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Klavdiia Naumova 1, Arnout Devos 2, Sai Praneeth Karimireddy3,4, Martin Jaggi5 &
Mary-Anne Hartley1,6

Distributed collaborative learning is a promising approach for building predictive models for privacy-
sensitive biomedical images. Here, several data owners (clients) train a joint model without sharing
their original data. However, concealed systematic biases can compromise model performance and
fairness. This study presents MyThisYourThat (MyTH) approach, which adapts an interpretable
prototypical part learning network to a distributed setting, enabling each client to visualize feature
differences learned by others on their own image: comparing one client’s 'This’with others’ 'That’. Our
setting demonstrates four clients collaboratively training two diagnostic classifiers on a benchmark
X-ray dataset. Without data bias, the global model reaches 74.14% balanced accuracy for
cardiomegaly and 74.08% for pleural effusion. We show that with systematic visual bias in one client,
the performance of global models drops to near-random. We demonstrate how differences between
local and global prototypes reveal biases and allow their visualization on each client’s data without
compromising privacy.

The transformative force of deep learning on clinical decision-making
systems is being increasingly documented1–3. For medical images, these
advances have the potential to improve and democratize access to high-
quality standardized interpretation, extracting predictive features at a
granularity previously inaccessible to human experts who are often lacking
in low-resource settings. The potential to automate routine analysis of
medical records3 and help find hidden predictive patterns in the data that
may reduce errors and unnecessary interventions (for example, biopsy)4

moves us towards more efficient, personalized, and accessible healthcare.
However, the performance of these models relies on large, carefully

curated centralized databanks, which are often challenging to create or
access in practice. Rather, medical data are usually fragmented among
several institutions that are unable to share due to a range ofwell-considered
reasons. DIStributed COllaborative (DISCO) learning has emerged as a
solution to this issue, offering privacy-preserving collaborative model
training without sharing any original data. Here, instead of sending the data
to a central model, the model itself is distributed to the data owners to learn
in situ, updating a global model via privacy-preserving gradients. When a

central server is used, the technique is known as federated learning (FL)5,
and it has already been shown to hold potential for various medical
applications6–9.

While DISCO addresses the issue of data privacy, it comes at a cost
to transparency, resulting in clients learning blindly from their peers. In
this black-box data setting, hidden biases between clients of the fed-
eration canmake generalization challenging, and evenwhen there are no
biases present, its risk may degrade trust. Coupled with the already poor
transparency of deep learning architectures used for medical images
(aka black-box models), interpretability is becoming a critical feature to
ensure a balance in the trade-off between transparency and privacy that
will encourage implementation.

Specifically required, is an approach to inspect data interoperability
between clients as well as provide insights into the most predictive features.
Additionally, this approach should be adept at detecting and quantifying
concealed biases in the data in an interpretableway,while preserving clients’
privacy. For instance, in shortcut-learning, a model uses a proxy feature,
which is systematically associatedwith a label to predict that label (e.g. using
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the hospital logo on anX-ray to diagnose tuberculosis because this infection
is specifically treated in that hospital).

As for the black-box neural networks, numerous approaches attempt
to explain themby a posthoc analysis of their predictions10–16.Many of these
methods have been well summarized elsewhere17,18. Feature visualization
(https://distill.pub/2017/feature-visualization/) and saliency mapping with
Grad-CAM12 are among the most popular techniques. These methods
visualize the regions in data that are most determinant for the prediction,
however, they fail to tell us why or to what extent the visualized regions are
essential for a prediction19.

This work aims to adapt an inherently interpretable model (IM) to the
FL setting20,21. Many IMs exist for tabular data, for example, sparse logical
models such as decision trees and scoring systems. For image recognition
tasks, models that possess human-friendly reasoning based on a similarity
between a test instance and already known instances (e.g. nearest neighbors
from a training set or the closest samples from a set of learned prototypes)
are particularly promising. This learning approach opens possibilities for
incorporating the scrutiny of domain experts, allowing them to debug the
model’s logic and examine the quality of training data. Prototypical part
learning neural network (ProtoPNet) developed by Chen et al.22 is a
popular IM for images and is the method we adopt for FL in this work.

To summarize, ProtoPNet (Supplementary Fig. 1) uses a set of
convolutional layers to map input images to a latent space, followed by a
prototype layer, which learns a set of prototypical parts from encoded
training images that best represent each class. Classification then relies on a
similarity score computedbetween these learnedprototypes andanencoded
test image. A prototype can be visualized by highlighting a patch in an input
image, which is the closest in terms of squared L2-distance to this prototype
in a latent space. The performance of ProtoPNet was demonstrated on
the task of bird species identification. The model showed an accuracy
comparable with the state-of-the-art black-box deep neural networks while
being easily interpretable. ProtoPNet was further extended to perform
the classification of mass lesions in digital mammography23 and image
recognition with hierarchical prototypes24.

In this work, we develop an approach called MyTH
(MyThisYourThat) through the adaptation of ProtoPNet to FL and
demonstrate its capacity for identifying bias in medical images. The idea is
that prototypes learned on each client’s local data represent feature
importance from that client’s point of view. As summarized in Fig. 1, clients

learn local prototypes separately and send them to a server that aggregates
and averages local prototypes to obtain global ones and sends them back to
clients. The patchesmost activated by each of these two types of prototypes
can be visualized and compared on each client’s local test set without a need
to share the data. By comparing global and local prototypes, the clients can
assess the interoperability of the data and directly examine the predictive
impact of other clients without compromising their privacy. i.e. compare
one client’s ’This’withothers ’That’. To the best of our knowledge, this work
is the first attempt at creating an interpretable methodology to inspect the
interoperability of biomedical imaging data in FL.

Our main contributions are as follows:
1. We introduce MyTH adapting ProtoPNet to a federated setting to

enable privacy-preserving identification of visual data bias in FL.
2. We formalize a set of use cases for interpretable distributed learning on

imperfectly interoperable biomedical image data containing
hidden bias.

3. We demonstrate the performance of our MyTH approach on a
benchmark dataset of human X-rays and compare it to baseline
models.

4. We show how MyTH helps identify biased clients in FL without dis-
closing the data.

5. Finally, we propose a new approach to use MyTH for interpretable
personalization.

Results
Quantitative results
We experimented on the CheXpert dataset25, a large public dataset of chest
X-rays, after processing it to allow for binary classification of cardiomegaly
and pleural effusion conditions (see the “Methods” section).

Unbiased setting. For both tasks, we first trained a Centralized Model
(CM), i.e. ProtoPNet baseline. We then partitioned the data in an
independently and identically distributed (IID) manner over four clients
and trained Local models (LM) on each client’s data without collabora-
tion. After that, clients collaboratively trained Global (GM) and Perso-
nalized (PM) models sharing either all (GM) or part (PM) of their
networks parameters.

The balanced accuracy for these four types of models trained on
unbiased data is presented in Table 1. The CM gives 74.45% and 75.95%

Fig. 1 | Schematic representation of the MyTH
approach.Within one communication round, each
client learns local prototypes (blue and orange
crosses) on its local training set and shares themwith
a server that aggregates and averages local proto-
types from all clients and sends these new global
prototypes (circled purple cross) back to clients.
After several communication rounds, each client
can examine the global data locally by visualizing
and comparing local and global prototypes on its
private local test set. Possible hidden bias in the
federation will result in a large difference between
local and global prototypes.
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balanced accuracy for cardiomegaly and pleural effusion classification,
respectively. As expected, LMs perform worse than centralized ones due
to the smaller dataset: LMs achieve 71.64% for cardiomegaly and 70.66%
for pleural effusion classes. When the clients train ProtoPNet in
collaboration, its performance improves: GM achieves 74.14% balanced
accuracy for cardiomegaly and 74.08% for pleural effusion classes, which
are close to the values achieved by the corresponding CM. Personalized
models, however, demonstrate worse performance of 63.74% and
63.76% for cardiomegaly andpleural effusion classes, respectively, which
may be the consequence of exchanging only a part of the network:
prototypes and weights of the final layer. The values of classification
sensitivity and specificity used to compute balanced accuracy can be
found in Supplementary Table 1.

Biased setting. We experimented with two types of data bias in one of
the clients:
• synthetic: adding a small red emoji to a positive class in cardiomegaly

classification (Fig. 2a);

• real-world: adding chest drains to a positive class in pleural effusion
classification as a more real-world bias (Fig. 2b). To achieve this, we
replaced images in a class Pleural effusion with X-rays labeled for the
presence of chest drains26.

The real-world use case can arise as pleural effusions are often drained.
Drain positions are routinely checked with a post-insertion X-ray. Thus, a
model may learn to diagnose pleural effusion by detecting a chest drain,
rather than the pathology (i.e., shortcut learning).

We compare local, global and presonalized models (LMb, GMb, and
PMb, respectively) trained in the presence of data bias separately on
unbiased and biased data (Table 2). It is clear that both types of data poi-
soning have a large effect on model performance.

We see that models with large local contributions, LMb and PMb, give
100.0% and 89.80% test accuracy, respectively, on biased data and 50.0%on
unbiased ones in the case of cardiomegaly classification. Thus, thesemodels
strongly rely on the presence of bias to predict a positive class (shortcut
learning).

Since the chestdrainbias ismoredifficult to learn than theobvious emoji,
for pleural effusion classification, LMb and PMb do not achieve maximum
accuracy on biased data but instead 73.22% and 64.81%, respectively. At the
same time, their performance on the unbiased test set is as low as for the
cardiomegaly class,namely50.37%and49.87%forLMbandPMb, respectively.

Global models (GMb), trained via communication of all the learnable
parameters of ProtoPNet, demonstrate a performance different from
their local and personalized versions. For cardiomegaly, GMb achieves
61.53% and 55.85% balanced accuracy on biased and unbiased sets,
respectively. Forpleural effusion, themodel achievesnearly 50%onboth test
sets. Sensitivity and specificity for the biased setting are shown in Supple-
mentary Table 2.

Table 1 | Centralized vs federated unbiased settings

Model CM LM GM PM

Cardiomegaly 74.45 ± 0.73 71.64 ± 1.05 74.14 ± 0.77 63.74 ± 4.45

Pleural
effusion

75.95 0.68 70.66 ± 2.40 74.08 ± 2.24 63.76 ± 2.01

Classification balanced accuracies (%, ±SD) for CM (centralized model), LM (local model), GM
(global model), and PM (personalized model) trained without data bias on CheXpert dataset for
cardiomegaly and pleural effusion classes. The uncertainty is computed over three runs with
different seeds and averaged over four datasets where applicable.

Fig. 2 | Examples of unbiased and biased (imper-
fectly interoperable) images from CheXpert
dataset. For a cardiomegaly and b pleural effusion
classes. The arrow indicates a chest drain.

https://doi.org/10.1038/s41746-024-01226-1 Article

npj Digital Medicine |           (2024) 7:238 3

www.nature.com/npjdigitalmed


Qualitative results
The quantitative performance of themodels described above can be further
supported in a visually interpretablewaywith thehelpof learnedprototypes.
The examples of prototypes visualized on training sets for the models
trained in the unbiased setting are shown in Fig. 3. We can see that these
prototypes represent class characteristic features that align with human
logic. For example, in order to classify an image as cardiomegaly, a cen-
tralizedmodel looks at the whole enlarged heart (Fig. 3) or at the collarbone
level in the center, pointing out the extended aorta characteristic for this
condition (Supplementary Fig. 2). As for the pleural effusion classification,
mostprototypes activate the lowerpart of the lungs,wherefluid accumulates
in this disorder. More examples of the prototypes learned in the unbiased
and biased settings can be found in Supplementary Figs. 2–15.

To demonstrate the effect of data bias, we compare the models on test
images by finding a patchmostly activated by the prototypes learned locally
and collaboratively in the FL setting with three unbiased and one biased
client (Figs. 4 and 5).We see that the local model of an unbiased client looks
at a meaningful class-characteristic patch in both biased (Figs. 4 and 5:
second-row last column) andunbiased (Figs. 4 and5:first-rowfirst column)
images to reason its predictions. The personalized model of an unbiased
client highlights a meaningful patch too (Figs. 4 and 5: first-row third

column). In the case of a biased client, the local model (LMb) for cardio-
megaly classification (Fig. 4: second-row first column) looks at the emoji in
the upper left corner of a test image. It tends to search for it in the unbiased
image as well (Fig. 4: first-row last column). The neighborhood of this
injected bias turned out to be the most activated patch for the personalized
model (PMb, Fig. 4: second-row third column). This result explains the
100% accuracy of LMb and 89.80% accuracy for PMb on a biased test set and
their complete failure on an unbiased one.

In the pleural effusion class, LMb and PMb indeed rely on the presence
of a chest drain in an X-ray image, as we can see from the most activated
prototypes (Fig. 5: second row first and third columns).

As for the fully global models trained in the federated setting with one
biased client (GMb), there is a difference in their behavior depending on the
type of bias used. Injected bias (an emoji), applied to the cardiomegaly class,
did not have an effect on the global prototypes: they still activate the heart in
both biased and unbiased images (Fig. 4: second column). For pleural
effusion, however, with a more realistic chest drain bias, the global proto-
types seemtobe affected strongly by the biasedclient’s training set since they
tend to activate the upper part of an image instead of the bottomof the lungs
where the fluid usually accumulates in the pleural effusion condition (Fig. 5:
second column).

Table 2 | Effect of bias in FL

Model LMb GMb PMb

Test set Biased Unbiased Biased Unbiased Biased Unbiased

Cardiomegaly 100.0 ± 0.0 50.0 ± 0.0 61.53 ± 4.27 55.85 ± 3.69 89.80 ± 10.20 50.0 ± 0.0

Pleural effusion 73.22 ± 1.16 50.37 ± 0.38 49.72 ± 0.28 50.01 ± 0.01 64.81 ± 0.99 49.87 ± 0.10

Classification balanced accuracy (%, ± SD) for LMb, GMb, andPMb trained in an FL settingwith one biased client on theCheXpert dataset for cardiomegaly and pleural effusion classes. For eachmodel, the
value in the left subcolumn corresponds to the test set of a biased client, and in the right subcolumn, there is an average value over the test sets of unbiased clients. The uncertainty is computed over three
runs with different seeds and averaged over four datasets where applicable.

Fig. 3 | Prototypes learned in an unbiased setting.Examples of prototypical parts learned byCM (gray), LM (blue), GM (purple), and PM (green) in an unbiased setting and
visualized on a corresponding training set.
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We demonstrated that prototypes learned by ProtoPNet are sensi-
tive to data bias and thus can help to create a visually interpretable approach
to explore data interoperability in FL in a privacy-preserving way. We
discuss this possibility in the next section.

Discussion
Data compatibility between the clients in FL is of utmost importance for
training an efficient and generalizable model. In this work, we present a
visually interpretable approach for bias identification in FL that leverages a
prototypical part learning network. A scheme to identify an incompatible
client can be approximated as follows:
1. Each client trains a local ProtoPNet (LM) on its own data set.
2. With the help of a central server, the clients train global models (GM

and/or PM), sharing all or a portion of learnable parameters (e.g., only
the prototypes and weights of the final layer).

3. Each client visualizes its local, global, and personalized prototypes
(finding the most activated patches) on its local test set and compares

them by means of simple visual inspection (ideally with the help of
domain experts). There is no need to share a test set with other clients
or the server.

4. A large differencebetween local and global/personalized prototypes for
certain clients indicates a possible data bias in the federation and
requires the clients to either quit the federation or take measures to
improve the quality of their training data.

We demonstrate this scheme on a task of binary classification of X-ray
images for the presence of cardiomegaly and pleural effusion conditions
using two different data poisoning patterns. As can be seen from Fig. 4,
simple injected bias such as an emoji in the cardiomegaly class easily con-
fuses the local model making it spuriously rely on this emoji to predict a
positive class. It is interesting to note that for this binary classification task,
addingbias to apositive class also changes theprototypes for anegative class.
This effect can be seen in Supplementary Fig. 4 and Supplementary Fig. 8,
where prototypical parts for a negative (unbiased) class turned out to be left

Fig. 4 | Bias identification in the cardiomegaly
classification task with MyTH. Examples of a test
image with bounding boxes indicating the most
activated patches by the prototypes learned locally
and globally on unbiased (blue) and biased (orange)
CheXpert datasets in an FL setting for cardiomegaly
classification. The difference between local (LM)
and global (GM/PM) prototypes signals about poor
data interoperability in the federation.

Fig. 5 | Bias identification in the pleural effusion
classification task with MyTH. Examples of a test
image with bounding boxes indicating the most
activated patches by the prototypes learned locally
and globally on unbiased (blue) and biased (orange)
CheXpert datasets in an FL setting for pleural effu-
sion classification. The difference between local
(LM) and global (GM/PM) prototypes signals about
poor data interoperability in the federation.
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in upper regions where there was an emoji for a positive class. Obviously,
these prototypes have no practical value or plausible physiological mapping
in classifying cardiomegaly.

Training a model via averaging the parameters over all clients helps to
level out the effect of the bias completely (GM) or, to a smaller extent (PM).
This apparent difference between local and global/personalized prototypes
should alarm the data owner of possible discrepancies between their data
and others. From the unbiased clients' perspective, since the difference
between the prototypes for them is negligible, a drop in the performance of a
GM in comparison to LM and larger uncertainty values are signs of poor
data interoperability in the federation.

To experiment with more practically relevant data bias, we mimic a
common real-world example of shortcut learning, where pleural effusion
can be detected by the presence of chest drains (that have been placed after
initial diagnosis as a therapeutic intervention). Thus the presence of chest
drains in X-ray images can serve as a proxy for pleural effusion class. We
trained our models in the FL setting where one client has images with chest
drains in the positive class (note that these images do not necessarily have
pleural effusion anymore).

Figure 5 shows a possible output of applying MyTH on a pleural effu-
sion classification task in a biased setting.As before, an LMb fails to activate a
class-relevant feature, namely the bottom region of the lungs, as anunbiased
model does and instead looks at the upper part of the chest where there are
lots of drains. The same result was observed for PMb. It is interesting that the
fully globalmodel also activates the upper part of a test image in both biased
and unbiased samples. Unlike the cardiomegaly classification, in this case,
the data incompatibility is clearer for unbiased clients than for biased ones.
Indeed, in the cardiomegaly classification task, only one client has a sys-
tematic bias, while in the pleural effusion case, chest drainsmay naturally be
present in the images of other clients as well. This data distribution is
applicable in the real world. It makes the chest drain prototype dominant
among the positive class prototypes of a global model and significantly
worsens the overall model performance.

As mentioned in the “Experimental details” subsection in “Methods”
section, the two different ways of parameter aggregation allow us to inves-
tigate a trade-off between privacy and ease of bias identification. Obviously,
the more parameters clients share, the higher the risk of privacy leakage. At
the same time, GMb trained via aggregating all learnable parameters of
ProtoPNet demonstrates a large difference between local and global
prototypes in case of the presence of data bias in the federation facilitating
the identification of this bias. PMb, trained by centrally updating only the
prototypes and weights of the final layer, makes it more challenging for an
adversary to get the data from such a small set of network parameters but
have less bias-identification power: due to a large local contribution, the
difference between local and personalized prototypes is small.

In thiswork,wepresented two extreme cases of parameter aggregation.
More experiments are needed to define an optimal amount of parameters to
share.Note, however, that this potential amount is not strict anddepends on
a certain data sensitivity to privacy. Therefore, it is up to clients to set their
privacy budget, i.e. how many network parameters they are ready to share.

Optionally, clients can also share their localmodels with each other to
visualize themon other clients’ data for additional comparison. An example
of such a possibility is shown inFigs. 4 and 5 in the last column.We can see a
largedifferencebetween the local prototypes learnedonbiasedandunbiased
data for both cardiomegaly and pleural effusion classes.

So far,wehavebeen talking about data bias fromanegative perspective.
However, it is possible to have large heterogeneity among the clients
meaning that some specific features that eachof themhas are important. For
instance, variations in skin color can be an essential feature for predicting
dermatological pathologies, as certain skin conditions may present differ-
ently depending on skin pigmentation. In this case, training PM allows
clients to benefit from the federation while keeping their specific features
essential for the prediction (see Figs. 4 and 5: second-row third column).

It is worth noting the directions for future work. To investigate the
trade-off between privacy and bias-identification ability of our MyTH

approach, further studies are required. It is also necessary to experiment
with other medical datasets and real-world biased settings with a larger
number of clients. Since the objective of this research was to develop a
novel deep learning-basedmethodology with the potential for application
across various medical imaging modalities, we used a retrospectively
collected dataset to alignwith commonpractices in building deep learning
models. However, a prospective study in a real clinical setting is strictly
necessary to ensure the effectiveness and safety of our approach for
practical use.

Additionally, a possible next step is to introduce a debiasing option to
our approach that will allow us to instantly penalize the contribution of a
biased client. Itmay be done, for example, automatically throughprototypes
weighing or manually with the help of domain experts.

Furthermore, we are currently working on adapting our MyTH
approach to a web-based DISCO application (https://epfml.github.io/
disco). It provides a user-friendly framework for distributed learning and
thus has the potential to facilitate the integration of MyTH into medical
practice.

Finally, a promising direction for future work is combining our
approach with counterfactual explanation techniques known for providing
human-understandable post-hoc explanations for model decision-
making27. For instance, clients can apply counterfactual explanation tech-
niques to their local and global models to observe the changes in model
output after removing features identified by theMyTH approach as potential
biases. This integration can further help in developing trust in deep learning
models among medical practitioners.

Methods
Model description
The ProtoPNet architecture is presented in Supplementary Fig. 1. The
network is composed of the following parts:
• a set of convolutional layers to learn features from the input data;
• two additional 1 × 1 convolutional layers with D channels and the

ReLU activation after the first layer and Sigmoid after the second;
• a prototype layer with a predefined number of prototypes. Each pro-

totype is a vector of size 1 × 1 ×D with randomly initialized entries;
• afinal fully connected layerwith thenumberof inputnodes equal to the

number of prototypes and the number of output nodes corresponding
to the number of classes. The weights indicate the importance of a
particular prototype for a class. They are initialized as in ref. 22 such
that the connection between the prototypes and their corresponding
class is 1 and −0.5 for the connections with the wrong classes.

We trained MyTH, an FL adaptation of ProtoPNet, using either
unbiased identical data distribution among clients (unbiased setting) or
imperfectly interoperable with systematic bias in a single class (biased set-
ting). Two parameter aggregation schemeswere applied: (1) a central server
aggregates and updates local parameters of all the layers of ProtoPNet or
(2) only the prototypes and weights of the final fully connected layer. In the
second case, the parameters of feature learning layers always stay local,
which results in personalized models with global prototypes. A detailed
scheme is shown in Fig. 6.

By learning local prototypes, each client identifies the features in its
training images most important for the task. In contrast, the global proto-
types show the relevance for all clients on average. Finally, by examining the
difference between local andglobal prototypes, a client can identify bias in its
own or in another client’s dataset.

Experimenting with two different parameter aggregation schemes
allows us to investigate the trade-off between the bias-revealing and privacy-
preserving properties of MyTH.

Notation. Hereafter, we denote matrices and vectors in bold capital and
bold lowercase letters, respectively.

Data split: Each clientn∈ {1, . . .,N} has a training setDn of size l, which
consists of training images fXigli¼1 and their corresponding classes fyigli¼1.
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Model: Each client learns features with convolutional layers and m
local prototypes Pn ¼ fpjgmj¼1

of size [1 × 1 ×D] with a fixed number of
prototypes per class. First, given an input image Xi, the convolutional
layers produce an image embeddingZi of size [H ×W ×D], which can be
represented as [H ×W] patches of size [1 × 1 ×D]. Then, the prototype
layer computes the squared L2-distance between each prototype pj and
all the patches in the image embedding Zi. This results in m distance
matrices of size [H ×W] which are then converted into matrices of
similarity scores (activation matrices) and subjected to a global max
pooling operation to extract the best similarity score for each prototype.
These final scores are then multiplied by the weight matrix Wn

h in the
final fully connected layer h followed by softmax normalization to
output class probabilities.

Training. The details of local training can be found in ref. 22 and in
Supplementary Note 1. At the global update step, the server aggregates the
local prototypesPn, weights of thefinal layerWn

h , and in thefirst aggregation
scheme, also the parameters of the convolutional layersWn

c from each client
n and performs simple averaging of these parameters to obtain the global
ones:

Pglob ¼
1
N

XN

n¼1

Pn ð1Þ

Wh;glob ¼
1
N

XN

n¼1

Wn
h ð2Þ

Wc;glob ¼
1
N

XN

n¼1

Wn
c ð3Þ

and then sends them back to clients as shown in Fig. 6.
To visualize the prototypes, each client finds for each of the local and

global prototypes a patch among its training images from the same class that
is mostly activated by the prototype. It is achieved by forwarding the image
through the trained ProtoPNet and upsampling the activation matrix to
the size of the input image. A prototype can be described as the smallest
rectangular area within an input image that contains pixels with an acti-
vation value in the upsampled activation map equal to or greater than the
95th percentile of all activation values in that map22.

Data
The experiments were conducted on the CheXpert dataset25, a large public
dataset of 224,316 chest X-rays of 65,240 patients collected from Stanford
Hospital between October 2002 and July 2017 in both inpatient and out-
patient centers. Each image was accompanied by a radiology report which
was labeled for the presence of 14 observations as positive, negative, or
uncertain. The images were consequently labeled with a rule-based labeler
developed by the authors of ref. 25, which extracted observations from the
text radiology reports. The original 14 observations included Enlarged
Cardiomediastinum, Cardiomegaly, Lung Lesion, Lung Opacity, Edema,
Consolidation, Pneumonia, Atelectasis, Pneumothorax, Pleural Effusion,
Pleural Other, Fracture, Support Devices, and No Finding. To simplify the
experiments and interpretation, we used a one-vs-rest binary setting. Spe-
cifically, we use images with positive labels for classes Cardiomegaly or
Pleural effusion as the positive class and all other images as the single
negative class. Cardiomegaly is a health condition characterized by an
enlarged heart, and pleural effusion is an accumulation of fluid between the
visceral and parietal pleural membranes that line the lungs and chest cavity.
This setting, however, resulted in a data imbalance (7 and 1.6 times for
cardiomegaly and pleural effusion, respectively). To address this issue, we
decreased the size of a negative class in the training set by undersampling to
make it equal to the size of a positive class. Thefinal training sets had 48,600
and 37,088 images for cardiomegaly and pleural effusion classification,
respectively. The validation sets were left imbalanced.

Experimental details
For both cardiomegaly and pleural effusion classification tasks, we first
trained and evaluated a baseline centralizedProtoPNet, whichwe denote
as CentralizedModel (CM). Thenwemade an IID partition of the data over
four clients and trained Local (LM), Global (GM), and Personalized (PM)
models. Finally, we introduced systematic bias to one client’s dataset and
trained LMb, GMb, and PMb models where superscript b denotes a setting
with one biased and three unbiased clients. The training details are
described below.

Unbiased setting.
1. Centralized (CM) ProtoPNet. As a baseline, we follow the archi-

tecture and optimization parameters from the ProtoPNet paper22

using theDenseNet28 convolutional layers pretrained on ImageNet29 to
learn a CM on the whole dataset. We used 10 prototypes of size

Fig. 6 | MyTH architecture. Several clients (blue panel for unbiased and orange
panel for biased clients) wish to learn a model in a federated setting via a SERVER.
MyTH passes raw data through convolutional layers to create embeddings in a latent
space, each of which can be seen as H ×W image patches of size [1 × 1 ×D]. These
patches are clustered around the closest prototypes (blue and red crosses), which are
being learned for each class in the prototype layer. The prototype is a vector
representing a class-characteristic feature in the latent space. Clientn (orange panel)

has a systematic bias, which contaminates the prototype pool (red cross). Prototypes
for each class and other learnable parameters of the network are shared with the
SERVER by each client and aggregated to make global parameters (circled purple
cross). These are then sent back to the clients. Classification is based on a similarity
score between the prototypes and the patches of an encoded image. In the final panel,
we see how global and local prototypes can be compared without sharing any
original data.
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1 × 1 × 128 per class. We report balanced average validation accuracy
due to the validation set imbalance:

Balanced accuracy ¼ Sensitivity þ Specificity
2

ð4Þ

2. Local models (LM): We trained and evaluated LM for each of the four
IID clients.

3. Global models (GM): Using the first FL setup where the server
aggregates parameters of all the layers, GMs were trained according to
the scheme depicted in Fig. 6. The training comprises three (for pleural
effusion) or four (for cardiomegaly) communication rounds between
the clients and the server. The server initializes a ProtoPNetmodel
and sends it to the clients who learn LMs. After five epochs, a subset of
local parameters is communicated to the server and aggregated.
Importantly, during this training stage, each client keeps the pretrained
convolutional weights frozen and trains two additional convolutional
layers. Each of the next communication rounds includes the follow-
ing steps:
• Local training: Each client trains convolutional layers, a prototype

layer, and a final fully connected layer locally on its own dataset.
• Local parameters: A set of local prototypes Pn, weightsWn

h andW
n
c

is sent to the server after every 10 epochs.
• Global parameters: The server averages local parameters to create a

set of global prototypesPglob, weightsWh,glob andWc,glob. These are
shared back to each client to iterate training.

4. Personalized models (PM): We used the second FL setup within
which the server aggregates only the prototypes Pn and weights of
the final fully connected layer Wn

h to train PMs. We followed the
same communication technique as described for GM, with the
difference that, after receiving the updated prototypes Pglob and
weights Wh,glob from the server, each client performs an addi-
tional prototype update locally by finding the nearest latent
training patch from the same class and assigning it as a prototype.
This operation is known as prototype push in ref. 22, and we use it
to adapt global prototypes to a local dataset for personalization.
This step is followed by local optimization of the final layer to
improve accuracy.

Biased setting.
5. Local, global, and personalizedmodels:We trained LMb,GMb, andPMb

models in an FL setting with three unbiased clients and one with
systematic bias in one class (Fig. 2). This setting is schematically shown
inFig. 7between twoclients.Wevisually inspect theprototypes learned
locally and globally to detect the differences between clients’ data
without sharing them.

Statistical analysis
For each of themodels described above, we present the uncertainty in terms
of standard deviation. It was computed over three runs with different seeds.
For LM and PM, the final performance was also averaged over four datasets
(clients).

Fig. 7 | Schematic representation of the MyTH
training in a biased setting. a For the global biased
model (GMb), the clients send to the server para-
meters of the convolutional layers (Wc, denoted by
blue circles for unbiased client and orange circles for
biased client), along with prototypes and weights of
the final fully connected layer (P and Wh, denoted
jointly by blue and orange crosses), i.e. their entire
local models (LM and LMb). b To train personalized
models (PM and PMb), the server aggregates and
updates only the prototypes and weights of the final
layer and sends these global updates (Pglob and
Wh,glob, denoted jointly by circled purple crosses)
back to clients to finalize the training of the PMs. In
this case, the parameters of the convolutional layers
always remain local.
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Data availability
The benchmark CheXpert dataset (CheXpert-v1.0-small) used in the cur-
rent study is publicly available on the Kaggle platform at https://www.
kaggle.com/datasets/ashery/chexpert. A list of CheXpert images labeled for
the presence of chest drains, which was used to generate biased data in this
study, was adopted from ref. 26 and is publicly available at https://github.
com/EPFLiGHT/MyTH.

Code availability
The code to reproduce our approach is available at https://github.com/
EPFLiGHT/MyTH.
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