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Abstract

This paper is concerned with secret�key agreement by public discussion� two parties Alice
and Bob and an adversary Eve have access to independent realizations of random variables
X � Y � and Z� respectively� with joint distribution PXY Z � The secret key rate S�X �Y jjZ�
has been de	ned as the maximal rate at which Alice and Bob can generate a secret key
by communication over an insecure� but authenticated channel such that Eve
s information
about this key is arbitrarily small� We de	ne a new conditional mutual information mea�
sure� the intrinsic conditional mutual information between X and Y when given Z� denoted
by I�X �Y�Z�� which is an upper bound on S�X �Y jjZ�� The special scenarios where X � Y �
and Z are generated by sending a binary random variable R� for example a signal broadcast
by a satellite� over independent channels� or where Z is generated by sending X and Y over
erasure channels� are analyzed� In the 	rst scenario it can be shown that the secret key rate
is strictly positive if and only if I�X �Y �Z� is strictly positive� For the second scenario a
new protocol is presented which allows secret�key agreement even when all the previously
known protocols fail�

Keywords� Cryptography� Secret�key agreement� One�time pad� Perfect secrecy�

� Introduction

Perfectly secure key agreement has been studied recently by several authors ������������������	����
��
Two possible approaches are based on quantum cryptography �e�g�� see ���
 and on the exploita�
tion of the noise in communication channels� In contrast to quantum cryptography� which is
expensive to realize� noise is a natural property of every physical communication channel� In
��� and in ��
� it has been illustrated how such noise in communication channels can be used
for unconditionally secure secret�key agreement and� furthermore� that it is advantageous to
combine error control coding and cryptographic coding in a communication system�

It is a classical cryptographic problem of transmitting a message M from a sender �referred
to as Alice
 to a receiver �Bob
 over an insecure communication channel such that an adversary
�Eve
 with access to this channel is unable to obtain useful information about M � In the classical
model of a cryptosystem �or cipher
 introduced by Shannon ����� Eve has perfect access to the

�



insecure channel� thus she is assumed to receive an identical copy of the ciphertext C received by
the legitimate receiver Bob� where C is obtained by Alice as a function of the plaintext message
M and a secret key K shared by Alice and Bob� Shannon de�ned a cipher system to be perfect
if I�M �C
 � 
� i�e�� if the ciphertext gives no information about the plaintext or� equivalently� if
M and C are statistically independent� When a perfect cipher is used to encipher a message M �
an enemy can do no better than guess M without even looking at the ciphertext C� Shannon
proved the pessimistic result that perfect secrecy can be achieved only when the secret key is
at least as long as the plaintext message or� more precisely� when H�K
 � H�M
�

For this reason� perfect secrecy is often believed to be impractical� In ��� this pessimism has
been relativized by pointing out that Shannon�s apparently innocent assumption that� except for
the secret key� the enemy has access to precisely the same information as the legitimate receiver�
is very restrictive and that indeed in many practical scenarios� especially if one considers the
fact that every transmission of data is ultimately based on the transmission of an analog signal
subject to noise� the enemy has some minimal uncertainty about the signal received by the
legitimate receivers�

Wyner ���� and subsequently Csisz�ar and K�orner ��� considered a scenario in which the
enemy Eve is assumed to receive messages transmitted by the sender Alice over a channel that
is noisier than the legitimate receiver Bob�s channel� The assumption that Eve�s channel is
worse than the main channel is unrealistic in general� It was shown in ��� that this assumption
can be unnecessary if Alice and Bob can also communicate over a completely insecure �but
authenticated
 public channel�

For the case where Alice� Bob� and Eve have access to repeated independent realizations of
random variables X� Y � and Z� respectively� with joint distribution PXY Z � the rate at which
Alice and Bob can generate a secret key by public discussion over an insecure channel is de�ned
in ��� as follows� We assume in the following that the distribution PXY Z is publicly known�

De�nition � The secret key rate of X and Y with respect to Z� denoted by S�X�Y jjZ
� is
the maximum rate at which Alice and Bob can agree on a secret key S such that the rate at
which Eve obtains information about S is arbitrarily small� In other words� it is the maximal
R such that for every � � 
 and for all su�ciently large N there exists a protocol� using public
discussion over an insecure but authenticated channel� such that Alice and Bob� who receive
XN � �X�� � � � �XN � and Y N � �Y�� � � � � YN �� respectively� have the same key S with probability
at least �� �� satisfying

�

N
I�S�V ZN 
 � � and

�

N
H�S
 � R� � �

where V denotes the collection of messages sent over the insecure channel by Alice and Bob�
and where ZN � �Z�� � � � � ZN ��

The following lower bound for S�X�Y jjZ
 is proved in ���� and follows from a result by Csisz�ar
and K�orner ����

maxfI�X�Y 
� I�X�Z
� I�Y �X
� I�Y �Z
g � S�X�Y jjZ
 � ��


As already mentioned� it has been �rst shown by an example in ��� that the secret key rate
S�X�Y jjZ
 can be strictly positive even when both I�X�Z
 � I�X�Y 
 and I�Y �Z
 � I�Y �X
�

We give a brief outline of the rest of this paper� In Section � we de�ne a new conditional
mutual information measure and show that this measure gives an improved upper bound for the
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secret key rate� In the later sections we address the problem whether secret�key agreement is
always possible when this new upper bound is strictly positive� We consider this in the scenarios
where X� Y � and Z are generated by sending a binary random variable over independent
channels� and where Z is generated by sending X and Y over erasure channels� In the �rst
of the scenarios it is shown that secret�key agreement is possible if the intrinsic conditional
information is positive� For the second scenario� we show the somewhat surprising fact that a
new protocol can be more powerful than the previously known protocols in the latter scenario�

� The intrinsic conditional mutual information

The following upper bound on the secret key rate was proved in ����

S�X�Y jjZ
 � minfI�X�Y 
� I�X�Y jZ
g � ��


Trying to reduce the quantity I�X�Y jZ
 in this upper bound� the adversary Eve can send the
random variable Z over a channel� characterized by PZjZ � in order to generate the random

variable Z� and hence
S�X�Y jjZ
 � S�X�Y jjZ
 � I�X�Y jZ
 ��


holds for every such Z� This motivates the following de�nition of the intrinsic conditional mutual
information between X and Y when given Z� which is the in�mum of I�X�Y jZ
� taken over all
discrete random variables Z that can be obtained by sending Z over a channel� characterized
by PZjZ �

De�nition � For a distribution PXY Z � the intrinsic conditional mutual information between

X and Y when given Z� denoted by I�X�Y �Z
� is

I�X�Y �Z
 �� inf

�
I�X�Y jZ
 � PXY Z �

X
z�Z

PXY Z � PZjZ
�

�

where the in�mum is taken over all possible conditional distributions PZjZ �

The following theorem follows from ��
�

Theorem � For arbitrary random variables X� Y � and Z� we have

S�X�Y jjZ
 � I�X�Y �Z
 � ��


Proof� The bound ��
 follows from ��
� �

Theorem � implies in particular that secret�key agreement can be possible only if

I�X�Y �Z
 � 
 �

The intrinsic conditional information satis�es the following inequalities�


 � I�X�Y �Z
 � I�X�Y 
 �

I�X�Y �Z
 � I�X�Y jZ
 �

and I�X�Y �Z
 � I�X�Y �Z
 �

�



where Z is generated from Z by an arbitrary channel� The following example shows that
the intrinsic conditional information can be equal to 
 �and secret�key agreement is hence
impossible
 even when both I�X�Y jZ
 � 
 and I�X�Y 
 � 
� Let X � Y � Z � f
� �� �� �g�

PXY Z�
� 
� 

 � PXY Z�
� �� �
 � PXY Z��� 
� �
 � PXY Z��� �� 

 �
�

�
�

and

PXY Z��� �� �
 � PXY Z��� �� �
 �
�

�
�

Then I�X�Y 
 � ��� and I�X�Y jZ
 � ��� �note that Z � X � Y if X�Y � f
� �g
� but
I�X�Y �Z
 � 
� To see this� consider the random variable Z� generated by sending Z over the
channel characterized by

PZjZ�
� 

 � PZjZ�
� �
 � PZjZ��� 

 � PZjZ��� �
 �
�

�

and
PZjZ��� �
 � PZjZ��� �
 � � �

Intuitively� giving the side information Z �destroys� all the information between X and Y � but
generates new conditional mutual information �that cannot be used to generate a secret key
�
In contrast to I�X�Y jZ
� the intrinsic information I�X�Y � Z
 measures only the remaining

conditional mutual information between X and Y �when given Z
� but not the additional

information between X and Y when giving Z� A graphical representation of I�X�Y � Z
 is
described in Appendix A�

� Secret�key agreement with general random variables

The intrinsic conditional mutual information I�X�Y � Z
 de�ned above gives a new upper
bound for the secret key rate� and in particular� secret�key agreement is impossible unless
I�X�Y �Z
 � 
� It appears plausible that this condition is also su�cient for a positive secret
key rate�

Conjecture � Let PXY Z be such that I�X�Y �Z
 � 
� Then S�X�Y jjZ
 � 
�

In the following sections we prove this conjecture in di�erent special scenarios� It is a funda�
mental open problem to prove or disprove the conjecture for the general case�

As a preparation for the analysis in the following sections we prove three lemmas that we
use later when analyzing di�erent scenarios� All these lemmas are very intuitive and follow
from the de�nition of the secret key rate� Lemma � states that Alice and Bob cannot increase
the secret key rate when they ignore certain realizations of the random variables X and Y � for
example if X and Y do not lie in certain subsets �X and �Y of X and Y� In this case we say that
Alice and Bob obtain new random variables by restriction of the ranges� Lemma � states that
processing X and Y does not help increasing the secret key rate�

Lemma � Let X� Y � and Z be random variables with ranges X � Y� and Z and joint distribution

PXY Z � For �X � X and �Y � Y� we de�ne a new random experiment with random variables �X
and �Y �with ranges �X and �Y� respectively�� If � is the event that X � �X and Y � �Y� then the
joint distribution of �X and �Y with Z is de�ned as follows�

P �X �Y Z�x� y� z
 ��
PXY Z�x� y� z


PXY Z ���

�



for all �x� y� z
 � �X 	 �Y 	 Z� �This is a probability distribution for �X 	 �Y 	 Z�� Then

S�X�Y jjZ
 � PXY Z ��� � S� �X � �Y jjZ
 � ��


In other words� the secret key rate cannot be increased by restricting the ranges of X and Y �

Proof� The secret key rate S�X�Y jjZ
 is the maximum key�generation rate� taken over all
possible protocols between Alice and Bob� One strategy of them is to restrict the ranges of
their random variables� With probability PXY Z ���� they both receive random variables �X and
�Y � respectively� and inequality ��
 follows� �

Lemma � Let X� Y � Z� X� and Y be random variables with distribution

PXY ZX Y � PXY Z � PXjX � PY jY �

where PXjX and PY jY are arbitrary conditional probability distributions� Then S�X �Y jjZ
 �
S�X�Y jjZ
�

Proof� As in the proof of Lemma �� the statement follows because it is one of the possible
strategies for Alice and Bob to send X and Y over two channels� and because the secret key
rate is the maximum key generation rate taken over all possible protocols� �

De�nition � We say that X and Y are generated from X and Y with positive probability if one
can obtain from X and Y random variables �X and �Y by restriction of the ranges �see above
�
and the random variables X and Y by sending �X and �Y over two channels� speci�ed by PXj �X
and PY j �Y �

Lemma � states that if Eve has access to a random variable U �in addition to Z
 that can
be interpreted as side information provided by an oracle� then the secret key rate is not greater
than in the original situation�

Lemma � Let X� Y � Z� and U be arbitrary random variables� Then

S�X�Y jj�Z�U �
 � S�X�Y jjZ
 �

Proof� The secret key rate is the maximum rate at which a mutual key can be generated such
that for every positive � there exists a protocol with the property that the rate at which Eve
obtains information about this key is upper bounded by �� i�e�� I�S�V ZN 
�N � � where V
is the entire communication sent over the public channel� Obviously� I�S�V �Z�U �N 
�N � �
implies I�S�V ZN
�N � �� and the lemma follows�

We will in particular make use of the following theorem which is an immediate consequence
of the three Lemmas �� �� and ��

Theorem � Let X� Y � Z� and U be arbitrary random variables� and let X and Y be generated

from X and Y with positive probability� Then S�X �Y jj�Z�U �
 � 
 implies S�X�Y jjZ
 � 
�

�



� The scenario of independent binary�input channels

Let R be an arbitrary binary random variable� and let X� Y � and Z be arbitrary discrete random
variables� generated by sending R over independent channels CA� CB� and CE� i�e��

PXY ZjR � PXjR � PY jR � PZjR � �	


In other words� X� Y � and Z are statistically independent when given R� This scenario is
illustrated in Figure �� The following is a di�erent but equivalent characterization for our

� ���

�

�

CBCA

CE

X Y

Z

R

Figure �� The scenario of three independent channels

scenario� There exist 
 � � � � and probability distributions P
���
X � P

���
X � P

���
Y � P

���
Y � P

���
Z � and

P
���
Z such that

PXY Z � � � P ���
X � P ���

Y � P ���
Z � ��� �
 � P ���

X � P ���
Y � P ���

Z �

i�e�� PXY Z is the weighted sum of two �independent distributions� of XY Z� The results of this
section hold for all distributions with this property�

The main result of this section is the following theorem which characterizes completely the
cases for which S�X�Y jjZ
 � 
 in this scenario� i�e�� for which secret�key agreement is possible
in principle� and which implies that Conjecture � is true in this case�

Theorem � Let R be a binary random variable� and let X� Y � and Z be discrete random

variables �with ranges X � Y� and Z� respectively�� generated from R by independent channels�
i�e�� PXY ZjR�x� y� z� r
 � PXjR�x� r
 � PY jR�y� r
 � PZjR�z� r
 for all x � X � y � Y� z � Z� and
r � f
� �g� Then the secret key rate is strictly positive� i�e�� S�X�Y jjZ
 � 
� if and only if

I�X�Y jZ
 � 
�

The necessity of the condition follows immediately from the upper bound �� The proof of
Theorem 	 is subdivided into several steps stated below as lemmas� We begin with the special
case where R is a symmetric binary random variable and all three channels are binary symmetric�
This special result is not necessary for the proof of Theorem 	� but we show it in order to
present the considered protocol and some estimates that will be useful later� In Appendix B we
prove a similar result for continuous random variables generated from independent binary�input
channels�

	



��� Binary symmetric channels

Let PR�

 � PR��
 � ��� and consider three binary symmetric channels CA� CB � and CE with
bit error probabilities �� 	� and �� respectively� i�e�� we have

PXjR�
� 

 � �� �� PY jR�
� 

 � �� 	� and PZjR�
� 

 � �� ��

where 
 � � 
 ���� 
 � 	 
 ���� and 
 
 � � ���� We can assume here that � � 	� i�e�� that
Alice�s and Bob�s channels are identical� If for example � 
 	� Alice can cascade her channel
with another binary symmetric channel to obtain error probability 	� This additional channel
must be binary symmetric with error probability �	 ��
���� ��
� �In this particular scenario
it is not even necessary to assume � � 	� The statement of Lemma � also holds if � 
� 	 when
the party with the greater error probability is the sender and the other party is the receiver in
Protocol A described below�


Alice can send a randomly chosen bit C to Bob by the following protocol� which was already
presented in ����

Protocol A	 Let N be �xed� Alice sends �C � X�� C � X�� � � � � C � XN � over the public
channel� Bob computes ��C �X�
�Y�� � � � � �C �XN 
�YN � and accepts exactly if this is equal
to either �
� 
� � � � � 
� or ��� �� � � � � ��� In other words� Alice and Bob make use of a repeat code
of length N with the only codewords �
� 
� � � � � 
� and ��� �� � � � � ���

It is obvious that Eve�s optimal strategy in the described scenario is to compute the block
��C �X�
 � Z�� � � � � �C �XN 
� ZN � and guess C as 
 if at least half of the bits in this block
are 
� and as � otherwise�

This protocol is computationally e�cient� but it is not e�cient in terms of the size of the
generated secret key� In this scenario there exist protocols that are much more e�cient with
respect to the e�ective key generation rate ����

We show �rst that for all possible choices of � and �� in particular even if Eve�s channel is
superior to both Alice�s and Bob�s channel� Eve�s error probability �N about the bit sent by
Alice when using the optimal strategy for guessing this bit grows asymptotically faster than
Bob�s error probability 	N for N �� �� given that Bob accepts� �Note that �N is an average

error probability� and that for a particular realization� Eve�s error probability will typically be
smaller or greater than �N �


Lemma 
 For the above notation and assumptions� there exist b and c with b 
 c such that

	N � bN and �N � cN for su�ciently large N �

Proof� As in ���� let �rs �r� s � f
� �g
 be the probability that the single bit 
 sent by Alice is
received by Bob as r and by Eve as s� Then

��� � ��� �
���� �
 � ��� �

��� � ��� �
�� � ����� �
 �

��� � ��� � ��� � �
 �

Let pa�N be the probability that Bob accepts the message sent by Alice� If we assume �without
loss of generality
 that N is even� then

	N �
�

pa�N
� ���� � ���


N �
�

pa�N
� ��� � ���
N ��


�N � �

�
� �

pa�N
�
�

N

N��

�
�
N��
�� �

N��
�� ��


�



�we have assumed without loss of generality that N is even
� The last expression is half of
the probability that Bob receives the correct codeword and that Eve receives the same number
of 
�s and ��s� given that Bob accepts� This is one of N�� positive terms in �N � and hence
clearly a lower bound� Note that ��
 gives a lower bound for Eve�s average error probability
when guessing C for all possible strategies because in this symmetric case� Eve obtains no
information about the bit C� and half of the guesses will be incorrect�

Stirling�s formula �see for example ���
 states that n ���n�e
n � p��n
 � � for n��� and
thus we have for su�ciently large even N�

N

N��

�
�

N  

��N��
 
�
� �

�
� N

N � p��N � eN
eN � �N��
N � �N �

�p
��N

� �N � �!


Hence

�N � �

�
� �

pa�N
� �p

��N
� �N � p������N �

Cp
N
�
�
�
p
������

�N
pa�N

for some constant C� and for su�ciently large N � For 
 
 � � ��� we have

p
������ �

p
��� �� � �� � � � ���
��� � ��� � �
 � �� ��� ��



For � � 
 equality holds in ��

� and for � � 
 the greater factor of the product under the
square root is decreased by the same value by which the smaller factor is increased� Hence the
square root of this product is greater than �� ��� �For � � ��� the factors are equal� and the
left side of ��

 is maximal� as expected�
 Because

��� �� � ���
N � pa�N � ��� �� � ���
N � ���� ���
N 
 � � ��� �� � ���
N � ���


we conclude that 	N � bN and �N � cN for su�ciently large N � b � �������
������� ���
�
and c � �

p
��������� � �� � ���
 � 
 �where 
 can be made arbitrarily small for su�ciently

large N
� From the above� we conclude that c � b for su�ciently small 
� �

The fact that Eve has a greater error probability than Bob when guessing C does not au�
tomatically imply that Eve has a greater uncertainty about this bit in an information theoretic
sense� and that S�X�Y jjZ
 � 
� The next lemma together with Lemma � nevertheless implies
that the secret key rate is positive in the binary symmetric scenario�

Lemma � Let X� Y � and Z be arbitrary random variables� and let C be a bit� randomly

chosen by Alice� Assume that for all N � Alice can generate a message M from XN �where

XN � �X�� � � � �XN �� and C �and possibly some random bits� such that with some probability

pN � 
� Bob �who knows M and Y N � publicly accepts and can compute a bit C � such that
Prob�C 
� C �� � bN for some b � 
� If in addition� given that Bob accepts� for every strategy

for guessing C when given M and ZN the average error probability �N is at least cN for some

c � b and for su�ciently large N � then S�X�Y jjZ
 � 
�

Proof� According to ��
 is su�ces to show that Alice and Bob can� for some N � construct
random variables �X and �Y from XN and Y N by exchanging messages over an insecure� but
authenticated channel� such that

I� �X � �Y 
� I� �X � �Z
 � 
 ���


with �Z � �ZN � U �� where U is the collection of all messages sent over the public channel�

�



Let �X and �Y be de�ned as follows� If Bob accepts� let �X � C and �Y � C �� and if Bob
�publicly
 rejects� let �X � �Y ��reject�� We show that ���
 holds for su�ciently large N � If
Bob accepts then

H�CjC �
 � h�bN 
 � �bN � log� ���bN 
 � �bN �N � log� ���b
 
 cN

for su�ciently large N �where h�p
 � �p log� p � �� � p
 log��� � p
 is the binary entropy
function� the �rst inequality follows from Jensen�s inequality� and the reason for the second
inequality is that �p log� p � ���� p
 log���� p
 for p � ���
� Moreover

H�Cj �Z
 �
X

�z�ZN�U

P �Z��z
 �H�Cj �Z � �z
 � E �Z �h�pE� �Z
� � E �Z �pE� �Z � � �N � cN �

where pE��z is the probability of guessing C incorrectly with the optimal strategy given that
�Z � �z� Note that pE��z � ��� for all �z� Given that Bob publicly rejects� we have H� �X j �Y 
 �

H� �X j �Z
 � H� �X jU
 � 
� From pN � 
 we conclude that I� �X � �Y 
� I� �X � �Z
 � 
� �

��� General binary�input channels and the proof of Theorem �

First we show that the above results hold even when Eve knows R precisely with a certain
probability smaller than �� This is the case if Z is generated from R by a binary erasure

channel instead of a binary symmetric channel� i�e�� if Z is either equal to a special erasure
symbol "� or else Z � R�

Lemma � Assume the scenario of Lemma 	� but let Z be generated from R by a �possibly asym


metric� binary erasure channel �with erasure symbol "� C�
E� independent of the pair �CA�CB��

and with transition probabilities PZjR�"� 

 � 
� � 
� PZjR�
� 

 � �� 
�� PZjR�"� �
 � 
� � 
�
and PZjR��� �
 � �� 
�� Then the statement of Lemma 	 also holds�

Proof� We show �rst that we can assume without loss of generality that C�
E is symmetric� Let


� 
 
�� and let an oracle be given that tells Eve the correct bit R with probability �
�� 
�
�
�
if R � � and Z � "� According to Lemma �� the additional information U provided by this
oracle cannot increase Eve�s error probability� The random variable Z� together with the oracle�
is equivalent to a random variable generated from R by a symmetric binary erasure channel
with erasure probability 
� �� 
� and which is independent of the pair �CA�CB
�

If 
 � �� the lemma is trivial� Let 
 
 �� and let 
 
 � 
 f
� �� 
g� For su�ciently large N �
the probability that the number of bits �out of N bits
 known to Eve is even and lies between
�� � 
 � �
N and �� � 
 � �
N is at least ���� We can assume without loss of generality that
N and ��� 
� �
N are even integers because otherwise� � can be chosen smaller such that this
is satis�ed� We give a lower bound on Eve�s average error probability �N about the bit sent by
Alice� given that Bob accepts� As in the proof of Lemma �� we obtain a lower bound on Eve�s
error probability �N when she guesses with the optimal strategy by taking a �small
 part of all
positive terms in �N � We have

�N � �

�
� ��� �� � ���
N

pa�N
� �

�
�
�

��� 
 � �
N

��� 
 � �
N��

�

�
�

��� �
�

��� �
� � ��

��������N�� �
��

��� �
� � ��

��������N��
� �

�
� �

pa�N
� �

�
� �p

���� � 
 � �
N
�
h
��� �� � ���
������������ ��
�����

iN

!



for su�ciently large N � Here we have made use of �!
� The �rst expression is ��� times a
lower bound for the probability that Bob receives the correct codeword� that Eve knows an
even number of bits which lies between �� � 
 � �
N and �� � 
 � �
N � and that she receives
the same number of 
�s and ��s in her reliable bits� given that Bob accepts� In this case� Eve
obtains no information about the bit sent by Alice� The expressions �� � �
����� � �
� � ��

and ������ � �
� � ��
 are the probabilities that R � X and R 
� X� respectively� given that
X � Y � Bob�s error probability� given that he accepts� is� like before� 	N � ���� ���
N�pa�N �
For su�ciently small �positive
 � we have

��� �� � ���
������������ ��
����� � ��� ���

because 
 � 
 and �� �� � ��� � ��� ���� Considering ���
� the lemma is proved� �

We now consider the general scenario of random variables R� X� Y � and Z as described in Theo�
rem 	� The following lemma states equivalent characterizations of the condition I�X�Y jZ
 � 
�

Lemma �
 Under the assumptions of Theorem �� the following three conditions are equivalent�

�i� I�X�Y jZ
 � 
�

�ii� I�X�R
 � 
� I�Y �R
 � 
� and H�RjZ
 � 
�

�iii� There exist x� x� � X such that

PXjR�x� 

 � PXjR�x� �
 and PXjR�x�� 

 
 PXjR�x�� �
 � ���


there exist y� y� � Y such that

PY jR�y� 

 � PY jR�y� �
 and PY jR�y�� 

 
 PY jR�y�� �
 � ���


and there exists z � Z such that

PZ�z
 � 
 and 
 
 PRjZ�
� z
 
 � � ���


Proof� First we give an alternative characterization of the independence of the three channels�
i�e�� of PXY ZjR � PXjR � PY jR � PZjR� �We sometimes omit all the arguments of the probability
distribution functions� In this case the statements hold for all possible choices of arguments�
For example� PXjY � PX stands for PXjY �x� y
 � PX�x
 for all x � X and y � Y�
 From

PY ZjR �
X
x�X

PXY ZjR �
X
x�X

PXjR � PY jR � PZjR � PY jR � PZjR

and
PR � PY ZjR � PXjY ZR � PXY ZR � PR � PXjR � PY jR � PZjR

we conclude that PXjY ZR � PXjR and� analogously� that PY jXZR � PY jR and PZjXYR � PZjR�

�i� implies �ii�� Let I�X�Y jZ
 � 
� Assume I�X�R
 � 
� Then PXjY ZR � PXjR � PX �
and X is also independent of Y Z �and hence of Z
� Thus

I�X�Y jZ
 � H�XjZ
�H�XjY Z
 � H�X
 �H�X
 � 
 �

�




which is a contradiction� We conclude that I�X�R
 � 
 and by a symmetric argument that
I�Y �R
 � 
� Finally assume H�RjZ
 � 
� Then

I�X�Y jZ
 � H�XjZ
 � H�RjXZ
	 
z �
�

�H�XjY Z
�H�RjXY Z
	 
z �
�

� H�XRjZ
�H�XRjY Z


� H�RjZ
	 
z �
�

�H�XjRZ
�H�RjY Z
	 
z �
�

�H�XjRY Z


� H�XjR
 �H�XjR
 � 
 �

which is a contradiction� Hence H�RjZ
 � 
�

�ii� implies �iii�� Let I�X�R
 � 
� that is X and R are not statistically independent� which im�
plies that there exists x such that PXjR�x� 

 
� PXjR�x� �
� i�e�� such that one of the inequalities
of ���
 holds� Because X

x�X

PXjR�x� 

 �
X
x�X

PXjR�x� �
 � � �

there must as well exist an element of X satisfying the other inequality of ���
� Similarly we
conclude the existence of appropriate y and y� from I�Y �R
 � 
� Finally� PRjZ�
� z
 � f
� �g
for all z � Z with PZ�z
 � 
 would imply that H�RjZ
 � 
� Hence ���
 holds for some z � Z�

�iii� implies �i�� Let x� x�� y� y�� and z be as in �iii�� It su�ces to prove that I�X�Y jZ � z
 � 

because PZ�z
 � 
� This is equivalent to the statement that X and Y are not statistically
independent� given Z � z� We show that

PXjY Z�x� y� z
 � PXjY Z�x� y�� z
 � ��	


For both y � y and y � y� we have

PXjY Z�x� y� z
 � PXjR���x
 � PRjY Z�
� y� z
 � PXjR���x
 � PRjY Z��� y� z
 �

Because PXjR���x
 � PXjR���x
� in order to prove ��	
� we have to show

PRjY Z�
� y� z
 � PRjY Z�
� y�� z
 � ���


and because of PRjY Z � PY jR � PRZ��PY jZ � PZ
� ���
 is equivalent to

PY jR�y� 



PY jZ�y� z

�
PY jR�y�� 



PY jZ�y�� z

�

which follows from

PY jR���y
 � �PY jR���y�
 � PRjZ�z�

 � PY jR���y
�
 � PRjZ�z��
�

� PY jR���y
 � PY jR���y�

� PY jR���y

�
 � �PY jR���y
 � PRjZ�z�

 � PY jR���y
 � PRjZ�z��
� � ���


Both inequalities in ���
 follow from the fact that 
 
 PRjZ�z�

 
 �� and because of ���
� �

We are now ready to prove Theorem 	�

Proof of Theorem �� We construct� from R� X� Y � and Z� random variables #R� #X� #Y � and
U with the following properties �see also Figure �
�

��



�i
 #X and #Y can be obtained from X and Y � respectively� with positive probability�

�ii
 #R is binary and symmetric� and #X and #Y can be seen as generated by sending #R over two
independent binary symmetric channels with identical error probability � 
 ����

�iii
 #Z �� �Z�U � contains exactly the same information about #R as a random variable generated
by sending #R over a binary erasure channel �which is independent of the channels from
��

 with positive erasure probabilities 
� � 
 and 
� � 
�

� ���

�

�

CBCA

C�
E

X Y

Z

R �� #Y#X

�

�U

#Z

#R �

�

�

�

#CB
#CA

�

#C�
E

�

Figure �� The random variables in the proof of Theorem 	

For such random variables #X� #Y � and U � we have by Lemma ! that S� #X � #Y jj�Z�U �
 � 
�
and with Theorem � we conclude that S�X�Y jjZ
 � 
� Hence it remains to show that suitable
random variables #R� #X� #Y � and U exist�

According to Lemma �
� there exist x� x� � X and y� y� � Y such that ���
 and ���
 hold� Let
#X and #Y be obtained from X and Y as follows� First� the ranges of X and Y are restricted to
fx� x�g and fy� y�g� respectively� and secondly� the resulting random variables X � and Y � �which
correspond to a new random experiment
 are made symmetric� This is done by sending X � over
the following channel to obtain #X �we assume PX�x
 � PX�x�
 without loss of generality
�

P 	XjX��
� x
 �
�

� � PX��x

� P 	XjX���� x
 � �� �

� � PX��x

� P 	XjX���� x

�
 � � � P 	X jX��
� x
�
 � 
 �

In an analogous way� #Y and #R are obtained from Y � and R� respectively�
According to Lemma �
 there exists z � Z such that PZ�z
 � 
 and 
 
 PRjZ�
� z
 
 ��

Let the random variable U be de�ned as follows� If Z 
� z� let U � #R� and if Z � z� let U � "�
Intuitively� the information U can be thought as being provided by an oracle that tells Eve the
correct #R if Z 
� z� Such an oracle can only decrease Eve�s error probability�

It remains to show that #R� #X� #Y � and U have all the stated properties� The properties �i
 and
�iii
 are satis�ed by de�nition of the random variables� It remains to prove �ii
� First� it is clear

��



that #R� #X � and #Y are binary and symmetric� For the rest� we consider the case PR�

 � ��� and
PX��x
 � ���� The other cases are analogous� We have to show P 	X 	R�
� 

 � P 	X�

 � P 	R�

 �

���� which is su�cient because #R and #X are symmetric binary random variables�

P 	X 	R�
� 

 � P 	X 	RX�R�
� 
� x� 



� PR�

 � P 	RjR�
� 

 � PX�jR�x� 

 � P 	XjX��
� x


�
�

�
� PX�jR�x� 



PX��x

�

�

�

because PX�jR�x� 

 � PX�jR�x� �
 and 
 
 PR�

 
 �� An analogous result can be proved for #Y �
As in the proof of Lemma �� the error probabilities of the two channels can be made identical�
and we have proved �ii
� The theorem now follows from Lemma !� Theorem �� and Lemma ��
Note that in this application of Lemma � the event that Bob accepts means that Alice and
Bob both accept a su�ciently large number N of consecutive realizations of X and Y �if Alice
does not accept� she sends M ��reject� over the public channel
� and that Bob accepts the
received message sent by Alice� �Of course this would be a very wasteful and ine�cient way of
generating a secret key in practice� For example it is not necessary that the N realizations of
X and Y accepted by Alice and Bob are consecutive�
 �

Remark	 The condition that R is a binary random variable is crucial in Theorem 	� To
see this� consider the following scenario� R is uniformly distributed in R �� fr��� r��� r��� r��g�
and X� Y � and Z are binary random variables� generated from R by the following independent
channels �let 
 be the Kronecker symbol� i�e�� 
ij � � if i � j� and otherwise 
ij � 

�

PXjR�x� rij
 � 
xi � PY jR�y� rij
 � 
yj � PZjR�z� rij
 � 
z�i�j �

Note that for all r � R� Z � X � Y � that is I�X�Y jZ
 � �� On the other hand I�X�Y 
 � 
�
and hence S�X�Y jjZ
 � 
�

In fact� any distribution PXY Z can be seen as generated by sending a random variable R
over three independent channels for some R with jRj � jX j � jYj � jZj� Such a random variable
R can be de�ned as follows� Let R �� frxyz j �x� y� z
 � X 	 Y 	Zg and PXjR�x� rxyz
 � 
xx�
PY jR�y� rxyz
 � 
yy� and PZjR�z� rxyz
 � 
zz� where 
 is again the Kronecker symbol�

� Towards the general scenario� Protocol A is not optimal

In this section X and Y are completely general random variables� and Eve obtains her informa�
tion from a random variable that is generated by sending X and Y over erasure channels� The
advantage of considering such a scenario is that it is less di�cult to analyze than the completely
general situation� Moreover� many more general situations can be reduced� by the methods of
Theorem �� to such a scenario �with respect to the question whether secret�key agreement is
possible
�

We consider two di�erent scenarios� For the �rst scenario� Conjecture � is shown to be
true� whereas for the second scenario� this problem remains open� Also for the second scenario�
we prove the surprising fact that the described Protocol A is not optimal� A new protocol�
Protocol B� works in many situations in which Protocol A fails�

Scenario �	 The random variables X and Y are binary and distributed according to

PXY �
� 

 � PXY ��� �
 �
�� �

�
� PXY �
� �
 � PXY ��� 

 �

�

�
��!


��



for some � 
 ���� The random variable Z is generated by sending �X�Y � over an erasure
channel with positive erasure probability �� r�

Scenario �	 The random variables X and Y are distributed as in Scenario �� and Z � �ZX � ZY ��
where ZX and ZY are generated by sending X and Y � respectively� over two independent era�
sure channels with positive erasure probabilities�

Prior to the analysis of the scenarios we show that under a condition which appears to be
satis�ed with high probability if X� Y � and Z are completely general random variables with
I�X�Y �Z
 � 
� there exist random variables X and Y � which can be generated from X and Y
with positive probability� and side information U such that X� Y � and �Z�U � correspond to one of
the special scenarios � or �� Theorem � then implies that S�X�Y jjZ
 � 
 if S�X �Y jj�Z�U �
 � 
�
The proof of the following lemma is related to one of the arguments in the proof of Theorem 	�

Lemma �� Let I�X�Y 
 � 
� Then Alice and Bob can generate symmetric binary random

variables X and Y from X and Y with positive probability such that X and Y have a symmetric

joint distribution as given in ��
� for some � 
 ����

Proof� Because X and Y are not statistically independent there exist x� x� � X and y� y� � Y
satisfying

PXjY �x� y
 � PX�x
 � PXjY �x� y�
 ��



and
PY jX�y� x
 � PY �y
 � PY jX�y� x�
 � ���


Alice and Bob can generate random variables �X and �Y by restricting the ranges of X and Y
to fx� x�g and fy� y�g� respectively� Then �X is sent over the following channel �we can assume
without loss of generality that P �X�x
 � ���
�

PXj �X�
� x
 �
�

� � P �X�x

� PXj �X��� 

 � �� PX j �X�
� x
 � PXj �X��� x�
 � � � PX j �X�
� x�
 � 
 �

It is obvious that PX�

 � PX��
 � ���� The symmetrically distributed random variable Y can

be obtained from �Y in an analogous way� Then X and Y are distributed according to ��!
 with
� � �� P �X �Y �x� y
��� � P �X�x
 � P �Y �y

 if P �Y �y
 � ���� and � � P �X �Y �x� y�
��� � P �X�x
 � P �Y �y�


if P �Y �y
 
 ���� In both cases we have � 
 ��� because of ��

 and of ���
� �

If� for X and Y as in Lemma ��� there exists z � Z such that the conditional probabilities
PX Y jZ�z�i� j
 are positive for all �i� j
 � f
� �g�� then there exists side information U such

that U equals �X�Y � with some probability �that depends on �X�Y �
� but where U contains no
information about X or Y otherwise� and such that �Z�U � can be interpreted as being obtained
by sending �X�Y � over an erasure channel with positive erasure probability� In other words�
the probability that U contains the entire information about �X�Y � must be such that the
probabilities of the events that �X�Y �Z� � �i� j� z� and that U contains no information about
�X�Y � are proportional to the probabilities of the events �X�Y � � �i� j��

We conclude that very general situations can be reduced to the special scenario in which
Z is obtained by sending �X�Y � over an erasure channel� and which is less di�cult to analyze�
In an analogous way� general scenarios can be reduced to the situation where Eve obtains her
information about X and Y from independent erasure channels� However� it appears to be
di�cult to decide in general which reduction leads to the strongest results�

��



��� Analysis of Scenario �

We consider the symmetric scenario where X and Y are distributed according to ��!
 with
� 
 ���� and Z is obtained by sending �X�Y � over an erasure channel with erasure probability
� � r� We now derive a condition for when Protocol A allows secret�key agreement� Bob�s
conditional error probability when guessing the bit sent by Alice� given that he accepts� is

	N �
�

pN
� �N �

�
�

�� �

�N

�

where pN � �N � ��� �
N is the probability that Bob accepts the received block� Given that
Bob accepts� Eve �using the optimal strategy
 guesses the bit sent by Alice correctly unless
she receives N times the erasure symbol "� In the latter case her error probability is ����
independently of her strategy� Hence Eve�s error probability� given that Bob accepts� is

�N �
�

�
� ��� r
N �

Using Lemma �� we conclude that Protocol A works and allows the generation of a secret key
if

�� r �
�

�� �
�

The next theorem shows that Protocol A is optimal in this scenario in the sense that if some

protocol allows secret�key agreement in principle� then the same holds for Protocol A� Hence
we have found another situation for which the conditions I�X�Y �Z
 � 
 and S�X�Y jjZ
 � 

are equivalent� and for which Conjecture � is true�

Theorem �� In the described scenario� the following three conditions are equivalent�

�� I�X�Y �Z
 � 
 �

�� �� r � ���� � �
 �

�� S�X�Y jjZ
 � 
 �

Proof� It remains to show that I�X�Y �Z
 � 
 when �� r � ���� � �
� The random variable
Z can be generated from Z by the following channel� if Z � "� Z � �
� ��� or Z � ��� 
�� then
Z � "� When Z � �
� 
� or Z � ��� ��� then Z is de�ned to be equal to Z with probability

�� ��

r��� �

�� �
 �

and equal to " otherwise�
We show that I�X�Y jZ
 � 
� It is obvious that I�X�Y jZ � �
� 
�
 � I�X�Y jZ � ��� ��
 � 
�

Because of
PXY Z�
� ��"
 � PXY Z��� 
�"
 �

�

�

and

PXY Z�
� 
�"
 � PXY Z��� ��"


�
�� �

�
� ��� r
 �

�� �

�
� r �

�
�� �� ��

r��� �


�
�
�

�
�

��



X and Y also are independent when given Z � "� i�e�� I�X�Y jZ � "
 � 
� �

A similar pessimistic result can even be shown in the general scenario of arbitrary random
variables X� Y � and Z� We show that I�X�Y �Z
 � 
 if Eve knows X and Y precisely with
some positive probability� and if the common distribution of X and Y is too close to an �in�
dependent distribution�� We have to de�ne an appropriate measure for the �deviation from
independence� of the common distribution PXY of the two random variables X and Y �

De�nition � Let X and Y be random variables with ranges X and Y� respectively� and com�
mon distribution PXY � Let

F �PXY 
 �� min
QXY

�
max

�x�y��X�Y

�
PXY �x� y


QXY �x� y


�
� max
�x�y��X�Y

�
QXY �x� y


PXY �x� y


��
�

where the minimum is taken over all probability distributions QXY for which X and Y are
statistically independent� and where we set 
�
 �� � and c�
 �� � for c � 
� The deviation
dind�PXY 
 of PXY from independence is de�ned as

dind�PXY 
 �� �� �

F �PXY 

�

where we set ��� �� 
�

For every PXY �

 � dind�PXY 
 � � � ���


where equality on the left side of ���
 holds if and only if the random variables X and Y are
independent� and equality on the right side of ���
 holds if and only if there exist x� x�� y� and
y� such that PXY �x� y
 � 
� but PXY �x� y�
 � 
 and PXY �x�� y
 � 
� Furthermore�

dind�PXY 
 � �� minPXY

maxPXY
�

This can be seen by taking the uniform distribution for QXY � When X and Y are distributed
according to ��!
� then

dind�PXY 
 � �� �

�� �
�

�� ��

�� �
�

The next theorem implies that secret�key agreement is impossible if the probability that Eve
reliably knows X and Y equals or exceeds dind�PXY 
�

Theorem �� Let X and Y be arbitrary random variables with common distribution PXY � and

let Z be generated by sending �X�Y � over an erasure channel with erasure probability � � r�
Then r � dind�PXY 
 implies I�X�Y �Z
 � 
�

Proof� Let r � dind�PXY 
 � ����F �PXY 
� i�e�� F �PXY 
 � �����r
� Then� from the de�nition
of F �PXY 
� we conclude that there exists a distribution QXY � corresponding to an independent
distribution of X and Y � such that

��� r
 � PXY �x� y
 � � �QXY �x� y
 � PXY �x� y
 ���


for all x � X � y � Y� and for some 
 � � � �� We de�ne the random variable Z� which can be
obtained from Z� as follows� If Z � "� then Z � "� Because PXY Z�x� y�"
 � ���r
�PXY �x� y
�

�	



and because of ���
� Z can be de�ned to be equal to " with some conditional probability when
given Z � �x� y�� and Z � Z otherwise� such that

PXY Z�x� y�"
 � � �QXY �x� y
 � ���


This can be done for all pairs �x� y
� and ���
 implies PXY jZ�
 � QXY � i�e�� that X and Y are

independent when given Z � "� Hence

I�X�Y �Z
 � I�X�Y jZ
 �
X

z��X�Y��f
g

PZ�z
 � I�X�Y jZ � z
 � PZ�"
 � I�X�Y jZ � "
 � 
 �

and the theorem is proved� �

��� Analysis of Scenario �

In this section we analyze Scenario �� Let � be the probability that X 
� Y � and let rX and
rY be the probabilities that Eve does not receive the erasure symbol from her �independent

channels� We assume here that rY � rX � For �xed � and rY � we prove three di�erent upper
bounds on rX such that secret�key agreement is possible if rX is smaller than at least one of
these bounds� Each of these bounds can be greater than both the others for certain choices of
the parameters� A new protocol is presented that is better than Protocol A in many situations�
hence proving the somewhat surprising fact that Protocol A is not optimal for Scenario ��

The �rst upper bound on rX comes from a rather direct argument� According to the lower
bound ��
 the secret key rate is positive if I�X�Y 
 � I�X�Z
� This condition is equivalent to

H�XjY 
 
 H�XjZ
 � ���


where

H�XjY 
 � h��


H�XjZ
 � ��� rX
��� rY 
 � ��� rX
rY h��
 �

The following lemma gives a �rst upper bound for rX which depends on rY and �� and such
that if rX is smaller than this bound� then S�X�Y jjZ
 � 
� It follows directly from inequality
���
�

Lemma �� In Scenario �� S�X�Y jjZ
 is strictly positive if

rX 
 �� h��


�� rY � rY h��

� ��	


If Lemma �� does not apply� in some cases one can prove that secret�key agreement is
nevertheless possible by using Protocol A� When the block length is N � the probability p��
that Bob accepts and receives the bit sent by Alice incorrectly� and that Eve receives this bit
correctly� is upper bounded by �N � On the other hand� the probability p�� that Bob accepts
and receives the correct bit� and that Eve guesses the bit incorrectly� satis�es

p�� � �

�
��� �
N ��� rX
N ��� rY 
N �

��



The reason for this is that if Eve receives only erasure symbols� her error probability about the
bit sent by Alice is� independently of her strategy� equal to ���� Finally� the probability p��
that Bob accepts� and that both Bob and Eve receive the bit incorrectly satis�es

p�� � �N ��� rX
N �

Hence Bob�s error probability is of order O��N 
� whereas Eve�s error probability is of order
������ �
��� rX
��� rY 

N � ����� rX

N 
� From this and from Lemma � we can conclude
that Protocol A works if and only if

� 
 ��� �
�� � rX
�� � rY 
 � ���


and the following lemma is proved�

Lemma �� In Scenario �� Protocol A allows secret
key agreement� and thus S�X�Y jjZ
 � 
�
if

rX 
 �� �

��� �
�� � rY 

� ���


Note that this bound can be ful�lled only if �� rY � ����� �
� This is the same condition as
in Theorem �� of the previous section�

We remark that each of the expressions in ��	
 and ���
 can be greater than the other� If
rY is constant and � � 
� the expression of ���
 is greater� whereas if rY � ���� � �
� the
expression of ���
 equals 
� and the expression of ��	
 is greater than 
 for all � 
 ����

Intuitively� the repeat�code protocol �Protocol A
 does not appear to be very appropriate
in a situation where Eve has perfect access to X or Y with some positive probability� because
revealing one bit of a repeat code block means revealing the entire block� It is therefore conceiv�
able that a protocol using blocks which contain a certain fraction �less than half
 of incorrect
bits is better here� although the e�ect that Alice�s and Bob�s bits become more reliable is weaker
in such a protocol� The advantage is that if Eve reliably knows one bit �or a small number of
bits
 of a block� she does not automatically know the whole block� We will show that in this
scenario the following protocol is superior to Protocol A�

Protocol B	 Bob randomly chooses a bit C� and computes a random N �bit block �C�� � � � � CN �
such that tN of the bits are equal to C� and ���t
N of the bits are equal to C �� ��C �where t �
��� is a parameter� and tN is an integer
� As in Protocol A� Bob computes �C��Y�� � � � � CN�YN �
and sends this block over the public channel� Alice computes ��C��Y�
�X�� � � � � �CN�YN
�XN �
and accepts only if this equals �
� 
� � � � � 
� or ��� �� � � � � ���

The analysis of the protocol shows that it is advantageous for Alice and Bob when Bob� and
not Alice� is the sender of the bit in Protocol B if rY � rX � Note that Protocol B� together
with the choice t � �� corresponds to Protocol A�

The analysis of this protocol in Scenario � is quite technical� and is given in Appendix C
where the following theorem is proved� It gives an upper bound for rX when given � and rY �
We only mention here the surprising fact that t must typically be chosen only slightly greater
than ��� �whereas it is obvious that the choice t � ��� is completely useless
�

Theorem �� Protocol B allows secret
key agreement in Scenario �� and thus S�X�Y jjZ
 � 
�
if

rX 

�
�

�� �
���


�
��� rY 


�� �rY
��!


��



�when �� ���� � �
 � ��� � rY �� or if

rX 
 ��� rY 


�
�� �

�� �
� �� rY

�
� �

�

�
��



�when �� ���� � �
 � ��� � rY �� respectively�

Theorem �	 shows that� in Scenario �� Protocol B is strictly better than Protocol A� which
is therefore not optimal� It is easy to see that the upper bounds of ��!
 and ��

 are greater
than the bounds given by ��	
 and ���
 in many cases� We consider two examples�

If rY is constant and � � ���� then the bound given in ��	
 tends to 
 much faster than
��!
 �which applies in this situation
� The bound of ���
 is even negative� On the other hand�
if � � ���� and rY � �� then ��	
 is smaller than ��

 �which applies here
� The bound ���
 is
negative again�

Note that the bounds ��!
 and ��

 are not tight� In particular� the bounds from an optimal
analysis of Protocol B must be greater than the bound from Protocol A because Protocol A is
a special case of Protocol B� However� an exact analysis of Protocol B appears to be di�cult�

Finally� we give a pessimistic bound on rX for Scenario �� As in the previous section we
derive a condition here for the fact that I�X�Y �Z
 � 
�

Theorem �
 In Scenario �� I�X�Y �Z
 � 
 if

rX � ��� rY 
��� ��


rY � � ��� � rY 
���� �

p

�� �� � ��� ��

 � ��� rY 
��� ��

� ���


The proof of Theorem �� is given in Appendix D� Of course the bound on rX given in ���
 is
greater than the bounds ��	
� ���
� and ��!
 �or ��

� respectively
 for all possible choices of �
and rY �

The bounds both of Theorem �	 �as mentioned
 and Theorem �� �see Appendix D
 can be
improved by a better but more complicated analysis� Nevertheless the �su�cient but not nec�
essary
 conditions for I�X�Y �Z
 � 
 and for the presented protocols for secret�key agreement
to be successful are not exactly complementary� Unfortunately� it appears to be quite di�cult
to derive necessary and su�cient conditions for either I�X�Y �Z
 � 
 and S�X�Y jjZ
 � 
� We
suggest it as an open problem to decide whether Conjecture � also holds in Scenario ��
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Appendix A� A graphical representation of information�theoretic

quantities involving three random variables

Let X and Y be random variables� Then the quantities H�XY 
� H�X
� H�Y 
� H�XjY 
�
H�Y jX
� and I�X�Y 
 can be graphically represented �see Fig� �
� Note that the union of all
inner regions corresponds to H�XY 
�

H(X) H(Y)

H(X|Y) I(X;Y) H(Y|X)

Figure �� Two random variables

The case of three random variables X� Y � and Z is more complicated� Assume �rst that
I�X�Y 
 � I�X�Y jZ
� Let

R�X�Y �Z
 �� I�X�Y 
� I�X�Y jZ


�one can easily verify that R�X�Y �Z
 is symmetric in its three arguments
� It is obvious that
a simple graphical representation is possible �see Fig� �
�

H(X) H(Y)

H(Z)

H(X|YZ) H(Y|XZ)

H(Z|XY)

I(X;Y|Z)

I(X;Z|Y)

I(Y;Z|X)R(X;Y;Z)

Figure �� Three random variables

If I�X�Y 
 
 I�X�Y jZ
� such a simple representation does not exist because R�X�Y �Z
 
 
�
and the overlapping region would be negative� For example when X and Y are independent
bits� and Z � X � Y � then I�X�Y 
 � I�X�Z
 � I�Y �Z
 � 
� but I�XY �Z
 � ��

We are now interested in a representation of I�X�Y �Z
� When given arbitrary X� Y � and Z
�i�e�� even when R�X�Y �Z
 
 

� we consider all the random variables Z that can be generated
by sending Z over a channel PZjZ � Note that I�X�Z
 � I�X�Z
 and I�Y �Z
 � I�Y �Z
 hold for

such random variables Z� The particular Z which minimizes I�X�Y jZ
 ful�lls R�X�Y �Z
 � 
�
This means that the above representation is always possible with this Z �even when this is not
the case for Z
� In this representation� I�X�Y �Z
 can be directly associated with one of the
regions �see Fig� �
� The random variable Z is the one that maximally reduces the size of this
region�

��



H(X) H(Y)

H(Z)

H(Z)

I(X;Y   Z)

Figure �� Visualization of I�X�Y �Z


Appendix B� Continuous random variables from independent

binary�input channels

Here we show that the result of Theorem 	 also holds when the random variables that are
generated from R are not discrete� For example� this is the case in the scenario where Eve
receives her information about R from a Gaussian channel�

Let X� Y � and Z be continuous random variables� and let fXY Z � fXjY � � � � be the probability
density functions �we assume that such functions exist
� The di�erential entropy of X� the
conditional di�erential entropy of X when given Y � and the mutual information between X and
Y are de�ned as follows �see for example ���
�

h�X
 � �
Z
fX � log fX dx

h�XjY 
 � �
Z
fXY � log fXjY dx dy

I�X�Y 
 � h�X
� h�XjY 
 �

Z
fXY � log

fXY

fX � fY dx dy

The conditional information between X and Y when given Z can be de�ned in analogy to the
case of discrete random variables as follows�

I�X�Y jZ
 � h�XjZ
� h�XjY Z


�

Z
fXY Z � log

fXY jZ

fXjZ � fY jZ
dx dy dz

�

Z
I�X�Y jZ � z
 � fZ�z
 dz �

As in Section � we assume that X� Y � and Z are generated by sending a binary random variable
R over independent channels� i�e��

fXY ZjR � fXjR � fY jR � fZjR � ���


or equivalently fXjRY Z � fXjR � fY jRXZ � fY jR � and fZjRXY � fZjR �

��



Theorem �� Let R be a binary random variable� and let X� Y � and Z be �real
valued� random
variables with probability density function fXY Z and conditional density fXY jZ � If ���� holds�

then secret
key agreement is possible� i�e�� S�X�Y jjZ
 � 
� if I�X�Y jZ
 � 
�

Proof� We assume I�X�Y jZ
 � 
� and conclude the following two statements�

�� We have 
 
 PR�

 
 �� and Alice and Bob can generate binary random variables X and
Y from X and Y with positive probability such that

PXjR�
� 

 � PXjR��� 

 ���


and
PXjR�
� �
 
 PXjR��� �
 ���


�as well as the corresponding inequalities when replacing X by Y 
 hold�

�� The random variable Z� together with some speci�c additional information U � corresponds
to a random variable Z obtained by sendingR through a symmetric binary erasure channel
with positive erasure probability�

Theorem � and Theorem 	 show that the statements � and � together imply S�X�Y jjZ
 � 
�

Proof of �� Obviously 
 
 PR�

 
 � holds� We show that

ProbX �fXjR���x
 
� fXjR���x
� � 
 � ���


Otherwise� if fXjR���x
 � fXjR���x
 with probability �� then

fXY jZ�z � fXY jR�� � PRjZ�z�

 � fXY jR�� � PRjZ�z��


� fXjR�� � fY jR�� � PRjZ�z�

 � fXjR�� � fY jR�� � PRjZ�z��


� fXjR�� � �fY jR�� � PRjZ�z�

 � fY jR�� � PRjZ�z��

 � fXjZ�z � fY jZ�z
with probability �� Hence I�X�Y jZ � z
 � 
 for all z� and I�X�Y jZ
 � 
� which is a
contradiction� Therefore ���
 holds� We de�ne

A� �� fx j fXjR���x
 � fXjR���x
g

and
A� �� fx j fXjR���x
 
 fXjR���x
g �

Then A� and A� are disjoint measurable sets� with

PXjR���A�
 � PXjR���A�
 ��	


and
PXjR���A�
 
 PXjR���A�


�where PXjR���A�
 stands for
R
A�
fXjR�� dx
� Inequality ��	
 holds because if PXjR���A�
 �

PXjR���A�
� then Z
A�

fXjR���x
� fXjR���x
 dx � 


��



�and the same holds for A�� because the fXjR�i are densities of normed probability measures
�
It is a well�known fact from measure theory that the integral of a strictly positive function on
a set with non�vanishing measure is also strictly positive� and hence A� and A� would be null
sets� which is a contradiction to ���
� For the random variable Y � two sets B� and B� can be
de�ned similarly�

In analogy to the case of discrete random variables �see Section �
� Alice and Bob can ob�
tain new random variables �X and �Y by restriction of the ranges of X and Y to A� 
 A� and
B� 
B�� respectively� and send these random variables �X and �Y over two channels in order to
generate binary random variables X and Y such that X � 
 if �X � A� and X � � if �X � A�

�and analogously for Y 
� It is obvious that ���
 and ���
 hold� as well as the corresponding
inequalities for Y �

Proof of �� From

I�X�Y jZ
 �

Z
I�X�Y jZ � z
 � fZ�z
 dz � 


we conclude that there is a measurable set D with ��D
 � 
 �where � denotes the Lebesgue�
measure of R
 and

I�X�Y jZ � z
 � 
 for all z � D � ���


Because of ���
 we have both fRjZ�z�

 � 
 and fRjZ�z��
 � 
 for all z � D� �If for example
fRjZ�z�

 � 
� then

fXY jZ�z � fXY jR�� � PRjZ�z�

 � fXY jR�� � PRjZ�z��


� fXY jR�� � fXjR�� � fY jR�� � fXjZ�z � fY jZ�z
and I�X�Y jZ � z
 � 
�
 For every n� let Dn be the �measurable
 set of all z in D such that
fRjZ�z�

 � PR�

�n and fRjZ�z��
 � PR��
�n� Then D � 
Dn� and ��D
 � 
 implies


 
 ��D
 � ��
Dn
 �
X
n

��Dn
 �

We conclude that there exists n� such that ��Dn�
 � 
�
Let U be a random variable such that U � R with probability � if z 
� Dn� � and with

probability
fRjZ�z�i
 � PR�i
�n�

fRjZ�z�i


if z � Dn� and R � i �and such that otherwise� U gives no information about R
� The random
variable Z� together with this side information U � corresponds to a random variable Z� gener�
ated from R by a symmetric binary erasure channel with erasure probability ��Dn�
�n� � 
�

�

Appendix C� Analysis of Protocol B in Scenario �

Let the protocol parameter t be �xed� and let

K � K�t
 ��
�

�t� �
�

��



We �rst compute the conditional probability 	N that Alice receives the bit sent by Bob incor�
rectly� given that she accepts�

	N �
�tN ��� �
���t�N

��� �
tN����t�N � �tN ��� �
���t�N
�
�

�

�� �

�N���K�

� ���


Eve�s conditional error probability �N � given that Alice accepts� is lower bounded by ���
times the probability that Eve receives exactly sN of the tN correct bits of Bob�s block �more
precisely� that she receives the corresponding realizations of Y from the erasure channel� and
erasure symbols for the other �t� s
N realizations of Y that also correspond to correct bits in
Bob�s block
� and exactly the same number of incorrect bits� and that she learns nothing about
Alice�s block �i�e�� about all the realizations of X
 because she receives only erasure symbols
from that channel� This is a lower bound for �N because in this case� Eve�s error probability
for guessing Bob�s bit is equal to ���� and is independent of her strategy� This holds for all
possible s� and hence the maximum of this probability� taken over all 
 � s � �� t� gives also
a lower bound�

�N � �

�
� max
�	s	���t�

��
tN

sN

�
�rY 
sN ��� rY 
�t�s�N

�
��� t
N

sN

�
�rY 
sN ��� rY 
���t�s�N

�
����rX 
N �

��!

The next lemma gives a simpler lower bound that can be derived from the bound in ��!
 by
determining its asymptotic behavior�

Lemma �� The lower bound ��
� implies that

�
�K�N
N � �� �

�K
� �

�	�� � rY 
K
� �KrX ��



if rY �� � �� t holds� and if N is su�ciently large�

Proof� First note that rY �� � � � t means that s �� rY �� is a possible choice �in fact� this is
the optimal choice
� From Stirling�s formula �see for example ���
 we can conclude that�

aN

bN

�
� Cp

N
�
�

aa

bb�a� b
a�b

�N

for some constant C� The binomial coe�cients in ��!
 can be replaced by the corresponding
expressions� and a straightforward computation leads to the following asymptotic behavior of
the lower bound on �N �

�
�K�N
N �

�
�� �

�K

�K

�
�

� �
�

�K

�K

�
�

� �
�

��� � rY 
K

����rY �K

�
�

�� �

���� rY 
K

����rY �K

� ��� rX
�K

�
�

�� �

�K

�
�
�

�� �

�	�� � rY 
K

�
� ��� �KrX


� �� �

�K
� �

�	�� � rY 
K
� �KrX

for su�ciently large N � �

��



The bound ��

 in the above lemma holds for all K that correspond to a protocol parame�
ter t which satis�es rY �� � �� t� This condition is equivalent to

�

�K
� �� rY � ���


The idea of the proof of Theorem �! is to �nd the best choice for K �i�e�� the best choice of t
in Protocol B
 with respect to the �xed parameters � and rY � and such that ���
 holds� This
optimal choice of K leads to an upper bound on rX � such that if rX is smaller than this bound�
then Protocol B works for secret�key agreement� This is exactly the upper bound stated in the
theorem�

Proof of Theorem ��� According to ���
 and ��

� Protocol B �with parameter t
 works for
secret�key agreement if

�
�K�N
N � �� �

�K
� �

�	�� � rY 
K
� �KrX �

�

�� �
� 	

�K�N
N � ���


and if the condition ���
 also holds� The reason is that ���
 implies that Eve�s error probability
about the bit sent by Bob is asymptotically greater than Alice�s error probability for N ���
Lemma � states that this is su�cient for the possibility of secret�key agreement by public
discussion� Let 
 �� �� ���� � �
� Then ���
 is satis�ed if

rX 




�K
� �

�K�

�
� �

�

���� rY 


�
� ���


This bound depends on K� and from ���
 we can determine the optimal choice for K �and hence
the optimal choice of the protocol parameter t
� The only restriction is that the choice must be
compatible with ���
� It is easy to see that the expression on the right of ���
 is maximal for

K � K� ��
�



�
�

�

�
�

�

��� � rY 


�
�

It is somewhat surprising that if 
 is small and rY � � �i�e�� in a situation which is not
advantageous to Alice and Bob
 K must be large� and this means that t is only slightly greater
than ��� �whereas the choice t � ��� is obviously the worst possible choice
� Choosing K � K�

is compatible with ���
 if 
 � ��� � rY � Then the condition ���
 is

rX 

�
���� rY 


�� �rY
�

If 
 � ���� rY � the condition ���
 is not ful�lled for K � K�� For K � K �
� �� ����� �rY 
 �the

smallest choice for K that satis�es ���

 the right side of ���
 equals

��� rY 


�

 � �� rY

�
� �

�

�
�

�

The bounds of Theorem �	 are not tight by two reasons� First� it is not necessary to choose
t such that rY �� is a possible choice for s� as done in the proof of Lemma �!� Secondly� we have

�	



compared Alice�s error probability with Eve�s conditional error probability� given that Alice�s
bit is correct� Eve�s error probability� given that Alice accepts� is greater� because� given that
Alice does not receive the correct bit� it is more likely that Eve�s bit is also incorrect� However�
it is di�cult to compute the exact error probability because it is complicated to determine
Eve�s optimal strategy of guessing the bit� We �nally remark that with an optimal analysis�
Protocol B would turn out to be at least as good as Protocol A in any situation� because
Protocol A is a special case of Protocol B and corresponds to the choice t � ��

It is further conceivable that the above results can also be improved when a block protocol
is used where both Alice and Bob �and not only Bob
 have a block that is not composed by N
times the same bit� Such a protocol appears to be much more di�cult to analyze�

Appendix D� Proof of Theorem ��

We show that if ���
 is satis�ed� then a channel� characterized by PZjZ � can be constructed

such that I�X�Y jZ
 � 
� The only z � Z with I�X�Y jZ � z
 � 
 is z � �"�"�� and the event
Z � �"�"� has probability �� � rX
�� � rY 
� The idea of the proof is to split this into three
events Z � "�� Z � "�� and Z � "� �where Z � "i can also occur if Z 
� �"�"�
 such that
I�X�Y jZ � "i
 � 
 for i � �� �� �� More precisely� the random variable Z will be de�ned such
that Z � "� is possible not only if Z � �"�"�� but also if Z � �
� �� and Z � ��� 
�� whereas
Z � "� is also possible if Z � �
�"� and Z � �"� 
�� and �nally Z � "� also if Z � ���"� and
Z � �"� ��� We determine the maximal possible probability of Z � �"�"� which allows that
this event can completely be splitted�

We de�ne the random variable Z as follows� by giving the joint distribution with Z�

PZZ�"�� �"�"�
 � � � rXrY �
�� ��

PZZ�"�� �
� ��
 � PZZ�"�� ��� 
�
 � � � PZ��
� ��
 � � � PZ���� 
�
 � � � rXrY �
�

PZZ�"�� �"�"�
 � PZZ�"�� �"�"�
 � � � rX��� rY 


�
�� �p
�� ��

� �

�
PZZ�"�� �"� 
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and Z � Z otherwise� The parameter 
 � � � � is such that

�X
i��

PZZ�"i� �"�"�
 � PZ��"�"�
 �

Note that � � � is not possible� It is easy to see that the random variable Z can be obtained
by sending Z over a channel speci�ed by some conditional probability distribution PZjZ � We

show that I�X�Y jZ � "i
 � 
 for i � �� �� �� For i � � this follows from

PXY Z�
� 
�"�
 � PXY Z��� ��"�
 � � � rXrY ��� � �


���� ��


and
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� �
�
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For i � � and i � � one can easily verify that

PXY Z�
� 
�"i
 � PXY Z��� ��"i
 � PXY Z�
� ��"i
 � PXY Z��� 
�"i


holds� which implies that X and Y are statistically independent� given that Z � "i� If z 
�
f"��"��"�g then I�X�Y jZ � z
 � 
 obviously holds� and we conclude I�X�Y jZ
 � 
 and
I�X�Y �Z
 � 
�

The maximal probability PZ��"�"�
 such that the event Z � �"�"� can be completely
splitted into Z � "i as above is the sum of the probabilities PZZ�"i� �"�"�
 �i � �� �� �
 with
� � �� Thus the described construction of Z works if

rXrY �

�� ��
� �rX��� rY 
 �

�
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�� ��

� �

�
� PZ��"�"�
 � ��� rX
�� � rY 
 � ���


and this is equivalent to ���
� �

Remark	 Note that the condition given in the lemma is su�cient� but not necessary for
I�X�Y �Z
 � 
� If rX 
� rY � a better bound can be achieved when Z � �
�"� and Z � �"� 
�
�as well as Z � ���"� and Z � �"� ��
 are not transformed symmetrically to Z � "� �Z � "�
�
but each with the maximal possible probability� i�e�� rX�� � rY 
�� and �� � rX
rY ��� respec�
tively� The condition ���
 for I�X�Y �Z
 � 
 can then be replaced by the better� but more
complicated condition

rXrY �

�� ��
� rX��� rY 
� rY ��� rX
 �

p
T � ��� rX
�� � rY 
 �

where

T �� r�X��� rY 
� � r�Y ��� rX
� �

�
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�� ��

�
rX��� rX
rY ��� rY 
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