mzuriCh ETH Library

Lola system notes

Report

Author(s):
Wirth, Niklaus

Publication date:
1995

Permanent link:
https://doi.org/10.3929/ethz-a-006651386

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Internal report / Eidgendéssische Technische Hochschule, Departement Informatik 234

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-006651386
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Eidgendssische Departement Informatik
Technische Hochschule Institut far

Zurich Computersysteme
Niklaus Wirth Lola System Notes
June 1995

236

Institut flir Computersysteme, ETH Ziirich 3.6.1995

Lola System Notes
N. Wirth

Abstract

These notes describe the Lola System, a collection of tools supporting the design of digital circuits.
Rather than a manual for the user, they are an explanation of the system's structure and
algorithms, intended as a guide to the implementor of additional tools. Such tools are integrated
into the Lola System by their use of the common data structure representing digital circuits.

Contents

0. Introduction

1. The basic data structure

2. Basic operations

3. Generating the data structure by program

4. Generating the data structure through a compiler
5. The compiler's object code

6. Interpretation of the compiled data structure

7. Circuit simulation

8. Circuit implementation

9. Fuse—-map generation for a PLD

10. The GAL circuit board for Ceres and loading the fuse map
11. Converting expressions into normal form

12. References

13. Program Listings

0. Introduction

The Lola System is a toolbox consisting of various modules whose commands serve to specify,
implement, and test digital circuits. These notes explain its structure to the user of Lola and to the
implementer of additional tools. The system’s base is a module containing the definition of the central
data structure used to describe digital circuits. Its name is LSB (Lola System Base). Typically, such a data
structure is generated from a Lola text by the compiler, and thereafter used as argument for further
processing steps, such as simplification, analysis, comparison, simulation, and layout generation. Fig. 1
gives an overview of the described components and their interdependence.

Lola Simulator Checker GAL DNF
Y Y Y Y Y

LSB

Fig. 1. Module structure of the Lola system

First we describe the basic data structure representing circuits and serving as the common ground for the
various tools. Then follows an explanation of some basic operations on the structure, operations provided
in module LSB. A brief chapter shows how the structure can be generated by programs formulated in a
programming language such as Oberon. The programs are supported by an appropriate auxiliary module,

a package of function procedures allowing a concise formulation of expressions.

A much preferable way is to specifiy circuits in a suitable hardware description language, such as Lola [1,
2]. This approach requires the availability of a compiler, and has the advantage that the compiler can
perform various consistency checks. We refrain from describing the compiler in any details here, and
instead concentrate on explaining its output. This is again a data structure representing the source
program in a form suitable for processing, namely for expanding it, according to given parameters, into
the data structure mentioned above.

The description of the basic data structure is followed by two examples of applications that are based on
that data structure. The first application tool is a program to simulate synchronous, digital circuits. We
note that this Simulator imports LSB only, as do also the subsequently described tools.

Circuit implementation for a field—programmable gate array (FPGA) is performed "by hand” using a
layout editor described in [3, 4]. The connection between the circuit's specification in Lola and the layout
is established by a tool called Checker [5]. This program checks the consistency of the presented layout
and the Lola specification by comparing the data structure compiled from the Lola program with the data
structure extracted from the layout.

An example of a tool for the fully automatic generation of an implementation is module GAL Its target is
the PLD GAL22V10B, i.e. its output is the fuse map for that PLD. The module also contains a command
for downloading the generated data. The circuit, in order to be implementable on this device, must obey
certain restrictions. In particular, the combinational parts of the circuit must be denoted by expressions in
disjunctive normal form. Another tool called DNF serves to convert an arbitray expression into normal
form.

1. The Basic Data Structure

Systems are said to be integrated, if various programs operate on a common data structure. In Oberon
[6], the role of programs is taken over by commands, i.e. by procedures declared in various modules.
Hence, these modules import data types and the data structure from a common base module. These
types define the elements of the shared data structure. Here the base module is called LSB (Lola System
Base). Apart from the types, the module also exports a few basic procedures generating elements of the
structure or operating on it.

A digital circuit consists of gates and connecting wires. Abstractly it is represented by a graph consisting of
nodes (gates) and edges (wires, signals). The pertinent data types are defined as

Signal = POINTER TO SignalDesc;
SignalDesc = RECORD x, y: Signal;
fct, val, u, v: SHORTINT
END

Attribute fct denotes the kind of gate (operator) represented by a node, such as not, and, or. The attributes
val, u, and v are used for various purposes by various commands, and no common meaning is attributed
to them by the base module. The following constants are defined in module LSB as values for fct. These
values mirror the operators available in the language Lola. sr stands for set-reset latch, and tsg for
tri-state gate. The significance of mux7, reg1, and link is explained further below.

buf=7 not=8 and =9 or =10 xor =11
mux =12 mux1 =13 reg="14 regl =15
latch =16 sr=17 tsg =118 link =19

2

The leaves of a circuit graph are special nodes carrying a name representing an input signal or input
variable:

Variable = POINTER TO VarDesc;
Name = ARRAY 7 OF CHAR:
VarDesc = RECORD (SignalDesc)

name: Name;

class: SHORTINT;

next, dsc: Variable
END

An example of a simple circuit is shown in Fig 2. In addition to its representation by a schematic diagram
and by a LSB—data structure its formulation as an expression is also shown. For variables, the (inherited)
field fct indicates the variable's data type. BIT, TS, and OC stand for binary, tri-state, and open collector
respectively. The following constants are defined in module LSB:

bit=0 ts =1 oc=2 array = 4 record = 5

~SHX + SHY
y) I
%— and and

:) v S
bit not bit bit

" | sl |

Fig. 2. Circuit represented by expression, schematic, and data structure

<«
<«

Nodes contain fields x and y for operands, hence represent binary operators. Multiplexers and registers
are operators with 3 operands. They are represented by double nodes as shown in Fig. 3.

v
X —10 mux mux-i
MUX(s: %, y) }7 ‘ | ‘
y E | ||
s

s X 'y
v
REG(ck: en, d) d 7P o s reg’
en — , | ‘ | ‘ |
‘ck ‘ck en‘ ‘d

Fig. 3. Double nodes for multiplexer and register

The fields next and dsc of the type VarDesc serve to represent the set of variables occuring in a circuit. next
simply is the link in the linear list of variables. If a variable is structured, the field dsc is the root of the list
of its components. The field name of a component specifies the element's index in case of an array, and
the component's name in case of a user—declared type (record). The data structure representing the
following variables declared in Lola is shown in Fig. 4.

TYPET,;

IN x: BIT; OUT y: BIT;

BEGIN ..
ENDT;

VAR u: BIT; v: TS;
a:[4] BIT; tO, t1: T;

fct
X,y
name

dsc, next

fct
X,y
name

dsc, next

The (inherited) field y refers back to the ancestor of a component variable, i.e. v.dsc.y = v. The field is used
to reconstruct the variable's full name. The field x is the root of the structure which defines the variable's
"value", and the field class specifies the kind of variable: input, output, inout, or local. The latter, and the

bit ts array record record
| | | | |
"u" v "a" "t0" "t
Il il | "]

v \
bit bit bit bit bit bit bit bit
| | | | | | | |
0" " 2" 3" X" y" X" y"
I e Ipall | |

Fig. 4. Example of set of variables

values of x and y are not shown in Fig. 4.

var=20

in="1

out=2

io=3

The representation of the following assignments is shown in Fig. 5.

VAR X, y, z: BIT; t:TS; u: OC;

X:=y+7

t=xly;t=zly;
us=y,u:=z

The data structure corresponding to the following specification of the element of a binary adder is given

in Fig. 6.

bit

o
X

ts fct
1 ‘ X,y

"t name

‘ next,dsc

link link
Enal
v v

tsg tsg

I I

X y‘ z u‘

Fig. 5. Assignments to variables of types BIT, TS, and OC

IN x, v, ci: BIT;
VAR, s, co: BIT;

d:=x-y;s:=d - ci; co = xxy + dxci

g PR e—

co
bit € bit bit
d HSH ‘ " - CO
> ‘ > ‘ or ‘ _
v i i
xor > xor and and
\d Y A 4
bit bit |« | bit
e "y "
. ‘ > ‘ > ‘7%

Fig. 6. Adder element — Schematic and data structure

A second example is the element of a binary counter shown in Fig. 7.
IN e: BIT; VAR q, co: BIT;

q:=REG(clk:"1,q-e);coi=qgxe

bit +——

bit

"co"

1. z
A q > ‘ v
ﬁ) and

co “ “‘ “ » Dbit
j | | — |

Fig. 7. Counter element — Schematic and data structure

Module LSB exports four variables: org, zero, one, clk. The first serves as anchor for the data structure to be
accessed by various application commands. By convention org points to a composite (record) variable
representing the entire circuit. org.dsc then is the root of the list of variables occuring in the circuit. zero
and one are "variables” denoting the constants 0 and 1. c/k denotes the global clock signal of synchronous
circuits.

And finally, there is a global variable Log, a text displayed in a viewer opened when LSB is initialized. Log
serves as visible output for the various operators in the Lola system. Two commands operate on the
Log—text and its viewer respectively. Text and viewer are opened when the system is started. Command
Openlog serves to open a viewer containing the text, and ClearLog deletes the viewer's contents.

2. Basic Operations

In addition to the data types and global variables, module LSB exports a few procedures. New and NewVar
serve to generate elements of the data structure. Show generates a textual expression representing a
structure by recursively traversing the data structure. WriteName yields the possibly composite name of a
given variable. It is the inverse of This(org, name), whose value is the component variable of variable org
with component name (or index) name. Assign assigns the given pointer to the root variable org.

PROCEDURE New(f: SHORTINT; x, y: Signal): Signal;
VAR z: Signal;

BEGIN NEW(z); zfct = f; zx :=x; zy :=y; RETURN z

END New;

PROCEDURE NewVar(f, val: SHORTINT; x, y: Signal;
next: Variable; VAR name: ARRAY OF CHAR): Variable;
VAR v: Variable;
BEGIN NEW(v); v.fct :=f; vval = val; vx :=x; vy ==v;
v.next := next; COPY(name, v.name); RETURN v
END NewVar;

PROCEDURE WriteName(VAR W: Texts.Writer; v: Variable);

BEGIN
IF v.y # NIL THEN WriteName(W, v.y(Variable)); Texts.Write(W, ".") END ;
Texts.WriteString(W, v.name)

END WriteName;

PROCEDURE This(org: Variable; VAR name: ARRAY OF CHAR): Variable;
VAR v: Variable; i, j: INTEGER;
id: ARRAY 16 OF CHAR;
BEGIN v := org.dsc; i = 0;

LOOP j = 0;
WHILE (nameli] >" ") & (name[i] # ".") DO id[j] := name[i]; INC(j); INC(i) END ;
id[j] == 0X;

WHILE (v # NIL) & (v.name # id) DO v := v.next END ;
IF namel[i] ="" THEN
IF (v # NIL) & (v.fct IN {array, record}) THEN v := v.dsc; INC(i)
ELSE v := NIL; EXIT
END
ELSE EXIT
END
END :
RETURN v
END This;

PROCEDURE Assign(v: Variable);
BEGIN org :=v
END Assign;

PROCEDURE ShowTree(x: Signal);
BEGIN
IF x # NIL THEN
IF x IS Variable THEN WriteName(W, x(Variable))
ELSE Texts.Write(W, "(");
ShowTree(x.x); Texts.Write(W, code[x.fct]); ShowTree(x.y); Texts.Write(W, ")")
END
END
END ShowTree;

PROCEDURE Show(x: Variable; lev: INTEGER);
VAR typ: SHORTINT;
BEGIN typ = xfct;
IF typ = record THEN
x = x.dsc;
WHILE x # NIL DO Show(x, lev+1); x := x.next END ;
Texts.Append(Log, W.buf)
ELSIF typ = array THEN
x = x.dsc;
WHILE x # NIL DO Show(x, lev); x := x.next END
ELSIF typ # integer THEN
WriteName(W, x);
IF (lev = 0) & (x.class # var) THEN Texts.Write(W, "%") END ;
IF x.x # NIL THEN Texts.WriteString(W, " := "); ShowTree(x.x) END ;
Texts.WriteLn(W); Texts.Append(Log, W.buf)
END
END Show;

Apart from these procedures of a rather auxiliary nature, LSB provides two basic operations on circuits,
namely that of simplification and of checking for cycles within combinational circuits. Such loops
constitute unwanted race conditions. The procedures are listed in the Appendix.

Procedure Simplify(v) traverses the data structure assigned to v trying to apply any of the simplification
rules listed below. If v is a structured variable, then all components are traversed. This process is repeated
until no more simplifications are applicable. Repetition is necessary, because a simplification resulting in
some variable obtaining the constant value 0 or 1 may propagate to other variables. The simplification
rules are:

~X o =X

~0 = ~ =0

x+1 =1 T+x =1 x¥0 =0 O0%xx =0
Xx+0 =x O0+x =x Xx¥1 =x 1%x =X
x—0 =x 0-x =x X—="1 =~xX 1-x =~X
MUX(0: x,y) = x MUX(1:x,y) =y ~x =1 =X 1—n~x =X

Procedure Loops(v) also traverses the structure assigned to v, and if v is structured, it traverses the
structures of all of its components. We assume that at the outset all nodes are colored black. During the
traversal, we may think of all visited black nodes being colored gray. If an encountered node is already
gray, then a (combinational) loop is present. When returning to a node from the traversal of its
descendants, the node is colored white, and if any white node is encountered during a further traversal,
then the node's descendants are not further followed because they evidently had already been visited. For
coloring the node field val is being used.

3. Generating the Data Structure by Program

The most obvious way to generate a data structure is by writing a program and executing it. In order to
simplify the task of deriving the program corresponding to a circuit, and to make the program directly
mirror the signal equations as closely as possible, a set of auxiliary procedures is introduced, typically
contained in a library module. We propose the following set, perhaps to be augmented:

PROCEDURE Var(type, class: INTEGER; next: LSB.Variable; name: ARRAY OF CHAR); LSB.Variable;
VAR v: LSB.Variable;

BEGIN v := LSB.NewVar(type, 0, NIL, NIL, ancestor, name);
v.class := class; RETURN v

END Var;

PROCEDURE And(x, y: LSB.Signal): LSB.Signal;
BEGIN RETURN LSB.New(LSB.and, x, y)
END And;

PROCEDURE Or(x, y: LSB.Signal): LSB.Signal;
BEGIN RETURN LSB.New(LSB.or, X, y)
END Or;

PROCEDURE Xor(x, y: LSB.Signal): LSB.Signal;
BEGIN RETURN LSB.New(LSB.xor, X, y)
END Xor;

PROCEDURE Not(x: LSB.Signal): LSB.Signal;
BEGIN RETURN LSB.New(LSB.not, NIL, x)
END Not;

PROCEDURE Reg(en, d: LSB.Signal): LSB.Signal;
BEGIN RETURN LSB.New(LSB.reg, LSB.clk, LSB.New(LSB.reg1, en, d))
END Reg;

Consider now the previously presented example of an adder element with the definitions
d:=x-y;s:=d - ci; co = xxy + dxci

For each signal variable, a program variable with the same name is declared. Then a record is generated
by calling LSB.NewVar, appropriately linking the generated records together. At last, a single assignment is
made to each variable's x—field defining the circuit for which the variable stands:

VAR X, v, d, s, co: LSB.Variable;

X := Var(LSB.bit, LSB.in, NIL, "x);
y := Var(LSB.bit, LSB.in, x, "y ");

ci == Var(LSB.bit, LSB.in, y, "ci");

d := var(LSB.bit, LSB.var, ci, "d ");
s := Var(LSB.bit, LSBvar, d, "s ");

co:= Var(LSB.bit, LSB.var, s, "co");
dx = Xor(x, y);

sx = Xor(d, ci);

cox = Or(And(x, y), And(d, ci))

The second example is that of the binary counter element, also encountered above:
VAR q, e, co: LSB.Variable;

q := LSB.NewVar(LSB.bit, LSBar, NIL, NIL, NIL "q ");
e = LSB.NewVar(LSB bit, LSB.in, NIL, NIL, g, "e "):;

co = LSB.NewVar(LSB.bit, LSB.var, NIL, NIL, ¢, "co");
qx = Reg(LSB.one, Xor(q, €));

cox = And(q, e)

Note that the assignments representing the allocation of variables must precede the assignments of the
expressions, which directly appear in prefix form, and thereby make the program intuitively rather
obvious. Generating data structures by such programs more or less directly follows a fixed recipe, and it

8

has the great advantage that all facilities offered by a programming language are at our disposal. We
particularly refer to repetitive and conditional statements to be used for generating replications of a circuit
pattern. The similarities between circuit and program structures become quite evident.

4. Generating the Data Structure through a Compiler

Apart from the mentioned advantages, the method of generating the data structure from a program also
has severe shortcomings. This is so even if the programming language allows to express the signal
definitions in infix form through the use of operator overloading. The primary shortcoming is the lack of
any sort of consistency checking.

1. No check whether all variables (except inputs) have been assigned an expression.
2. No check against redefinitions (multiple assignments).

3. No check for signal types, such as bus types allowing multiple assignments.

4. No check for correct structuring (arrays, records).

The remedy lies in the use of a notation tailored to the description of circuits, containing sufficient
redundancy to allow these checks to be made mechanically by a compiler. Typically, such a compiler
generates some code. The interpretation of this code, called the execution of the (compiled) program,
then generates the desired data structure. We have postulated a simple notation for this purpose, called
Lola for Logic Language [1, 2]. Its most noteworthy characteristic is that it allows to specify circuit types. It
is possible to generate (declare) instances (variables) of such (structured) types. Furthermore, the types
themselves can be parametrized.

A detailed description of the Lola compiler is beyond the scope of this text. Suffice it to say that our
compiler follows the simple principle of recursive descent. We rather concentrate our attention to a
specification of the generated code. The interface definition is the following, where procedure Module
compiles a Lola text.
DEFINITION LSC;

IMPORT Texts;

(*for constant and type declarations, see belowsx)

VAR guard, globalScope, localScope: Object; body: Item;

PROCEDURE Module(T: Texts.Text; pos: LONGINT);
END LSC.

An early version of our Lola compiler generated directly executable code, i.e. an binary object file whose
execution generated the data structure. A more flexible, portable, and simpler solution lies in choosing an
interpretable code in the form of a binary tree. This tree closely mirrors the syntactic structure of the
source program. We emphasize that this tree structure is different from the previously presented data
structure. To be specific: Interpretation of the former generates the latter. We will explain this process
further below.

5. The Compiler's Object Code

The object code is a tree with two types of nodes called /tem and Object. The latter is an extension of /item
and carries a name (identifier). Objects represent entities declared in the Lola program, i.e. constants,
variables, and types. The filed next serves to link objects together, i.e. to form a symbol table. These types
are declared as follows:

Item = POINTER TO ltemDesc;
Object = POINTER TO ObjDesc;

ItemDesc = RECORD
tag, val: INTEGER;
a, b: ltem

END ;

'

ObjDesc = RECORD (ltemDesc)
next: Object;
name: ARRAY 16 OF CHAR
END :

The structure generated by the compiler from a given program can be derived from the translation rules
given below for the various constructs of the language Lola. The translation rules consist of pairs, the left
side specifying the source construct, the right side the corresponding piece of the data structure. The
latter is specified by a text rather than a picture, the notation [fct, x, y] standing for an element (of type
Item, or Object if named). The form {op, x1, x2, ..., xn} stands for the list [op, x1, [op, x2, [... [op, xn,
NIL] ... J1. The list of possible tag values is:

bit=0 ts =1 oc=2 integer=3 array =4 record = 5 buf=7
not=8 and =9 or="10 xor =11 mux =12 mux1 =13 reg="14 regl =15
latch=16 sr=17 tsg =118 link =19 lit=20 asel =21 rsel =22 add =23

sub =24 neg =25 mul=26 div=27 mod =28 pwr=29 eql=30 neq = 31
Iss =32 geq =33 leq =34 gtr=35

assign =40 tsass =41 ocass =42 clkass =43 posass =44 call =45 if = 46 if1 =47
for=48 fori=49 for2 =50 next=51 par =52 const=53 var=54 in=>55
out = 56 io =57 type = 58

Language construct Structure element

~ X [not, NIL, x]

MUX(s: %, y) [mux, s, [mux1, x, y]1]

REG(ck: en, d) [reg, ck, [reg1, en, d]]
LATCH(g, d) [latch, g, d]

SR(s', 1) [sr, s 1]

X%y [and, x, y] [mul, %, y]
xDIVy [div, x, y]

X MOD y [mod, x, y]
—X [neg, NIL, x]
X+y [or, x, y] [add, x, y]
X-y [xor, x, y] [sub, x, y]
X=y [eql, %, y]
X#y [neq, x, y]
X<y [lss, x, y]
X<=y [leq, %, y]
X>y [gtr, X, y]
X>=y [geq x, y]
X=y [assign, x, y] [ocass, X, y]
X=ylz [tsass, x, [tsg, v, z]]

x(p1, p2, .. pn) [call, x, {list, p1, p2, ..., pn}] 2)
IF x THEN SO ELSE S1 END [if, x, [if1, SO, S111

FORx =y .z DO S END [for, x, [for1, y, [for2, z, S]1]
$1:52: ..:Sn {list, 1,52, .., Sn}

[n1T [array, n, T]

IN x1, X2, ..., xn; {op, x1,%x2, .., vn} 1)

OUT y1,y2, .., yn;
INOUT 71, z2, ..., zn
VAR v1,v2, .., vn

(1) The tag field in each node indicates the kind of object represented (in, out, io, var, par).

(2) The b—field of the last parameter in the list points to the called variable's type, i.e. is not NIL

As an example, the structure resulting from the compilation of the following Lola program is shown in
Fig. 8. Itincludes a declared type T, of which two instances G and H are created.

MODULE M1;

TYPE T(N);
IN x: BIT;
OUT y: BIT;
VAR a: [N] BIT;
BEGINy =a1 +x
ENDT;

VAR u, v, w: BIT;
G:T(2); H:T(3);
BEGIN G(w); H(v); u :=Hy

END M1.
tag type |«
a b ‘ > link
name T ‘
next - o v
‘ v Lassign
A par in out var |4 — ‘
| | | v
N X y a or
> > » | O ‘
Y 7 Y
v
asel
.. v i
integ bit array
Lk -
list list list
C
. | |
v A4 v
assign call call
| | |
v A4 v
rsel list list
| | |
> rec list lit 2
v v v v v ‘ > } ‘
var var var var var
} > rec list lit 3
B u v w G ‘ > } ‘
_ > > >

Fig. 8. Compiled output structure resulting from program M1

10

11

The list A of declared types (see Fig. 8) is rooted in the global variable LSCglobalScope.next. List B of
declared global objects (except types) is rooted in variable LSClocalScope.next. List C of statement
structures of the module body is rooted in LSC.body. Lists A and B end with the sentinel element LSC.guard
instead of with NIL. Items with tag = /it carry a literal value in field val

The compiler consists of the two modules LSS (Lola System Scanner, 2400 bytes) and LSC (Parser and
generator, 6900 bytes), and it is activated by the command

Lola.Compile @ compiling the text beginning with the most recent selection
Lola.Compile % compiling the text in the marked viewer
Lola.Compile name compiling the named text file

6. Interpretation of the compiled data structure

Suitable interpretation of the compiled data leads to the desired data structure representing the specified
circuit. We recall that in this structure, each circuit element (gate, register) is represented by a node. In
contrast, in the compiler's output, which represents the source text mapped into a tree, a variable of a
composite type (array, record) is represented by a single node. Therefore, the interpretation (execution) of
the code structure essentially constitutes an expansion process, to a flattening of the data structure. In
particular, every structured variable is expanded into nodes, one for each component variable. Since
components of structured variables may themselves be structured, the expansion procedure is necessarily
recursive.

As an example, we show the result of the expansion of the code of Fig. 8. Instead of a data structure, the
textual form produced by Lola.Show is chosen:

Hx :=v Gx:=w

Hy = (Ha1+Hx) Gy = (G.a1+Gx)
H.a.0 G.a0

H.a. 1 G.al

H.a.2

W

v

u:=Hy

In our implementation, expansion follows compilation automatically, i.e. is implied in the command
Lola.Compile. In addition, two further steps are implied following expansion, namely simplification and
checking for combinational loops.

The expansion process starts with the first element of the list of global variables (B in Fig. 8), and then
proceeds through the list. For constants at the head of the list (tag = par), interpretation consists of the
evaluation of the numeric expression for which the constant stands. This is the purpose of procedure
V(x). For variables in the list, expansion is performed by the recursive procedure NewVar.

After all variables have been generated, they act as anchors for the data structures representing the
assigned expressions. The data representing Lola statements are interpreted by procedure S(x), first
applied to LSC.body. Procedure S distinguishes between the different kinds of statements: assignments,
calls, if-, and for statements. S calls procedure E interpreting data corresponding to Lola expressions.
Whereas the interpretation of assignments is reasonably straight—forward, the interpretation of calls is
quite complicated. It includes the evaluation of actual parameters and their assignments to the
corresponding input variables. This is done by procedure Link.

We note that the assignment of constants 0 and 1 to inputs may give rise to expressions assigned to local
variables becoming amenable to simplification. This is the reason why simplification during source
compilation alone is insufficient.

12

7. Circuit Simulation

The described data structure is also a suitable basis for simulating circuits. The principle of simulation is
quite simple in the case of synchronous circuits, to which we restrict our attention. Time progresses in
discrete steps, and in each step all registers are clocked simultaneously. Therefore, the behaviour of the
entire circuit can be represented by a sequence of binary values for each variable. The goal of a simulator
is to generate these sequences of binary values.

In order to understand the principle of the simulator, we consider the scheme of a general, synchronous,
sequential machine, called a state machine. F and G are arbitrary combinational circuits, i.e. Boolean
functions. R denotes the set of simultaneously clocked registers.

ck —

Fig. 9. State machine
The simulation program is derived from Fig. 9. The following algorithm represents a single step:

For each variable compute its value according to the defining Boolean expression, from the values of
other variables and from the states of the registers. Then do likewise for the register inputs. Finally, let
the register values become equal to their inputs. This represents the clock tick.

The assignment of its value to a variable v is expressed as v.val := value(v.x), where the function recursively
traverses the tree rooted in v.x.

PROCEDURE value(s: Signal): SHORTINT;
VAR w: SHORTINT,;
BEGIN
IF s # NILTHEN
IF s IS Variable THEN assign(s(Variable)); w := sval
ELSE
CASE s.fct OF
or: w := or[value(sx), value(s.y)]
| and: w = and[value(s.x), value(s.y)]
| reg: w = swval
[..
END
END
ELSE w := undef
END :
RETURN w
END value;

An advantage of simulation is that a variable may be marked as undefined, and that undefined values

may be propagated, detected and diagnosed. This is typically done not by providing an additional,
Boolean attribute defined, but by extending the range of values of val. We use undefined = 3.

If the tree traversal reaches a variable node, then the process continues with the evaluation of that
variable's expression. As this may lead to a never ending computation, nodes once visited must be
marked. We assume that all nodes representing variables in the data structure are initially marked by, say,
"color" black (val = 5). During traversal, all visited variable nodes are brightened to grey (val = 4). When
the expression has been evaluated, the resulting value (0, 1, or 3) is assigned (val <= 3 is considered as
white). If a grey node is reached, the evaluation process is evidently in a loop, which would have been
detected by a prior test for combinational loops. We realize that indeed the coloring scheme is the same

13

as the one used in procedure LSB.Loops.

PROCEDURE assign(v: Variable);
VAR Ink, tsg: Signal;
w, h: SHORTINT:
BEGIN
IF vval = black THEN
vval == grey; vval == value(vx)
ELSIF vval = grey THEN
WriteName(W, v); Texts.WriteString(W, " in loop"); Texts.WriteLn(W)
END
END assign;

Tree traversal stops when a white variable, an input variable, or a register is reached. At this point we
realize that register nodes must hold two values, namely the current one and the newly computed one.
Fortunately, in our data structure a register is represented by a double node. By convention, the current
value of a register r is stored as rval (r.fct = reg), and the new value as ry.val (ry.fct = regl). A
consequence is that before each evaluation step (clock tick) all register input values must be computed,
and thereafter the effect of the tick must be simulated by replacing the old register values by the input
values. Simulating N steps then becomes:
Initialize all variables to black;
FOR each variable v DO assign(v) END ;
i:=0;
REPEAT (xstepx)
FOR each register r DO
IF value(ryx) =1 THEN (xenabledx) rywval := value(ry.y) END
END ;
FOR each register r DO rval := ryval END ; (%the tickx)
Initialize all variables to black;
FOR each variable v DO assign(v) END ;
FOR each variable v DO output(v.val) END ;
INC(i)
UNTILi=N
How is the set of registers recognized? The question arises, because the data structure contains no explicit
list of register nodes. Fortunately, it is easy to construct such a list during each traversal. For the register
list, link field x is used, which in general represents a register's clock signal. Since we restrict simulation to
synchronous circuits, clock signals can be ignored, since there is only one, implicit clock for all registers.

The presented scheme may indeed be regarded as the "poor man's solution”. A more effective program
might first topologically sort the variables such that whenever v = F(v0, ..., vn) is computed, all variables
v0 ... vin have been assigned their values beforehand. Although this measure will speed up the simulation
program, we refrain from presenting it in detail, because it complicates the program considerably. This is
particularly so in view of the fact that we do not deal with a list, but with a tree of variables.

Some further considerations and explanations follow. The reader is referred to the listings for details.
1. The value w of a latch node s is defined as

IF value(sx) = 0 THEN w = s.val ELSE w = value(s.y); sval .= w END
2. The value w of a SR node s is defined as

IF value(s.x) = 0 THEN
IF value(s.y) = O THEN w := clash ELSE w := 1; sval :=1 END
ELSIF value(s.y) = 0 THEN w = 0; sval :=0
ELSE w := s.val
END

14

We note that the "illegal” case of both inputs of an SR latch being active is detected and results in a value
called clash (2).

3. Assignment is expressed by v.val = value(v.x). This becomes more complicated in the case of bus
variables, which allow that several signals define the variable. Hence, v.x does not denote the single
expression tree like in the case of regular variables, but rather a list of expression trees. The list consists of
nodes with fct-value /ist. Evaluation of a list of tri—state gates generates the value clash, if more than a
single gate is enabled, and the value undef, if none is enabled.

4. A facility to initialize input variables is mandatory. This is represented by the command Set. For
example

Simulator.Set x=0,y=1,a.2 =0~
assigns the given values to the listed input variables.

5. Typically, the designer is interested in tracing the values of a few selected variables only. This possibility
is offered through the command Select. The node field u is used to mark variables for tracing (s.
procedure fist).

Consider the following counter as an example:

MODULE Counter;

CONST N =4,

IN en: BIT;

VAR Q, ¢: [N] BIT;
BEGIN Q.0 :== REG(Q.0 — en); c0 :=Q.0 % en;

FORi:=1.N-1DO Q.i = REG(Q.i — c[i-1]); ci := Q. % c[i-1] END
END Counter.

Executing the commands

Simulator.Set en = 1~
Simulator.Select Q.0 Q.1 Q.2 Q3~
Simulator.Label

Simulator.Step 8

yields the table of values

Qo0 QA1 Q2 Q3

[SR cor SR G oo, SRR G oo, SRNIEN
o2 200220
o222 oo o
~ocoococooo

8. Circuit Implementation

The ultimate purpose of design tools is to generate implementations from given circuit specifications
automatically. Given the compiler translating textual specifications into a suitable data structure, this task
is slightly reduced into constructing a program further translating the data structure into a circuit
implementation.

Circuit implementations generally take the form of layouts, i.e. exact specifications of the positions of
circuit components and of their interconnections. Such layouts strongly depend on the technology used,
but the general considerations are similar. Among the available technologies are printed circuit boards

15

and custom VLSI design using standard cells. Of particular interest and promise, however, are standard
arrays of configurable cells, so—called programmable gate arrays. If the cells and their interconnects are
programmable by the user "in the field", they are called field programmable gate arrays (FPGA). Automatic
generation of an implementation using an FPGA consists of finding an assignment of gates and registers
to cells in such a way that (1) the cells are capable of representing the function assigned to them, and (2)
that the provided routing facilities allow to connect the cells according to the given circuit specifications.

This is in general an extremely difficult task, in particular, if a reasonably high utilization of the available
cells and routing facilitites is requested. An approach more amenable to the current state of the art is to
lay out a circuit "by hand" with the aid of a suitable layout editor, and then to verify with the aid of a
program that the implemantation represents the circuit as specified by the Lola text. The best way to do
this is to extract from the layout a data structure of the known format, and thereupon to compare it with
the one derived from the Lola specification. We call such an extraction and comparison tool a Checker.

9. Fuse—Map Generation for a PLD

The task of automatically generating a layout, i.e. of finding a mapping of functions to gates, is easiest if
all gates are the same and if the routing facilities are completely regular and general. An extreme case of
this kind is the well known programmable logic array (PLA) consisting of a And— and a Or-matrix. It
directly reflects Boolean expressions in disjunctive normal form. Hence, the generation of an
implementation is straight—forward, given the restriction that the (Lola) program consist of a (small) set
of variables defined by expressions in normal form. If the array is field programmable, the circuit's
implementation occurs entirely by software. The device having a fixed set of inputs x,, ... x__, and outputs

Yo -+ Yp_q the latter are defined by
Y= Fi(xO xn_1) i=0..m-1
where Fis a disjunctive normal form, i.e. a sum of products of the arguments and their inverses.

The usefulness of this scheme is significantly enlarged by applying it to PLDs, i.e. devices containing
registers. These devices are primarily designed to implement state machines. Typically, the y are fed into a
so—called macro cell generating the output. The industry standard GAL22V10 [7] provides the four
options shown in Fig. 10. Note that we ignore the macro cell's tri—state gate, i.e. always consider them as
active. This is because in the intended laboratory application a fixed set of pins is connected as inputs
from the processor bus, and another fixed set is connected to the bus as outputs (see Fig. 13). However,
we retain the important facility of feedbacks which may be selected as arguments in F.

10 A ‘ 01 A ‘ 00
-

Fig. 10. The 4 options of macro cells in the GAL22V10

Consequently, the options for the specification of the outputs grow too:

Y =FXy X Yo - Yineq)

Y= ~FXg X0 Yo~ Ymeq)

Y= REG(F(X0 X Yo ...ym_1))
Y= ~REG(F(><0 X Yo ...ym_1))

The syntax of these forms is a subset of Lola:

assignment = variable ":=" definition.

definition = expression | "~" expression | "REG" "(" expression ")" | "~" "REG" "(" expression ")".
expression = term {"+" term}.

16

term = factor {"%" factor}.

T nagn

factor = variable | "~" variable | "0" | """ .

The following are simple examples of Lola specifications that can quite easily be translated into a PLD
implementation:

MODULE Adder;
IN x0, X1, x2, x3, y0, y1, y2, y3, ci: BIT;
OUT s0, s1, s2, 53, €0, c1, 2, ¢3: BIT;
POS x0=3; x1=4; x2=5; x3=6; y0=7; y1=9; y2=10; y3=11; ci=12;
s0=27; s1=26; s2=25; s3=24; c0=23; c1=21; 2=20; 3=19;
BEGIN
50 = ~Ci%~x0%y0 + ~Cixx0%~y0 + Ci%~X0%~y0 + Ci+x0%y0; 0 := ~cixx0x%y0 + Cixx0 + cixy0;
51 == ~C0%~X T2y T + ~C0%X T~y T + C0%oXTxy T + COxXTxYT; 1 1= ~cO%xT%yT + COxXT + 0%y 1;
$2 1= ~Cl%X2%Y2 + ~CIRX2%y2 + Cl%oX2%0y2 + CTX2%Y2; 2 1= ~CIRX2%Y2 + C1%X2 + 1%y 2;
$3 1= ~C2¥X3HY3 + ~2RX3%YS + 2RX3H~YI + 2%XBRY3; (3 1= ~2%X3%Y3 + 2%X3 + 2%y3
END Adder.

MODULE Barrel;
IN s0, s1, s2: BIT;
do, d1, d2, d3, d4, d5, d6, d7: BIT;
OUT q0, g1, 92, 93, 94, 95, 96, q7: BIT;
POS d0=3; d1=4: d2=5; d3=6: d4=7; d5=9: d6=10: d7=11; 5O = 12; s1=13; s2=16;
q0=27; q1=26; q2=25: q3=24; q4=23; q5=21; q6=20; q7=19;
BEGIN
qO = ~§2%~51%~s0%d0 + ~S2%~sT1%50%d 1 + ~52%51%~s0%d2 + ~$2%51%50%d3
+ $2%~51%~50%d4 + 52%~5T%50%d5 + $2%5T%~50%d6 + 52%51%50%d7;
ql = ~62%~51%~s0%d T + ~S2%~sT1%50%d2 + ~52%51%~s0%d3 + ~52%51%s0%d4
+ $2%~51%~50%d5 + 52%~5T1%50%d6 + $2%5T%~s0%d7 + 52%51%50%d0;
q2 = ~62%~5T%~s0%d2 + ~S2%~sT1%50%d3 + ~52%51%~s0%d4 + ~S2%51%50%d5
+ $2%~51%~50%d6 + 52%~5T1%50%d7 + $2%5T%~50%d0 + 52%51%s50%d1;
g3 = ~62%~5T%~s0%d3 + ~S2%~s T %50%d4 + ~52%51%~s0%d5 + ~S2%5T%50%d6
+ $2%~51%~50%d7 + $2%~5T1%50%d0 + s2%5T%~s0%dT + 52%571%50%d2;
Q4 = ~62%~5T%~s0%d4 + ~S2%~s T %50%d5 + ~52%51%~s0%d6 + ~S2%51%50%d7
+ $2%~51%~50%d0 + $2%~5T%50%d 1 + $2%5T%~50%d2 + 52%51%50%d3;
Q5 = ~62%~5T%~s0%d5 + ~S2%~s1%50%d6 + ~52%51%~s0%d7 + ~52%571%50%d0
+ $2%~51%~50%dT + $2%~5T1%50%d2 + s2%5T%~50%d3 + 52%51%s50%d4;
Q6 = ~§2%~5T%~s0%d6 + ~S2%~sT%50%d7 + ~52%51%~s0%d0 + ~52%571%50%d1
+ $2%~5T%~50%d2 + $2%~5T%50%d3 + s2%5T%~s0%d4 + 52%51%50%d5;
q7 = ~$2%~51%~s0%d7 + ~S2%~sT1%50%d0 + ~52%51%~s0%dT + ~$2%51%50%d2
+ S2%~5T%ms0%d3 + 2%~ T1%50%d4 + S2%51%~s0%d5 + S2%51%50%d6
END Barrel.

MODULE Counter;
IN ci: BIT;
OUT q0, g1, 92, 93, 94, 95, 96, q7: BIT;
POS ci=3; q0=27; q1=26; q2=25; q3=24; q4=23; q5=21; q6=20; q7=19;
BEGIN
q0 = REG(qOx%~ci + ~q0xci);
q1 = REG(q1%~q0 + q1%~cCi + ~q1%q0%ci);
g2 = REG(g2%~q1 + q2%~q0 + q2%~Ci + ~q2%q1%q0xci);
g3 = REG(g3%~q2 + q3%~q1 + q3%~q0 + q3%~Ci + ~q3%q2%q1%q0xci);
g4 = REG(g4%~q3 + q4%~q2 + q4%~qQT + q4%~q0 + qd*~Ci + ~q4%q3%q2%q1%q0xci);
q5 = REG(q5%~q4 + q5%~q3 + q5%~qQ2 + q5%~q1 + q5%~q0 + q5%~Ci + ~q5%q4%q3%q2%q1%q0xci);
q6 = REG(q6%~q5 + q6%~q4 + q6%~q3 + q6%~q2 + q6%~q1 + q6%~q0 + q6%~Ci
+ ~q6%q5%q4%q3%q2%q1xq0xci);
q7 = REG(q7%~q6 + q7%~q5 + q7%~qQ4 + q7%~q3 + q7%~q2 + q7%~q1 + q7%~q0 + q7%~cCi
+ ~q7%q6%q5%q4%q3%q2%q1%q0xci)
END Counter.

17

We subsequently show the development of a program which configures (programs) the PLD, i.e. derives
a fuse map from a given Lola specification. The fuse map is the matrix of Boolean values standing for open
or closed connections in the And—matrix. Since these "fuses” can be determined dynamically by "loading"
the Boolean array into the device, we can imagine that we are generating a circuit automatically
according to a specification given in Lola. What makes this scheme attractive for teaching and
experimenting is the fact that the device can be reset to a null state by erasing the connections. This can
be done electrically, i.e. without the need for removing the chip from the board.

The generator program is used in conjunction with a PLD connected to a workstation serving as a test site
for experimentation. The PLD appears to the programmer as an /O device, and it is connected to the
computer's bus with fixed sets of 12 input and 8 output pins. The PLD chosen is the industry standard
part GAL22V10B. This setup implies that the flexibility of the PLD is not used to its full extent. (The device
actually allows to be configured with up to n = 22 inputs and at most m = 10 outputs, whereby m+n =
22). This self-imposed restriction has the side—effect that we may ignore the tri—state gates controlling
the pin functions. Furthermore, we decided to dedicate one of the inputs to serve exclusively as clock
signal.

Signals in a circuit specification (Lola program) must by some means become related to the signals of the
device indentified by their pin numbers. The simplest solution is to assign fixed names to pins, such as
DO, D1, Not wishing to infringe on the designer's freedom to choose meaningful identifiers, we
instead extended the Lola language by a construct allowing to associate pin numbers with declared input
and output variables. The program GAL then checks whether inputs are assigned to input pins and
outputs to output pins. (The pin number of a variable v is stored in the record field v.u).

Next, we need to explain the structure of the fuse map. It consists of two parts, namely the matrix D
representing the And—matrix, and two arrays SO and S1 determining the macro cell options of inversion
and register (see Fig. 10). Matrix D consists of M = 44 rows of N = 132 elements with value 0 or 1. Each
row represents an argument (input or fed back output) or its inverse. There are potentially 22 signals,
yielding 44 rows, each of which can be connected to any of the 132 product terms, yielding rows with
132 elements (see Fig. 11). DIi, j] = 0 means that variable i (if even, or its inverse, if i odd) is a factor in
term j, i.e. is connected to product line j. D[i, jl = 1 means that the connection is open. Note that in
typical pictures of PLD fuse maps, product lines run horizontally, whereas in matrix D a product line is
represented by a column). Initially, D contains all ones, representing the device's state after an erase

- 0 1 2 3 4 5 8 40 41 42| |43 X\ 0
10-19 2 D !
21 -32 i D 2
|
122 -129 ; D >

18

Fig. 11. And—Matrix of GAL22V10B

We are now ready to look at program GAL which proceeds as follows: Procedure evaluate visits all
variables in the Lola data structure. For each ouput variable v, its internal signal number (index) k is
obtained from the specified pin number v.u through the constant mapping k = smap[v.u]. If node s = v.x
is a negation, the respective macro cell option is selected by setting SO/k] to 0, and if the node specifies a
register, the register option is selected by setting S7/kJ to 0. Then procedure expression is called to process
the respective tree structure. Its parameters are the tree's root s and the output variable's number k.

PROCEDURE evaluate(v: Variable);
VAR s: LSB.Signal;
BEGIN (xtraverse list of variablesx)
WHILE v # NIL DO
IF v.class = out THEN
IF vfct = bit THEN s ;== vX;
IF sfct = not THEN s := sy END ;
IF sfct = reg THEN
IF (sx = NIL) OR (s.x # clk) OR (s.yx # one) THEN
(xerror: register with clock or enable specificationx)
END :
S:=Syy
END :
expression(s, smap{v.ul)
ELSIF v.fct = array THEN evaluate(v.dsc)
ELSE (xerror: bus variablex)
END
END :
V = v.next
END
END evaluate;

An expression consists of a sum of product terms, each of which is processed by a call to procedure term.
Each term is represented by a column in matrix D, and since every variable is the sum of a limited
number of terms, the term's number must be determined and then checked against its limit. Procedure
expression(k) obtains the number j of its first term from the mapping jmap[kJ, and then increments j for
each new term up to the maximum specified by jmap[k+7]-1. (Note that this explicit mapping is needed
because the maximum number of terms differs among the variables). After processing the last term, the
remaining product lines, if any, must be set to yield 0 by selecting any input and its inverse (~xxx = 0).

PROCEDURE expression(s: Signal; k: INTEGER);
VAR j, lim: INTEGER;
BEGIN j := jmap[k]+1; lim := jmap[k+1];
WHILE sfct = or DO
term(s.y, j); INC(j); s = sx;
IF j=lim THEN (xerror: too many product termsx) END
END :
term(s, j); INC(j);
WHILE j < lim DO Zero(j); INC(j) END
END expression;

Procedure term further traverses the tree structure and calls upon factor. Note that the same product line
index j is is used for all factors.

PROCEDURE term(s: Signal; j: INTEGER);

BEGIN
WHILE sfct = and DO factor(sy, j); s :==sx END ;
factor(s, j)

END term;

19

Procedure factor finally assigns zeroes to elements of D, i.e. registers connections. D[i, j] becomes O, if
variable i = imap[s.u] is a factor in term j, and D[i+7, j] becomes 0, if the inverse of variable i is a factor.

PROCEDURE factor(s: Signal; j: INTEGER);
VAR inv: SHORTINT;
BEGIN
IF sfct = LSB.not THEN inv :=1; s := s.y ELSE inv := 0 END ;
IF s 1S LSB.Variable THEN
IF s.u IN inputs + outputs THEN D[imap[s.ul+inv, j] =0
ELSIF s = zero THEN Zero(j)
ELSIF s = one THEN (%do nothing; unconnected terms have value 1%)
ELSE (xerror: variable neither input nor outputx)
END
ELSE (xerror: illegal expressionx)
END
END factor;

For details and a complete presentation, the reader is referred to the program listings at the end of this
text, where it becomes evident that a specific detail has been omitted from the above discussion. This
omission causes the device to be configured wrongly when a macro cell is chosen to include a register but
no inverter. We note that then the feedback term is not identical to the output, but unfortunately is its
inverse, for no apparent reason. This forces a prescan of the macro cell configurations before the matrix is
generated. Procedure PreScan sets the values of arrays SO and S7. An auxiliary array S2 is used, and factor
requires a corresponding adjustment.

10. The GAL circuit board for Ceres, and loading the fuse map

The implementation of an interface between the Ceres Bus and the GAL22V10B is shown in Fig. 12.
Input and output addresses (relative to a base address for the GAL) are assigned as follows. Outputs are
latched in registers (74L5574).

write 0 write 8 bits to GAL inputs at pins 3 — 11
4 neg. pulse to GAL input at pin 2, used as register clock
12 write 8 bits to GAL inputs at pins12,13,16
program step, latch SDI, MODE, and SCLK
read 8 bits from GAL outputs at pins 27 — 19
12 read GAL shift register output SDO as bit O for configuration verification

o

read

20

2 o74 19 15 E—
DO QO]
31D1 o118 8 MODE J/Ig
41D QQ_/L; | Q
4D3 Q3+ e 22 12 11
—64p4 Q415 sk |
4D5 Q5f 125
+HD6 Q6
D7 Q71
CK Cl)E' 12
1 1 13
AV o] GAL
22V10
574 541
00 24p0”"gol12 : T 00
iz
D1 o1 Qi : I o1 v D1
116
52 D2 Q2 2 - =1p2 v D2
115
D3 o Q3ple 2 o3 D3
114
D4 D4 Q4rla l = D4 Y4 D4
7] 113
b5 D5 Q5112 o = o5 vs D5
8] 112
Do 5s &I 11 19 o P66 Do
9] I
D7 Q D7 Y7 D7
CK OF b 17 G0 G1
11 1% 19 J
Y ‘28 %14
138 Vee
QO'_/IL'
ol 14 w1
A8 N R YANE:
Q3 12 w3
A7 S2 o4+
5’_
A6 s1 gl
Q7'+
E'EE
|IOWR' 4‘ ‘ ‘6
VCC
138
Qo' 15 Q'
3 Q1’—
4 Q2 o a ispGAL 22110
21¢5 Q3
- Q4
; a5 b 26 28 2 4
S1 Q6 - o o @] @]
Q7'+ 25 27 1 3 6 5
EEE 6 o o 0 o o
IORD 4] ‘\ 6 bottom view 203 %L 08 07
VCC 21 22 10 9
o © o o
19 20 17 15 13 11
GALenb' o o o o o o
18 16 14 12
0O 0 o ©

Fig. 12. GAL—interface for Ceres computer

Loading of the fuse map is controlled by a state machine in the ispGAL22V10B part. It is clocked by the
clock signal SCLK, and it has 3 states: idle, read command, and execute command. State transitions occur
when the input signal MODE is 1. When in read command mode, a command consisting of 5 bits is
shifted (LSB first) into the command register of the programming machinery. This is done by procedure
EnterCmd (see Fig 13). There are the following commands:

00010 shift data into (and out of) the 132 + 6 bit shift register (row data and row number)
00011 erase the fuse maps

00111 program the fuse map row specified by the last 6 bits of the shift register

01010 load the shift register from the specified fuse map row

10100 shift data into (and out of) the 20 bit architecture shift register

Program GAL uses procedures WriteRow(d) and Arch to load row d and the architecture (cell options) SO
and S7 respectively. They in turn use procedure P (for pulse) which first outputs and latches the
programming machinery's data signal SDI (bit 0), then sets the SCLK signal to 1 (rising edge), and finally

21

resets it to 0. Further details are contained in the GAL data books and in the listing of the program. We
merely note that every command, after being loaded, requires at least one clock pulse for being executed.
Also, timing constraints must be observed, and the clock signal must return to 0 for taking effect.

Yl 1 < I s A A S T I I O I
MODE _ [| [l L
SDI 7‘ ‘ command ‘ ‘ ‘ data ‘
Tenter read Tenter execute mode (e.g. shift data) 7
command mode idle mode

Fig. 13. Signals for loading and executing a programming command

11. Converting expressions into normal form

Program GAL requires that expressions defining the output variables be in disjunctive normal form
(DNF). In order to remove this restriction, a suitable preprocessor is needed which converts arbitrary
expressions into their equivalent normal form. This is the purpose of module DNF and its procedure
Convert.

This command calls procedure fist, which in turn calls procedure R(s) — via elem — for each output
variable v. s is the root of the expression tree defining v, if a possible initial inverter and/or a register are
ignored. R then calls upon procedures P and Q, which perform the actual conversions on the tree.

The recursive procedure P serves to remove multiplexers and Xor—gates by replacing them by And— and
Or—gates, and to remove inversions as far as possible. P has as parameters the structure to which it is
applied, and the Boolean inv indicating whether the true value or its inversion is to be generated. The
different cases handled by P are best represented by recursive equivalences. The reader is referred to the
program listing at the end of this text. We note that the data structure is modified in situ.

P(~x, F) -> P T

P(~x, T) -> P, F)

P(xxy, F) —> P(x,F) % P(y, F)

P(xxy, T) > P, T)+P(y, T) de Morgan
P(x+y, F) > P(x,F) +P(y, F)

Pix+y, T) > PO, T) %Py, T) de Morgan
P(x-y, F) —> P(x,F) % P(y, T) + P(x, T) % P(y, F)

P(x=y, T) —> P(x,F) % P(y, F) + P(x, T) % P(y, T)

PIMUX(s: x,y), F) —> P(s, T) % P(x, F) + P(s, F) % P(y, F)
PIMUX(s: x,y), T) —> P(s, T) % P(x, T) + P(s, F) % P(y, T)
P(v, F) -> v
Pv, T) >~V
The recursive procedure Q performs the actual expansions necessary to obtain normal forms. For each

node representing an And— or an Or—gate, it first applies itself to the two operands, and then recognizes
the following patterns and performs structural transformations:

X+ (y+2) —> (X+y)+z
X% (yx*2z) —> (x*y) %z
(X+y)®z —> X%Z+y¥*z

X¥(y+2z) —> X¥Xy+xxz

22

Concluding, we show the three examples of circuit specifications from the preceding section again. The
possibility to express them in terms of expressions not in normal form improves readability significantly.
However, the user must keep in mind that the expansion process brings them "back" into their expanded
form. Using a PLD, one must be aware that the limits in the number of product terms may easily be
reached when the necessary conversions are hidden.

MODULE Adder;

IN X, y: [4] BIT; ci: BIT;

OUT s, ¢: [4] BIT;

POS x.0=3; x.1=4; x.2=5; x3=6; y.0=7; y.1=9; y.2=10; y.3=11: ci=12;

$.0=27: s.1=26; s2=25: $3=24: c0=23; c1=21: ¢2=20: ¢3=19;

BEGIN 5.0 :=x.0 — y.0 — ci; .0 = x.0%y.0 + (x.0 — y.0)xci;

FORi:=1.3 DO s.i=xi-y.i-cli-1]; ci = xixy.i+ (xi-y.i) % c[i-1] END
END Adder.

MODULE Barrel;
IN s: [3] BIT;
d: [8] BIT;
OUT q: [8] BIT:
POS d.0=3; d1=4; d2=5; d3=6; d4=7; d.5=9; d.6=10; d.7=11;
$0 =12 s1=13; s2=16;
q.0=27; q.1=26; q.2=25; q.3=24; q4=23; q.5=21; q.6=20; q.7=19;

BEGIN
FORi:=0.7DO
qi = MUX(s.2:
MUX(s.1:
MUX(s.0: d[i], d[(i+1) MOD 8]),
MUX(s.0: d[(i+2) MOD 8], d[(i+3) MOD 8])),
MUX(s.1:
MUX(s.0: d[(i+4) MOD 8], d[(i+5) MOD 8]),
MUX(s.0: d[(i+6) MOD 8], d[(i+7) MOD 8])))
END
END Barrel.
MODULE Counter;
IN ci: BIT;
OUT q: [8] BIT:
VAR ¢ [8] BIT;

POS ci=3; q.0=27; q1=26; q.2=25; q.3=24: q4=23; q.5=21; q.6=20; q.7=19;
BEGIN q.0 := REG(q.0 - ci); 0 == q.0 % di;

FORi:=1.7 DO q. := REG(q.i - c[i-1]); ci = q.i % c[i-1] END
END Counter.

12. References

1. N. Wirth. Digital Circuit Design. Springer—Verlag, 1995.

2. Lola: An object—oriented logic description language,
Tech. Report 215, Dept. Informatik, ETH Zirich, May 1994.

3. S. Ludwig. An Editor for the CLi6000 FPGA, and its implementation.
Tech. Report 198, Dept. Informatik, ETH Zirich, July 1993.

4. S. Ludwig. CL-Editor user manual.
Tech. Report 215, Dept. Informatik, ETH Zirich, May 1994.

5. S. Gehring. CLChecker user manual.
Tech. Report 215, Dept. Informatik, ETH Zirich, May 1994.

6. M. Reiser and N. Wirth. Programming in Oberon. Addison—Wesley, 1992.
7. The GAL handbook. Lattice Corp. 1994.

23

24

13. Program Listings

MODULE LSB; (x*Lola System Base NW 252.95 /154.95%)
IMPORT Texts, Oberon, MenuViewers, TextFrames;

CONST Namelenx = 7;
blackx = 5; greyx = 4; (x*node values used in loop searchx)
(#function codesx)
bit¥ = 0; tsx = 1; ocx = 2; integerx = 3; array* = 4; recordx = 5; bufx = 7; notx = 8; andx = 9;
orx = 10; xorx = 11; muxx = 12; mux1x% = 13; regx = 14; regl% = 15; latchx = 16; sr% = 17; tsgx = 18; linkx = 19;

(%class codesx) varx = 0; in% = 1; outx = 2; io% = 3;

TYPE Namex = ARRAY Namelen OF CHAR;
Signal% = POINTER TO SignalDesc;
Variablex = POINTER TO VarDesc;

(#fct field: bits 0—4: function code, bits 5-7: class code;
val field: not used; uy fields: position datax)

SignalDescx = RECORD

X%, y%: Signal;

fctx, valx, us, v SHORTINT
END :

VarDescx = RECORD (SignalDesc)
namex: Name;
class%: SHORTINT;
nextyx, dscx: Variable

END :

VAR orgx, zerox, onex, clkx: Variable;
Logx: Texts.Text;
change: BOOLEAN;
code: ARRAY 24 OF CHAR;
W: Texts.Writer;

PROCEDURE Initx;
BEGIN org := NIL; clkx := NIL; Oberon.Collect(0)
END Init;

PROCEDURE WriteNamex(VAR W: Texts. Writer; v: Variable);

BEGIN
IF v.y # NIL THEN WriteName(W, v.y(Variable)); Texts.Write(W, ".") END ;
Texts.WriteString(W, v.name)

END WriteName;

PROCEDURE Thisx(org: Variable; VAR name: ARRAY OF CHAR): Variable;
VAR v: Variable; i, j: INTEGER;
id: ARRAY 16 OF CHAR;
BEGIN v := org.dsc; i = 0;

LOOP j = 0;
WHILE (nameli] >" ") & (name[i] # ".") DO id[j] := name[i]; INC(j); INC(i) END ;
id[j] == 0X;

WHILE (v # NIL) & (v.name # id) DO v := v.next END ;
IF namel[i] ="" THEN
IF (v # NIL) & (v.fct IN {array, record}) THEN v := v.dsc; INC(i)
ELSE v := NIL; EXIT
END
ELSE EXIT
END
END :
RETURN v
END This;

PROCEDURE Newsx(f: SHORTINT; x, y: Signal): Signal;
VAR z: Signal;

BEGIN NEW(z); zfct = f; zx :=x; zy :=y; RETURN z

END New;

PROCEDURE NewVarx(f, val: SHORTINT; x, y: Signal;
next: Variable; VAR name: ARRAY OF CHAR): Variable;
VAR v: Variable;

BEGIN NEW(v); v.fct :=f; vval = val; vx ==x; vy =v;
v.next := next; COPY(name, v.name); RETURN v

END NewVar;
(Simplify)
PROCEDURE traverse(VAR s: Signal);
BEGIN
IF s # NILTHEN

IF s IS Variable THEN

IF s.x = zero THEN s := zero
ELSIF s.x = one THEN s := one
END

ELSE traverse(s.x); traverse(s.y);

IF sfct = not THEN
IF s.yfct=not THEN s .= sy.y
ELSIF sy = zero THEN s := one
ELSIF s,y = one THEN s := zero
END
ELSIF s.fct = or THEN
IF sx =one THEN s := one
ELSIF s.x = zero THEN s := sy
ELSIF s,y = one THEN s := one
ELSIF sy = zero THEN s := s.x
END
ELSIF s.fct = xor THEN
IF sx =zero THEN s := sy
ELSIF sx = one THEN
IF s.y.fct = not THEN s := s.y.y ELSE sfct := not; sx := NILEND
ELSIF sy = zero THEN s := s.x
ELSIF s.y = one THEN
IF sx.fct = not THEN s = s.x.y ELSE s.fct := not; sy := s.x; sx := NILEND
END
ELSIF s.fct = and THEN
IF sx = zero THEN s := zero
ELSIF sx = one THEN s := sy
ELSIF s.y = zero THEN s := zero
ELSIF s,y = one THEN s := s.x
END
ELSIF s.fct = mux THEN
IF sx =zero THEN s := s.y.x ELSIF s.x = one THEN s :=s.y.y END
ELSIF s.fct = reg THEN
IF (sx = zero) OR (sx = one) OR (s.yx = zero) THEN
Texts.WriteString(W, " dead reg"); Texts.WriteLn(W)
END
ELSIF s.fct = latch THEN
IF s.x = zero THEN Texts.WriteString(W, " dead latch"); Texts.WriteLn(W)
ELSIF sx = one THEN s := sy
END
ELSIF s.fct = sr THEN
IF (sx = zero) OR (s.y = zero) THEN Texts.WriteString(W, " dead SR"); Texts.WriteLn(W)
END
ELSIF s.fct = tsg THEN
IF (sx = zero) OR (s.x = one) THEN
Texts.WriteString(W, " dead tri—state"); Texts.WriteLn(W)
END
END

END

END

END traverse;

PROCEDURE simp(v: Variable);

BEGIN

IF vfct IN {array, record} THEN v := v.dsc;
WHILE v # NIL DO simp(v); v := v.next END
ELSIF (v.x # zero) & (v.x # one) THEN
IF vfct = link THEN traverse(v.x); traverse(v.y)
ELSE traverse(v.x);

IF (vx = zero) OR (v.x = one) THEN change := TRUE END

END

END

END simp;

PROCEDURE Simplifyx(org: Variable);

25

VAR n: INTEGER;

BEGIN n = 0:
REPEAT INC(n); change := FALSE; simp(org) UNTIL ~change;
Texts.Append(Log, W.buf)

END Simplify;
(Find Loops)
PROCEDURE loop(s: Signal);
BEGIN
IFs# NILTHEN

IF s IS Variable THEN
IF sval = black THEN swval := grey; loop(sx); sval :=0
ELSIF sval = grey THEN
WriteName(W, s(Variable)); Texts.WriteString(W, " in loop”); Texts.WriteLn(W);
Texts.Append(Log, W.buf)
END
ELSIF s.fct # reg THEN
loop(sx);
IF s.fct # tsg THEN loop(s.y) END
END
END
END loop;

PROCEDURE Loopsx(v: Variable);
BEGIN
IF vfct IN {array, record} THEN v := v.dsc;
WHILE v # NIL DO Loops(v); v := v.next END
ELSIF vval = black THEN loop(v)

END
END Loops;
(Show)
PROCEDURE ShowTree(x: Signal);
BEGIN
IF x # NIL THEN

IF x IS Variable THEN WriteName(W, x(Variable))
ELSE Texts.Write(W, "(");
ShowTree(x.x); Texts.Write(W, code[x.fct]); ShowTree(x.y); Texts.Write(W, ")")
END
END
END ShowTree;

PROCEDURE Showsx(x: Variable; lev: INTEGER);
VAR typ: SHORTINT;
BEGIN typ = xfct;
IF typ = record THEN
x = x.dsc;
WHILE x # NIL DO Show(x, lev+1); x := x.next END ;
Texts.Append(Log, W.buf)
ELSIF typ = array THEN
x = x.dsc;
WHILE x # NIL DO Show(x, lev); x := x.next END
ELSIF typ # integer THEN
WriteName(W, x);
IF (lev = 0) & (x.class # var) THEN Texts.Write(W, "%") END ;
IF x.x # NIL THEN Texts.WriteString(W, " := "); ShowTree(x.x) END ;
Texts.WriteLn(W); Texts.Append(Log, W.buf)
END
END Show;

(Open)

PROCEDURE OpenLog;
VAR V: MenuViewers.Viewer; X, Y: INTEGER;
BEGIN Oberon.AllocateSystemViewer(Oberon.Mouse X, X, Y);
V = MenuViewers.New (
TextFrames.NewMenu("Lola.Log",
"System.Close System.Copy System.Grow Edit.Search Edit.Parcs Edit.Store "),
TextFrames.NewText(Log, 0), TextFrames.menuH, X, Y)
END OpenlLog;

PROCEDURE ClearLog;

26

BEGIN Texts.Delete(Log, O, Log.len)
END ClearLog;

PROCEDURE Assignx(v: Variable);
BEGIN org :=v
END Assign;

BEGIN Texts.OpenWriter(W); Log := TextFrames.Text(""); OpenlLog;
NEW(zero); zero.name = "0"; zerofct := bit; zeroval = 0;
NEW(one); one.name = "1"; onefct := bit; onewval :=1;
NEW(clk); clkname := "CK"; clkfct = bit;
code := "BTONAR !~x+—:1:$%]|,"

END LSB.

27

28

MODULE Lola; (%¥NW 2.2.95 /13.4.95%)
IMPORT Texts, Oberon, Viewers, MenuViewers, TextFrames, LSB, LSC;

VAR scope: LSB.Variable; clk: LSB.Signal;
null: ARRAY 2 OF CHAR,;
W: Texts.Writer;

PROCEDURE V(x: LSC.Item): INTEGER;
VAR y: INTEGER; v: LSB.Variable; id: LSB.Name;
BEGIN
IF x IS LSC.Object THEN
v := scope; COPY(x(LSC.Object).name, id);
WHILE v.name # id DO v := v.next END ;
y = vval
ELSE :
CASE x.tag OF
LSClit: y == x.val
| LSCadd:y :=V(x.a) + V(x.b)
| LSCsub: y := V(x.a) — V(x.b)
| LSCheg: y = -V(x.b)
| LSCmul:y == V(x.a) ¥ V(x.b)
| LSCdiv: y := V(x.a) DIV V(x.b)
| LSCmod: y := V(x.a) MOD V(x.b)
[LSC.pwr: y := SHORT(ASH(1, V(x.b)))
END
END :
RETURN y
END V;

PROCEDURE Index(n: INTEGER; VAR name: ARRAY OF CHAR);
VAR i, j: INTEGER;
d: ARRAY 4 OF INTEGER;
BEGIN i =0;j:=0;

REPEAT d[i] := n MOD 10; INC(i): n :==n DIVAO UNTILn =0
REPEAT DEC(i); namelj] := CHR(d[i] + 30H); INC(j) UNTILi = 0;
namefj] := 0X

END Index;

PROCEDURE NewVar(typ: LSC.Item; mode: INTEGER; VAR id: ARRAY OF CHAR; link, anc: LSB.Variable):
LSB.Variable;
VAR form, len: INTEGER;
fp: LSC.Object; ap: LSC.ltem;
v, el, X, y, tempscope: LSB.Variable;
BEGIN form := typ.tag;
v := LSB.NewVar(SHORT(form), LSB.black, NIL, anc, link, id); v.class := SHORT(mode-LSCvar);
IF form = LSB.array THEN
len == V(typ.b); el := NIL;
WHILE len > 0 DO DEC(len); el .= NewVar(typ.a, mode, null, el, v); Index(len, el.name) END ;
v.dsc = el
ELSIF form = LSB.record THEN
COPY(id, v.name); el := NIL;
ap :=typ.b; fp := typ.a.a(LSC.Object);
WHILE ap # NIL DO
el .= LSB.NewVar(LSB.integer, SHORT(V(ap.a)), NIL, v, el, fp.name); fp := fp.next; ap = ap.b
END :
tempscope := scope; scope = el;
WHILE fp.tag = LSC.const DO
el := LSB.NewVar(LSB.integer, SHORT(V(fp.b)), NIL, v, el, fp.name); scope = el; fp := fp.next
END :
WHILE fp # LSC.guard DO el := NewVar(fp.a, fp.tag, fp.name, el, v); fp = fp.next END ;
y = NIL; (xinvert listx)
WHILE el # NIL DO x := el; el := x.next; x.next :=y;y :=x END ;
scope = tempscope; v.dsc =y
END :
RETURN v
END NewVar;

PROCEDURE E(x: LSC.Item): LSB.Signal;
VAR y: LSBSignal; v: LSB.Variable;
tag, k: INTEGER; id: LSB.Name;
BEGIN tag = x.tag;
IF x 1S LSC.Object THEN
v := scope; COPY(x(LSC.Object).name, id);
WHILE v.name # id DO v := v.next END ;

29

y =V
ELSE
CASE x.tag OF
LSC.asel: y := E(x.a); v := y(LSB.Variable).dsc; k := V(x.b);
WHILE (k > 0) & (v # NIL) DO v := v.next; DEC(k) END ;
IF (v = NIL) OR (k < 0) THEN
v = y(LSB.Variable); Texts.WriteString(W, "index off range in ");
LSB.WriteName(W, v); Texts. WriteLn(W); Texts.Append(LSB.Log, W.buf); v := v.dsc
END :
y =V
| LSCirsel: y := E(x.a); v := y(LSB.Variable).dsc; COPY(x.b(LSC.Object).name, id);
WHILE v.name # id DO v := v.next END ;
y =V
| LSB.and, LSB.or, LSB.xor, LSB.mux, LSB.mux1, LSB.reg, LSB.reg1, LSB.latch, LSB.sr, LSB.tsg:
y = LSB.New(SHORT(x.tag), E(x.a), E(x.b))
| LSB.not, LSB.buf: y := LSB.New(SHORT(x.tag), NIL, E(x.b))
| LSClit: IF xval = 0 THEN y := LSB.zero ELSIF xval =1 THEN y := LSB.one ELSE y := clk END
END
END :
RETURN y
END E;

PROCEDURE Link(fp: LSB.Variable; ap: LSB.Signal);
VAR fel, ael: LSB.Variable;
BEGIN
IF fpfct = LSB.array THEN
fel .= fp.dsc; ael := ap(LSB.Variable).dsc;
WHILE (fel # NIL) & (ael # NIL) DO Link(fel, ael); ael := ael.next; fel := fel.next END ;
IF (fel # NIL) OR (ael # NIL) THEN
Texts.WriteString(W, "array mismatch "); LSB.WriteName(W, fp);
Texts.WriteLn(W); Texts.Append(LSB.Log, W.buf)
END
ELSE fp.x == ap
END
END Link;

PROCEDURE S(s: LSC.ltem);
VAR tag, lim, u, v: INTEGER;
X, cond, ¢v, ap: LSC.Item;
y: LSB.Signal;
tempscope, fp: LSB.Variable;
BEGIN
WHILE s # NIL DO
X =s.4;s :=sb; tag .= xtag;
CASE tag OF
LSC.assign: y == E(x.a);
IF yx # NILTHEN
Texts.WriteString(W, "mult ass "); LSB.WriteName(W, y(LSB.Variable));
Texts.WriteLn(W); Texts.Append(LSB.Log, W.buf)
END :
y.X = E(x.b)
| LSCtsass, LSC.ocass: y := E(x.a); y.x := LSB.New(LSB.link, E(x.b), y.x)
| LSC.clkass: clk := E(x.a)
| LSCposass:y = E(x.a); y(LSB.Variable).u := SHORT(x.val MOD 100H);
y(LSB.Variable).v := SHORT(x.val DIV 100H)
| LSC.if: cond =x.a; x = x.b;
u = V(cond.a); v := V(cond.b);
CASE cond.tag OF
[LSC.eql: IF u =v THEN S(x.a) ELSE S(x.b) END
| LSC.neq: IF u # v THEN S(x.a) ELSE S(x.b) END
| LSClss: IF u <v THEN S(x.a) ELSE S(x.b) END
| LSCgeq: IF u>=v THEN S(x.a) ELSE S(x.b) END
| LSCleq: IF u <= v THEN S(x.a) ELSE S(x.b) END
| LSC.gtr: IF u >v THEN S(x.a) ELSE S(x.b) END
END
| LSCfor: cv :=x.a; x :=x.b;
scope = LSB.NewVar(LSB.integer, SHORT(V(x.a)), NIL, NIL, scope, cv(LSC.Object).name);
x = x.b; lim := V(x.a);
WHILE scopewval <= lim DO S(x.b); INC(scopewval) END ;
scope := scope.next
| LSC.call: y := E(x.a); fp := y(LSB.Variable).dsc; ap := x.b;
WHILE fpfct = LSB.integer DO fp := fp.next END ;
WHILE (ap # NIL) & (ap.tag # LSCtype) DO
Link(fp, E(ap.a)); fp := fp.next; ap == ap.b

END :
tempscope := scope; scope = y(LSB.Variable).dsc;
S(ap.b); scope :=tempscope
END
END
END S;

(%)

PROCEDURE Expandx;
VAR obj: LSC.Object;
root, new: LSB.Variable;
y: LSB.Signal;
BEGIN Texts.WriteString(W, "expanding "); Texts. WriteString(W, LSC.globalScope.name);
Texts.WriteLn(W); Texts.Append(LSB.Log, W.buf);
obj := LSClocalScope.next; new = NIL;
WHILE (obj # LSC.guard) & (objtag = LSC.const) DO
new := LSB.NewVar(LSB.integer, SHORT(V(obj.b)), NIL, NIL, new, obj.name);
scope = new; obj := obj.next
END :
WHILE obj # LSC.guard DO
new := NewVar(obj.a, objtag, obj.name, new, NIL); obj := obj.next
END :
scope = new; clk := LSB.clk; S(LSC.body);
NEW(root); rootfct .= LSB.record; COPY(LSC.globalScope.name, root.name); root.dsc := new;
LSB.Assign(root);
LSB.Simplify(LSB.org);
LSB.Loops(LSB.org)
END Expand;

PROCEDURE Compilex;
VAR beg, end, time: LONGINT;
S: Texts.Scanner; T: Texts.Text; v: Viewers.Viewer;
BEGIN Texts.OpenScanner(S, Oberon.Par.text, Oberon.Par.pos); Texts.Scan(S);
IF Sclass = Texts.Char THEN
IF S.c="%"THEN
v := Oberon.MarkedViewer();
IF (v.dsc # NIL) & (v.dsc.next IS TextFrames.Frame) THEN
LSC.Module(v.dsc.next(TextFrames.Frame).text, 0); Expand
END
ELSIF S.c="@" THEN
Oberon.GetSelection(T, beg, end, time);
IF time >= 0 THEN LSC.Module(T, beg); Expand END
END
END
END Compile;

PROCEDURE Shows;
BEGIN

IF LSB.org # NIL THEN LSB.Show(LSB.org, —1) END
END Show;

BEGIN Texts.OpenWriter(W); Texts. WriteString(W, "Lola—System NW 154.95");
Texts.WriteLn(W); Texts.Append(LSB.Log, W.buf)
END Lola.

30

MODULE Simulator; (*NW 27.12.92 / 154.95%)
IMPORT Texts, Oberon, TextFrames, ParcElems, LSB;

CONST clash = 2; undef = 3; (xsignal valuesx)
BaseTyps = {LSB.bit, LSB.ts, LSB.oc}; Struct = {LSB.array, LSB.record};
Tab =9X;

VAR rorg: LSB.Signal; (xregister listx)
stepno: INTEGER;
sym: ARRAY 4 OF CHAR;
and, or, xor: ARRAY 4, 4 OF SHORTINT;
not: ARRAY 4 OF SHORTINT;
W: Texts.Writer;

PROCEDURE? assign(v: LSB.Variable);

PROCEDURE value(s: LSB.Signal): SHORTINT;
VAR w, h: SHORTINT:

BEGIN
IF s # NILTHEN
IF s IS LSB.Variable THEN assign(s(LSB.Variable)); w := sval
ELSE
CASE s.fct OF
0:
| LSB.or: w := or[value(sx), value(s.y)]
| LSBxor: w = xor[value(s.x), value(s.y)]
| LSB.and: w := and[value(s.x), value(s.y)]
| LSB.not: w := not[value(s.y)]
| LSB.mux: h :=value(s.x);
IF h = undef THEN w := undef
ELSIF h = 0 THEN w = value(s.y.x)
ELSE w = value(s.y.y)
END
| LSB.reg: w := sval; s.x = rorg; rorg :='s
| LSB.latch: h = value(sx);
IF h = undef THEN w := undef
ELSIF h =0 THEN w := swval
ELSE w = value(s.y); sval :=w
END
| LSB.si: h = value(sx); w := value(s.y);
IF (h = undef) OR (w = undef) THEN w := undef
ELSIF h =0 THEN
IFw=0THEN w = clash ELSE w = 1; sval :=1 END
ELSIFw =0 THEN w :=0; sval =0
ELSE w := s.val
END
END
END
ELSE w := undef
END :
RETURN w
END value;

PROCEDURE assign(v: LSB.Variable);
VAR Ink, tsg: LSB.Signal;
w, h: SHORTINT:
BEGIN
IF vval = LSB.black THEN
vval := LSB.grey;
IF v.fct = LSB.bit THEN w := value(v.x);
ELSIF vfct = LSB.ts THEN
Ink :==vx; h:=0;w:=undef;
LOOP
IF Ink = NIL THEN EXIT END ;
tsg == Inkx; h = value(tsgx);
IFh=1THEN
w = value(tsg.y);
REPEAT Ink := Ink.y UNTIL (Ink = NIL) OR (value(Inkx.x) # 0);
IF Ink # NIL THEN w := clash; EXIT END
ELSIF h = 0 THEN Ink := Inky
ELSE EXIT
END
END
ELSIF vfct = LSB.oc THEN

31

Ink =vx;w:=1;
WHILE (Ink # NIL) & (w = 1) DO w = value(lnkx); Ink := Ink.y END
END :
vval =w
ELSIF vval = LSB.grey THEN

LSB.WriteName(W, v); Texts.WriteString(W, " in loop"); Texts.WriteLn(W)

END
END assign;

PROCEDURE evaluate(v: LSB.Variable);
BEGIN (xcompute new values of variablesx)
IF v.fct IN BaseTyps THEN assign(v)
ELSIF vfct IN Struct THEN v = v.dsc;
WHILE v # NIL DO evaluate(v); v := v.next END
END
END evaluate;

PROCEDURE initval(v: LSB.Variable);
BEGIN
IF v.fct IN BaseTyps THEN
IF vx # NILTHEN vval := LSB.black END
ELSIF vfct IN Struct THEN v = v.dsc;
WHILE v # NIL DO initval(v); v := v.next END
END
END initval;

PROCEDURE list(v: LSB.Variable);
BEGIN
IF v.fct IN BaseTyps THEN
IF v.u =0 THEN Texts.Write(W, Tab); Texts.Write(W, sym[v.val]) END
ELSIF vfct IN Struct THEN v = v.dsc;
WHILE v # NIL DO list(v); v := v.next END
END
END list;

PROCEDURE Stepx;
VAR i: LONGINT; r: LSB.Signal;
S: Texts.Scanner;
BEGIN
IF LSB.org # NIL THEN
Texts.OpenScanner(S, Oberon.Partext, Oberon.Par.pos); Texts.Scan(S);
IF S.class = Texts.Int THEN
initval(LSB.org); rorg := NIL; evaluate(LSB.org); i := S.i;
WHILE i >0 DO
r:=rorg; (¥compute new values of register inputsx)
WHILE r # NIL DO
IF value(ryx) =1 THEN (%enabledx) rywval := value(ry.y) END ;
Fo=rx
END :
r:==rorg; (xtick: replace old values of registers by new valuesx)
WHILE r # NIL DO rval :=rywval; r := rx END ;
initval(LSB.org); rorg := NIL; evaluate(LSB.org);
list(LSB.org); Texts.WriteLn(W); INC(stepno); DEC(i)
END :
Texts.Append(LSB.Log, W.buf); r == rorg;
WHILE rorg # NIL DO r := rorgx; rorgx := LSB.clk; rorg .= r END
END
END
END Step;

PROCEDURE rst1(s: LSB.Signal);
BEGIN
IF (s # NIL) & ~(s IS LSB.Variable) THEN
IF sfct = LSB.reg THEN swal := 0 END ;
rst1(s.x); rst1(s.y)
END
END rst1;

PROCEDURE rstO(v: LSB.Variable);
BEGIN
IF v.fct IN BaseTyps THEN rst1(v.x)
ELSIF vfct IN Struct THEN v = v.dsc;
WHILE v # NIL DO rstO(v); v := v.next END
END

32

END rstO;

PROCEDURE Resetx;
BEGIN

IF LSB.org # NIL THEN stepno := 0; rstO(LSB.org) END
END Reset;

PROCEDURE Setx;
VAR v: LSB.Variable;
S: Texts.Scanner;
BEGIN Texts.OpenScanner(S, Oberon.Par.text, Oberon.Par.pos);
LOOP Texts.Scan(S);
IF (S.class # Texts.Name) & (S.class # Texts.String) THEN EXIT END ;
v := LSB.This(LSB.org, S.s); Texts.Scan(S);
IF (S.class = Texts.Char) & (S.c = "=") THEN Texts.Scan(S) END ;
IF S.class # Texts.Int THEN EXIT END ;
IF v # NILTHEN
Texts.WriteString(W, " "); LSB.WriteName(W, v);
IF (vx = NIL) OR (vfct = LSBts) THEN
IFS.i=0THEN vval =0 ELSIF S.i =1 THEN vval := 1 ELSE vval := undef END ;
Texts. Write(W, "="); Texts.Write(W, sym{v.val MOD 4])
ELSE Texts.WriteString(W, " not an input")
END
END
END :
Texts.WriteLn(W); Texts.Append(LSB.Log, W.buf)
END Set;

PROCEDURE lab(v: LSB.Variable);
BEGIN
IF v.fct IN BaseTyps THEN
IF v.u = 0 THEN Texts.Write(W, Tab); LSB.WriteName(W, v) END
ELSIF vfct IN Struct THEN v = v.dsc;
WHILE v # NIL DO lab(v); v := v.next END
END
END lab:

PROCEDURE Labelx;
BEGIN
IF LSB.org # NIL THEN
lab(LSB.org); Texts.WriteLn(W); Texts.Append(LSB.Log, W.buf)
END
END Label;

PROCEDURE clrsel(v: LSB.variable);
BEGIN
IF v.fct IN BaseTyps THEN v.u =1
ELSIF vfct IN Struct THEN v = v.dsc;
WHILE v # NIL DO clrsel(v); v := v.next END
END
END clrsel;

PROCEDURE Selectx;
VAR i: LONGINT; v: LSB.Variable;
S: Texts.Scanner;
BEGIN
IF LSB.org # NIL THEN
Texts.OpenScanner(S, Oberon.Partext, Oberon.Par.pos); Texts.Scan(S);
clrsel(LSB.org); i :=0;
WHILE (S.class = Texts.Name) & (i < 14) DO
v := LSB.This(LSB.org, S.s);
IFv# NILTHEN v.u == 0; INC(i) END ;
Texts.Scan(S)
END
END
END Select;

PROCEDURE GetStepNox;

BEGIN Texts.WriteString(W, "step no = "); Texts.Writelnt(W, stepno, 4);
Texts.WriteLn(W); Texts.Append(LSB.Log, W.buf)

END GetStepNo;

PROCEDURE Inits;
BEGIN stepno := 0; rorg := NIL

33

END Init;

PROCEDURE DefOps;
VAR i, j: INTEGER;
BEGIN

FOR i =0 TO undef DO
FOR j := 0 TO undef DO or[i, j] := undef; and[i, j] := undef; xor[i, j] := undef END ;

notfi] := undef

END :

or[0,0] =0;0r[0,1] =1;0r[1,0] =1;0r[1,1] =1;

and[0, 0] := 0; and[0, 1] := 0; and[1, 0] := 0; and[1, 1] = 1;
=1:xor[1,0] =1; xor[1,1] =0;

[0,1
xor[0, 0] := 0; xor[0, 1]

not[0] :=1; not[1] =0
END DefOps;

PROCEDURE SetTabsx;
CONST mm = 36000; u = 10000;

VAR i: INTEGER; p: TextFrames.Parc;

BEGIN
NEW(p); p.-W = 100; p.H := 3¥xmm; p.handle := ParcElems.Handle;

pfirst := 0; p.left := 0; pwidth := 165%¥mm; p.lead := mm; p.lsp = 14xu;

p.dsr = 2x%u; p.opts .= {1}; p.nofTabs :=16; i := 0;
REPEAT p.tab[i] := T1%mmx(i+1); INC(i) UNTILi = 18;
Texts.WriteElem(W, p); Texts.Append(LSB.Log, W.buf)

END SetTabs;
BEGIN Texts.OpenWriter(W); SetTabs; DefOps;

sym[0] :="0"; sym[1] :="1"; sym[2] :="+"; sym[3] ="
END Simulator.

"

X

34

35

MODULE GALT; (¥*NW 26.2.95 /103.95%)
IMPORT SYSTEM, LSB, Texts, Oberon;

CONST K =10; (*nof registersx)
M =44, (x*nof And terms per rowx)
N =132; (%nof And-rowsx)
GO = OFFFFO000H; (xoutput to latch, input from GAL%)
G1 = OFFFFO040H; (*pulse to GAL clock input, pin 2%)
G3 = OFFFFOOCOH; (x%program port, dO = SDI, d1 = MODE, d4 = SCLK%)
inputs ={2.7, 9.13, 16}; outputs = {17.21, 23.27}; (*pin numbersx)

TYPE Row = ARRAY N OF SHORTINT; (%in map diagram this is a columnx)

VAR res: INTEGER;
W: Texts.Writer;
imap, smap: ARRAY 28 OF SHORTINT, (xindex is pin numberx)
jmap: ARRAY K+1 OF INTEGER; (xindex is OMLC no.x)
S0, S1, S2: ARRAY K OF SHORTINT; (xarchitecture rowsx)
D: ARRAY M OF Row; (xand-matrix, first index horizontal in map diagramx)

(% A zero entry in D means "connection”, a one means "no connection”; initially, all
DIi, j] =1, as set by Erase command. Programming can create zeroes only.
A term with value 1 is obtained by leaving all connections open, a zero by
connecting to some signal and to its inverse also. All tri-state enables active (1).
Note that input at pin 2 is clock. Preset and Reset set to zero %)

PROCEDURE wait(n: LONGINT);
VAR T: LONGINT,;

BEGIN T := OberonTime() + n DIV 3;
REPEAT UNTIL OberonTime() > T

END wait;

PROCEDURE P(x: SHORTINT);
BEGIN (%*pulsex)

SYSTEM.PUT(G3, x); SYSTEM.PUT(G3, x+10H); SYSTEM.PUT(G3, x)
END P;

PROCEDURE EnterCmd(c: SHORTINT);
VAR k: INTEGER;

BEGIN P(3); k := 0; (xenter Load Cmd state, then shift in 5 bitsx)
REPEAT P(c MOD 2): ¢ := ¢ DIV 2; INC(k) UNTILk = 5;
P(3) (xenter exec statex)

END EnterCmd;

PROCEDURE WriteRow(s: SHORTINT; VAR d: ARRAY OF SHORTINT);
VAR k: INTEGER;
BEGIN EnterCmd(2); (xshift data inx)

k = 0;
REPEAT P(d[k]): INC(k) UNTIL k = N:
k = 0;

REPEAT P(s MOD 2); s == s DIV 2; INC(k) UNTIL k = 6;
EnterCmd(7); (xprogramsx)
P(0); wait(80)

END WriteRow;

PROCEDURE Arch;
VAR k: INTEGER;

BEGIN EnterCmd(20); (xshift in architecture datax)
k = 0;
REPEAT P(S1[k]); P(SO[Kk]); INC(k) UNTIL k = 10;
EnterCmd(7); (xprogramsx)
P(0); wait(80)

END Arch;

PROCEDURE Erase;
BEGIN EnterCmd(3); P(0); wait(200)
END Erase;

()

PROCEDURE Msg(v: LSB.Variable; text: ARRAY OF CHAR);
BEGIN LSB.WriteName(W, v); Texts.WriteString(W, text); Texts.WriteLn(W)
END Msg;

36

PROCEDURE zero(e: INTEGER);
BEGIN D[0,e] :=0; D[1,e] =0
END zero;

PROCEDURE factor(s: LSB.Signal; j: INTEGER);
VAR inv: SHORTINT;
BEGIN
IF sfct = LSB.not THEN inv :=1; s := s.y ELSE inv := 0 END ;
IF s 1S LSB.Variable THEN
IF s.u IN inputs + outputs THEN
IF (s.u IN outputs) & (S2[smap[s.u]] =0) THEN inv := 1 —inv END ;
Dlimap[s.ul+inv,jl =0
ELSIF s = LSB.zero THEN zero(j)
ELSIF s # LSB.one THEN Msg(s(LSB.Variable), " with bad pin number"); res := 0
END
ELSE Texts.WriteString(W, "illegal expression "); Texts.WriteLn(W); res := 0
END
END factor;

PROCEDURE term(s: LSB.Signal; j: INTEGER);

BEGIN
WHILE sfct = LSB.and DO factor(s.y, j); s :== sx END ;
factor(s, j)

END term;

PROCEDURE expression(s: LSB.Signal; k: INTEGER);
VAR j, lim: INTEGER;
BEGIN j := jmap[k]+1; lim := jmap[k+1];
WHILE s.fct = LSB.or DO
term(s.y, j); INC());
IF j = lim THEN
Texts. WriteString(W, "too many terms"); Texts.WriteLn(W); DEC(j, 8); res := 0
END :
S :=5X
END :
term(s, j); INC(j);
WHILE j < lim DO zero(j); INC(j) END
END expression;

PROCEDURE Prescan(v: LSB.Variable);
VAR s: LSB.Signal; k: INTEGER;
BEGIN (%needed to determine feedback inversions S2x)
WHILE v # NIL DO
IF v.class = LSB.out THEN
IF v.fct = LSB.bit THEN
IF vx = NIL THEN Msg(v, " undefined"); res := 0
ELSIF v.u IN outputs THEN
s :=vXx; k :=smap[v.ul;
IF s.fct = LSB.not THEN SO[k] :=0; s := sy END ;
IF sfct = LSB.reg THEN S1[k] := 0: S2[k] = 1 — SO[k] END
ELSE Msg(v, " bad pin"); res := 0
END
ELSIF v.fct = LSB.array THEN Prescan(v.dsc)
ELSE Msg(v, " bad signal type"); res :=0
END
END :
V = v.next
END :
Texts.Append(LSB.Log, W.buf)
END Prescan;

PROCEDURE Evaluate(v: LSB.Variable);
VAR s: LSB.Signal;
BEGIN
WHILE v # NIL DO
IF v.class = LSB.out THEN
IF vfct = LSB.bit THEN
LSB.WriteName(W, v); Texts.WriteLn(W);
S =VX;
IF sfct = LSB.not THEN s := sy END ;
IF sfct = LSB.reg THEN
IF (sx = NIL) OR (s # LSB.clk) OR (s.y.x # LSB.one) THEN
Msg(v, " register with clock or enable specification”); res := 0

'

S:=Syy
END :
expression(s, smap{v.ul)
ELSIF v.fct = LSB.array THEN Evaluate(v.dsc)
END
END :
vV = v.next
END :
Texts.Append(LSB.Log, W.buf)
END Evaluate;

PROCEDURE Makex;
VAR i, j: INTEGER,;
BEGIN res = 1; Texts.WriteString(W, "making map");
Texts.WriteLn(W); Texts.Append(LSB.Log, W.buf);
FOR i :==0TO M-1 DO (xerase allx)
FOR j := 0 TO N-1 DO D[i, j] := 1 END
END :
FOR i = 0 TO K=1 DO SO[i] :=1; S1[i] :=1: S2[i] =1 END ;
D[M~-1, 0] :=0; (%pin 16 to asyn resetx)
zero(0); zero(N—1); (%zero to preset and resetx)
Prescan(LSB.org.dsc);
IF res =1 THEN
Evaluate(LSB.org.dsc);
IF res =1 THEN
Texts.WriteString(W, "programming”);
Texts.WriteLn(W); Texts.Append(LSB.Log, W.buf);
Erase; j =0,
REPEAT WriteRow(SHORT()), D[j1); INC(j) UNTIL j = M;
Arch; EnterCmd(0); P(2); SYSTEM.PUT(G3, 0) (xidlex)
END
END
END Make;

PROCEDURE Verifyx;
VAR k: INTEGER: i. s, n: SHORTINT;
d: ARRAY 6 OF SHORTINT;
V: ARRAY N OF SHORTINT;
BEGIN i = 0:
REPEAT EnterCmd(2); k := 0; (xshift zeroes inx)
REPEAT P(0): INC(k) UNTILk = N;
s = i; k := 0; (%¢shift in row numberx)
REPEAT P(s MOD 2); s := s DIV 2; INC(k) UNTIL k = 6;
EnterCmd(10); P(0); wait(4); (xverifyx)
EnterCmd(2); SYSTEM.PUT(G3, 0); (x¢shift outx) k := 0;
REPEAT SYSTEM.GET(G3, V[k]); P(0); INC(k) UNTILk = N;
k:=0;n:=0;
REPEAT SYSTEM.GET(G3, d[k]); P(0): INC(k) UNTIL k = 6;
REPEAT DEC(K): n = nx2 + (d[k] MOD 2) UNTILk = 0;
(*¥comparex)
IFn#iTHEN
Texts.WriteString(W, "error row no."); Texts.Writelnt(W, s, 4); Texts.Writelnt(W, n, 4);
Texts.WriteLn(W)
END :
WHILE (k < N) & (V[k] MOD 2 = D[i, k]) DO INC(k) END ;
IFk <N THEN
Texts.WriteString(W, "error in row"); Texts.Writelnt(W, i, 4); Texts.WriteInt(W, k, 4);
Texts.Writelnt(W, DI[i, k], 4); Texts.WriteInt(W, V[k], 6);
Texts.WriteLn(W)
END :
INC(i)
UNTILi = M;
EnterCmd(0); P(2); Texts.Append(LSB.Log, W.buf)
END Verify;

()

PROCEDURE ShowMap;
VAR i, j: INTEGER,;
BEGIN j = 0;
REPEAT Texts. WriteInt(W, j, 4); Texts. Write(W, ":"); i := 0;
REPEAT
IF D[i, j] = 0 THEN Texts.Writelnt(W, i, 3) END ;
INC(i)

UNTILi = M;
Texts.WriteLn(W); INC(j)
UNTILj = N;
Texts.WriteString(W, "S0:"); i = 0
REPEAT Texts.Writelnt(W, SO[i], 2): INC(i) UNTIL i = K;
Texts.WriteLn(W); Texts. erteStrlng(W "S1:M): 0= 0;
REPEAT Texts.Writelnt(W, S1[i], 2); INC(i) UNTILi = K;
Texts.WriteLn(W); Texts. Append(LSB Log, W.buf)
END ShowMap;

PROCEDURE WriteByte(x: INTEGER);
VAR s0, s1: SHORTINT,;
BEGIN s0 := SHORT(x) MOD 10H: s1 := SHORT(x DIV 10H) MOD 10H;
IF sO <10 THEN INC(s0, 30H) ELSE INC(s0, 37H) END ;
IF s1 <10 THEN INC(s1, 30H) ELSE INC(s1, 37H) END ;
Texts. Write(W, " "); Texts.Write(W, CHR(s1)); Texts.Write(W, CHR(s0))
END WriteByte;

PROCEDURE Putx;
VAR S: Texts.Scanner;

BEGIN Texts.OpenScanner(S, Oberon.Par.text, Oberon.Par.pos); Texts.Scan(S);
SYSTEM.PUT(GO, SHORT(SHORT(S.i)))

END Put;

PROCEDURE PutS¥;
VAR S: Texts.Scanner;

BEGIN Texts.OpenScanner(S, Oberon.Par.text, Oberon.Par.pos); Texts.Scan(S);
SYSTEM.PUT(G3, SHORT(SHORT(S.i)) MOD 10H)

END Puts;

PROCEDURE Get;

VAR x: SHORTINT,;
BEGIN SYSTEM.GET(GO, x); WriteByte(x); Texts.Append(Oberon.Log, W.buf)
END Get;

PROCEDURE Clock;
BEGIN SYSTEM.PUT(G1, 0)
END Clock;

BEGIN Texts.OpenWriter(W);
!map[2] = 0;imapl[3] .= 4, imap[4] := 8;imap[5] :=12;

imap[6] := 16; imap[7] := 20; imap| 9] —24 imap[10] = 28;
imap[11] —32 imap[12] = 36; imap[13] —40 imap[16] = 42;
imap[17] = 38; imap[18] := 34; imap[19] := 30; imap[20] = 26;
imap[21] :=22; imap[23] := 18; imap[24] := 14; imap[25] = 10;
imap[26] = 6; imap[27] = 2;

jmap[0] := 1; jmap[1] :=10; jmap[2] := 21; jmap[3] := 34;
jmapl[4] :=49; jmap[5] := 66; jmap[6] = 3 ; jmap[7] == 98;
jmap[8] :=111; jmap[9] := 122; jmap[10] —131

smap[27] =0, smap[26] =1; smap[25] = smap[24] =3
smap[23] = 4; smap[21] =5 smap[zo] = 6; smap[19] =7,
smap[18] = 8; smap[17] =

END GALT.

MODULE DNF; (¥NW 253.95%)
(%convert Boolean expression to disjunctive normal formx)
IMPORT Texts, LSB;

PROCEDURE copy(s: LSB.Signal): LSB.Signal;

BEGIN
IF (s IS LSB.Variable) OR (s.fct = LSB.not) THEN RETURN s
ELSE RETURN LSB.New(sfct, copy(s.x), copy(s.y))
END

END copy;

PROCEDURE P(VAR s: LSB.Signal; inv: BOOLEAN);
BEGIN (%¥remove not, xor, and muxx)
IF s 1S LSB.Variable THEN
IF s(LSB.Variable).class = LSB.var THEN s := copy(s.x); P(s, inv)
ELSIF inv THEN s := LSB.New(LSB.not, NIL, s)
END
ELSIF s.fct = LSB.not THEN
IF inv THEN s := s.y; P(s, FALSE)
ELSIF ~(s.y IS LSB.Variable) THEN s := s.y; P(s, TRUE)
ELSIF s.y(LSB.Variable).class = LSB.var THEN s := copy(s.yx); P(s, TRUE)
END
ELSIF sfct = LSB.and THEN
IF inv THEN sfct .= LSB.or END ;
P(sx, inv); P(sy, inv)
ELSIF sfct = LSB.or THEN
IF inv THEN sfct := LSB.and END ;
P(sx, inv); P(sy, inv)
ELSIF s.fct = LSB.xor THEN
s.fct .= LSB.or;
s.x := LSB.New(LSB.and, s.x, s.y);
s.y := LSB.New(LSB.and, copy(s.x.x), copy(sx.y));
P(sxx, FALSE); P(sx.y, ~inv); P(s.y.x, TRUE); P(s.y.y, inv)
ELSIF s.fct = LSB.mux THEN
sfct := LSB.or; sy fct .= LSB.and;
s.x = LSB.New(LSB.and, s.x, s.y.x);
S.y.X = copy(sx.X);
P(sxx, TRUE); P(sx.y, inv); P(s.y.x, FALSE); P(s.y.y, inv)
ELSE HALT(8S)
END
END P;

PROCEDURE Q(VAR s: LSB.Signal);
VAR t: LSB.Signal;
BEGIN
IF ~(s IS LSB.Variable) & (s.fct # LSB.not) THEN
IF sfct = LSB.or THEN
Q(sx); Q(sy);
IF s.y.fct = LSB.or THEN
ti=sy;sy =tx;tx :=s;s5 =1 Q(s)
END
ELSIF sfct = LSB.and THEN
Q(sx); Q(sy);
IF sxfct = LSB.or THEN
ti=sX;sx =ty,ty =5,
tx = LSB.New(LSB.and, tx, copy(s.y)); s :=t; Q(s)
ELSIF s.y.fct = LSB.and THEN
t=sy; sy =tx;tx :=s;s5:=1 Q(s)
ELSIF s.y.fct = LSB.or THEN
ti=sy;sy =1tx;1x =5,
ty = LSB.New(LSB.and, copy(s.x), ty); s :=t; Q(s)
END
ELSE HALT(99)
END
END
END Q;

PROCEDURE R(VAR s: LSB Signal);
BEGIN P(s, FALSE); Q(s)
END R;

PROCEDURE elem(VAR s: LSB.Signal);
BEGIN
IF sfct = LSB.not THEN

39

IF s.y.fct = LSB.reg THEN R(s.y.y) ELSE R(s.y) END
ELSIF s.fct = LSB.reg THEN R(s.y)
ELSE R(s)
END
END elem:;

PROCEDURE list(v: LSB.Variable);
BEGIN
WHILE v # NIL DO
IF v.class = LSB.out THEN
IF v.fct = LSB.array THEN list(v.dsc)
ELSIF (v.fct = LSBbit) & (vx # NIL) THEN
elem(v.x); LSB.Show(v, 0)
END
END :
V = v.next
END
END list;

PROCEDURE Convertx;

VAR v: LSB.Variable;
BEGIN list(LSB.org.dsc)
END Convert;

END DNF.

40

