
ETH Library

Ganymed
Scalable Replication for Transactional Web
Applications

Report

Author(s):
Plattner, Christian; Alonso, Gustavo

Publication date:
2004

Permanent link:
https://doi.org/10.3929/ethz-a-006741951

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Technical Report / ETH Zurich, Department of Computer Science 439

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-006741951
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Ganymed: Scalable Replication for Transactional
Web Applications

Christian Plattner and Gustavo Alonso

Department of Computer Science
Swiss Federal Institute of Technology (ETHZ)
ETH Zentrum, CH-8092 Zürich, Switzerland

{plattner,alonso}@inf.ethz.ch

Abstract. Data grids, large scale web applications generating dynamic
content and database service providing pose significant scalability chal-
lenges to existing database architectures. Replication is the most com-
mon solution, but, in all cases, existing systems still have drawbacks
and impose difficult trade-offs. The most difficult one of all is the choice
between scalability and consistency. Commercial systems give up consis-
tency, while research solutions typically either offer a compromise (lim-
ited scalability in exchange for consistency) or they impose severe limi-
tations on the data schema and the accepted transactional workload. In
this paper we introduce Ganymed, a database replication middleware in-
tended to provide scalability without sacrificing consistency and avoiding
the limitations of existing approaches. The main idea is to use a novel
transaction scheduling algorithm that separates update and read-only
transactions. Transactions can be submitted to Ganymed through a spe-
cial JDBC driver. Ganymed then routes updates to a main server and
queries to a potentially unlimited number of read-only copies. The sys-
tem guarantees that all transactions see a consistent data state (snapshot
isolation). In the paper we describe the scheduling algorithm, the archi-
tecture of Ganymed, and present an extensive performance evaluation
that proves the potential of the system.

1 Introduction

Traditionally used in predictable and static environments like ERP (Enterprise
Resource Planning), data-base management systems had to face new challenges
in the last few years. Web services, application service providing and grid com-
puting require higher scalability and availability. Database replication is widely
used to achieve those goals. The problem with replication is that existing com-
mercial solutions do not behave like single instance databases. Often, a choice
must be made between scalability and consistency. If full consistency is required,
the price is a loss in scalability [1].

Recent research in the area of Transactional Web Applications has led to
many alternative proposals, but they all suffer from a variety of problems. Sys-
tems that put data on the edge of the network, [22, 23, 24], are able to reduce

response times but give up consistency. Other approaches, [2, 3, 4], work on the
middleware layer and need a predeclaration of the access pattern of all trans-
actions to enable efficient scheduling. [5] offers both scalability and consistency,
however the database designer is forced to partition the data statically. This for-
bids certain queries and restricts the free evolution of the application. In these
systems, a reasonable scale-out is possible only if the load conforms exactly to
the chosen data partition.

This paper describes Ganymed, a middleware based system designed to ad-
dress the problems above. The system is able to offer both scalability and con-
sistency without having to partition the data or knowing the transaction access
pattern. Ganymed does not impose any restrictions on the queries submitted
and does not duplicate work of the underlying database engines. The main com-
ponent of Ganymed is a lightweight scheduler that routes transactions to a set
of snapshot isolation [6, 7] based replicas by using RSI-PC, a novel scheduling
algorithm. The key idea behind RSI-PC is the separation of update and read-
only transactions. Updates will always be routed to a main replica, whereas
the remaining transactions are handled by any of the remaining replicas, which
act as read-only copies. The RSI-PC approach is tailored to dynamic content
generation (as modelled in the TPC-W benchmark) and database service pro-
viding, where a vast amount of complex reads is conducted together with a small
number of short update transactions. RSI-PC makes sure that all transactions
see a consistent data state, inconsistencies between the replicas are hidden from
the clients. A JDBC driver enables client applications to be connected to the
Ganymed scheduler, thereby offering an accepted interface to the system.

The evaluation presented in the paper shows that Ganymed offers almost
linear scalability. The scalability manifests itself both as increased throughput as
well as reduced response times. In addition, Ganymed significantly increases the
availability of the system. In the experiments we show the graceful degradation
properties of Ganymed as well as the ability to migrate the main replica as
needed.

The paper is structured as follows: first, we describe the RSI-PC scheduling
algorithm and the middleware architecture of Ganymed. The system overview
is followed by an evaluation of our working Java based prototype. The paper
concludes with a discussion of related and future work.

2 Motivation

Database replication is the process of maintaining multiple copies of data items
on different locations called replicas. As already noted, the motivation for do-
ing this is twofold: on the one side, the availability can be increased since the
database system can better tolerate failures; on the other hand, the systems’s
throughput can be increased and response times can be lowered by distributing
the transaction load across the replicas.

Traditionally, there are two types of replication system: eager and lazy [1].
Eager (or synchronous) systems keep the replicas synchronized within transac-

tion boundaries. They conform to 1-copy-serializability [8]: the resulting sched-
ules are equivalent to a serial schedule on a single database. Although eager
systems offer the same correctness guarantees as single-database installations,
the concept is rarely used in commercial replication products. This stems from
the fact that conventional eager protocols have significant drawbacks regarding
performance and scalability [1, 8, 9, 10]: first, the communication overhead be-
tween the replicas is very high, leading to long response times, and second, the
probability of deadlocks is proportional to the third power of number of repli-
cas. Such traditional eager implementations are not able to scale beyond a few
replicas. To circumvent these problems, database designers started creating lazy
systems, in which replicas can be updated outside the transaction boundaries.
As already noted, lazy replication scales very well, but leads to new problems:
transactions can read stale data and conflicts between updating transactions are
possibly detected very late, introducing the need for conflict resolution. Unfor-
tunately, these problems cannot easily be hidden from the user, and are often
even left to be resolved to the client applications.

The unsatisfactory properties of lazy protocols have led to a continuation
in the research on eager protocols [2, 3, 11, 12]. An important result [11] is the
insight that the distribution of full SQL update statements, as often done in eager
update-everywhere approaches, is not optimal. Performance can be significantly
improved by executing SQL statements only once and then propagating the
resulting database changes (so called writesets) to other replicas.

The approach in Ganymed tries to combine the advantages of lazy and eager
strategies. Ganymed uses a set of fully replicated databases. Internally, Ganymed
works in a lazy way, not all replicas are updated inside transaction boundaries.
For efficiency, the replication process is writeset based. Nevertheless, by working
at the middleware layer the system is able to offer an eager service. In addition,
Ganymed transparently takes care of configuration changes, failing replicas, mi-
gration of nodes, etc.

3 The RSI-PC Scheduling Algorithm

In this chapter we present our novel RSI-PC scheduling algorithm. RSI-PC
stands for Replicated Snapshot Isolation with Primary Copy. It can be used to
schedule transactions over a set of Snapshot Isolation based database replicas.
RSI-PC works by separating read-only and update transactions and sending
them to different replicas: updates are sent to a master replica (the primary
copy), reads are sent to any of the other replicas, which act as caches. To the
clients, the scheduler looks like a snapshot isolation database. Temporary in-
consistencies between the replicas are hidden from the client by the scheduler,
all synchronization is done transparently. The RSI-PC approach fits exactly the
needs of typical dynamic content generation, where a vast amount of complex
reads is conducted by a small number of short update transactions.

3.1 Snapshot Isolation

Snapshot Isolation (SI) [6, 7] is a multiversion concurrency control mechanism
used in databases. Popular database engines that use SI include Oracle [13]
and PostgreSQL [14]. One of the most important properties of SI is the fact
that readers are never blocked by writers, an idea which was already used in
the multiversion mixed protocol described in [8]. This property is a big win in
comparison to systems that use two two phase locking (2PL), where many non-
conflicting updaters may be blocked by as simply as one reader. SI completely
avoids the four extended ANSI SQL phenomenas P0-P3 described in [6], nev-
ertheless it does not guarantee serializability. As shown in [15, 16] this is not
a problem in real applications, since transaction programs can be arranged in
ways so that any concurrent execution of the resulting transactions is equivalent
to a serialized execution.

For the purposes of this paper, we will work with the following definition of
SI (slightly more formalized than the description in [6]):

SI: A transaction Ti that is executed under snapshot isolation gets as-
signed a start timestamp start(Ti) which reflects the starting time. This
timestamp is used to define a snapshot Si for transaction Ti. The snap-
shot Si consists of the latest committed values of all objects of the
database at the time start(Ti). Every read operation issued by trans-
action Ti on a database object x is mapped to a read of the version of x
which is included in the snapshot Si. Updated values by write operations
of Ti (which make up the writeset WSi of Ti) are also integrated into the
snapshot Si, so that they can be read again if the transaction accesses
updated data. Updates issued by transactions that did not commit before
start(Ti) are invisible to the transaction Ti. When transaction Ti tries to
commit, it gets assigned a commit timestamp commit(Ti), which has to
be larger than any other existing start timestamp or commit timestamp.
Transaction Ti can only successfully commit if there exists no other com-
mitted transaction Tk having a commit timestamp commit(Tk) in the
interval {start(Ti), commit(Ti)} and WSk

⋂
WSi 6= {}. If such a com-

mitted transaction Tk exists, then Ti has to be aborted (this is called
the first-commiter-wins rule, which is used to prevent lost updates). If
no such transaction exists, then Ti can commit (WSi gets applied to the
database) and its updates are visible to transactions which have a start
timestamp which is larger than commit(Ti).

A sample execution of transactions running on a database offering SI is given
in 1. The symbols B, C and A refer to the begin, commit and abort of a trans-
action. The long running transaction T1 is of type read− only, i.e., its writeset
is empty: WS1 = {}. T1 will never be blocked by any other other transaction,
nor will it block other transactions. Updates from concurrent updaters (like T2,
T3, T4 and T6) are invisible to T1. T2 will update the database element X, it
does not conflict with any other transaction. T3 updates Y , it does not see the
changes made by T2, since it started while T2 was still running. T4 updates X

Fig. 1. An example of transactions running under SI.

and Y . Conforming to the first-committer-wins rule it cannot commit, since its
writeset overlaps with that from T3 and T3 committed while T4 was running.
The transaction manager has therefore to abort T4. T5 is read-only and sees
the changes made by T2 and T3. T6 can successfully update Y . Due to the fact
that T4 did not commit, the overlapping writesets of T6 and T4 do not impose a
conflict.

As will be shown in the next section, practical systems handle the compar-
ison of writesets and the first-committer-wins rule in a different, more efficient
way. Both, Oracle and PostgreSQL, offer two different ANSI SQL isolation lev-
els for transactions: SERIALIZABLE and READ COMMITTED. An extended
discussion regarding ANSI SQL isolation levels is given in [6].

3.2 The SERIALIZABLE Isolation Level

Oracle and PostgreSQL implement a variant of the SI algorithm for transactions
that run in the isolation level SERIALIZABLE. Writesets are not compared at
the commit time of transactions, instead this process is done progressively by
using row level write locks. When a transaction Ti running in isolation level SE-
RIALIZABLE tries to modify a row in a table that was modified by a concurrent
transaction Tk which has already committed, then the current update operation
of Ti gets aborted immediately. Unlike PostgreSQL, which then aborts the whole
transaction Ti, Oracle is a little bit more flexible: it allows the user to decide if
he wants to commit the work done so far or if he wants to proceed with other
operations in Ti. If Tk is concurrent but not committed yet, then both products
behave the same: they block transaction Ti until Tk commits or aborts. If Tk

commits, then the same procedure gets involved as described before, if however
Tk aborts, then the update operation of Ti can proceed. The blocking of a trans-
action due to a potential update conflict is of course not unproblematic since
it can lead to deadlocks, which must be resolved by the database by aborting
transactions.

3.3 The READ COMMITTED Isolation Level

Both databases offer also a slightly less strict isolation level called READ COM-
MITTED, which is based on a variant of snapshot isolation. READ COMMIT-
TED is the default isolation level for both products. The main difference to
SERIALIZABLE is the implementation of the snapshot: a transaction running
in this isolation mode gets a new snapshot for every issued SQL statement. The
handling of conflicting operations is also different than in the SERIALIZABLE
isolation level. If a transaction Ti running in READ COMMITTED mode tries
to update a row which was already updated by a concurrent transaction Tk,
then Ti gets blocked until Tk has either committed or aborted. If Tk commits,
then Ti’s update statement gets reevaluated again, since the updated row possi-
bly does not match a used selection predicate anymore. READ COMMITTED
avoids phenomena P0 and P1, but is vulnerable to P2 and P3 (fuzzy read and
phantom).

3.4 RSI-PC Definition

Schedulers implementing the RSI-PC algorithm can be used with SI based repli-
cas that offer the transaction isolation levels SERIALIZABLE and READ COM-
MITTED as defined above. For incoming update transactions, RSI-PC is able to
support the SERIALIZABLE and READ COMMITTED transaction isolation
levels. Read-only transactions always have to be run in isolation mode SERIAL-
IZABLE, therefore they the see the same snapshot during the whole transaction.

RSI-PC: A RSI-PC scheduler is responsible for a set of n SI-based
replicas. One of the replicas is used as master, the other n − 1 replicas
are the slaves. The scheduler makes a clear distinction between read-
only and update transactions, which have to be marked by the client
application in advance.
Update transactions: bi, rj(x), wj(x) and ci statements of any arriv-
ing update transaction are directly forwarded to the master (including
their mode, SERIALIZABLE or READ COMMITTED), they are never
delayed. The scheduler takes notice of the order in which update trans-
actions commit on the master. After a successful commit of an update
transaction, the scheduler makes sure that the corresponding write set
is sent to the n − 1 slaves and that every slave applies the write sets
of different transactions in the same order as the corresponding commit
occurred on the master replica. The scheduler uses also the notation of a
global database version number. Whenever an update transaction com-
mits on the master, the global database version number is increased by
one and the client gets notified about the commit. Write sets get tagged
by the version number which was created by the corresponding update
transaction.
Read-Only transactions: read-only transactions can be processed by
any replica in SERIALIZABLE mode. The scheduler is free to decide on

which replica to execute such a transaction. If on a chosen replica the
latest produced global database version is not yet available, the scheduler
must delay the creation of the read-only snapshot until all needed write
sets have been applied to the replica. For clients that are not willing
to accept any delays for read-only transactions there are two choices:
either their queries are sent to the master replica, therefore reducing the
available capacity for updates, or the client can set a staleness threshold.
A staleness threshold is for example a maximum age of the requested
snapshot in seconds or the condition that the client sees its own updates.
The scheduler can then use this threshold to choose a replica. Once the
scheduler has chosen a replica and the replica created a snapshot, all
consecutive operations of the read-only transaction will be performed
using that snapshot. Due to the nature of SI, the application of further
write sets on this replica will not conflict with this or any other running
read-only transaction.

Due to its simplicity, there is no risk of a RSI-PC scheduler becoming the bot-
tleneck in the system. In contrast to other middleware based schedulers, like the
ones used in [2,5], this scheduling algorithm does not involve any SQL statement
parsing or concurrency control operations. Also, no row or table level locking is
done at the scheduler level. The detection of conflicts, which by definition of
SI can only happen during updates, is left to the SI database running on the
master replica. Moreover, (unlike [4,5]), RSI-PC does not make any assumptions
about the transactional load, the data partition, organization of the schema, or
answerable and unanswerable queries.

Since only a small amount of state information must be kept by a RSI-PC
scheduler, it is even possible to construct parallel working schedulers. This helps
to improve the overall fault tolerance. In contrast to traditional eager systems,
where every replica has its own scheduler that is aware of the global state, the
exchange of status information between a small number of RSI-PC schedulers
can be done very efficiently. Even in the case that all schedulers fail, it is possible
to reconstruct the overall database state: a replacement scheduler can be used
and its state initialized by inspecting all available replicas.

In the case of failing slave replicas, the scheduler simply ignores them until
they have been repaired by an administrator. However, in the case of a failing
master, things are a little bit more complicated. By just electing a new master
the problem is only halfway solved. The scheduler must also make sure that
no updates from committed transactions get lost, thereby guaranteeing ACID
durability. This goal can be achieved by only sending commit notifications to
clients after the writesets of update transactions have successfully been applied
on a certain, user defined amount of replicas.

4 Ganymed Middleware Architecture

The main component of Ganymed is a lightweight middleware scheduler which
balances transactions from clients over a set of SI based database replicas. Clients

Fig. 2. Ganymed Prototype Architecture

are typically application servers in e-commerce environments. From the view-
point of such clients, the Ganymed scheduler behaves like a single SI based
database. We have implemented a working prototype of the system using Java.

Figure 2 shows the main components of the architecture. Applications servers
connect to the Ganymed scheduler through a custom JDBC driver. The Ganymed
scheduler, implementing the RSI-PC algorithm, then distributes incoming trans-
actions over the master and slave replicas. Replicas can be added and removed
from the system at runtime. The master role can be assigned dynamically, for
example when the master replica fails. The current prototype does not support
parallel working schedulers, yet it is not vulnerable to failures of the scheduler. If
a Ganymed scheduler fails, it will immediately be replaced by a standby sched-
uler. The decision for a scheduler to be replaced by a backup has to be made
by the manager component. The manager component, running on a dedicated
machine, constantly monitors the system. The manager component is also re-
sponsible for reconfigurations. It is used, e.g., by the database administrator to
add and remove replicas. Interaction with the manager component takes place
through a graphical interface.

In the following sections we will describe each component of the system in
more detail.

4.1 Client interface

Clients connect to the scheduler through the Ganymed JDBC 3.0 compliant
database driver. The availability of such a standard database interface makes it
straightforward to connect Java based application servers (like BEA Weblogic1 or
JBoss2) to Ganymed. The migration from a centralized database to a Ganymed
environment is very simple, only the JDBC driver component in the application
server has to be reconfigured, there is no change in the application code. Our
driver also supports a certain level of fault tolerance. If a configured Ganymed
scheduler is not reachable, the driver automatically tries to connect to an alter-
nate scheduler.

Since the scheduler needs to know if a transaction is an update or read-only,
the application code has to communicate this to the Ganymed JDBC driver.
This mechanism is already included in the JDBC standard. Application code that
wants to start a read-only transaction simply calls the Connection.setReadonly()
method.

4.2 Replica Support and Writeset Handling

On the replica side, Ganymed currently supports PostgreSQL and Oracle data-
base engines. This allows to build heterogenous setups, where replicas run differ-
ent engines. Also, our approach is not limited to a specific operating system. As
in the client side, the communication with the replicas is done through JDBC
drivers. In a heterogenous configuration, the Ganymed scheduler has therefore
to load for every different type of replica the corresponding JDBC driver. Since
this can be done dynamically at run time, on startup the scheduler does not
need to be aware of the type of replicas added at runtime.

Unfortunately, the JDBC interface has no support for writeset extraction,
which is needed on the master replica. In the case of PostgreSQL, we imple-
mented an extension of the database software. PostgreSQL is very flexible, it
supports the loading of additional functionality during runtime. Our extension
consists of a shared library which holds the necessary logic to collect changes of
update transactions in the database. Internally, the tracking of updates is done
using triggers. To avoid another interface especially for the writeset handling,
the extension was designed to be controlled over the normal JDBC interface.
For instance, the extraction of a writeset can be performed with a ”SELECT
writeset()” SQL query. The extracted writesets are table row based, they do not
contain full disk blocks. This ensures that they can be applied on a replica which
uses another low level disk block layout than the master replica.

In the case of Oracle, such an extension can be built in a similar manner.

4.3 RSI-PC Implementation

The Ganymed scheduler implements the RSI-PC algorithm. Although feasible,
loose consistency models are not supported in the current version. The scheduler
1 http://www.bea.com
2 http://www.jboss.org

always provides strong consistency. Read-only transactions will always see the
latest snapshot of the database. The scheduler also makes a strict distinction
between the master and the slave replicas. Even if there is free capacity on the
master, read-only transactions are always assigned to a slave replica. This ensures
that the master is not loaded by complex read-only transactions and that there
is always enough capacity on the master for sudden bursts of updates. If there
is no slave replica present, the scheduler is forced to assign all transactions to
the master replica, acting as a relay.

As already noted, implementing RSI-PC does not involve any SQL parsing
and table locking at the middleware layer. In some regards, Ganymed resembles
more a router than a scheduler. Incoming transactions result in a decisions step:
to which replica they must be sent. In the case of updates, this is always the
master. Read-only transactions are assigned to a valid replica according to the
LPRF (least pending requests first) rule. Valid means in this context, that the
replica must contain the latest produced writeset. If no such replica exists, the
start of the transaction is delayed.

For every replica, Ganymed keeps a pool of open connections. After an incom-
ing transaction has been assigned to a replica, the scheduler uses a connection
from the replica’s pool to forward the SQL statements of that transaction. Every
connection is used for a single transaction, connections are never shared. Also,
once a transaction is assigned to a connection, this assignment will not change. If
a pool is exhausted, Ganymed opens new connections until a per replica limit is
reached, at that point arriving transaction are blocked. After a transaction com-
mits or aborts, the assigned connection is returned to the pool of the respective
replica. Unlike solutions using group communication [4, 11] Ganymed does not
require that transactions are submitted as a block, i.e., the entire transaction
must be present for it to be scheduled. In Ganymed different SQL statements of
the same transaction are progressively scheduled as they arrive, with the sched-
uler ensuring that the result is always consistent.

To achieve a consistent state between all replicas, the scheduler must make
sure that writesets of update transactions get applied on all replicas in the same
order. This already imposes a problem when writesets are generated on the
master, since the scheduler must be sure about the correct commit order of
transactions. Ganymed solves this problem by sending COMMIT operations to
the master in a serialized fashion. The distribution of writesets is handled by
having a FIFO update queue for every replica. There is also for every replica
a thread in the scheduler software that applies constantly the contents of that
queue to its assigned replica. Clearly, the distribution of writesets for a large set
of replicas in a star configuration is not optimal. A concrete optimization would
be to have the replicas directly receiving writesets from the master, e.g. similar
to the Oracle STREAMS [17] feature.

4.4 Manager Console

The manager console is responsible for monitoring the Ganymed system. On the
one hand, it includes a permanently running process which monitors the load of

the system and the failure of components. On the other hand it is used by the
administrator to perform configuration changes.

While the failure of replicas can directly be handled by the scheduler (failed
replicas are just discarded, failed masters are replaced by a slave replica), the
failure of a scheduler is more critical. In the event that a scheduler fails, the
monitor process in the manager console will detect this and is responsible for
starting a backup scheduler. Client side Ganymed JDBC drivers will also detect
the failure and try to find a working scheduler according to their configuration.
Assuming fail stop behavior, the connections between the failing scheduler and
all replicas will be closed, all running transactions will be aborted by the assigned
replicas. The manager will then inspect all replicas, elect a master and configure
the new scheduler so that transaction processing can continue. The inspection
of a replica involves the detection of the last applied writeset, which can be done
by the same software implementing the writeset extraction.

The manager console is also used by administrators that need to change the
set of attached replicas to a scheduler, or need to reactivate disable replicas.
While the removal of a replica is a relatively simple task, the attachment or
re-enabling of a replica is a more challenging task. Syncing-in a replica is ac-
tually performed by copying the state of a running replica to the new one. At
the scheduler level, the writeset queue of the source replica is also duplicated
and assigned to the destination replica. Since the copying process uses a SE-
RIALIZABLE read-only transaction on the source replica, there is no need for
shutting it down during the duplicating process. The new replica cannot be used
to serve transactions until the whole copying process is over. Its writeset queue,
which grows during the copy process, will be applied as soon as the copying has
finished. Although from the viewpoint of performance this is not optimal, in the
current prototype the whole copying process is done by the scheduler under the
control of the manager console.

5 Experimental Evaluation

To verify the validity of our approach we performed several tests. First, we did
extensive scalability measurements by comparing the performance of different
Ganymed configurations with a single PostgreSQL instance. We used a load
generator that simulates the transaction traffic of a TPC-W application server.
Second, we tested the behavior of Ganymed in scenarios where replicas are fail-
ing. The failure of both, slaves and masters, was investigated.

5.1 TPC-W traces

The TPC benchmark W (TPC-W) is a transactional web benchmark from the
Transaction Processing Council [18]. TPC-W defines an internet commerce en-
vironment that resembles real world, business oriented, transactional web ap-
plications. The benchmark also defines different types of workloads which are
intended to stress different components in such applications (namely multiple

on-line browser sessions, dynamic page generation with database access, update
of consistent web objects, simultaneous execution of multiple transaction types,
a backend database with many tables with a variety of sizes and relationships,
transaction integrity (ACID) and contention on data access and update). The
workloads are as follows: primarily shopping (WIPS), browsing (WIPSb) and
web-based ordering (WIPSo). The difference between the different workloads is
the ratio of browse to buy: WIPSb consists of 95% read-only interactions, for
WIPS the ratio is 80% and for WIPSo the ratio is 50%. WIPS, being the primary
workload, it is considered the most representative one.

Numitem 10000

Customers 288000

of EB 100

Table 1. TPC-W Parameters used for Trace Generation.

For the evaluation of Ganymed we generated database transaction traces with
a running TPC-W installation. We used an open source implementation [19] that
had to be changed to support a PostgreSQL backend database. Although the
specification allows the use of loose consistency models, we did not make use
of that. Our implementation is based on strong consistency. Parameters used to
populate the installation and do the trace file generation are given in table 1.

Traces were then generated for the three different TPC-W workloads: shop-
ping mix (a trace file based on the WIPS workload), browsing mix (based on
WIPSb) and ordering mix (based on WIPSo). Each trace consists of 50’000
consecutive transactions.

5.2 The Load Generator

The load generator is Java based. Once started, it loads a trace file into mem-
ory and starts parallel database connections using the configured JDBC driver.
After all connections are established, transactions are read from the in-memory
tracefile and then fed into the database. Once a transaction has finished on a
connection, the load generator assigns the next available transaction from the
trace to the connection.

For the length of the given measurement interval, the number of processed
transactions and the average response time of transactions are measured. Also, to
enable the creation of histograms, every second the current number of processed
transactions and their status (committed/aborted) is recorded.

5.3 Experimental Setup

For the experiments, a pool of machines had to be used to host the different
parts of the Ganymed system. For every component (load generator, scheduler,

database replicas) of the system, a dedicated machine was used. All machines
had the same configuration (Dual AMD Athlon 1400 MHz CPU, 1 GB RAM, 80
GB IBM Deskstar harddisk, Linux kernel 2.4.20, PostgreSQL 7.4.1, Blackdown-
1.4.2-rc1 Java 2 Platform). All machines were connected through a 100 MBit
Ethernet LAN.

Before starting any experiment, all databases were always reset to an ini-
tial state. Also, the PostgreSQL VACUUM FULL ANALYZE command was
executed. This ensured that every experiment started from the same state.

In the experiments, we did not use a manager console or a backup Ganymed
scheduler. The scheduler was always configured with automatic generated con-
figuration scripts. Also, for update transactions, the Ganymed scheduler was
always configured to report a transaction as committed to the client as soon as
the commit was successful on the master replica. In theory, this could rise the
small possibility of a lost update in case the scheduler fails. The detection of a
failed scheduler is outside of the scope of this evaluation.

5.4 Part 1: Performance and Scalability

The first part of the evaluation is concentrated on performance and scalability.
The Ganymed prototype was compared with a reference system consisting of
a single PostgreSQL instance. We measured the performance of the Ganymed
scheduler in different configurations, from 1 up to 7 replicas. This gives a total
of 8 experimental setups (called PGSQL and GNY-n, 1 ≤ n ≤ 7), each setup
was tested with the three different TPC-W traces.

The load generator was then attached to the database (either the single
instance database or the scheduler, depending on the experiment). During a
measurement interval of 100 seconds, a trace was then fed into the system over
100 parallel client connections and at the same time average throughput and
response times were measured. All transactions, read-only and updates, were
executed in SERIALIZABLE mode. Every experiment was repeated until a suf-
ficient, small standard deviation was reached (included in the graphs, however,
the attained standard deviation was very low, it is only visible for the TPC-W
ordering mix in the GNY-6 and GNY-7 setups.).

Figure 3 shows the results for the achieved throughput (transactions per sec-
ond) and average transaction response times, respectively. The rate of aborted
transactions was below 0.5 percent for all experiments. Figure 4 shows two ex-
ample histograms for the TPC-W ordering mix workload: on the left side the
reference system, on the right side GNY-7. The short drop in performance in the
GNY-7 histogram is due to multiple PostgreSQL replicas that did checkpointing
of the WAL (write ahead log) at the same time. The replicas were configured
to perform this process at least every 300 seconds, this is the default for Post-
greSQL.

Based on the graphs, we can prove the lightweight structure of the Ganymed
prototype. In a relay configuration, where only one replica is attached to the
Ganymed scheduler, the achieved performance is close to identical to the Post-
greSQL reference system. The performance of the setup with two replicas, where

 0

 50

 100

 150

 200

 250

PGSQL GNY-1 GNY-2 GNY-3 GNY-4 GNY-5 GNY-6 GNY-7

A
ve

ra
ge

 T
P

S

System Type

TPS Comparison, 100 clients

TPC-W Browsing Trace
TPC-W Shopping Trace
TPC-W Ordering Trace

 0

 500

 1000

 1500

 2000

 2500

 3000

PGSQL GNY-1 GNY-2 GNY-3 GNY-4 GNY-5 GNY-6 GNY-7

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

[m
s]

System Type

Response Time Comparison, 100 clients

TPC-W Browsing Trace
TPC-W Shopping Trace
TPC-W Ordering Trace

Fig. 3. Ganymed Performance for TPC-W Mixes.

one replica is used for updates and the other for read-only transactions, is com-
parable to the single replica setup. This clearly reflects the fact that the heavy
part of the TPC-W loads consists of complex read-only queries. In the case of
the write intensive TPC-W ordering mix, a two replica setup is slightly slower
than the single replica setup. In the setups where more than two replicas are
used, the performance compared to the reference system could be significantly
improved. A close look at the response times chart shows that they converge.
This is due to the RSI-PC algorithm which uses parallelism for different trans-
actions, but no intra-parallelism for single transactions. A GNY-7 system, for
example, would have the same performance as a GNY-1 system when used only
by a single client.

One can summarize that in almost all cases a nearly linear scale-out was
achieved. These experiments show that the Ganymed scheduler was able to attain
an impressive increase in throughput and reduction of transaction latency while
maintaining the strongest possible consistency level.

 0

 50

 100

 150

 200

 250

 300

 350

 0 20 40 60 80 100

T
P

S

Seconds

Transaction Throughput Histogram, PGSQL, TPC-W Ordering Trace

TPC-W Ordering Throughput

 0

 50

 100

 150

 200

 250

 300

 350

 0 20 40 60 80 100

T
P

S

Seconds

Transaction Throughput Histogram, GNY-7, TPC-W Ordering Trace

TPC-W Ordering Throughput

Fig. 4. Example histograms for the TPC-W Ordering Mix.

It must be noted that in our setup all replicas were identical. By having
more specialized index structures on the non-master replicas the execution of
read-only transactions could be optimized even more. We are exploiting this
option as part of future work.

5.5 Part 2: Reaction to a failing slave replica

In this experiment, the schedulers reaction to a failing slave replica was inves-
tigated. A GNY-4 system was configured and the load generator was attached
with the TPC-W shopping mix trace.

After the experiment run for a while, one of the the slave replicas was stopped,
by killing the PostgreSQL process with a kill (SIGKILL) signal. It must be
emphasized that this is different from the usage of a SIGTERM signal, since in
that case the PostgreSQL software would have had a chance to catch the signal
and shutdown gracefully.

Figure 5 shows the generated histogram for this experiment. In second 56, a
slave replica was killed as described above. The failure of the slave replica led
to an abort rate of 39 read-only transactions in second 56, otherwise no trans-
action was aborted in this run. The arrows in the graph show the change of the
average transaction throughput per second. Clearly, the system’s performance
degraded to that of a GNY-3 setup. As can be seen from the graph, the system
recovered immediately. Transactions running on the failing replica were aborted,
but otherwise the system continued working normally. This is a consequence of
the lightweight structure of the Ganymed scheduler approach: if a replica fails,
no costly consensus protocols have to be executed. The system just continues
working with the remaining replicas.

5.6 Part 3: Reaction to a failing master replica

In the last experiment, the schedulers behavior in case of a failing master replica
was investigated. As in the previous experiment, the basic configuration was
a GNY-4 system fed with a TPC-W shopping mix trace. Again, a SIGKILL
signal was used to kill the PostgreSQL database system, this time on the master
replica.

 0

 50

 100

 150

 200

 0 20 40 60 80 100

T
P

S

Seconds

Transaction Throughput Histogram, GNY-4/3 Slave Failure, TPC-W Shopping Trace

TPC-W Shopping Throughput

Fig. 5. Ganymed reacting to a slave replica failure.

 0

 50

 100

 150

 200

 0 20 40 60 80 100

T
P

S

Seconds

Transaction Throughput Histogram, GNY-4/3 Master Failure, TPC-W Shopping Trace

TPC-W Shopping Throughput

Fig. 6. Ganymed reacting to a master replica failure.

Figure 6 shows the resulting histogram for this experiment. Transaction pro-
cessing is normal until in second 45 the master replica stops working. The imme-
diately move of the master role to a slave replica leaves a GNY-3 configuration
with one master and two slave replicas. The failure of the master replica led to
an abort of 2 update transactions, no other transactions were aborted during the
experiment. As before, the arrows in the graph show the change of the average
transaction throughput per second.

This experiment shows that Ganymed is also capable of handling failing mas-
ter replicas. The system reacts by reassigning the master role to a different, still
working slave replica. It is important to note that the reaction to failing replicas
can be done by the scheduler without intervention from the manager console.
Even with a failed or otherwise unavailable manager console the scheduler can
still disable failed replicas and, if needed, move the master role autonomously.

6 Related work

Work in Ganymed has been mainly influenced by C-JDBC [5], an open source
database cluster middleware that can be accessed by any Java application that
uses the supplied JDBC driver. C-JDBC is a general replication tool, the only
assumption it makes about the database replicas is accessibility through a vendor
supplied JDBC driver. The downside of this approach is the need for duplicating
logic from the backend databases into the middleware, since JDBC does not
supply mechanisms to achieve a fine grained control over a replica. An example
for this is locking, which has to be done at the middleware level by parsing
the incoming statements and then doing table-level locking. Another example
are writesets, since these are not supported by JDBC, the middleware has to
broadcast SQL update statements to all replicas. When encountering peaks of
updates, this leads to a situation where every replica has to evaluate the same
update statements. Ganymed behaves differently under such loads: all update
statements go to the master, freeing capacity on the read-only replicas since these
install only the resulting writesets. To circumvent these scalability problems, C-
JDBC offers also the partition of the data on the backend replicas in various
ways (called RAIDb-levels, in analogy to the RAID concept). As already noted,
static partitions of data have the disadvantage of restricting the queries that can
be executed.

Distributed versioning is an approach introduced in [2]. Again, the key idea is
to use a middleware based scheduler which accepts transactions from clients and
routes them to a set of replicas. The main idea is the bookkeeping of versions
of tables in all the replicas. Every transaction that updates a table increases
the corresponding version number. At the beginning of every transaction, clients
have to inform the scheduler about the tables they are going to access. The
scheduler then uses this information to assign versions of tables to the trans-
actions. Similar to the C-JDBC approach, SQL statements have to be parsed
to be able to do locking at the scheduler level. Also, replicas are kept in sync
by sending the full SQL update statements. Since table level locking reduces
concurrency, distributed versioning also introduces the concept of early version
releases. This allows clients to notify the scheduler when they have used a table
for the last time in a transaction.

Group communication has been proposed for use in replicated database sys-
tems [12,20,21], however only a few working prototypes are available. Postgres-
R [11] is an implementation of such a system, based on a modified version of
PostgreSQL (v. 6.4.2). The clear advantage of these approaches is the avoidance
of centralized components. Unfortunately, in case of bursts of update traffic, this
becomes a disadvantage, since the system is busy resolving conflicts between the
replicas. In the worst case, such systems behave slower than a single instance
database. A solution to the problem of high conflict rates in group communi-
cation systems is the partition of the load [4]. In this approach, although all
replicas hold the complete data set, update transaction cannot be executed on
every replica. For every transaction it has to be predeclared which elements in
the database it is going to update (so called conflict classes). Depending on this

set of conflict classes, a so called compound conflict class can be deduced. Ev-
ery possible compound conflict class is statically assigned to a replica, replicas
are said to act as master site for assigned compound conflict classes. Incoming
update transactions are broadcasted to all replicas using group communication,
leading to a total order. Each replica decides then if it is the master site for a
given transaction. Master sites execute transactions, other sites just install the
resulting writesets, using the derived total order.

IBM and Microsoft [22, 23, 24] have recently proposed solutions for systems
where web applications are distributed over the network. The main idea is to do
caching at the edge of the network, which leads to improved response times. Of
course, full consistency has to be given up. To the application servers, the caches
look like an ordinary database system. Some of these approaches are not limited
to static cache structures, they can react to changes in the load and adapt the
amount of data kept in the cache.

7 Conclusions and Further Work

This paper has presented a novel algorithm for the replication of databases at the
middleware level (RSI-PC) as well as the the design, implementation and evalua-
tion of a replication platform (Ganymed) based on this algorithm. Although the
algorithm may appear to be conceptually simple, it combines subtle insights in
how real databases work and several optimizations that make it extremely effi-
cient. The resulting system is light weight and avoids the limitations of existing
solutions. For instance, the fact that Ganymed does not use group communi-
cation helps both with scalability and fast reaction to failures. It also reduces
the footprint of the system. Ganymed does not duplicate database functionality
either. It performs neither high level concurrency control (which typically im-
plies a significant reduction in concurrency since it is done at the level of table
locking) nor SQL parsing (which is a very expensive operation for real loads).
This is an issue that needs to be emphasized as the redundancy is not just a
matter of footprint or efficiency. We are not aware of any proposed solution that
duplicates database functionality (be it locking, concurrency control, or SQL
parsing) that can support real database engines. The problem of these designs
is that they assume the middleware layer can control everything which happens
on a database engine. This is, however, not a correct assumption as concurrency
control affects more than just tables (e.g., recovery procedures, indexes) and, to
work correctly, important database functionality such as triggers would have to
be disabled or the concurrency control at the middleware level had to work at
an extremely conservative level, thereby slowing down the system. In the same
spirit, Ganymed imposes no data organization, structuring of the load, or par-
ticular arrangements of the schema. Finally, applications that want to make use
of Ganymed do not have to be modified, the JDBC driver approach guarantees
the generality of the interface that Ganymed offers. Since all existing solution
suffer from one or more of these problems, Ganymed represents a significant step
forward in database replication.

Thanks to the minimal infrastructure needed, Ganymed provides excellent
scalability and reliability. We have shown that for typical benchmarks Ganymed
scales almost linearly. Even if replicas fail, Ganymed is able to continue work-
ing with proper performance levels thanks to the simple mechanisms involved
in recovery. It is also important to note that the results provided are a lower
bound in terms of scalability. There are many optimizations possible that will
increase scalability even further. As part of future work, we are exploring the
use of specialized indexes in the read-only replicas to speed up query processing.
We are also studying the possibility of autonomic behavior in the creation of
such indexes. For instance, the manager console could adapt these indexes dy-
namically as a result of inspecting the current load. Given the low overhead of
the infrastructure, we can invest in such optimizations without worrying about
the impact of the extra computations on performance. In the medium term, the
implementation of complete autonomous behavior is an important goal. This
would affect the automatic creation of read-only copies as needed, supporting
several database instances in a cluster setting, etc. One can think of scenarios
with multiple, independent schedulers responsible for different logical databases
and large sets of replicas. The replicas could then be automatically assigned
to schedulers, e.g., based on load observations, charging schemas (e.g., pay per
TPS) or business rules. Such a system would enable the creation of large scale
database provisioning services. Again, the fact that the infrastructure has a very
low overhead makes many of these approaches feasible.

References

1. Jim Gray, Pat Helland, Patrick O’Neil, and Dennis Shasha. The Dangers of Repli-
cation and a Solution. In Proceedings of the 1996 ACM SIGMOD International
Conference on Management of Data, pages 173–182, June 1996.

2. Cristiana Amza, Alan L. Cox, and Willy Zwaenepoel. Distributed Versioning: Con-
sistent Replication for Scaling Back-End Databases of Dynamic Content Web Sites.
In Middleware 2003, ACM/IFIP/USENIX International Middleware Conference,
Rio de Janeiro, Brazil, June 16-20, 2003, Proceedings, 2003.

3. Cristiana Amza, Alan L. Cox, and Willy Zwaenepoel. Conflict-Aware Scheduling
for Dynamic Content Applications. In Proceedings of the 4th USENIX Symposium
on Internet Technologies and Systems (USITS), March 2003.

4. R. Jiménez-Peris, M. Patiño-Mart́ınez, B. Kemme, and G. Alonso. Improving
the Scalability of Fault-Tolerant Database Clusters. In IEEE 22nd Int. Conf. on
Distributed Computing Systems, ICDCS’02, Vienna, Austria, pages 477–484, July
2002.

5. Emmanuel Cecchet, Julie Marguerite, Mathieu Peltier, and Nicolas Modrzyk. C-
JDBC: Clustered JDBC, http://c-jdbc.objectweb.org.

6. Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick
O’Neil. A Critique of ANSI SQL Isolation Levels. In Proceedings of the SIGMOD
International Conference on Management of Data, pages 1–10, May 1995.

7. Ralf Schenkel and Gerhard Weikum. Integrating Snapshot Isolation into Transac-
tional Federation. In Opher Etzion and Peter Scheuermann, editors, Cooperative
Information Systems, 7th International Conference, CoopIS 2000, Eilat, Israel,

September 6-8, 2000, Proceedings, volume 1901 of Lecture Notes in Computer Sci-
ence, pages 90–101. Springer, 2000.

8. P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Re-
covery in Database Systems. Addison-Wesley, 1987.

9. Gerhard Weikum and Gottfried Vossen. Transactional Information Systems. Mor-
gan Kaufmann Publishers, 2002.

10. R. Jiménez-Peris and M. Patiño-Mart́ınez and G. Alonso and B. Kemme. Are
Quorums an Alternative for Data Replication? ACM Transactions on Database
Systems, 2003.

11. Bettina Kemme and Gustavo Alonso. Don’t be lazy, be consistent: Postgres-R, a
new way to implement Database Replication. In Proceedings of the 26th Interna-
tional Conference on Very Large Databases, 2000.

12. Bettina Kemme. Implementing Database Replication based on Group Communi-
cation. In Proc. of the International Workshop on Future Directions in Distributed
Computing (FuDiCo 2002), Bertinoro, Italy, June 2002.

13. Concurrency Control, Transaction Isolation and Serializability in SQL92 and Or-
acle7. Oracle White Paper, July 1995.

14. PostgreSQL Global Development Group. PostgreSQL: The most advanced Open
Source Database System in the World. http://www.postgresql.org.

15. Alan Fekete, Dimitros Liarokapis, Elizabeth O’Neil, Patrick O’Neil,
and Dennis Sasha. Making Snapshot Isolation Serializable,
http://www.cs.umb.edu/ isotest/snaptest/snaptest.pdf.

16. Alan D. Fekete. Serialisability and Snapshot Isolation. In Proceedings of the Aus-
tralian Database Conference, pages 210–210, January 1999.

17. Oracle Streams Concepts and Administration, Oracle Database Advanced Repli-
cation, 10g Release 1 (10.1). Oracle Database Documentation Library, 2003.

18. The Transaction Processing Performance Council. TPC-W, a Transactional Web
E-Commerce Benchmark. http://www.tpc.org/tpcw/.

19. Mikko H. Lipasti. Java TPC-W Implementation Distribution of Prof. Lipasti’s Fall
1999 ECE 902 Course, http://www.ece.wisc.edu/ pharm/.

20. Y. Amir and C. Tutu. From Total Order to Database Replication. Technical
report, CNDS, 2002.

21. Y. Amir, L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, and P. Ciarfella. The
Totem Single-Ring Ordering and Membership Protocol. ACM Transactions on
Computer Systems, 13(4):311–342, 1995.

22. Mehmet Altinel, Christof Bornhövd, Sailesh Krishnamurthy, C. Mohan, Hamid
Pirahesh, and Berthold Reinwald. Cache Tables: Paving the Way for an Adaptive
Database Cache. In Proceedings of the 29th International Conference on Very
Large Data Bases, September 9-12, 2003, Berlin, Germany.

23. K. Amiri, S. Park, R. Tewari, and S. Padmanabhan. DBProxy: A Dynamic Data
Cache for Web Applications. In Proceedings of the 19th International Conference
on Data Engineering, March 5-8, 2003, Bangalore, India.

24. Per-Åke Larson, Jonathan Goldstein, and Jingren Zhou. Transparent Mid-tier
Database Caching in SQL Server. In Proceedings of the 2003 ACM SIGMOD
international conference on on Management of data, pages 661–661. ACM Press,
2003.

