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Abstract

With the slowing of Moore’s law, modern computing platforms are becom-
ing increasingly heterogeneous. In particular, graphics processing units
(GPUs) have found application in various general-purpose fields, for in-
stance driving the machine learning revolution of recent years. Serverless
cloud computing has, however, had trouble adjusting to this reality. Most
systems in use today are still largely restricted to CPU-only execution.

At its core, this work is about extending Dandelion, a novel function-as-a-
service (FaaS) platform, with the means to execute untrusted user code on
GPUs. By making use of Dandelion’s innovative programming model, we
show that efficient and performant GPU-accelerated serverless computing is
possible and can lead to significant benefits in key workloads.
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Chapter 1

Introduction

Graphics processing units (GPUs) have become an integral component of
modern computing systems. Through their ability to speed up certain highly
parallel workloads, they have found use in a vast set of applications, espe-
cially as Moore’s law has slowed down [Thompson and Spanuth, 2021]. In
particular, the machine learning revolution of recent years has only been
feasible due to the massive performance benefits GPUs bring.

Meanwhile, the serverless cloud computing paradigm has grown to become
a central offering of all major cloud providers. With its principles of resource
abstraction and transparent scaling, it promises end users the ability to de-
velop applications more easily whilst only paying for what they use and
offers cloud providers the opportunity to utilise their hardware more ef-
fectively [Schleier-Smith et al., 2021]. Despite this, many serverless systems
in use today have trouble divorcing themselves from their VM-based roots,
yielding high start-up latencies and largely CPU-restricted computation as
a result.

Dandelion [Kuchler et al., 2023] is a novel function-as-a-service (FaaS) plat-
form that aims to address the aforementioned shortcomings. Instead of
expressing serverless functions via VMs, it uses a completely re-imagined
data-flow-based programming model that cleanly separates computation
from I/O. Thus, it enables the use of a different class of (lower overhead)
isolation mechanisms. Additionally, it opens a gateway for easier hetero-
geneous serverless, which will be explored in this work in the context of a
GPU backend for the Dandelion platform.

We aim to develop a system that combines the strengths of several current
solutions, without being limited by their respective drawbacks. We strive
to show that efficient and performant GPU-accelerated serverless is possible
thanks to Dandelion’s unique programming model.

This thesis is structured as follows: We begin by providing necessary back-
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ground knowledge in Chapter 2, giving context on GPUs, as well as cloud
computing, serverless, and a detailed account of Dandelion’s principles and
inner workings. In Chapter 3, we continue by describing the current state
of GPU-accelerated serverless, highlighting the strengths and weaknesses of
today’s main approaches. Following this, in Chapter 4, we present our vi-
sion for GPU-accelerated serverless, explaining our intended user workflow
and its resulting implications on our design. In particular, we expand on our
approach to (GPU) memory management. Having provided all this context,
we can finally present the architecture of our backend, which consists of two
execution engines: a sequential and a more sophisticated concurrent engine.
In Chapter 5, we examine their performance in terms of several metrics. We
conclude in Chapter 6 by stating avenues for further research and giving our
final thoughts.
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Chapter 2

Background

2.1 Graphics Processing Units

With the advent of real-time 3D graphics in the 1990s, the need for dedi-
cated graphics processing units (GPUs) emerged. These early accelerators
were rather different from the GPUs of today, however, featuring mainly
fixed-functionality circuits designed for the narrow use-case of graphics
shading and rendering. In the early 2000s, initial cards with programmable
shaders allowed a glimpse into the application of GPUs for general work-
loads, though it was not until the mid-2000s that truly general-purpose pro-
grammable GPUs entered the market, enabling their use in a plethora of
fields [Owens et al., 2008].

2.1.1 GPU Vendors and Programming APIs

Today, the two major GPU vendors are NVIDIA and AMD, who enable
general-purpose programming via their CUDA and ROCm/HIP APIs re-
spectively. In practice, the programming models of both are very simi-
lar:1 The host (the CPU) is responsible for managing execution on the de-
vice (the GPU). This mainly involves moving data between host and device
and queuing kernels (GPU functions) for execution. The programmer may
enqueue such data transfers and kernel executions on a number of indepen-
dent streams, enabling a degree of asynchrony between non-dependent tasks
[AMD, 2019b].

Under the hood, the hardware architectures of both vendors are similar
as well. Nonetheless, somewhat differing nomenclature has emerged from

1AMD’s HIPIFY tool can for instance easily translate CUDA into HIP [AMD, 2023].
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2.1. Graphics Processing Units

each.2 As we mainly examine AMD GPUs in this work, we will stick with
AMD naming conventions unless specified otherwise.

2.1.2 GPU Architecture and Execution Model

At a conceptual level, kernels are executed on an (up-to) three-dimensional
grid. Each point in the grid is called a thread, which can be executed in-
dependently from, and in parallel to, other threads. For example, in a
matrix/matrix multiplication of the form A × B, A ∈ Rm×k, B ∈ Rk×n, a
two-dimensional grid might be used. The thread at position (x, y) in the
grid represents the entry Cx,y in the resulting matrix C ∈ Rm×n, and thus
needs to compute the inner product between row x of A and column y of
B, which can be done in parallel to any other thread. Figure 2.1 gives a
graphical illustration of this.

A

B

y

x

Figure 2.1: Example matrix/matrix multiplication: Each thread is one point in the resulting
matrix and operates on the filled data respectively. Note the axis directions.

Threads are grouped together to form blocks, which are ultimately assigned
to a compute unit (CU) (NVIDIA: streaming multiprocessor) for execution.3 A
CU is in effect one of the GPU’s processors, featuring its own program
counter, registers, ALUs, etc. Sets of threads running the same instruc-
tion (but operating on different data) are batched together by a CU to form
a wavefront (NVIDIA: warp) for simultaneous execution. As such, CUs are
in essence SIMD processors, except that the SIMD instructions are dynam-
ically formed by the device [Luna and Mutlu, 2022]. As massively parallel

2Sometimes quite confusingly so: AMD calls its scratchpad memory local memory
(NVIDIA calls it shared memory), whereas NVIDIA calls its per-thread private memory lo-
cal memory (AMD calls it private memory).

3Note that CUs can typically handle more than one block at a time.
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2.1. Graphics Processing Units

devices, modern GPUs consist of a large number (100+) of such compute
units.

Along with their high degree of data parallelism, GPUs feature a multi-
level memory hierarchy ranging from modest per-thread private memory,
to per-block local memory, all the way to (cached) global memory along
with massive memory bandwidths. In comparison, the transfer rate of the
CPU/GPU interconnect is usually much lower [PCISIG, 2021]. As such, care
must be taken by the programmer to ensure that these expensive transfers
happen as little as possible.

Listing 2.1 shows the HIP code for our example matrix/matrix multipli-
cation. Note that the programmer does not need to explicitly define how
parallelism is achieved—it much rather results from the hardware taking
advantage of the threads’ inherent parallelism.

1 __global__ void matmul(float *C, float *A, float *B, int m, int n, int k) {

2 int row = blockDim.x * blockIdx.x + threadIdx.x;

3 int col = blockDim.y * blockIdx.y + threadIdx.y;

4

5 if (row < m && col < n) {

6 float sum = 0.0f;

7 for (int i = 0; i < k; i++) {

8 sum += A[row * k + i] * B[i * n + col];

9 }

10 C[row * n + col] = sum;

11 }

12 }

Listing 2.1: HIP code for matrix/matrix multiplication as seen in Figure 2.1.

2.1.3 Isolation on GPUs

Given that our end goal is to run untrusted GPU functions in our system, we
must take steps to adequately isolate them—not only from each other but
also from the system itself. In the following section, we will hence discuss
the degree of isolation present in current AMD GPUs, mentioning similar
mechanisms offered by NVIDIA when relevant.

Concerning device/host isolation: It holds that the device cannot access host
memory which the host has not made available to it, nor can a kernel allocate
host memory. Kernels may, however, call malloc to allocate global device
memory, though the host can disable this by setting hipSetDeviceLimit(

hipLimitMallocHeapSize, 0).4

4Though calling malloc after having set this in current ROCm versions causes a rather
unceremonious crash, see https://github.com/ROCm/HIP/issues/3429.
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2.2. Cloud Computing

Kernels launched from the same process all access the same global memory.
Since each process has its own virtual address space, processes can be used
to isolate kernels from another.5 Concurrently running processes on the
GPU is supported by AMD’s driver natively and can be enabled on NVIDIA
devices by using their multi-process service (MPS) [NVIDIA, 2024]. In addi-
tion to this, recent NVIDIA GPUs can be spatially partitioned using their
multi-instance GPU (MIG) technology [NVIDIA, 2020]. AMD and NVIDIA
also offer virtualisation of their accelerators for use in VMs via their MxGPU
and vGPU technologies, respectively [NVIDIA, 2020, AMD, 2017].

2.2 Cloud Computing

Cloud computing in its current sense has its beginnings in the early 2000s.
Initial offerings were designed following the Infrastructure-as-a-Service (IaaS)
paradigm, wherein the user is provided with a virtual machine by the cloud
provider. While this freed customers from having to manage on-premises
(local) hardware, they were ultimately still required to manage individual
servers in the cloud. As such, this model is sometimes also referred to as
serverful cloud computing [Schleier-Smith et al., 2021].

2.2.1 Serverless

Serverless cloud computing, sometimes succinctly referred to as just serverless,
on the other hand, represents a rethinking of cloud computing that has
gained significant traction in the past decade. Serverless is provided to the
user via backend-as-a-service (BaaS), which provides object storage, queues,
databases, etc., and function-as-a-service (FaaS), which provides the actual
function execution. [Schleier-Smith et al., 2021] lays out three principles at
its core:

Resource Abstraction. Servers are completely abstracted away from the cus-
tomer. Instead, they are able to focus entirely on their application’s
relevant logic. Operating the hardware becomes the full responsibility
of the service provider.

Pay-as-you-go. Customers are only billed for the resources they actively
consume. In comparison, serverful is billed based on reserved re-
sources and hence often charges for idle hardware.

Transparent scaling. Akin to resource abstraction, the cloud provider as-
sumes the duty of scaling the services deployed on it fully automat-

5It’s worth noting that a vulnerability [Sorensen and Khlaaf, 2024] that facilitates the
leaking of local GPU memory across processes has recently been discovered. A large number
of manufacturers, including AMD, are affected.
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2.3. Dandelion

ically to match demand. As a result, the customer need not concern
themselves with scaling at all.

In theory, both customer and provider benefit from serverless: The cloud
provider can exercise more control over their resources, thus enabling them
to potentially increase overall utilisation. The customer benefits from the
abstracted infrastructure and simple deployment. Despite these clear ad-
vantages, several challenges remain unsolved in current platforms.

Typical FaaS functions are very short-lived, with execution times in the 100s
of milliseconds (and increasingly less) being common [Shahrad et al., 2020].
This poses a significant hurdle for the virtual-machine-based systems used
by the major providers today, as the overhead of starting up the virtual
machine may in some cases dominate the actual computation time. Signifi-
cant research has thus gone into decreasing start-up latencies. For instance,
Amazon’s Firecracker [Agache et al., 2020] uses a custom virtual-machine
monitor (VMM) and features support for snapshotting (capturing the state of
a VM for quicker start-up later). Nevertheless, the difference between cold
start (the function has not been recently called) and hot start (the function
has been recently called) remains large [Ustiugov et al., 2021].

2.3 Dandelion

Dandelion [Kuchler et al., 2023] is a novel FaaS executor which attempts to
alleviate many of the issues current platforms are facing through a fun-
damental redesign of the programming model. Instead of using VMs, in
Dandelion, programs are expressed as compositions of functions that perform
either I/O (and are provided by the platform) or pure, i.e. side-effect free,
computation (and are provided by the user). As compute functions are
side-effect-free, they are unable to impact the overall system’s state. To ac-
complish this in practice, compute functions are for example prevented from
making system calls.

In other words: Compositions are data-flow graphs where all nodes (the
functions) perform either compute or I/O. Consider the example in Figure
2.2—the green nodes represent compute functions whereas the blue node
performs I/O. The bottom node could benefit greatly from GPU accelera-
tion.

Since user code is not able to as easily escape its sandbox due to the pure
computation, it may be run with less intrusive (and thus lower-overhead)
isolation mechanisms, vastly improving startup latencies. Further, as the
system is conscious of a composition’s data flow, data-aware scheduling
and caching are more easily enabled. Finally, Dandelion is highly amenable
to hardware acceleration—each node may run on a different backend and

7



2.3. Dandelion

Preprocess
image

Fetch weights
from storage

Run tagging
model

Image tag(s)

Image Storage URL

Figure 2.2: Example Dandelion composition for photo tagging using ML inference.

hence accelerator. Current backends based on MMU isolation, CHERI mem-
ory capabilities, and WASM [Thomm, 2024] already exist, with an FPGA
backend in active development.

Under the hood, Dandelion is implemented in roughly 12k lines of Rust.6

The system consists of three main components: the frontend, the dispatcher,
and the backends/engines. Figure 2.3 contains an overview of the core Dande-
lion architecture.

Frontend
Dispatcher

Available 
Sets

Waiting
Functions

Compute 
Engine 

Comm. 
Engine 

Task Queues

Function
Registry

Figure 2.3: Dandelion system architecture.

2.3.1 Frontend

The Dandelion frontend is the smallest of the three major components. Its
purpose is to handle communication with clients via HTTP. The frontend
accepts requests, determines their type, enqueues them in the dispatcher
for execution, and returns a response once fulfilled. Currently, requests
either register functions/compositions, or invoke compositions (providing
the input data necessary to do so).

6This includes our contribution.
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2.3. Dandelion

2.3.2 Dispatcher

The dispatcher can be thought of as the brains of the Dandelion system—it
exercises full control over all resources and executions in the entire sys-
tem. Additionally, it maintains state over the currently available functions
and compositions in the registry, storing metadata such as locations of bina-
ries on disk, input/output requirements, and which functions run on which
backends.

When a composition is invoked, the dispatcher keeps track of all data, or-
dering data transfers as necessary and invoking functions once their inputs
become available.

2.3.3 Backends

Backends enable the actual execution of work by exposing engines, which
process individual requests. Recall from Section 2.3 that backends may
utilise a variety of hardware platforms and employ different isolation mech-
anisms. As a result, their implementations also vary substantially, only
needing to communicate with the dispatcher via a narrow interface. Nonethe-
less, each backend type has an associated driver and memory domain, and
spawns engines, each operating on many contexts.

Memory Domains and Contexts. A context is in essence the address space
of a function invocation. As user functions are untrusted, a given function
should never escape its context to ensure isolation in the system. Memory
domains can be thought of as “context factories”, providing fresh contexts
when the dispatcher requests them. A context always belongs to, and is
acquired via, its respective memory domain. Furthermore, memory do-
mains implement data transfers between contexts (belonging to potentially
different memory domains), utilising more efficient means wherever possi-
ble. For example, if both contexts reside in the same address space, a simple
memcpy() can be used.

Drivers and Engines. Engines take on the principal load of executing func-
tion invocations. To this end, they retrieve invocation requests from a work
queue provided by the dispatcher, obtaining a debt that is fulfilled once
the desired computation has been completed. A particular backend might
spawn many engines. On the other hand, each backend has only one as-
sociated driver. Much like the relationship between memory domains and
contexts, drivers can be seen as a sort of “engine factory”, starting up new
engines as needed. In addition, drivers provide the means to parse newly
registered functions, which involves preparing a static context and config-
uration that is used to instantiate the runtime state for every subsequent
invocation.

9



2.3. Dandelion

Figure 2.4 gives an overview of the components of a backend.

Spawns

Creates

Function execution

Backend

Engine

Context

Driver

Mem. Domain

Executed on

Located in

Request

Figure 2.4: Components of a Dandelion backend and their relationships.
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Chapter 3

Related Work

Since the inception of serverless, there has been a demand to extend it to
enable GPU acceleration. Due to the challenges associated with pairing
dedicated accelerators with short-lived functions that are often resident in
VMs, several solutions and workarounds have been developed.

3.1 Service APIs

Rather than to directly provide functions with an accelerator, a popular
workaround employed by many cloud providers is to instead wrap hard-
ware acceleration in a service that can be called from serverless functions.
Many such services have been developed, in particular for single-domain
tasks, e.g. machine learning inference [Romero et al., 2021, Olston et al., 2017,
BentoML, 2019]. At this point, it’s also worth mentioning Azure’s general-
purpose Catapult service for FPGAs [Putnam et al., 2015].

At first sight, service APIs may appear a reasonable compromise. How-
ever, these systems come with a number of drawbacks. Firstly, they largely
lack the ability to perform arbitrary computation. Even though many use
cases may be captured, they thus lack the type of generality we are aiming
for with this project. Secondly, they introduce non-trivial and unpredictable
overheads by delegating computation to a remote service for execution. Fur-
thermore, they massively limit the issuing system’s control, as computation
occurs opaquely to it. Thus, they are unsuitable for systems with a powerful
scheduler, like Dandelion.

3.2 GPU attached VMs

Since most current FaaS platforms perform their computation inside virtual
machines, it seems a natural step to simply attach a GPU to the VM/con-

11



3.3. Kernel-as-a-Service (KaaS)

tainer running the function. [Kim et al., 2018] provides an initial approach
based on NVIDIA-Docker, which was iterated upon by [Naranjo et al., 2020,
Satzke et al., 2021] by employing different GPU virtualisation techniques.

Nevertheless, the key shortcoming of this design remains unsolved—a GPU
(or virtualised version thereof) is tied to a container for its entire lifetime,
even if it is only needed for a much shorter duration. This inherently limits
the scalability of the platform, and severely underutilises GPU resources,
even if virtualisation helps to some extent. See Figure 3.1 for a visualisation;
it shows the lifetime of an example serverless function, as well as the points
in time when the GPU is required, compared to when it is acquired and
released.

GPU utilised

GPU acquired

GPU released

Time

(a) With GPU attached VMs.

GPU utilised

GPU acquired

GPU released

Time

(b) Desired.

Figure 3.1: GPU lifetimes with different approaches.

In addition, acquiring a GPU on container startup adds significant latency,
further compounding the issue of startup times VM-based systems are al-
ready plagued by.

3.3 Kernel-as-a-Service (KaaS)

[Pemberton et al., 2022] presents an entirely different approach. Here, GPU
tasks are represented as directed graphs of GPU kernels. Instead of directly
giving the platform host code to run, the user merely provides a library of
GPU kernels and specifies an execution graph. Thus, all host code can be
managed by the KaaS executor.

Rather than needing to keep GPUs around for an entire program’s lifetime,
they now only need to be reserved during a GPU task’s execution1, signif-
icantly improving performance. Further, as the executor maintains closer

1Programs can consist of many tasks.
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3.3. Kernel-as-a-Service (KaaS)

control over the accelerator, novel caching techniques can be applied. This
approach is implemented in a prototype for the Ray [Moritz et al., 2018] dis-
tributed computing framework.

As will become apparent, this work significantly influences our final design.
Nonetheless, the paper omits discussion of key isolation questions. In Dan-
delion, we assume the presence of adversarial actors and thus must take
steps to ensure honest users are not interfered with.
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Chapter 4

Design and Implementation

In this chapter, we will present the design of our system, along with consid-
erations made during the development process. We begin by describing our
envisioned user workflow and its implications for our design, followed by
our policy on memory management. Then, we give implementation details
about our sequential and concurrent engine.

4.1 User Workflow

Similar to [Pemberton et al., 2022], we envision a design where a GPU func-
tion consists of a pre-compiled library of GPU kernels and a description of
how they are to be invoked. More specifically, we accept kernels in the form
of an .hsaco library, which is AMD’s binary code format. The configuration
is provided as a .json file which specifies the location of the library on disk,
the relevant kernels to load from it, as well as the blueprint, which contains
information about inputs/outputs, additional/temporary buffers, and the
control flow. A single function can thus invoke many kernels. In addition,
the user is given a lot of control, being able to set the exact compute grid
dimensions and dynamic local memory for each kernel launch. See Listing
4.1 for an example configuration file.

Not only does this design give the user a tremendous amount of freedom, it
also provides us two key benefits:

1. No user host code. As the user only supplies device kernels, there is
no need for us to run any untrusted host code. This simplifies our setup
greatly, as we hence require no isolation on the host side. Furthermore, the
system can assume full responsibility for memory management and own all
of device memory. Therefore, it can persist GPU memory allocations be-
tween different invocations, avoiding expensive calls to hipMalloc() on the

14



4.1. User Workflow

1 {

2 "module_path": "<path_to_lib>.hsaco",

3 "kernels": ["matmul"],

4 "blueprint": {

5 "inputs": ["cfg", "A"],

6 "buffers": {"B": {"Sizeof": "A"}},

7 "outputs": ["B"],

8 "control_flow": [

9 {"ExecKernel": ["matmul", [{"Ptr": "A"}, {"Sizeof": "A"}, {"Ptr": "B"}],

10 {

11 "grid_dim_x": {"FromInput": {"bufname": "cfg", "idx": 0}},

12 "grid_dim_y": {"FromInput": {"bufname": "cfg", "idx": 0}},

13 "grid_dim_z": {"Absolute": 1},

14 "block_dim_x": {"Absolute": 32},

15 "block_dim_y": {"Absolute": 32},

16 "block_dim_z": {"Absolute": 1},

17 "shared_mem_bytes": {"Absolute": 0}

18 }]}

19 ]

20 }

21 }

Listing 4.1: Example configuration for a matrix/matrix multiplication

hot path.1 Further, recall from Section 2.1.3 that kernels may be prevented
from allocating additional memory by using hipSetDeviceLimit(),2 thus
preventing kernels from leaking memory.

2. More substantial functions. Many kernels are short-lived. In the work-
loads we are targeting (ML inference, image processing, video encoding,
etc.), typical runtimes are in tens to hundreds of microseconds, see Figure
10 of [Han et al., 2022]. On top of this, useful programs tend to consist of
a large number of kernels. For example, a standard CNN requires a large
number of convolution, ReLU, max-pooling, etc. kernel invocations to com-
pute a forward pass. Since a natural data dependency exists between such
kernels, we would be foolish not to take advantage of it.

Recall from 2.1.1 that transferring data onto/off the GPU is a very costly
operation. By allowing a control flow of many kernels, we must only move
data onto and off the device once, significantly reducing the overhead com-
pared to an approach where one function consists of only one kernel. We
can similarly amortise other overheads, such as preparing the function con-
text, transferring inputs, and returning outputs.

1Although this means effort must be put into maintaining isolation between invocations.
2Of course, this means kernels that dynamically allocate memory themselves cannot run,

but this feature is rarely ever used in practice anyhow.
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4.1.1 Limitations

While our design does yield a number of practical benefits, there are always
trade-offs to be made when selecting an approach, and our design is no
different in this regard.

Streams. Recalling Section 2.1.1, streams allow programmers to interleave
non-dependent computation and transfers. For simplicity’s sake, we have
omitted integrating streams into our design, although they provide an ex-
cellent opportunity for future work. Instead, we launch all kernels and
transfers on the implicit default stream. Our justification for this is that
many of the workloads we are targeting feature a fairly linear data flow (e.g.
ML inference), limiting the usefulness of streams. Furthermore, any pro-
gram with many streams can be serialised to use only a single stream. We
thus lose no expressiveness by opting for a single-stream approach.

Multiple devices. While our system is compatible with multiple GPUs, we
restrict each invocation to using a singular GPU. Our motivation for this is
simple: managing, and moving data between multiple GPUs involves sig-
nificant overhead that we deem not worth it for the short-lived workloads
we are targeting. We consider longer-lived workloads that require the paral-
lelism offered by multiple accelerators to be more suited to traditional cloud
computing offerings.

4.2 Memory Management

Each GPU features its own address space. Because current engines all run
on the CPU and thus only use a single address space, managing multiple
memory spaces is a novel challenge in the Dandelion ecosystem. One option
could be to use unified memory (UM) which exposes one shared address
space between CPU and GPUs, but the performance is typically not equiva-
lent to other, more explicit, methods, see [Jin and Vetter, 2022]. We therefore
opt not to use it.

The question becomes how to fit this reality into the abstraction of mem-
ory domains and contexts outlined in Section 2.3.3. We select the following
approach: Each engine takes full ownership of one GPU and consequently
owns and manages all of that GPU’s memory. When a function is invoked,
we use a Dandelion context to receive inputs and static data from the dis-
patcher in the CPU’s address space. Before kernel execution begins, we copy
relevant inputs into GPU memory. Similarly, we copy outputs from device
memory into the context to make them available to the system. To some de-
gree this breaks the notion that a context is a function’s address space—we

16



4.2. Memory Management

rather use it as a means of communication with the dispatcher. A function’s
true address space is GPU memory.

Our approach is motivated by three primary factors:

1. GPU memory cannot be oversubscribed (swapped out).3

2. Current ROCm versions do not support sharing GPU memory be-
tween processes as the allocation of virtual memory is tied to the allo-
cation of physical memory.4

3. Allocating GPU memory is very expensive.

Because GPU memory is rather modestly sized (64GB vs. 500GB on our
machine) and many functions may expect to be able to use most of device
memory, we want to avoid keeping long-lived data in GPU memory unnec-
essarily.

Recall from Section 2.3.3 that function parsing produces a static context
which is used to instantiate the (runtime) context of each subsequent re-
quest. We elaborate on our specific function parsing logic in Section 4.3.1.
For the argument now, it’s important to know a GPU function’s static context
contains the library of kernels. As these libraries can become quite large, it is
thus not an option for us to keep (static) contexts directly in device memory.
Even if we were able to keep static contexts directly in GPU memory without
a penalty, we would need to make sure that malicious kernels couldn’t cor-
rupt them. An option could be to isolate them using processes, but sharing
contexts with them would then become difficult due to point 2. Similarly,
functions would then need to perform costly memory allocations on the hot
path, which we want to avoid due to point 3. Furthermore, in a multi-GPU
setting like ours, data would need to be replicated across accelerators.

4.2.1 Buffer Pool

Following the principles above, we next describe the architecture of our
buffer pool, which is used to make the GPU buffers requested in a con-
figuration file available to its kernels. We design the buffer pool with two
goals in mind:

1. Acquiring buffers should be fast.

2. An honest function’s data should never be leaked.

Recall that as our engine takes full ownership of device memory, we can
persist allocations between function invocations, so long as no informa-
tion is leaked. In practice, the buffer pool allocates (almost) the entirety

3This is possible with UM and AMD’s XNACK technology for page migration, but it is
disabled on our machine.

4NVIDIA offers an API that separates physical/virtual memory allocation.
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of GPU memory as a contiguous chunk on engine startup and then makes
buffers available as an offset from the base plus a length—see Listing 4.2 for
the struct definitions. On function exit, all buffers are simply zeroed out.
Thus, no data can be leaked for a function that accesses strictly the memory
regions provided to it.

1 struct Buffer {

2 offset: usize,

3 length: usize,

4 }

5

6 pub struct BufferPool {

7 allocation: DeviceAllocation,

8 buffers: Vec<Buffer>,

9 }

Listing 4.2: Definition of the Buffer and BufferPool structs

As kernels are prohibited from allocating global memory on the fly, all mem-
ory allocation occurs before the first kernel is launched. In a similar vein,
deallocation occurs after the last kernel has finished execution. Our buffer
pool will hence never have to deal with fragmentation. We can simply iter-
ate over all requested buffers and allocate them in order, appending a new
buffer behind the end of the last one. See Figure 4.1 for a visualisation. This
simple design is highly efficient, offering a minuscule (and O(1)) allocation
time compared to an actual GPU memory allocation. In addition, deallo-
cation is also very quick, as memory can be zeroed out in the contiguous
region from the start of the first until the end of the last buffer using a single
API call.

GPU memory

Buffer 1 Buffer 2 Buffer N...

Figure 4.1: Layout of buffers in GPU memory.

Limitations. While this design shines through its simplicity, it currently
ignores whether or not two buffers are live at once5 and might be able to
occupy the same memory. This may lead to situations where an invocation
throws an out-of-memory error even if the memory capacity is theoretically
sufficient. However, standard techniques from the field of compilers, like

5We say two buffers are live at once if there exists a point in time at which both hold
values on which future computation is dependent.
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register liveness analysis, could be applied here to alleviate this issue in fu-
ture work (this problem can be modelled using graph colouring). Until then,
the issue can also be circumvented if developers explicitly re-use temporary
buffers themselves (such that all buffers are always live).

Implementation Approach

The next two sections, 4.3 and 4.4, discuss the implementation of our se-
quential and concurrent engines, respectively. As will become apparent, we
in essence develop one backend that is able to spawn two different types of
engines. As the engines belong to the same backend, other parts, such as
function parsing, memory domain, and contexts, are entirely identical for
both. Recall the purpose of these components from Section 2.3. We delib-
erately choose this structure—ultimately, we believe the dispatcher should
decide which engine a function should run on, not the user.

Our entire implementation contribution, i.e. the backend consisting of both
engines, helper files, tests, etc., consists of around 2.5k lines of Rust code.
Recall that all of Dandelion is implemented in around 12k lines. In order
to interface with the GPUs, we use the HIP runtime, which is written in
C/C++. We therefore create custom (safe)6 Rust bindings for use in Dande-
lion.

Apart from Dandelion itself, our trusted computing base (TCB) therefore
contains the HIP runtime library, the Rust compiler, the Linux kernel, and
the AMD GPU driver/firmware.

4.3 Sequential Engine

We continue by presenting the first of the two engines. Every sequential
engine takes full ownership of one GPU, on which it executes requests one
at a time in a thread. For this reason, we internally refer to it as gpu_thread.

4.3.1 Function Parsing

Although a GPU function consists of a library and a configuration file, we
take the approach that they need not be registered together at once. In-
stead, uploading libraries occurs independently of function registration, in
which only configuration files are uploaded. This enables the re-use of li-
brary code objects, reducing redundancy on disk and enabling the caching
of commonly used libraries. A future iteration of the system could for ex-

6When we say safe here, we mean it in the Rust sense—calls to the library need not be
wrapped in unsafe and memory leakage is prevented via the Drop trait.
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ample keep commonly used libraries directly on the device to reduce load
times.

Upon function registration, much like any other driver, we build a static
configuration and context for the function. In our case, this involves two
major steps:

1. Deserialising the provided configuration file into an internal Rust rep-
resentation.

2. Acquiring a static context and loading the library file into it.

A code snippet of the function parsing code can be seen in Listing 4.3. Our
context is implemented via mmap()-ed shared memory, which can thus be
shared between processes. The necessity of this will become apparent when
we discuss our concurrent engine in Section 4.4.

1 // Read config file from disk, deserialise, return Rust representation and extracted

module (code object) path

2 let (mut gpu_config, module_path) = config_parsing::parse_config(&function_path)?;

3

4 // Read code object from disk

5 let code_object = load_u8_from_file(module_path)?;

6 let size = code_object.len() * size_of::<u8>();

7 gpu_config.code_object_offset = SYSDATA_OFFSET + std::mem::size_of::<

DandelionSystemData<usize, usize>>();

8

9 // Write code object into static context

10 let mut context = static_domain.acquire_context(size)?;

11 context.write(0, &code_object)?;

12

13 // [... Instantiate returned Function object ...]

Listing 4.3: Snippet of function parsing code.

Note that this static configuration is not sufficient to execute kernels at run-
time, as it performs no heap allocations and moves no code into device
memory. Instead, a static configuration is loaded to create a runtime con-
figuration upon invocation. Listing 4.4 contains a snippet of the respective
code.
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1 // Load module from context

2 let module = hip::module_load_data(base.wrapping_add(self.code_object_offset) as *

const c_void)?;

3

4 // Get functions in loaded module

5 let kernels: HashMap<String, hip::FunctionT> = self

6 .kernels

7 .iter()

8 .map(|kname| {

9 hip::module_get_function(&module, kname).map(|module| (kname.clone(), module)

)

10 })

11 .collect::<Result<HashMap<_, _>, _>>()?;

12

13 // [... Return RuntimeGpuConfig ...]

Listing 4.4: Snippet of runtime configuration loading. self is a static configuration, base
points to the beginning of the context

4.3.2 Runtime Life-Cycle

1. Request
arrives 2. Spawn

execution
thread

3. Load
runtime 
config.4. Allocate

buffers, move
inputs

5. Execute
control flow

6. Move
outputs back

Figure 4.2: Life-cycle of the sequential backend.

As can also be seen in Figure 4.2, the sequential engine performs the follow-
ing steps in order per request:

1. Busy loop on the work queue until a new request arrives.

2. Hand over control to a new thread for execution.

3. Load the runtime configuration.

4. Allocate buffers and move inputs into device memory.

5. Execute the control flow.

6. Write outputs back to the host, free allocated buffers.
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Busy looping. During the development of Dandelion it was found that
using other approaches for awaiting data (such as asynchronous runtimes)
tended to bottleneck the system’s maximum throughput. Thus, as the en-
gine’s CPU is idle anyway when no work is available, we opted for the busy
looping approach.

Execution Thread. Functions are executed in a new thread in order to han-
dle possible runtime faults (e.g. dereferencing nullptr in a kernel). A
handler for such an event can be registered using the driver-level API’s
hsa_amd_register_system_event_handler(), which would then need to
shoot down the main execution thread.

Control Flow. Executing the control flow is a fairly straightforward task.
Currently, control flow consists of either a (finite) repetition of other control
flow or a kernel execution. Hence, we can simply iterate over the control-
flow graph, recursively executing repetitions. For now, we opt against
adding more sophisticated control flow, e.g. branching or unbounded loop-
ing, for simplicity’s sake and to prevent users from inadvertently causing an
infinite loop, although this can easily be added in future work.

Right now, we support kernel arguments that are pointers (to GPU buffers),
sizes of buffers in bytes (as an unsigned 64-bit integer), or signed 64-bit
integer immediates. We deem this to capture the vast majority of all kernel
arguments, though more can easily be added if the need arises. HIP expects
arguments as an array of void pointers, so care must be taken that they point
to valid memory. We achieve this by copying stack-located arguments into
a heap-allocated Vec (dynamic array) that lives until the end of the kernel’s
invocation.

Listing 4.5 shows a snippet of the control-flow execution procedure.
1 // [... Function declaration ...]

2 for action in actions {

3 match action {

4 Action::ExecKernel(name, args, launch_config) => {

5 // HIP expects arguments as an array of void pointers

6 let mut params: Vec<*const c_void> = Vec::with_capacity(args.len());

7 // [ ... Allocate storage for arguments here so pointers are valid ... ]

8 for arg in args {

9 match arg {

10 Argument::Ptr(bufname) => {

11 // [ ... ]

12 }

13 Argument::Sizeof(bufname) => {

14 // [ ... ]

15 }

16 Argument::Constant(constant) => {

17 // [ ... ]

18 }
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19 };

20 }

21

22 // Launch kernel using custom HIP bindings

23 hip::module_launch_kernel(

24 config.kernels.get(name).unwrap(),

25 get_size(&launch_config.grid_dim_x, buffers, context)? as u32,

26 // [... Get sizes of other dimensions ...]

27 get_size(&launch_config.shared_mem_bytes, buffers, context)?,

28 DEFAULT_STREAM,

29 params.as_ptr(),

30 null(),

31 )?;

32 }

33 Action::Repeat(times, actions) => {

34 let repetitions = get_size(times, buffers, context)?;

35 for _ in 0..repetitions {

36 execute(actions, buffers, buffer_pool, context, config)?;

37 }

38 }

39 }

40 }

Listing 4.5: Snippet of control-flow execution procedure.

4.4 Concurrent Engine

While the sequential engine provides a good first step, room for improve-
ment is still left. For instance, while a CPU/GPU data transfer is taking
place or while host code is being executed, the GPU’s compute units (CUs)
are left unused. Similarly, many functions do not utilise all of the GPU’s
CUs. The concurrent engine intends to increase accelerator utilisation and
therefore ultimately overall throughput.

An engine once again takes full ownership of one GPU, only this time it uses
multiple worker processes to make progress on different requests simulta-
neously. For this reason, we internally refer to the concurrent engine as
gpu_process. Recall from Section 2.1.3 that processes can be used to concur-
rently execute kernels on the GPU while maintaining isolation; something
that is not possible by simply using threads, for example.

Figure 4.3 visualises the architecture of the concurrent engine. Each worker
process has an associated engine thread in the main Dandelion process. Sim-
ilar to gpu_thread, these engine threads all busy loop on the work queue
until they obtain a request. While CPU-only requests (like transfers) are ful-
filled directly in the engine thread, function invocations are serialised and
dispatched to the respective worker process. In other words, an invocation
is handled by exactly one worker. Upon receiving an invocation request, the
worker deserialises it and executes it much like gpu_thread. Once a result
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Figure 4.3: Architecture of the concurrent backend.

is produced, the respective engine thread is informed and can then fulfil its
debt to the dispatcher.

Number of workers. When it comes to the number of worker processes,
there is an inherent tradeoff. Recall from Section 4.2 that GPU memory can-
not be overcommitted. Thus, when dividing memory up evenly among N
workers, each may use only 1

N of the total memory capacity. Furthermore,
while compute queues on the GPU may be oversubscribed, this can cause
significant performance degradation [AMD, 2019a]. On the other hand,
more worker processes allow for more concurrency.

While we initially tried four worker processes, we ultimately opted to use
only two, though this is something that can easily and dynamically be
adapted on engine startup. See Section 5.4 for a more detailed performance
analysis.

4.4.1 Inter-Process Communication

An engine thread and its associated worker process exchange messages via
piped standard I/O.

Fundamentally, all that is needed to execute a function is its context and its
configuration.7 While the configuration can be directly serialised, the con-
text is a bit trickier. In addition to some metadata (e.g. which inputs/output
exist, where data is spread, etc.) that can easily be serialised, a context holds
a handle to process-local memory. We therefore obviously cannot directly
share it with other processes. It is for this reason that we opted to choose a
context backed by shared memory—we can simply share the filename with

7In practice the names of the outputs are also provided as an additional argument, but
this could be part of the configuration as well.
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the worker process which can then locally mmap() the memory. Figure 4.4
illustrates this further.

Serialise

Context

Pointer

Metadata

Deserialise

Context IR

Filename

Serialised Metadata

Context

Pointer

Metadata

Figure 4.4: Sharing contexts with worker processes.

Returning results on the other hand is very simple, as the engine thread
already has a handle on the shared memory. All it therefore needs to do is
update its metadata, which it can simply do by scanning over the context.

4.4.2 Safety Discussion

Local Memory. Kernels are able to manage local memory8 without inter-
vention from the host. As a result, the kernel itself must take care to zero
any local memory it allocates before exiting to prevent data leakage. The
same goes for private memory (often mapped to registers), although both
could feasibly be integrated into the (open-source) AMD driver.

LeftOverLocals. LeftOverLocals [Sorensen and Khlaaf, 2024] is a recent vul-
nerability affecting (among others) AMD GPUs, allowing the leakage of local
memory between concurrent processes. A driver update that addresses the
vulnerability is scheduled for release in July 2024 [AMD, 2024]. In order
to prevent leakage, it will add a mode preventing processes from running
in parallel on GPUs and clear local memory between processes. We expect
this new mode to therefore decrease the performance of gpu_process. Our
current system thus showcases the performance of (potentially future) hard-
ware that is not affected by the exploit.9

8When we say local memory here, we mean it in the AMD sense—that is the per-block
memory. NVIDIA would call this shared memory.

9NVIDIA accelerators are not affected, for example.
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Chapter 5

Evaluation

In the following chapter, we will assess the performance of our engines
relative to each other, as well as to a non-GPU-accelerated Dandelion engine
and a GPU-accelerated bare-metal server.

Hardware setup. For our evaluation, we use a HACC box from the ETHZ-
HACC cluster [Moya et al., 2023], featuring two AMD EPYC 7V13 64-core
CPUs clocked at 2.45 GHz, 500GB RAM, and four AMD Instinct MI210
GPUs with 64GB VRAM each, running Ubuntu 20.04 LTS and ROCm 5.7.1.
A separate 16-core machine generates load via a 100Gb/s link.

Server setup. We compare the following engines/servers with the speci-
fied setup:

1. dedicated_gpu: The GPU-accelerated bare-metal server, whose archi-
tecture is expanded upon in Section 5.1.

2. dandelion_process: A previously developed CPU-only Dandelion
backend that isolates functions by executing them in a designated pro-
cess. Each engine executes requests sequentially and requires one CPU
core. We run the Dandelion server with two frontend cores and one
dispatcher core.

3. dandelion_gpu_thread: The sequential GPU engine described in Sec-
tion 4.3. We again run the server with two frontend cores and one
dispatcher core. We use all four GPUs.

4. dandelion_gpu_process: The concurrent GPU engine described in
Section 4.4. We choose the same server setup as previously.

Additional Information. Supplementary details about the evaluation setup,
such as the exact git hashes used for each experiment can be found in Ap-
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pendix A.

Technical Terms. We briefly define the terminology we will use in the fol-
lowing experiments’ analyses.

Requests-per-second (RPS). The number of requests made to the server in a
given second. We sometimes also refer to RPS as load.

Latency. The time elapsed between a given request being sent and its result
being returned.

(Maximum) Throughput. The maximum number of requests the server can
service (per second) without latency spiking or requests dropping. We
sometimes call this the point until which the server scales.

Hot request. A request is hot if it is cached to some degree (e.g. its depen-
dencies are present in main memory). This is typically the case if the
respective function was accessed recently.

Cold request. A request is cold if it is not cached (e.g. its dependencies must
be fetched from disk). This is typically the case if the respective func-
tion was not accessed recently.

Approach. In the following experiments, we focus mainly on the 99th per-
centile (P99) latency, as tail latency is a key concern in serverless. Addition-
ally, as long as the load is below the maximum throughput, median (P50)
and P99 latencies tend to be quite similar in our system. Whenever there is
an interesting discrepancy between P50 and P99, we mention it explicitly.

5.1 Dedicated Server Design

As there exists no readily available competitor for what we are trying to
achieve, we build a bare-metal, dedicated server as a baseline. The funda-
mental idea behind this server is to capture the performance of a dedicated,
single-tenant server which is built specifically for each workload (instead of
using a platform like Dandelion). In some sense, it is thus a primitive type
of single-domain service API.

Philosophically speaking, we design the server in such a way that “similar”
effort is put into its implementation as would be required to get the same
functionality running on Dandelion. As a result, while it provides good per-
formance, we do not claim that it extracts the maximum possible potential
out of the provided hardware. Further, unlike in Dandelion, we place no
requirements on security or isolation, as these would not be required in a
dedicated server, due to it being single-tenant.
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The dedicated server uses a similar architecture to gpu_process. Requests
are handled by a frontend that dispatches work to a set of threads, each with
an associated worker process. Once again, we choose two worker processes
per GPU. We initially tried to instead use streams for concurrency but ran
into scaling trouble when using more than three GPUs, which is why we
finally opted for the design above. This unexpected behaviour has been
reported to AMD. Unlike Dandelion, however, data is copied from pinned
memory,1 which can be transferred at a higher rate than regular (paged)
memory, as it cannot be swapped out.

5.2 Matrix/Matrix Multiplication

In this experiment, we perform a singular matrix/matrix multiplication of
the form A × AT for a 128 × 128 matrix A of 64-bit signed integers, which is
provided in the request. The primary purpose of this workload is to provide
a comparison to other Dandelion backends. For instance, this benchmark is
used in [Kuchler et al., 2023], and [Thomm, 2024]. Finally, as computing
such an operation is very quick on GPUs, it provides insight into the over-
head of the system (e.g. generating the context, scheduling, loading kernels,
moving data, etc.).

We perform two sweeps over the load; in 5.2.1 every request is hot, whereas
in 5.2.2 every request is cold. For each server, we increase the load so long
as the error rate2 remains below one per cent.

5.2.1 One Hundred Per Cent Hot

The results of the 100% hot load sweep are given in Figure 5.1. From 5.1a,
one can clearly see that the dedicated server achieves a much lower base
latency and hence higher throughput than its Dandelion counterparts. This
is expected, given that the dedicated server

1. uses pinned memory for data transfers to the GPU, thus being able to
make use of a higher bandwidth,

2. requires much less sophisticated scheduling logic than Dandelion,

3. does not need to load the kernels on the hot path, and

4. does not need to clear memory after use, as no isolation is required.

1To do this in practice, the HTTP library should write directly to shared pinned memory
in order to avoid unnecessary data movement. We instead make use of the fact that each
request is the same, and keep a copy of the data in pinned memory, allowing us to achieve a
view of optimal performance without needing to extensively modify our HTTP library.

2Timeouts are considered errors as well.
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Figure 5.1: 100% hot 128 × 128 matrix/matrix multiplication load sweep.

The initial decrease in latency is likely due to frequency scaling of the CPU
cores, which we unfortunately cannot disable.

Shifting to 5.1b, we can note that the base latency of the GPU engines is
lower than the CPU-only dandelion_process. While GPU computation is
of course much quicker, data still needs to be moved onto the accelerator. In-
deed, looking at an execution trace reveals that the vast majority of the time
is spent transferring data, whereas computation is almost instant by compar-
ison. Considering this, the GPU engines beating dandelion_process speaks
well for them. Also note that the spike at 400rps for dandelion_process is
merely an outlier, likely caused by an OS job temporarily demanding com-
pute resources or a brief change in frequency scaling. The median latency
was not affected.

Comparing the GPU engines, we can see that their base latencies are very
similar. Thanks to its concurrent architecture, gpu_process scales until
about 2× the throughput of gpu_thread.
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5.2.2 Zero Per Cent Hot
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Figure 5.2: 0% hot 128 × 128 matrix/matrix multiplication load sweep.

Figure 5.2 shows the results of the 0% hot RPS sweep. Note the absence of
dedicated_gpu, as the notion of a cold start does not exist for it, since its
functionality is baked into the server binary and doesn’t need to be loaded.
Firstly, we observe that both GPU engines now produce a higher base la-
tency and scale to a lower throughput as a result.

Curiously, dandelion_process’s base latency seems to only rise very slightly.
We predict this is due to the different function parsing procedures—in the
case of dandelion_process, a ∼ 8 KB binary needs to be loaded from disk
and written to the static context, whereas gpu_thread and gpu_process

need to load a ∼ 1KB .json file from disk, deserialise it, and then write
a ∼ 45KB library (that should be in the OS’s file buffer) to the static context.
Therefore, it is not surprising that cold requests have a comparatively larger
impact on the GPU backends’ latency.

5.3 Inference Workload

Our inference workload measures the performance of our system in a typ-
ical machine learning inference / computer vision context. To this end, we
perform a convolution, ReLU, and max-pooling by a factor of 2 on a pro-
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vided 224 × 224 matrix of 32-bit floats.3 The convolutional filter is of size
5 × 5. This process therefore effectively simulates one layer of a convolu-
tional neural network (CNN). As CNNs are deep in practice, we repeat this
process many times.

In Section 5.3.1, we sweep over the number of repetitions at fixed load. In
Section 5.3.2 we fix the number of repetitions but vary the load. Once again,
we increase load as long as the error rate remains below 1%. In both exper-
iments, all requests are 100% hot, as we learned from the previous experi-
ment that cold requests do not fundamentally affect the engines’ behaviour.

5.3.1 Base Latency

0 200 400 600 800 1000
Repetitions

100

101

102

103

P9
9 

La
te

nc
y 

[m
s]

dandelion_gpu_process
dandelion_gpu_thread
dandelion_process

Figure 5.3: Inference workload repetition sweep at 25rps. Note the log scale.

In Figure 5.3 we can see the results of increasing the number of repetitions
of our convolution, ReLU, max-pooling pipeline. With this experiment, we
aimed to investigate whether using the CPU-only engine would yield in-
creased performance when repetitions were low compared the the GPU en-
gines due to their associated data movement costs. If this was the case, we
also wanted to find out where the break-even point was.

However, we can clearly see that even at just one repetition, the GPU engines
achieve an around three to four times lower 99th percentile latency. This gap
only widens as compute increases. Overall, we can note a linear relationship

3In other words, such a matrix is a greyscale image. The dimensions of 224 × 224 are the
de facto standard for computer vision.
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5.3. Inference Workload

between repetitions and latency (the curve has a log-shape in the log-lin
plot), which is what we expected. Furthermore, we can observe a slightly
higher base latency for gpu_process than gpu_thread, which makes sense
considering the engine has to share GPU resources and involves additional
inter-process communication.

5.3.2 Latency under Load
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(a) With dandelion_process. Note the log-scale.
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(b) Without dandelion_process.

Figure 5.4: Inference workload load sweep at 500 repetitions.

Figure 5.4 showcases the results of the load sweep at 500 repetitions. From
5.4a we can discern that, as we would expect, dandelion_process cannot
keep up with its GPU-accelerated counterparts. Nonetheless, it’s worth
pointing out that in this setting, the throughput of ∼ 200rps is indeed lim-
ited by the base latency, as

Number of compute cores
Base latency (seconds)

≈ 125
0.6

≈ 200.

In other words—computation is the bottleneck here.

Discarding dandelion_process in 5.4b, we can take a closer look at the per-
formance of the GPU-accelerated servers. Unlike in Figure 5.1a, we can
ascertain that the GPU engines achieve similar base latencies as the dedi-
cated server. We can explain this due to the much longer computation time
amortising Dandelion’s additional work on the critical path.
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5.4. Effect of Worker Count on Concurrent Engine

Next, we can see that the servers are all also latency-bound in their through-
put, with gpu_process scaling twice as much as gpu_thread. The dedi-
cated server behaves similarly to gpu_process, which makes sense given
their similar architectures. Finally, it should be mentioned that the spike for
gpu_thread at 350rps is again only an outlier that did not affect P50 latency.

5.4 Effect of Worker Count on Concurrent Engine

With this experiment, we aim to justify our choice of selecting two workers
per gpu_process engine. We run the same experiment as in Section 5.3.2,
except once using two workers per engine (i.e. the same as previously)
and once using four workers per engine. For our hardware, we deem more
than four workers to be impractical, as using any more would limit each
worker to less than 16GB of GPU memory, which is required for many useful
workloads.
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Figure 5.5: Inference workload load sweep varying the number of gpu_process workers.

Figure 5.5 shows the results of the measurement. While base latencies are
initially similar, the four-worker variant quickly rises to around double that
of the two-worker variant. As a result, the doubled parallelism is effectively
cancelled out, with both scaling to a similar throughput of around 800rps.
We will now explore some possible causes for this increase in latency.

Typically, when latency rises like this, it is due to resource contention. A first
culprit could be that there are insufficient free compute units (CUs) around.
Recall from Section 2.1.2 that CUs are the processors of GPUs, to which
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5.5. Batched Inference

blocks of threads are assigned for execution. A quick calculation however
shows that, at least in theory, four concurrent runs of our pipeline could fit
on the GPU.

The largest kernel in our pipeline runs on a 224 × 224 grid. We choose the
maximum block size our GPU supports, 32 × 32,4 i.e. 1024 threads, thus
resulting in a total of

224 · 224
32 · 32

= 49

blocks. Our GPU has a limit of 2048 threads per CU, so each CU can handle
up to 2 blocks at once. Hence, ⌈ 49

2 ⌉ = 25 CUs are sufficient to run our
pipeline. With our GPU featuring 104 CUs, we therefore theoretically have
the capacity for four concurrent pipeline runs. We thus expected the latency
between two and four workers not to differ much.

If we do some simple profiling, we however observe that blocks are typi-
cally assigned to more CUs (we found the total number to be around 40).
Such a policy would explain the scaling behaviour under the condition that
CUs cannot host blocks from different processes simultaneously. Investigat-
ing this further is a challenging matter however, as it requires knowledge of
micro-architectural scheduling policies that are often not publicly disclosed.
See [Gilman et al., 2021] for a discussion of such a policy on NVIDIA de-
vices.

Of course, many other resources can become contended as well, including
execution queues, caches, and data interconnects to name a few. Finding an
optimal setup is therefore dependent on a lot of factors and will certainly
differ from one accelerator to the other.

We do not claim that always using two workers is a one-size-fits-all solution;
in fact, it is conceivable that there exists a hardware setup and respective
workload where more workers could yield a benefit. Thankfully, the num-
ber of workers can easily be varied upon engine startup, so this is feasibly
something a future version of the dispatcher could have a bearing upon.

5.5 Batched Inference

Based on the previous experiments, one could be led to believe that us-
ing gpu_process offers doubled scaling “for free” in all cases since the
penalty of halved memory capacity is only relevant in a select few appli-
cations. While this is certainly the case in the experiments presented until
now (and therefore also applies to many real use cases), in this section we

4Choosing a larger block size is beneficial so long as enough resources (registers, local
memory, etc.) are available, as local memory can be shared between threads in a block.
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5.5. Batched Inference

aim to explore conditions under which gpu_process scales less than double
of gpu_thread.

Recall from our calculation in Section 5.4 that the inference workload does
not issue enough blocks at once to fully saturate the GPU’s compute units,
which is precisely what enabled the concurrency of gpu_process. Thus,
in this experiment, we add batching to our inference workload. Batching
is a common technique in GPU programming, used to increase compute
utilisation. Instead of operating on a single matrix at once, we extend our
compute grid with a third dimension, operating on several matrices at once.

As before, we perform multiple iterations of our inference pipeline. In Sec-
tion 5.5.1, we explore the impact different batch sizes have on the base la-
tency. Section 5.5.2 compares the scaling behaviour for batch sizes two and
eight.

5.5.1 Base Latency
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Figure 5.6: Sweep over the batch size for batched inference at 25rps.

Figure 5.6 shows the results of varying the batch size for our inference work-
load while keeping the load steady at 25 requests per second. With this
experiment, we were particularly interested in seeing whether (and where)
a saturation point exists. Before this point, the latency should not increase
very much as additional compute units can still be utilised. Once the device
is saturated, the latency should increase linearly as blocks start to queue for
execution.
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5.5. Batched Inference

While there is only a slight increase in latency between batch sizes one and
two, we can see that the GPU begins to become fully saturated starting at
batch size three, with all subsequent points featuring a fairly linear relation-
ship between batch size and latency. We can also be confident that the device
is being fully utilised—recall from Section 5.4 that our pipeline requires at
least 25 CUs without batching. Also, recall that each of our GPUs features
104 CUs. In other words, the pipeline only requires one-quarter of the total
CUs in the optimal case. With batch size ten (i.e. a 10× increase in work)
we can, for example, note an only ∼ 2.5× increase in latency, suggesting
that all CUs are being used, as the accelerator is capable of handling 4× the
work without blocks needing to queue for execution. Compared to Section
5.4, we believe the accelerator is able to more effectively pack blocks onto
CUs, as work is being issued in larger batches.

5.5.2 Latency under Load
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(a) Batch size 2.
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(b) Batch size 8.

Figure 5.7: Batched inference load sweep.

Figure 5.7 compares the scaling behaviour of gpu_thread and gpu_process

at batch sizes two (5.7a) and eight (5.7b), i.e. before and after the saturation
point. The main takeaway is that as long as the GPU is not fully utilised
yet, gpu_process can aid scaling. For example, in 5.7a, we can observe an
around 1.75× higher throughput. At batch size eight, the accelerator is fully
loaded independently of which backend is used. It is worth noting that
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5.5. Batched Inference

gpu_process still scales roughly 25rps further, likely due to it still gaining
some parallelism by concurrently executing kernels and transferring data,
though such a meagre increase in maximum throughput does not offset the
increased base latency and reduced memory capacity in our eyes. Finally,
gpu_thread’s spike at 300rps in the left figure is once again an outlier likely
caused by external factors.

As a result, we can now formulate circumstances under which dispatch to
gpu_thread should be favoured:

1. The function requires more memory than gpu_process can offer.

2. The function issues enough blocks at once to fully saturate the GPU.

As both of these parameters are known at the time of invocation, a future
version of the dispatcher could feasibly decide on which backend a function
should run without any user intervention. Not only would this abstract
away the hardware in the true spirit of serverless, but it would be a testament
to Dandelion’s potential for powerful dataflow-aware scheduling.
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Chapter 6

Conclusion and Future Work

In this project, we developed two GPU-accelerated executors for the Dande-
lion platform. By taking advantage of Dandelion’s innovative programming
model and system design, we were able to show that efficient and general-
purpose GPU-accelerated serverless is feasible.

We presented our vision for GPU functions in Dandelion and explored the
details of our implementation. In particular, our policy on memory man-
agement prevents expensive memory allocations on the hot path, while our
concurrent engine extracts the maximum performance out of our hardware,
even if individual functions do not require the entire accelerator’s capa-
bilities. Further, we discussed how our engines enforce isolation between
tenants.

In our evaluation, we showed that GPU acceleration can result in great per-
formance benefits over CPU-only computation, even for computationally
modest workloads. In addition, we showcased the differences between our
sequential and concurrent engines and laid out clear cases in which one
should be favoured over the other.

We continue by listing opportunities for future research:

Different Hardware. Our current system runs on AMD accelerators. How-
ever, in both industry and academia, NVIDIA hardware is the de facto stan-
dard. Extending the system to run on NVIDIA GPUs could therefore al-
low significantly more clients to make use of our platform. In addition,
NVIDIA’s multi-instance GPU (MIG) technology could be used to exercise
more control over GPU sharing rather than relying on process scheduling
like in our concurrent engine. Further, unified memory could be used to
implement a genuine on-device memory domain.
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Streams. Recall from Section 4.1.1 that we currently execute all kernels on
a single stream. In the future, we would like to allow the programmer to
use streams to more easily express complicated, independent control flow.

Better buffer pool. When we introduced our buffer pool in Section 4.2.1,
we explained that our current design allocates all buffers sequentially in
memory, even if they are not all live at the same time. This could be im-
proved by a smarter buffer pool that allows temporary buffers that are not
live at the same time to be re-used. In particular, this would be helpful for
workloads that allocate many temporary buffers.

Automatic Configuration Generation. Today, a vast number of frameworks
exist that allow users to take advantage of GPU acceleration without ever
needing to write any kernels themselves. Our design on the other hand
is a lot more low-level. However, we explicitly designed our configura-
tion format with programmatic generation in mind. In future work, we
envision whole GPU functions to be conveniently automatically generated.
To achieve this, frameworks like Google’s JAX [Bradbury et al., 2018] or
Apache TVM [Apache, 2018] could be extended with custom backends that
produce Dandelion GPU functions.

Finally, we hope that this thesis provided an interesting insight into the
potential of GPU acceleration for serverless. We believe that the usage of
dedicated hardware accelerators combined with innovative platforms like
Dandelion can yield huge gains in both performance and efficiency.
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Appendix A

Addendum on Evaluation Setup

Component Type Notes

CPU 2x AMD EPYC 7V13 64-core @ 2.45GHz SMT disabled

RAM 500GB —

GPU 4x AMD Instinct MI210 w/ 64GB VRAM —

GPU Driver ROCm 5.7.1 —

OS Ubuntu 20.04 LTS —

Kernel Linux 5.4 —

Table A.1: Hardware setup of a HACC-box.

All experiments can be replicated with the dandelionExperiments repos-
itory at git hash 6dc5e0d1fa48320d856e556c81b7e34ffdd92a98. Due to
some values (e.g. number of inputs of a function or worker count) being
hard-coded, the experiments were recorded with slightly different versions
of the main dandelion repository. The core functionality however remains
exactly the same.

Experiment dandelion Repository Hash

Matrix Multiplication a8fdd5f6beb1f3180f839d30d354102a26f5eb65

Inference cbe10d2daacabef74204e2a8f0291b6d7cc6c2c3

Inference w/ 4 Workers b9725f3be68886f3750bd9b5aeb6a3b1e16bf4d6

Batched inference 90db6d3a00f465cde8b5ccd83786821aca154b88

Table A.2: dandelion repository git hashes.
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