mzuriCh ETH Library

A predicate transformer approach
to knowledge and knowledge-
based protocols

Report

Author(s):
Sanders, Beverly A.

Publication date:
1992

Permanent link:
https://doi.org/10.3929/ethz-a-000659332

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
ETH, Eidgendssische Technische Hochschule Zirich, Departement Informatik, Institut fiir Computersysteme 181

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-000659332
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

S

[—

Eidgenéssische
Technische Hochschule
Zlrich

Departement Informatik
Institut fir
Computersysteme

Beverly Sanders

September 1992

A Predicate Transformer
Approach to Knowledge and
Knowledge-based Protocols

Eidg. Techn. Hochschule Zirich
|nformatikbibliothek
ETH-Zentrum
CH-8092 Zirich

181

72 I, 2.7 IS5

ETH Ziirich
Departement Informatik
Institut fiir Computersysteme

Authors' address:

Prof. Beverly Sanders

Institut flir Computersysteme

ETH Zentrum, CH-8092 Zurich, Switzerland

e-mail: sanders@inf.ethz.ch

© 1992 Departement Informatik, ETH Ztirich

Abstract

It has been argued that reasoning about what processes "know”
is a good way to think about distribute programs. In this pa-
per, a predicate transformer representing knowledge is defined and
used to extend a simple and modern programming theory to al-
low knowledge-based protocols to be expressed. This allows the
mathematics of predicate transformers to be brought to bear in
the theoretical study of knowledge, provides a formal notation and
proof method for knowledge-based protocols, and facilitates un-
derstanding the pragmatic aspects of algorithm development using
knowledge-based protocols.

1- Introduction ’

Most of the work on knowledge in distributed systemns has been
done in the context of the basic semantic model which associates
a program with the set of runs that it can generate. Although
this approach is very general, it is not usually very convenient for

working with specific programs since there is a large gap between

the description of the program in a convenicnt notation and the set
of runs that it generates. Programming theories bridge this gap and
provide an alternative to operational reasoning via a proof theory
that allows one to reason about the texts of programs and draw
conclusions about the set of runs.

In this paper, knowledge is defined as a predicate transformer.
Process ¢ "knows” p, denoted I(;p, is a function from a predicate p
to predicates which depends only on variables accessible to process
1, and holds in exactly those states where process i "knows” p.
Knowledge-based protocols arc an extension to normal protocols
where where knowledge predicates are allowed to appear in guards
of statements in programs. The goal is to formally capture the
intuition of protocol designers who often describe the action of .a
distributed program with remarks such as "when process 7 knows
that process 7 has unlocked some resource, it sends a grant message
to the next waiting process.”

Using the predicate transformer, knowledge and knowledge-based
protocols are defined in the context of a slightly modified version
of Chandy and Misra’s programming theory, UNITY [CM88]. The
logic has been slightly modified [San90, San91] and is extended here
with a minimal notion of a process. There are several bencfits
from this approach. First of all, one can reason formally about
the knowledge obtained by processes in standard programs and
also knowledge-based protocols (the terms protocols, algorithms and
programs will be used interchangeably) without having to construct
the set of runs gencrated by the program. (Techniques for reasoning
about knowledge obtained in CSP programs, but not knowledge-
based protocols, were given in [I{T86]) Second, the theory of predi-
cate transformers [DS90] suggests questions which yicld new insights
about knowledge and knowledge-based protocols. In particular, it
will be shown that knowledge-based protocols do not enjoy cer-

4

e e

tain monotonicity properties that are usually taken for granted for
programs. For example, properties which hold for some knowledge-
based protocol may not hold for the same protocol with stronger
initial conditions. Finally, since our method is an extended version
of a complete programming theory, carrying out algorithm develop-
ment utilizing knowledge-based protocols in this framework allows
a careful comparison between the formal derivation with and with-
out knowledge. This is done for an example that has previously
appeared in the literature [HZ87]. The most important lesson from
the exercise is that knowledge-based protocols, as a high level de-
scription, may be more restrictive than necessary, and thus make
the job of constructing a formal proof harder instead of casier.

2 Predicate transformers and the strongest invariant

In this section, a very brief introduction to the style of predicate
calculus used in the paper and to the theory of predicate trans-
formers is given. More details are found in [DS90]. The strongest
invariant is also defined.

A predicate is a Boolean valued total function on the state space
of a program. Predicates are semantic objects; we are not concerned
with whether or not they can be expressed in some particular lan-
guage. The operators =,=,<, A, V, and — are applied pointwise
and yield another predicate. This is usual for A, V, and - but un-
usual for =,=>, and <=; for example, for predicates p and q, p= ¢
is a predicate which is true at points where p and q have the same
value, and false where they differ. The everywhere operator, de-
noted by surrounding predicates with square brackets, denotcs uni-
versal quantification over the state-space. Thus [p] is true if p is true
at every point. p and g are equal if [p = q]. We say that q is weaker
than p, and p is stronger than g if [p = ¢q]. Function application is
denoted with a ”.”, asin f.p

A predicate transformer is a function from predicates to pred-
icates. An important property of predicate transformers that
will appear frequently in the sequel is monotonicity. A pred-
icate transformer f is monotonic if for all predicates p and g:
[p = ql = [f-p = f.q]. Other junctivity properties of interest
are or-continuity, universal conjunctivity, and finite disjunctivity.

A predicate transformer f is or-continuous if for all non-empty
- bags of predicates W which can be arranged in a monotonic se-
quence, [(Bv:veW : fu) = f(Fv:veW:v)]. fis universally
conjunctive if for all bags of predicates W, [(Vv:ve W : fu) =
f-(Vu:veW:v). fis finitely disjunctive if for all predicates p and
¢ [frV f.qg = f(pV q)] And-continuity, finite conjunctivity, and
universal disjunctivity are defined analogously.

The predicate transformers most often used in program semantics
the weakest precondition, wp, and weakest liberal precondition, wip.
Here, wp.F.p is the weakest predicate so that program F starting
in a state satisfying wp.F.p will terminate in a state satisfying p,
while wip.F.p is the weakest predicate so that program F starting in
a state satisfying wip.F.p will either terminate in a state satisfying
p, or fail to terminate. wp will be used in the UNITY proof theory
which will be discussed later in section 5.

Here, the basic model is a non-terminating state transition sys-
tem with interleaving semantics rather than a termination sequen-
tial program. For a given program, SP.p (strongest postcondition)
is defined to be the strongest predicate such that if the program
is in a state satisfying p, then the next transition will result in a
state satisfying SP.p. We assume that SP is total, monotonic, and
or-continmous. These propertics hold for most programs of inter-
est, and in particular, they hold for all programs in UNITY, which

will be discussed in section 5. If SP.p = p, then p is stable, i.e. .

once satisfied, it will remain satisfied. sst.p, the strongest stable
predicate weaker than p is defined using SI as follows:

de
sst.p £ strongest 2 : [SP.x = 2] A [p= 1] (1) -

For all constant programs, with monotonic, and or-continnous SP,
and all predicates p and g, the following hold:

sst.p exists and is unique. (2) .
sstp=1{3i:0<i: fifalsc) where far=SPaVyp (3)
sst is monotonic (4)

Proofs are given in [San91].

A program has the property invariant p if p holds initially, and
remains true during the entire program execution. The strongest
invariant, abbreviated SI, is given by sst.init where init is the
predicate describing allowed initial states. Thus ST is a predicate

6

characterizing the reachable states of the program. Invariant prop-
erties are defined using SI as follows:
def

[SI = p| = invariant p (5)
3 Knowledge

In this section, we use SI to define a predicate transformer for
knowledge. Since a process can only access its own variables, any
predicate which holds exactly when process i "knows” p, should
be independent of the variables not accessible to process i. (A
predicate is independent of a variable if it has the same value in
any two states that differ only in the value of that variable.) As a
preliminary step, we define a predicate transformer weyl (weakest
cylinder) where weylV.p is the weakest predicate as strong as p
which depends only on the variables in V.

weylVp 2 (Y7 :: p) (6)

where V is the compliment of V in the set of program variables.
Several properties of weyl are given in (7-12) below:

[weylVip = p). (7)
wcyl exists and is monotonic in both arguments. (8)
If p depends only on variables in V, then
p = weylVop. (9)
If [g = p] and q depends only on variables in V, then
[g = weylV.p). ' (10)
weyl is universally conjunctive. (11)
- weyl is not disjunctive. (12)

The proofs of (8-12) follow casily from the definition and properties
of universal quantification. A counterexample to demonstrate (12)
is nevertheless illustrative. Consider a state space constructed out of
two integer variables x and y. Then weylz.(z > 0Ay > 0) = false
and weylz.(z > 0 Ay < 0) = false while weylz.(z > 0) =z > 0.

Now we are in a position to give a predicate transformer I;p
which holds whenever process i "knows” p. Informally, onc says
that a process knows a fact in some state if that fact is true in
all possible global states which are indistinguishable to the process.
The possible global states are given by SI. Thus we obtain:

7

K;p Y weylvars;.(SI = p)
With this definition, I(;p has the correct value on all reachable
states. However, we have found it technically convenient to de-
fine K;p so that K;p always has the value p on unreachable states.
This slightly more complicated definition is given below: -

Kip ¥ p A (weylvars;i.(SI = p) vV ~ST) (13)

Equations (14-18) hold for K, and imply the axioms and inference
rule of the modal logic S5:

[Kip = p| (14)
[(Kip A Ki(p = q)) = Kiq] (15)
[Kip = K K;p) (16)
.[—sK,-p = K;~IGp] ‘ (17)
b= Kel (18)
Several properties of K follow from similar properties of weyl:
K;p is monotonic with respect to p (19)
K;p is anti-monotonic with respect to ST (20)
K; is universally conjunctive (21)
K is not disjunctive (22)

The following two results illustrate the close relationship between
K and invariants.

~ invariant p = invariant K;p) (23)

If g depends only on variable accessible to process i, then
invariant (¢ = p) = invariant (¢ = Kp) (24)
This result, together with 14 give a characterization of I(;p as the
weakest predicate, depending only on i’s variables, which implies p.

Proof of =:

invariant (¢ = p)
{5}

SI= (qg=p)

qg=(SI = p)A(SIANg= D)
= {from (10)} '
q = weylwars;.(SI = p) A (SI A q = p)
=
SIAq = (weylwars;.(SI = p) Ap)
=> {weaken r.h.s and use (13)}
gASI= K;p
= {from (5)}
invariant (¢ = Kp)
Proof of «:
invariant (¢ = K;p)
= {from (5)} ‘
SI= (¢= Kp)
= {from (14)}
SI=(q=p)
= {from (5)}
invariant (¢ = p)

The above proof! illustrates an important advantage of a predi-
cate transformer approach to program semantics. The proof of this
- metatheorem was carried out entirely with straightforward calcula-
tions in the predicate calculus.

In [HM90], a model of distributed systems is given along with
semantic definitions for knowledge. In that paper, the semantics
of a distributed program is given by a set of runs where a run is
a sequence of actions, including the time each action occurred. A
point is a pair consisting of a run and a time t. A process’s local -
history at time t is the subsequence of events that the process has
observed up until . Under a view-based knowledge interpretation,
knowledge is ascribed to processes by defining a view, which is a
function of the local histories, and saying that a processor "knows”

!This result is apparently not as obvious as it scems. An expert reviewer of an earlier
version of this paper (without the proof) claimed it was incorrect

a fact at some point if the fact holds (according to some assignment
7 which associates a truth value for all ”ground facts” with every
point in the set of runs) in all possible points that the processor
cannot distinguish from the given one, i.e. in which the process
has the same view. The notion of a view function is quite general,
ranging from allowing processes to use their entire local histories to
distinguish between points, to not being able to distinguish between
points at all.

In this paper, the semantics of a distributed program is also given
by a set of runs, however, a run is a sequence of global states. The
processes view is always the projection of the current global state
onto the variables accessible to the process. There is considerable
freedom in determining what is included in the state and which
variables are accessible to a process; time may or may not be in-
cluded, and any function of the processes history may be included in
the state by explicitly including appropriate history variables. The
ground facts are the predicates on the state space. As in [HM90], a
process "knows” a fact at some point if the fact holds in all possible
points that the processor cannot distinguish from the given one.

Although the definitions of knowledge given here are slightly less
general than those in [HM90], they are adequate for many useful
problems and because certain aspects are fixed (e.g. the particular
view is fixed and the set of ground facts is always the sct of predi-
cates on the state space) they are simpler and have useful mathemat-
ical propertics. Also, knowledge can be incorporated into a proof
theory which allows non-operational reasoning. The approach can
easily be extended to include other variants of knowledge, such as
common knowledge [HM90].

4 Knowledge-based protocols

The previous discussion was concerned with knowledge obtained by
processes executing standard programs. A scemingly natural ex-
tension is to allow processes to explicitly test for knowledge. In
[HF89] and the several references cited therein, such programs,
called knowledge-based protocols, may include statements of the
form "if process i knows ¢; then action; elsif process i knows ¢y
then actions ...". In this section, we will introduce this generaliza-

10

e s ek

tion into our framework. First, we examine the consequences on the
theoretical results of the previous section. Then, we will introduce
UNITY and the extensions necessary to allow knowledge-based pro-
tocols to be expressed. As a result, we will obtain a well-defined
notation in which knowledge-based protocols can be formally spec-
ified and expressed. The UNITY proof theory is inherited, plus
additional results developed in the previous section. The use of
extended UNITY will be illustrated with an example which will
allow us to gain some insights into the pragmatic aspects of using
knowledge-based protocols as a tool for the derivation of distributed
algorithms. '

Eventually, we will arrive at a programming notation that allows
statements with knowledge predicates to appear in guards. In sec-
tion 2, (constant) programs were assumed, for which SP could be
calculated. As a simpleminded and degenerate example, which will
nevertheless illustrate the point, consider a program with a single
statement as follows:

z:=z+1if b
Then

SPp = (mbAp)V(z:=z~1).(bAp)
where (z := F).p means substitute E for each occurrence of z in p.?
If b is a constant predicate, then this can be computed. However,
if b is, say I(;p, then we see that b depends on SI, which depends
on SP, which depends on b. Thus SP is now a function of SI.

The new definitions of SI is obtained by explicitly including the
dependence of SP on SIin (1).

sst.p Y strongest 2 : [(SP.SI).z = z] A [p = 1]

Alternatively, restricting ourselves to the case where p = init, this
can be rewritten as

s1Y strongest z : [SP.z = z] A [init = 2] - (25)

4vs‘/here widehatS P is obtained by partially evaluating SP.SI.z with

SI = z. Given a solution to (25), the knowledge-based protocol
can be converted to a standard protocol by replacing all the knowl-
edge predicates with the corresponding standard predicate obtained

2Properties and definitions of the strongest postcondition are discussed in detail in
[Ds90].

11

var shared, z : boolean
processes V, = {shared}, V) = {shared, z}
init —shared A -z
assign
shared := true if K-z
0
x, shared := true, false if shared

Figure 1: Knowledge-based protocol with no solution.

using SI. Equation (25) now has the same form as equation(1).
Unfortunately, (2-4) are no longer guatanteed, since SP.z is not
-monotonic.

A first consequence of this is that ST need not exist. As a simple
example, consider the knowledge-based protocol shown in figure 1.
The notation will be explained in more detail in section 5. Bricfly,
process 0, which can access shared, executes the first statement,
process 1, which can access both shared and 2z, executes the sec-
ond. At any point, a non-deterministic choice is made between the
statements. If the guard of the chosen statement does not hold, the
execution of the statement has no effect. There is no possible choice
for ST for which the resulting I;—2 will result in a standard protocol
which actually yiclds this strongest invariant. The possibility that
there is no standard protocol consistent with a knowledge-based
protocol is well known. The predicate transformer approach makes
it clear that, technically, lack of monotonicity of SP is the culprit.

In the previous discussion, we have seen that because SP is not
monotonic, the knowledge-based protocol may not be well-posed.
However, non-monotonicity also shows up in another guise. Even
when it exists, the strongest invariant of a knowledge-based protocol
need not be monotonic with respect to the initial conditions. A
counter-example, shown in figure 2 suffices to establish the claim.

When the init = -y, then the strongest invariant is —y. When
it = -y A 2, then the strongest invariant is 2. In addition to
the invariant properties, in the first case, the program satisfies the
property true + z (i.e. eventually z will hold), in the second, with
a stronger initial condition, the program does not.

12

U —

S

var z,¥, 2 : boolean
processes V= {y},Vi = {z}
assign
y := true if Ky.x
a
z := true if Ki.(-y)

Figure 2: SI is not monotonic with respect to initial conditions.

The ramifications of this result are that neither safety nor live-
ness propertics of knowledge-based protocols are necessarily pre-
served when the initial conditions are strengthened, thus violating
one of the most intuitive and fundamental propertics of standard
programs. This important result does not scem to have been previ-
ously recognized.

The semantics of knowledge-based protocols as defined above is
not identical to that commonly found in the literature. We con-
sider the knowledge-based protocol to correspond to the set of runs
generated by a standard protocol with the knowledge predicates
replaced with corresponding standard predicates. In, for example,
[HF89, HZ87, Hal91], a knowledge-based protocol is forinally con-
sidered to be a function from local states and an interpreted system
(set of runs) to actions. Thus, a knowledge-based protocol corre-
sponds to many different systems. The advantage of this is that
one can use the same knowledge-based protocol in different envi-
ronments. For example, a knowledge-based protocol can describe
the behavior of a protocol for reliable communication over com-
munication channels with various types of failures. The runs of
one interpreted system would only include actions that involve a
particular type of failure, the runs of another, a different type of
failure, etc. In our approach, we take the "maximal” system where
no actions are arbitrarily ruled out and where initial state allowed
by the initial condition is considered possible. This corresponds to
the canonical system described in [HF89]. It is interesting to note
that often, a knowledge based protocol can be specified for different
environments, with the "selected” behavior encoded in the initial
condition. Then strengthening the initial condition corresponds to

13

execution of the protocol in a more predictable environment. From
the nonmonotonicity result above, properties that are satisfied in
one environment may not be preserved if the environment becomes
more predictable.

5 Knowledge-based protocols in UNITY

In this section, we give a brief introduction to UNITY. Then we will
extend the programming notation to allow knowledge-based proto-
cols to be expressed. The necessary semantic foundations have been
developed in the previous section. The result is that we will have
a rich proof theory to use when reasoning about knowledge-based
protocols. This is in contrast to previous work in the literature
where the psuedocode definitions of knowledge-based protocols are
only informal descriptions and both formal semantics and correct- -
ness proofs are constructed in an ad hoc manner.

UNITY is a programming theory which comprises a specification
language with which certain safety and liveness properties can be
expressed, a notation for programs, and a proof theory with which
one can prove that a program satisfies the specification.

The basic specification language includes 4 properties: invariant,
unless, ensures, and leads to (). invariant p means that p
holds initially and continues to hold. punlessq mecans that if at
some point p holds, then it continues to hold at least as long as ¢
does not. pensuresq requires both p unless g and that there is a
single statement in the program who’s execution in a state satisfying
p, will establish q. p g states that if at some point p holds, then
eventually q will hold. Additionally, we have stable p, which means
that if p holds at some point, it will continue to hold thereafter.

The programming notation allows a program to be denoted by a
set of variable declarations, a predicate init characterizing allowed
initial states, and a non-empty sct of guarded, multiple, determin-
istic, terminating assignment statements. Assignments are written,
for example as follows:

T,y = f(m,y),g(a?,y,z) if b ‘
This would be exccuted by first evaluating b, f, and g, then if b holds
assigning the computed results to z and y. An equivalent notation
for multiple assignment is

14

("E = f(=,y) H y = (2,9, z)) if b

Assignment statements in a program are separated by a bar 0.
An execution of a program begins in a state satisfying init, then
repeatedly executes, atomically, statements of the program. The
choice of the statement to execute at each step is non-deterministic
with a fairness constraint that each statement must be attempted
infinitely often. There is no flow of control determined by a hidden
program counter. All control information is explicitly coded in the
guards. UNITY programs do not terminate—the analogy to ter-
mination is reaching a fixed point where no statement changes the
state.) |

When convenient, several statements may be generated by quan-
tifications. For example,

(Di:d <0< n:afd,zli+ 1] = 2fi + 1], =[] if 2[i] > 2fi + 1))
generates n statements separated by a 0. The quantified prograin
is a nondeterministic bubble sort which reaches a fixed point when
the array is sorted.

The basic proof theory comprises rules for proving that the prop-
erties hold for a given program. The logic presented here has been

slightly modified and is described in more detail in [San91]. In the
rules below,

SP.p=(3s: s is a statement in the program : sp.s.p) (20)
where sp is the usual strongest postcondition of an individual state-
ment. For standard UNITY programs, sp, and thus SP is mono-
tonic and or-continuous. The definitions for unless and ensures
use wp. For UNITY programs, all statements are required to ter-

minate, thus wp = wip. In the proof rules below, the range of s is
the set of statements in the program.

punlessqg = (27)

(Vs [ST = ((pA—q) = wp.s.(pVq))])
pensuresq = (28)
punlessqg A
(3s ::»[SI = ((p A q) = wp.s.q)])
p ensuresq ' - (29)
prq

15

pT, T g (30)
p—q
For any set W: (Ym:m e W : pmi—q) (31)
’ (Fm:meW :pm)—gq

invariant was defined by (5). Since actually determining ST is
usually not practical, a useful proof rule is as follows:

(invariant I A (Vs :: [(p A I)) = wp.s.p]) = invariant p (32)
Since invariant true holds for every program, true is often a con-
venient choice for I in (32). stable is a special case of unless:

stable p = p unlessfalse (33)
In addition, there are a large number of useful metatheorems which
contribute a great deal to making the theory practical. The ones
used in the example are listed in the appendix.

Mixed specifications [San90] arc UNITY programs augmenting

with a set of safety and liveness properties. Legal exccution se-
quences are those generated by the state transitions (statements)
plus stuttering steps which also satisfy the properties. If all the
runs generated by the statements are legal, then the mixed specifi-
cation is said to be implementable.

Since a main goal in formalizing knowledge is to have a method to
understand the behavior of processes with incomplete information,
we must extend the above model with some notion of a process.
Since there is no "flow of control”, a process is determined by its
address space. Thus a process in our framework is simply a sub-
set of program variables. UNITY is extended to allow expression
of knowledge-based protocols by allowing knowledge predicates to
appear as guards of the assignment statements. We then have the
UNITY proof system, plus known properties of knowledge (14-24).
Results are valid for any solution to the knowledge-based protocol.

UNITY /mixed specifications can be used to represent most inter-
esting computation models. Shared memory is trivial to represent,
the shared variables simply belong to more than one process. Mes-
sage communication can be modeled by sequence variables to which
the sender appends messages and where the receiver removes the
head of the sequence. The process’s memory, if any, must be ex-
plicitly included using history variables. Thus it is possible, in the

16

i VO

o

same framework, to reason about programs where processes must
remember part or all of their history (by including appropriate his-
tory variables) and where they do not.

6 Algorithm development using knowledge-based proto-
cols

In this section, an example is sketched in order to clarify some
issues involved in using knowledge-based protocols in algorithm de-
sign. The example chosen is the sequence transmission problem
described in [HZ87, HZar]. The problem is to transmit a sequence
data items over a possibly faulty communication channel: all mes-
sages must be delivered in the order sent, and all messages sent must
eventually be delivered. There are several different algorithms for
this problemn depending on what sort of faulty behavior the channel
may exhibit, whether or not the sender and receiver are synchro-
nized, etc. Well known examples include protocols in the AUY
model [AUY79, AUWY82] (the sender and receiver communicate
synchronously over a channel that allows only one bit messages), the
alternating bit protocol [BSW69], and Stenning’s protocol [Ste82).
Halpern and Zuck give a high-level, intuitively correct, knowledge-
based protocol which is relatively independent of the particular as-
sumptions about the communication channel and a priori knowl-
edge, and prove its correctness. They then propose an infinite state
standard protocol that is shown to be an implementation (in a pre-
cise sense) of the knowledge-based protocol. The standard protocol
is then further refined to obtain several known protocols which are
implementations of the standard protocol. Following this approach,
we state and prove correctness of a high-level knowledge-based pro-
tocol and an infinite state standard protocol using the formalism
and proof theory described in the previous sections. The proto-
cols are essentially the same as those given in [HZar], allowing the
reader to easily compare the approaches. Refinements from the in-
finite state standard protocol to various finite-state protocols are
interesting in their own right and can be done using techniques de-
scribed in [San90] but are independent of knowledge, thus are not
discussed here.

17

6.1 Specification First, we define z to be the infinite sequence
of values, taken from a finite alphabet A, which are to be sent by the
Sender. w is the initially empty sequence of values that have been
delivered by the Receiver. We capture the requirement that mes-
sages are delivered in the order sent by giving an invariant property
that w is always a prefix of z. To capture the requirement that mes-
sages are eventually delivered, we give a leads-to property requiring
that the number of delivered messages will eventually increase.

Safety: invariant w C z (34)

Liveness: |w| = ks |w| > k (35)

In the leads-to property (35), k is a free variable which is im-

plicitly universally quantified. Thus we actually have a leads to
property corresponding to every non-negative value of k.

6.2 A knowledge-based protocol The basic idea behind the
protocol is very simple. At each step, the Sender cither transmits
the value of the ith clement of = together with 7 or it increments 1
and gets the next element of z. In both cases, an attempt is made
to receive a message from the communication channel. The first
choice is made when the Sender does not know that the Receiver
knows the value of the ith element of z, the second, when the Sender
knows that the Receiver knows the value of z. At cach step, the
Receiver either delivers (writes) the jth element of z, and increments
4§, or transmits the value of j. In both cases, an attempt is also
made to receive a value from the communication channel. The first
alternative is performed when the Receiver knows the value of the
jth element of z, the second when the receiver does not know the
value.

The knowledge-based protocol is formally given in figure 3. We
use the notation (Kp(zr = o))ak=; to indicate Kp(x = o) with k
free, but evaluated at the value of j. Kpzy is an abbreviation for
(3o : o € A: Kpzp = @). The command transmit need not, at this
point, be completely defined, but intuitively means transmit the
value of the parameter on the communication channel. The com-
mand receive(var) attempts to receive a value from the communi-
cation channel and assign it to var. If there is no message to be
received, or the message has been corrupted, then var receives the
value denoted L, which is different from any legal value. The vari-

18

declare = : seq of A
' y: A
z:natU L |
i :nat '
w: seqof A
z': (nat, A)U L
j :nat

processes Sender = {z,y,1, z}, Receiver = {w, 2/, j}

init (i=0/\y=mo/\zz_L)/\(j=0/\w=¢/\z’=_L)

assign

Sender

transmit((1,y)) || receive(z) if ~(KsKpxy)ari
D

Y= Tip1 || 1=+ 1| receive(z) if (I sKpzr)ak=i

0 Receiver

(a:a€A:wi=w;a
|7 := 3+ 1| receive(z') if (Kp(zs =))ar=;)
0

transmit(j) || receive(z') if =(Kpzy)ar=;
properties

(Kbp-1) i =kAy=aA-KsKpz)—
Kp(zr=a)V-(i=kAy=aA K gKpzy)
(Kbp-2) (j = kA ~EKpzi) = (Ks(j 2 k) V =(j = k A ~Kpzy))
(Kbp-3) stable Kp(zx =)
(Kbp-4) stable KK pzy

Figure 3: Knowledge-based protocol

19

ables and commands belonging to the environment have not been
specified. However, in order to prove the liveness property, it is
necessary to state some property of the channel. This is done by
giving two — properties along with the protocol which say that once
the conditions at the Sender (or Receiver) for transmitting a partic-
ular message have been satisfied, then either certain ”knowledge”
contained in the message will be attained at the Receiver (Sender)
or the conditions for sending that message will be cancelled by the
Sender. A consequence of this rule is that if, for example, the Sender
follows the rule of repeatedly sending a message until it knows that
the knowledge has been attained by the Receiver, then eventually
the knowledge will be attained by the receiver. This can be guar-
anteed by a communication channel that will eventually correctly
deliver any message that is sent repeatedly. The stable properties
indicate that certain knowledge is not forgotten once it is attained.
These assumptions are necessary for the correctness of the protocol
but are not guaranteed by the definition of knowledge, thus they
are listed in the 'properties section. It is not necessary at this point
to discuss how this property is enforced, however, these propertics
will need to be verified for any instantiation of the knowledge-based
protocol with a standard protocol.

Now we prove that any instantiation of the knowledge-based pro-
tocol satisfies the specification. Where details are straightforward,
they will be omitted for the sake of brevity. An attempt is made,
however, to give enough details to provide the reader unfamiliar
with this type of formal proof an idea of what they look like. Much
use is made of standard UNITY metatheorems. Thesc are listed in
the appendix. When the note "from program text” is mentioued,
that means that the property mentioned can be proved directly by
using the basic proof rules. For example, for an invariant property,
say p, we would verify that [Init = p] and that for each statement
s in the program, p A I = wp.s.p. Where [is an invariant, possi-
bly true. As a practical matter, if p doesn’t mention any variable
changed by a particular statement s, then wp.s.p holds immediately
and no calculation is required.

The following invariant property can be proved directly from the
program text.

invariant |w| = j (36)

20

We can easily prove the safety property (34). First show
invariant (Jw| = j A w C z) from the program text, which together
with (36) allows us to conclude the desired result. |w|= jA(w C z)
holds initially since |¢| = 0 and ¢ C z for any sequence z. Now, we
verify |w| = jAw C z = wp.s.Jw| = j Aw C z for the statements of
the form w:=wjal|j:=j+1|| receive(?') if (Kp(zr = a))ap=;-
These are the only statements necessary to consider since the other
statements do not modify w, z, or j.

lwl=jAwC 2z=>wps.|lwl=jAwCz
= {calculate wp and simplify}
lwl=jAwC x A (Kg(zr = @))ar=j =
lwial=j+1Aw;aCx

< {(14)}
lwl=jAwCaAz;=a=|lwal=74+1A(v;a)Cx
= {using |w|=jAwE z=>w=(20,21,...,2j-1)}
true

The following two invariants will be used in the liveness proofs and
depend on the assurmptions that I{pz; and Kgl{p2) are stable.

invariant (V! :0 <1< j: Kpx) (37)
invariant (V! : 0 <1 < 1: Kgl{px)) (38)

The proofs of (37) and (38) are very similar. We give the proof of
(37).

Proof of (37): :
Let P.k be an abbreviation for (VI: 0 <1 < k: I{px). init = P.j
trivially since 7 = 0.

j=kunlessj=k+1 {from text}

Kpx unless false {{Kbp-3)}
j=kAKpzrunlessj =k + 1A I(pzy {conjunction}
j=kunless j =k A Kpx; {from text}
j=rkunless j=k+1AKpx; {cancellation}
stable P.k {conj. with (Kbp-3)}
j=kAPkunless j = E+1AP(k+ 1) {conj. with above}
(V1:0 <1< j:IKpx;) unless false {gen. disj}

Because of the invariant (36), the following property is equivalent

21

to the original liveness property (35).
Property (39) follows from properties (40) and (41) (using transi-
tivity and disjunction).
j=kAKpzr—3j>k (40)
j=kA-Kpzp—j= kA Kpzi (41)
Property (40) indicates that if the Receiver knows the value of the
next element to write, then it will eventually deliver it. Property
(41) indicates that if the Receiver does not know the value of the
next element, then it will eventually come to know the value. One
would expect the proof of (40) to be straightforward and indeed it
is. It is given below as an example of a simple liveness proof, and to
demonstrate the uscfulness of the metatheory in constructing proofs
of knowledge-based protocols.

Proof of (40):

Let s = w := w; || j := j + 1||receive(2’) if (Kp(2e = @))ar=;".
j=kunlessj >k {from text}
Kp(z) = o) unless false {(Kbp-3)}

i=kA I&"R(.’I:k =) unless j > k {simple conjunction}
i=kA I&'R(a:k =) =

wp.s.j >k {f;om text}
I=kAKp(zr =) 7>k {(28, 29)}
i=kAKprp—j>k {(31)}

In order to prove j = kA Kp(zy =) unless 5 > k, we used a
metatheoremn with the assumptions that Ip(a; =) is stable, in-
stead of proving the unless property directly from the text. This is
because the necessarily wp cannot be computed for the term with
Kg(zr = «) until an instantiation for this is given. The metathcory
allows us to stay at the desired level of abstraction while still giving
a formal proof.

The proof of (41) is clearly going to be more involved than the
above since guarantecing this will require actions by the Sender,
~ Receiver, and communication channels.

22

Proof of (41):

Use transitivity on (44) and (45), disjunction with I gz K pay,
transitivity with 43, and PSP with (42).

Jj=kA-Kpziunless j =k A Kpzy

(42)
J=kA-Kprrp Ks(j > k)V Kpzy (43)
Ks(j2k)—ixk ' (44)
i >k Kpxp (45)
Proof of (42):
From text.
Proof of (43):
PSP on (Kbp-2) and 42, simplify and weaken right hand side.
Proof of (44):
Leads-to implication on (46) and transitivity with (47)
Ks(j > k)= VM :0<1<k: KsKgax) (46)
(Vl 0<i<k: .KsI&"Rxl) —i>k (47)

Proof of (46):
invariant Kg(j > k) = j >k {(14))
invariant Kg(j > k) = Kg(VI: 0 <1 < k: Kraz) {(15),37)}
invariantKg(j > k) = (VI : 0 <1 < k: KgKgxzy) {(21)}

Proof of (47):
i=mAKsKprpr—1>m ' {similar to (10)}
i=mAmM<kANM:0<I<k: KgKpz) s
1>m {strengthen ant.}
i=mAm<kANM:0<I<k: KsKpz)—
1>k {induction}
(VI:0<l<k: KsgKpu))—i>k {31}
Proof of (45):

Use leads-to implication on (48) then disjunction with (49) where
(48) is obtained from (38) and (14).

invariant (i > k) V (i = k A KgKpay) = I pay (48)

23

i =k A-KsKpzi— Kpag (49)
Proof of (49):
i =kAy=aA-KsKpzr,unless KsIgri {from text}
t=kAy=aA-KsKpzi+—
(Kp(ze =) Ni=kAy=«a)V Kl pzi {PSP, (Kbp-1)}

i=kANy=aAKsKpry— Kpzy {weaken cons., (14)}
1=k A-KsKpzp— Kpzp {(31)}

6.3 Standard protocol The preceding proof shows that the
knowledge-based protocol, provided it exists, is correct. Any stan-
dard protocol obtained by specifying the communication channel
so that the channel liveness assumptions are satisfied, replacing
(Kp(zk = @))ar=j, (l{sK prE)ak=i, with normal predicates, and ver-
ifying that the liveness and stability assumptions are satisfied, is a
correct protocol.

Now, we will consider a standard protocol. In this case, we
want the communication channel to allow loss, duplication, and
detectable corruption of messages. This implies that if a received
message contains a legal value, then the message was, at some pre-
vious time, actually sent. A minimal amount of extra state is in-
troduced in order to specify this, namely history variables for the
Sender and Receiver which record messages sent. History variables
are not accessible to any process. v

Proposed values for the knowledge predicates NgK paxy and
Kp(z, = @) are as follows:

Kplap=a):(j=kAZ =((k,a)VI>kAw,=a) (50)
KgKprp:(i=kANz=k+1)Vi>k (51)

Ks(j > k) did not appear in the protocol statements, but only in
the channel liveness property ((IXbp-2). Thus we do not actually

need the value, but only need prove the channel liveness properties.
Because of (24), it suffices to show:

invariant z > k= Kg(j > k) (52)
(J=kA-Kprp)— ((z 2 k) V(i =k A-Ipzy)) (53)

By (24), (54) suffices to show (52).
invariant z > k= j >k (54)
The stable properties corresponding to (Kbp-3) and (Kbp-4) are:

24

stable (i=kAz=k+1)Vi>k (55)
stable 2’ = (k, @) V (j > k Aw; = @) (56)

It is easy to show that the following two properties imply the
channel liveness properties (Kbp-1) and (53):

t=lAy=aAz<im (57)
Z=a)Vali=lAy=anz<i)
j=lA"(§(XZZZ’=(l,CI))l—+ (58)

z=IVa(f=lA=Fa: = ()

These liveness properties require that a message repeatedly trans-
mitted will eventually be received (unless the transmitter gives up)
and will be satisfied by a communication channel that does not lose
or corrupt all messages sent. In order to capture the property of the
communication channel that allows lost, duplicated, or detectably
corrupted messages, we add history variables which record all mes-
sages sent, and add invariant assumptions stating that any message
received with a legal value must have been sent.

invariant z =k = k e chip (59)
invariant 2’ = (k, @) = (k,a) € chg (60)
The resulting standard protocol is given in figure 4.

- The properties (St-1), (St-2), (St-3), and (St-4) represent assump-
tions about the communication channel. We may use these in proofs
. and the protocols so proved will be correct provided the communica-
tion channel does indeed satisfy the properties. The required stable
properties, 55 and 56 are easily verified from the program text and
can therefore be omitted from the protocol description.

The remaining task is to prove that the proposed values for the
knowledge predicates are indeed valid knowledge predicates. Recall
that Krp => p is invariant, and that it is the weakest such predi-
cate which only depends on R’s view. This gives the following two
additional invariant properties:

invariant (j = kAZ = (k,@)) V([> kAwr=a) =

(r=0a) (61)
invariant (i = kAz=k+1)Vi> k=
Ba:(>kAwp=0a)= (v =a)) (62)

25

declare z: seqof 4
y: A
z:nat U L;chg: seq of nat
:nat
w: seqof A
2': (nat, A)U L;chg : seq of (nat, A)
7 :nat

processes Sender = {z,y,1, 2}, Receiver = {w, 2/, j}
init (=0Ay=20Az2=L)A({=0Aw=0¢Az2 =1)
assign
S;ander

transmit((i,y)) || chs := chs; (i, y)
|| receive(z) if ~(z =i+ 1)
0
Y=z ||t =14 1| receive(z) if z =i+ 1

0 Receiver

(vra€eA:w:=w;allj:=j+ 1| receive(z’)
if 2 = (4, @)
0
transmnit(j) || chr = chs; j
[} receive(z’) if =(3ax :: 2" = (4,))

properties

(St-1) invariant z = k = k € chy

(St-2) invariant z' = (k, o) = (k,) € chg

(St-3)i=lAy=aAz<i—
Zd=(a)Va(i=lAy=aAz<i)

(St-4) j=IlA-Fa: 2= (l,a) —
z=1Va(j=IlA-(3a:2 = (,a)))

Figure 4: Standard protocol
26

Proof of (54):
invariant k € chp=>j>k {from text, chp initially empty}
invariant z > k= j >k {initially > =, with (St-1)}

Proof of (61):)
(ko) g chsunlessi =kAy=a {from text)
invariant i =kAy=a=a2,=a {from text}

(k, a) & E}E unless z; = {sub., cons. weakening}
T = o unless false {z constant}*
(k,a) € chs V 2 = o unlessfalse {cancellation}
invariant (k,a) € chg = 1, = o {chs initially empty}
invariant 2’ = (k,) = z;, = « {(St-2) } * *
—(wg = a) unless 2z’ = (B,@) Aj =k {from text}
—(wg = @) unless {sub., (**)}
Z=k,o)ANj=kA2p =«
—1(wk = Ct’) unless z; = «v {cons. weakening)
—v(’w;c =) V z; = o unless false {canceltation, (*)}
invariant wy = a = o, = o {w initially empty}
invariant ((2' = (k,a) A j = k)
V(i > kAwe = a)) = {(**)}
T =

Proof of (62):

t<kunlessz >k {from text}
i<kunless(z>k)A(j > k) {sub., (62)}
i<k unlessj >k {cons. weakening}
i < kVj> kunlessfalse {canc., stable (j ; k)}
invariant i > k = j > k{init = (i > k)}
invarianti =kAz=k+1=j>k {(62)}
invariant (1 =kAz=k+1)V(i>k)=>
j>k
invariant j > k = (Jo : wp = @) {(36)}

invariant (i = kAz=k+1)V(Ei>k)=>
F>EANQBa:w =a)

invariant (=kAz=k+1)V(i> k)=
(o (G=kAzt=(ka))V
(4> kAw, =)

27

The next step to show that the standard protocol instantiates the
knowledge-based protocol is to show that the predicates we have
given in (51) and (50) are indeed the weakest ones which will work.
However, this is difficult since it requires determining SI and there
is actually little point in doing this. We have already proven enough
to establish correctness of the standard protocol since we have di-
rectly verified all properties of the knowledge predicates that were
used in the proofs. Further, although the standard protocol does in
fact instantiate the knowledge-based protocol provided that there is
no a priori information about other than A, and A has at least two
elements, if some of the values are known a priori or can be com-
puted from previous values, then the standard protocol is no longer
an instantiation of the knowledge-based protocol, even thongh it
will still satisfy the original specification.®

6.4 Conclusions from the example The discussion above
suggests that the interpretation of the program in figure 3 as
a knowledge-based protocol is an overspecification of the prob-
lem. Requiring the standard protocol to be consistent with the
knowledge-based protocol rules out correct standard protocols, as
would be the case in our example if there is a priori information
about the values of the messages. It is important to stress that the
standard protocol is still correct, however, it no longer instantiates
the knowledge-based protocol.

It has been argued [Hal91] that the correct standard protocols
which do not satisfy a knowledge-based protocol are non-optimal
in the sense that more messages are sent than strictly necessary.

3[n [HZar], what is proved is that the runs of the standard protocol are mapped, in
a way that preserves the order of reading and writing, to a set of runs consistent with
the knowledge-based protocol. In the proof, they give a result analogous to showing that
(51-50) are the weakest predicates that will work. Namely, in Proposition 4.5, they state: -
Let r € R(A*). Then for every m > 0:

L z7(m) # &N (T, 9%(r), m) | ~KpKs(zai).
2. proji(2m) # 57 {F T, ¥(r), m) = ~Kn(z;).

A weaker version, namely with the "iff” in both cases replaced by "follows from”
suffices for correctness of the standard protocol. In addition, the stronger proposition
does not hold if there is a priori information, an assumption which was never stated but
was implicitly used in the proof.

28

For example, suppose the value of the first element of z is known a
priori. The standard protocol above would still result in the value
being sent and acknowledged, while a standard protocol consistent
with the knowledge-based protocol would have the receiver deliver
the value immediately, and the sender would begin with the second
element, thus saving one message. In one sense, this is a better

protocol, fewer messages are sent, but on the other hand, it makes

the protocol more complicated. Whether or not the extra compli-

cation is better would depend on the particular circumstances and

on the particular implementation. Another way of looking at the

optimality resulting from the use of knowledge-predicates is that

a message is sent as soon (within the constraints imposed by the

structure of the protocol) as it can safely be sent. If ¢ is already

known, then a message containing the value of x; can be sent as

soon as it is read. For the sequence-transmission problem, this

is probably good. 'There are examples, however, where it is not.

There are examples where strengthening the initial condition, and

thus giving more "knowledge” to the processes, may result in an

action being taken ”too soon” with the effect that there is no longer

an instantiation of the knowledge-based protocol which satisfies the

original specification, even though a standard protocol which instan-

tiates the knowledge-based protocol with weaker initial conditions

will work. Knowledge-based protocols exhibit a sort of process-

by-process optimality which may or may not translate into global

optimality for the protocol. One might also argue that the difficulty

of showing that a standard protocol is consistent with a knowledge-

based protocol is an artifact of the particular formalism used here.

It is, in the sense that other approaches will not specifically require

SI. However, other approaches still require specifically delincating

the entire set of runs of the protocol. And no matter what the ap-

proach, it is certainly to be expected that proving that something is

optimal will be more difficult than proving that it satisfies a set of
constraints. Given the difficulty of proving that a standard protocol
is an instantiation of a knowledge-based protocol, and the question-
able benefit of that the type of optimality provided by knowledge-
based protocols in general, there scems little reason to doubt the
wisdom of maintaining a separation of concerns between correctness
and efficiency in algorithm development.

29

Another weakness of knowledge-based protocols as a general tool
for protocol design which can also be seen from this example is that
knowledge-bascd protocols are not necessarily expressive enough. In
the sequence transmission problem, we required that certain types
of knowledge be stable. In [HZar], this was done by incorporating
this property into the actual semantics. As aresult, the nice looking,
intuitive protocols were only informal descriptions-while the actual
semantics were “tedious to write down and left for the reader”.
In our framework, we simply stated the stable properties with the
specification language.

In light of the above discussion, a weaker interpretation of the
protocol in figure 3 suggests itself. Instead of considering K to be
a knowledge predicate, it is considered as an unspecified predicate
which is assumed to satisfy a set of explicitly stated properties. In
this case, the invariant and stable properties which were used in the
proofs of correctness. The explicitly stated properties can be used in
proofs of the high level, abstract protocols. In a refinement, they are
explicitly verified or continue to be part of the property scction. In
an implementable version of the protocol, all unspecified predicates
have been given values, and all assumptions hold. This interpreta-
tion is a generalization of mixed specifications described in [San90].
This approach allows algorithin development to be carried out at
a similar level of abstraction as knowledge-based protocols. It is,
however, more flexible, and eliminates excess baggage which comes
with the definition of knowledge. The cost is that one must write
down the properties that are needed explicitly. The only difference
between this approach and what we have done is that we would
include the properties such as invariant{p(z, = o) = (24 =) in
the properties section.

In this particular example, proving correctness of the standard
protocol in figure 4 by starting with the abstract version is more
work than to show directly that this protocol satisfies the original
specification. The rcason for this is the increased generality neces-
sary to take into account the various types of behaviors when there
is a priori information about the contents of the messages. If, for
example, all of the messages are known a priori, then there will be
no communication or synchronization at all between the partners
in an instantiation of the knowledge-based protocol. In the stan-

30

dard protocol, the values of 7 and j are synchronized in order to
maintain invariant ¢ < § <74 1. Whether or not the extra work
imposed by the added generality pays is problem dependent. For
this example, it probably doesn’t. In [HZar], the standard protocol,
which is infinite state, is refined to obtain several interesting finite
state protocols. This work is interesting and important, however,
the generality of the knowledge-based protocol was not exploited.

7 Clonclu'sion

Analysis of knowledge in distributed systems has proved to be valu-
able in understanding fundamental issues in distributed systems
[CM86, HM90, MDHS86] and has helped to design algorithms that
are of both theoretical and practical [MT88, DM90, Ric92] inter-
est. However, when working with particular algorithms, the lack
of well-defined method has meant that the semantics and proof
method must be defined in an ad hoc way for each problem. In
this paper, a predicate transformer for knowledge was defined which
provides the basis for reasoning about knowledge attained by pro-
cesses in a slightly modified and extended version of UNITY, and
for extensions to represent knowledge-based protocols. The prop-
erties of the predicate transformer yiclded new insights into knowl-
edge and knowledge-based protocols, and the extended wversion of
UNITY provides a well defined specification language, notation for
writing algorithms, and a proof theory for proving that algorithms
satisfy their specification. In addition, an exercise in algorithm de-
velopment using our method also revealed, in a clear way, several
fundamental weaknesses of knowledge-based protocols which will
prevent this approach from finding application as an "all-purpose”
tool for designing algorithms.

Acknowledgement I would like to ‘thank Yoram Moses, Joe
Halpern, and Lenore Zuck for their comments on an carlier version
of the paper, and Joe for his efforts to explain their previous work
to me.

31

References

[AUWY82] A.V. Aho, J.D. Ullman, A.D Wyner, and M. Yan-
nakakis. Bounds on the size and transmission rate of
communication protocols. Comp. and Maths. with Appls.,
8(3):205-214, 1982. This is a later version of [AUY79].

[AUY79] A.V. Aho, J.D. Ullman, and M. Yannakakis. Model-
ing communication protocols by automata. In Proc. 20th
IEEE Symp. on Foundations of Computer Science, pages
267-273, 1979.

[BSW69] K. A. Bartlett, R. A. Scantlebury, and P. T. Wilkin-
son. A note on reliable full-duplex transmission over half-
duplex links. Communications of the ACM, 12:260-261,
1969.

[CMS86] K. Mani Chandy and Jayadev Misra. How processes
learn. Distributed Computing, 1:40-52, 1986.

[CM88] K. Mani Chandy and Jayadev Misra. Parallel Program
Design: A Foundation. Addison-Wesley, 1988.

[DM90] Cynthia Dwork and Yoram Moses. Knowledge and
common knowledge in a Byzantine environment 1: Crash
failures. Information and Computation, 88(2):156-186,
October 1990.

[DS90] Edsger W. Dijkstra and Carel S. Scholten. Predicate
Calculus and Program Semantics. Springer-Verlag, 1990.

[Hal91] Joseph Y. Halpern. A note on knowledge-based proto-
cols and specifications. Technical Report RJ 8454 (76462), |
IBM_Almaden Research Center, 1991.

[HF89] Joseph Y. Halpern and Ronald Fagin. Modelling knowl-
edge and action in distributed systems. Distributed Com-
puting, 3:159-177, 1989.

[HM90] Joseph Y. Halpern and Yoram Moses. Knowledge and
common knowledge in a distributed environment. Journal
of the ACM, 37(3):549-587, July 1990.

32

[HZ87] Joseph Y. Halpern and Lenore Zuck. A little knowledge
goes a long way: Simple knowledge-based derivations and
correctness proofs for a family of protocols. In Proceed-
ing of the 6th Annual ACM Symposium on Principles of
Distributed Computing, 1987.

[HZar] Joseph Y. Halpern and Lenore Zuck. A little knowledge
goes a long way: Simple knowledge-based derivations and

correctness proofs for a family of protocols. Journal of the
ACM, to appear.

[KT86) Shmuel Katz and Gadi Taubenfeld. What processes
know: Definitions and proof methods. In Proceeding of the
5th ACM Symposium on Principles of Distributed Comput-
ing, 1986.

[MDHS&6] Yoram Moses, D. Dolev, and Joseph Y. Halpern.
Cheating husbands and other stories: A case study of

knowledge, action, and communication. Distributed Com-
puting, 1:167-176, 1986.

[MT88] Yoram Moses and Mark Tuttle. Programming simul-

taneous actions using common knowledge. Algorithmica,
3:121-169, 1988. '

[Ric92] Aleta M. Ricciardi. Practical utility of knowledge-
- based analyses. In Yoram Moses, editor, Proceedings of
the 4th Conference on Theoretical Aspects of Reasoning

About Knowledge, pages 15-28, 1992.

[San90] Beverly Sanders. Stepwise refinement of mixed spec-
ifications of concurrent programs. In M. Broy and C.B.
Jones, editors, Proceedings of the IFIP Working Confer-
ence on Programming Concepts and Methods, Israel, 1990.
Elsiever Science Publishers.

[San91] Beverly Sanders. Eliminating the substitution ax-
iom from UNITY logic. Formal Aspects of Computing,
3(2):189-205, 1991.

33

[Ste82] M.V. Stenning. A data transfer protocol. Computer
Networks, 1:99-110, 1982.

8 UNITY metatheorems

8.1 Substitution Any invariant may be replaced by true and
truemay be replaced by any invariant in any property.

8.2 Consequence weakening

punlessq,qg=r

punless r

p—aq,q=r

pHr

8.3 Conjunction

p unless ¢, p/ unless ¢/

(p A p!) unless (¢ V q!)

punless g, p’ unless q/
(pAp)unless (pAg)V (prAq)V (gAql)

8.4 Cancellation punlessq,q unless r

(pV q) unlessr

8.5 Generalized disjunction

(Vi :: p.i unless q.7)

(3i :: p.i) unless (Vi :: =p.i V q.i) A (Fi 2 qui)

34

8.6 PSP (progress—safety—progress) p—q,r unless)
(PAT)— ((gAT) VD)

35

Gelbe Berichte des Departements Informatik

162

163

164

165

166

167

168
169
170

171
172

173
174

175

176

177

178

179
180

G. Weikum, C. Hagsse
J. Nievergelt et al.

G.H. Gonnet, H. Straub
L. Adams, P. Arbenz

E. Margulis
H.E. Meier

B. Heeb, I. Noack
M. Bronstein

P. Arbenz

K. Simon, P. Trunz

A. Rosenthal, Ch. Rich,
M.H. Scholl

P. Schéauble, B. Withrich

M. Brandis, R. Crelier
M. Franz, J. Templ

P. Scheuermann,
G. Weikum, P. Zabback

H. Hinterberger
J.C. French (eds.)
J. Burse

P. Arbenz, M. Oettli

B. Hosli
K. Zuse

Multi-Level Transaction Management for Complex
Objects: Implementation, Performance, Parallelism

eXperimental geometrY Zurich: Software for Geo-
metric Computation

The Dynamic Programming Algorithm as a Finite
Automation

Towards a Divide and Conquer Algorithm for the
Real Nonsymmetric.Eigenvalue Problem

N-Poisson Document Modelling Revisited
Schriftgestaltung mit Hilfe des Computers
Typographische Grundregeln mit Gestaltungsbei-
spielen (neue erweiterte Auflage)

Hardware Description of the Workstation Ceres-3

Formulas for Series Computations

Divide and Conquer Algorithms for the Bandsym-
metric Eigenvalue Problem

On Transitive Orientation

Reducing Duplicate Work in Relational Join(s): A
Unified Approach

On the Expressive Power of Query Languages
The Oberon System Family ‘
Automatic Tuning of Data Placement and Load
Balancing in Disk Arrays

Proceedings of the Sixth International Working
Conference on Scientific and Statistical Database

Management (price SFr. 40.-)

ProQuel: Using Prolog to Implement a Deductive
Database System

Block Implementations of the Symmetric QR and
Jacobi Algorithms*

3-wertige Logiken und stabile Logik

Computerarchitektur aus damaliger und heutiger
Sicht

