ci (priority value)
of a resource C.

C =

Ns∑
i=1

ci (19)

ci =
biC∑Ns

i=1 bi
(20)

Afterward, the karma for agents within the sub-population is
updated according to a payment policy [51]. Please note that
the karma value belongs to W; thus, the payment policy has
two cases as follows.k+i = ki − bi + ⌈

∑Ns
i=1 bi
Ns

⌉ w.p f

k+i = ki − bi + ⌊
∑Ns

i=1 bi
Ns

⌋ w.p 1− f
. (21)

where f = bs
Ns

− ⌊ bs
Ns

⌋ shows the fraction of agents in the
sub-population that gets the first case payment.

The objective is to determine the SNE for the game, as
mentioned above. Suppose d[u, k] denotes the population
probability distribution. The bidding policy for each agent
depends on its karma, urgency, and sub-population and is
denoted by π(b|u, k,Ns). The distribution of player bids in
a sub-population Ns is

V [b|Ns](d, π) =
∑
u,k

d[u, k]π(b|u, k,Ns). (22)

sub-population bid is defined as the total bid offered by all the
players bs =

∑Ns

i=1 bi.
Assume that agents’ bids are independent and identi-

cally distributed random variables with the PDF of V [b|Ns].
Thus, we can estimate the PDF of sub-population bid,
Vs[bs|Ns](d, π), by taking Ns fold convolution as follows,

Vs[bs|Ns](d, π) =

Ns−1︷ ︸︸ ︷
V [b|Ns] ∗ (· · · ∗ (V [b|Ns] ∗ V [b|Ns])) .

(23)
In the sub-population Ns, the probability of a player winning
c through bidding b, γ[c|b,Ns](d, π), is equivalent to the
probability of bs = Cb

c . Therefore,

γ[c|b,Ns](d, π) = Vs[bs =
Cb

c
|Ns](d, π). (24)

The karma transition function, the conditional probability of
updated karma k+ for a player concerning previous karma k,
bid b, and sub-population bid bs is:

K[k+|k, b, bs, Ns] =


f ifk+ = k − b+ ⌈ bs

Ns
⌉

1− f ifk+ = k − b+ ⌊ bs
Ns

⌋
0 o.w

.

(25)
where f = bs

Ns
−⌊ bs

Ns
⌋. Also, note that we can replace bs = Cb

c ,
thus derive K[k+|k, b, c,Ns]. The immediate reward function
for the agent is

ξ[u, b,Ns](d, π) = −u
∑
c

cγ[c|b,Ns](d, π). (26)

We augment the transition probability at [10] by adding the
probability of the future sub-population Ps(N

+
s ) as follows

ρ[u+, k+, N+
s |u, k, b,Ns](d, π) =

Ps(N
+
s )Φ[u+, u]

∑
c

γ[c|b,Ns]K[k+|k, b, c,Ns],
(27)

where Φ[u+, u] is the urgency transition probability derived
from the Markov chain process for urgency.

Afterward, we can obtain the same algorithm as [10] to cal-
culate the expected immediate reward R[u, k|Ns](d, π), state
transition function P [u+, k+, N+

s |u, k,Ns](d, π), expected in-
finite horizon reward ν[u, k,Ns](d, π), and single stage devi-
ation reward Q[u, k, b,Ns](d, π) for each sub-population as
below.

R[u, k|Ns](d, π) =
∑
b

π[b|u, k,Ns]ξ[u, b,Ns]. (28)

P [u+, k+, N+
s |u, k,Ns](d, π) =∑

b

π[b|u, k,Ns]ρ[u
+, k+, N+

s |u, k, b,Ns].
(29)
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Terminology Description
N Population size.
Ns Sub-population size.
C Resource.
ki Karma of agent i.
ui Urgency of agent i.
bi Bid of agent i.
ci Outcome (resource portion) for agent i.
d[u, k] Population probability distribution; the fraction of population with urgency u and karma k.
π(b|u, k,Ns) Bidding policy; probability of bidding b for agent with urgency of u and karma of k in sub-population Ns.
Ps(Ns) Probability distribution of sub-population size.
V [b|Ns] Probability distribution of bids for agent in sub-population Ns.
Vs[bs|Ns] Probability distribution of total bid bs for sub-population Ns.
γ[c|b,Ns] Probability distribution of (resource allocation) outcome c, if agent bids b in subpopulation Ns.
K[k+|k, b, bs, Ns] Karma transition function; probability of updated karma k+, if agent with karma k bids b

in sub-population Ns with total bid bs.
Φ[u+, u] Urgency transition probability; probability of future urgency u+, if agent has urgency u.
ρ[u+, k+, N+

s |u, k, b,Ns] Transition function; probability of agent’s transition to future urgency u+, updated karma k+,
and sub-population N+

s , if agent with urgency of u and karma of k bids b in sub-population Ns.
P [u+, k+, N+

s |u, k,Ns] State transition function; probability of agent’s transition to future urgency u+, updated karma k+,
and sub-population N+

s , if agent has urgency of u and karma of k in sub-population Ns.
ξ[u, b,Ns] Immediate reward function.
R[u, k|Ns] Expected immediate reward function.
ν[u, k,Ns] Expected infinite horizon reward function.
Q[u, k, b,Ns] Single stage deviation reward.
π̃[b|u, k,Ns] Perturbed best response policy.

TABLE I: The Summary of variables and functions used in Section IV. Lower-level control.

ν[u, k,Ns](d, π) = R[u, k|Ns]+

α
∑
u+

∑
k+

∑
N+

s

P [u+, k+, N+
s |u, k,Ns]ν[u

+, k+, N+
s ]. (30)

Q[u, k, b,Ns](d, π) = ξ[u, b,Ns]+

α
∑
u+

∑
k+

∑
N+

s

ρ[u+, k+, N+
s |u, k, b,Ns]ν[u

+, k+, N+
s ]. (31)

As explained in [10], the problem of searching SNE is
written as finding the rest point for a dynamical system,
which represents the evolutionary dynamics for population
d and policy π in Karma games. In this system, the policy
updates with a rate η based on a mean dynamics function of
evolutionary games denoted as H .

π̇[.|u, k,Ns] = ηH(Q, π) (32)

The perturbed best response policy π̃[b|u, k,Ns] is chosen as
the mean dynamics to enable the modeling of agents that are
not perfectly rational.

π̃[b|u, k,Ns](d, π) =
exp(λQ[u, k, b,Ns](d, π))∑
b exp(λQ[u, k, b,Ns](d, π))

(33)

The parameter λ indicates the agent’s rationality.
Finally, the population d and policy π are updated based

on the following discretized dynamics, where dt denotes the
discretization step size.

π[b|u, k,Ns] = (1−ηdt)π[b|u, k,Ns]+ηdtπ̃[b|u, k,Ns] (34)

d[u, k] = (1− dt)d[u, k]+

dt
∑
N−

s

Ps(N
−
s )
∑
Ns

∑
u−

∑
k−

P [u, k,Ns|u−, k−, N−
s ]d[u−, k−]

(35)

We repeat these steps (22)-(35) until d[u, k] and π[b|u, k,Ns]
converge to the SNE.

In every newly formed TVC, CAVs use the bidding policy
at SNE to play the Karma game. Accordingly, every CAV wins
a ci value. The priority parameter associated with each CAV,
βKarma
i , is calculated as a linear function of the proportional

win for CAV i, ci
C .

βKarma
i = A

ci
C

+B, (36)

where A and B are positive and nonzero numbers used for
the tuning purpose of the objective function at the upper-level
control (6). In this paper, A = 0.1 and B = 5×10−5 are used
in the simulation case studies.

In the original Karma game, the urgency for agents is
described as a private valuation of the agent to win. In this
paper, we determine the urgency as u = g

(
(vi(k)− vdi )

2
)

where g : R → N is an increasing function (see Fig. 1).
For every CAV, the higher deviation from the CAV’s desired
speed increases its urgency level in the Karma game. As
a result, the agent is encouraged to offer a higher bid and
win more proportion of the resource. Thus, it is expected by
increasing the urgency level for agent i, the value of ci, and
correspondingly the priority parameter βKarma

i used in the
objective function (6) increase. The higher priority parameter
associated with CAV i in upper-level control will decrease
|vi(k) − vdi |. Therefore, the urgency for CAV i is supposed
to decrease for the next Karma game. This procedure is
analogous to the negative feedback concept in control theory.

We finalize this section with a discussion about the unique-
ness and existence of SNE and the convergence to the SNE.
There is no guarantee for the uniqueness of SNE for the orig-
inal Karma game. However, we can guarantee the existence
of SNE for the presented algorithm.

Proposition 1: An SNE exists for the modified Karma
algorithm presented in Section IV.
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Proof. Please see the Appendix A.
Due to the complexity of the overall system, we cannot provide
a mathematical proof for the convergence of our proposed SNE
algorithm.

Algorithm 1 provides a summary of the proposed method-
ology that was also illustrated in Fig. 1. At every time step,
we determine the TVCs by applying the threat detection algo-
rithm. For any newly formed TVC, we utilize the SNE of the
designed Karma game in lower-level control to determine the
priority parameters. Afterward, we control TVC and remaining
CAVs according to the designed MPC methods in upper-level
control. Finally, we update the variable states of all CAVs by
implementing the control signal for the next time step.

Algorithm 1 Overview to methodology

1: Input: CAVs variable states, control signals, karma values,
urgency level, and model parameters.

2: for k = 1 : tf do
3: # Determine Threat and TVC
4: Run threat detection algorithm in III.B
5: Output: Clusters Gl, where l ∈ [1, NG].
6: # MPC for TVCs
7: for l = 1 : NG do
8: # Determine priority parameters
9: if Gl is newly formed utilize the SNE of the

10: modified Karma game in IV.
11: Outputs: priority parameters for CAVs in Gl

12: Run designed MPC at (6)-(17) and (1)
13: Output: control signals at time k for CAVs in Gl

14: end for
15: # MPC for CAVs with no threat
16: for i = 1 : NNT do
17: Run designed MPC at (18), (1), and (7)-(13)
18: Output: control signals at time k for CAV i
19: end for
20: # Update variable states
21: for i = 1 : N do
22: insert CAV i control signals to car model (1)
23: Output: variable states of CAV i at time k + 1
24: end for
25: end for=0

V. SIMULATION RESULTS

In this section, we evaluate the proposed methodology’s per-
formance by studying the results of the simulation tests. The
values of methodology parameters implemented in all tests are
summarized in Table II. The simulations are conducted in the
Matlab framework. We used the IPOPT solver in the Yalmip
toolbox [54] for the MPC problems. The maximum CPU time
and maximum number of iterations for the IPOPT solver are
set to 1000 s and 1500, respectively.

This section is organized as follows: First, the case study
is described, and then the SNE of the modified Karma game
for this case study is presented in subsection A. Afterward,
in Subsection B, a snapshot of the CAV’s traffic simulation
presents a detailed picture of CAV’s behavior, clusters, and

games dynamics. The general overview of results is presented
in Subsection C. Subsections D and E focus on safety and
computational time. It follows with a detailed analysis of TVC
dimension and duration in Subsection F. Finally, the modified
Karma game is evaluated based on efficiency and fairness
measures in Subsection G.

Parameter Value Parameter Value
T 0.05 s R 160 m
Tc 4 s L 2 m
rm 3 m p 40
αi 0.25 βi 0.001
γi 1000 ζi 0.0001
∆y 1.5 m vmax 120 km/h
amin -10.92 m/s2 amax 5.72 m/s2

∆a 0.7 m/s2 ∆θ π/3 Rad
∆δ π/6 Rad ∆w 2π/3 Rad/s
λ 1000 α 0.9

TABLE II: The value for parameters of the control method
implemented in simulation tests.

A. Case Study Description

We simulate group overpass maneuvers as the case study.
The case study describes ten vehicles with an initial speed of
80 km/h on a road with a width of 12.5 m. The five vehicles in
front have the desired speed of 80 km/h, while the vehicles in
the back have a higher desired speed of 100 km/h. We simulate
two scenarios, so-called Scenario 1 for uncongested cases and
Scenario 2 for congested cases. In the uncongested scenario,
the vehicles have an initial time gap of 1 s, while for the
congested scenario, the initial time gap is 0.5 s. Each scenario
has been tested ten times, and every test has a different initial
positioning for vehicles.

The developed methodology, as summarized in Algorithm
1, is implemented to control the CAV movements in these
scenarios. Every time a new TVC initiates, we define the
priority values with the help of the modified Karma game
SNE. The CAVs are ranked according to their deviation from
the desired speed. The 50% of vehicles with higher deviation
are categorized as urgent, whereas the rest are unurgent. This
case study considers two urgency levels of [1 10]. The urgency
transition function Φ[u+, u] is:ï

0.5, 0.5
0.5, 0.5

ò
where it shows the CAV’s uncertainty about its future urgency.
For the modified Karma game, the probability of a sub-
population Ns appearing, Ps(Ns), or in other words, the
probability of a cluster with the dimension of Ns initiates,
is shown in Fig. 4. We assume that the probability decreases
gradually for bigger sub-populations.

The SNE of the modified Karma game for this case study is
presented in Fig. 5 and Fig. 6. As seen in Table II, the future
discount factor, α, is set to 0.9 for this case study. Due to this
high future awareness, a CAV with low urgency bids 0 unless
it has a high karma value. For the larger sub-populations (TVC
dimension), the unurgent CAV begins bidding nonzero with a
lower karma value. The general trend shows that an urgent
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Fig. 4: The probability of a sub-population Ns, Ps(Ns). This
probability function is implemented in the modified Karma
game for simulation tests.

CAV tends to bid higher values if it belongs to a larger sub-
population. As shown in Fig. 6, the probability distribution
for both urgent and unurgent parts of the population are the
same. This result was expected due to the defined [u+, u] in
this case study. The shares of urgent and unurgent CAVs are
always 50%, and for a single CAV, the probability of becoming
unurgent or urgent in the future is the same.

The SNE of the modified Karma game for lower future
discount factors (α = 0.5 and α = 0.7) are presented in
Appendix B. As one can observe in Fig. 5, Fig. 14a, and Fig.
14b, increasing the future discount factor makes the unurgent
CAVs more reluctant to bid nonzero. In particular when the
CAV belongs to a smaller sub-population. For α = 0.5, this
phenomenon is only observed for Ns = 2, while for α = 0.7,
this effect is extended to Ns ≤ 5 and for α = 0.9 it is
observed for all the sub-populations. Moreover, CAVs tend
to bid smaller values for larger α. Finally, comparing Fig. 6,
Fig. 13a, and Fig. 13b shows that increasing α reduces the
variance of the population probability distribution at SNE.

B. Snapshot

Figure 7 reports a snapshot of the uncongested scenario,
Test 2, at time step 332. The CAVs are numbered according
to their initial time setup. CAVs [1-5] belong to the group
with the desired speed of 80 km/h, and CAVs [6-10] have
the desired 100 km/h speed. The figure indicates three threat
clusters with the dimensions of 5,2, and 3, respectively. The
time spans for Cluster 1 and Cluster 2 are [331-345] and [287-
398], respectively. Cluster 3 appears at time step 332; thus,
the CAVs inside Cluster 3 play the Karma game to win the
priority values. In this game, CAV 5, 9, and 10 have initial
karma of 7, 10, and 10, respectively. CAV 9 is urgent; hence,
it is encouraged to bid more than others. The urgent CAV bids
eight while others bid 0; Thus, it wins the whole priority value.
Afterward, the karma is updated to 10, 5, and 12 for CAVs 5,
9, and 10, respectively. Cluster 3 will last for 33 time steps.

C. Overview of Test Results

The general information of the tests for uncongested and
congested scenarios are summarized in Tables III and IV,

respectively. The number of (non-repeated) TVCs is denoted
by Ncl. The average cluster duration (the number of simulation
times that a cluster lasts) is denoted by duravg. The average
cluster dimension (number of CAVs inside a cluster cldim)
concerning the cluster duration (cldur) is

dimavg =

∑
cldimcldur∑

cldur
.

Test Ncl duravg dimavg vrms θrms arms ts
50 ms veh m/s Rad m/s2 s

1 74 16.49 2.38 3.54 0.05 3.49 42.47
2 71 24.28 2.63 4.95 0.14 6.05 48.55
3 92 13.48 2.54 2.98 0.04 3.97 36.44
4 75 16.03 2.66 3.26 0.09 4.47 38.1
5 50 25.46 2.46 2.82 0.07 3.79 33.94
6 61 22.05 2.57 3.25 0.12 4.59 37.23
7 87 16.69 2.60 4.17 0.11 5.26 35.89
8 78 16.72 2.61 2.89 0.05 4.01 36.53
9 68 19.80 2.83 3.15 0.11 4.51 41.66
10 88 18.01 2.64 4.88 0.15 6.36 43.67

Mean 74.4 18.90 2.59 3.59 0.09 4.65 39.45

TABLE III: The simulation results of all the conducted tests
for uncongested case, Scenario 1.

Test Ncl duravg dimavg vrms θrms arms ts
50 ms veh m/s Rad m/s2 s

1 79 7.96 4.03 3.09 0.06 4.56 99.76
2 92 6.13 4.44 2.57 0.04 3.92 94.06
3 53 9.28 4.97 2.73 0.06 4.21 105.89
4 41 10.17 5.61 2.94 0.05 4.03 129.38
5 36 11.63 3.68 4.28 0.09 6.05 81.29
6 57 7.51 5.71 2.90 0.06 4.32 125.43
7 38 11.55 6.20 3.37 0.07 5.10 142.18
8 37 13.03 4.88 3.17 0.07 4.26 98.99
9 53 8.72 5.76 3.25 0.06 4.7 126.67

10 38 15 3.37 3.86 0.05 5.19 63.61
Mean 52.4 10.10 4.87 3.22 0.06 4.63 106.73

TABLE IV: The simulation results of all the conducted tests
for congested case, Scenario 2.

In the congested scenario, we observe fewer TVCs with
shorter durations while, on average, having higher dimensions
than in the uncongested scenario.

As we explained in upper-level control, the objective func-
tions (6 and 18) are designed to minimize the deviation
of speed, speed angle, and acceleration from their desired
values. Thus, we employ the Root Mean Square Error (RMSE)
concept to evaluate the general performance of the method. For
variable f with the desired value of fd, the RMSE error is
calculated as follows.

RMSE =

Ã
1

N

N∑
i=1

(f(i)− fd)2 (37)

Accordingly, we define vrms (m/s), θrms (rad), and arms (m/s2)
as the sum of RMSE in terms of speed, speed angle, and
acceleration for all CAVs, respectively. Comparing the two
scenarios, the difference in terms of vrms, θrms, and arms

are trivial. This indicates the developed method maintains
its high performance for the congested scenario. Assume the
road width (12.5 m) has four lanes. The observed density
for Scenario 1 begins at approximately 13 veh/km/lane and
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Fig. 5: The policy for different sub-populations at SNE for the modified Karma game with α = 0.9.
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Fig. 6: The population probability distribution at SNE for the
modified Karma game with α = 0.9.

reaches a maximum of 29 veh/km/lane. For Scenario 2, the
initial observed density is approximately 25 veh/km/lane,
reaching the maximum of 62 veh/km/lane.

D. Safety

The other crucial objective of the designed method is
collision avoidance. To investigate this property, the distance
between CAVs is computed for all the tests. The minimum
distance of CAVs was never lower than the defined safety
margin, rm = 3m (Table II). Thus, no collision was observed
in any of the tests that were conducted. Figure 8 shows a
close-up of the CAV’s distance for all the tests.

E. Computational Time

The average computational time required for the control of
TVCs is denoted by ts (s) in Tables III and IV. The value of
ts increases significantly for the congested scenario due to the
higher value of dimavg. Increasing the number of vehicles
in a TVC increases the size of the optimization problem,
which requires higher computational effort. Figure 9 confirms
this statement. We demonstrate the relation between cluster
dimension and the required computational time for MPC by

aggregating the data from all the conducted tests for both
scenarios in Fig. 9.

To better understand the benefit of clustering, we conduct
a simulation with a centralized control method for test 1,
Scenario 2. In this centralized method, we implemented the
same MPC method developed in this paper, assuming that
only one TVC contains all the CAVs. To always obtain the
optimal solution by IPOPT solver for the centralized method,
the maximum CPU time and maximum number of iterations
are increased to 5000 s and 3000, respectively. The average
computational time required for the centralized control is
2663.9 s, which is 26.7 times the required time for the
developed method with dynamic clustering.

Nevertheless, large-dimension clusters can appear in large-
scale scenarios that require higher computational time. Thus,
limiting the cluster dimension is crucial for reducing compu-
tational costs in large-scale scenarios. It is worth mentioning
that the clusters are built based on safety measures and threat
relationships. Thus, the threat detection algorithm requires
modification to maintain safety while imposing limits on clus-
ter dimensions. For instance, one can introduce Threatening
levels for CAV pairs. Therefore, instead of labeling CAV
pairs as threatening or non-threatening, each pair is associated
with a level according to the risk of collision. It enables us
to identify the pairs with lower emergencies that could be
excluded from TVC due to the dimension limit.

The real-time implementation of the proposed method is
hindered by the required computational time for the upper-
level MPC controller. The computational burden for MPC-
based strategies was frequently reported in the literature (See
[55] and [52]). The recent research [56] proposed a fast
implementation of coalitional MPC with the help of machine
learning that decreases the computational time by 99%. In-
spired by this research, our future focus is investigating the
application of machine learning in providing a real-time MPC
for upper-level control.
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Fig. 7: Snapshot of uncongested scenario, Test 2, time step 332. The urgent CAVs are indicated in red color. The Karma game
is played for the green clusters.

Fig. 8: The distance between CAVs for all the tests. The blue
and red patterns belong to the uncongested and congested
scenarios, respectively.
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Fig. 9: Boxplot for cluster dimension vs required computa-
tional time for MPC. The mean values are shown with the
blue stars.

F. TVC Analysis

In this part, TVCs are further analyzed regarding dimension
and duration. Figure 10a shows the probability histogram
of cluster dimensions (number of CAVs in a cluster) for
congested and uncongested scenarios. The figure is created
by collecting data from all the tests for every scenario. The
cluster dimension lies between 2 and 10. It indicates that the
minimum number of CAVs to form a TVC is 2, while the
maximum size of a TVC is limited by the number of CAVs
in the test. Please note that Ps(Ns) depicted in Fig. 4 is a
prediction of the cluster dimension histogram shown in Fig.
10a. The general trend observed in this figure suggests that

the TVC with a smaller dimension has a higher probability.
The probability histogram of cluster duration (number of

time steps a cluster lasts) is shown in figure 10b. Similarly,
the histogram collects data over all tests for every scenario. A
bar at the horizontal interval of [i−i+10] shows the probability
of the cluster duration being between [i− i+ 10] time steps.
According to this figure, the probability decreases for larger
TVC durations.

Comparison of the two histograms (Fig. 10a and Fig.
10b) for uncongested (blue color) and congested (red color)
scenarios reveals an interesting outcome. For the congested
scenario, the probability of the larger TVC dimensions in-
creases. Meanwhile, the TVC duration decreases for the con-
gested scenario. One may question whether increasing the
TVC dimension will reduce the TVC duration. To answer this
question, we look at the boxplots (Fig. 11a and Fig. 11b) for
TVC dimension vs duration for each scenario. Figures show
that the higher dimension of TVC is not associated with a
lower duration. However, the duration of TVCs with lower
dimensions decreases in the more congested scenario.

G. Modified Karma Game Analysis

One of the main objectives of this research is to promote
fairness in collaboration between CAVs. We evaluate the
efficiency and fairness by the criteria introduced in [10]. We
compare the SNE policy of the modified Karma game with two
other policies, Dictator and Uniform. Dictator policy allocates
resources equally only to the urgent agents. Whereas, the
Uniform policy distributes the resources equally among all
agents.

Suppose ui denotes the urgency of agent i and βPoli
i is

the portion of the resource that player i wins if the policy
Poli (modified Karma, Dictator, or Uniform) is applied. The
efficiency eff is defined as the average of uiβ

Poli
i over all

agents and all games that are played.

eff =

∑N
i=1

∑
ti
ui(ti)β

Poli
i (ti)

N
∑N

i=1 tg(i)
(38)

where ti shows the time index where agent i plays game. tg(i)
is the total number of games that agent i played. Dictator
policy distributes the resource only among agents with high
ui, obtaining the highest efficiency.

Two criteria are proposed by [10] to evaluate fairness in the
Karma game: ex-post reward fairness rf and ex-post access
fairness af. Ex-post reward fairness is the standard deviation
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(a) Cluster dimension histogram.

(b) Cluster duration histogram.

Fig. 10: The histograms for cluster dimension and duration.
The blue and red colors indicate the uncongested and con-
gested scenarios, respectively.

of the agent’s average reward. Ex-post access fairness is the
standard deviation of the agent’s average access to the resource
(the proportion of the resource that is allocated to the agent).

rf = −std

Ç∑
ti
ui(ti)β

Poli
i (ti)

tg(i)

å
(39)

af = −std

Ç∑
ti
βPoli
i (ti)

tg(i)

å
(40)

It is expected that Uniform policy proposes the lowest af
absolute value. We refer to eff, rf, and af as game criteria.

In Table V, we compare the different policies based on
efficiency and fairness criteria for the two scenarios. The num-
bers represent the average value among all the tests for each
scenario. According to the game criteria, the modified Karma
game is a balanced approach regarding efficiency and fairness,
as shown in Fig. 12). Karma obtains the same efficiency, eff,
as the Dictator policy (the efficiency benchmark) while gains
on fairness values. It promotes a fairness level (rf and af) close
to the Uniform policy (the ex-post access fairness benchmark).
For Scenario 1, Karma holds the best rf value. These results
are summarized in Fig. 12. Figures 12a and 12b show the nor-
malized criteria, hence facilitating the comparison of different
policies. To obtain the normalized values, the efficiency criteria
are divided by the maximum value obtained among policies
(that always belong to the Dictator). The normalized fairness
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(a) Boxplot for uncongested case, Scenario 1.
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(b) Boxplot for congested case, Scenario 2.

Fig. 11: Boxplot diagrams of cluster dimension vs cluster
duration for uncongested and congested scenarios. The mean
values are shown with the blue stars.

Scenario 1 Scenario 2
Criteria Karma Dictator Uniform Karma Dictator Uniform

eff 287.79 293.28 220.04 195.08 196.66 132.67
rf -48.12 -59.80 -48.22 -42.11 -55.35 -36.95
af -4.81 -5.98 -3.79 -5.45 -5.53 -5.31

TABLE V: The comparison of different policies regarding
efficiency and fairness primary criteria.

criteria equals the maximum value (minimum absolute value)
obtained among policies divided by the fairness criteria. Thus,
the better results are associated with higher values for all of
the normalized criteria, where 1 indicates the best result.

VI. CONCLUSIONS

In this paper, we proposed a decentralized bi-level control
approach for CAV traffic in a lane-free environment with
the three-fold objectives of efficiency, safety, and fairness.
We designed a threat detection algorithm to distinguish the
pairs of CAVs relying on the collision risk. Afterward, we
introduced the notion of TVC by emphasizing crucial CAV
connections for safety. This notion enables the division of
the CAV traffic system into the subsystems of TVCs. Thus,
instead of a centralized control for CAV traffic, we can design
decentralized control for TVCs. Hence, it reduces the required
computational effort.

An MPC-based approach is designed at the upper-level
control for TVCs. To promote fairness in the CAV collabora-
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(b) A comparison of policies for congested case, Scenario 2.

Fig. 12: A comparison of policies in terms of efficiency and
fairness normalized criteria for uncongested and congested
scenarios. Higher values indicate better performance.

tion, we introduce priority parameters that rely on the CAVs’
interaction history. A modified Karma game at the lower
level determines priority parameters. The new Karma game
is designed for proportional resource allocation within sub-
populations (analogous to the TVC). Afterward, the priority
parameters are incorporated into the MPC objective function
at the upper-level control. The proposed methodology has been
evaluated in simulation for a group-overpass case study. The
important outcomes of the simulation results are:

• TVCs with higher dimensions require, on average, higher
computational time.

• No collision has been observed during the tests.
• The share of the TVC with higher dimensions increases

in denser traffic flows.
• Karma game provides a balanced approach regarding

efficiency and fairness.
Although the proposed method significantly decreases the

required computational time compared to the centralized
method, it may not be applicable in real-time large-case
scenarios because of the computational requirements of the
MPC component. Inspired by [56], we are working to enable
real-time implementation. This is indeed one of the objects of
our future research. The idea is to rely on the application of
machine learning and other strategies to reduce the required
computational time for upper-level control.

On the other hand, limiting the possible dimension of
clusters can help reduce computational time and required num-
bers of communication per TVC. This is a crucial measure,
especially for the larger number of CAVs. However, it should
not compromise safety.

Although the simulation results report no collision incident,
providing solid proof of safety for the proposed method
requires further investigation. This will be another objective
of future development.

Finally, for the real-world application, the robustness of
the proposed method toward malicious attacks needs to be
investigated. Appropriate tests for evaluating the methodology
performance under different sources of malicious attacks must
be designed. In case of insufficiency in the method, proper
modifications must be included. For instance, the vulnerability
of the karma game in the presence of defective agents is an
aspect out of the scope of the present paper but worth being
addressed in the future. Limiting the obtained karma values
for agents by implementing taxation [10] could be a way to
prevent the hoarding of karma by defective agents and increase
the robustness.
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“Federated learning for connected and automated vehicles: A survey of
existing approaches and challenges,” IEEE Transactions on Intelligent
Vehicles, 2023.

[22] K. Chavoshi, A. Ferrara, and A. Kouvelas, “A feedback
linearization approach for coordinated traffic flow man-
agement in highway systems,” Control Engineering Prac-
tice, vol. 139, p. 105615, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0967066123001843

[23] K. Chavoshi, A. Genser, and A. Kouvelas, “A pairing algorithm
for conflict-free crossings of automated vehicles at lightless
intersections,” Electronics, vol. 10, no. 14, 2021. [Online]. Available:
https://www.mdpi.com/2079-9292/10/14/1702

[24] M. Sekeran, M. Rostami-Shahrbabaki, A. A. Syed, M. Margreiter, and
K. Bogenberger, “Lane-free traffic: History and state of the art,” in
2022 IEEE 25th International Conference on Intelligent Transportation
Systems (ITSC), 2022, pp. 1037–1042.

[25] V. K. Yanumula, P. Typaldos, D. Troullinos, M. Malekzadeh, I. Pa-
pamichail, and M. Papageorgiou, “Optimal trajectory planning for con-
nected and automated vehicles in lane-free traffic with vehicle nudging,”
IEEE Transactions on Intelligent Vehicles, vol. 8, no. 3, pp. 2385–2399,
2023.

[26] R. Levy and J. Haddad, “Cooperative path and trajectory planning for
autonomous vehicles on roads without lanes: A laboratory experimental
demonstration,” Transportation Research Part C: Emerging Technolo-
gies, vol. 144, no. 103813, 2022.

[27] M. Rostami-Shahrbabaki, H. Zhang, M. Sekeran, and K. Bogenberger,
“Increasing the capacity of a lane-free beltway for connected and
automated vehicles using potential lines,” in 102nd Annual Meeting
Transportation Research Board, 2023.

[28] D. Theodosis, I. Karafyllis, and M. Papageorgiou, “Cruise controllers
for lane-free ring-roads based on control lyapunov functions,” Journal
of the Franklin Institute, vol. 360, no. 9, pp. 6131–6161, 2023.

[29] I. Karafyllis, D. Theodosis, and M. Papageorgiou, “Lyapunov-based two-
dimensional cruise control of autonomous vehicles on lane-free roads,”
Automatica, vol. 145, no. 110517, 2022.

[30] A. Karalakou, D. Troullinos, G. Chalkiadakis, and M. Papageorgiou,
“Deep reinforcement learning reward function design for autonomous
driving in lane-free traffic,” Systems, vol. 134, no. 3, 2023.

[31] D. Troullinos, G. Chalkiadakis, I. Papamichail, and M. Papageorgiou,
“Collaborative multiagent decision making for lane-free autonomous
driving,” in Proceedings of the 20th International Conference on Au-
tonomous Agents and MultiAgent Systems, ser. AAMAS ’21. Inter-
national Foundation for Autonomous Agents and Multiagent Systems,
2021, p. 1335–1343.

[32] M. Malekzadeh, I. Papamichail, and M. Papageorgiou, “Lin-
ear–quadratic regulators for internal boundary control of lane-free au-
tomated vehicle traffic,” Control Engineering Practice, vol. 115, no.
104912, 2021.

[33] M. Malekzadeh, V. K. Yanumula, I. Papamichail, and M. Papageorgiou,
“Overlapping internal boundary control of lane-free automated vehicle
traffic,” Control Engineering Practice, vol. 133, no. 105435, 2023.

[34] K. Chavoshi and A. Kouvelas, “Distributed control for laneless and
directionless movement of connected and automated vehicles,” in 21st
Swiss Transport Research Conference (STRC 2021), 2021.

[35] Z. He, H. Pei, Y. Guo, D. Yao, and L. Li, “Theoretical trade-off between
fairness and efficiency in the cooperative driving problem for cavs at on-
ramps,” IEEE Open Journal of Intelligent Transportation Systems, vol. 5,
pp. 41–54, 2024.

[36] M. Kunibe, H. Asahina, H. Shigeno, and I. Sasase, “A scheduling scheme
for autonomous vehicle highway merging with an outflow traffic and
fairness analysis,” IEEE Access, vol. 9, pp. 49 219–49 232, 2021.

[37] C. Li, X. Ma, L. Xia, Q. Zhao, and J. Yang, “Fairness control of traffic
light via deep reinforcement learning,” in 2020 IEEE 16th International
Conference on Automation Science and Engineering (CASE), 2020, pp.
652–658.

[38] Y. Ye, J. Ding, T. Wang, J. Zhou, X. Wei, and M. Chen, “Fairlight:
Fairness-aware autonomous traffic signal control with hierarchical action
space,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 2022.

[39] B. L. Ferguson and J. R. Marden, “The impact of fairness on perfor-
mance in congestion networks,” in 2021 American control conference
(ACC). IEEE, 2021, pp. 4521–4526.

[40] L. Zhang, M. Khalgui, Z. Li, and Y. Zhang, “Fairness concern-based
coordinated vehicle route guidance using an asymmetrical congestion
game,” IET Intelligent Transport Systems, vol. 16, no. 9, pp. 1236–1248,
2022.

[41] A. Athalye and S. Nayak, “Fairness and robustness of mixed autonomous
traffic control with reinforcement learning,” 2021.

[42] L. Jiang, Y. Xie, and N. G. Evans, “A simulation study of cooperative and
autonomous vehicles (cav) considering courtesy, ethics, and fairness,”
Plos one, vol. 18, no. 5, p. e0283649, 2023.

[43] S. Chen, M. Wang, W. Song, Y. Yang, and M. Fu, “Multi-agent reinforce-
ment learning-based twin-vehicle fair cooperative driving in dynamic
highway scenarios,” in 2022 IEEE 25th International Conference on
Intelligent Transportation Systems (ITSC). IEEE, 2022, pp. 730–736.

[44] D. Paccagnan, R. Chandan, and J. R. Marden, “Utility and mechanism
design in multi-agent systems: An overview,” Annual Reviews in Control,
vol. 53, pp. 315–328, 2022.

[45] G. Arslan, J. R. Marden, and J. S. Shamma, “Autonomous vehicle-target
assignment: A game-theoretical formulation,” 2007.

[46] M. Liu, I. Kolmanovsky, H. E. Tseng, S. Huang, D. Filev, and A. Girard,
“Potential game-based decision-making for autonomous driving,” IEEE
Transactions on Intelligent Transportation Systems, vol. 24, no. 8, pp.
8014–8027, 2023.

[47] N. Li, Y. Yao, I. Kolmanovsky, E. Atkins, and A. R. Girard, “Game-
theoretic modeling of multi-vehicle interactions at uncontrolled intersec-
tions,” IEEE Transactions on Intelligent Transportation Systems, vol. 23,
no. 2, pp. 1428–1442, 2022.

[48] Q. Zhang, R. Langari, H. E. Tseng, D. Filev, S. Szwabowski, and
S. Coskun, “A game theoretic model predictive controller with aggres-
siveness estimation for mandatory lane change,” IEEE Transactions on
Intelligent Vehicles, vol. 5, no. 1, pp. 75–89, 2020.

[49] A. R. Hota, U. Maitra, E. Elokda, and S. Bolognani, “Learning to mit-
igate epidemic risks: A dynamic population game approach,” Dynamic
Games and Applications, pp. 1–24, 2023.

[50] A. Censi, S. Bolognani, J. G. Zilly, S. Sadat Mousavi, and E. Frazzoli,
“Today me, tomorrow thee: Efficient resource allocation in competitive
settings using karma games,” in 2019 IEEE Intelligent Transportation
Systems Conference (ITSC), 2019, pp. 686–693.

[51] E. Elokda, C. Cendese, K. Zhang, A. Censi, J. Lygeros, and E. Fraz-
zoli, “Karma priority lanes for fair and efficient bottleneck congestion
management,” in 2023 31st Mediterranean Conference on Control and
Automation (MED), 2023, pp. 458–463.

[52] R. Levy and J. Haddad, “Path and trajectory planning for autonomous
vehicles on roads without lanes,” in 2021 IEEE International Intelligent
Transportation Systems Conference (ITSC), 2021, pp. 3871–3876.
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APPENDIX A
PROOF OF THE PROPOSITION 1

Proof. According to Theorem 1 at [10], if the state transition
function ρ is continuous in (d, π) and the karma is preserved
inside the population, then an SNE exists for the Karma
algorithm.

Based on equation (27), the continuity of
ρ[u+, k+, N+

s |u, k, b,Ns] in (d, π), is equivalent to the
continuity of γ[c|b,Ns] in (d, π) as γ[c|b,Ns](d, π) is the
only term which depends on (d, π). According to equations
(24):

γ[c|b,Ns](d, π) = Vs[bs =
Cb

c
|Ns](d, π).

Therefore, γ[c|b,Ns] is continuous in (d, π) if Vs[bs|Ns](d, π)
is continuous.

Looking at equation (23), Vs[bs|Ns](d, π) is an Ns fold con-
volution of V [b|Ns](d, π). Thus, Vs[bs|Ns](d, π) is continuous
provided that V [b|Ns](d, π) is continuous. Based on equation
(22):

V [b|Ns](d, π) =
∑
u,k

d[u, k]π(b|u, k,Ns),

which is continuous in (d, π). Thus we can conclude the
continuity of ρ[u+, k+, N+

s |u, k, b,Ns] in (d, π).
The karma is preserved inside the population if the total

value of karma remains the same. In our modified Karma
game, it is equivalent to

∑
k+ =

∑
k. In order to investigate

this condition, we can use the karma transition function in
equation (25) to calculate the sum of updated karma (ˆk+) as
follows:
Ns∑
i=1

k+i =

Ns∑
i=1

(
ki − bi +

Å
bs
Ns

− ⌊ bs
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⌋
ãÅ

⌈ bs
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⌉
ã

+

Å
1− bs
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+ ⌊ bs
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⌋
ãÅ
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⌋
ã)

=

Ns∑
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ki −
Ns∑
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Ns∑
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(Å
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⌋
ãÅ

1 + ⌊ bs
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⌋
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+

Å
1− bs

Ns
+ ⌊ bs

Ns
⌋
ãÅ

⌊ bs
Ns

⌋
ã)

=

Ns∑
i=1

ki − bs +

Ns∑
i=1

bs
Ns

=

Ns∑
i=1

ki.

Therefore, karma is preserved inside the population for the
presented algorithm.

As both conditions in Theorem 1 at [10] are fulfilled, we
can conclude the existence of SNE for the modified karma
game presented in Section IV. □

APPENDIX B
IMPACT OF FUTURE DISCOUNT FACTOR ON SNE

The SNE of the modified Karma game with the future
discount factor α = 0.5 and α = 0.7 are shown in Fig. 13 and
Fig. 14.
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(a) The population probability distribution at SNE, α = 0.5 .
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Fig. 13: The population probability distribution at SNE for the modified Karma game with α = 0.5 and α = 0.7.
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(a) The policy for different sub-populations at SNE, α = 0.5.
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(b) The policy for different sub-populations at SNE, α = 0.7.

Fig. 14: The bidding policy for the modified Karma game with α = 0.5 and α = 0.7.


