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Abstract

Consider a set of n points in d�dimensional Euclidean space� d � �� each of which is
continuously moving along a given individual trajectory� At each instant in time� the points
de�ne a Voronoi diagram� As the points move� the Voronoi diagram changes continuously�
but at certain critical instants in time� topological events occur that cause a change in the
Voronoi diagram� In this paper� we present a method of maintaining the Voronoi diagram
over time� while showing that the number of topological events has an upper bound of
O�nd�s�n��� where �s�n� is the maximum length of a �n� s��Davenport�Schinzel sequence
	AgShSh 
�� DaSc �
� and s is a constant depending on the motions of the point sites� Our
results are a linear�factor improvement over the naive O�nd��� upper bound on the number
of topological events�

In addition� we show that if only k points are moving �while leaving the other n � k

points �xed�� there is an upper bound of O�knd���s�n� � �n� k�d�s�k�� on the number of
topological events�

We give a numerically stable algorithm for the update of the topological structure of
the Voronoi diagram� using only O�logn� time per event �which is worst�case optimal per
event��

Keywords� combinatorial complexity� dynamic computational geometry� Delaunay tri�
angulation� Davenport�Schinzel theory� geometric data structure� moving objects� proxim�
ity� Voronoi diagram�

� Introduction

Voronoi diagrams are a fundamental tool expressing the proximity of geometric objects� So�
it is not surprising that they appear in many variations in computational geometry as well as
other related scienti�c areas �see �Au ��	 for a survey on this topic
�

�Preliminary versions of this paper appeared at the ��th Workshop on Graph�Theoretic Concepts in Computer
Science WG��� �GuMiRo ��� and at the 	rd Scandinavian Workshop on Algorithm Theory SWAT��
 �AlRo �
��
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 under contract
No ��������

zPartially supported by a grant from Hughes Research Laboratories� Malibu� CA� and by NSF Grant ECSE�
������
�

xThe author acknowledges the partial support by NSF grant CCR��
��
���
�Partially supported by the Swiss National Science Foundation �SNF
 under grant 
��	�	
���	�
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A problem of recent interest has been that of allowing the set of objects S to vary continu�
ously over time� This 
dynamic� version has been studied in the case of points in the Euclidean
plane by �AoImImTo ��� ImSuIm ��� Ro ��	� Most recently� �Al ��� Ro ��	 generalized these
ideas with respect to the dimension �d � �
 and the order of the Voronoi diagram�

In this paper� we consider the following problem� We are given a set S of n points in
d�dimensional Euclidean space� d � �� each of which is continuously moving along a given
trajectory� At each instant in time� the points de�ne a Voronoi diagram� As the points move�
the Voronoi diagram changes continuously� but at certain critical instants in time� topological
events occur that cause a change in the dual graph� the Delaunay diagram� Our goal is to
characterize the elementary topological events in order to maintain the Voronoi diagram over
time in some useful data structure�

The main result is to prove a new O�nd �s�n

 upper bound on the number of topological
events� where �s�n
 denotes the maximum length of a �n� s
�Davenport�Schinzel sequence and
s is a constant depending on the motions of the point sites� In the special case of points moving
along polynomial curves of degree q �so�called polynomial q�motions
� we get s � �d� �
 q� As
we will see� our results are a linear�factor improvement over the naive O�nd��
 upper bound�

In the case that only k of the n points of S are moving �while the remaining n � k stay
�xed
� our bound on the number of events becomes O�k nd�� �s�n
 � �n � k
d �s�k

� which is
approximately O�nd
 for �xed k� In addition to that� very recently �Ro ��a	 proved that there
is a tighter bound of O�kd���n� k
dd��e � kd �s�k

 in the case of k � O�

p
n
� This should be

contrasted with the best known lower worst�case bound of ��k �n� k
dd��e
� Thus� the major
open problem in this area is to close the gap between the upper and lower worst�case bounds�
i�e� to give tight worst�case bounds�

Finally� there are recent results by �HuKeKl ��� To ��	 for dynamic Voronoi diagrams of
rigidly moving sets of points� For g groups of each n points in the plane� they could prove an
upper bound of O�g�n��s�g

 events�

We also present a numerically stable algorithm for the update over time of the topological
structure of the Voronoi diagram� using only O�logn
 time for each topological change� It is
known �Ro ��� Ro ��b	 that this update time is worst�case optimal �even in the planar case
�

� Preliminaries

This section brie�y summarizes the elementary de�nitions and properties of d�dimensional
Euclidean Voronoi diagrams� d � �� of point sets� As usual� we let d��� �
 denote Euclidean
distance� At the beginning� we are given a �nite set

S �� fP�� � � � � Png
of n � d � � sites in d�dimensional Euclidean space IEd� d � �� �As usual� the dimension d

is assumed to be a constant�
 The perpendicular bisector of Pi and Pj is de�ned to be the
hyperplane

Bij �� fx � IRd j d�x� Pi
 � d�x� Pj
g�
The �convex
 Voronoi polygon�polyhedron of Pi is given by

v�Pi
 �� fx � IRd j �j ��i d�x� Pi
 � d�x� Pj
g�
The vertices of the Voronoi polyhedrons are called Voronoi points and the bisector portions on
the boundary are called Voronoi edges�k�faces �according to their a�ne dimension k
� Finally
the Voronoi diagram of S is de�ned by

VD�S
 �� fv�Pi
 jPi � Sg�

�



The embedding of the Voronoi diagram into d�dimensional real space provides a graph that we
call the geometrical structure of the underlying Voronoi diagram�

Now we turn our attention to the dual graph of the Voronoi diagram� the so�called Delaunay
triangulation�graph DT �S
� If S is in general position � i�e� no d � � points of S lie on a
common hypersphere and no d � � points of S lie on a common hyperplane � every Voronoi
�d� i
�face in VD�S
 corresponds to an i�face in DT �S
� for i � �� � � � � d�

In the following� we use a one�point�compacti�cation to simplify our discussion� We augment
set S by adding the 
point at in�nity� �� yielding a new set of sites

S� �� S � f�g�

The extended Delaunay graph is given by

DT �S�
 � DT �S
 � f�Pi��
 jPi � S � �CH�S
g�

In addition to the Delaunay graph DT �S
� every point on the boundary of the convex hull
�CH�S
 is connected to �� We call the underlying graph of the extended Delaunay graph
DT �S�
 the topological structure of the Voronoi diagram� In contrast with DT �S
� DT �S�
 has
the nice property that there are exactly d� � �d� �
�tuples adjacent to each �d� �
�tuple in
DT �S�
� This will signi�cantly simplify the description of the algorithm presented below�

Next� we adopt two functions� from �GuSt ��	 providing a nice classi�cation of the �d� �
�
tuples of the extended Delaunay graph DT �S�
� In particular� let v�P�� � � � � Pd
 denote the
center of the hyperball C�P�� � � � � Pd
 of d� � sites P�� � � � � Pd � S� we have�

fP�� � � � � Pdg � DT �S�
 	
 v�P�� � � � � Pd
 is a Voronoi point in VD�S
�

	
 C�P�� � � � � Pd
 contains no point of S in its interior�

	
 �P ��SnfP�����Pdg OUTSIDE�P�� � � � � Pd� P
�
 ��

sign
�
VOL�P�� � � � � Pd
 � INS�P�� � � � � Pd� P

�

�
� ��

Naturally� an analogous statement can be given for the extended �d��
�tuples� If fP�� � � � � Pdg
and fP�� � � � � Pd����g are adjacent �d � �
�tuples in DT �S�
 with VOL�P�� � � � � Pd
 � �� we
have�

fP�� � � � � Pd����g � DT �S�
 	
 P�� � � � � Pd�� are the vertices of a �d� �
�face on

the boundary of the convex hull �CH�S
�

	
 �P ��SnfP�����Pd��g OUTSIDE�P�� � � � � Pd����� P �
 ��

sign
�
VOL�P�� � � � � Pd��� P

�

�
� ��

The proof of these statements is straightforward� In the following� these classi�cations will
be very useful characterizing the elementary topological events of two� and higher dimensional
dynamic Voronoi diagrams�

�These functions VOL and INS �mnemonic for �volume� and �insphere�
 are de�ned as follows�

VOL�P�� � � � � Pd
 ��

�������
� P�� � � � P�d
���

���
���

� Pd� � � � Pdd

������� � INS�P�� � � � � Pd��
 ��

��������
� P�� � � � P�d P �

�� � � � �� P �
�d

���
���

���
���

� Pd� � � � Pdd P �
d� � � � �� P �

dd

� Pd��� � � � Pd��d P �
d��� � � � �� P �

d��d

��������

�



� Voronoi Diagrams of Moving Points

The contents of this section is to describe the changes in the topological structure of a set
of continuously moving points in d�dimensional Euclidean space IEd� d � �� For that� we are
given a �nite set of n � d � � continuous trajectory curves in d�dimensional Euclidean space
IEd� S �� S�t
 �� fP��t
� � � � � Pn�t
g� Thereby the points are allowed to appear or disappear
according to a speci�c life cycle� We make the following assumptions about the trajectories�
First� we assume that the points move without collisions� or in other words�

�i��j �t�IR Pi�t
 �� Pj�t
�

In addition� we demand the existence of an instant t� � IR when S�t�
 is in general position�
this is necessary to obtain a de�nite topological structure at the starting position t��

Now� consider the situation at a moment t � IR when all points in S�t
 are in general
position� On the one hand� by investigating the continuity of a suitable product of determinants�
it is easy to see that a su�ciently small continuous motion of the points does not change the fact
that the points are in general position� On the other hand� the topological structure DT �S�

is completely determined by the active Voronoi points which currently appear in V D�S
 and
by the d�tuples of sites forming the boundary of the convex hull �CH�S
� Therefore� the
topological structure can only change in the following two di�erent situations�

Case ��� The appearance �disappearance
 of an inactive �active
 Voronoi point�

Case ��� The appearance �disappearance
 of a point on the boundary of the convex hull�

However� in both cases the loss of general position of the points S�t
 is necessary for changing
the topological structure DT �S��t

� This proves that the topological structure DT �S�
 is
locally stable as long as the points are in general position�

In order to address the question of su�cient conditions� we proceed with an investiga�
tion of the elementary changes of the topological structure of a Voronoi diagram� In the
two�dimensional case� it is well�known �see� e�g�� �Ro ��	
 that such elementary changes can
be described as 
swaps� of adjacent triangles in DT �S�
 �cf� Figure �
� However� in higher
dimensions these transitions turn out to be more complex�
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Figure �� A reversible swap� i�e� a ����
�transition of neighboring Delaunay triangles in IR��

In our �rst case above� an inactive Voronoi point v�P�� � � � � Pd
 becomes activated� if the
last point Pd�� � S leaves the variable circumsphere C�P�� � � � � Pd
� As well� an active Voronoi
point v�P�� � � � � Pd
 becomes inactivated� if a point Pd�� � S enters this variable circumsphere�
Additionally� we assume at that instant t� �when d � � points lie on a common hypersphere


�



that no further point of S lies on the boundary of the circumsphere C�P�� � � � � Pd
� If we select
� � � su�ciently small� the entrance of the point Pd�� can be described as follows�

OUTSIDE�P�� � � � � Pd� Pd��
�t
� � �
 � ��

OUTSIDE�P�� � � � � Pd� Pd��
�t
� � �
 � ���

�P ��SnfP������Pd��g �t��t����t���� OUTSIDE�P�� � � � � Pd� P
�
�t
 � ��

In fact� this corresponds to a real zero�crossing of the function OUTSIDE�P�� � � � � Pd��
 because
the point Pd�� changes on what side of the sphere C�P�� � � � � Pd
 it lies at the instant t��

How can we describe the resulting change of the topological structure� For that� we investi�
gate the active �d��
�tuples of DT �S��t���

 at an instant t���� with � � � su�ciently small�
At �rst� it is apparent that the local topological structure in the neighborhood of v�P�� � � � � Pd

is completely determined by the points Sd �� fP�� � � � � Pd��g� Thus� we only have to consider
all d� � subsets of points of Sd of size d� �� These subsets can be generated� for example� by
eliminating the i�th element for i � �� � � � � d� �� respectively� So� let

�i ��

���
��

�P�� � � � � Pd��
 i � ��
�P�� � � � � Pi��� Pi��� � � � � Pd��
 i� � � i � d�

�P�� � � � � Pd
 i � d� ��

denote the sequence which has been obtained after eliminating the i�th element� Using the
fact� that the determinants considered are alternating forms �i�e� transposing two rows in any
determinant changes its sign
� we�ll prove now that there exists a complete� disjoint partition
of the �i�s into two subsets A and B� with � � jAj� jBj � d� such that�

��

���
��
��i�A OUTSIDE��i� Pi
�t� � �
 � � and OUTSIDE��i� Pi
�t� � �
 � ���
��i�B OUTSIDE��i� Pi
�t

� � �
 � �� and OUTSIDE��i� Pi
�t
� � �
 � ��

�P � ���i�Pi �t��t����t���� OUTSIDE��i� P �
�t
 � ��

These equations are obviously equivalent �due to the classi�cation above
 to the following
so�called �i� j
�transition� of the local topological structure�

f�i � DT �S��t� � �

 j �i � Ag 
� f�i � DT �S��t� � �

 j �i � Bg�

Next� we proceed by constructing the announced sets A and B�

A �� f�i j sign �VOL�P�� � � � � Pd
	 � �sign �VOL�P�� � � � � Pi��� Pd��� Pi��� � � � � Pd
	g�
B �� f�i j sign �VOL�P�� � � � � Pd
	 � sign �VOL�P�� � � � � Pi��� Pd��� Pi��� � � � � Pd
	g�

In other words� set A and set B include all �i�s where Pi and Pd�� lie on di�erent sides or on
the same side of the hyperplane spanned by the sites P�� � � � � Pi��� Pi��� � � � � Pd� respectively�
Thereby� we assume that the sites of �i do not change their orientation at the instant t�� Now�
if we use the fact that the sequence ��i� Pi
 can be obtained from the sequence �P�� � � � � Pd��

by d� i� � transpositions� we have for any �i � A�

OUTSIDE��i� Pi


� sign �VOL��i
	 � sign �INS��i� Pi
	

� ���
d�i sign �VOL�P�� � � � � Pi��� Pd��� Pi��� � � � � Pd
	 � ���
d�i�� sign �INS�P�� � � � � Pd��
	

� ���
d�i�� sign �VOL�P�� � � � � Pi��� Pi� Pi��� � � � � Pd
	 � ���
d�i�� sign �INS�P�� � � � � Pd��
	

� OUTSIDE�P�� � � � � Pd��
�

�Thereby� i and j denote the cardinality of set A and B� respectively�

�
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�Pi�Pj �Pk �Pl	

�Pj�Pk�Pl�Pm	

�Pi�Pj�Pk�Pm	

�Pi�Pj �Pl�Pm	

�Pi�Pk�Pl�Pm	

Figure �� A reversible ����
�transition with the active Delaunay �d� �
�tuples in IR
�

Analogously� we obtain for any �i � B� OUTSIDE��i� Pi
 � �OUTSIDE�P�� � � � � Pd��
� With
that� the desired equations ��
 hold immediately� Notice that there always exists such a hy�
perplane spanned by the sites P�� � � � � Pi��� Pi��� � � � � Pd separating Pi and Pd��� which proves
jAj � �� The proof of jBj � � is also straightforward� A three�dimensional example of a ����
�
transition is depicted in Figure � �from �Al ��	
� The transition described is also equivalent
to a fusion of the corresponding Voronoi points� which come together and disappear at the
instant t�� and the creation of new �dual
 Voronoi points  according to the transition rule
above�

Considering our second case� the appearance or disappearance of a point P � � S on the
boundary of the convex hull �CH�S
 is equivalent to the activation or deactivation of the
extended Delaunay edge �P ���
�

At �rst� �P ���
 becomes activated� if P � enters the boundary of the convex hull on a
�d � �
�face formed by the sites �P�� � � � � Pd��
� According to the classi�cation above� the
circumsphere C�P�� � � � � Pd��� P

�
 contains no points in its interior already shortly before P �

enters the boundary of the convex hull� If we assume at the instant of coplanarity� that no
other point of S lies on the hyperplane H formed by these points and if we regard the interior
of the in�nite sphere through the points P�� � � � � Pd�� and � as the open halfspace that is
bounded by the hyperplane H and lies outside the convex hull CH�S
� then we can apply the
results of our �rst case�
 The deactivation of the edge �P ���
 can be dealt with analogously�
To summarize our results� we present the following theorem�

Theorem � Elementary changes in the topological structure DT �S�
 of the Voronoi diagram
V D�S
 are characterized by �i� j
�transitions of adjacent �d � �
�tuples in DT �S�
� except in
degenerate cases� Thereby� the indices obey the conditions i� j � d� � and � � i� j � d�

According to this� we have solved the question concerning su�cient conditions� Roughly
speaking� topological events are characterized by non�degenerate loss of local general position�

�If we replace Pm by �� the activation of the extended dual edge �Pi��
 can be regarded as a left�to�right
transition in Figure 
�

�



i�e� the loss of general position of adjacent �d� �
�tuples in the topological structure� Notice�
that the same topological events are generated by several pairs of �d� �
�tuples representing
the same sites� In this connection� the original advantage of the one�point compacti�cation
becomes apparent� It allows us the convenience of treating both cases similarly� as simple
transitions in the extended dual graph DT �S�
�

Up to now� we have been ignoring a technicality caused by degeneracies� it may be that
more than d� � points in S�t
 are lying on a common hypersphere at the same instant or that
more than d� � points in S�t
 are coplanar at the same instant� In both cases� we recalculate
the local topological structure of the interior of the convex polygon described by the points at
a moment t � �� However� it is necessary to select � � � in such a way� that the moment of
recalculation precedes the next topological event�

� New Upper Bounds

In this section� we present a new upper bound on the number of topological events� As we have
seen in the previous section� topological events are characterized by loss of general position�
So� it is quite natural to assume that there exist at most s � O��
 zeros of the functions
INS�� � �
 and VOL�� � �
 which are computable in constant time each� Indeed� this additional
assumption can be regarded as a certain kind of non�periodicity condition� which is achieved�
for example� in the case of polynomial curves of bounded degree� This assumption implies
that each subset of S� of size d� � generates at most a constant number of topological events
and gives a s

�n��
d��

	 � O�nd��
 upper bound on the number of topological events� By a
Davenport�Schinzel argument� we improve this naive upper bound by �roughly
 a linear factor�

First of all� we have a short look at the construction in the two�dimensional case� The basic
observation is that every topological event is related to one quadrilateral� i�e� to one pair of
adjacent triangles� leaving the four bounding Delaunay edges of this quadrilateral unchanged�
With that� we are able to determine the total number of topological events by adding for
every imaginable Delaunay edge �Pi� Pj
 the number of adjacent topological events that do not
destroy this edge� This provides an O��s�n

 upper bound on the number of changes for each
pair of points and results in an O�n��s�n

 upper bound in total �GuMiRo ��	�

A similar construction can be done in higher dimensions �AlRo ��	� It is clear that the
maximum number of extended topological events is bounded by s

� n
d��

	 � O�nd��
 � since
this is the maximum number of instants at which d � � points of S can become coplanar�
Therefore we only have to deal with such topological events when d � � points of S lie on
a common hypersphere� The basic observation is that every topological event belongs to a
local transition of altogether d � � Delaunay �d � �
�tuples leaving the bounding Delaunay
�d��
�faces unchanged� Thus� we are able to determine the total number of topological events
by adding for every imaginable Delaunay �d � �
�face �P�� � � � � Pd��
 the number of adjacent
topological events that do not destroy this �d� �
�face�

With this intention� we consider an arbitrary d�tuple �P�� � � � � Pd��
 of di�erent points and
the line B������d���t� 	
 which is given by the formulation below�

B������d���t� 	
 �� m������d���t
 � 	 n������d���t
 where 	 � IR�

m������d���t
 ��
�

d

d��X
i��

Pi�t
 and n������d���t
 � H������d���t
�

In other words�m������d���t
 denotes the center of gravity of the d sites and n������d���t
 a normal
vector to the a�ne hyperplane H������d���t
 spanned by the d points� In addition� let h�������d���t


and h�������d���t
 denote the two open halfspaces bounded by H������d���t
�

�
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Figure �� Characterizing the upper triangle fPi� Pj� Pkg in IR��

Now� whenever the Delaunay �d��
�face �P�� � � � � Pd��
 exists� there are exactly two �d��
�
tuples fP�� � � � � Pd��� P

�g and fP�� � � � � Pd��� P
��g � DT �S�
 adjacent to this Delaunay face with

P � � S�
� ��



h�������d�� � S

�
� f�g and P �� � S�

� ��


h�������d�� � S

�
� f�g�

If we look at the 	�values 	x�t
 of the circumcenters of the circumspheres C�P�� � � � � Pd��� Px

on the bisector B������d���t� 	
� the upper �d��
�tuple is obviously characterized by the minimum
value�

	min�t
 �� min
Px � S�

�

	x�t
�

This can be seen by imaging a point �circumcenter
 starting from m������d���t
 and moving
along the line B������d���t� 	
 until a �rst point Px � S�

� is captured by the variable circumsphere
touching the sites P�� � � � � Pd��� Naturally� an analogous construction can be done for the lower
�d� �
�tuple� �Figure � displays the construction in the planar case�


Now� if we investigate those moments when the upper �d��
�tuple changes� we can restrict
ourselves to those intervals in which h�������d�� � S �� �� Next� we look closer at the functions
	x�t
 and their pairwise points of intersection�

Case ��� 	x�t
 � 	y�t
 
 �
Both circumspheres C�P�� � � � � Pd��� Px
 and C�P�� � � � � Pd��� Py
 are ident�
ical� which implies that all d� � points lie on a common hypersphere� By
our non�periodicity assumption� this can happen only s times�

Case ��� 	x�t
 � 	y�t
 � �
These moments have no in�uence on the complexity of the minimum func�
tion 	k�t
� since we have restricted ourselves to intervals where 	k�t
 
 ��

�Notice� that P � can only be replaced by another point of S�
�� because the Delaunay �d��
�face �P�� � � � � Pd��


is not destroyed during the topological event�

��



Finally� we can summarize both cases with the statement that two di�erent functions 	x�t

and 	y�t
 have at most s relevant intersections� Thus� the theory of Davenport�Schinzel se�
quences implies that the minimum function 	k�t
 has worst�case complexity O��s�n

� where
�s�n
 is the maximum length of a Davenport�Schinzel sequence of length n and order s� Sum�
ming over all

�n
d

	
tuples of points �P�� � � � � Pd��
� we obtain the following theorem�

Theorem � Given a �nite set S�t
 of n continuous trajectories in d�dimensional space IRd�
the maximum number of topological events over time is O�nd �s�n

� If only k � n points of S
are moving 	while the remaining n� k stay �xed
� this upper bound goes down to

O�minfkd���n � k
d
d
�
e � kd�s�k
� kn

d���s�n
 � �n� k
d�s�k
g
�

To prove the second part of this theorem we consider the O�k nd��
 moving and O��n� k
d

�xed d�tuples separately� The crucial fact is that each �xed d�tuple generates only O��s�k


instead of O��s�n

 topological events� To see that� let fP�� � � � � Pdg be a �xed d�tuple� Now if
we investigate the 	x�functions de�ned above� any �xed point Px � Sf n fP�� � � � � Pdg leads to
a constant 	x function� From this it follows that

	k�t
 �� min
Px � S� n fP�� � � � � Pdg

	x�t


� min

�
min

Px � Sm
	x�t
 � 	min



�

where 	min is the minimum function of the constant functions 	x with Px � Sf n fP�� � � � � Pdg�
This proves that the function 	k�t
 has at most O��s�k � �

 pieces� On the other hand� each
of the remaining �

n

d

�
�
�
n � k

d

�
� O�k nd��


moving d�tuples �P�� � � � � Pd
 generates at most O��s�n

 topological events  as we have seen
above� Combining these results with the very recent upper bound by �Ro ��a	� we obtain the
desired bound�

In contrast to that� the known lower worst�case bound is given by the following class
of examples �compare �HaDe ��� Kl ��� Se ��	
� Imagine n � k points �xed such that the
corresponding Voronoi diagram has complexity O��n � k
dd��e
 �which is the worst that can
happen
 and such that the circumspheres of the Delaunay �d� �
�tuples can be stabbed by a
common line�

After that� we make the k remaining points� one after the other� pass along this line� Using
the classi�cation of the Delaunay �d � �
�tuples above� all O��n � k
dd��e
 Delaunay tuples
are destroyed during this movement� If we leave su�cient time between these movements� the
topological sub�structure of the static points is destroyed only by the currently crossing point�
Therefore every moving point generates !��n� k
dd��e
 topological events�

��



� Dynamic Scenes

The topological structure of a Voronoi diagram under continuous motions of the points in S

can be maintained by the following algorithm�

Algorithm � Preprocessing �

�� Compute the topological structure DT �S��t�

 of the
starting position�

�� For every existing pair of �d� �
�tuples in DT �S��t�


calculate the potential topological events�

�� For the set of the potential topological events create
an event queue �priority queue
�

Iteration �

�� Determine the next topological event and decide
whether it is an �i� j
�transition or a recalculation�

�� Process the topological event and update the event queue�

We look closer at the individual steps of the algorithm and their time and storage requirements�
In the �rst preprocessing step� we compute the initial Delaunay triangulation DT �S�t�

 and

augment it with extended dual edges� obtaining DT �S��t�

 in O�nd
d
�
e
 time and and space

�e�g�� using the optimal algorithm by �Se ��	
� In the second preprocessing step� we continue
with a �ow of the �d � �
�faces in DT �S��t�

 computing the potential topological events� If
m denotes the number of �d� �
�tuples which appear in the initial topological structure� this
step can be done in O�m
 time� In the third preprocessing step� we build up the event queue
for the set of potential topological events� The topological events are stored in a priority queue
according to their temporal appearance� with the corresponding �d��
�tuples stored with each

event� This step and therefore the entire preprocessing step requires O�nd
d
�
e � m logm
 time

and O�nd
d
�
e
 space�

To determine the next topological event� we simply pop the event queue in time O�logn
�
Assuming that the degree of degeneracy remains constant� then one can decide in constant time
if the event is an �i� j
�transition or a �local
 recalculation� Now� each topological event destroys
only a constant number of adjacent �d��
�tuples while creating also a constant number of new
ones� Thus� in order to update the event queue� all we have to do is to delete the destroyed
pairs of �d � �
�tuples and their corresponding topological events in the event queue and to
insert the new ones� Thus� we spend time O�logn
 per event �which �Ro ��	 shows is worst�case
optimal� even under linear motions of the points in the plane
� In summary� we have�

Theorem � Given a �nite set S�t
 of n continuous trajectories in d�dimensional Euclidean

space IRd� d � �� After preprocessing requiring O�nd
d
�
e � m logm
 time and O�nd

d
�
e
 space� we

can maintain the topological structure in worst�case optimal O�logn
 time per event� Thereby�
m denotes the initial complexity of the Voronoi diagram at the starting position�

�There is a parallel variant of this algorithm using only O��
 time per event �Ro ����

��



� Concluding Remarks and Open Problems

We have presented an algorithm for maintaining Voronoi diagrams of moving points over time�
The major open question remaining is to prove that the presented bounds on the number of
events are tight�

The algorithm presented here has been implemented in the planar case �d � �
 on a SUN
workstation� using special methods for numerically stable evaluation of the functions involved
�SuIr ��	� Extensive tests suggest that the number of topological events grows with ��n

p
n


in the average case under linear motions chosen at random �Ro ��b	� We also expect in higher
dimensions that the average number of topological events is signi�cantly smaller than the
derived worst�case bounds�

Dynamic Voronoi diagrams can be used for planning the motion of a disk in a dynamic scene
of continuously moving points �see �RoNo ��	
� Additionally� there are many related geometric
structures and problems in computational geometry which can be solved very e�ciently if the
Voronoi diagram is known in advance �for a survey see� e�g�� �Au ��� Ro ��	
�

A typical application of higher dimensional dynamic Voronoi diagrams which arises in the
area of spatial path planning �such as air�tra�c control
 is the maintenance of the closest pair
or the all�nearest�neighbors over time� It is also quite interesting to apply the pattern matching
methods by �AoImImTo ��� ImSuIm ��	 to higher dimensions�
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Table of Symbols

S set of points

S� S � f�g

n number of points

d dimension

IEd d�dimensional Euclidean space

Pi single point

Bij bisector of Pi and Pj

v�Pi� Voronoi polyhedron of Pi

V D�S� Voronoi diagram of S

DT �S� Delaunay graph of S

DT �S�� extended Delaunay graph of S

C�� � �� circumsphere

v�� � �� circumcenter �Voronoi point�

V OL�� � �� volume determinant

INS�� � �� insphere determinant

OUTSIDE�� � �� sign of the oriented INS�� � �� det�

�s�n� maximum length of a
�n� s��Davenport Schinzel sequence
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