
ETH Library

Low-cost client puzzles based on
modular exponentiation

Report

Author(s):
Karame, Ghassan O.; Capkun, Srdjan

Publication date:
2010

Permanent link:
https://doi.org/10.3929/ethz-a-006851112

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Technical Report / ETH Zurich, Department of Computer Science 665

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-006851112
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Low-Cost Client Puzzles based on Modular
Exponentiation

Ghassan O. Karame and Srdjan Čapkun
ETH Zurich, Switzerland

karameg@inf.ethz.ch, capkuns@inf.ethz.ch

Abstract. Client puzzles have been proposed as a useful mechanism
for mitigating Denial of Service attacks on network protocols. While
several puzzles have been proposed in recent years, most existing non-
parallelizable puzzles are based on modular exponentiations. The main
drawback of these puzzles is in the high cost that they incur on the puzzle
generator (the verifier). In this paper, we propose cryptographic puzzles
based on modular exponentiation that reduce this overhead. Our con-
structions are based on a reasonable intractability assumption in RSA:
essentially the difficulty of computing a small private exponent when the
public key is larger by several orders of magnitude than the semi-prime
modulus. We also discuss puzzle constructions based on CRT-RSA [11].
Given a semi-prime modulus N , the costs incurred on the verifier in our
puzzle are decreased by a factor of |N|

k
when compared to existing mod-

ular exponentiation puzzles, where k is a security parameter. We further
show how our puzzle can be integrated in a number of protocols, in-
cluding those used for the remote verification of computing performance
of devices and for the protection against Denial of Service attacks. We
validate the performance of our puzzle on PlanetLab nodes.

Key words: Client Puzzles, Outsourcing of Modular Exponentiation,
DoS Attacks, Secure Verification of Computing Performance.

1 Introduction

Client Puzzles are tightly coupled with Proof of Work systems in which a client
(prover) needs to demonstrate to a puzzle generator (verifier) that it has ex-
pended a certain level of computational effort in a specified interval of time.
Client puzzles found their application in a number of domains, but their main
applications concerned their use in the protection against Denial of Service (DoS)
attacks [43,45,49] and in the verification of computing performance [13,44].

To be useful in practice, client puzzles have to satisfy several criteria: namely,
they need to be inexpensive to construct and verify, and in many applications
should be non-parallelizable. Non-parallelizability of puzzles is an especially im-
portant property since clients can involve other processors at their disposal e.g.,
to inflate their problem-solving performance claim.

A number of puzzles have been proposed [45], but these proposals are either
efficient and parallelizable [24,49] or non-parallelizable and inefficient (typically

2 Ghassan O. Karame and Srdjan Čapkun

in result verification) [13,43,44]. Non-parallelizable puzzles are mainly based on
modular exponentiation (e.g., [43]); in these puzzles, the verifier has to perform
O(log(N)) modular multiplications to construct a puzzle instance and verify its
solution. This high cost hindered the large-scale deployment of puzzles based on
modular exponentiation in today’s online applications [45].

In this paper, we propose puzzles based on modular exponentiation that
reduce the cost incurred on the puzzle generator in existing modular expo-
nentiation puzzles. Our constructions are based on a reasonable intractability
assumption in RSA: informally, this assumption states that it is computation-
ally intractable to compute a small private exponent d when the public expo-
nent e is larger by several orders of magnitude than the modulus N . It is well
known that RSA is insecure when the private exponent is small and the pub-
lic key e < N1.875 [10, 50]. However, when e ≥ N2, RSA is considered to be
secure [10, 11, 50]. Defeating this assumption would essentially imply a further
restriction in the RSA problem, that has not been reported to date. Note that
when e is large, the cost of encryption and/or signature verification in RSA
is prohibitively high, which explains why this class of RSA keys is not widely
used. To the best of our knowledge, this is the first work that leverages on this
class of RSA keys to construct low-cost modular exponentiation puzzles. Where
appropriate, we also discuss puzzle constructions based on CRT-RSA [11].

Based on this intractability assumption, we show that the costs incurred on
the generator of modular exponentiation puzzles can be considerably reduced
for any exponent of choice (i.e., for any puzzle difficulty). More specifically, we
provide constructions for (variable-base) fixed-exponent and variable-exponent
modular exponentiation puzzles and we show that the verifier only needs to
perform a modest number of modular multiplications to construct and verify
these puzzles. Given a modulus N , the costs incurred on the verifier in our

puzzle are decreased by a factor of |N |
k

when compared to existing modular
exponentiation puzzles, where k is a security parameter. For example, for a
1024-bit modulus N , k = 80, the verifier’s cost is reduced by a factor of 12.

As a by-product, our puzzle can be used to efficiently verify the integrity of
outsourced modular exponentiations (modulo a semi-prime). We further show
how our puzzle can be integrated in protocols used for remote verification of
computing performance and for DoS protection. We validate the performance of
our puzzle through experiments on a large number of PlanetLab nodes [1].

The rest of the paper is organized as follows. In Section 2, we define client-
puzzles and we introduce our assumptions based on RSA. In Section 3, we in-
troduce our puzzles and we provide a security proof for their constructions. Sec-
tion 4 outlines some applications that can benefit from our proposed scheme. In
Section 5, we overview the related work and we conclude the paper in Section 6.

2 Preliminaries

2.1 Client Puzzle Properties

Here, we state the security notions of client puzzles (adapted from [14]).

Low-Cost Client Puzzles based on Modular Exponentiation 3

Definition 1. A client puzzle Puz is given by the following algorithms:

– Setup is a probabilistic polynomial time setup algorithm that is run by the
puzzle generator. Given a security parameter k, it selects the key space S,
the hardness space T , the string space X , the puzzle instance space I and
puzzle solution space P. It then selects the puzzle parameters params ←
(S, T ,X , I,P). The secret s ∈ S is kept private by the puzzle generator.

– GenPuz is a probabilistic polynomial time puzzle generation algorithm that
is run by the puzzle generator. On input s ∈ S, Q ∈ T and a ∈ X , it outputs
a puzzle instance puz ∈ I.

– FindSoln is a probabilistic solution finding algorithm. On inputs puz ∈ I and
a run time τ ∈ N , it outputs a potential solution soln ∈ P after at most τ

clock cycles of execution.
– VerAuth is a puzzle authenticity verification algorithm. On inputs s ∈ S and

puz ∈ I, it outputs true or false.
– VerSoln is a deterministic solution verification algorithm. On inputs s ∈ S,

puz ∈ I and a solution soln ∈ P, it outputs true or false.

It is required that if params ← Setup(k) and puz ← GenPuz(s,Q, a) where
s ∈ S, Q ∈ T and a ∈ X , then (1) VerAuth(s, puz) = true, (2) ∃τ ∈ N such
that soln← FindSoln(puz, τ) and VerSoln(s, puz, soln) = true.

Definition 2. (Puzzle-unforgeability.) A client puzzle Puz is UF (unforge-
able) if the probability that any probabilistic polynomial-time adversary M suc-
ceeds in producing ¯Puz, such that ¯Puz was not previously created by the puzzle
generator and V erAuth(¯Puz) = true, is a negligible function of k.

Definition 3. (Puzzle-difficulty.) Let ǫk,Q(.) be a monotonically increasing
function, where k is a security parameter and Q is a hardness parameter. A
client-puzzle Puz is DIFFk,Q if for all τ ∈ N, for all security parameters k ∈ N,
for all Q ∈ N, the success of any adversaryM, that is restricted to τ clock cycles
of execution, is bounded by ǫk,Q(τ) in solving Puz.

2.2 Rivest’s Repeated-Squaring Puzzle

In [43], Rivest et al. proposed a non-parallelizable time-lock puzzle based on
repeated-squaring to enable time-release cryptography.

In this puzzle, the puzzle generator encrypts a message M into a ciphertext
C as follows: C = M + Xat

mod N given an integer X, an exponent a, a
large integer t and an appropriate semi-prime modulus N . This computation
can be performed efficiently using the trapdoor offered by Euler’s function: Xat

mod N ≡ Xat mod φ(N) mod N . On the other hand, to acquire M from C, the
client needs to compute Xat

mod N in log(at) ≈ t modular multiplications.
When used as a client-puzzle (e.g., [44]), this puzzle is used such that the

prover is required to compute Xat

mod N given X, a, t and N . This compu-
tation is then verified by the puzzle generator through the trapdoor offered by
Euler’s function in O(log(N)) modular multiplications.

4 Ghassan O. Karame and Srdjan Čapkun

2.3 RSA with a Small Private Exponent

The RSA cryptosystem [42] is the most widely used public-key cryptosystem.
Let N = pq be the product of two large and distinct primes and let e and d

be inverses modulo φ(N) = (p − 1)(q − 1). Throughout the rest of the paper,
we assume that p and q are balanced primes; that is, |p| = |q|. For k ∈ N

+

(N+ = N − {0}), the public RSA key e and the private RSA key d satisfy:
e · d− 1 = k · φ(N).

It is known that RSA is insecure when e ≤ N1.875 and d is small [8, 10, 15–
17,20,23,25,28,33,38,50]. Existing attacks on this class of “weak” RSA keys are
mostly based on Wiener’s attack [50] and/or on Boneh and Durfee’s attack [10].
Wiener’s continued fraction attack can be used to efficiently factor N when
e ≤ N and d < N

1
4−ǫ and Boneh and Durfee’s lattice-based attack [10] shows

that private exponents up to N0.2929 are unsafe when e < N1.875. Blömer et
al. [8] further generalized Wiener’s attack to factor N in polynomial time for
every e ≤ N satisfying ex + y ≡ 0 mod φ(N), where x and y are short. Gao1

and Howgrave-Graham and Seifert [30] extended these attacks to factor N given
several common modulus instances of RSA with d < N0.4 and e ≤ N .

2.4 Low-Cost Decryption in RSA

In this work, we consider RSA keys that do not belong to the weak class of RSA
keys, yet enable low-cost decryption in RSA. More specifically, we consider the
following class of RSA keys:

Class A: Class A is defined as the set of all RSA keys (N, e, d) where: N = pq,
p and q are two large balanced primes, e ≥ N2 such that gcd(e, φ(N)) = 1 and
d is small such that ed− 1 ≡ 0 mod φ(N).

When (N, e, d) ∈ A, the fastest known algorithm that computes d from (N, e)
runs exponentially in time with |d|. This hardness assumption on class A is based
on the observations of Wiener [50] and Boneh et al. [10]. When e ≥ N2, all known
attacks against small private RSA exponent are defeated. More specifically, the
continued fraction algorithm [50], the lattice-based attack [10] and Coppersmith’s
attack [15,16] fail even when d is small (for the reason why, refer to Appendix A).
For example, when e ≥ N2, |d| ≥ 80-bits, no known feasible algorithm can
compute d from (N, e) ∈ A, and therefore factor N . RSA keys that belong to A
clearly do not optimize the cost of RSA encryption and signature schemes; when
e is large, the cost of encryption and/or signature verification is prohibitively
high, which explains why this class is not widely used in RSA.

Remark 1. Given the work of Blömer et al. [8], we can safely extend class A to
the set of RSA keys that satisfy a generalized RSA key equation of the form
ex+ y ≡ 0 mod φ(N), where e ≥ N2 and x, y are small (for the reason why, see
Appendix B). Note that a special instance of this equation is the standard RSA
equation, where x = d and y = −1.

1 Gao’s unpublished attack is described by Howgrave-Graham and Seifert in [30].

Low-Cost Client Puzzles based on Modular Exponentiation 5

Remark 2. One simple way to generate large public keys whose modular inverses
are small is to pick d such that |d| is small, and compute e′ = d−1 mod φ(N).
Then, a large public key e is computed from e′ as follows: e = tφ(N) + e′, where
t ∈ N

+ and t ≈ N2. The verifier then deletes e′ and publishes (N, e) [9].

Where appropriate, we also consider in this work the following class of RSA keys:

Class B: Class B is defined as the set of all RSA keys (N, e, d) where: N = pq,
p and q are balanced large primes, e ∈ N

+, gcd(e, φ(N)) = 1, dp ≡ d mod p and
dq ≡ d mod q such that dp 6= dq, d > N0.5 and ed− 1 ≡ 0 mod φ(N).

When (N, e, d) ∈ B, the fastest known algorithm that computes d from
(N, e) runs in min(

√

dp,
√

dq). The use of RSA keys in class B is suggested
by Wiener [50] and Boneh [10] to speed up RSA decryption2. Since decryptions
are often generated modulo p and q separately and then combined using the
Chinese Remainder Theorem (CRT) [11], Wiener proposes the use of a private
key d such that both dq ≡ d mod q and dp ≡ d mod p are small (dp 6= dq). The
best known attack against this scheme runs in min(

√

dp,
√

dq) [10, 26].3 When

|min(
√

dq,
√

dp)| ≥ 80 bits, |N | = 1024-bits, there exists no feasible algorithm
that can compute d from (N, e) ∈ B.

Remark 3. Throughout this paper, we consider RSA keys in the class A ∪ B as
a building block to construct low-cost puzzles based on modular exponentiation.
To simplify the description and analysis of our puzzles, we consider RSA keys
in A ∪ B where the public exponent e ≥ N2. We point out, however, that our
analysis also applies for all RSA keys in A ∪ B.

3 Low-Cost Puzzles based on Modular Exponentiation

3.1 System and Attacker Model

We consider the following model. A verifier (puzzle generator) wants to verify
that a prover performed a certain number of modular exponentiations (modulo a
semi-prime) in a specified interval of time. For that purpose, the verifier requires
that the prover runs a software on its machine (i.e., a modular exponentiation
puzzle) for a specific amount of time. In some application scenarios, we will need
to assume that the verifier and the prover can exchange authenticated messages
over the communication channel. We assume, however, that the verifier does
not have access to the prover’s machine and thus cannot check the prover’s
environment; this includes the number of processors at the disposal of the prover,
the connections established from the prover’s machine, etc..

2 This RSA variant is widely used in smart cards.
3 Recently, Jochemsz et al. propose in [31] a polynomial attack on small private CRT-

RSA exponents. This attack only works when min(dp, dq) ≤ N0.073. However, in this
case, brute-force search attacks would also be feasible on CRT-RSA.

6 Ghassan O. Karame and Srdjan Čapkun

Verifier Prover

Compute N = pq and φ(N) = (p− 1)(q − 1)
Pick an arbitrary R ∈ N such that R > N
Compute the RSA keys (N, e, d) ∈ A ∪ B

Set s← (e, d, φ(N))
Compute K = e− (R mod φ(N))

Pick a random nonce Zi

Compute Xi ← HMAC(d, Zi)
mA ← Xi‖N‖R‖K‖Zi

T1 :
mA

//

Compute y1 = XR
i mod N

Compute y2 = XK
i mod N

T2 :
Zi‖y1‖y2

oo

Compute Xi ← HMAC(d, Zi)

Verify that (y2y1)
d ≡ Xi mod N

If the verification passes, the verifier accepts the puzzle solution.

Fig. 1. Fixed-Exponent Puzzle based on Modular Exponentiation.

An untrusted prover constitutes the core of our attacker model. We assume
that a prover possesses considerable technical skills by which it can efficiently an-
alyze, decompile and/or modify executable code as necessary. More specifically,
an untrusted prover has knowledge of the algorithm used for the computation
and of the algorithm that is run by the verifier. We assume that untrusted provers
are motivated to inflate their puzzle solving performance (i.e., untrusted provers
have incentives to solve the puzzle in a faster time than what they can genuinely
perform). However, we assume that provers are computationally bounded.

3.2 Low-Cost Fixed-Exponent Modular Exponentiation Puzzle

Here, we present our puzzle based on (variable-base) fixed-exponent modular
exponentiation. In Section 3.3, we propose a variant puzzle based on variable-
exponent modular exponentiation. Our puzzle is shown in Figure 1.

In the setup phase of our puzzle, the verifier picks two large balanced primes
p and q (of sufficient size to prevent factoring of N = pq, e.g., |p| = |q| ≥ 512-
bits), computes N = pq and φ(N) = (p − 1)(q − 1). Given N , the verifier also
generates RSA keys (N, e, d) such that (N, e, d) ∈ A, |d| = k, where k is a security
parameter or (N, e, d) ∈ B, where |min(

√

dp,
√

dq)| = k. The verifier also picks
a puzzle difficulty R ∈ N and computes K = e − (R mod φ(N)). We show
later that K will enable low-cost verification of the puzzle solution. (N,R,K)
are public parameters that set the puzzle hardness and s← (e, d, φ(N)) is kept
secret. Note that R needs to be larger than φ(N) to ensure the security of our
scheme4. Typically, R is chosen such that R ≫ φ(N) (|R| ≥ 100, 000 bits) to
achieve a moderate runtime of the puzzle (in the order of tens of milliseconds, see
Section 3.4). However, even in the case where the verifier would like to e.g., simply
outsource the computation of an arbitrary R′ ≤ φ(N), this can be remedied by
setting R← R′ + tφ(N), where t ∈ N

+.

4 This can be achieved by setting R > N .

Low-Cost Client Puzzles based on Modular Exponentiation 7

– Puzzle Generation: In round i, the verifier generates puz ← (Xi, Zi, R,K,

N),5 where Xi ← HMAC(d, Zi). Here, Zi is a nonce and |Xi| ≥ k. In the
sequel, we assume that HMAC(X,Y) is a keyed collision-resistant pseudo-
random function, where X is used as an input key.

– Puzzle Solution: Given puz, the prover computes soln← (y1 = XR
i mod N,

y2 = XK
i mod N,Zi).

– Solution Verification: Given soln, the verifier checks if (y2y1)
d ≡ X

d(R+K)
i

mod N ≡ Xed
i mod N ≡ Xi mod N .

Remark 4. Note that our puzzle is stateless; only a single value of the secret
s ← (e, d, φ(N)) is stored by the verifier regardless of the number of puzzles
(instances) that the verifier generates. All the required data to solve a given
puzzle is contained in puz, whereas the knowledge of s and soln are sufficient to
verify the puzzle solution soln. The uniqueness of each puzzle instance can be
ensured by having GenPuz select Zi a counter and increment Zi in each puzzle
instance.

Remark 5. When R = 0, the prover simply computes y2 = Xe
i mod N , and the

verifier verifies the puzzle solution by computing yd
2 . Such a puzzle is then based

on “standard” RSA. The major limitation of this “standard” RSA-based puzzle
is that the choice of the puzzle difficulty (i.e., the exponent) is dependent on the
choice of d and φ(N). This particularly hinders the construction of repeated-
squaring puzzles (e.g., [43]) or the secure outsourcing of modular exponentiations
for a given exponent.

Puzzle Construction and Verification Costs: In our puzzle, the verifier
only needs to perform 1 HMAC operation (2 hashes) to construct the puzzle
and a small number of modular multiplications (computing (y2y1)

d) to verify
the puzzle solution:

– (N, e, d) ∈ A: In this case, the puzzle verification is performed in O(log d)
modular multiplications. When |d| = k, the verifier’s cost is reduced by

a factor of log N
log d

= |N |
k

, when compared to the original repeated-squaring

puzzle [43]. When |N | = 1024, k = 80, the puzzle verification cost could be
as low as 3

280 = 120 modular multiplications6 and the average improvement
gain in the puzzle solution verification is almost 12 (i.e., 1.5×1024

1.5×80). Similarly,
when |N | = 2048, k = 112, the average improvement gain increases to 18.

– (N, e, d) ∈ B: In this case, the puzzle verification is performed in O(log(dp)+
log(dq)) modular multiplications using the CRT. When |min(

√

dp,
√

dq)| =
k, the verifier’s cost is reduced by a factor of log N

2 log d
= |N |

4k
, when compared

to the original repeated-squaring puzzle [43].

5 When R is very large, the verifier can reduce the communication costs by sending
r ≪ R, such that R = F (r), where F (r) is an expansion function of r.

6 On average, the computation of Xd mod N requires 1.5 log d modular multiplica-
tions [35].

8 Ghassan O. Karame and Srdjan Čapkun

Prime number generation (i.e., computing N) and the pre-computation of e

and d are generally expensive operations for the verifier; however, this compu-
tation is performed only once at the setup phase7 and (N, e, d) are subsequently
used for all the puzzles generated by the verifier.

Security Analysis: To analyze the security of our scheme, we first show that
it is computationally infeasible for an adversary to acquire the secret s held by
the verifier in our puzzle. Based on this, we show that an adversary needs to
perform at least O(log R) modular multiplications to compute the solution soln

to a puzzle instance puz such that VerSoln(s, puz, soln) = true.
We use the following game ExecM(k) between a challenger and a probabilistic

polynomial time (p.p.t.) adversaryM:

– The challenger runs Setup on input k to obtain N = pq chosen uniformly at
random from N , d chosen uniformly at random from {2k..2k+1} and com-
putes e such that (N, e, d) ∈ A ∪ B. The challenger, then stores the secret
s ← (e, d, φ(N)). The challenger further picks R > N chosen uniformly at
random from R and computes K as shown in Figure 1.

– The adversary M gets to make as many CreatePuz(Zi) queries as it likes.
In response, the challenger (1) creates puz ← (Xi, Zi, R,K,N) as shown in
Figure 1, (2) computes soln such that VerSoln(s, puz, soln) = true and (3)
outputs (puz, soln).

AdversaryM terminates the game by outputting an integer C. We say thatM
wins ExecM(k) if C ≡ 0 mod φ(N) (i.e., if M computes a multiple of φ(N)).
In this case, we set the output of ExecM(k) to be 1 and otherwise to 0. We then
define the success of M as SuccM(k) = Pr[ExecM(k) = 1].

Theorem 1. Computing a multiple of φ(N) and, in particular, computing d

given (N, e) is computationally as hard as factoring (see [40] for the proof).

Lemma 1. (N,R + K, d) ∈ A ∪ B if (N, e, d) ∈ A ∪ B.

Proof. Let (N, e, d) ∈ A∪B satisfy the RSA key equation: ed−1 ≡ 0 mod φ(N).
Recall that e is kept secret by the challenger. Since K = e − (R mod φ(N)),
then ∃t1 ∈ N

+ (since R > N) such that R + K = e + t1φ(N). This means that
d(R + K) ≡ de ≡ 1 mod φ(N).

Given Theorem 1, computing e from (R + K) is computationally as hard as
factoring8. Since d is the modular inverse of e, d is equally the modular inverse
of (R + K). More specifically, it is easy to see that since (N, e, d) ∈ A ∪ B, then
(N, (R + K), d) are RSA keys in A ∪ B (since (R + K) > e).

Lemma 2. For any p.p.t. adversaryM, SuccM(k) is a negligible function of k.

7 Note that the computational load incurred by prime number generation equally
applies to all protocols that make use of modular exponentiation or repeated-squaring
(e.g., [43,49]).

8 (R + K − e) is a multiple of φ(N).

Low-Cost Client Puzzles based on Modular Exponentiation 9

Proof. We show that if M can compute a multiple of φ(N) in the ExecM(k)
game, then we can construct a polynomial-time algorithm that uses M as a
subroutine to solve the RSA problem in A∪B, i.e., to compute d̄ given a public
RSA key (N̄ , ē) where (N̄ , ē, d̄) ∈ A ∪ B.

Let M be a p.p.t. adversary that outputs a multiple of φ(N) in the game
ExecM(k) with probability SuccM(k). In the ExecM(k) game, let R + K = e′.
Recall that in ExecM(k), K = e − R mod φ(N), where e is chosen uniformly
at random from A ∪ B and R > N . Given this, note that e′ > e + φ(N) and
K ≥ N2 − φ(N); this suggests that R + K = e′ > R + N2 − φ(N) and therefore
R < e′ −N2.

Let (N̄ , ē, d̄) ∈ A∪B, where N ∈ N , d ∈ [2k, .., 2k+1[, ē ≥ N2 + φ(N). Then,
we construct a polynomial-time algorithm E that interacts withM as follows:

– Given the public key (N̄ , ē), E picks R̄ at random from {N + 1, .., ē−N2}.
– E computes K̄ = ē− R̄ and constructs a transcript T̄ that is composed of a

number of tuples of the form (X̄i, Z̄i, R̄, K̄, N̄ , X̄i
R̄

mod N̄ , X̄i
K̄

mod N̄),
i ∈ N, where X̄i is a pseudorandom string that has a similar distribution as
HMAC(.) and Z̄i is a counter.

Note that since R̄ > N̄ , ∃t1 ∈ N
+ such that R̄ − t1φ(N̄) = (R̄ mod φ(N̄)).

Let ē1 = ē− t1φ(N̄). It is easy to see in this case that K̄ = ē1− (R̄ mod φ(N̄)).
Furthermore, since ē1 ≡ ē mod φ(N̄), then d is a modular inverse of ē1. We point
out that since ē1 = ē− t1φ(N̄) = ē− R̄+(R̄ mod φ(N̄)), then ē1 > ē− R̄ ≥ N2,
since by construction R̄ ≤ ē−N2. Therefore, (N̄ , ē1, d̄) ∈ A ∪ B.

Given this, it is easy to see that the view ofM when run as a subroutine by
E is distributed identically to the view ofM in the game ExecM(k). Recall that
in ExecM(k), Xi is a pseudorandom string, K = e−R mod φ(N), where e is a
secret such that (N, e, d) ∈ A ∪ B and (N,R + K, d) ∈ A ∪ B.

Therefore, ifM can compute a multiple of φ(N) in the ExecM(k) game, then
it can solve the above RSA problem. By the hardness assumption on A and B,
it is computationally infeasible for M to compute d̄, or equivalently a multiple
of φ(N̄) (Theorem 1), from (N̄ , ē) when (N̄ , ē, d̄) ∈ A∪B. Therefore, SuccM(k)
is negligible, thus concluding the proof.

Given this, we can show that our puzzle construction is both unforgeable
(UF) and difficult (DIFFk,R).

Corollary 1. The puzzle construction of Figure 1 is UF.

Proof Sketch: Given a puzzle instance puz ← (Xi, Zi, R,K,N), VerAuth(s,
puz) = true if and only if Xi ← HMAC(d, Zi).

Therefore, the only viable way for M to construct ¯puz ← (X̄i, Z̄i, R,K,N)
such that VerAuth(¯puz) = true and ¯puz, X̄i, Z̄i were not previously created
by the challenger is to construct (X̄i, Z̄i) such that X̄i ← HMAC(d, Z̄i). Since
HMAC(.) is a pseudorandom collision-resistant function, M cannot construct
(X̄i, Z̄i) without the knowledge of d. Following from Lemma 2, the success prob-
ability for M in acquiring d from our puzzle – and therefore constructing ¯puz

such that VerAuth(¯puz) = true – is bounded by O(2−k).

10 Ghassan O. Karame and Srdjan Čapkun

Corollary 2. The puzzle construction of Figure 1 is DIFFk,R.

Proof Sketch: Following from Lemma 2, it is computationally infeasible for
M to compute a multiple of φ(N) given our puzzle. Furthermore, M cannot
pre-compute the solution of the puzzle since it cannot predict Xi (|Xi| ≥ k) nor
the outcome of y2y1 (since e is kept secret by the verifier).

The fastest known way for M to solve our puzzle is to compute y1 and y2

correctly. Modular Multiplication is an inherently sequential process [43]. The
running time of the fastest known algorithm for modular exponentiation is linear
in the size of the exponent. AlthoughMmight try to parallelize the computation
of y1 and/or y2, the parallelization advantage is expected to be negligible9 [43,44].

Note thatM might try to perform the computation of y1 and y2, in parallel,
using different machines at its disposal. In typical cases, R≫ K; this means that
the computation of y1 and y2 requires at least O(log R) sequential modular mul-
tiplications. We point out that the verifier can prevent the separate computation
of y1 and y2, by sending K to the prover once it receives y1 (see Figure 2).

M can equally try to compute y1 and/or y2 through intermediate results that
it previously computed (or intercepted) (e.g., when the base Xi is the result of a
multiplication of two previously used numbers). This also applies to the original
time-lock puzzle proposed in [43]; this can be remedied, with high probability,
by setting |HMAC(.)| ≫ |Zi|.

Given this, the success of M – restricted to τ clock cycles of execution – in
solving our puzzle is bounded by ǫk,R(τ) = min(⌊ τ

log R
⌋ + O(2−k), 1); M needs

to perform at least τ = log(R) clock cycles of execution to solve our puzzle.

3.3 Low-Cost Variable-Exponent Modular Exponentiation Puzzle

In some settings, the verifier might need to change the puzzle difficulty (i.e., the
exponent) “on the fly” (e.g., when subject to DoS attacks). We briefly discuss
how this can be achieved based on the proposed fixed-exponent puzzle.

Our variable-exponent puzzle and the related protocol are depicted in Fig-
ure 2. Similar to the fixed-exponent puzzle (Figure 1), in round i, the veri-
fier creates the RSA keys (N, e, d) ∈ A ∪ B, picks Zi ∈ N and computes
Xi ← HMAC(d, Zi). Here, in addition, the verifier computes vi ← HMAC(d,Xi)
such that |vi| = k and gcd(vi, d) = 1.10

9 M might try to parallelize the multiplication of large numbers by splitting the mul-
tiplicands into smaller “words” and involving other processors in the multiplication
of these words. Further details about this process can be found in [36]. However,
this attack incurs a significant communication overhead that prevents an M from
gaining any substantial speedup; given a large number of squaring rounds, the RTT
between the cooperating processors needs to be in the order of few nanoseconds to
achieve even a modest speedup.

10 The probability that any number is coprime with d is 6
π2 ≈ 0.61. Therefore, only two

choices are sufficient, on average, to create such a vi (i.e., if gcd(HMAC(d, Xi)), d) 6=
1, then with high probability gcd(HMAC(d, Xi+1)), d) = 1).

Low-Cost Client Puzzles based on Modular Exponentiation 11

Verifier Prover

Given k, compute (N, e, d) ∈ A ∪ B
Set s← (e, d, φ(N))

Pick an arbitrary Ri > e such that
Ri
Rj
≥ N2, ∀i 6= j

Pick a random nonce Zi

Compute Xi ← HMAC(d, Zi)
vi ← HMAC(d, Xi), |vi| ≥ k, gcd(vi, d) = 1

Compute Ki = vi · e− (Ri mod φ(N))
mA ← Xi‖N‖Ri‖Zi

T1

mA
//

Compute y1 = X
Ri
i mod N

T2

Zi‖y1
oo

mB ← Xi‖N‖Ki‖Zi

T3

mB
//

Compute y2 = X
Ki
i mod N

T4

Zi‖y2
oo

Compute Xi ← HMAC(d, Zi)
Compute vi ← HMAC(d, Xi)

Verify that (y2y1)
d ≡ X

vi
i mod N .

Fig. 2. Variable-Exponent Puzzle based on Modular Exponentiation. Note that y1 and
y2 could be also transmitted in the same message. The separate transmission of y1 and
y2, however, prevents the computation of y1 and y2 in parallel and enables the use of
this puzzle to remotely verify the computing performance of devices (see Section 4.2).

The puzzle instance at round i is then comprised of the tuple puz ← (Xi, Zi, N,

Ri,Ki), where Ki = vie − (Ri mod φ(N)), and Ri ∈ N. Its solution is soln ←
(Zi,X

Ri

i mod N,XKi

i mod N). To verify soln, the verifier checks if (y2y1)
d ≡

Xvi

i mod N .
It is easy to see that the cost incurred on the verifier in this puzzle exceeds

that of the fixed-exponent puzzle by |vi| = k = 80 modular multiplications
(mainly in puzzle solution verification). For instance, when (N, e, d) ∈ A, soln

can be verified in 240 modular multiplication; the verification gain when com-
pared to existing modular exponentiation puzzles is then 1536

240 ≈ 7, given a
1024-bit N .

Corollary 3. The puzzle construction of Figure 2 is UF and DIFFk,Ri
when (1)

(N, e, d) ∈ A and Ri > e such that Ri

Rj
≥ N2,∀i 6= j, or (2) (N, e, d) ∈ B.

Proof Sketch: Due to lack of space, we only provide the main intuition behind
the proof.

Consider a variant of the aforementioned ExecM(k) game where the tran-
script of interaction T between the adversaryM and the challenger is composed
of a number of tuples (Xi, Zi, Ri,Ki, N,XRi

i mod N,XKi

i mod N), i ∈ N.
Similar to the analysis in Lemma 2, we can show that if M can compute a

multiple of φ(N) in this variant ExecM(k) game, then it can compute a multiple
of φ(N) given several instances of the generic RSA key equation eixi + yi ≡ 0
mod φ(N) with common modulus and unknown xi, yi, where ei = Ri + Ki,
xi = d and yi = −vi. Note that vi 6= vj ,∀i 6= j. This is especially important for

12 Ghassan O. Karame and Srdjan Čapkun

Verifier Cost Prover Cost

Repeated-Squaring [43]
1 modulus, 1 mul.

O(log R) mod. mul.
O(log(N)) mod. mul.

Fixed Exponent 1 modulus, 1 HMAC O(log R) + O(log(N))

A-Puzzle O(log(d)) mod. mul. (∗) mod. mul.
Variable Exponent 1 modulus, 2 HMAC O(log R) + O(log(N))

A-Puzzle O(log(d) + log(v)) mod. mul. (∗) mod. mul.
Fixed Exponent 1 modulus, 1 HMAC O(log R) + O(log(N))

B-Puzzle O(log d2) mod. mul. (∗) mod. mul.
Variable Exponent 1 modulus, 2 HMAC O(log R) + O(log(N))

B-Puzzle O(log d2 + log(v)) mod. mul. (∗) mod. mul.

Table 1. Construction and Verification Costs of Puzzles. “Mod. Mul.” denotes modular
multiplication and “Mul.” refers to multiplication. B-Puzzle and A-Puzzle refer to our
proposed puzzle created using classes B and A, respectively, of RSA keys. (∗) Note that
d ≪ N , v ≪ N ; |v| = |d| = k ≥ 80.

the security of our puzzle. Otherwise,M can compute a multiple of φ(N) solely
from Ri and Rj ((Ri −Rj) ≡ 0 mod φ(N)).

When (N, e, d) ∈ A and Ri > e such that Ri

Rj
≥ N2,∀i 6= j, then ei

ej
=

Ri+Ki

(Rj+Kj
> N,∀i 6= j. In this case, all existing attacks on common modulus in-

stances of RSA are defeated (refer to Remark 1 and the related Appendix B);
the best known algorithm that computes φ(N) from (N, ei) runs exponentially
in time in |xiyi| = |dvi| since d and vi are in lowest terms by construction (i.e.,
gcd(d, vi) = 1). In our case, |dvi| ≥ 2k = 160. We conclude that it is computa-
tionally infeasible forM to compute a multiple of φ(N) from T . Similarly, when
(N, e, d) ∈ B, d = |xi| > N0.5 [10,50], there exists no polynomial-time algorithm
that can factor N in this case [27].

Similar to Corollaries 1 and 2, it can be shown that the puzzle construction
of Figure 2 is UF and DIFFk,Ri

.

3.4 Performance Evaluation

Table 1 summarizes the costs incurred in our puzzles when compared with those
in the repeated-squaring puzzle of [43]. To the best of our knowledge, there are
no other proposed non-parallelizable puzzles that are based on modular expo-
nentiation.

To evaluate the performance of our puzzle, we implemented it in JAVA on
four different workstations. We evaluate the performance of our scheme on var-
ious other processors in Section 4.2. In our implementation, we used built-in
JAVA functions for prime number generation, repeated-squaring using addition
chains, etc.. While a faster implementation of our scheme could be achieved us-
ing lower-level programming and/or specialized hardware or software, we aim
to demonstrate in this work the feasibility of our proposal using available stan-
dard algorithms and programming tools. Our findings (Table 2) show that our
schemes considerably reduce the cost incurred on the generator of modular ex-
ponentiation puzzles.

Low-Cost Client Puzzles based on Modular Exponentiation 13

Squaring Puzzle Runtime Verification Time Verification Time Verification Time
(Size of R in bits) A-Puzzle B-Puzzle of [43]

6500000 154.067 s 1.89 ms 7.56 ms 24.3 ms
6500000 172.174 s 2.11 ms 8.5 ms 27.12 ms
6500000 170.611 s 2.1 ms 8.4 ms 26.9 ms
6500000 165.034 s 2.03 ms 8.12 ms 26 ms

Table 2. Implementation results on four different workstations equipped with Intel(R) Core(TM)2
Duo CPU T7500 processor running at 2.20 GHz. Here, N is 1024-bit composite integer, k = 80. We
conducted our measurements over the LAN (max RTT = 100 ms). Our results are averaged over 10
distinct measurements. The puzzle verification time is interpolated from the number of squarings
per second on each machine.

4 Applications

4.1 Efficient Resilience to DoS Attacks

A natural application of our puzzles lies in the area of protection against DoS
attacks. In this context, an online server requires that its clients solve our puzzles
before attending to their requests in order to prevent DoS attacks.

When used in DoS protection, it is important, however, that the server en-
sures that puzzle instances and solution pairs are used only once. To achieve
this, the server should filter out resubmitted correctly solved puzzles and so-
lution pairs [14, 32]. In our case, the storage is minimized since the server can
simply store the hash of the nonce Zi that corresponds to the most recent solved
puzzle (where Zi is a counter). The verifier will then accept to verify only recent
puzzles.

4.2 Remote Verification of Computing Performance

To cope with the advances in processing power, the computing community is
relying on the use of benchmarks. While several benchmarks [2, 13, 19, 44] were
proposed as a mean to evaluate a processor’s computing power, most of these
benchmarks are parallelizable (see Section 5).

Based on our variable-exponent puzzle (Figure 2), we construct a secure
benchmark that enables any machine (even with modest computation power,
e.g., a PDA device) to remotely upper-bound the computing performance of
single-processors. Our benchmark differs from the puzzle in Figure 2 as follows:
upon reception of y1, the verifier estimates the number of squarings per second:
S = Ri

T2−T1
of the prover’s machine. This estimate is accepted by the verifier if,

after receiving y2 at time T4: (1) (T4 − T3) ≤ ǫ · (T2 − T1), given a negligible ǫ

and (2) (y2y1)
d ≡ Xvi mod N .

Corollary 4. Given the puzzle depicted in Figure 2, the success of a p.p.t. ad-
versary M in inflating the number of squarings that it can perform per second
by more than a small ǫ is negligible.

Proof Sketch: Recall that our puzzle is UF and DIFFk,Ri
. Therefore, the only

viable method for M to inflate its performance claim is to send ȳ1, chosen at
random, ahead of time, compute y1 correctly and distribute the computation of

14 Ghassan O. Karame and Srdjan Čapkun

the corresponding ȳ2 and y2, such that ȳ2ȳ1 ≡ y2y1 mod N , to other nodes at
its disposal. This would enableM to decrease the measured time corresponding
to the computation of O(log Ri) modular multiplications by ∆ = (T4−T3) time
units (∆ includes the communication delay D of the path between the verifier
andM). However, this is countered by the fact that the verifier does not accept
the prover’s performance claim unless (T4 − T3) ≤ ǫ · (T2 − T1).

In this case, the maximum performance claim that M can make is Smax =
|Ri|

(1−ǫ)·(T2−T1)
. Note that ǫ is interpolated from the measured number of squarings

per second S; if it takes (T2− T1) time units forM to perform log(Ri) modular
multiplications, then the computation of y2 can be upper-bounded by choosing

ǫ = log(e−N)
log(Ri)

. For a 1024-bit modulus N (|φ(N)| ≈ |N |), |e| ≈ |N2| and |Ri| >
100, 000, then ǫ ≃ Smax

S
≃ 0.03 squarings per second.

CPU Description Idle CPU S

Intel(R) Pentium(R) D 3.20GHz 6.40% 7.48
Intel(R) Pentium(R) D 3.00GHz 26.20% 15.24
Intel(R) Pentium(R) 4 3.20GHz 30.70% 15.81
Intel(R) Pentium(R) D 3.40GHz 14.10% 18.22
Intel(R) Xeon(R) 3060 2.40GHz 46.60% 28.01
Intel(R) Pentium(R) D 3.20GHz 20.00% 29.35
Intel(R) Xeon(R) 3075 2.66GHz 19.70% 29.72
Intel(R) Pentium(R) 4 3.06GHz 92.00% 31.72
Intel(R) Duo E6550 2.33GHz 63.80% 36.05
Intel(R) Duo T7500 2.20GHz 76.00% 38.11

Intel(R) Xeon(R) X3220 2.40GHz 73.30% 41.67
Intel(R) Xeon(R) E5420 2.50GHz 87.70% 50.97

Table 3. Implementation results on 12 different
PlanetLab Nodes. S refers to the number of squar-
ings per ms.

Our protocol finds applicability
in a multitude of application do-
mains. For example, our benchmark
can be used in online distributed
computing applications (e.g., [3]) or
in the secure ranking of supercom-
puters (e.g., [4]) to prevent possible
frauds in performance claims11.

We evaluated our benchmark on
various processors running on 12 dif-
ferent PlanetLab nodes [1] (refer to
Section 3.4 for implementation de-
tails). Our findings (see Table 3)
suggest that our proposed bench-
mark reflects well the performance of various processors.

5 Related Work

Client puzzles found their application in several domains (e.g., prevention against
DoS attacks [21, 48], protection from connection depletion attacks [32], protec-
tion against collusion [41]). Several computational puzzles have been proposed
in the recent years [43,45,49]. However, most of these puzzles are parallelizable;
a comprehensive survey of existing client puzzles can be found in [45]. In [43],
Rivest et al. proposed a non-parallelizable puzzle based on repeated-squaring to
enable time-release cryptography. The drawback of this scheme, if used for DoS
protection, is that it incurs an expensive cost on the puzzle generator. Wang et al.
propose in [47] a scheme that enables the server to adjust the puzzle difficulty in

11 For instance, a supercomputer, connected to a hidden processor cluster, can inflate
its performance claims by involving these other processors in the construction of
the benchmark’s solution. The literature contains a significant number of similar
“anecdotes”where both individuals and manufacturers have tendencies to exaggerate
their computing performance (e.g., [5, 6]).

Low-Cost Client Puzzles based on Modular Exponentiation 15

the presence of an adversary whose computing power is unknown. In [14], Chen
et al. provide a formal model for the security of client-puzzles. In this work, we
use their model as a building block for analyzing the security of our proposed
puzzle. Several other contributions address the problem of secure outsourcing of
computations to untrusted servers (e.g., [7, 12]). Clarke et al. present protocols
for speeding up exponentiation using untrusted servers in [46]. In [29], Hohen-
berger et al. describe a scheme to outsource cryptographic computations where
the verifier can use two untrusted exponentiation programs to assist him in the
computations. Memory-bound puzzles were proposed in [22,37] to overcome the
limitations of existing computational puzzles. However, memory-bound puzzles
cannot entirely substitute their computational counterpart e.g., in applications
where the client’s memory is limited (e.g., PDA devices) or to evaluate the com-
puting performance of devices, etc.. Other protocols for creating secure bench-
marks to evaluate a machine’s computing performance were also proposed [44];
these benchmarks can however be easily parallelized [18,34,39].

6 Conclusion

In this paper, we proposed low-cost fixed-exponent and variable-exponent puzzles
based on modular exponentiation. Given a modulus N , the costs incurred on

the verifier in our puzzle are decreased by a factor of |N |
k

when compared to
existing modular exponentiation puzzles, where k is a security parameter. Our
constructions are based on a reasonable intractability assumption: essentially
the difficulty of computing a small private exponent in RSA (or CRT-RSA)
when the public key is larger by several orders of magnitude than the semi-
prime modulus. As a by-product, our puzzle can be used to efficiently verify
the integrity of outsourced exponentiations modular a semi-prime. We further
showed how our puzzle can be integrated in a number of protocols, including
those used for the remote verification of computing performance of devices and
for protection from DoS attacks.

7 Acknowledgments

The authors thank Rolf Wagner for implementing the repeated-squaring proto-
cols. The authors also thank Cas Cremers, Patrick Schaller, Stephano Tessaro
and Divesh Aggarwal for helpful discussions. Finally, the authors would like to
thank the anonymous reviewers for their insightful suggestions and feedback.

References

1. PlanetLab, An open platform for developing, deploying, and accessing planetary-
scale services, http://www.planet-lab.org/.

2. Linpack, http://www.netlib.org/linpack/.
3. Distributed.Net, http://distributed.net/.

16 Ghassan O. Karame and Srdjan Čapkun

4. TOP500 Supercomputing Sites, http://www.top500.org/.
5. Conroe Performance Claim being Busted, http://sharikou.blogspot.com/2006/

04/conroe-performance-claim-being-busted.html.
6. Computer Software Manufacturer agrees to settle Charges, http://www.ftc.gov/

opa/1996/07/softram.shtm.
7. M. J. Atallah, K. N. Pantazopoulos, John R. Rice, and Eugene H. Spafford. Secure

Outsourcing of Scientific Computations. In Advances in Computers, 2001.
8. J. Blomer and A. May. Low Secret Exponent RSA Revisited. In Cryptography and

Lattice Conference (CaLC 2001), 2001.
9. D. Boneh. Twenty Years of Attacks on the RSA Cryptosystem. In Notices of the

American Mathematical Society (AMS), 1999.
10. D. Boneh and G. Durfee. Cryptanalysis of RSA with private key d less than N0.292.

In IEEE Transactions on Information Theory, pages 1339–1349, 2000.
11. D. Boneh and H. Schackam. Fast Variants of RSA. In CryptoBytes, 2002.
12. J. Burns and C.J. Mitchell. On parameter selection for server-aided RSA compu-

tation schemes. In IEEE Transactions on Computers, 1994.
13. J. Cai, A. Nerurkar, and M. Wu. The Design of Uncheatable Benchmarks

Using Complexity Theory. Available from ftp://ftp.cs.buffalo.edu/pub/

tech-reports/./97-10.ps.Z.
14. L. Chen, P. Morrissey, N. Smart, and B. Warinschi. Security Notions and Generic

Constructions for Client Puzzles. In Advances in Cryptology (Asiacrypt’09), 2009.
15. D. Coppersmith. Finding a Small Root of a Univariate Modular Equation. In

Advances in Cryptology, Eurocrypt, pages 155–165, 1996.
16. D. Coppersmith. Small solutions to polynomial equations and low exponent vul-

nerabilities. In Journal of Cryptology, pages 223–260, 1997.
17. D. Coppersmith, M. Franklin, J. Patarin, and M. Reiter. Low-exponent RSA with

related messages. In Advances in Cryptology (EUROCRYPT), 1996.
18. Z. Cui-xiang, H. Guo-qiang, and H. Ming-he. Some New Parallel Fast Fourier

Transform Algorithms. In Proceedings of Parallel and Distributed Computing, Ap-
plications and Technologies, 2005.

19. H.J. Curnow and B.A. Wichman. A Synthetic Benchmark. In Computer Journal,
1976.

20. B. de Weger. Cryptanalysis of RSA with small prime difference. In Applicable
Algebra in Engineering, Communication and Computing, 2002.

21. D. Dean and A. Stubblefield. Using client puzzles to protect TLS. In Proceedings
of the USENIX Security Symposium, 2001.

22. S. Doshi, F. Monrose, and A. Rubin. Efficient Memory Bound Puzzles using Pattern
Databases. In Proceedings of the International Conference on Applied Cryptography
and Network Security (ACNS), 2006.

23. G. Durfee and P. Nguyen. Cryptanalysis of the RSA Schemes with Short Secret
Exponent from Asiacrypt 99. In Advances in Cryptology, Asiacrypt, 2000.

24. Y. Gao. Efficient Trapdoor-Based Client Puzzle System against DoS Attacks. 2005.
25. J. Hastad. Solving Simultaneous Modular Equations of Low Degree. In Siam J.

Computing, 1988.
26. M. J. Hinek. Cryptanalysis of RSA and its variants. In Chapman & Hall/CRC,

cryptography and network security, 2009.
27. M. J. Hinek and C. C. Y. Lam. Common Modulus Attacks on Small Private

Exponent RSA and Some Fast Variants (in Practice). In Cryptology ePrint Archive,
2009.

28. M.J. Hinek. Another Look at Small RSA Exponents. In Topics in Cryptology,
2006.

Low-Cost Client Puzzles based on Modular Exponentiation 17

29. S. Hohenberger and A. Lysyanskaya. How To Securely Outsource Cryptographic
Computations. In Theory of Cryptography Conference, LNCS, Springer, volume
3378, pages 264–282, 2005.

30. N. Howgrave-Graham and J. P. Seifert. Extending Wiener’s Attack in the Presence
of Many Decrypting Exponents. In Proceedings of the International Exhibition and
Congress on Secure Networking, 1999.

31. E. Jochemsz and A. May. A Polynomial Time Attack on RSA with Private CRT-
Exponents Smaller Than N0.073. In Advances in Cryptology (Crypto), 2007.

32. A. Juels and J. Brainard. Client Puzzles: A Cryptographic Countermeasure Against
Connection Depletion Attacks. In Proceedings of NDSS, 1999.

33. S. Katzenbeisser. Recent Advanves in RSA Cryptography. In Advances in Infor-
mation Security (Volume 3), 2001.

34. L. Keqin. Scalable Parallel Matrix Multiplication on Distributed Memory-Parallel
Computers. In Proceedings of IPDPS, 2000.

35. N. Koblitz. A Course in Number Theory. 1987.
36. C. Kaya Koc, T. Acar, and B.S. Kaliski. Analyzing and Comparing Montgomery

Multiplication Algorithms. 1996.
37. A. Martin, M. Burrows, M. Manasse, and T. Wobber. Moderately Hard, Memory-

Bound Functions. In ACM Transcations on Internet Technologies, 2005.
38. A. May. Secret Exponent Attacks on RSA-type Schemes with Moduli N = prq. In

Practice and Theory in Public Key Cryptography (PKC), 2004.
39. S.F. McGinn and R.E. Shaw. Parallel Gaussian elimination using OpenMP and

MPI. In Proceedings of the International Symposium on High Performance Com-
puting Systems and Applications, 2002.

40. G. L. Miller. Riemann’s Hypothesis and Tests for Primality. In Proc. Seventh
Annual ACM Symp. on the Theory of Computing., 1975.

41. M. K. Reiter, V. Sekar, C. Spensky, and Z. Zhang. Making peer-assisted content
distribution robust to collusion using bandwidth puzzles. In International Confer-
ence on Information Systems Security, 2009.

42. R. L. Rivest, A. Shamir, and L. M. Adleman. A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems. In Communications of the ACM, pages
120–126, 1978.

43. R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock Puzzles and Timed-release
Crypto. In MIT Technical Report, 1996.

44. R. Sedgewick and A. Chi-Chih Yao. Towards Uncheatable Benchmarks. In Pro-
ceedings of The Structure in Complexity Theory Conference, 1993.

45. S. Tritilanunt, C. Boyd, J. M. Gonzalez Nieto, and E. Foo. Toward Non-
Parallelizable Client Puzzles. In Proceedings of CANS, 2007.

46. M. van Dijk, D. Clarke, B. Gassend, G. E. Suh, and S. Devadas. Speeding up
Exponentiation using an Untrusted Computational Resource. In Designs, Codes
and Cryptography, volume 39, pages 253–273, 2006.

47. X. Wang and M. Reiter. Defending Against Denial-of-Service Attacks with Puzzle
Auctions. In Proceedings of the IEEE Symposium on Security and Privacy, 2003.

48. X. Wang and M. K. Reiter. A Multi-layer Framework for Puzzle-based Denial-of-
Service Defense. In International Journal of Information Security, 2007.

49. B. Waters, A. Juels, J. A. Halderman, and E. W. Felten. New client puzzle out-
sourcing techniques for DoS resistance. In Proceedings of the ACM conference on
Computer and Communications Security, 2004.

50. M. Wiener. Cryptanalysis of short RSA secret exponents. In IEEE Transactions
on Information Theory, pages 553–558, 1990.

18 Ghassan O. Karame and Srdjan Čapkun

A Cryptanalysis of RSA with Large Public Key and
Small Private Exponent

Consider an RSA system (N, e, d), where N = pq, p and q are large primes, and
e ∈ N

+ such that e ≥ N2, gcd(e, φ(N)) = 1 and d is small. Recall that in RSA,
e · d− 1 = k · φ(N), where φ(N) = (p− 1)(q − 1) and k ∈ N

+.

A.1 Resilience to the Continued Fraction Attack

Theorem 2. Let a, b, c, d ∈ N
+ such that

∣

∣

a
b
− c

d

∣

∣ < 1
2d2 , where gcd(a, b) = 1

and gcd(c, d) = 1 Then, c
d

is one of the convergents in the continued fraction
expansion of a

b
. Furthermore, the continued fraction expansion of a

b
is finite with

the total number of convergents that is polynomial in log(b).

In [50], Wiener describes a cryptanalytic attack on the use of an RSA private
key d < N0.25, when e < pq. The attack makes use of an algorithm based on
continued fractions that finds the numerator and denominator of a fraction in
polynomial time when a close enough estimate of the fraction is known. This will
enable the retrieval of a multiple of φ(N), which will equally result in the factor-
ing of N [40]. The convergence of the continued fraction algorithm is guaranteed
when kd < pq

3
2 (p+q)

.

When e ≥ N2, k ≥ dpq. Substituting k = dpq in the equation above yields d <

1. More generally, when e > N1.5, Wiener’s attack will fail since the continued
fraction algorithm will not work for any size of the secret exponent d [50].

A.2 Resilience to the Lattice-based Attack

Boneh and Durfee [10] describe a scheme that solves the RSA small-inverse
problem when e < Nδ and d < Nα. As shown in [10], this attack is a heuristic
that applies Coppersmith’s techniques [15] to bivariate modular polynomials and
can only succeed when α < 7

6 − 1
3

√
1 + 6δ.

Indeed, when δ = 1, e ≤ N , we achieve the bounds reported in [10]: RSA is
insecure when d < N0.292. However, when e ≥ N2, δ > 2, then this attack will
definitely fail (α < −0.0.35).

B Cryptanalysis of ex + y ≡ 0 mod φ(N)

B.1 Single Instance of ex + y ≡ 0 mod φ(N)

In [8], Blömer et al. describe a cryptanalytic attack (based on Wiener’s continued
fraction algorithm [50]) on a generic RSA key equation of the form ex + y ≡ 0

mod φ(N), when e ≤ N, 0 < x < 1
3N

1
4 and |y| < cN

−3
4 ex, where c ≤ 1.

Let ex + y = kφ(N) = k(N − p− q + 1), where k ∈ N
+. It then follows that:

e

N
− k

x
=
−y − k(p + q − 1)

Nx
.

Low-Cost Client Puzzles based on Modular Exponentiation 19

The main intuition behind the attack in [8] is to estimate k
x

from e
N

using the

continued fraction algorithm. For the attack to be successful, k
x

has to be one of

the convergents of e
N

. This is the case when | e
N
− k

x
| = |−y−k(p+q−1)

Nx
| < 1

2x2 (see

Theorem 2); that is, when k(p + q − 1) + y < N
2x

.
When e ≥ N2, k ≥ Nφ(N) (|φ(N)| ≈ |N |). It is easy to see in this case that

the continued fraction algorithm will not converge (k(p + q − 1) + y ≫ N
2x

).

B.2 Multiple Instances of ex + y ≡ 0 mod φ(N) with Common
Modulus)

Gao (described in [30]) and Howgrave-Graham and Seifert [30] extended Wiener’s
attack to factor the common modulus when several instances of RSA with e ≤ N

and d < N0.4−ǫ are given.
In what follows, we show that these attacks are defeated given several com-

mon modulus instances of ex + y ≡ 0 mod φ(N) with e ≥ N2.
Let (N1, e1), (N2, e2), be two instances of RSA, then there exists k1, k2 ∈ N

+

such that:
e1x1 = −y1 + k1φ(N)

e2x2 = −y2 + k2φ(N)

Guo’s main observation is that these equations can be combined to remove
φ(N) as follows k2e1x1 − k1e2x2 = k1y2 − k2y1.

With this equation as a starting point, the attack then proceeds in a similar
way as Wiener’s continued fraction attack:

e1

e2
− k1x2

k2x1
=

k1y2 − k2y1

e2k2x1

Given Theorem 2, this suggests that k1x2

k2x1
can be obtained from the continued

fraction expansion of e1

e2
when:

∣

∣

∣

∣

k1y2 − k2y1

e2k2x1

∣

∣

∣

∣

<
1

2(k2x1)2

2k2x1|k1y2 − k2y1| < e2

When e1 > N2 and e1 > Ne2, then 2k2x1|k1y2 − k2y1| ≈ e2

φ(N)x1(
Ne2

φ(N)y2 −
e2

φ(N)y1) ≫ e2. The continued fraction algorithm will not converge and this at-

tack with then fail. This attack will fail even when x1 = x2.

Howgrave-Graham and Seifert’s attack [30] combines Wiener’s, Boneh’s and
Guo’s attacks to factor N given r ≥ 2 instances of RSA with common modulus.
When ei > N2 and ei > Nej ,∀i 6= j, their attack will equally fail given any
number of common modulus instances12.
12 The complexity of existing attacks on common modulus RSA instances increases

exponentially with the number of instances; these are only practical for a small
number of instances [30], [27].

