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Abstract

While it is generally known that metabolic disorders and circadian dysfunction

are intertwined, how the two systems affect each other is not well understood,

nor are the genetic factors that might exacerbate this pathological interaction.

Blood chemistry is profoundly changed in metabolic disorders, and we have

previously shown that serum factors change cellular clock properties. To inves-

tigate if circulating factors altered in metabolic disorders have circadian modi-

fying effects, and whether these effects are of genetic origin, we measured
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circadian rhythms in U2OS cell in the presence of serum collected from dia-

betic, obese or control subjects. We observed that circadian period lengthening

in U2OS cells was associated with serum chemistry that is characteristic of

insulin resistance. Characterizing the genetic variants that altered circadian

period length by genome-wide association analysis, we found that one of the

top variants mapped to the E3 ubiquitin ligase MARCH1 involved in insulin

sensitivity. Confirming our data, the serum circadian modifying variants were

also enriched in type 2 diabetes and chronotype variants identified in the UK

Biobank cohort. Finally, to identify serum factors that might be involved in

period lengthening, we performed detailed metabolomics and found that the

circadian modifying variants are particularly associated with branched chain

amino acids, whose levels are known to correlate with diabetes and insulin

resistance. Overall, our multi-omics data showed comprehensively that sys-

temic factors serve as a path through which metabolic disorders influence cir-

cadian system, and these can be examined in human populations directly by

simple cellular assays in common cultured cells.

KEYWORD S
circadian rhythms, GWAS, insulin resistance, obesity and type 2 diabetes, serum
metabolomics

1 | INTRODUCTION

In virtually all organisms living on the earth, circadian
clocks govern most aspects of physiology (Poggiogalle
et al., 2018), to synchronize them with the environment
(Pilorz et al., 2018). Rodent as well as human studies sug-
gest that there is bidirectional cross talk between clocks
and metabolism (Sinturel et al., 2020). In mice, while cir-
cadian misalignment between meal time and light–dark
cycle leads to disruption of metabolic pathways
(Garaulet & G�omez-Abell�an, 2014; Mukherji et al., 2015;
Yoon et al., 2012), high fat diet induces the alteration of
circadian oscillations (Kohsaka et al., 2007). Combination
of circadian misalignment and high fat diet led to further
worsening of metabolic outcome (Kim et al., 2018;
Oishi & Higo-Yamamoto, 2014). In humans, molecular
circadian oscillations in islets are dampened upon type
2 diabetes (T2D), concordant with disrupted insulin and
glucagon rhythms (Petrenko et al., 2020). In addition,
physiological rhythms such as body temperature and
heart rate are also disrupted in diabetic patients (Gubin
et al., 2017). Conversely, numerous studies show that cir-
cadian misalignment has direct consequences on meta-
bolic outcomes (Mason et al., 2020; Reutrakul &
Knutson, 2015).

T2D patients exhibit hyperglycemia, hyperinsuline-
mia and dyslipidemia (Association, A. D., 2020; Kane
et al., 2021), with the blood metabolome and proteome
undergoing profound alterations (Chen &
Gerszten, 2020). Among blood metabolites, branched-
chain amino acids (BCAAs) are the most consistently
associated with obesity and insulin resistance, two hall-
marks of T2D (White et al., 2021). Noteworthy, we have
demonstrated that ageing-associated serum factors,
whose identities are yet to be established, led to short-
ened circadian period length and advanced phases in pri-
mary skin fibroblasts derived from the same individuals
(Pagani et al., 2011). In addition, in a small cohort of T2D
subjects, individual differences in serum glycated hemo-
globin (HbA1c) were inversely associated with the circa-
dian period length of primary skin fibroblasts’
oscillations when the cellular clocks were measured in
the presence of the corresponding patient serum
(Sinturel et al., 2019).

Therefore, we hypothesized that altered metabolic
signatures in serum of patients bearing metabolic
diseases such as obesity and T2D might have circadian
rhythm modifying effects. In this study, we used a
combinatorial approach of genomic and metabolomic
association to gain insights into molecular factors in
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serum that modify circadian period length in metaboli-
cally compromised patients.

2 | MATERIALS AND METHODS

2.1 | Participant characteristics and
study design

Three hundred fourteen participants were enrolled in this
study, dubbed the Diachron cohort, 274 of which met
inclusion–exclusion criteria listed in Tables S1 and S2.
Age- and sex-matched study participants belonged to four

categories: normoglycemic non-diabetic non-obese
(referred to as control subjects in this study), normoglyce-
mic non-diabetic obese (referred to as obese non-T2D
subjects), obese with T2D (referred to as obese T2D sub-
jects) and non-obese with T2D (referred to as non-obese
T2D subjects). Obesity was defined by body mass index
(BMI) > 30; T2D—by glycated hemoglobin (HbA1c)
> 6.5% (equivalent to 48 mmol/mol in IFCC unit). A list
of the baseline characteristics of the participants in each
group is presented in Table 1. All participants gave
informed consent, and the study had ethics committee
approval (CER11-015) and was registered at
ClinicalTrials.gov (registration no. NCT02384148). All

TAB L E 1 Characteristics of the study groups.

Characteristic
Control,
N = 97a

Obese non-T2D,
N = 85a

Non obese T2D,
N = 52a

Obese T2D,
N = 40a

p
valueb

Age (years) 57 (51, 64) 52 (48, 61) 64 (57, 67) 65 (55, 70) <.001

Sex .019

Female 56 (58%) 40 (47%) 18 (35%) 14 (35%)

Male 41 (42%) 45 (53%) 34 (65%) 26 (65%)

BMI (kg/m2) 24.3 (20.5, 27.3) 33.4 (31.4, 35.7) 26.1 (23.4, 28.2) 34.3 (32.5, 36.5) <.001

HbA1c (%) 5.30 (5.10, 5.40) 5.40 (5.30, 5.60) 7.00 (6.68, 7.80) 7.65 (7.10, 8.53) <.001

Fasting blood glucose
(mmol/L)

5.10 (4.90, 5.40) 5.40 (5.10, 5.90) 7.95 (7.08, 9.10) 9.10 (7.78, 11.18) <.001

Insulin (mU/L) 7 (5, 9) 14 (10, 21) 10 (7, 13) 21 (12, 28) <.001

HOMA-IR 1.5 (1.1, 2.2) 3.6 (2.4, 5.3) 3.5 (2.4, 4.9) 7.9 (4.8, 12.7) <.001

Total cholesterol (mmol/L) 5.30 (4.70, 6.00) 5.30 (4.70, 5.90) 4.90 (3.70, 5.60) 5.00 (4.28, 5.60) .004

HDL-cholesterol (mmol/L) 1.72 (1.47, 2.08) 1.30 (1.11, 1.47) 1.23 (1.04, 1.46) 1.16 (.99, 1.48) <.001

LDL-cholesterol (mmol/L) 2.86 (2.34, 3.65) 3.19 (2.53, 3.75) 2.45 (1.71, 3.35) 2.51 (1.77, 3.19) <.001

Triglyceride (mmol/L) 1.01 (.79, 1.30) 1.36 (1.09, 1.89) 1.45 (1.06, 2.55) 1.82 (1.26, 2.78) <.001

Leptin (ng/ml) 5 (3, 12) 23 (10, 40) 7 (4, 11) 23 (14, 28) <.001

Cortisol (nmol/L) 389 (315, 457) 312 (254, 410) 360 (289, 466) 391 (274, 462) .003

TSH (mU/L) 2.07 (1.62, 2.83) 2.15 (1.47, 2.91) 1.97 (1.52, 2.91) 2.05 (1.65, 3.17) >.9

Urea (mmol/L) 4.70 (4.10, 5.90) 5.30 (4.40, 6.30) 5.60 (4.78, 7.50) 5.45 (4.98, 6.90) <.001

Creatinine (μmol/L) 77 (65, 86) 77 (67, 89) 80 (67, 93) 82 (67, 91) .5

ALAT (U/L) 21 (18, 29) 27 (21, 37) 28 (22, 33) 42 (26, 65) <.001

ASAT (U/L) 23 (19, 27) 24 (19, 29) 23 (19, 29) 30 (22, 36) .034

GGT (U/L) 21 (15, 31) 25 (18, 50) 28 (20, 43) 51 (31, 89) <.001

Alkaline phosphatase (U/L) 62 (52, 77) 67 (57, 77) 61 (51, 74) 77 (59, 95) .027

Total bilirubin (μmol/L) 10 (8, 15) 8 (7, 12) 9 (7, 12) 9 (7, 10) .012

Heart beat 66 (60, 73) 70 (62, 79) 72 (65, 80) 78 (70, 84) <.001

Systolic blood pressure
(mm Hg)

118 (107, 131) 131 (119, 134) 130 (119, 141) 133 (128, 138) <.001

Diastolic blood pressure
(mm Hg)

72 (66, 79) 78 (70, 86) 76 (71, 81) 79 (73, 83) <.001

Abbreviations: BMI, body mass index; HDL; high density lipoprotein; HOMA-IR, Homeostatic Model Assessment for Insulin Resistance; LDL, low-density
lipprotein; T2D, type 2 diabetes; TSH, thyroid-stimulating hormone.
aMedian (IQR), n (%).
bKruskal–Wallis rank sum test, Pearson’s chi-squared test.
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study participants filled out the Munich Chronotype
Questionnaire (MCTQ), allowing calculation of MSF_sc
(sleep-corrected local time of mid-sleep on work-free
days) values that characterize an individual’s chronotype.
The participants were asked to follow a moderate diet
without excess fat or alcohol intake, 24 h prior to the
testing day.

2.2 | Harvesting of sera

Blood samples for all study participants were collected
between 08:00 AM and 10:00 AM, following overnight fast-
ing from 10 PM. Blood samples were collected in clot-
activator vacutainers and immediately analysed by the
Geneva University Hospital laboratory for blood glucose,
HbA1c, hormones, lipids, liver and kidney functions
(detailed list of the measured blood clinical parameters is
reported in Table S3). Serum was immediately prepared
from blood samples by centrifugation (10 min, 1650 � g,
4�C) and stored at �80�C for further analyses.

2.3 | Primary dermal fibroblast culture
and DNA extraction

Cutaneous biopsies were taken from each participant’s
shoulder between 8:00 AM and 10:00 AM and processed as
described previously (Du & Brown, 2021). DNA was
extracted from fibroblast cultures using QIAamp DNA
Mini Kit (Qiagen AG, Cat# 51304) and eluted in a final
volume of 15 μL.

2.4 | Lentivector production

Bmal1-luciferase lentiviral particles (Brown et al., 2005)
were produced at the Viral Vector Facility of the Univer-
sity of Zurich. Transient transfection in 293T cells was
performed using the polyethylenimine method (Toledo
et al., 2009). Lentiviral particles were harvested at 48 h
post-transfection, PEG precipitated, titred and used for
the transduction of the U2OS cells with multiplicity of
infection (MOI) of 3.

2.5 | U2OS cell culture, in vitro
synchronization, real-time
bioluminescence recording and period
length analysis

U2OS cells (ATCC, Cat# HTB-96, RRID:CVCL_0042)
were cultured in DMEM low glucose (GIBCO)

supplemented with 1% Penicillin/Streptomycin (GIBCO,
Cat# 15140122), .5% Amphotericine B (Sigma, Cat#
A2942), .5% Gentamycin (Sigma, Cat# G1397) and 10%
FCS (GIBCO, Cat# A5256701). Cells were transduced
with lentivirus expressing Bmal1-luciferase and selected
with Blasticidin S (Gibco, Cat# R21001) at 25 μg/mL final
concentration. The same batch of transduced U2OS cells
was used for all the circadian measurements. After
synchronization of the cells with a 30-min pulse of
100 nmol/L dexamethasone, the circadian biolumines-
cence recording was performed in DMEM low glucose
without phenol red (GIBCO, Cat# 31053028) supplemen-
ted with 1% Penicillin/Streptomycin (GIBCO, Cat#
15140122), .5% Amphotericine B (Sigma, Cat# A2942),
.5% Gentamycin (Sigma, Cat# G1397), 1 mmol/L of lucif-
erin and in the presence of 10% of the individual’s sera.
Bioluminescence was monitored by a home-made robotic
device equipped with photomultiplier tube detector
assemblies, allowing the recording of technical triplicates
in 24-well plates for 1 week. Photon counts were inte-
grated over intervals of 1 min. After removing the first
oscillation cycle (to avoid a potential bias stemming from
the immediate early response to synchronization), the
remaining cycles were detrended by a moving average
with a window of 24 h. Period length was subsequently
analysed using the Actimetrics LumiCycle program. The
recordings were done in triplicates wells of a 24-well
plate (triplicate wells of U2OS cells, with the serum
aliquots from the same patient added to the culture
medium), and average of the replicates was reported
for each experiment. The standard deviation of the
replicates for each serum was .566 h ± .410 h for the
whole cohort.

2.6 | Metabolomics by ultra-performance
liquid chromatography-mass spectrometry
(UPLC–MS)

2.6.1 | Sample preparation and
measurements

Two hunded microlitres of serum were thawed on ice,
200 μL of 1 mg/mL 15N2-tryptophan (Cambridge Isotope
Laboratories, Inc., Tewksbury, USA) in water (LC–MS
grade, Fisher Scientific, Pittsburgh, USA) were added as
internal standard, and proteins were precipitated by the
addition of 600 μL of methanol (LC–MS grade, Fisher
Scientific, Pittsburgh, USA). The samples were incubated
on ice for 10 min and centrifuged at 4�C and 15,800 g for
15 min. The supernatant was filtered using a .2-μm
reversed cellulose membrane filter. Thus, prepared
metabolite extracts (10 μL) were injected directly for
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chromatographic separation on an ACQUITY UPLC
BEH AMIDE column (1.7 μm, 2.1 � 150 mm, Waters)
with a corresponding precolumn filter. After that,
400 μL of the metabolite extract were aliquoted, and
solvents were removed in a vacuum dryer. The residual
was resuspended in 75 μL of a mixture of water
and methanol (95/5, v/v, both LC-MS grade, Fisher
Scientific, Pittsburgh, USA), sonicated (10 min) and
centrifuged (15 min, 15,800 g) and transferred to LC
vials with glass inserts for chromatographic separation
on an ACQUITY UPLC BEH C18 column (1.7 μm,
2.1 � 150 mm, Waters). Also there, 10 μL were injected
for analysis. One sample per person was analysed, and
analytical reproducibility was verified with quality con-
trol (QC) samples (pool of all samples). The samples were
measured in batches of 60, with QC samples measured
across each batch.

Chromatographic separation was performed on an
ACQUITY UPLC system (I-Class, Waters, MA, USA).
With the RP column, the flow rate was set to 240 μL/min
using a binary mixture of solvent A (water with .5%
methanol and .1% formic acid) and solvent B (methanol
with .1% formic acid). The following gradient was used:
5% B (1 min), 5–95% B (9 min), 100% B (2 min) and 5% B
(2 min). The column temperature was set to 30�C, and
the autosampler was kept at 5�C. For the AMIDE col-
umn, a flow rate of 400 μL/min was used with a binary
mixture of solvent A (water with .1% formic acid) and sol-
vent B (acetonitrile with .1% formic acid). The following
gradient was applied: 99–30% B (7 min), 99% B (3 min).
The column was kept at 45�C and the autosampler at
5�C.

Mass spectra were recorded on a quadrupole-time-of-
flight high resolution mass spectrometer (TripleTOF
5600+, AB Sciex, Concord, ON, Canada) with a heated
electrospray ionization source in positive and negative
ion mode. Full-scan mass spectra (m/z range 50–650 Da)
and data dependent MS–MS acquisitions (m/z range
40–650 Da) were performed. Curtain gas flow was set to
30 au, GS1 and GS2 were set to 60 au, a spray voltage of
5 kV (�4.5 kV) was applied and the ion source was
heated to 500�C. For the RP measurements, the
total cycle time was kept at 800 ms to obtain at least
12 points/peak (minimal LC peak width = 9 s) with
150 ms for full scan MS and 85.7 ms for seven data
dependent product ion scans acquired with a collision
energy of 10/20/30 eV. For the AMIDE measurements,
the total cycle time was kept at 550 ms to obtain at least
12 points/peak (minimal LC peak width = 6 s) with
150 ms for full scan MS and 87.5 ms for four data
dependent product ion scans acquired with a collision
energy of 10/20/30 eV.

2.6.2 | Measurements of reference standards

In addition, reference standards were measured for a cer-
tain number of metabolites. Four different mixtures of
non-isobaric compounds at a concentration of 10, 5 and
1 μg/mL in 5% methanol for RP measurements and 75%
methanol for AMIDE measurements were produced
(compositions of the four mixtures are given in Table S4).
Moreover, 10 μg/mL solutions were produced separately
for linoleic acid, arachidonic acid, docosapenaenoic acid,
myristic acid and ethanolamine; 10 μL of each sample
were injected for UPLC-MS measurements. Mass spectra
were recorded in full scan and product ion mode. For
measurements on the RP column, each acquisition cycle
consisted of a full scan with an acquisition time of
150 ms and six product ion scans with an acquisition
time of 100 ms. For measurements on the AMIDE col-
umn, each acquisition cycle consisted of a full scan with
an acquisition time of 100 ms and four product ion scans
with an acquisition time of 100 ms. Collision energies are
stated in Table S4, and the other instrument parameters
were set as described above for the data dependent
acquisitions.

2.6.3 | Data preprocessing

Raw data files were converted into .mzXML files and cen-
troided using MSConvert (ProteoWizard) (Kessner
et al., 2008). Further preprocessing was conducted with
XCMS (Smith et al., 2006; Tautenhahn et al., 2008) in R
(v3.6.1). For each measurement batch, peak picking, peak
alignment, integration and annotation were performed.
The applied parameter settings are given in Table S5.

Subsequently, data obtained from the QC samples
was used to correct for instrumental drift using statTarget
(Luan et al., 2018) in R. We applied the QCRLSC method
(parameter settings: Frule = .8, QCspan = .5, degree = 2,
imputeM = KNN) and removed all features that were
detected in less than half of the QC samples as well as
features, which had a relative standard deviation above
50% in the QCs after drift correction. Features identified
as isotopes have also been removed. To confirm whether
the drift correction did also remove inter-batch effects
successfully, we compared the results of a principle com-
ponent analysis before and after correction (Figure S9).

Finally, the features obtained from the different mea-
surement batches were combined automatically (m/z tol-
erance: .001 Da, retention time tolerance: 15 s). This
automatic merging failed for isomers with small differ-
ences in retention time, when large shifts in retention
time occurred between batches. We therefore reviewed
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the merging by visual inspection of all extracted ion
chromatograms and corrected manually for wrong
assignments.

In addition to this untargeted peak extraction, we per-
formed targeted analysis for metabolites, of which we
measured reference standards. We used the peakPantheR
R package (Wolfer et al., 2021) with the target list given
in Table S6. Retention time windows for isoleucine,
pipecolinic acid, citric acid, 4-methyl-2-oxovaleric
acid, phenyllactic acid, tetradecanedioic acid and
docosapentaenoic acid were adapted for each batch, due
to the presence of isomers at similar retention times. We
applied drift correction with QC samples as described
above.

Data from untargeted and targeted peak extraction
were combined, and only features detected in all samples
were further considered. We removed features from the
untargeted peak extraction approach, which were already
covered by the targeted approach, in order to avoid dupli-
cates. This resulted in 371 remaining features. Peak areas
were log-transformed and autoscaled.

2.6.4 | Metabolic pathway analysis and
compound annotation

We made use of two different tools for automated com-
pound annotation in order to annotate the peaks from
our untargeted metabolic approach. We used MSDial
(Tsugawa et al., 2015) for MS/MS library matching with
the spectra we obtained from data dependent MS/MS
acquisition. Moreover, we applied the mummichog
algorithm (Li et al., 2013) in MetaboAnalyst for R (Chong
et al., 2019), which infers metabolic pathway information
and biological activity. We employed the homo sapiens
Kegg database and set the mass tolerance to 10 ppm
and the p-value threshold to .2. We subsequently
reviewed the annotations for biologically relevant
features manually and confirmed metabolite identities
with reference standards, if available.

2.7 | Statistical analysis

All data analyses were conducted in R (v3.6.1). In order
to assess the correlation between the circadian period
length measured in U2OS cells cultured in the presence
of patient’s serum and clinical parameters or metabolite
levels in serum, we performed Kolmogorow–Smirnow
(KS) tests between the first and the fourth data quartile.
These comparisons were performed within the different
patient groups (non-obese T2D, obese T2D, obese non-

T2D, or control, or grouped as stated). P values were
reported without or with correction for multiple
testing using the Benjamini–Hochberg method in the
stats R package. Enrichment analysis of genome wide
association study (GWAS) p values against those of
other traits was performed using gset package in
R. LocusCompare package in R (Liu et al., 2019) was
used to compare GWAS and expression quantitative trait
loci (eQTL) signal at the March1 locus. Coloc package in
R was used to visualize GWAS and eQTL signals at the
March1 locus.

2.8 | Genotyping

Fibroblasts were genotyped using the Illumina CoreEx-
ome 24 v1.3 array. Only samples with variant calling
rate > 98% were considered. Population stratification was
done by principal component analysis using the phase
31,000 genome variants to select for European subjects,
resulting in 269 subjects qualified for GWAS. Variants
were then filtered to only choose those from the
European panel. Next, variants were filtered using
vcftools with the following parameters: --mac 2, --max-
missing .95, --hwe .000001, yielding 2900867 genotyped
variants. Genotyped variants were imputed using the
Michigan Imputation Server with the phase 31,000
genome genotypes as reference. Imputed variants were
filtered out according to these criteria: imputation
quality > .5, minor allele frequency (MAF) > .05,
Hardy–Weinberg probability < 1e-6. A total of 506300127
variants were left after filtering these steps.

2.9 | GWAS

GWAS was performed on circadian period length
(inverse transformed using the following command line
in R: period length = qnorm((rank(x)-.5)/length(x)) using
PLINK 1.90. Sex, age, disease (control, obese non-T2D,
non-obese T2D and obese T2D), date of circadian mea-
surement, experimenter and the first 10 MDS dimensions
of the genotypes were included as covariates.

2.10 | External database

GWAS summary statistics for chronotypes or
diabetes-related traits were downloaded from http://
www.nealelab.is/uk-biobank, GWAS round 2. GWAS
summary statistics for metabolites were taken from Shin
et al. (2014).
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2.11 | Identification of genes flagged by
GWAS signals and analysis of their period
length phenotypes in published siRNA
screen

Genes flagged by GWAS signals, dubbed here GWAS
genes, were identified as genes within 100 kb of the
GWAS variants with p < 5 � 10�4. Detrended biolumi-
nescence data of the GWAS genes and scramble controls
were taken from Table S5 from published siRNA screen
(Zhang et al., 2009). Period length and rhythmicity were
computed by submitting the bioluminescence data to Bio-
dare2 website using the default settings (https://biodare2.
ed.ac.uk/, n.d.; Zielinski et al., 2014). Only genes whose
rhythmicity were significant (p < .05, not corrected for

multiple testing) were considered for period length com-
parison with scramble controls.

3 | RESULTS

3.1 | Study overview

To study the effects of circulating factors on circadian
traits in obesity and T2D, circadian rhythms of U2OS
cells were continuously recorded in the presence of 10%
serum from non-obese T2D, obese T2D, obese non-T2D
or non-obese non-diabetic control subjects in the
medium. Patients were genotyped to investigate genetic
origin of individual differences in sera that affect cellular

F I GURE 1 Individual sera have profound effects on circadian period length of U2OS cell oscillations. (a) Study design: type 2 diabetes

(T2D, subdivided into non-obese and obese) subjects, obese non-T2D subjects and control subjects were recruited. Cell culture medium

containing 10% serum from each subject was incubated on U2OS cells to measure changes in circadian parameters exerted by circulating

components. Basic blood chemistry test, patient genotyping, as well as, metabolite profiling by liquid chromatography coupled to mass

spectrometry (LC–MS) were performed to identify genetic and metabolomic factors affecting circadian traits. (b) Circadian period length

measured in U2OS cells in the presence of patient’s serum.
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oscillations. For deep metabolic phenotyping, patients’
sera were subjected to metabolomics analysis by LC–MS
(Figure 1a).

3.2 | Circadian period length of U2OS
cells assessed in the presence of obese
patients’ serum increases concomitant
with severity of obesity

We observed huge inter-individual effects of sera on cir-
cadian period length measured in U2OS cells that varied
between 20.69 and 25.62 h across the entire cohort, with
mean and standard deviation that were 22.9 and .8 h,
respectively (Figure 1b). The mean period length and
standard deviation for each patient group were the fol-
lowing: control, 23.2 ± .7 h; obese non-T2D, 22.8 ± .8 h;
non-obese T2D, 22.9 ± .7 h; and obese T2D, 23.0 ± .8 h.
A one-way analysis of variance (ANOVA) revealed that
there was a statistically significant difference in period
length by patient group (F(3) = 4.308, p < .01). A Tukey
post hoc test found that the mean value of period length
was significantly different between obese non-T2D and
control (p < .01, 95% C.I. = [�.68, �.1]) but not for any
other pair-wise comparisons. Although statistical signifi-
cance was observed, the huge inter-individual differences
within each patient group and across the entire cohort
suggest that such significance is of low biological rele-
vance. It is more likely that inter-individual differences
represent the main driver of the variation in circadian
modifying effects of subjects’ sera.

We next investigated the sources of inter-individual
differences in serum factors that could explain the
observed effects on circadian period length within each
patient group. To this end, sera were divided into quar-
tiles based on various clinical parameters listed in
Table 1. We then compared the cumulative distribution
of cellular period length in the presence of sera from the
first quartile with the one from the fourth quartile. For
serum from T2D patients (non-obese T2D and obese T2D
combined), such comparison yielded no statistically sig-
nificant differences in the distribution of period length,
except for triglycerides and ASAT (Figure S1A, Table S7,
p < .05 for triglycerides and ASAT, KS test, not corrected
for multiple testing). However, in the presence of sera
from obese subjects (obese non-T2D and obese T2D com-
bined), a period lengthening in U2OS cells was observed
between quartiles separated based on increased Homeo-
static Model Assessment for Insulin Resistance
(HOMA-IR), insulin, HbA1c, fasting blood glucose, tri-
glycerides and decreased high density lipoprotein (HDL)
(Figure 2, Table S8, all p < .05, KS test, not corrected for
multiple testing). Overall, deteriorated metabolic health

in obese patients correlated with cellular period length-
ening. For parameters that reflect liver and kidney func-
tion (ASAT and creatinine), a similar relationship was
observed: worse liver and kidney function correlate with
longer period length. Importantly, the same observation
was not present for non-obese subjects (control and non-
obese T2D combined) for these parameters (Figure S1B,
Table S9, all p > .05, KS test, not corrected for multiple
testing), nor for control subjects (Table S10, all p > .05,
KS test, not corrected for multiple testing). Overall, these
observations suggest that severity of obesity is the most
important aspect that correlates with differential effects
of patients’ sera on circadian period length.

3.3 | Genome wide association analysis
identified March1 as the gene most
associated with period lengthening effects

Reasoning that individual differences in period lengthen-
ing by serum have genetic origin, we sought for genetic
variants associated with period length measured in the
presence of patient serum. GWAS identified 613 variants
that belong to 128 loci at suggestive genome-wide signifi-
cance (p < 5 � 10�4, Tables S11 and S12) that were asso-
ciated with period length across the entire cohort.
Interestingly, while the three top identified variants were
intergenic, the fourth most associated variant (rs7654787)
mapped to an intron of March1 gene, known for its func-
tions in antigen-presenting cells (Liu et al., 2019)
(Figure 3a, Figure S2). Noteworthy, March1 knockout
animals exacerbate obesity-induced insulin resistance
stemming from its effects on CD8 T cell fate (Majdoubi
et al., 2020). In addition, March1 knockout animals also
exhibit enhanced insulin sensitivity, and knockdown
experiments show that MARCH1 degrades surface insu-
lin receptor in the basal state (Nagarajan et al., 2016).
The involvement of March1 in insulin regulation
prompted us to investigate the relationship between the
genotype of March1 variant, metabolic status and insulin
resistance in our cohort. A two-way ANOVA was per-
formed to analyse the effect of March1 variant and obese
status on insulin and HOMA-IR. Simple main effects
analysis showed that genotype of March1 variant did not
have a statistically significant effect on both insulin and
HOMA-IR (p = .257 and .238, respectively). Obese or
T2D status had a statistically significant effect on insulin
and HOMA-IR (p < .005 for all) as expected. Interest-
ingly, the interaction effect between genotype and obese
status on insulin showed a modest significance, F(1, 2)
= 2.579, p = .078, indicating that the effect of obese sta-
tus on insulin levels differs among genotypes. Indeed, we
observed that obese subjects carrying the homozygous

5494 DU ET AL.

 14609568, 2024, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ejn.16486 by E

th Z
urich, W

iley O
nline L

ibrary on [17/10/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



AA allele had similar insulin levels compared with non-
obese subjects (Figure 3b, p = .13), in contrast to the
expected higher insulin for obese subjects bearing other
genotypes (both p < .0001). Similarly, the interaction
effect between genotype and obese status on HOMA-IR
showed a modest significance, F(1, 2) = 2.935, p = .055.
We also observed that obese subjects carrying the homo-
zygous AA allele had similar HOMA-IR compared with
non-obese subjects (Figure 3c, p = .45), in contrast to the
expected higher HOMA-IR when being obese with
the other genotypes (both p < .01). The above observa-
tions are in line with allele A being associated with
shorter period length (Figure 3a). In addition, the interac-
tion effect of genotype and metabolic status was specific
for obese status, as the interaction effect of genotype and
T2D on insulin and HOMA-IR did not yield statistical
significance (p = .94 and .52, respectively). Accordingly,
the differences in insulin and HOMA-IR by AA genotype
versus other genotypes of this March1 variant were not
observed when patients were stratified by T2D status
(Figure S3). This is consistent with our former observa-
tion regarding the correlation of the metabolic status in
obese patients with the period length in U2OS cells.

We next sought for evidence of activity at rs7654787
in publicly available data. We found that this variant is
located within 2 kb of cis regulatory elements (CRE,
H3K4me3, H3K4me1 and H3K27Ac signatures) active in
7 cell lines in the ENCODE dataset (Figure S5A). In addi-
tion, eQTL analysis shows the correlation between geno-
types and gene expression. We sought for published
eQTLs in the pancreas (Viñuela et al., 2020) at rs7654787
and found suggestive evidence that rs6536810, which is
in linkage disequilibrium with rs7654787 (R2 = .9956),
is associated with lower expression of March1 (p = 4e-07,
slope = �.21, T statistic = �5.15, Figure S5B). In other
words, combined with our data, allele A of March1 vari-
ant is associated with lower expression of the gene,
shorter period length and lower insulin and lower
HOMA-IR. This observation is in line with the reported
finding that MARCH1 expression increased in insulin-
resistant versus insulin-sensitive subjects (Nagarajan
et al., 2016). This is also consistent with the results that
March1 knockdown and knockout mice showed
improved glucose tolerance without an increase in insu-
lin levels, suggesting enhanced insulin sensitivity in mice
(Nagarajan et al., 2016). Noteworthy, although different

F I GURE 2 Clinical parameters

related to severity of obesity in the group

of obese subjects (obese non-type

2 diabetes [T2D] and obese T2D

combined) were associated with longer

cellular period length. For each blood

parameter, patients were divided into

quartiles for that parameter. Period

lengths were then compared between

the 1st and the 4th quartile. Shown are

blood parameters that have statistically

significant difference between these two

quartiles (p < .05, Kolmogorov–Smirnov

test, one-sided, not corrected for

multiple testing). P values for one-sided

and two-sided test with and without

correction for multiple testing were

reported in Table S8.
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analyses suggested that subjects carrying allele A of
March1 would have lower gene expression, leading to
lower blood insulin levels that are associated with a
shorter period length when added to U2OS cells, these
analyses only show association and not causality. There-
fore, the relevance of the identified variants for the circa-
dian clockwork was further validated below.

3.4 | Genes flagged by GWAS signals
showed period phenotype in siRNA screen

To investigate the biological relevance of the GWAS vari-
ants, we identified 270 genes within 100 kb of the signifi-
cant variants (Table S13) and searched for their period
length phenotype in the published siRNA screen in
U2OS cells (Zhang et al., 2009). Strikingly, knockdown of
March1 led to shortening of cellular oscillations mea-
sured in U2OS cells (Figure S4A, Welch two sample
t test, p = .013, not corrected for multiple testing), consis-
tently with our findings. The shorter period length

phenotype was expected from the above-presented corre-
lation analyses. For the 270 genes flagged by GWAS sig-
nals, 178 of them were included in the siRNA screen.
Among the 178 genes, 87 showed statistically significant
difference (not corrected for multiple testing) in period
length compared with scramble controls (Figure S4B).
When p values were corrected for multiple testing, 60 of
them remained significant, including March1
(Figure S4C). Although the knockdown efficiency in an
siRNA screen could not be confirmed, the prevalence of
multiple period length phenotypes among the GWAS
genes suggested their relevance in circadian properties.

3.5 | Identified GWAS variants are
enriched in previously reported variants
associated with extreme chronotype and
T2D diabetes

Because the here detected phenotype links circadian
properties to diabetic status, we reason that there would

F I GURE 3 A variant in the intron of March1 gene is associated with period length and has an impact on insulin and Homeostatic

Model Assessment for Insulin Resistance (HOMA-IR) levels. (a) The A allele of variant rs7654787 is associated with shorter period length in

U2OS cells. (b) Insulin level stratified by genotype of variant rs7654787 and obese state. (c) HOMA-IR stratified by genotype of variant

rs7654787 and obese state. ***: p < .0001, **: p < 0001, *: p < .01, ns: not significant, Tukey’s range test.
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be overlaps of our GWAS variants with those for chrono-
types and diabetes-related traits. Indeed, our GWAS iden-
tified variants were enriched in those associated with
‘self-reported chronotype’ and related traits, for instance
variants linked to ‘sleep duration’ and ‘nap during the
day’ in the UK Biobank database (Figure 4a). There was
also enrichment for ‘diagnosed type 2 diabetes’ variants
but interestingly not for ‘self-reported type 2 diabetes’
variants. In addition, GWAS identified variants were
enriched in ‘job involving night shift’ variants, as well as
‘depression’, two traits that are often associated with
T2D (Holt et al., 2014; Strohmaier et al., 2018). Moreover,
the beta coefficient of the association, which denotes the
directions of association, for example if a variant is asso-
ciated with longer or shorter period length, called shortly
here beta coefficient directions, were largely consistent
between GWAS variants and trait variants (Figure 4b–d).
Variants that were associated with shorter period length
were also associated with morningness, whereas variants

that were associated with diabetic status were also associ-
ated with longer period. This is in agreement with our
previous finding that in vitro circadian period length cor-
relates with human chronotype (Brown et al., 2005) and
published work showing that late chronotype is associ-
ated with worse glycemic control (Iwasaki et al., 2013;
Reutrakul et al., 2013).

3.6 | Metabolomics reveals that
circadian period lengthening is associated
with insulin resistance in obese individuals

We observed that within the obese group, circadian
period length did not correlate with BMI (p = .43, KS
test), indicating that obesity index alone cannot explain
the period lengthening effects of sera from these subjects.
It has been recognized that risk for cardiometabolic
abnormalities varies among obese patients (Iacobini

F I GURE 4 Genome wide association study (GWAS) variants are enriched in chronotype and diabetes-related traits in UKBiobank.

(a) Enrichment analysis was done for p values of the 613 GWAS variants against those of all variants in the listed traits. Shown is the p value

of the enrichment analysis for each trait. Red line indicates p = .05. (b) Beta coefficient directions between period length and traits that had

a p value < .05 in (a) were compared. Shown are p value of chi-squared test of dependency. Red line indicates p = .05. (c and d) Examples of

beta coefficient directions between period length and traits. (c) Variants that are associated with shorter period length are associated with a

morningness phenotype. (d) Variants that are associated with longer period length are associated with higher type 2 diabetes (T2D) risk.
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et al., 2019). In our Diachron cohort, we indeed observe
such variation, with obese patients whose sera were clas-
sified in the first quartile in terms of triglycerides and
fasting blood glucose and the fourth quartile of HDL cho-
lesterol fitting the criteria for low cardiometabolic risk
based on these parameters (Tsatsoulis & Paschou, 2020)
(Table S14, fasting serum triglycerides ≤ 1.7 mmol/L,
fasting blood glucose ≤ 6.1 mmol/L and HDL cholesterol
serum concentrations > 1.0 mmol/L in men or
>1.3 mmol/L in women). This suggests that metabolic
signature in the serum of obese patients affects circadian
period length.

In order to obtain more detailed metabolic signature,
we performed targeted and untargeted metabolomics of
the patient sera by UPLC-MS. We detected 371 features
in total, including 40 from targeted, and 331 from untar-
geted ones (Tables S15 and S16). Annotation of
untargeted features by MS-DIAL (Tsugawa et al., 2015)
identified 78 of them (Table S17). We next analysed the
metabolic features in obese subjects (non-diabetic and
diabetic combined) by quartiles based on each of detected
metabolites. The cellular period length distribution mea-
sured in serum from the first and the fourth quartile
group was compared. We observed a statistically signifi-
cant shift in the distribution of period length between the
first and fourth quartile for a range of compounds,
including targeted and annotated untargeted ones
(Figure 5a,b). For most of the compounds, the distribu-
tion of period length shifted towards longer values with
higher levels of compounds, with few compounds only
exhibiting the opposite tendency (one of lysophosphati-
dylcholine species, succinic acid and serotonin, see
Section 4). In addition to annotation of untargeted fea-
ture, we also employed the mummichog algorithm to
infer pathway activity without feature identification
to gain information from the whole untargeted metabo-
lites (Li et al., 2013). Metabolic pathway enrichment anal-
ysis on all untargeted features suggested that BCAA
degradation and biosynthesis were as among the most
involved metabolic pathways (Table S18). It has been
reported that circulating BCAAs are elevated in subjects
with insulin resistance and T2D (Lynch & Adams, 2014).
Concordantly, we observe that many of the metabolites
associated with period length were also associated with
insulin resistance score (HOMA-IR) in our cohort
(Figure S6).

In addition, we explored the association between
serum lipid landscape and cellular period length, based
on the serum lipidomics analyses on the sub-set of this
cohort that we have recently reported (see Table S19)
(Sinturel et al., 2023). We detected statistically significant
association between longer cellular period and lower
levels of phospholipids, specifically LysoPE,

phosphatidylcholines (PC) and LysoPC species
(Figure 5c). This finding is consistent with the earlier
observation that lower levels of phospholipids are associ-
ated with insulin resistance (Tonks et al., 2016; Yin
et al., 2020). Overall, we report that serum metabolic sta-
tus associated with insulin resistance in obese patients
may account for the period lengthening effect in U2OS
cells.

3.7 | GWAS variants are enriched in
BCAA variants

If serum metabolite levels are associated with serum’s
effects on period length that are partially explained by
genetic variants, there should be overlaps between our
GWAS variants and those explaining metabolite levels.
Indeed, we found that GWAS variants are enriched in
BCAA and branched-chain keto acid (BCKA) variants
(Figure S7A). Comparison of beta coefficient direction
between GWAS variants and the metabolite variants con-
firmed that longer period measured in U2OS cells is asso-
ciated with higher levels for all BCAAs and BCKAs in the
patients’ sera (Figure S7B).

4 | DISCUSSION

Obesity is often accompanied by metabolic syndrome as a
comorbidity (Mongraw-Chaffin et al., 2018), character-
ized by abdominal obesity, high blood pressure, high
blood sugar and triglyceride levels, low HDL cholesterol
and insulin resistance (McCracken et al., 2018). Our
study suggests that alterations in serum featuring meta-
bolic syndrome of obese patients have period lengthening
effect on U2OS cellular oscillations, in line with longer
period observed in mice with high-fat diet induced obe-
sity (Kohsaka et al., 2007). Notably, we did not find a cor-
relation between period length and BMI, suggesting that
it is not weight gain per se but rather metabolic signature
alterations associated with metabolic syndrome are
responsible for the changes in circadian characteristics
observed in cultured cells.

Taking a multi-omic approach, we mapped insulin
resistance as the parameter that is associated with a circa-
dian period modifying effect. Our genetic analysis using
cellular phenotype linked MARCH1, whose regulatory
role in insulin resistance development has been demon-
strated previously (Bhagwandin et al., 2018; Majdoubi
et al., 2020; Nagarajan et al., 2016), to changes in cellular
circadian period length exerted by individual differences
in serum components. Indeed, higher MARCH1 expres-
sion was reported in white adipose tissue from obese
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insulin-resistant subjects (Nagarajan et al., 2016). Inter-
estingly, the variant in March1 gene, rs7654787, seems to
have a protective effect because it is associated with
shorter period length and lower MARCH1 expression.

Meta-analysis of phenome-wide association (PheWAS)
confirms that this variant is negatively correlated with
BMI (Figure S8). The second PheWAS phenotype is Plate-
let count, for which a closer look at our data revealed that

F I GURE 5 Metabolites and lipids associated with insulin resistance are associated with longer period length in U2OS cells.

(a) Metabolite levels associated with period length in obese subjects are shown. They are sorted by p value and direction of comparison with

period length (longer period length indicated by positive values). Red lines indicate p = .05 (one-sided Kolmogorov–Smirnov test comparing

the 1st vs. the 4th quartile as in Figure 2) for each direction. (b) Examples of cumulative distribution comparing period length between

patients falling in the 1st versus the 4th quartile for each metabolite. (c) Correlation between phospholipid levels and period length in obese

subjects. LysoPE: Spearman correlation coefficient = �.45, p = .01. PC: cor = �.36, p = .04. LysoPC: cor = �.37, p = .04.
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in fact in obese subjects, shorter period length was also
associated with lower platelet count (p = .004, KS test),
consistent with the negative beta coefficient. Platelet
count has been shown to be higher in impaired fasting
glucose and metabolic syndrome (but not T2D) and is
associated with insulin resistance (Balducci et al., 2014;
Taniguchi et al., 2003). Thus, our genetic approach using
cellular phenotype allows to identify not only the circu-
lating factors that affect circadian traits but also pin-
pointed the hematological phenotype that we were not
aware of in the first place.

Our metabolomic and lipidomic profiling further
identify a panel of insulin resistance-related metabolites
and lipids interacting with the circadian clock. In addi-
tion to the well-described branched chain amino acids
and branched chain keto acids, we also found a positive
correlation between glutamic acid levels in serum and
insulin resistance, corroborating results reported in the
literature (Seibert et al., 2015). A correlation between uri-
dine levels in urine and HOMA-IR has been observed in
humans before (Zhang et al., 2020), and injection of uri-
dine in obese mice induced deterioration of glucose toler-
ance (Deng et al., 2017). Also, upregulation of the
kynurenine pathway has been related to insulin resis-
tance in obesity. Tryptophan can be metabolized either to
kynurenine or to serotonin. It has been suggested that
inflammation in obesity induces upregulation of the
tryptophan-kynurenine route (Favennec et al., 2015).
Activation of this pathway results in increased levels of
xanthurenic acid, which can form complexes with insulin
that are less active than insulin itself (Oxenkrug, 2013).
In line with these findings, serotonin was reported to
enhance insulin secretion (Oxenkrug, 2013), and we
observed an inverse relation between serotonin levels in
serum and circadian period length. Similarly, previous
studies suggest that succinic acid (Alarcon et al., 2002),
and lysophosphatidylcholine (Drzazga et al., 2018) exhib-
ited enhancing effect on insulin release. Our finding that
increased serum levels of these metabolites were associ-
ated with a shortening of the cellular circadian period
length further highlights insulin resistance being a key
factor in observed alteration of the circadian clock
properties.

Insulin has been shown to lengthen period length in
mouse cells by increasing PER2 protein synthesis via
simultaneous mTOR activation and miRNA-mediated
posttranscriptional regulation (Crosby et al., 2019). Thus,
higher serum insulin in obese subjects likely prolongs
period length of cellular oscillations in U2OS cells in a
similar way. Secondly, metabolic pathway analysis indi-
cated disturbed BCAA metabolism to be the most
enriched pathway contributing to period lengthening.
Within the last decade, evidence for the association

between increased circulating BCAAs and insulin resis-
tance has emerged (Lynch & Adams, 2014). Animal
models have suggested that elevated BCAA levels lead to
hyperactivation of mTORC1 followed by activation of the
ribosomal kinase S6K1. This leads to phosphorylation
and thereby inhibition of insulin receptor substrate
1 (IRS-1) resulting in insulin resistance (Newgard
et al., 2009). Although it is still under investigation if the
same mechanism underlies insulin resistance in obese
individuals, activation of the mTOR pathway by BCAA is
one possible way that these circulating amino acids con-
tribute to circadian period lengthening. Of note, as
Crosby et al. have shown, mTOR activation alone is not
sufficient to induce PER2 translation, but synergic mTOR
activation and inhibition of PER2-regulating miRNAs by
insulin are required for increase in PER2 translation that
leads to period lengthening (Crosby et al., 2019). This
could explain the discrepancy in period modifying effects
of mTOR activation in flies and in mice. In Drosophila,
Seghal and co-workers found circadian period lengthen-
ing upon mTORC1 activation (Zheng & Sehgal, 2010).
However, in mice, Ramanathan et al. reported that
mTOR activation shortened period length, with the pro-
tein levels of CLOCK, BMAL1 and CRY1 but not PERs
being affected (Ramanathan et al., 2018). Therefore, the
effect of mTOR activation on the circadian clocks is likely
context dependent. Alternatively, BCAA, especially leu-
cine and ketoleucine, as potent insulin secretagogues
(Arany & Neinast, 2018; Neinast et al., 2019), may exert
their effects on circadian period length indirectly, medi-
ated via insulin. Further studies are required to unravel
mechanistic insights underlying the reported here intri-
cate link between insulin resistance and altered cellular
circadian rhythms.

An important limitation for cell-based genetics stud-
ies like ours is relatively low number of subjects (n = 274
divided into four subject categories in this work), due to
the laborious cohort design and experimental procedures
as well as associated high costs. We chose to use uncor-
rected p values in the association analyses to discover
potential candidates. The consistency of the biological
status associated with the discovered candidates through-
out different approaches, from clinical parameters
(HOMA-IR, insulin and fasting blood glucose), metabolo-
mics (BCAAs and BCKAs being associated with insulin
resistance), lipidomics (phospholipids being associated
with insulin resistance), genetics (March1 being involved
in insulin regulation), to siRNA screen (March1 knock-
down shortens period length of cellular oscillations), sug-
gests that the potential candidates are metabolically
relevant. There has been example that leverages other
omic data to identify biologically relevant GWAS signals
at suggestive significance (Hammond et al., 2021). Our
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study thus shows how multiomic data can be used to vali-
date candidates at suggestive evidence when sample size
is limited.

Collectively, our multi-omics analyses identify circu-
lating metabolic factors characteristic of insulin resis-
tance that affect cellular circadian properties. Moreover,
we provide novel clues on how shared genomic and
metabolomic factors related to obesity and T2D affect cel-
lular circadian traits that could be measured in a com-
monly used U2OS cell line.
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