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Abstract

Two main topics are addressed. First, an algebraic approach is pre-
sented to define a general notion of expressive power. Heterogeneous
algebras represent information systems and morphisms represent the
correspondences between the instances of databases, the correspon-
dences between answers; and the correspondences between queries. An
important feature of this new notion of expressive power is that query
languages of different types can be compared with respect to their
expressive power. In the case of relational query languages, the new
notion of expressive power is shown to be equivalent to the notion used
by Chandra and Harel. In the case of non-relational query languages,
the versatility of the new notion of expressive power is demonstrated
by comparing a Boolean query language with a weighted query lan-
‘guage consisting of vague queries. We also demonstrate that the new
notion of expressive power is appropriate to compare the fixpoint query
languages with an object-oriented query language called FQL#*. The
expressive power of the Functional Query Language FQL* is the sec-
ond main topic of this paper. The specifications of FQL* functions can
be recursive or even mutually recursive. FQL* has a fixpoint seman-
tics based on a complete lattice consisting of bag functions. The query
language FQL* is shown to be more expressive than the fixpoint query
languages. This result implies that FQL* is also more expressive than
Datalog with stratified negation. Examples of recursive FQL* func-
" tions are given that determine the ancestors of persons and the bill of
materials.



1 Introduction

The expressive power is one of the important features of a query lan-
guage. Whether a specific need for information can be expressed in

a query language or not depends on its expressive power. A thor-
’ ough analysis of the expressive power of relational query languages has
been presented by Chandra and Harel in [9], [10] (see also [11] for
an overview and new results). They consider queries as partial func-
tions mapping relational databases to relations. A query language is
characterized by its corresponding set of queries. Considering a query
language as a set of partial functions, a query language QL' is as ex-
pressive as a query language QL iff QL' is a superset of QL. Using this
notion by Chandra and Harel, the expressive power of relational query
languages can be represented by set diagrams. Figure 1 shows such
a set diagram where the following query languages are represented as
sets of partial functions: The first-order query language [12], Data-
log [3], Datalog with stratified negation, and QPTIME, i.e. the set
of relational queries that are evaluable in polynomial time [10]. For

every atomic subset, a typical query is indicated. These queries are
described below.

ForAll: Let G be any finite graph. Query: Given a vertex v, is there
an edge from v to v’ for all vertices v'?

Exists: Let § be any finite graph. Query: Given a vertex v, does at
least one edge exist from v to any vertex v'?

TC (Transitive Closure): Let G be any finite gfaph. Query: Given
a vertex v, which are the vertices v’ that are reachable from v
(i.e. there is a directed path from v to v')?

NotTC: Let G be any finite graph. Query: Given a vertex v, which
are the vertices v’ that are not reachable from v (i.e. there is no
directed path from v to v')?

Game: Let G be any rooted tree where every leaf node is either black
or white. There are two players who know G and the color of
the leaf nodes. The root node is the start position of the game.
Player I starts moving down the tree by one edge. Then, player
IT moves down another edge. They continue until a leaf node is
reached. Player I wins if the leaf node is black and player II wins
if the leaf node is white.. Query: Does player I have a winning
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Fixpoint Queries ¢ Game

Stratified Datalog
o NotTC
First-Order Queries
e ForAll
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Datalog o TC
QPTIME e Even

Figure 1: Expressive power of relational query languages according to
Chandra and Harel.

strategy? Or equivalently, can player I win independently of the
moves by player II?

Even: Let G be any finite graph. Query: Is the number of vertices an
even number?

In Chandra and Harel’s approach [10], a relational database (D, R)
~of the type @ = (ag,...,ak—1) consists of a domain D and a k-tuple
"R=(Ry,...,Ri_1) where R; C D%. The domain D is assumed to be

a finite subset of a countable universe U. Chandra and Harel restrict
themselves to queries of type (@,b), i.e. queries Q mapping a relational
database (D, R) of type @ to a b-ary relation Q(D, R) C DP. From this
restriction follows that there is no query to express the bill of materials
as shown in the follewing. Let D = {0,...,2n — 1} be the domain and
let Ry be the relation defining the part/subpart structure shown in
Figure 2. The parts are identified uniquely by numbers such that
D={p1,...,Pn-1,q15---+qn—1,7, 8}. We define the following costs:

cost(r) =
cost(s) = 1
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Figure 2: Given this part/subpart structure, the total cost of part
r and its subparts cannot be' expressed by any query considered by
Chandra and Harel.




cost(p;) = 1 0<i<n
cost(q;) = 1 0<i<n

The part g; is contained twice in gi—1. The parts p; and g; are contained
a; times in r where a; € {0,1}. Similarly, the part s is contained aq
times in 7. The cost of r and all its subparts are

n—1
total_cost(r) = Z a;2!

=0

as it can easily be shown by induction on n. Thus, depending on the
part/subpart structure, i.e. depending on ay, ... ,Qn—1, the cost are

total_cost(r) € {0,...,2" — 1}

and hence, the domain D = {0,...,2n — 1} does not contain enough
elements to represent every possible answer if n > 2. More gener-
ally speaking, query languages having the ability to count cannot be
analyzed within the framework of [10].

In this paper, we present a more general framework to study the
expressive power of arbitrary query languages. We rely on an alge-
braic approach where heterogeneous structures represent information
systems and morphisms represent the correspondences between the
instances of the databases, the correspondences between the answers,
and the correspondences between the queries. Let I S and IS, be two
structures, each represeﬁting an information system. Such an informa-
tion system consists of a query language, a set of database instances,
a set of answers, and a query evaluation function. We call the query
language of IS, as expressive as the query language of I.S; iff there
exists a morphism from IS; to IS;. In Chandra and Harel’s approach
“as expressive as” is defined by means of set inclusion whereas in our
approach, “as expressive as” is defined by means of morphisms. This
kind of generalization is often used in mathematics. In our case, this
generalization facilitates the comparison of the expressive power of
query languages of different types. This more general comparison ca~
pability is demonstrated by comparing a Boolean query language and
a weighted query language consisting of vague queries. The answer to
a Boolean query consists of a set of data items, whereas the answer to
a weighted query consists of a function which assigns every data item a
probability that the data item belongs to the answer. We shall present



a necessary and sufficient condition for the cases where the Boolean
query language is less expressive than the weighted query language.

A further generalization comsists of allowing infinite domains. It
© should be noted that infinite domains are not only important for count-
ing but also for vague queries [15], [23] and for Information Retrieval
query languages [22], [27]. Infinite domains do not necessarily lead to
unbounded computation times. This fact is demonstrated by a query
language FQL* which is more expressive than the fixpoint query lan-
guages but still evaluable in polynomial time.

FQL* is a Functional Query Language with a syntax similar to the
syntax of OSQL [6]. OSQL is an interactive interface to the Iris DBMS
[28]. Unlike the specifications of OSQL functions, the specifications of
FQL* functions can be recursive or even mutually recursive. FQL*
has a fixpoint semantics based on a complete lattice consisting of bag -
functions. Examples of recursive FQL* functions are given that de-
termine the ancestors of persons and the bill of materials. It is shown
that these FQL* functions are computed in polynomial time even if
the parents relation and the parts_of relation contain cycles. In these
cases, a person may be an ancestor of himself and the cost of a part
may be infinite. We show. that there are non-hierarchical relations
where these results are meaningful. i

The main contributions of this paper are the following. First of
all, a new notion of expressive power is introduced which facilitates
the comparison of formal languages with respect to their expressive
power even when these query languages and their underlying data
model are of different types. Second, a new criterion is presented
which characterizes the cases when a Boolean query language is less
expressive than a weighted query language. Finally, an object-oriented
query language is introduced which has an expressive power that goes
beyond the expressive power of the fixpoint query languages.

The paper is organized as follows. In Section 2, our new notion
of expressive power is introduced. In Section 3, we show that for
relational query languages, Chandra and Harel’s notion of expressive
power coincides with our notion of expressive power. In Section 4,
the expressive power of a Boolean query language and the expressive
power of a weighted query-language are compared. In Section 5, the
object-oriented query language FQL* is introduced. In Section 6, we
discuss the expressive power of FQL*. In Section 7, some conclusmns
are drawn Appendix A contains the proofs of two theorems.




2 A New Notion of Expressive Power

In this section, we introduce a new notion of expressive power. We
start with a simple model of an information system. An information
system is represented by a structure, i.c. a heterogeneous algebra [7]

IS = (DBS,QL,AS, a) (1)

~ where tHe database system, DBS, is the set of possible instances of the
database; the query language, QL, is the set of possible queries; the
answer system, AS, is the set of possible answers; the query evaluation
function, «, is a partial function mapping DBS x QL to AS. The
following example shows an information system based on a relational
database system that is accessible by means of relational algebra.

Example 1 The components of the information system
VISra. = <DBSrel:QLra, ASrelaa'ra>

are the following. The database system DB Srel conststs of all instances
of a relational database. Every instance (D, R) is represented by a do-
main D and tuple of relations R = (Ry, ... , Rr—1) where R; C D%
The query language QL,, consists of relational algebra expressions
[26]. The answer system ASre consists of relations R C Db The
evaluation function o, assigns every instance (D,R) of the database

and every query q an answer oro((D, R), q).

A complete specification of an information system should also con-
tain the specification of a modification language ML and the specifi-
cation of a modification function p: DBS x ML — DBS. Since, in
this paper, we are interested only in the expressive power of the query
language, it is sufficient to represent an information system by the
simplified structure (1) which defines neither a modification language
nor a modification function.

Below, we define when a query language QL, is as expressive
as a query language QL;. We will see that this relationship be-
tween QL; and QL depends on (1) the information systems to which
QLy and QL; belong, (2) the correspondences between the instances
db; € DBS); and the instances db, € DBS,, and (3) the correspon-
dences between the answers a; € AS; and the answers ay € AS,.
The correspondences between the instances of the databases are given
by the function f, the correspondences between the answers are given
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Figure 3: Expressive power of qliery languages.

by the function g, and the correspondences between the queries are
represented by the function & (Figure 3).

Definition 1”Let ISl = (DBSl,QLl,AShCYl) and ISQ = (DBSz,
QL,, ASs, az) be two information systems and let f : DBS; — DBS,
be a function which determines for every instance dby € DBS), a
corresponding instance f(db;) € DBS, and let g : range(cy) —
_range(c) be an injective function which determines for every answer
ay € range(a;) a corresponding answer g(a1) € range(cs). The query
language QLy of ISy is called as ezpressive as the query language QLy
of ISy with respect to the correspondences given by f and g iff there
ezists a function h: QL1 — QLo such that ’

V(dby, 1) € dom(ay) : g(ay(dby,q1)) = aa(f(dby), h(z)).  (2)

The function g is required to be injective because two different
answers of AS; must correspond to two different answers of AS;. The
function f is not required to be injective because several equivalent
instances in DBS; may correspond to a single instance in DBS, (see
below). Subsequently,

QLIS Zpg QL(IS) (3)

denotes that QLs of I.S; is as expressive as QL1 of IS; with respect
to the correspondences given by f and g. The relationship <y, can

also be characterized by means of morphisms. Morphisms are defined
as follows.
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Definition 2 Let § = (U, V,W,a) and T = (X,Y, Z, B) be two struc-
tures where a : U XV = W and 8 : X XY — Z are partial functions.
The set of functions {f : U — X,g: W — Z,h: V — Y} is called a
morphism if

V(u,v) € dom(a) : g(a(u,v)) = B(f(u), h(v)) 4)

If the functions f, g, and h are bijective the morphism {f,g,h} is
called an isomorphism [7].

Proposition 1 Let IS; = (DBS,,QL1,AS:, ;) and ISy = (DBS,,
QL2, ASs, a2) be two information systems and let f : DBS; — DBS,
be a function which determines for every instance db, € DBS; a
corresponding instance f(dby) € DBS; and let g : range(c;) —
range(as) be an injective function which determines for every answer
ay € range(ai) a corresponding answer g(a1) € range(as). The query
language QLo of IS, is as expressive as the query language QL. of
IS) with respect to the correspondences given by f and g iff there ex-
ists a function h : QLy — QL, such that {f : DBS; — DBS,,g :
range(ay) — range(az),h : QL; — QLs} is a morphism from IS to
IS,.

Proof. {f,g,h} is a morphism because of (2). Conversely, (2) is satis-
fied because {f,g,h} is a morphism. ¢

In order to define “equally expressive”, we introduce an equiva-
lence relation between the instances of the database and an equiv-
alence relation between the queries. Given an information system
IS = (DBS,QL,AS, &), two instances db,db’ € DBS are called equiv- -
alent iff for every query ¢ € QL, the answer a(db,q) is equal to the
answer a(db’,¢). Similarly, two queries ¢, ¢’ € QL are called equivalent
iff for every instance db € DBS, the answer a(db,q) is equal to the
answer a(db, ¢').

dbmdb <= Vg€ QL:adbq)=a(dV,q) (5)
g~q &= Vdbe DBS:a(db,q) = a(db,q’) (6)

Example 2 Let (DBSrel, QLrq, ASrel, 0trg) be an information system
consisting of a relational database system accessible through relational
algebra (Ezample 1). The following queries are equivalent.

select[age = 20](project[name, age](employee))
project[name, agel(selectjage = 20](employee))

- 11




It is easy' to show that both the relation = defined on DBS and
the relation ~ defined on QL are equivalence relations, i.e. reflexive,
symmetric, and transitive relations. Hence, the set DBS and the
set QL are partitioned into disjoint equivalence classes. The class
consisting of all instances that are equivalent to the instance db is
denoted by [db]. Similarly, the class consisting of all queries that are
equivalent to the query ¢ is denoted by [g]- The set of all equivalence
classes of instances in DBS is denoted by DBS™ and the set of all
equivalence classes of queries of QL is denoted by QL?. Using this
notation, every evaluation function o determines a function a®.

o™ : DBS™ x QL — AS, ([db],[g]) ~ a(db,q) (7)

Note that o is well defined. From db = db’ and ¢ = ¢’ follows

that a(db, q) = a(db’,¢’) and hence, the function value o ([db], [q]) is \
independent from the particular instance db representing [db] and from

the particular query g representing [q]. Every function f : DBS; —

DBS, satisfying '

dby = dl, =  f(dby) ~ f(db}) (8)
~ induces a mapping f~ from DBST to DBSZ.
f¥: DBSY — DBSE, [dby] > [f(dby)] (9)

Note that the function value f~([db;]) is well defined. Because of
(8) it is independent of the particular instance db; represemnting the
equivalence class [db;].

The relationship “equally expressive” can be defined in two dif-
ferent ways. First, it can be defined by means of an isomorphisms
from (DBST,QLY, ASy,af) to (DBSY, QLY , AS,, 05’). Second, it
can be defined by means of <y,;'and >+ ;~1 provided the correspon-
dences given by f : DBS; — DBS, and the correspondences given
by f* : DBS; — DBS; are compatible (i.e. f*(f(db;)) = db, and
F(f*(db2)) = dby). Figure 4 shows that this kind of compatibility
requires a bijective correspondence between the equivalence classes
rather than between the particular instances of the two databases.
For instance, the equivalence class {db;,db],db{'} corresponds to the

" class {dbs,dbs} and there exists no bijective correspondence between
the elements of the classes.

~We will use isomorphisms, i.e. thé first alternative, to define the

relationship “equally expressive.” Later, we will show that this def-
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Figure 4: Correspondences between equivalence classes.

inition is equivalent to the second alternative (Proposition 4). This
shows that the concept of “as expressive as” is quite a robust concept.

Definition 3 Let IS; = (DBSy,QL,,AS1,c1) and ISy = (DBS,,
QLs, ASs, cxo) be two information systems. Assume that the correspon-
dences between the instances of the databases and between the answers
are given by the function f : DBS, — DBS; and by the function
g : AS; — ASs respectively. QLy of 1S) and QLo of 1S5 are called
equally expressive with respect to f and g, denoted by

QL(IS1) =55 QLa(IS), (10)

iff f satisfies (8) and there exists a function h™ : QLY — QL% such
that the morphism {f™,g,h™} is an z.somorphzsm from (DBST,QL%,
ASy,af) to (DBSF,QLY, AS,,af).

The existence of an isomorphism {f,g,:} from the information
system (DBS;,QL,,AS;,a;) to the information system (DBSs, QLa,
ASs,a5) implies the existence of an isomorphism {f¥,g,h~} from
(DBST,QLY, ASy, afY) to (DBSY,QLY, AS,, af’) but not vice versa.
This asymmetry is because two equivalent instances db; and dbj in
DBS; may correspond to a single instance dbs in DBS, (see Figure 4)
or two equivalent cueries ¢; and ¢} in QL; may correspond to a single
query qo in QLs. Thus, two query languages can be equally expressive
even if there are no bijective correspondences between the queries or
between the instances of the databases.

- 13



Definition ‘4 QLQ of IS, is more expressive than QLy of IS, with
respect to f and g, denoted by

QL (IS1) <tg QL,(IS2), (11)

iff QLy is as espressive as QL but QL, and QLy are not equally
eTpressive.

The following proposition will be useful in the subsequent sections
where we will prove that some query languages are more expressive
than others.

Proposition 2 If QL1(IS1) =54 QL2(IS2), there euists for every
query ga € QLy a query g1 € QL such that for all dby € DBS,,

(b, q1) € domain(ar) = glaa(dby,q1)) = ea(f(db1), a2) (12)

Proof. From QLi(IS)) =s4 QL2(IS;) it follows that every query
g2 belongs to an equivalence class [h(q1)]. From (4) follows that ¢
satisfies (12). ¢ : :
I QL (IS1) <fy QL2(IS2) and we want to prove that QLy(IS1)
< ;g QL2(IS3),it is sufficient to show that (12) yields a contradiction.
- The following proposition shows the transitivity of the relationships
<t =fg 804 <sg.

Proposition 3 Given 8 € {<,=,<}, from QL1(IS1) 05,4 QL2(IS,)
and QLa(IS5) 851,y QL3(IS3) follows QLy(IS1) Ofiof,g09 QL3(1Ss).

Proof. The transitivity of <y 4, =74, and <j g, follows immediately
from their definitions. ¢

Finally, we will show that =;, is equivalent to <, and >s« 41
provided the correspondences given by f and the correspondences
given by f* are compatible.

Proposition 4 Let IS; = (DBS),QLy,ASy, 1) and ISy = (DBSs,
QLs, AS>, as) be two information systems. Assume that the correspon-
dences between the instances-of the databases and between the answers
are given by the function f : DBS; — DBSy and by the function
g:AS; — ASs respectively. Then, QL1(1S1) =, QL2(1S2) iff there
is a function f* : DBSy — DBS; compatible with f (i.e. Vdby €

DBS, : f(f*(dby)) = dby and Vdb, € DBS; : f*(f(db1)) ~ db;) such-

that QL1 (IS1) <1, QLa(IS:) and QLy(IS1) 25+ g+ QLy(ISs).

14




Proof. From QLy(IS1) =54 QLy(IS) it follows that QL,(IS;) <fg
QL>(ISs) because for every (dby,q1) € range(a;),

glay(dby,q1)) = g(af([dlﬁ], [1]))
= a2(f(db1),h(‘h))~

Assume that QLi(IS1) =54 QL2(ISs). Since {f¥,g,h¥} is an
isomorphism, there exists a function f* : DBS, — DBS; such that
Ydbs € DBSs : f(f*(dbs)) = dby and Vdb, € DBS; : f*(f(db1)) ~ dby
(see also Figure 4). For the same reasons, there exists a function
h* : QLy — QL; such that Vgu € QLs : h{h*(g2)) ~ g2 and Vg €
QL : h*(h(q1)) = q1. For every (dby,qs) € range{as), we obtain the
equalities

glaa(F*(db2),h*(g2))) = g(af (If*(db2)], [R* (g2)]))
a5’ (FF([f*(db2)]), B™ (" (g2)]))

s (77" (dh2)), (A (02))
as(dbs, q2).

Since g is bijective, ay (f*(dbs), h*(g2)) = g7 (@a(dbs, 2)) and hence,
QL1 (IS)) =+ g-1 QLy(IS3).

The other direction is proven as follows. Assume that there exists
a function f* : DBSs — DBS; such that Vdby € DBSy : f(f*(dbs)) =
dby, Vdby € DBS, : f*(f(db)) = dby, QL1(IS:1) <y, QL2(IS,), and
QL1 (IS1) >+ g—1 QLy(ISs). The function f~ is well defined because

f(dbr) % f(db)
= Jg : aa(f(db1),q2) # aa(f(db)), ) -
= 3gz: g7 (aa(f(db1), ¢2)) # 97 (a(f(db1), a2))
= 3 : a1 (F(f(db1)), h*(a2)) # en (F*(f(dbY)), h*(qv))
= 3q :o(dby,q1) # o1 (dby, 1)
= dby ¢ db].

This implication is equivalent to (8). The function f¥ is injective
because '

»

dby s dby = 3Iq1: ar(dby,q1) # o1 (dby, q1)

15




=" 3q; : g(e1(dbr, @) # g(ar(dbi, q1))
= 3q1 : 2(f(db1), h(q))) # a2(f(dby), h(a1)))
= f(db1) # F(db}).

The function f¥ is surjective because for ‘v’dbg € DBS; : f(f*(dbs)) =
dby. This shows that f® is bijective.

Since ¢! exists, the function g is bqectlve The function h® is
well defined because

/

@ Rq = Vdb :on(dby,qu) = o1 (dby,qp)
&= Vdb; : g(on(dbr,q1)) = g(ea(dbi, q1))
& Vdby : ap(F(db1), h(q)) = a2(f(db1), h(g1))
&= Vdby : ag(dba, h{q1)) = a2 (dba, h(qy))
= h(q) = h(g)-

We used the fact that g is injective and f™ is surjective. At the same
time, we can conclude that h™ is injective.

The function h™ is surjective because g3 € QLy, we have for every
dby € DBSs: .

a2 (dby, g2) » = g(a1(f*(dba), h*(g2)))

aa( (" (@), (B (22))
aald, (" ().

and hence, h(h*(gs)) & gs. This shows that h™ is bijective.

Because {f,g,h} is a morphism, {f¥,g,h~} is also a morphism.
It is actually an isomorphism because f¥, g, and h® are bijective and
hence, QL1 (IS1) =, QL2(1S3). ¢ :
~ In this section, we have defined “as expressive as” (<y ), “equally
expressive” (=y,,), and “more expressive than” .(<y ). The first rela-
tionship is associated with a morphism from one information system
to another information system. The second relationship is associated
with an isomorphism from the first information system modulo & to
the second information system modulo ~. Alternatively, = 7, can be
defined as <y,5 and >y« ;1. The third relationship is defined as usual,
le. as <y and #j4. In the subsequent sections, such relationships
will be identified between query languages of various types.

i

il
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3 Relational Query Languages

In this section, we first define what relational query languages are,
in the sense of Chandra and Harel [9], [10]. We will show that when
comparing the expressive power of relational query languages, Chandra
and Harel’s notion of expressive power 1s equivalent to our notion of
expressive power.

An instance (D, R) of a relational database system D B S, consists
of a finite domain D and relations R = (Ro,...,Rp—1) where R; C
D%, The countable universe U is assumed to entail all domains.

V(D,R) € DBS,;: DCUA |D|eN (13)

The answer system contains all relations that have a finite arity.

AS,q = {RCU®|beN} (14)

Definition 5 (Chandra & Harel) Given an information system I.S
= (DBS,e1,QL, AS;e1, 0), the query language QL is called relational
iff for every query q € QL, there exist a tuple @ = (ao,...,ax—1) € N
and a naturel number b € N such that from ((D,R),q) € dom(a) it
follows that R = (Rq,...,Rg_1) where R; C D% and o((D,R),q) C
Db The tuple (@,b) is called the type of the query q. The query q is
called computable iff the function

Fy:DBSpe) — ASyper, (D, R) = o((D, R),q) (15)

5 a partial recursive function and for every isomorphism h from (D,F)
to (D',*—) h(Fy(D,R)) = F (D', R) where h(zg,. .., 2-1) := (h(zq),
s h(zp-1)).

As we pointed out in the introduction, an important consequence
of this definition is that relational query languages caunot count. For
instance, the query that computes the bill of materials (Flgure 2) does
not belong to a relational query language because its range is infinite.
Below, a fixpoint query language is given as an example of such a
relational query language. There are other fixpoint query languages
which all have the same expressive power [18], [20].

The fixpoint query language FO + LFP encompasses a fixpoint
operator. Let (D,R) be an instance of a relational database as de-
scribed above. Furthermore, let o(P,Z) be a first-order formula with
a distinguished r-ary predlcate symbol P and r free variables T =
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(2o, ...,Zr—1). In addition to P and %, the formula ¢(P, ) may also
contain A, V, =, 3,V, Ro ..., Rk—1, and bound variables. The formula
(P, %) is assumed to contain only positive occurrences of P. Thus,
the operator  given by r(P) == {d € D" | ¢(P,d)} has a least fix-
point peo = 1fp(r) because  is monotonic and D is finite. When
the first-order query language FO is augmented by a fixpoint opera-
tor, the fixpoint query language FO+ LFP is obtained which is much
more expressive than the first-order query language FO (Figure 1).
The fixpoint operator determines the semantics of P occurring in a
first-order formula @(P,%). The fixpoint query language FO + LFP
can be restricted to formulas containing the fixpoint operator at most
once [20]. ' .

In what follows, two examples of fixpoint queries are given. First,
when the fixpoint operator is applied to

(P, (z0,21)) = R(zo,z1)V (32)(R(z0,z) A P(x,21)), (16)

the transitive closure of R is obtained (query TC in Figure 1). Second,
applying the fixpoint operator to

WP, (20)) | an
= B(zo) V (3z)(E(xo,z) A (Va')(E(z,z") — P(z'))) (18)

vields a least fixpoint which determines whether player I has a winning
strategy or not. The relation F represents the edges of the tree and B
represents the black leave nodes. Let 1o, be the least fixpoint and r
be the root of the tree. Then, oo(r) is the query Game in Figure 1.
The query Game cannot be formulated in Datalog with stratified
. negation [10]. However, if the body of the rules may contain quantifiers
[29], the query Game can be expressed by means of the following rules.

win(S) « black(S). -~ (19)
win(8§) + move(S,T) AVU : (move(T,U) — win(U)). (20)

Let QL; 'and QL, be two relational query languages which be-
long to the information systems I.S; = (DBSre, QL1, ASrer, 1) and
ISy = (DBSre;, QLy, ASrer, 0i2) Tespectively. ‘According to Chandra
and Harel, QL, is as expressive as QL; iff {F,, | ¢ € QL,} C {F,, |
g2 € QL2}. The following proposition shows that this notion of ex-
pressive power is equivalent to our notion of expressive power.
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Proposition 5 Let IS; = (DBS,QL;,AS, ) and IS, = (DBS,
QLs, AS, a3) be two information systems that are based on the same
database system and on the same answer system. Furthermore, let
I, : DBS - DBS and I, : AS — AS be the identity mappings,
i.e. I;(db) = db and Ix(a) = a. Then, QL1(IS1) <1,.1, QLy(IS,) iff
Fi = {Fq : DBS — AS,db+ a1(db,q1) | 1 € QL1} C Fo := {Fy, :
DBS — AS,db— an(db,q2) | g2 € QL5 }.

Proof. From QL:(IS1) <11, QL2(IS,) follows F,, = Fiyq,) and
hence, 71 C F2. Conversely, from F; C F; follows that for every q; €
QL there exists a g2 € QL; such'that Fy, = F,,. Hence, there exists a
mapping h : QL1 — QLj such that Fy, = Fy,,) for all ¢; € QL;. The
© existence of such a mapping implies that QL; (IS1) <p,.1, QL2(IS).
<&

Using the proposition above, the results of various authors on the
expressive power of relational query languages can be summarized in
the following way (see also Figure 1).

FO =I,I2 RelAlg (21)

FO <y,,1, Datalog” (22)

Datalog ~ <p,,1, Datalog™ ‘ (23)
Datalog™ <p,.1, FO+ LFP (24)

FO+LFP <5 QPTIME (25)

First-order queries ¢ € FO are first-order formulas. The answer
to a first-order query ¢ is {d | ¢(d)}. As shown in [12], FO and re-
lational algebra, RelAlg, are equally expressive. If <, >, <, and >
are excluded, FO is less expressive than Datalog™, i.e. Datalog with
stratified negation [3]. This fact is shown in [1]. Whether or not the
transitive closure can be expressed in RelAlg or in F'O when <, >,
<, and > are available seems to be an open question (see also com-
ment in {17]). Negation is not allowed in pure Datalog [3]. Due to
the missing negation, the query NotT'C is not expressible in Datalog
- (Figure 1). Thus, Datalog™ is more expressive than pure Datalog.
Furthermore, the fixpoint query language 'O + LFP is more expres-
sive than Datalog™ [21]. Finally, FO + LFP is less expressive than
QPTIME [10]. .
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4 Weighted Query Languages

In this section, we compare the expressive power of a Boolean query
language with the expressive power of a weighted query language where
every query consists of vague search criteria. We will present a neces-
sary and sufficient condition which characterizes the cases where the
Boolean query language is less expressive than the weighted query lan-
guage.

The Boolean query language and the weighted query language are

of different types. The answer to a Boolean query is a set of data items,
ie. the set of items that satisfy a given Boolean condition: On the
other hand, the answer to a weighted query is a function that assigns
every data item a numerical value. This numerical value expresses the
degree up to which the specified search criteria are satisfied.

Let D = {dy,...,dn-1} be the set of stored data items and let & =
{©0,...,m-1} be a set of search criteria. Every search criterion ¢;
is a function ¢; : D — [0,1], dj — i(d;). The value ¢;(d;) expresses
how well the search criterion ; is satisfied by dj. For instance, let
©; be the search criterion age(d;) = 20.” The function ¢; can be
modeled by means of a regression function which yields ¢;(d;) = 1.0

if age(d;) = 20. The value ¢;(d;) is decreasing when |age(d;) — 20| is

increasing [15].

For the subsequent analysis we have to know only how well the
search criteria are satisfied by the data items. Hence, every data item
d; can be represented as a vector -

i = (po(dj)s . s om—1(dj))- (26)

We assume that the data items are uniquely identified by these vectors
such that every instance of the database system can be represented by
an m X n matrix A where '

Aij = gild;). (27)

According to our assumption, the data item is uniquely identified by
the the j** column of the matrix A. The database system A contains
some matrices A, each representing an instance of the database system.

A Boolean gquery is a Boolean expression of search criteria. Thus,
every search criterion ¢; is a Boolean query and (¢ A ¢'), (¢V ¢'), and

(—q) are Boolean queries if ¢ and ¢’ are Boolean queries. The set of

all Boolean queries is denoted by QLs. -
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The answer to a Boolean query consists of a set of data items. The
power set of D is denoted by AS, which represents the answer system.
Thus, ASy contains all possible answers to Boolean queries.

The Boolean query evaluation function ap : A x QL, — AS} is
defined inductively.

ap(A,p) = {djeD|4;;=1}) : (28)
ap(A,gAg) = an(4,q)Nas(4,q) (29)
ap(A,qVe) = oap(A,q)Uan(4,q) (30)

ay(A,~q) = D—ay(4,q) . (31)

The Boolean information system is represented by the following struc-
ture.

BIS = (A,QLy, ASy, ) (32)

As an example of a Boolean information system, we may think of a
Boolean full-text retrieval system. Every search criterion ¢; corre-
sponds to a keyword which either occurs in the document d; or not.
In the former case, p;(d;) =1 and in the latter case ;(d;) = 0.

A weighted query is a vector ¢ = (go,- .., qm-1)" where each com-
ponent ¢; is a weight expressing the importance of the search criterion

. The weighted query language QL,, consists of all m-dimensional
vectors, i.e. QL, =R™.

The answer to a weighted query consists of a vector of so—called
retrieval status values.

aw(4,q) = (RSVu(q,do),...,RSVu(q,dn-1)) (33)

The retrieval status value RSV,,(q,d;) expresses how well the search
criteria specified by the query ¢ are satisfied by the data item d;. Such
an answer can also be considered as a fuzzy set which specifies for every
data item the probability that the item belongs to the answer set. As
shown in [24], meaningful retrieval status values can be obtained by
means of an appropriate positive definite m x m matrix M.

RSV (.Za )) = Z‘Ih]‘[hz 2,3 (34)

In matrix notation, equation (33) becomes a,,(4,q) = ¢ MA. In the
simplest case, M is the identity matrix and the retrieval status value
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is equal to the inner vector product of the query vector ¢ and the item
vector d;. In this case, we have

RSVy(g,d;) = @Ao;+...+ gm-1Am—1,j (35)

and equation (33) becomes aw(4,q) = g7 A. Equation 35 shows that
the retrieval status value is maximal if all specified search criteria are
satisfied. The objective of weighted retrieval is to achieve that the
more the user knows about the desired data items the more likely he
or she will find them. Unfortunately, Boolean information systems
do not always have this behavior: The more the user knows about
the desired data items and the more search criteria the user specifies,
the more likely it happens that one of the specified search criteria is
“not completely correct. In this case, the desired data items are not
retrieved by a Boolean information system. This problem is usually
circumvented by artificial keys (e.g. employee numbers or social se-
curity numbers) such that the set of the desired dataitems can be
specified by very few search criteria. _ :

Tet AS,, denote the set of possible answers to weighted queries.
Thus, AS,, contains vectors consisting of n retrieval status values. We
specify a weighted retrieval system in the following way.

WIS = (A ,QLuy,ASy,ow) (36)

Our main result on the expressive power of Boolean retrieval and
weighted retrieval will be based on the proposition given below. This
proposition contains a necessary and sufficient condition which char-
acterizes the cases where every Boolean query can be replaced by a
weighted query. The proof of the proposition is given in Appendix A.

Proposition 6 Let g, be any Boolean query and let Jq be the set of
indices of those items dj that satisfy qu, i.e. Jq:={j | dj € ap(4,qv)}.
There exists a weighted query g such that for all data items d; in D,

1.0 ifd; € a(A, @)
0.0 otherwise

RSViy(qu,d;) = { (37)
if and only if

jedhdi= > adn = Y, ea=1,  (38)

hed ~{i} , hedg—{j}
: n—l .
JE TN = cndy = Y cp=0. (39)
. h=0 hed,
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The Boolean information system BIS = (A, QLy, ASp, o) and the
weighted information system WIS = (A,QL,, ASy,ay) are based
on the same database system A; however, their answer systems are
of different types. Let A be a non-zero matrix representing a non-
trivial instance of the database system. The Boolean queries generate
a finite set of answers, i.e. {as(4,q) | @ € QLp} is finite; however,
the weighted queries generate an uncountable infinite set of answers,
ie. {@w(4, qw) | qw € QLy} is uncountably infinite.

In what follows, we compare the expressive power of QL; and the
expressive power of QL,,. We define the correspondences between the
answers of AS, and the answers of AS,, as follows.

g1 ASy — ASw, D' = (xpr(do)y - Xt (dn-1)) (40)

The characteristic function xpr : D — R of the subset D' C D is
defined as usual.

1 ifd;eD’
~XDI(dJ‘) .—_{ i JG

0 otherwise (41)
The correspondences between the instances of the database are given
by the identity mapping I; : A — A, A+ A

Proposition 7 Let BIS = (A, QLy, ASy, o) be a Boolean Informa-
tion System such that range(ay) contains more than one element and
let WIS = (A,QLy, ASy, ) be o Weighted Information System.
Furthermore, let I; : A — A and g : ASp — AS,, be the functions
defined above. These functions determine the correspondences between
the instances of the databases and the correspondences between the an-
swers. The Weighted Query Language QL.,, of WIS is more expressive
than the Boolean Query Language QLy of BIS with respect the corre-
spondences given by I and g iff all instances A of the database system
A satisfy the conditions (38) and (39).

- Proof. Assume that all A € A satisfy the conditions (38) and (39).
QLy(BIS) <1,,§ QLww(WIS) follows immediately from Proposition 6.
Because range(a;) contains more than one element, there exists a
query ¢, and a document d; such that RSV, (qu,d;) # 0. Hence, gy
O ¢w + ¢y do not have a corresponding query in QLp because either
0 < RSVy(qu,d;) # 1 or 0 < RSVyy(qw + qu,d;) # 1. From (12)
follows that QLp and QL. are not equally expressive.
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Assume that QLy(BIS) <1, @Lw(WIS). By definition, for every
Boolean query gy there is a corresponding weighted query gy, such that
VA € A: g(an(A,q)) = ¢w(A,qw). From Proposition 6 follows that
(38) and (39) are satisfied. ¢

The propositions presented in this section show that there are re-
dundancies between Boolean query languages and weighted query lan-
guages. A necessary and sufficient condition was given which deter-
mines the cases where a Boolean query can always be replaced by an
equivalent weighted query. In DB-theory, redundant data are related
to inconsistent data [26, pp. 211]. From an algebraic point of view,
the question arises whether redundancies between query languages are
related to inconsistencies between query languages. Indeed, there are
inconsistencies in the case of Boolean retrieval and weighted retrieval
. The problem of these inconsistencies is the separability problem 8]
which has been known in Information Retrieval for many years. Prob-
lems of the same type also occur in probabilistic databases [5] and
in databases with maybe tuples [14]. Analogously to database design
theory, we may argue that the separability problem would not occur
if there were no redundancies between Boolean retrieval and weighted
retrieval.

5 The Query Language FQL*

In this section, we introduce the Functional Query language FQL* as
an example of a non-relational query language that provides a simple
form of counting. Thus, as pointed out in Section 1, Chandra and
Harel’s notion of expressive power cannot be used to compare the
expressive power of FQL* with the expressive power of relational query
languages. In Section 6, we use our notion of expressive power to show
that FQL* is more expressive than the fixpoint query languages. -
We do not describe the full language FQL*. We restrict ourselves
to those parts of FQL* which determine its expressive power. The
syntax of FQL* is similar to the syntax of OSQL [6], [28]. Unlike the
specifications of OSQL functions, the specifications of FQL* functions
can be recursive or even mutually recursive. Like Datalog, FQL* has
a fixpoint semantics that can be computed within finite time or more
precisely, within a time bounded by a polynomial function of the size
“of the database. In this section, we give examples that show how the
ancestor function and the bill of materials are formulated in FQL*.
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Every FQL* function f is associated with a unique name denoted
by name(f). There are three different types of FQL* functions: stored
functions, built-in functions, and derived functions. Similarly to OSQL
[6], stored functions are stored by means of tables. For instance, a
table may store the parents of persons. A built-in function is defined
procedurally. For instance, given some numbers, the built-in function
sum computes the sum of these numbers. Finally, derived functions
are defined in a declarative way as described below.

FQL* functions are bag functions defined as follows. A bag A is a
multiset which may contain an element y of a domain Y more than
once [2]. In our case, a bag may even contain an element infinitely
many times. The number of occurrences of an element y in a bag A
is denoted by A(y). Let N = {0,1,2,...,w} be the set of natural
numbers together with the limit ordinal w denoting infinity. Every
bag A is represented as a function A: Y — N,y A(y). The set
of all bags with domain )" is denoted by B(Y). A bag A € B(Y) is
called a finite bag iff zer A(y) < w. Subsequently, finite bags are
written like sets, except that an element may occur several times (e.g.
A = {a,a,b}). Abag A € B(Y) is contained in a bag A’ € B(Y) iff
every element y € ¥ occurs in A’ at least as many times as in A.

AC A = Vi AQy) < A'(y) )

Given a natural number n and two bags A, A’ € B(Y'), the intersection
AN A’, the union A Lt A/, the sum A + A’, and the multiple n x A are
defined as follows.

ANA Y — N,y - min(A(y), 4'(y)) (43)
AUA Y — N,y — maz(A(y), A'(y)) (44)
A+ A Y 2N,y Ay) +4'(y) (45)
nxA:Y o N,y nAly) (46)

A bag function is a functional whose range is a set of bags. We will
restrict ourselves to bag functions of the following types

f: X - B(Y) (47)
g:B(X)— B(Y) (48)
where X and Y are sets of objects or, in the terminology of object-

oriented database systems, X and Y are _classes. Every function value
f(z) is a bag, i.e. a mapping from ¥ to N, and f(z)(y) is the number
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Figure 5: A directed graph.

of occurrences of y in the bag f(z). The following example shows two
bag functions associated with a directed graph.

Example 3 Let G = (V,E) be the graph with vertices V and edges
E CV xV as shown in Figure 5. The successor function s : V. —
B(V),v + s(v) determines the bag of immediate successor vertices for
every vertez. T

s(a)={} s(®)={a,c} s(c)={a}
The bag function p: V — B(V),v + p(v) assigns every vertez v a bag
p(v) which contains a vertez v’ as many times as there are different
paths from v to v'. '

@)= »()={aac ple)={a)

If the graph G represents a “part-of ” relation, s(v) contains the im-
“mediate subparts of v and p(v) contains all subparts of v, i.e. p(v)(v')
determines how many times the part v' is contained in part v.

Given a natural number n and two bag functions f : X — B(Y")
and g : X — B(Y), the intersection f g, the union f Ll g, the sum
- f + g, and the multiple n * f are defined as follows.

fNg:X — BY),z— f(z)Ng(z) (49
fug:X — B(Y),z— f(z)Ug(z) (50)
f+g:X = B({Y),z fz)+g(z) (51)

n*xf: X = BY),z — nx* f(z) (52)

Given a set of bag functions mapping X to B{Y), we define a
partial ordering C on this set. Let f : X — B(Y) and g : X — B(Y)
be such bag functions. Using (42), the relation C on bag functions is
" defined by means of the relation C on bags.

fCg &= VzeX:f(z)C g(:r:) (53)

26



Table F' || Table H || Table FH
XY (Y| Z | X Z
a | p D U a u
b p P v a v
b q q v b u
: b v
q v : :
b V.

Figure 6: The tables F,v H, and FH represent the bag functions f :
X = B{Y)zr f(&),h:Y = B(Z),y— h(y),and ho f : X —
B(Z),z + h(f(=)) respectively.

FQL* uses a generalized form of composition of bag functions.
The generalized form facilitates not only the composition of functions
f: X — B(Y) and g : B(Y) — B(Z), but also the composition of -
functions f : X — B(Y) and h : ¥ — B(Z). Before defining h(f(z))
in terms of bags, we define it by means of relational algebra. Assume
that the bag functions f and & are represented conceptually by the
tables F' and H (Figure 6). These are conceptual representations be-
cause, for instance, the table H contains the tuple (g, v) infinitely many
times. See the proof of Proposition 9 for the tables that are actually
used to compute the composition.

The tables F' and H determine the bag functlons f and h by

f: X = B(Y),z— IY]|(c[X = z|(F)) (54)
h:Y — B(Z),y— I[Z](c]Y = y|(H)) (55)

where ¢ is the conventional select operator and II is a special project
operator which does not remove duplicates. In this way, the bag func-
tion h assigns the element ¢ the bag h(q) which contains v infinitely
many times, i.e. h(g)(v) = w. The composition i(f(z)) is based on
the natural join of F' and H (the join attribute is ¥).

h(f(2)) = T[Z](o[X = 2](F X H)) (56)

The resulting function h o f : X — B(Z),2 — h(f(x)) is represented
by the table FH (Figure 6).

In what follows, we define the generalized composition in terms of
bags. Let f: X — B(Y), g: B(Y) = B(Z),and h : Y — B(Z) be
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three bag functions. We define the compositions g o fand ho f as
follows. ' :

- gof:X — B(Z),z 9(f(2)) (57)
hof:X — B(Z),z— 3, F()(y) = h(y) (58)

Note that the function value 35 f(z)(y) * h(y) is defined by (46) and
(45). The bag hof(x) is obtained by determining the bag f(z) and then
adding up the bags h(y) for every occurrence of y in f(z). Sometimes,
the composition ko f is called flattening because the bag f(z) is made
flat and h is applied to every occurrence of an element y in f(z). For
instance, assume that f(a) = {b,b,c}. Then, h is applied to every
occurrence of an element in f(a) to obtain, say h(b) = {d,d} for the
first occurrence of b in f(a), h(b) = {d,d} for the second occurrence of
bin f(a), and h(c) = {d,e} for the occurrence of ¢ in f(a). Adding up
the h values yields (h o f)(a) = h(b) + h(b) + h{c) = {d,d,d,d,d,e}.
We will use the following notational convention.

et "o f'(z) if range(f") C dom(f")
@) = { T o b ramelr) € Blaom(r) O

Example 4 Let A = {1,1,8,9} be a bag of B(int) and let inc and
sum be two bag functions defined as follows.

inc : int — B(int), i — {i +1}
sum : B(int) — B(int), X — {3; X (1) %1}

Aéco‘rding to the generalized composition (59), we obtain, for instance,
ine(7) = {8}, inc(4) = {2,2,9,10}, sum(4) = {19}, sum(inc(4)) =
{23}, and inc(sum(A)) = {20}.

We use a slightly modified version of the OSQL syntax [6] to
specify derived FQL* functions. A set of n derived FQL* functions

fo,-.., fn—1 is specified by n create statements each of the following
form where 0 < ¢; < 7; < s5.

create derived function ‘
fii X(1,0) x ... x X(i,q: — 1) = B(Y(5,0) X ... x Y(4,p; — 1))
‘such that fi(zo,...,24,-1) entails x;(zq;,...,Tr-1)
for each (fq”---,il?r.-,---,ms;—l) in X(3,¢;) x...x X(7,8; = 1)
where ©;(F)(Zo, .-, Bgim1,Tgise s Trim1, Trgy e« Ly—1)3
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The sets X(7,7) and Y(7,5) denote sets of objects. The keyword
“entails” denotes the relation 21 and x; denotes a composition of func-
tions which maps X (4, ¢:) X ... x X (¢,7;—1) to B(Y'(4,0) x...x Y (i, p;—
1)). The predicate @;(f) : X (4,0) x ... x X(i,8; — 1) — {false, true}
may depend on the functions f = (fy,..., fr~1). This predicate is a
propositional expression (and, or, not) of atomic formulas of the form
(x(Z) entails x(Z')), where x and x’ are compositions of functions. We

will use the following abbreviations.

x®@) =x'(7)) = (x(Z) entails x'(z))
and (x/(z') entails x(%))
{Z}=1{z})

(x(Z) contains z') := (x(Z) entails {7'})

z=7)

Definition 6 The predicate ; 1s called monotonic iff
—_ — — — .
FET = (o) = e (60)

where f T 3‘—/ denotes that f; T f] for 0 < i < n. A bag function g
mapping either X to B(Y) or B(X) to B(Y) is called monotonic iff
AT A’ implies that g(A) T g(A") for all bags A and A’ in B(X).

Proposition 8 Every bag function f : X — B(Y) is monotonic.

Proof. AC A" = Vz: A(z) < A'(z) = Vz : Vy : Alz) * f(z)(y) <
A(2) x F(@)() = Yy : FA)E) = 3, Al) * F@)(w) < 3, 4'(z) *
F@)) = FA) ) = FA) EfA). S

From the proposition above follows that a non-monotonic func-
tion is of the type g : B(X) — B(Y). For instance, the function
sum : B(int) — B(int) introduced in Example 4 is not monotonic be-
cause {1,2} C {1,2,3} but sum({1,2}) = {3} Z {6} = sum({1,2,3}).
Before presenting the semantics of the create statements that specify
derived functions, we give an example.

Example 5 Assume that the function par : person — B(person) is
a stored function which determines the parents for every person. The
following create statement specifies the ancestor function. '

create derived function anc : person — B(person)
such that anc{zg) contains z;
for each z; in person
where (par(zo) U par(anc(zo)) contains z1);
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The create statements specifying the derived functions fo, ..., fn—1
correspond to a system of n inequalities of the form

£i@) 3 xlmlo(ed),F)XGE0) x . x X (65 -1)))). (61)

where T; = (zo,..-,%qi-1) € X(3,0) X_... x X (5,0 — 1) and f =
“ (foy--+ s fan—1). The select operator o (i(f),T:) selects from X (i,0) x
...x X (i, s;—1) those tuples (zf, .. -, 5,—1) for which (T Thyy) =
7,; and the predicate o;(Ff)(z}, ..., os,_,) is true. The set containing
the selected tuples is considered as a bag of B(X(4,0) X ... x X (2,8 —
1)). The function :

mis X(5,0) X ... x X (4,8, —1) = B(X(4,¢) % ... x X(i,r; —1))

“projects” the tuples (zh,. . .,%,_y) to (z};,. .-, ¥y, 1) without remov-
ing duplicates. In contrast to the function m;, the function a(i(f),Ts)
cannot generate duplicates. The function

Xi: X(i,qi) X ... XX(i,Ti— 1) -— B(Y(Z,O) X ... X Y(’l:,pi — 1))

represents a composition of functions. In a special case, the compo-
sition y; may represent the identity where xi(%gs ... »%r;—1) is equal
to {(Zgs---»Tri—1)}. According to Proposition 8, the functions 7; and
i are monotonic functions. The function o(@;(f),%;) is monotonic if
the predicate ¢;(f) is monotonic.

The inequality (61) reveals a certain similarity with relational alge-
bra which also contains select and project operators. As shown at the
outset of this section, the composition of functions corresponds to the
natural join. In addition, there exists a similarity between (61) and
Datalog. When the predicates p; are considered as relations P;, every
rule pg + p1 A...Apy corresponds to an inequality Po 2 PiN...N Py.

The create statements specifying the derived functions fo,..., fa—1
correspond to n inequalities of the form (61). The semantics of these
create statements is given by m bag functions representing a unique
minimal solution of the n inequalities. A solution is called a minimal
solution iff f Z F for every solution F that is different from F. The
following proposition gives a sufficient stratification condition implying
the existence of a unique minimal solution. Similarly to Datalog, the
uniqueness of the solution is guaranteed by a bottom up computation
described in the proof of the proposition which is given in'Appendix A.
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Proposition 9 Assume that the functions fo,..., fn_y are specified
by n create statements which correspond to a system of n inequalities
of the form

fi@) 3 xilmi(o(pi(F), F)(X(E,0) X ... x X(i,8: — 1)))). (62)

This system of n inequelities has a uniquely determined minimum so-
lution if there exists a stratification function

v:{0,....,n—=1} = {0,...,n =1}, i — »(3) (63)

such that for every i € {0,...,n — 1}, the following three conditions
are satisfied. :

1 If £ occurs in the specification of f;, then v(§) < v(4).
2. The domain X (3,0) x ... X X(z,q; = 1)) of fi is finite.

3. If fj occurs in the specification of f; and.v(j) = v(i), then p; is
monotonic and ¥ (i,0) X ... x Y (i,p; — 1) is finite.

The uniquely determined minimum solution is computable by a polyno-
mial time algorithm, i.e. in time O(P(| X)) where P denotes a poly-
nomial and | X'| denotes the number of objects stored in the database.

~ The example given below contains a derived FQL* function that

“computes the bill of materials mentioned in the introduction. The bill
of materials is the following graph problem. Given a graph, let P(v)
be the set of paths p starting at v = s(p) and ending at ¢(p). The
source vertex s(p) and the target vertex ¢(p) may be identical and the
path p € P(v) may contain cycles. If the cost of a single vertex v are
denoted by cost(v), the total cost of v are defined by

total_cost(v) = Z cost(t(p))-

PEP(v)

The cost of every vertex is assumed to be non-negative. Thus, the total
costs of certain vertices are infinite if the graph contains cycles. Even
in the presence of cycles, the “bill of materials” as a graph problem is
well defined and the derived functions given below provide the correct
answer. According to Proposition 9, these functions are computed
within polynomial time even though some function values may consist
of infinite bags. Note that, in contrast to our approach, the approach
described in [19] does not deal with cycles, i.e. all graphs are assumed
to be acyclic. ‘
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Example 6 Assume that subparts : parts — B(parts) is a stored
function which determines for every part its immediate subparts. The
stored function cost : parts — B(int) determines for every part the
non-negative cost of this particular part without its subparts. The de-
rived function all_subparts determines for every part & a bag of parts.
This bag contains a part y as many times as y is contained in .

create derived function all_subparts : parts — B(parts)
such that all_subparts(z)
entails subparts(y) + subparts(all_subparts(y))
for each y in parts ‘
where (z = y);

_ In the case of the derived function all_subparts, a trivial combination
of a selection function and of a “projection” function occurs because

(o (true, z)(parts x parts)) = {z}

In such cases, it is convenient to drop “for each ... where .27 to
obtain a more compact specification.

create derived function all_subparts : parts — B(parts)
such that all_subparts(z) - ’
entails subparts(z) + subparts(all_subparts(z));

The derived function total_cost determines, for every part, the cost for
the part itself and of oll of its subparts.

create derived function total_cost : parts — B(int)

such that total_cost(z) .
entails sum(cost({2} + all_subparts(z)));

We conclude this section by summarizing the main advantages of
bag functions. First of all, there exists a fixpoint semantics for derived
bag functions. Second, aggregate functions can be represented in a
natural way, e.g. sum({1,1}) = {2}. In relational query languages,
more complicated operators (e.g. group by) are required to compute
1+1 because the bag {1,1} is not a relation. Third, bag functions pro-
vide a primitive form of counting. Fourth, the availability of infinite
bags together with the capability of counting leads to an outstanding
expressive power as will be shown in the next section. Finally, every
FQL* function is computable in polynomial time. We believe that

32



database queries should be evaluable in a reasonable time and there-
fore, it should not be possible to formulate NP-complete problems
such as the traveling salesman problem [16, pp. 211] or non-decidable
problems such as Hilbert’s tenth problem [13]. As mentioned in [4],
a valuable query language is a tradeoff between expressive power and
computational complexity.

6 The Expressive Power FQL*

In this section, we show that FQL* is more expressive than the fixpoint

query languages. The fixpoint query languages have been introduced in

Section 3. We first show that every fixpoint query can be expressed by

means of FQL* functions. The correspondence between the predicates

R : D* — {false,true} and FQL* functions f : D* — B({1}) is
“defined by :

Ref = VdeD*:R(d) & f(d)#{}. (64)

Let f: D* — B({1}) be any FQL* function. We define the derived
FQL* functions not; and existsy as follows.

create derived function not;: D* — B({1})
such that nots(dy,...,d,—1) entails y
for each y in {1}
where f(do,...,da—1) ={};

create derived function existsy: D*"! — B({1})
such that exists;(dy,...,d,—1) entails y
for each (do,y) in D x {1} "
where f(dg,...,d,—1) contains 1;

Subsequently, the formulas RV S and Yaq : R(zg,...,24—1) are re-
-garded as abbreviations of ~(-=RA—S) and =(3zo : = R(zp,...,2e-1))
respectively. From the following proposition it follows that every first-
order query is expressible in FQL*.

- Proposition 10

R~ f,S~g => RAS~fMyg ‘ (65)
R~ f = -R~noty ' ~ (66)
R~f = 3x¢:R(zo,...,%a—1) ~ existsy (67)
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Proof. The first implication is proven as follows.

R~ f,S~g = R(E)<=>f(d)3{1} S(d) & g(d) 2 {1}
R()AS (@) = f[d)ng(d) 2 {1}
= R/\S’..fﬂg

The remaining two 1mphcat1ons are proven analogously. ¢

Let (P, ) be a first-order formula with a distinguished r-ary pred-
icate symbol P and r free variables T = = (z0,...,Zr-1). In addition
to P and T, the formula ¢(P,T) may also contam AV, =y 30 Y,
Ry, ..., Ri-1, and bound variables. The formula ¢(P, T) is assmned
to conta,m only positive occurrences of P. As shown in Section 3, the
operator 7 given by 7(P) := {d € D" | (P, d)} has a least fixpoint
1fp(r). In what follows, we show that the fixpoint query ! fp(r) can
be expressed by derived FQL* functions.

Given the relations R = (Ro,...,Ri-1), let = (go...,gx-1) be
k stored functions such that R; ~ g; for 0 < ¢ < k. Furthermore, let
(P, %) be any first-order formula as described above. According to
Proposition 10, there exist derived functions fi,..., fa—1 such that

P~fy = {deD"|p(Pd)}=fi. (68)

The n —2 derived functions fa, ..., fn—1 correspond to subformulas of
(P, T). The derived function fy specified by

" create derived function f, : D" — B({1})
such that fo(do,...,dr—1) entails fi{(do,...,dr-1);

corresponds to [ fp(7), i.e. Ifp(T) = fo, where fy depends on the other
derived functions fi1,..., fr-1-

According to [18], every fixpoint query can be expressed either by
a first-order formila or by a formula containing one fixpoint opera-
tor and only positive occurrences of the distinguished predicate P.
Hence, every fixpoint query can be expressed by derived FQL* func-
tions whose specifications satisfy the three conditions of Proposition 9.
On the other hand, not every derived FQL* function can be expressed
as a fixpoint query. For instance, the derived function total_cost (Ex-
ample 6) cannot be expressed by a fixpoint query as shown in the
introduction (Figure 2). In the rest -of this section, the new notion of
expressive power is used to show that FQL* quenes are more expresswe
than fixpoint queries.
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We start with defining the information system ISpqy W]:uch is
accessible through FQL*.

ISrqr = (DBSrqrL,QLrqr,ASrqr,arqr) (69)

An instance § = (go,. .., gk—1) of the database system DBS FQL, con-
sists of k& stored functions. The create statement

create stored function g: Xo x ... x X1 = B(Yy X ... xY,1);

creates the stored function g which maps every tuple (zg,...,z¢—1) to
the empty bag, i.e. for all (zg,...,%q-1), 9(Z0,...,2¢g-1) = {}. Non-
empty function values are specified by means of insert statements. .

insert (yo,...,¥p—1) into g(zg,...,Tq-1);

An FQL* query (S, fnm) consists of a set S and of a name fnm.
The set S contains create statements specifying derived functions and
the name fnm denotes a function. The evaluation function apgy is de-
fined for the following arguments. Given an instance § = (go,. .., gk—1)
and a query ¢ = (S, fnm), the answer apgr(7,q) is defined iff

1. fnm denotes a built-in function, or

9. fnm denotes one of the stored functions, i.e. fnm = name(g;),
or

3. fnm denotes a derived function specified by S and S satisfies
the three conditions of Proposition 9.

In the first case, the answer argr (7, q) is equal to the built-in func-
tion named fnm. This answer is independent of the stored functions
and from the derived functions. In the second case, arqr(d,q) = gi if
fnm = name(g;). In this case, the answer is independent of the de-
rived functions. In the third case, arqr(g,q) = fi if fam = name(f:)
and the derived function f;'is determined by the unique minimum so-
. lution of the system of inequalities corresponding to S. The derived

functions may depend on the stored functions as well as on the bullt~1n
functions. :

The correspondences between the instances of the databases and
the correspondences between the queries are defined as follows. Let

ISrorrrp = (DBSre,QLro+rrpsASrelscrorrrp) (70)
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be the relational database system which is accessible through fixpoint
queries as described in Section 3. The function

‘ U DBS-,-el — DBSFQL&’ (Daﬁ) g ?7 (71)

assigns every instance (D,R) a tuple of stored functions u(D,~R1 =
(gos-- -, gk—1) such that R; =~ gi for 0 < i < k where as usual, R =
(Rg,. .-, Ri—1). The function '

v : range(aFo+ LFP) — range(arqL), R — f (72)

assigns eilery answer R C DY a function f : D® — B({1}) such that
R ~ f. With respect to the correspondences given by u and v, we
Lave shown that FQL* is more expressive than FO + LFP.

Proposition 11 The query language QLror of ISFqL s more ez-
pressive than QLFo+Lrp of ISpo+Lrp with respect to the correspon-
dences given by u and v, i.e.

QLrosrrp(ISrosLrp) <up QLrorISrqr)- (73)

 Proof. At the outset of this section, it was shown that for every fix-
point query ¢ € QLro+rrp, there exists a query h(q) € QLpqL
such that arosrrp((D,R),q) = aFQL(u(D,ﬁ), h(q)). This implies
that QLFO+LFP(ISFO+LFP) Luw QLFQL(ISFQL). Finally, from
QLrosrrrp(ISFO+LFP) =uw QLror(ISrqr) would follow that the
fixpoint queries were able to count. .Since, this is not the case, QLrqL
is more expressive than QLro+LFP- &

7 Conclusions

It was argued that a new notion of expressive power is needed to com-
_ pare non-relational query languages, particularly, advanced query lan-
‘suages with counting abilities. The proposed new notion of expressive
power has been shown to facilitate the comparison of the expressive
power of such query languages. When restricted to relational query
languages, the new notion of expressive power is equivalent to the no-
tion of expressive power by Chandra and Harel.

The new notion of expressive power has been serving as a platform
to derive new results. First, the expressive power of a Boolean query
language has been compared with the expressive power of a weighted
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query language. Second, FQL* has been presented as an example of a
. non-relational query language with an outstanding expressive power.
We described only those parts of the query language FQL* that are
concerned with its expressive power. It was shown that the expressive
power of FQL* surpasses the expressive power of fixpoint queries. This
result is mainly due to the use of bag functions which encompass a
primitive form of counting together with a primitive form of inﬁﬁity.
Thus, the complete lattice of bag functions may serve as an interesting
alternative to the conventional power set of Herbrand interpretations.

A Theorems and Proofs
Proposition 6 Let q, be any Boolean query and let J, be the set of

indices of those items d; that satisfy qp, t.e. Jq:= {j|d; € (4, q)}-
There exists a weighted query q,, such that for all data items d; in D,

N o [ 10 ifdj e ay(A, @)
RSVy(qu,dj) = { 0.0 otherwise : ™)
if and only if

jeJgAdj= Y, edn = > a=1, (75)

hed,—{j} hedg—{5}
n—1
j¢Jq/\dj=Zchdh = Zch=0. (76)
h=0 held,

Praof. We define a Boolean retrieval function RSV, : QLy x D — R
as follows.

1.0 ifd; € ap(A,qp
RSVi(av,d3) = { 0.0 othzarwise( )
Then, condition (74) is equivalent to RSV,(gs,d;) = RSViy(qw, d;) for
all data items d; in D.

First, we show how (75) and (76) imply the existence of a weighted
query qu such that for all d; € D, RSVi(g,d;) = RSVi(qw,d;)-
‘According to (26), every item d; is regarded as a column vector of the
feature-item matrix A. Let g be any Boolean query. In what follows,
we show the existence of a corresponding query ¢y,. Without loss of
generality, we assume that the items are numbered in such a way that
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o the vectors dg, ..., du—1,dy,-- - dutv—1 are linearly independent,
e the items dy,...,dy—1 satisfy the querﬁr qb,
e the items dx, .. .,duyo—1 do N0t satisfy the query go,

o every vector d; that satisfies the query gp is a linear combination
of the vectors do,...,dy—1, and

e every vector d; € D is a linear combination of dg,...,dutv—1-

. Tt is easy to show that the items can always be numbered in such a
way.

Let Ayqo be the submatrix of A consisting of the first u+v columns.
Since the columns of Ay, are linearly independent and M is positive
definite, the columns of M A, 4, are also linearly independent. Thus,
M A4, contains u + v linearly independent rows.

Without loss of generality, we assume that the first u + v rows of
M A, are linearly independent. The submatrix of M A, ., consisting
of the first u + v rows is denoted by B. The matrix B is a regular
(u + v) x (u + v) matrix which is also a submatrix of MA.

B
MA =

Since B is regular, the inverse matrix B! exists. The matrix C is
obtained by adding m — u — v zero vectors to the right of B~

C = B-1 0.

The (u+v)-dimensional row vector rT consists of u ones and of v zeros.
7T o= (1,...,1,0,...,0)

When multiplying C and MA, we obtain a (u + v) X n matrix where
the left square corresponds to the unit matrix E.

CMA = | E | =
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When multiplying 77 and CM A, we obtain an n-dimensional row vec-
tor where the first « components are equal to 1 and the next v com-
ponents are equal to zero.

PTCMA = (1,...,1,0,...,0,%,...,%)

We define qy = CTr. To show that for all d; € D, RSVy(g»,d;) =
RSVy(qu, d ) we distinguish four cases. Let d €D be any item.

Case I: 5 € {0,...,u — 1}. Since d; is the §* column of A,
RSVi(quw,d;) = ¢LMd; = rTCMd; is equal to the j* component
of rTCMA which is equal to 1 = RSV3(gs, d;).

Case II: j € {u,...,u+v —1}. Similarly to case I, RSV, (qw,d;)
is equal to the jt component of rTCMA which is equal to 0 =
RSVb(qba d; ) ‘ &

Case III:j € {u+v,...,n—1} and d; satisfies gy, i.e. RSVy(gp,d;) =
1. Since d; is not a base vector, d; = E;ﬁ;é chdp. From the linearity of
RSVw and from (75) follows RSV, (qw,d;) = Yopeg chRSVi(qw, dp) =

heo ch =1= RSV},(qb,d ).

Case IV: j € {u+wv,...,n — 1} and d; does not satisfy gs, i.e.
RSV, (qp,d;) = 0. Since (lj is not a base vector and d; = Zig'l cpdp,.
From the linearity of RSV,, and finally, from (76) follow the equalities
RSV (qu)vd ) = ;:iv ! C/LRSV Qw)dh) Zh—o chl + Zu+v '1 .
=0= RSVb(qb,d )

Second, we show that if (75) and (76) are not satisfied, the existence
of a weighted query g, such that RSV (qw,d;) = RSVb(qb,d ) yields
a contradiction.

Assume that (75) is not satisfied, i.e. there exists a j such that j e
Jg dj = ZheJ —{} cpdp, and ZheJ —{j} Ch # 1. From the linearity
of RSV,, we get a contradiction: 1= RSVy(qs,d;) = RSVi(qw,d;) =
ZhGJ —{3} ch RSV (quw, dh) ZhEJ {]} cn # 1.

Assume that (76) is not satlsﬁed i.e. theére exists a j such that
ié Jq, d; }:: endn, and Yey, Ch # 0. Again, from the lin-
carity of RSVw thme follows a contradlctlou 0 = RSVy(gp, dj) =
RSVy(quw, d;) = Z:o ch RSV (quw,dn) = ZheJq 0h*1+2h% cp*0 =
ZILEJ e #0. ¢ i

Proposﬂ;wn 9 Assume that the functions fo,..., fn—1 are specified

by n create statements which correspond to a system of n inequalities
of the form

fm) 2 xi(milo (o), F)(X(,0) % ... x X(i, 55 — 1))))- (77)
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This system of n inequalities has a uniquely determined minimum so-
lution if there ezists a stratification function

1/‘:{0,...,n—1}—+{0,...,n—1},ir—n/(i) (78)

such that for every i € {0,...,n — 1}, the following three conditions
are satisfied. ' .

1. If §; occurs in the specification of fi, then v(j) < v(i).
2. The domain X(i,0) X ... x X(i,qi — 1)) of fi is finite.

8. If f; occurs in the specification of f; and v(j) = v(3), then @; is
monotonic and Y (i,0) X ... x Y (i,p; — 1) is finite.

The uniquely determined minimum solution is computable by a polyno-
mial time algorithm, i.e. in time O(P(|X ) where P denotes a poly-
nomial and | X | denotes the number of objects stored in the database.

Proof. The proof of this proposition is not particularly complicated
even though it is several pages long. The semantics of FQL* is based
on a non-Boolean distributive lattice whereas the semantics of con-
ventional query languages is based on Boolean lattices, e.g. the set of
Herbrand interpretations. Thus, we have to develop a new theoretical
framework from scratch. For this reason the following proof is quite
long. )

We first introduce some notations which will be used subsequently.
We will say that a function f; or an inequality f;(...) 2 xi(. . .) belongs
to the stratification level k iff (i) = k. In what follows, the definitions
of least solutions and minimum solutions are given. Let L be the
set of n-tuples f = (fo,---, fn—1) where f; is a function mapping
X(i,0) % ... x X(4,¢: — 1) to B(Y(3,0) x ... x ¥(i,p; — 1)). Using '
(53), we define fC _f, iff fi © f] for 0 € ¢ < n. The structure
(L,C) is a partial ordering because C is reflexive, antisymmetric, and
transitive. The n-tuple f is called a solution iff f satisfies the specified
" n inequalities. The n-tuple T is called a least solution iff it is a solution
and every solution f entails f, i.e. F O7F. Let Fand F be least
solutions. By definition, f C F and F C 7 imply f = f because C is
antisymmetric. Hence, if there exists a least solution then it is unique.
The n-tuple f is called a minimum solution iff there exists no solution
_fl which is less than f, i.e. ?’ i f for every solution ?l. Every least
solution is a minimum solution but not vice versa.
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Next, we show that the inequalities of every stratification level k
have a least solution if the functions of the lower stratification levels
0,...,k—1 are already computed. Note that the least solution of the
inequalities of a stratification level determines the derived functions i
of this stratification level. Hence, computing the least solution of the
inequalities of a stratification level is equivalent to computing the de-
rived functions of this stratification level. The derived functions of the
lower levels can be considered as stored functions. We assume with-
out restricting the generality that there is only one stratification level
containing n inequalities. In what follows, we show the existence of a
least solution of these inequalities.

Assume that there exists an index 7 € {0,...,n — 1} such that
; is non-monotonic or ¥ (4,0) x ... x Y(i,p; — 1) is infinite. From
the third condition of the proposition follows that the specification
of the function f; does not depend on the functions fo,...,fn—1. In
particular, ¢;(f) does not depend on f nor does y; depend on f.
Hence, the functions x; and m; and the predicates ¢;(f,Z;) are well
defined. In this case, the least solution of the inequality fi(...) 3
xi(...) is obviously given by )

fi@) = xi(mi(o(@a(D),T)(X (E,0) X ... x X (55 —1)))

and the function f; is considered as a stored function like the derived
functions of the lower stratification levels. We proceed by restart-
ing with a smaller set of functions, i.e. {fos-+es ficts fit1se-on a1}
If there exists a j € {0,...,i = Li+1,...,n — 1} such that ¢j is
non-monotonic, x; contains a non-monotonic non-derived function, or
Y (4,0) x ... x Y(j,p; — 1) is infinite, then f; is also considered as a
stored function. This procedure is repeated until the set of derived
functions is empty or for each remaining fi, ¥ is monotonic and
Y (k,0) X ... X Y (k,pr — 1) is finite. ' -

Hence, we may assume that for every fi € {fore s fa—1} @i is
monotonic and Y (4,0) x ... x Y (i, p; —1) is finite. We define a function

T:L—LFe (T, Tama(F))
where T;(F) and f; are functions of the same type.
T(F): XG,0) % ... X(i,gi—1) — BEFG,0)x...Y (i =1),
% — Ti(H)E)
The function T;(F) is defined by '
LAE) = ximoleFEXG0 X . x X8 = 1).
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Since ¢; is monotonic, fCc —f' implies that

o(@i(F),T)(X (3,0) x ... X (3,5 — 1))
C o(e(F),5:)(X(,0) x ... X (3,8 —1)).

Furthermore, m; and x: are always monotonic. Thus, fC —fl implies
that T3(F) € T:(f 7 ) and hence, T is monotonic.

Let (L,C) be the partial ordering introduced above. Given a,ny'
subset M C L, we define § = (go, - -.,gn-1) € L such that

9i(T) = L] £

(fo- fn 1)EM

Tt is easy to show that g is the least upper bound of M,ie. §=lub(M).
The existence of the greatest lower bound glb(M) for every M C L
is shown similarly. Thus, (L,C) is a complete lattice and according
to a theorem by Tarski [25], the monotonic function T' : L — L has
a least fixpoint called 1fp(T). Obviously, this least fixpoint is the
least solution of the n inequalities. Remember that, for simplicity, we
assumed that all inequalities belong to the same stratification level.
This completes the proof for the existence of a least solutxon for every
stratification level.

Subsequently, we consider the general case, where the derived func-
tions fo,. .., fn-1 belong to different stratification level. We will show
that the bottom-up computation that starts at the stratification level 0
and ends at the stratification level n — 1 provides a unique minimum
solution of the n inequalities. This bottom-up procedure provides a
solution because all inequalities are satisfied. The solution thus ob-
tained is a minimum solution because, otherwise, the subsolutions of
the particular stratification levels were not the least solutions. The
order in which the derived functions are computed depends on the
stratification function. Thus, the minimum solution seems to depend
on the particular stratification function. This is not the case and it
can be proven in the same way as it is proven that the minimum Her-
brand model of a stratified Datalog program does not depend on the
stratification function [3, Theorem 11].

In what follows, we present an algorithm to determine the min-
imum solution. Again, we consider only one stratification level and
we assume that all derived functions fy,..., fa—1 belong to this level.
Furthermore, to keep the notation simple, we assume that there is only
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one class of objects called X and every derived function is of the form

An iteration procedure is used to compute the least solution. Every
function f; is assigned a table 7;. At the outset, every table 7; contains
for every z,y € X an entry (,y,0,0). The tables are updated when
the iteration step is in progress. For every iteration step s, the tables

To,- -+, Tn—1 determine an element ?(s) = (fés), ey f,(f_zl) € L by

ffs)(a,)(y) =m <<= (z,y,m,k)€E .

Given an entry (z,y,m,k) € 7;, the number k refers to the last itera-
tion step when this entry has been updated.

Assume that s iteration steps are already performed. The next
iteration step, s +1, is performed as follows. We distinguish two cases.
First, if s divides n | X |2, we compute the graph (V, E) defined by
Vi={0,...,n—1} x X x X and

((ia v, W), (4, .7/)) IE E
= Ty o, ) FON @) > TE) @) ).

The function p(i,v,w) : L — Lf— 'u(i,v,w)(?) is defined by

w(t,v,w) = (o (3, v,0), .« o, =1 (, 0, w))
uniy o, ) (YO = {;ﬁf&%ﬁﬁ;“ f =t

Note that u(z,v,w)(f) is identical to f except that the bag fi(v) con-
tains an additional element w. An edge from (i,v,w) to (j,%,y) repre-
sents the following dependency between f; and f;. If a future iteration
step requires an increment of f;(v)(w) then f;(z)(y) has to be incre-
mented as well. In other words, if in one of the subsequent iteration
steps, w is added to f;i(v), then at least one element g has to be added
to fj(@). ;

Let us assumeé that s divides n | X |? and the graph (V, E) has been
computed. Then, every entry (z,y,m,k) in the table 75 is replaced

by the entry (2,y,w,s + 1) if the vertex (j,2,y) belongs to a cycle
and T,(F) @) ) > T3 ™) (@)(). In this case, 7 € 1fp(T)
implies that fj(z)(y) = w is a necessary condition for f = Ifp(T).

Hence, from -f(s) C Ifp(T) follows that T(SH) Clfp(T).
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In the second case, where s does not divide n | X |2, an entry
(z,y,m, k) in 7; is replaced by the entry (z,y,m',s + 1) whenever

m' = Tj(—f(S))(fE)(y) > m. Because T is monotonic, from 7(8) C Ifp(T)

follows again that ?(Hl) C I fp(T).
We have considered two different types of iteration steps depending
on whether s divides n | X |? or not. In both cases,

FO i@ = T i),

—(

Since ?(0) C Ifp(T), it follows that f
step s.

When no new entries are inserted, the iteration is terminated. If
is the last iteration step, ?(t) is'a fixpoint. This implies [fp(T") E 7‘(1). ,
Together with ?(t) C Ifp(T) it follows that the iteration procedure

provides the least fixpoint because 'f'(t) =1fp(T). -

Tt remains to show that the iteration procedure is a polynomial
time algorithm. Let us consider paths without cycles in the graph
G. The longest path without cycles along which an increment can
be propagated is | V| —1. Thus, if the iteration procedure is not
terminated after |V |=n | X |? iteration steps, the graph G contains
~ cycles. In this case, at least one entry (z,y,w,s) is inserted into a table
and this entry is no more changed in the subsequent iteration steps.
Since the number of entries is equal to |V |, we have an upper bound
|V 2= n?|X|*. Hence, the iteration procedure is a polynomial time
algorithm. ¢ :

*) C Ifp(T) for every iteration
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