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Accelerating histopathology workflows with 
generative AI-based virtually multiplexed 
tumour profiling

Pushpak Pati1, Sofia Karkampouna2,3, Francesco Bonollo    2, Eva Compérat4, 
Martina Radić    2, Martin Spahn5,6, Adriano Martinelli1,7,8, Martin Wartenberg    9, 
Marianna Kruithof-de Julio    2,3,10   & Marianna Rapsomaniki    1,8,11 

Understanding the spatial heterogeneity of tumours and its links to disease 
initiation and progression is a cornerstone of cancer biology. Presently, 
histopathology workflows heavily rely on hematoxylin and eosin and serial 
immunohistochemistry staining, a cumbersome, tissue-exhaustive process 
that results in non-aligned tissue images. We propose the VirtualMultiplexer, 
a generative artificial intelligence toolkit that effectively synthesizes 
multiplexed immunohistochemistry images for several antibody markers 
(namely AR, NKX3.1, CD44, CD146, p53 and ERG) from only an input 
hematoxylin and eosin image. The VirtualMultiplexer captures biologically 
relevant staining patterns across tissue scales without requiring consecutive 
tissue sections, image registration or extensive expert annotations. Thorough 
qualitative and quantitative assessment indicates that the VirtualMultiplexer 
achieves rapid, robust and precise generation of virtually multiplexed imaging 
datasets of high staining quality that are indistinguishable from the real ones. 
The VirtualMultiplexer is successfully transferred across tissue scales and 
patient cohorts with no need for model fine-tuning. Crucially, the virtually 
multiplexed images enabled training a graph transformer that simultaneously 
learns from the joint spatial distribution of several proteins to predict clinically 
relevant endpoints. We observe that this multiplexed learning scheme was 
able to greatly improve clinical prediction, as corroborated across several 
downstream tasks, independent patient cohorts and cancer types. Our results 
showcase the clinical relevance of artificial intelligence-assisted multiplexed 
tumour imaging, accelerating histopathology workflows and cancer biology.

Tissues are spatially organized ecosystems, where cells of diverse phe-
notypes, morphologies and molecular profiles coexist with non-cellular 
compounds and interact to maintain homeostasis1. Several tissue stain-
ing technologies are used to interrogate this intricate tissue architec-
ture. Among these, hematoxylin and eosin (H&E) is the undisputed 
workhorse, routinely used to assess aberrations in tissue morphology 
linked to disease in histopathology workflows2. A notable example is 
cancer, where H&E staining can reveal abnormal cell proliferation, 

lymphovascular invasion and immune cell infiltration, among others. 
Complementary to the morphological information available via H&E, 
immunohistochemistry (IHC)3 can detect and quantify the distribution 
and localization of specific markers within cell compartments and 
within their proper histological context, crucial for tumour subtyping, 
prognosis and personalized treatment selection. As tissue restain-
ing in conventional IHC is limited, repeated serial sections stained 
with different antibodies are required for in-depth tumour profiling, 
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patterns9. To alleviate these concerns, some studies employ qualitative 
assessment through pathological examination of the virtual images22,24. 
Still, a persistent concern is the presence of hallucinations in virtual 
images33 that might otherwise appear realistic even to experienced 
pathologists. Ultimately, to ensure that virtual images not only visually 
appear realistic but also are useful from a clinical standpoint, using 
them as input to downstream models that predict clinical endpoints 
could provide an unbiased, convincing validation9.

Here, we propose the VirtualMultiplexer, a generative toolkit that 
translates H&E images to matching IHC images for a variety of markers 
(one IHC marker at a time) (Fig. 1a,b). The VirtualMultiplexer is inspired 
by contrastive unpaired translation (CUT)34, an appealing alternative to 
CycleGAN that achieves content preservation by maximizing the mutual 
information between target and source domains. Our toolkit does not 
necessitate pixel-wise aligned H&E and IHC images and, in contrast to 
existing approaches, requires minimal expert annotations only on the 
IHC domain. To ensure biological consistency, the VirtualMultiplexer 
introduces an architecture with multiscale constraints at the single-cell, 
cell-neighbourhood and whole-image level that closely mimics human 
expert evaluation. We trained the VirtualMultiplexer on a prostate cancer 
tissue microarray (TMA) containing unpaired H&E and IHC images for 
six clinically relevant nuclear, cytoplasmic and membrane-targeted 
markers. We evaluated the generated images using quantitative fidel-
ity metrics, expert pathological assessment and visual Turing tests and 
assessed their clinical relevance by predicting clinical endpoints (Fig. 1c). 
We successfully transferred the model across tissue image scales and 
out-of-distribution patient cohorts and demonstrated its potential to 
transfer across tissue types (Fig. 1d). Our results suggest that the Virtual-
Multiplexer generates realistic, indistinguishable from real, multiplexed 
IHC images of high quality, outperforming existing methods. Using 
the virtually multiplexed datasets improves the prediction of clinical 
endpoints not only in the training cohort but also in two independent 
prostate cancer patient cohorts and a pancreatic ductal adenocarcinoma 
(PDAC) cohort, with important implications in histopathology.

Results
VirtualMultiplexer is a virtually multiplexed staining toolkit
The VirtualMultiplexer is a generative toolkit for unpaired S2S transla-
tion, trained on unpaired real H&E (source) and IHC (target) images 
(Fig. 2; detailed description in Methods). During training, each image 
is split into patches that are fed into a generator network G that condi-
tions on input H&E and IHC and learns to transfer the staining pattern, 
as captured by IHC, to the tissue morphology, as captured by H&E. The 
generated IHC patches are stitched together to create a virtual IHC 
image (Fig. 2a). We train an independent one-to-one VirtualMultiplexer 
model for each IHC marker at a time. To ensure staining reliability, we 
propose a multiscale approach, designed to accurately learn staining 
specificity at a single-cell level and content and style preservation at a 
cell-neighbourhood and whole-image level, which involves jointly 
optimizing three distinct loss functions (Fig. 2b). The neighbourhood 
loss (1) ensures that generated IHC patches are indistinguishable from 
real IHC patches and consists of an adversarial and a multilayer contras-
tive loss (Fig. 2b), adopted from CUT34. The adversarial loss ℒadv (1a) is 
a standard GAN loss35, where real and virtual IHC patches are used as 
input to patch discriminator D, which attempts to classify them as 
either real or virtual, eliminating style differences. The multilayer con-
trastive loss (1b) is based on a patch-level noise contrastive estimation 
(NCE) loss34 ℒcontrastive that ensures that the content of corresponding 
real H&E and virtual IHC patches is preserved across multiple layers of 
Genc: that is, the encoder of the generator G. The VirtualMultiplexer 
introduces two losses: a global consistency loss and a local consistency 
loss (Fig. 2b). The global consistency loss (2) uses a feature extractor 
F and enforces content consistency between real H&E and virtual IHC 
images (ℒcontent) and style consistency between real and virtual IHC 
images (ℒstyle) across multiple layers of F. The local consistency loss 

a time-consuming and tissue-exhaustive process, prohibitive in cases 
of limited tissue availability. Additionally, serial IHC staining yields 
unaligned, non-multiplexed images occasionally of suboptimal quality 
due to artefacts, and tissue unavailability may lead to missing stainings 
(Fig. 1a). Recently, multiplexed imaging technologies4–6 have enabled 
the simultaneous quantification of dozens of markers on the same 
tissue, revolutionizing spatial biology7. Still, their high cost, cumber-
some experimental process, tissue-destructive nature and need for 
specialized equipment severely limit clinical adoption.

Virtual staining—that is, artificially staining tissue images using 
generative artificial intelligence (AI)—has emerged as a promising 
cost-effective, accessible and rapid alternative that addresses the 
above limitations8,9. A virtual staining model is trained on two sets 
of images—a source and a target set—and learns the source-to-target 
appearance mapping10,11 so as to simulate the target staining on the 
source, ultimately producing at inference time a virtual target image. 
Initial virtual staining models were based on different flavours of gen-
erative adversarial networks (GANs) operating under a paired setting: 
that is, they depended on precisely aligned source and target images, 
which allowed them to directly optimize a pixel-wise loss between 
the virtual and real images12. Successful examples of paired models 
include translating label-free microscopy to H&E and specific stain-
ings13–16, H&E to special stains17,18, H&E to IHC19,20 and IHC to multiplex 
immunofluorescence21. However, as tissue restaining is not routinely 
done, paired models depend on aligning tissue slices via image regis-
tration, a time-consuming and error-prone process, often infeasible in 
practice because of substantial discrepancies even between consecu-
tive slices. Additionally, as tissue architecture largely alters after the 
first slices, retrospective addition of new markers is impossible. To 
circumvent these limitations, unpaired stain-to-stain (S2S) translation 
models have recently emerged, with early applications in translating 
from H&E to IHC22–26 and special staining27,28 and from cryosections to 
formalin-fixed paraffin-embedded (FFPE) sections29. The vast major-
ity of unpaired models are inspired by CycleGAN30; they depend on an 
adversarial loss to preserve the source content and a cycle consistency 
loss to preserve the target style. Some employ additional constraints: 
for example, domain-invariant content and domain-variant style22, 
perceptual embeddings24 or structural similarity25.

An important limitation of CycleGAN-based models is that cycle 
consistency assumes a bijective mapping between the source and 
target domains30, which does not hold for many S2S translation tasks. 
As a result, a persistent problem is staining unreliability, observed as 
incorrect mappings across domains: for example, positive signals 
from the source domain are mapped to negative signals from the 
target domain. To account for staining unreliability, recent works 
guide the translations via expert annotations: ref. 26 translates H&E to 
cytokeratin-stained IHC using expert annotations of positive and nega-
tive metastatic regions on the H&E images, and ref. 25 translated H&E to 
Ki67-stained IHC by leveraging cancer and normal region annotations in 
both H&E and IHC images. Although these approaches show promising 
results for these specific translation tasks, acquiring such annotations 
is impractical when translating to several IHC markers and infeasible 
even for experienced pathologists for specialized tasks (for example, 
identifying p53+ cells in H&E images). To circumvent the annotation 
challenge, ref. 31 recently introduced a semisupervised approach, 
which, however, again depends on image registration. Consequently, 
there is a great need for unpaired S2S translation models that preserve 
staining consistency without needing consecutive tissue sections, 
image registration or extensive annotations on the source domain.

Regardless of the underlying modelling assumptions, another 
important limitation of S2S translation methods concerns evaluation. 
As ground-truth and virtually generated images are not pixel-wise 
aligned, S2S translation quality is typically quantified at a high feature 
level using inception-based scores32. However, these scores do not guar-
antee accurate preservation of complex and biologically meaningful 
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Fig. 1 | VirtualMultiplexer is a generative toolkit for synthesizing virtual 
multiplexed staining. a, In a typical histopathology workflow, serial tissue 
sections from a tumour resection are stained with H&E and IHC to highlight 
tissue morphology and molecular expression of several markers of interest. 
This time-consuming and tissue-exhaustive process yields unpaired tissue 
slides that bear the technical risk of suboptimal quality in terms of missing 
stainings, tissue artefacts and unaligned tissues. b, To mitigate these issues, 

the VirtualMultiplexer uses generative AI to rapidly render, from a real input 
H&E image, consistent, reliable and pixel-wise aligned IHC stainings. c, As the 
generated images are now virtually multiplexed, they are further exploited to 
train early fusion graph transformers able to predict several clinically relevant 
endpoints. d, The VirtualMultiplexer was successfully transferred across image 
scales and patient cohorts and showed potential in being transferred to other 
tissue types, accelerating clinical applications and discovery.
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(3) enables the model to capture a realistic appearance and staining 
pattern at the cellular level while alleviating the multi-subdomain map-
pings. This is achieved by leveraging prior knowledge on staining sta-
tus via expert annotations and training two separate networks: a cell 
discriminator Dcell that eliminates differences in the style of real and 
virtual cells (ℒcellDisc) and a cell classifier Fcell that predicts the staining 
status and thus enforces staining consistency at a cell level (ℒcellClass).

Performance assessment of the VirtualMultiplexer
We trained the VirtualMultiplexer on a prostate cancer cohort from 
the European Multicenter Prostate Cancer Clinical and Translational 

Research Group (EMPaCT) TMA36–38 (Methods). The cohort contained 
unpaired H&E and IHC images from 210 patients with four cores per 
patient for six clinically relevant markers: androgen receptor (AR), 
NK3 Homeobox 1 (NKX3.1), CD44, CD146, p53 and ERG. The Virtual-
Multiplexer generated virtual IHC images that preserved the tissue 
morphology of the real H&E image and the staining pattern of the real 
IHC image (Fig. 3a–c; additional examples in Extended Data Fig. 1). 
We benchmarked the VirtualMultiplexer with four state-of-the-art 
unpaired S2S translation methods: CycleGAN30, CUT34, CUT with kernel 
instance normalization (KIN)39 and AI-FFPE29 using the Fréchet incep-
tion distance (FID), an established metric used to assess the quality of 
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Fig. 2 | Overview of the VirtualMultiplexer architecture. a, The 
VirtualMultiplexer consists of a generator G that takes as input real unpaired H&E 
and IHC images and is trained to perform S2S translation by mapping the staining 
distribution of IHC onto H&E while preserving tissue morphology, ultimately 
generating virtually multiplexed synthetic IHC images only from input H&E 
images. b, During training, the VirtualMultiplexer optimizes several losses  

that enforce consistent S2S translation at multiple scales, including  
(1) a neighbourhood consistency loss that ensures indistinguishable translations 
at a neighbourhood (patch) level, (2) a global consistency loss that ensures 
that the model accurately captures content and style constraints at a global tile 
level and (3) a local consistency loss that encodes biological priors on cell type 
classification and discriminator constraints at a cellular level.
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Fig. 3 | Performance evaluation of the VirtualMultiplexer. a, Example H&E core 
from the EMPaCT TMA. b, Real, unpaired IHC-stained cores for different antibody 
markers corresponding to the H&E core in a. c, Virtually stained IHC cores, now 
paired with the H&E core in a. d, Comparison of the VirtualMultiplexer with state-
of-the-art S2S models. Barplots and error bars indicate the mean and standard 
deviation of the FID score from three independent runs of each model. Number 

of test samples used varies per marker and is reported in each subplot. e, Results 
of the visual Turing test, where circles indicate results of the guess of each one of 
the n = 4 experts, and barplots and error bars indicate the corresponding mean 
and standard variation. f, Assessment of staining quality of the virtual and real 
stainings, performed on 50 real and 50 virtual images. RR, real as real; RV, real as 
virtual; VR, virtual as real; VV, virtual as virtual.
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AI-generated images40 (Methods). The VirtualMultiplexer resulted in 
the lowest FID score across all markers (Fig. 3d), with an average value 
of 29.2 (±3), consistently lower than CycleGAN (49 ± 6), CUT (35.8 ± 4.5), 
CUT with KIN (37.8 ± 2.3) and AI-FFPE (35.9 ± 2.6). We also used the 
contrast-structure similarity score, a variant of the structural similar-
ity score that computes contrast and structure preservation25, where 
again the VirtualMultiplexer surpassed all other models in performance 
(Supplementary Table 1). These results indicated that virtual images 
generated by the VirtualMultiplexer were closer to the real ones in 
terms of distribution than any of the competing methods.

To further quantify the indistinguishability of real and virtual 
images, we conducted a visual Turing test: three experts in prostate 
histopathology and one board-certified pathologist were shown 100 
randomly selected patches per marker, with 50 of them originating 
from real and 50 from virtual IHC images, and were asked to classify 
each patch as virtual or real. Our model was able to trick the experts, 
as they achieved a close-to-random average sensitivity of 52.1% and 

specificity of 54.1% across all markers (Fig. 3e). Last, we performed a 
staining quality assessment: we gave the pathologist 50 real and 50 
virtual images per marker, revealing which were real and virtual; the 
pathologist performed a qualitative assessment of the staining, as 
judged by overall expression levels, background, staining pattern, cell 
type specificity and subcellular localization (Fig. 3f; detailed annota-
tions in Supplementary Data 1). Across all markers, on average 70.7% of 
the virtual images reached an acceptable staining quality, as opposed 
to 78.3% of the real images. The results varied depending on the marker, 
with virtual NKX3.1 and CD146 images achieving the highest quality of 
96%, surpassing even real images. Conversely, virtual AR images had 
the lowest score of 46%, with an additional 10% exhibiting accurate 
staining but high background, and the remaining 42% rejected mostly 
due to heterogeneous staining or falsely unstained cells. Background 
presented a challenge with CD44 and p53; the latter appeared to be fur-
ther affected by border artefacts—that is, the presence of abnormally 
highly stained cells only in the core border—also occasionally present in 
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real images. ERG achieved a higher staining quality in virtual than in real 
images, which both often faced background issues. We concluded that 
for most markers, the staining quality scores and the number of cores 
with staining artefacts were comparable in virtual versus real images.

Following these observations, we carefully examined if virtual 
images capture accurate staining patterns. Overall, for all markers, 
we observed similar patterns, correct cell types and subcellular dis-
tributions (Extended Data Fig. 2a). Certain discrepancies were also 
found, such as systematic lack of recognition of CD146+ vascular struc-
tures (Extended Data Fig. 2b). Nonetheless, the more pathologically 
relevant paterns, crucial for diagnostic applicability, were correctly 
reconstructed. We also compared the staining intensity of positive 
and negative cells and observed high concordance between class-wise 
intensity distributions and separability for both real and virtual images, 
confirming that the virtual images faithfully capture the staining inten-
sity for both cell classes (Extended Data Fig. 3). Finally, we performed 
an ablation study demonstrating the effects of different components of 
the VirtualMultiplexer loss (Extended Data Fig. 4). The mere imposition 
of the neighbourhood consistency (the primary objective in competing 
methods) leads to obvious staining unreliability: for example, swapping 
of staining patterns between positive and negative cells. Our global 
consistency clearly mitigates this, and our local consistency further 
optimizes the virtual staining at the cell level.

Transferring from TMAs to WSIs
To assess how well the model can be transferred across imaging scales, 
we fed the TMA-trained VirtualMultiplexer with five out-of-distribution 
H&E-stained prostate whole-slide images (WSIs) and generated vir-
tual IHC images for NKX3.1, AR and CD146. We then stained for the 
same markers by IHC on the direct serial sections, thus generating 
ground-truth and directly comparable WSIs to visually validate the 
model predictions (Methods). For NKX3.1 (Fig. 4), the virtual images 
largely captured the staining appearance of the real ones, both in 
terms of specific glandular luminal cell identification (positive sig-
nal) (examples 1 and 2 in Fig. 4 and Extended Data Fig. 5) and accurate 
non-annotation of stromal or vascular structures (absence of signal) 
(example 3 in Fig. 4 and Extended Data Fig. 5). In minority, virtual images 
did not highlight the rarer NKX3.1+ cell population that are not part of 
the epithelial gland, but rather in the periglandular stroma (example 
4 in Fig. 4 and Extended Data Fig. 5). For CD146 and AR, we observed 
intensity discrepancies between virtual and real images, more striking 
for CD146 where the overall signal intensity and background are higher 
in virtual versus real images (Fig. 4 and Extended Data Fig. 5). These 
discrepancies can be attributed to the fact that the training set TMA 
images have a different staining distribution than the WSIs. Although 
this might lead to false interpretation of marker expression levels at a 
first inspection, when evaluating at higher magnification, the staining 
pattern in the matching real and virtual regions was effectively correct: 
for example, no glandular signal (example 5 in Fig. 4) and appropriate 
stromal localization of CD146 (examples 6 and 7 in Fig. 4) and nuclear 
localization of AR in luminal epithelial cells (example 5 in Extended Data 
Fig. 5). Lack of detection of vascular structures for CD146 was evident 
in both TMA cores and WSI (example 8 in Fig. 4).

The VirtualMultiplexer improves clinical predictions
We then assessed the utility of the generated stainings in augment-
ing the performance of AI models when predicting clinically relevant 
endpoints. Specifically, we encoded the real H&E, real IHC or virtual 
IHC images as tissue-graph representations and employed a graph 
transformer (GT)41 to map the representations to downstream class 
labels (Fig. 5a,b and Methods). We trained the GT model under three 
settings (Fig. 5c): (1) a unimodal setting, where independent GT models 
were trained for each H&E and IHC marker; (2) a multimodal late fusion 
setting, where the outputs of independent GT models were fused at 
the last embedding stage, and (3) a multimodal early fusion setting, 

where the patch features were combined early in the tissue graph and 
fed into the GT model. Whereas the unimodal setting resulted in a sepa-
rate prediction per marker, both multimodal settings combined the 
patch features, resulting in a single prediction. In contrast to the late 
fusion multimodal setting, in the early fusion case only one model that 
learns from the joint spatial distribution across all markers was trained, 
mimicking a multiplexed imaging scenario. With the exception of the 
early fusion setting that is only feasible for virtual images, we tested 
all three settings with both real and virtual images as input, resulting 
in a total of five different combinations (Fig. 5d, legend).

We applied these settings to the EMPaCT dataset to predict patient 
overall survival status and disease progression (Fig. 5d and Methods). 
As small discrepancies in the number of real IHC images available were 
present due to missing stainings, we matched the number of virtual 
IHC images to the number of available real IHC images to ensure a fair 
comparison between real and virtual unimodal models (dark and light 
blue barplots in Fig. 5d, respectively). As H&E images were always avail-
able, the unimodal model trained on H&E had a slight advantage over 
all other models in terms of number of samples used. To compare all 
multimodal models, we again matched the number of virtual images 
to the available real data, and thus the last three bars in Fig. 5d are also 
directly comparable. We observed that the unimodal–virtual settings 
are on par with the unimodal–real for both tasks, with variations in 
prediction performance depending on the marker. When predicting 
overall survival status, two interesting exceptions concern CD146 and 
p53: for CD146, the unimodal–virtual setting outperformed the uni-
modal–real, in accordance with the previous observation that virtual 
CD146 images achieved a higher-quality score than real ones (Fig. 3f). 
The opposite is true for p53: virtual p53 images were of lower quality 
than real p53 images, and the corresponding unimodal–virtual setting 
achieved a lower performance than the unimodal–real one. However, 
these observations were not replicated for disease progression pre-
diction, which appeared to be an overall harder task. In both tasks, all 
multimodal settings outperformed the unimodal ones, including the 
H&E, indicating the utility of combining information from complemen-
tary markers. Furthermore, the multimodal early fusion model trained 
with virtual images achieved the best weighted F1 score of 82.9% and 
74.8% for overall survival status and disease progression, respectively. 
We also performed a marker-level interpretability analysis, pointing 
to markers of high importance inline with the unimodal high and low 
weighted F1 scores (Extended Data Fig. 6). Overall, our results establish 
the potential of virtual multiplexed images in augmenting the efficacy 
of AI models in the prediction of clinical endpoints.

Transferring across patient cohorts and cancer types
We then assessed the model’s ability to generalize to out-of-distribution 
data using two independent prostate cancer cohorts, SICAP42 and pros-
tate cancer grade assessment (PANDA)43, containing H&E-stained nee-
dle biopsies with associated Gleason scores (Methods). We used the 
pretrained VirtualMultiplexer to generate IHC images for four markers 
relevant towards Gleason score prediction: NKX3.1, CD146, AR and ERG 
(Fig. 6a; additional examples in Extended Data Fig. 7). We observed that 
the virtual staining patterns of the IHC markers were overall correct 
and specific in terms of cell type and subcellular localization, with the 
only exception being the occasional aspecific AR signal in the extra-
cellular matrix areas. Other inconsistencies include weak staining of 
interstitial tissue for CD146 and heterogeneous gland staining for ERG. 
We also observed some recurring issues as in the EMPaCT TMA (Fig. 3): 
background (for example, occasional stromal background in NKX3.1 
and ERG) and border and tiling artefacts (for example, CD146). Subse-
quently, we trained GT models under the previous settings to predict 
Gleason grade (Fig. 6b,c, respectively). We observed that the predictive 
performance of the unimodal–virtual settings was close to or superior 
to the model using standalone H&E images for both datasets. Further 
improvement was attained by the multimodal–virtual settings, with 
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the early fusion model achieving the highest weighted F1 score (SICAP, 
61.4%; PANDA, 72.3%), which not only outperformed the H&E unimodal 
counterparts, but also WholeSIGHT44, the previous top performing 

model on these datasets that achieved a weighted F1 score of 58.6% and 
67.9% on SICAP and PANDA, respectively. Finally, as for both SICAP and 
PANDA, ground-truth region-level annotations of Gleason scores exist, 
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we performed a region-based interpretability analysis and observed 
that the salient tissue regions contributing to model predictions coin-
cided with the ground-truth annotations (Extended Data Fig. 8).

Finally, we evaluated the generalization ability of the VirtualMul-
tiplexer on other cancer types. We applied the EMPaCT-pretrained Vir-
tualMultiplexer to a PDAC TMA and generated virtual IHC stainings for 
CD44, CD146 and p53 (Fig. 6d), three markers with expected expression 
in pancreatic tissue. The generated images appeared overall realistic, 
with no means of discriminating whether they were virtually or actually 
stained. We observed that the CD44 and CD146 staining pattern in the 
virtual images was allocated, as expected, to the extracellular matrix of 
presented tissue spots, without major staining in the epithelial tissue 
part. For p53, we again observed overall proper staining allocation to 
the nuclei of epithelial cells with expected distribution, with no major 
staining of other compartments. To quantify the utility of the virtual 
stainings for downstream applications, we followed the same process 
as before to predict PDAC tumour, node and metastasis (TNM) stage, 
leading, again, to increased performance of models trained with vir-
tually multiplexed data, concluding that virtually multiplexed data 
offers a performance advantage to prediction models. We also applied 
the pretrained VirtualMultiplexer to generate virtual IHC images for 
CD44 and CD146 from colorectal45 and breast cancer46 H&E-stained 
WSIs from The Cancer Genome Atlas (TCGA) at www.cancer.gov/tcga. 
Although the lack of normal tissue limited our ability to evaluate the 
staining quality in the generated images, we again observed an overall 
realistic virtual staining (Extended Data Fig. 9).

Lastly, we performed a runtime estimation of our framework 
(Extended Data Fig. 10) and concluded that it leads to substantial time 
gains when compared to a typical IHC staining, greatly accelerating 
histopathology workflows.

Discussion
We proposed the VirtualMultiplexer, a generative model that trans-
lates H&E to several IHC markers using a multiscale architecture with 
biological priors that ensures biological consistency on a cellular, 
neighbourhood and global whole-image scale without requiring image 
registration or extensive annotations. The VirtualMultiplexer consist-
ently outperformed state-of-the-art methods in image fidelity scores. 
Detailed evaluation suggested that the virtual IHC images were indis-
tinguishable from real ones to the expert eye, with a staining quality on 
par with or even exceeding that of real images and occasional staining 
artefacts largely comparable for three of the six markers. A thorough 
ablation study demonstrated that our multiscale loss mitigates stain-
ing unreliability, as opposed to competing methods that solely use 
adversarial and contrastive objectives. We also found that the model 
generalized well to unseen datasets of different image scales without 
any fine-tuning.

Although our results demonstrate a clear potential, several limita-
tions remain, to be addressed in future extensions. First, we occasion-
ally observed elevated background, especially for markers with faint 
staining. More pronounced background was present when transferring 
to prostate cancer WSIs, which was expected considering that this data-
set was generated in different institutions using different staining pro-
tocols. Second, the patch-wise processing occasionally induced tiling 
artefacts more pronounced at the core border, a well-known limitation 
of S2S translation approaches24,39,47,48. One possible underlying cause 
is that as the model has only seen tissue-full patches during training, 
when it receives as input a patch with little tissue, the losses ‘force’ it 
to stain with higher intensity to match the distribution of a full patch. 
Previous attempts to address the tiling artefact24,39 have been suggested 
to cause less efficient translations49. As in our case the tiling artefact is 
limited to edge cases, a straightforward solution is discarding a narrow 
border surrounding the tissue, as empirically done in actual IHC when 
border artefacts are present. Alternatively, more sophisticated exten-
sions, such as the bidirectional feature-fusion GAN proposed by ref. 48 

could be exploited. Third, discrepancies in staining specificity were 
occasionally observed (for example, failing to stain CD146+ vascular 
structures and glandular NKX3.1+ cells invading periglandular stroma), 
as these patterns were rarely observed in the training images and can 
be mitigated by ensuring the inclusion of adequate representative 
examples in the training set.

Importantly, despite their limitations, the generated images 
enabled the training of early fusion GT models, which consistently 
improved the prediction of clinical endpoints not only in the training 
dataset across two prediction tasks but also in both out-of-distribution 
prostate cancer cohorts and the PDAC TMA cohort. In our experi-
ments, we ensured that the multimodal early fusion models did not 
have a numerical advantage over models trained with real data and 
also had a much smaller parameter space in comparison to late fusion 
ones, suggesting that improved performance is not a mere outcome 
of higher sample size or model complexity. A potential explanation of 
the observed improvement is that virtual images are not affected by 
artefacts occasionally found in real images, corroborated by the fact 
that for markers where virtual images were of higher quality than real, 
the corresponding unimodal–virtual models outperformed the uni-
modal–real ones and vice versa. Another explanation could be that as 
multimodal early fusion models could learn from the joint spatial distri-
bution of several markers on the same tissue, they managed to pick up 
single-cell multimodal spatial relationships, mimicking data generated 
by advanced multiplexed technologies. This is further supported by 
the fact that in the early fusion case, a single GT model proved to have 
more learning capacity than the integration of several equivalently 
potent ones. However, the superior performance of models trained 
with virtual data could be unrelated to a potential higher quality of the 
generated images and could be a direct outcome of the fact that the 
VirtualMultiplexer potentially picks up the most consistent patterns 
and eliminates a lot of the noise and artefacts in the data, making the 
prediction task easier. This is further supported by other works that 
have reported competitive performance using models trained on other 
spatial features extracted from the tissue images50,51.

In conclusion, the current work establishes the potential of virtual 
multiplexed staining, with important implications towards AI-assisted 
histopathology. For example, the VirtualMultiplexer could be directly 
used for data inpainting—that is, filling missing regions in an image—
or for sample imputation—that is, generating missing samples from 
scratch. As IHC marker panels are not standardized across labs, filling 
in the gaps via virtual multiplexing could harmonize datasets within or 
across research labs, particularly important in cases of limited sample 
availability52,53. This could lead to the generation of harmonized and 
comprehensive patient cohorts, further used for clinically relevant 
predictions. An equally important application of our work concerns 
prehistopathological experimental design: generating a large collec-
tion of IHC stains in silico and training AI models could support marker 
selection for actual experimentation, reducing costs and preserving 
precious tissue. To reach its full potential, future work will be needed 
to validate the VirtualMultiplexer in real-world settings. From a techni-
cal standpoint, virtually multiplexed stainings can augment existing 
datasets and enable the development of foundational models for IHC, 
paving the way for multimodal tissue characterization. Interestingly, 
virtual multiplexed staining can be exploited as biologically condi-
tioned data augmentations to boost the development and predictive 
performance of foundational models in histopathology. Our prelimi-
nary results on PDAC and TCGA images indicate that our model has 
the potential to generalize to tissues of different origins. However, 
more thorough evaluations are needed to solidify these encouraging 
early results. Finally, as our method is stain-agnostic, straightforward 
adaptations for S2S translation across multiplexed imaging technolo-
gies could substantially reduce costs via antibody panel optimiza-
tion. Our vision is that future extensions of our work could lead to an 
ever-growing and readily available dictionary of virtual stainers for IHC 
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real H&E needle biopsy of the SICAP dataset. Bottom, matching virtual IHC 
stainings across four IHC markers, as generated from the EMPaCT-trained 
VirtualMultiplexer. b, Prediction results of Gleason grading for the SICAP test 
set in terms of weighted F1 score and confusion matrix. Note that the setting 

unimodal–real (dark blue barplot) only includes training the model on H&E, as 
no real IHC data are available here. c, Same as in b, but for the PANDA dataset. 
d, Virtual IHC staining of a PDAC TMA dataset with corresponding prediction 
of TNM staging. In b–d, barplots and error bars are as in Fig. 3 and confusion 
matrices correspond to the multimodal–virtual early fusion model.
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and beyond, surpassing in multiplexing even the most cutting-edge 
technologies and accelerating spatial biology.

Methods
VirtualMultiplexer architecture
The VirtualMultiplexer is a generative AI toolkit that performs unpaired 
H&E-to-IHC translation. An overview of the model’s architecture is 
shown in Fig. 2a. The VirtualMultiplexer is trained using two sets of 
images: source H&E images, denoted as Ximg = {x ∈ 𝒳𝒳} , and target  
IHC images, denoted as Yimg = { y ∈ 𝒴𝒴}. Ximg and Yimg are unpaired images 
that originate from different sections of the same TMA core and thus 
belong to the same patient, but are pixel-wise unaligned and thus 
unpaired. We train an independent one-to-one VirtualMultiplexer 
model for each IHC marker at a time. To train the VirtualMultiplexer, 
we use patches Xp = {xp ∈ Ximg} and Yp = { yp ∈ Yimg} extracted from a pair 
of images Ximg and Yimg, respectively. The backbone of the VirtualMul-
tiplexer is a GAN-based generator G, specifically a CUT34 model that 
consists of two sequential components: an encoder Genc and a decoder 
Gdec. Upon training, the generator takes as input a patch xp and gener-
ates a virtual patch y′p: that is, y′p = G(xp) = Gdec(Genc(xp)). The virtually 
generated patches are stitched together to produce a final virtual image 
Y′img = { y′ ∈ 𝒴𝒴′}. The VirtualMultiplexer is trained under the supervision 
of three levels of consistency objectives: local, neighbourhood and 
global consistency (Fig. 2b). The neighbourhood consistency enforces 
effective staining translation at a patch level, where a patch captures 
the neighbourhood of a cell. We introduce additional global and local 
consistency objectives, operating at an image level and cell level, 
respectively, to further constrain the unpaired S2S translation and 
alleviate the stain-specific inconsistencies.

Neighbourhood consistency. The neighbourhood objective is a 
combination of an adversarial loss and a patch-wise multilayer con-
trastive loss, implemented as previously described in CUT34 (Fig. 2b, 
panel 1). Briefly, the adversarial loss dictates the model to learn to 
eliminate style differences between real and virtual patches, and the 
multilayer contrastive loss guarantees the content preservation at a 
patch level54. The adversarial loss is a standard GAN min–max loss35, 
where the discriminator D takes as input real IHC patches Yp and IHC 
patches Y′p virtually generated by generator G and attempts to classify 
them as either real or virtual (Fig. 2b, panel 1a). It is calculated as 
follows:

ℒadv(G,D,Xp,Yp) = 𝔼𝔼yp∼Yp logD( yp) + 𝔼𝔼xp∼Xp log(1 − D(G(xp))). (1)

The patch-wise multilayer contrastive loss follows a NCE concept 
as presented in refs. 54,55 and reused in refs. 29,34. Specifically, it aims 
to maximize the resemblance between input H&E patch xp ∈ Xp and 
corresponding virtually synthesized IHC patch y′p ∈ Y′p (Fig. 2b, panel 1b).  
We first extract a query subpatch y′sp of size 64 × 64 from the target IHC 
domain patch y′p (purple square in Fig. 2b, panel 1b) and match it to the 
corresponding subpatch xsp: that is, a subpatch at the same spatial 
location as y′sp but from the H&E source domain patch xp (black square 
in Fig. 2b, panel 1b). Because both subpatches originate from the exact 
same tissue neighbourhood, we expect that xsp and y′sp form a positive 
pair. We also sample N subpatches {x−sp} at different spatial locations 
from xp (red squares in Fig. 2b, panel 1b) and expect that they form 
dissimilar, negative pairs with xsp. In a standard contrastive learning 
scheme, we would map ysp, xsp and {x−sp} to a d-dimensional embedding 
space ℝd via Genc and project them to a unit sphere, resulting in v, v+ and 
, respectively, and then estimate the probability of a positive pair (v, 
v+) selected over negative pairs (v, v−n ), ∀n ∈ N  as a cross-entropy loss 
with a temperature scaling parameter τ:

ℒ(v, v+, v−) = − log [ exp(vv+/τ)
exp(vv+/τ) + ∑N

n=1 exp(vv
−
n /τ)

] (2)

Here, we use a variation of the loss in equation (2), specifically a 
patch-wise multilayer contrastive loss that extends ℒ(v, v+, v−) by com-
puting it for feature maps extracted from L-layers of Genc

29,34. This is 
achieved by passing the L feature maps of xp and y′p through a two- 
layer multilayer perceptron (MLP) Hl, resulting in a stack of features 
{zl}L = {Hl(Glenc(xp))}L  and {z′l }L = {Hl(Glenc( y′p))}L  = {Hl (Glenc(G(xp))}L , 

∀ l ∈ {1, 2, ⋯ , L}, respectively. We also iterate over each spatial location 
s ∈ {1, ⋯ , Sl}, and we leverage all Sl\s patches as negatives, ultimately 
resulting in z′l,s, zl,s and zl,Sl\s for the query, positive and negative sub-
patches, respectively (purple, black and red boxes in Fig. 2b, panel 1b). 
The final patch-wise multilayer contrastive loss is computed as

ℒcontrastive(G,H,Xp) = 𝔼𝔼xp∼Xp
L
∑
l=1

Sl
∑
s=1

ℒ (z′l,s, zl,s, zl,Sl\s) (3)

We also employ contrastive loss ℒcontrastive(G,H,Yp)  on patches 
yp ∈ Yp, a domain-specific version of the identity loss56,57 that prevents 
the generator G from making unnecessary changes as proposed in  
ref. 34. Finally, the overall neighbourhood consistency objective is 
computed as a weighted sum of the adversarial loss {equation (1)) and 
the multilayer contrastive loss (equation (3)) with regularization hyper-
parameter λNCE:

ℒneighbourhood = ℒadv(G,D,Xp,Yp) + λNCE × (ℒcontrastive(G,H,Xp)

+ℒcontrastive(G,H,Yp))
(4)

Global consistency. Inspired by seminal work in neural style transfer58, 
this objective consists of two loss functions: a content loss ℒcontent and 
a style loss ℒstyle that together enforce biological consistency in terms 
of both tissue composition and staining pattern at the image (tile) level 
(Fig. 2b, panel 2). Because the generated IHC images should be virtually 
paired to their corresponding input H&E image in terms of tissue com-
position, the content loss aims to penalize the loss in content between 
H&E and IHC images at a tile level. First, real patches Xp and synthesized 
patches Y′p are stitched to create images Ximg and Y′img, respectively, and 
corresponding tiles of size 1,024 × 1,024 are extracted (boxes in Fig. 2b, 
panel 2), denoted as Xt = {xt ∈ Ximg} and Y′t = { y′t ∈ Y′img} , respectively. 
Then the tiles are encoded by a pretrained feature extractor F, specifi-
cally VGG16 (ref. 59) pretrained on ImageNet60. The tile-level content 
loss at layer l of F is calculated as

ℒlcontent (F,Xp,Y′p) =
∑ ||Fl(xt) − Fl( y′t)||2

hl ⋅wl ⋅ cl
(5)

where h, w and c are the height, width and channel dimensions of the 
feature map at the lth layer, respectively.

The style loss utilizes the synthesized image Y′img and the available 
real image Yimg to match the style or overall staining distribution 
between real and virtual IHC images. Because Y′img and Yimg do not have 
pixel-wise correspondence, large tiles Y′t = { y′t ∈ Yimg} and Yt = { yt ∈ Yimg} 
are extracted at random such that each tile incorporates a sufficient 
staining distribution. Next, Y′t  and Yt are processed by F to produce 
feature maps across multiple layers. The style loss is computed as

ℒlstyle (F,Yp,Y′p) =
∑ ||𝒢𝒢 𝒢 Fl( yt) − 𝒢𝒢 𝒢 Fl( y′t)||2

||𝒢𝒢 𝒢 Fl( yt)||2 + ||𝒢𝒢 𝒢 Fl( y′t)||2
(6)

where 𝒢𝒢 is the Gram matrix that measures the correlation between all 
the styles in a feature map. The denominator is a normalization term 
that compensates for the under- or overstylization of the tiles in a 
batch61. The overall global consistency loss is computed as

ℒglobal = λcontent ×
Lcontent
∑
l

ℒlcontent (F,Xp,Y′p) + λstyle ×
Lstyle
∑
l
ℒlstyle (F,Yp,Y′p)

(7)
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where Lcontent and Lstyle are the lists of the content and style layers  
of F, respectively, used to extract the feature matrices, and λcontent  
and λstyle are regularization hyperparameters for the respective loss 
terms.

Local consistency. The local consistency objective aims to enforce 
biological consistency at a local cell level and consists of two loss 
terms: a cell discriminator loss (ℒcellDisc) and a cell classification loss 
(ℒcellClass) (Fig. 2b, panel 3). The cell discriminator loss is inspired by 
ref. 26 and uses the cell discriminator Dcell to identify whether a cell 
is real or virtual, in the same way that the patch discriminator of equa-
tion (1) attempts to classify patches as real or virtual. ℒcellDisc takes as 
input a real (Yp) and a virtual (Y′p) target patch and their corresponding 
cell masks (MYp and MY′p, respectively), which include bounding-box 
demarcation around the cells (Fig. 2b, panel 3). Dcell comprises a fea-
ture extractor followed by a RoIAlign layer62 and a final discriminator. 
The goal of Dcell is to output Dcell(Yp,MYp ) → 1  and Dcell(Y′p,MXp ) → 0 , 
where 1 and 0 indicate real and virtual cells (indicated in black and 
purple, respectively, in Fig. 2b, panel 3). The cell discriminator loss is 
defined as

ℒcellDisc(Dcell,Yp,Y′p,MYp ,MY′p ) =
1
2
𝔼𝔼yp∈Yp (Dcell( yp,Myp ) − 1)

2

+ 1
2
𝔼𝔼y′p∈Y′p (Dcell (y

′
p,My′p ))

2
(8)

Although Dcell aims to enforce the generation of realistically look-
ing cells, it is agnostic to their marker expression, as it does not explic-
itly capture which cells have a positive or a negative staining status. To 
account for this, we introduce an additional loss via a classifier Fcell that 
is trained to explicitly predict the cell staining status. This is achieved 
with the help of cell labels CY′p and CYp: that is, binary variables depicting 
the positive or negative staining status of a cell (indicated as 1: yellow 
and 0: blue boxes in Fig. 2b, panel 3). The computation of cell masks 
and labels is described in detail in the section ‘Cell masking and label-
ling of IHC images’. The cell-level classification loss can be easily com-
puted as cross-entropy loss, calculated as

ℒcellClass (Fcell,Yp,Y′p,MYp ,MY′p ,CYp ,CY′p )

= −1
|Cyp |

|Cyp |

∑
j=1

i∈{0,1}

Cjyp=i
× log (p (M j

yp × yp))

+ −1
|Cy′p |

|Cy′p |

∑
j=1

i∈{0,1}

Cj
y′p
=i × log (p (M

j
y′p
× y′p))

(9)

where |Cyp | and |Cy′p | are the number of cells in yp and y′p, respectively, (.) 
is the indicator function and p(.) is the cell-level probabilities predicted 
by Fcell.

The overall local consistency loss is computed as

ℒlocal = λcellDisc × ℒcellDisc (Dcell,Yp,Y′p,MYp ,MY′p )

+ λcellClass × ℒcellClass (Fcell,Yp,Y′p,MYp ,MY′p ,CYp ,CY′p )
(10)

where λcellDisc and λcellClass are the regularization hyperparameters for the 
cell discriminator and classification loss terms, respectively. Impor-
tantly, the local consistency loss can be easily generalized to any other 
cellular or tissue component (for example, nuclei, glands) that might be 
relevant to other S2S translation problems, provided that correspond-
ing masks and labels are available.

The complete objective function for optimizing VirtualMulti-
plexer is given as

ℒVirtualMultiplexer = ℒneighbourhood + ℒglobal + ℒlocal (11)

Cell masking and labelling of IHC images. As already discussed, the 
local consistency loss of equation (11) needs as input cell masks MXp ,MYp 
and cell labels CXp ,CYp. However, acquiring these inputs manually for 
all patches across all antibodies is practically prohibitive, even for rela-
tively small datasets. Automatic nuclei segmentation/detection using 
pretrained models (for example, HoVerNet63) is a standard task for H&E 
images, but no such model exists for IHC images. To circumvent this 
challenge, we use an attractive property of the VirtualMultiplexer: its 
ability to synthesize virtual images that are pixel-wise aligned in any 
direction between the source and target domain. Specifically, we train 
a separate instance of the VirtualMultiplexer that performs IHC → H&E 
translation. The VirtualMultiplexerIHC→H&E is trained using neighbour-
hood consistency and global consistency objectives, as previously 
described. Once trained, it is used to synthesize a virtual H&E image 
X′img from a real IHC image Yimg. At this point, we can leverage HoVerNet63 
to detect cell nuclei on real and virtual H&E images (Ximg and X′img) and 
simply transfer the corresponding cell masks (MXimg and MX′img

) to their 
pixel-wise aligned IHC counterparts (Y′img  and Yimg, respectively) to 
acquire MY′img

 and MYimg. This ‘trick’ eliminates the need to train individual 
cell detection models for each IHC antibody and fully automates the 
cell masking process in the IHC domain. To acquire cell labels CY′img and 
CYimg, we use only region annotations in Yimg, where the experts partially 
annotated areas as positive or negative stainings in a few representative 
images. Because IHC stainings are specialized in delineating positive 
or negative staining status, the annotation was easy and fast and 
required approximately 2–3 minutes per image and per antibody 
marker. We also train cell detectors for the source and target domain: 
that is, Dsourcecell  and Dtargetcell , respectively. Provided with the annotations, 
Dtargetcell  is trained as a CNN patch classifier. The classifier predictions on 
Yimg combined with MYp result in CYp. The above region predictions on 
Yimg are transferred on to X′img. Afterwards, X′img and the transferred 

annotations are used to train Dsourcecell  as a CNN patch classifier. The clas-
sifier predictions on Ximg combined with MXp result in CXp.

Implementation and training details. The architectural choices of 
the VirtualMultiplexer were set as follows: G is a ResNet64 with nine 
residual blocks, D is a PatchGAN discriminator12, Dcell includes four 
stride-2 feature convolutions followed by a RoIAlign layer and a dis-
crimination layer and Fcell includes four stride-2 feature convolutions 
and a two-layer MLP. We use Xavier weight initialization65, instance 
normalization66 and a batch size of one image. We use least square GAN 
loss67 for ℒadv. The model hyperparameters for the loss terms of the 
VirtualMultiplexer are set as follows: λNCE is 1 with temperature τ equal 
to 0.08, λcontent ∈  {0.01, 0.1}, λstyle ∈  {5, 10}, λcellDisc ∈  {0.5, 1} and 
λcellClass ∈ {0.1, 0.5}. VirtualMultiplexer is optimized for 125 epochs using 
the Adam optimizer68 with momentum parameters β1 = 0.5 and 
β2 = 0.999. Different learning rates (lr) are employed for different con-
sistency objectives: that is, for neighbourhood consistency, lrG and lrD 
are set to 0.0002; for global consistency, learning rate lrG is chosen 
from {0.0001, 0.0002}; and for local consistency, learning rates lrDcell 
and lrFcell are chosen from {0.00001, 0.0001, 0.0002}. Among other 
hyperparameters, the number of tiles extracted per image to compute 
ℒcontent and ℒstyle is set to eight; the content layer in F is relu2_2; the style 
layers are relu1_2, relu2_2, relu3_3, relu4_3; and the number of cells per 
patch to compute ℒcellDisc is set to eight.

GT architecture
The GT architecture, proposed by ref. 41, fuses a graph neural network 
and a vision transformer (ViT) to process histopathology images. The 
graph neural network operates on a graph-structured representation 
of a histopathology image, where the nodes and edges of the graph 
denote patches and interpatch spatial connectivity, and the nodes 
encode patch features extracted from a pretrained ResNet-50 net-
work64. The graph representation underwent graph convolutions to 

http://www.nature.com/natmachintell


Nature Machine Intelligence | Volume 6 | September 2024 | 1077–1093 1089

Article https://doi.org/10.1038/s42256-024-00889-5

contextualize the node features of the local tissue neighbourhood. 
Specifically, the GT employs a graph convolution layer69 to learn con-
textualized node embeddings through propagating and aggregating 
neighbourhood node information. Subsequently, a ViT layer operates 
on the contextualized node features, leverages self-attention to weigh 
the importance of the nodes and aggregates the node information to 
render an image-level feature representation. Finally, an MLP maps the 
image-level features to a downstream image label. Note that histopa-
thology images can have different spatial dimensions; therefore, their 
graph representations can have varying number of nodes. Also, the 
number of nodes can be very high when operating on gigapixel-sized 
WSIs. These two factors can potentially hinder the integration of the 
graph convolution layer to the ViT layer. To address these challenges, 
GT introduces a mincut pooling layer70, which reduces the number of 
nodes to a fixed number of tokens while preserving the local neighbour-
hood information of the nodes.

Implementation and training details. The architecture of the GT 
follows the official implementation on GitHub (https://github.com/
vkola-lab/tmi2022). Each input image was cropped to create a bag of 
256 × 256 non-overlapping patches at ×10 magnification, and back-
ground patches with non-tissue area greater than 10% were discarded. 
The patches were encoded using the ResNet-5064 model pretrained on 
the ImageNet dataset60. A graph representation was constructed using 
the patches with an eight-node connectivity pattern. The GT network 
consisted of one graph convolutional layer, and the ViT layer configu-
rations were set as follows: number of ViT blocks = 3, MLP size = 128, 
embedding dimension of each patch = 32 and number of multihead 
attention = 8. The model hyperparameters were set as follows: number 
of clusters in mincut pooling = {50, 100}, Adam optimizer with initial 
learning rate of {0.0001, 0.00001}, a cosine annealing scheme for 
scheduling and a mini-batch size of eight. The GT models were trained 
for 400 epochs with early stopping.

Datasets
The VirtualMultiplexer was trained using the EMPaCT TMA dataset; 
an independent subset of EMPaCT was used for internal testing. The 
VirtualMultiplexer was further evaluated in a zero-shot fashion—that 
is, without any retraining or fine-tuning—on three external prostate 
cancer datasets (prostate cancer WSIs, SICAP42 and PANDA43 needle 
biopsies), on an independent PDAC dataset (PDAC TMAs) and on TCGA 
data from breast and colorectal cancer. In all cases, independent GTs 
are trained and tested for individual datasets by using both real and 
virtually stained samples to address various downstream classification 
tasks. Details on all datasets used follow.

EMPaCT. The dataset contains TMAs from 210 primary prostate tis-
sues as part of EMPaCT and the Institute of Tissue Pathology in Bern. 
The study followed the guidelines of the World Medical Association 
Declaration of Helsinki 1964, updated in October 2013, and was con-
ducted after approval by the Ethics Committees of Bern (CEC ID2015-
00128). For each patient, four cores were selected, with two of them 
representing a low Gleason pattern and the other two a high Gleason 
pattern. Consecutive slices from each core were stained with H&E and 
IHC using multiple antibodies against nuclear markers NKX3.1 and 
AR, tumour markers p53 and ERG, and membrane markers CD44 and 
CD146. TMA FFPE sections of 4 μm were deparaffinized and used for 
heat-mediated antigen retrieval (citrate buffer, pH 6, Vector Labs; or 
Tris-HCl, pH 9). Sections were blocked for 10 min in 3% H2O2, followed 
by 30 min room temperature incubation in 1% bovine serum albumin 
in phosphate-buffered saline–0.1% Tween 20. The following antibodies 
were used: anti-AR (Dako Agilent, catalogue no. M3562, AR441, 1:100 
dilution), anti-NKX3.1 (Athena Enzyme Systems, catalogue no. 314, 
lot 18025, 1:200), anti-p53 (Dako Agilent, catalogue no. M7001, DO-7, 
1:800), anti-CD44 (Abcam, catalogue no. ab16728, 156-3C11, 1:2000), 

anti-ERG (Abcam, catalogue no. ab133264, EPR3864(2), 1:500) and 
anti-CD146 (Abcam, catalogue no. ab75769, EPR3208, 1:500). Images 
were acquired using a 3D Histech Panoramic Flash II 250 scanner at 
×20 magnification (resolution 0.24 μm per pixel). The cores were 
annotated at patient level by expert uro-pathologists with binary labels 
for overall survival status (0, alive/censored; 1, prostate-cancer-related 
death) and disease progression status (0, no recurrence; 1, recurrence). 
Clinical follow-up was recorded on a per-patient basis, with a maximum 
follow-up time of up to 12 years. For both the survival and disease pro-
gression clinical endpoints, the available data were imbalanced in terms 
of class distributions. Access information is possible upon request to 
the corresponding authors. The distribution of cores per clinical end-
point for the EMPaCT dataset is summarized in Supplementary Table 2.

Prostate cancer WSIs. Primary stage prostate cancer FFPE tissue sec-
tions (4 μm) were deparaffinized and used for heat-mediated antigen 
retrieval (citrate buffer, pH 6, Vector Labs). Sections were blocked for 
10 min in 3% H2O2, followed by 30 min room temperature incubation in 1% 
bovine serum albumin in phosphate-buffered saline–0.1% Tween 20. The 
following primary antibodies were used: anti-CD146 (Abcam, catalogue 
no. ab75769, EPR3208, 1:500), anti-AR (Abcam, catalogue no. ab133273, 
EPR1535, 1:100) and anti-NKX3.1 (Cell Signaling, catalogue no. 83700T, 
D2Y1A, 1:200). Secondary anti-rabbit antibody Envision horseradish 
peroxidase (DAKO, Agilent Technologies, catalogue no. K400311-2, 
undiluted) was incubated for 30 min, and signal detection was done 
using 3-amino-9-ethylcarbazole substrate (DAKO, Agilent Technolo-
gies). Sections were counterstained with hematoxylin and mounted with 
aquatex. Images were acquired using a 3D Histech Panoramic Flash II 250 
scanner at ×20 magnification (resolution 0.24 μm per pixel).

SICAP. The dataset contains 155 H&E-stained WSIs from needle biop-
sies taken from 95 patients, split in 18,783 patches of size 512 × 512  
(ref. 42). The WSIs were reconstructed by stitching the patches. The 
WSIs were scanned at ×40 magnification by a Ventana iScan Coreo scan-
ner and downsampled to ×10 magnification. The WSIs were annotated 
by expert uro-pathologists for Gleason grades at the Hospital Clínico 
of Valencia, Spain.

PANDA. The dataset includes 5,759 H&E-stained needle biopsies from 
1,243 patients at the Radboud University Medical Center, Netherlands71 
and 5,662 H&E-stained needle biopsies from 1,222 patients at vari-
ous hospitals in Stockholm, Sweden72. The slides from Radboud were 
scanned with a 3D Histech Panoramic Flash II 250 scanner at ×20 magni-
fication (resolution 0.24 μm per pixel) and were downsampled to ×10. 
The slides from Sweden were scanned with a Hamamatsu C9600-12 and 
an Aperio Scan Scope AT2 scanner at ×10 magnification with a pixel 
resolution of 0.45202 μm and 0.5032 μm, respectively. The Gleason 
grades of the biopsies were annotated by expert uro-pathologists and 
were released as part of the PANDA challenge43. We removed the noisy 
and inconspicuously labelled biopsies from the dataset, resulting in 
4,564 and 4,988 biopsies from the Radboud and the Swedish cohorts, 
respectively (9,552 biopsies in total). The distribution of WSIs across 
Gleason grades for both SICAP and PANDA datasets is shown in Sup-
plementary Table 3.

PDAC. The PDAC TMA contained cancer tissue of 117 (50 female,  
67 male) PDAC cases resected in a curative setting at the Department 
of Visceral Surgery of Inselspital Bern and diagnosed at the Institute 
of Tissue Medicine and Pathology (ITMP) of the University of Bern 
between the years 2014 and 2020. The study followed the guidelines of 
the World Medical Association Declaration of Helsinki 1964, updated 
in October 2013, and was conducted after approval by the Ethics 
Committees of Bern (CEC ID2020-00498). All participants provided 
written general consent. The TMA contained three spots from each 
case (tumour front, tumour centre, tumour stroma), leading to a total 
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number of 351 tissue spots. Thirteen of these 117 cases were treated 
by neoadjuvant chemotherapy followed by surgical resection and 
adjuvant therapy, and the majority of the cases (104) were resected 
curatively and received adjuvant therapy. All cases were characterized 
comprehensively clinico-pathologically, including TNM stage, during 
a master’s thesis of student Jessica Lisa Rohrbach at ITMP, supervised 
by Martin Wartenberg. All cases were Union for International Cancer 
Control (UICC) tumour stage I, stage II or stage III cases on pathologic 
examination, according to the UICC TNM Classification of Malignant 
Tumours, 8th edition73; the TMA did not include UICC tumour stage IV 
cases. In all of our analysis, including the TNM prediction (Fig. 6d), we 
excluded the 13 neoadjuvant cases and considered only the 104 cases 
that received adjuvant therapy. The distribution of cores across the 
three TNM stages is reported in Supplementary Table 4.

TCGA. The dataset includes example H&E WSIs from breast cancer 
(BRCA) and colorectal cancer (CRC) from The TCGA, available at the 
GDC data portal (https://portal.gdc.cancer.gov) as diagnostic slides 
under project IDs TCGA-BRCA and TCGA-CRC, respectively.

Data preprocessing
For all datasets used, we followed a tissue region detection and patch 
extraction preprocessing procedure. Specifically, the tissue region 
was segmented using the preprocessing tools in the HistoCartogra-
phy library74. A binary tissue mask denoting the tissue and non-tissue 
regions was computed for each downsampled input image by iter-
atively applying Gaussian smoothing and Otsu thresholding until 
the mean of non-tissue pixels was below a threshold. The estimated 
contours of the denoted tissue and the cavities of tissue were then 
filtered depending on their area to generate the final segmentation 
mask. Subsequently, non-overlapping patches of size 256 × 256 were 
extracted from ×10 magnification using the segmentation contours. 
The extracted H&E and IHC patches of the EMPaCT dataset were 
used for training and internal validation of the VirtualMultiplexer. 
For the unseen datasets (prostate cancer WSIs, SICAP, PANDA, PDAC, 
TCGA), the images were first stain-normalized to mitigate the staining 
appearance variability with respect to the EMPaCT TMAs, and then 
H&E patches were extracted. Specifically, for the SICAP, PANDA and 
PDAC datasets, we used the Vahadane stain normalization method75, 
from the HistoCartography library74, on the entire images. We masked 
out the blank regions by applying a threshold on the Lab colour space 
and computed the stain-density maps using only the tissue regions. 
Afterwards, the target stain-density maps are combined with the ref-
erence colour appearance matrix to produce normalized images, as 
proposed by the Vahadane method. Supplementary Fig. 1 presents a 
sample unnormalized WSI from the PANDA dataset and the correspond-
ing stain-normalized WSI based on the reference EMPaCT TMA. For 
the prostate cancer and TCGA WSIs, we followed the same procedure 
but with stain-density maps extracted from a lower magnification 
(×2.5) for computational efficiency. Note that the VirtualMultiplexer 
is independent of the stain normalization method and can be trained 
using H&E images normalized by other advanced stain normalization 
algorithms: for example, deep learning-based methods76.

Method evaluation
Patch-level evaluation. We use the FID score77 to compare the distribu-
tion of the virtual IHC patches with the distribution of the real IHC patches, 
as shown in Fig. 3. The computation begins with projecting the virtual 
and the real IHC patches to an embedding space using the InceptionV3 
(ref. 77) model, pretrained on ImageNet60. The extracted embeddings are 
used to estimate multivariate normal distributions 𝒩𝒩( μr,Σr) for real data 
and 𝒩𝒩( μs,Σs) for virtual data. Finally, the FID score is computed as

FID = ||μr − μv||2 + Tr (Σr + Σv − 2(ΣrΣv)
1
2 ) (12)

where μr and μv are the feature-wise mean of the real and virtual 
patches, Σr and Σv are covariance matrices for the real and virtual 
embeddings, and Tr is the trace function. A lower FID score indicates 
a lower disparity between the two distributions and thereby a higher 
staining efficacy of the VirtualMultiplexer. To ensure reproducibility, 
we ran each model three times with three independent initializations 
and computed the mean and standard deviation for each model 
(barplot height and error bar in Fig. 3). We used a 70%:30% ratio to 
split the data into train and test sets, respectively. As for each marker 
a different number of IHC stainings were available in the EMPaCT 
data, the exact number of cores used per marker are given in Sup-
plementary Table 5.

Image-level evaluation. We used a number of downstream classifica-
tion tasks to assess the discriminative ability of the virtually stained 
IHC images on the EMPaCT, SICAP, PANDA and PDAC datasets. We 
further used these tasks to depict the utility of leveraging virtually 
multiplexed staining in comparison to standalone real H&E, real IHC 
and virtual IHC staining. Specifically, provided the aforementioned 
images, we constructed graph representations as described in Section 
GT architecture. Subsequently, GTs41 were trained under unimodal 
and multimodal settings using both real and virtually stained images 
and evaluated on a held-out independent test dataset. The final clas-
sification scores were reported using a weighted F1 metric, where a 
higher score depicts a better classification performance and thereby 
higher discriminative power of the utilized images. As before, we ran 
each model three times with three independent initializations and 
computed the mean and standard deviation for each model (bar-
plot heights and error bars in Figs. 5 and 6). In all cases, we used a 
60%:20%:20% ratio to split the data into train, validation and test sets, 
respectively. The exact number of train, validation and test samples 
used per task, marker and training setting in the EMPaCT dataset are 
given in Supplementary Table 6.

For the SICAP, PANDA and PDAC datasets, the exact number of 
samples used in the train, validation and test splits coincide for all 
unimodal and multimodal models of Fig. 6 and are reported in Sup-
plementary Table 7.

Computational hardware and software
The image datasets were preprocessed on POWER9 central processing 
units and one NVIDIA Tesla A100 graphics processing unit using the 
Histocartography library74. The deep learning models were trained on 
NVIDIA Tesla P100 graphics processing units using PyTorch (v.1.13.1) 
(ref. 78) and PyTorch Geometric (v.2.3.0) (ref. 79). The entire pipeline 
was implemented in Python (v.3.9.1).

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The main dataset used to support this study (EMPaCT) has  
been deposited in Zenodo, together with the prostate cancer WSIs80. 
The SICAP dataset is available at Mendeley data81. The PANDA  
dataset is available at the Kaggle website (https://www.kaggle.com/c/
prostate-cancer-grade-assessment/data). The TCGA WSIs from  
breast and colorectal tissue are available as diagnostic slides under 
project IDs TCGA-BRCA and TCGA-CRC, respectively, at the GDC  
data portal (https://portal.gdc.cancer.gov). The PDAC dataset is 
available for academic research purposes upon request via e-mail to  
M.W. (martin.wartenberg@unibe.ch) or the Translational  
Research Unit Platform of ITMP of the University of Bern (tru.igmp@
unibe.ch). All clinical data associated with the EMPaCT and PDAC 
patient cohorts cannot be shared owing to patient-confidentiality 
obligations.
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Code availability
All source code of the VirtualMultiplexer is available under an 
open-source license at https://github.com/AI4SCR/VirtualMultiplexer 
and via Zenodo at https://doi.org/10.5281/zenodo.11941982 (ref. 82).
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Extended Data Fig. 1 | Qualitative evaluation of the VirtualMultiplexer for two TMA cores in the EMPaCT dataset. Additional examples to the ones presented 
in Fig. 3. Columns one and three present two H&E stained TMA cores and corresponding virtually stained images for six IHC markers. Columns two and four present 
reference IHC images for the same core.
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Extended Data Fig. 2 | Visual quality assessment of virtually stained IHC 
images of the EMPaCT prostate cancer TMA. (A) Example virtual TMA cores 
across all six markers (left column) and selected zoomed in regions (middle 
column) that highlight accurate staining patterns. Real reference IHC images for 
each marker are given on the right column. We observed that AR+ and NKX3.1+ 
cells exhibited correct distribution in the luminal epithelial compartment of the 
prostatic glands and nuclear localization. Furthermore, a few NKX3.1+ cells in 
stromal regions (possibly stroma-invading tumor cells) were correctly predicted. 
Similarities in specific, matched areas between virtual and real IHC images were 

mainly assessed for staining pattern and overall intensity levels: we observed 
that the expression of markers indicative of tumor-specific molecular profile, 
such as loss of TP53 and ERG overexpression, did not largely deviate between 
virtual and real images at a TMA core level, which would be crucial for diagnostic 
applicability.(B) Same as (A) but highlighting regions with inaccurate or 
inconclusive staining. We observed non-specific signal in extra-cellular-matrix/
stroma regions (NKX3.1, p53, ERG), occasional false nuclear expression (CD44), 
and systematic lack of recognition of CD146+ vascular structures.
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Extended Data Fig. 3 | Intensity distribution of positive and negative cells for 
real and virtual IHC images. Cell segmentation and classification is performed 
using DeepLIIF21. Intensity of a cell is measured as the average of pixel values in 

the perceptual lightness (L) channel of Lab colorspace. The Wasserstein distance 
between the positive and negative cell distributions is computed to quantify the 
cell-class separability.
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Extended Data Fig. 4 | Ablation study. Qualitative evaluation of the impact 
of multi-scale consistency objectives on the virtual staining quality of the 
VirtualMultiplexer across six IHC markers, presented in each row. (A) Sample 
H&E cores from the EMPaCT dataset. Corresponding virtually stained IHC 

cores for training the VirtualMultiplexer with neighbourhood consistency (B), 
neighborhood and global consistencies (C), and neighborhood, global, and local 
consistencies (D). The bounding boxes highlight zoomed-in regions in the IHC 
cores. (E) Reference real IHC cores corresponding to the cores in (A).
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Extended Data Fig. 5 | Transfer learning from TMAs to WSIs of prostate cancer 
tissue. Additional examples to the ones presented in Fig. 4. Example of H&E (left 
image), virtual IHC (middle image), and real IHC (right image) staining for NKX3.1 

(top) and AR (bottom) of prostate cancer tissue WSIs. Blue-framed zoomed-in 
regions display accurate staining pattern. Red-framed zoomed-in regions display 
examples of virtual staining mispredictions.
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Extended Data Fig. 6 | Marker-level interpretation of Graph-Transformer-
based survival prediction classification. For the modality-level interpretation, 
we performed Shapley Additive Explanations (SHAP)83 analysis for the 
overall survival prediction task on EMPaCT (see the relevant computation 
for reference). We systematically dropped the modalities during inference 
and measured the change in classification weighted F1 scores, inline with the 
SHAP algorithm to compute modality-level importance. Here, the barplots and 
errorbars indicate the mean and the standard deviation, respectively, of the 
estimated Shapley values across all 134 test images for n = 3 Graph-Transformer 
classifiers. In the absence of ground truth marker importance, we used biological 

knowledge for qualitative analysis. NKX3.1 and AR were identified as crucial, 
which is sensible as they both express specific patterns in luminal epithelial cells 
in prostate and aid in distinguishing normal from carcinoma. High importance of 
CD44 could be linked to its heterogeneous pattern and pleiotropic effects found 
in tumor microenvironment84. Conversely, CD146’s relevance lies in highlighting 
vascular or fibroblast changes, rendering it less diagnostically informative. 
Notably, the high importance of CD44 and NKX3.1, and the low importance of 
CD146 and ERG, are inline with the unimodal high and low weighted F1 scores in 
Fig. 6, respectively.
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Extended Data Fig. 7 | Transfer learning from TMAs to needle biopsies of prostate cancer tissue. Additional examples to the qualitative samples presented in  
Fig. 6. (A) and (B) present H&E biopsies from SICAP and PANDA datasets, respectively, and corresponding virtually stained IHC biopsies for six markers.
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Extended Data Fig. 8 | Region-level interpretation of Graph-Transformer-
based Gleason grade classification. Results for sample WSIs from the 
SICAP42 (top) and PANDA71 (bottom) datasets for interpreting the Gleason 
grading outcome of our Graph-Transformer, with accompanying ground truth 
annotations of Gleason scores. The model was trained using virtual images under 

early fusion setting. We used the GraphCAM method from41 to produce attention 
maps corresponding to salient tissue regions contributing to model predictions. 
We observe a great overlap between the identified salient regions and the 
ground-truth Gleason pattern annotations for both primary and secondary class 
predictions in both datasets.
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Extended Data Fig. 9 | Transfer learning from TMAs to WSIs of different tissue types from TCGA cohort. (A) H&E WSIs and (B) corresponding virtually stained 
IHC WSIs from colorectal carcinoma (top two rows) and breast invasive carcinoma (bottom two rows). For both the tissue types, the virtual stainings are produced for 
relevant CD44 and CD146 IHC markers.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | The VirtualMultiplexer can greatly accelerate 
histopathology workflows. We performed a runtime estimation of all 
components of the VirtualMultiplexer framework across imaging datasets of 
different scales: an in-domain TMA from the EMPaCT dataset (A), an out-of-
domain TMA from the PDAC dataset (B), an out-of-domain needle biopsy from 
the SICAP dataset (C), and an out-of-domain WSI from the in-house dataset (D). 
We calculated that applying the trained VirtualMultiplexer on a single EMPaCT 
TMA core (6000 × 6000 pixels at 20X magnification-0.24μm/pixel) for one 
marker resulted in a total runtime of 2.81 seconds, and the same process for an 
out-of-distribution TMA core resulted in a runtime of 10.88 seconds, with the 
increase attributed to stain normalization. However, the stain normalization 
step is crucial as it alleviates the appearance disparity between the training 
and the out-of-distribution samples (Supplementary Fig. 1), and allows for a 
faithful application of the VirtualMultiplexer to unseen datasets. The above 

result implies that virtual staining of a hypothetical TMA slide containing 250 
out-of-distribution TMA cores for 6 markers would be feasible in ≈ 65.8 minutes 
(preprocessing: ≈ 9.9 seconds per core, virtual staining and post-processing:  
≈ 0.98 seconds per core and marker). Conversely, performing the IHC staining 
for the same hypothetical TMA for 6 IHC markers could take an estimated time of 
approximately 1 day, when applied in a cutting-edge pathology laboratory using 
the latest protocols85. When applied in a biology lab that does not specialize in 
pathology, however, IHC staining could take up to 5 days per marker (sectioning: 
1 day, staining: 2 days, slide drying: 1 day, imaging: 1 day), leading to a minimum 
of 5 days, if done simultaneously for all 6 markers, and more than 10 days, if 
performed mostly sequentially. Importantly, as our method scales linearly with 
the size of the tissue (TMA to WSI) and with the number of markers, similar time 
gains would be feasible for virtually staining needle biopsies and WSIs.
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