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ABSTRACT
The lessons learned so far from a variety of deployments of
wireless sensor networks is that they are still expensive and
complex systems to deploy, run, and maintain. One way
to make sensor networks more cost effective is to support
concurrent queries rather than a single static query from a
single application as it is today the case in most systems
and deployments. To this end, in this paper we describe
how to perform multi-query optimization in wireless sensor
networks. The optimizer we propose takes a constant stream
of queries as input and dynamically determines what is the
best execution plan (or small set of plans) to run at the
sensors while still being able to answer (a potentially much
larger set of) user queries. As queries arrive and depart, our
optimizer tries to merge and split the queries to optimize the
work done at the sensor level. It then processes the resulting
streams to answer all running user queries. The paper dis-
cusses the data model, query operators, cost models, query
optimization strategies, and data stream operators we use.

1. INTRODUCTION
1.1 Background and Problem Statement
Existing work in query processing for wireless sensor net-
works (WSNs) does consider the possibility of concurrently
running more than one query in the system [24, 14, 5]. How-
ever, the majority of the deployments and much of the re-
search work focus on single application (single query) sys-
tems (e.g., [15, 10, 8, 21]). Interestingly, the current cost
of a sensor network deployment is still very high and it is
unlikely that it will significantly decrease in the near fu-
ture. For instance, [10] report on a 100+ node deployment
in an agricultural project that requires one full year of plan-
ning and a budget in excess of 400,000 US dollars. In such
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a deployment, economically, it would make sense to design
the system so that it could efficiently support concurrent
queries.

The difficulty with multi-query optimization is that while in
many cases merging queries is a good strategy [16, 23], there
are enough cases where alternatives like query splitting, and
query rewriting are better options. In fact, an important
contribution of this paper is showing that multi-query opti-
mization in sensor networks needs to include more than just
query merging. In this paper we explore the design space
for a query optimizer whose input are SQL queries and its
output a set of execution plans (e.g., programs) to be run in
a sensor network. Queries can be submitted and withdrawn
at any time. The optimization criterion we use in this paper
is the overall energy consumption. In the paper we study
mechanisms such as:

Merging Combining two or more queries into a single exe-
cution plan. Then extracting the results for each query
from the combined data stream.

Splitting Dividing a query into sub-queries so that the
sub-queries can either be answered from already ex-
isting result data streams or better merged with other
queries. Then reconstructing the result data stream
from all the different pieces.

Parallelizing If the overlap of queries is too small it can be
better not to merge queries but to run them separately.

These mechanisms are applied to implement the following
optimization strategies: min-execution cost, delta-plan and
single-plan. We also study the min-execution cost policy in
great detail as it is the one that works best under a wider
range of query loads.

The contributions of the paper are (1) a precise and detailed
discussion of the query merging problem in sensor networks;
(2) determining at what multi-programming level merging
is cost effective; (3) a novel and efficient algorithm for cost-
based multi-query optimization that significantly improves
the state of the art.

1.2 Architecture
The query optimizer described in the paper has been im-
plemented and tested in SwissQM [17, 18]. The architec-
ture comprises two levels: the basestation and the execution
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Figure 1: Architecture overview of Query Process-
ing system

platform. The basestation takes user queries in SQL as in-
put and returns data streams answering those queries. The
basestation contains two modules, the query processor and
the stream processor (Fig. 1). The query processor contains
the query optimizer described above and all the machin-
ery needed to produce network execution plans and stream
execution plans. The network execution plans are the pro-
grams sent to the sensor nodes. The stream execution plans
describe the operator pipeline to be executed by the stream
processor to extract the answers to the user queries from
the stream(s) of result tuples. The sensor network takes
network execution plans as input and returns streams of re-
sult tuples. The work we describe can be implemented on
top of any sensor network platform that allows clients to
dynamically submit programs to be executed. Such systems
are typically implemented as virtual machines running on
the nodes of the network (e.g., [17, 11]). We do not make
any further assumptions about the language of the execu-
tion plans or the underlying programming model. We just
assume (as it is the case in all systems we are aware of)
that the language provided is expressive enough to support
the common operations performed in a sensor network (sam-
pling sensors, sending and receiving data, basic arithmetic
operations, in-network aggregation instructions, etc.).

1.3 Structure of the Paper
In the paper we describe the model used to express queries,
the query algebra, and the set of query operators (Section 2).
We also present a realistic cost model and discuss the opti-
mization strategies that can be followed in a sensor network
(Sections 3 and 4). We have also conducted extensive experi-
ments that shed light on at what level of multi-programming
each of the possible strategies is cost-effective (Section 5).

2. DATA MODEL AND OPERATORS
The basic data schema is a virtual stream, similar to that
used in existing work [14, 24]. The stream contains tuples
with timestamp indicating when the tuple was issued and a

set of attributes. The virtual stream can be obtained from
the sensor network with the query (the so called universal
query [16]):

SELECT * EVERY ∆t

∆t is assumed to be the lowest possible sampling period. We
also assume the sensor network implements a synchroniza-
tion mechanism that allows to make correct correlations on
the timestamps produced by every node.

2.1 Filtering Operators
In addition to the standard selection and projection opera-
tors, our approach also uses temporal operators that filter
on the time axis.

Sampling Operator: The sampling operator τ is a tem-
poral operator that materializes the virtual stream at the
specified sampling intervals. For example, τ6s() generates a
tuple stream that contains readings of all sensors of every
node sampled once every six seconds.
Rate Conversion Operator: The rate conversion oper-
ator ρ is a temporal operator that changes the sampling
rate of a tuple stream. For lack of space we consider only
down-sampling of the tuple stream (increasing the rate of
the tuple stream is possible by interpolation [19] or model
based sampling [3]). It has been shown that down-sampling
in sensor networks is non-trivial due to inaccurate timers and
jitter [16]. The same work proposes several ways to solve the
problem. In this paper we assume that the necessary mech-
anisms for correcting these problems are in place. Hence,
down-sampling is implemented as a simple rate-based m:1
sampling, e.g., ρm:1 implies that only every m-th incoming
tuple is forwarded.

Projection and Selection Operators: As with tradi-
tional query algebra, we use projection π and selection σ
operators to remove sensor attributes and to apply filter
predicates. There is one significant difference, though. In
sensor networks data is generated by sampling and not read
as records from disk. Thus, for energy reasons, the sampling
operator and the first projection operator are always fused
in the execution plan. Consider, for example, the query

SELECT node, temp EVERY 6s

which can be represented as πnode,temp (τ6s()). The dynam-
ics of selection and projection are different than in conven-
tional query algebras. The reason is that selection and pro-
jection are not made over real attributes in a table but over
sensors that need to be sampled. Hence, projection and
sampling are fused such that only the required sensors need
to be sampled.

2.2 Aggregation Operators
In sensor networks, aggregation can happen as temporal or
spatial operators [7].

Window Operator: The window operator is a temporal
operator. It can be implemented either as a sliding window



(SWINDOW or ωs,N ) or a tumbling window (TWINDOW or ωt,N ),
with N representing the size of the window. The supported
operators over windows include MAX, MEAN, MIN and SUM.

Fusion Operator: The data fusion operator µ performs
spatial aggregation, i.e., it aggregates data from several sen-
sor nodes. However, it does not keep history state beyond
the current sampling interval. The µ operator performs tra-
ditional in-network aggregation [13]. The operator can com-
pute one or more aggregates. As in the group by clause of
traditional SQL, the tuples can be grouped by one or more
attributes. In this paper we consider the SQL aggregates
AVG, COUNT, MAX, MIN, STDDEV, SUM, and VARIANCE.
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Figure 2: Components of the Query Processor

3. QUERY PROCESSING MODELS
3.1 Query Processor Overview
Submitted queries are passed to the query processor which
then generates network execution plans and stream execution
plans. Network execution plans are submitted to the sen-
sor network and each one of them produces a data stream.
These result data streams are processed by the stream ex-
ecution plans that extract the final result streams for the
user queries.

The query processor consists of a plan generator and a plan
optimizer. Figure 2 illustrates these two components and
how they operate. New queries arrive at the plan generator.
The plan generator uses the new query and the set of cur-
rent plans (the plans currently running in the network) as
input and outputs a stream execution plan and an update
set. The update set specifies what additional data needs
to be requested from the network to answer the new query
(note that the update set can be empty). The update set
is given as an input to the plan optimizer. The plan op-
timizer takes the update set and the set of current plans
and produces a new set of current plans. It also forwards
any changes to the current plans to the sensor network for
execution.

Query optimization happens in two stages. The plan gener-
ator tries to answer the new query by using the result data
streams already being produced. If it cannot, it generates
the update set. The plan optimizer uses different cost model

based strategies (Section 4) to minimize the cost of propa-
gating changes and running the set of current plans.

Note that the plan optimizer does not need to generate net-
work execution plans that acquire exactly the data asked by
the queries. Depending on the optimization strategy, there
might be redundant data (two separate plans return over-
lapping data sets) and orphan data (data obtained from the
network for which there is currently no user query). The lat-
ter reduce the cost of removing plans if they are no longer
needed. Leaving them around for a while may be better
than removing them and having to re-insert them shortly
afterwards.

3.2 Cost Model per Tuple
In this paper we aim at minimizing the average power con-
sumption over all nodes. We start by calculating the cost of
acquiring and transmitting a tuple to the basestation. The
energy consumption ET of a sensor node for a single tuple
is given by the following expression.

ET =
∑

sk∈S

tskPsk︸ ︷︷ ︸
sampling

+ trxPrx︸ ︷︷ ︸
reception

+ ttxPtx︸ ︷︷ ︸
transmission

+ tcpuPcpu︸ ︷︷ ︸
CPU active

+ tiPi︸︷︷︸
idle

(1)

The expression captures the cost of sampling, receiving and
transmitting, running the CPU, and the power consumed
while idle. The cost of sampling a sensor is the product of
the time tsk to take a sample and the power consumption Psk

of each sensor. The overall sampling cost is the sum over all
sensors sampled. For message transmission and reception
we use the time the transmitter and receiver circuits are
active multiplied by the power consumption for sending and
receiving. The same applies to the CPU. The idle power
consumption Pi is the power used by the node when the
radio is powered-off and the CPU is in the lowest power
mode.

Table 1 shows the values for the parameters we have ob-
tained through shunt-measurements on the Tmote Sky sen-
sor platform. For some of these parameters, what we have
measured is the minimum value. The real values of these pa-
rameters are affected by the software running on the node.
For instance, the receiving time trx is application dependent
(it depends on the duty cycle, message length, and size of
the network). In our system we have measured the real value
to be 50 ms.

Table 1 indicates as it also noted throughout the literature
that energy consumption is dominated by the transmission
costs. In fact, the major power drain occurs in the ra-
dio receiver1. For the model we assume a MAC layer that
performs the necessary duty-cycling of the receiver. Thus,
without any significant loss of accuracy, we can simplify the
model by considering only the cost of transmitting tuples

1The sensors of the Tmote Sky node platform we are using
do not have a significant energy consumption. For different
sensors (e.g., gas sensors) sampling cost may no longer be
negligible. In this case, the sampling cost has to be included
in the parameter Ca.



Table 1: Measured energy model parameter for the
Tmote Sky platform
Parameter Value Unit

Broad-band light sensor Ptsr 4.94 mW
ttsr 17.5 ms

Narrow-band light sensor Ppar 5.01 mW
tpar 17.48 ms

Temperature sensor Pt 4.32 mW
tt 220.4 ms

Humidity sensor Ph 4.28 µW
th 72.36 ms

Radio transmitter Ptx 61.1 mW
Sending message (41 byte) t̄tx 9.63 ms
Radio receiver Prx 63.4 mW
Receiving message (min) trx ≥ 2.02 ms
CPU active Pcpu 8.76 mW
Idle power Pi 2.64 mW

and disseminating network execution plans. Although our
implementation uses messages of different sizes and supports
tuple bundling in one message, in the cost model we assume
each tuple costs at least one message. Some tuples are too
long to fit into one message, hence, the cost c(T ) for send-
ing a single tuple T that contains n attributes is given as
follows:

C(T ) = Cm

⌈n

8

⌉
+ Can (2)

Cm is the fixed cost for sending a message. In our system
the fixed costs are the 25 header bytes of for each full 41
byte result message. Ca is the cost of sending a single 16-bit
attribute. The fraction 1

8
comes from the maximum number

of attributes we can fit into a message (in other systems
and configurations this value may be different). Cm and
Ca can be inferred from the bit-transmission cost. With
our hardware we measured Cm ≈ 359 µJ and Ca ≈ 28.7 µJ.
In the following, we take the simplifying assumption that a
tuple is not split across multiple messages, i.e., n ≤ 8. As an
approximation we use Cm ≈ 12Ca. All energy calculations
are done in units of Ca.

3.3 Overall Cost Model
Sensor networks typically resort to multi-hop routing to trans-
mit messages to the basestation. This is the basis for in-
network data aggregation algorithms, e.g., [13].

There are several strategies to define the routing topology.
For instance, in Directed Diffusion [6] the routing depends
on the data and task at hand. To calculate the cost model
we assume a tree routing topology that is independent of
the queries and data collected. There are many possible
tree topologies (Figure 3). The actual topology determines
the number of messages required to get a tuple to the base-
station. For the N -node topologies in Figure 3, the total
number of messages is of the order of O(N2) for the chain,
O(N log(N)) for the binary tree, and O(N) for the star.
This overhead changes if in-network aggregation is used. If
the aggregation state, i.e., the summary data that is used to
compute the value of the aggregate, is of constant size, which
is the case for non-holistic aggregates as described in [13],
the number of messages that have to be sent is proportional

(a)

(b) (c)

Figure 3: Different collection tree topologies: (a)
chain graph, (b) binary tree, (c) star graph

to the number of edges in the routing graph, thus, O(N).

To derive a cost model for the average power consumption
over all nodes, we need to distinguish between spatial aggre-
gation and non-aggregation queries. In the following, tp is
used for the sampling interval, CT is a parameter describing
the topology, and N is the number of nodes in the network.
With Equation (2) as a basis, Equation (3) describes the
costs for the non-aggregation case, whereas Equation (4) is
used for aggregation queries. The execution cost C(p) for a
given plan is the total electrical power used by the sensor
nodes (physical units mW) to execute that plan:

C(p) = CT
1

tp

[
Cm + Can

]
(3)

C(p) = (N − 1)
1

tp

[
Cm + Can

]
(4)

In [23] similar equations are proposed. However, because
they cannot determine the actual topology, the cost model
they use is based only on Equation (4) (the lower bound). In
our system we can estimate the value of the CT parameter
as follows. A node h hops away from the basestation leads
to h messages being sent towards the basestation. For the
average energy consumption one can consider the average
hop-distance h̄ of a node. Together with the number of
nodes, the topology parameter is then CT = Nh̄, i.e., the
average number of hops to the basestation multiplied by the
number of nodes. In modern sensor networks the topology is
typically dynamic. In our system we can obtain the current
value h̄ directly from the network by executing the following
query in the background at a sufficiently large frequency to
react properly to changes:

SELECT AVG(depth) EVERY 1min

This value is used by the query optimizer to constantly keep
the cost model up to date. In Section 4.7 we extend this
cost model to include query selectivity.

3.4 Plan Generator
A new query is sent to the plan generator after it has been
parsed. The generator looks up all possible subexpressions
of the query in the set of current plans. When no match is
found, the corresponding expression is added to the update
set which is then passed to the plan optimizer.



Ignoring selective queries (queries with filter predicates are
described later in Section 4.7) a query can be regarded as
a collection of expressions {E1, E2, . . .}. Such an expression
can either be a stream operator (as presented in Section 2)
or an arithmetic expression. Every expression has an addi-
tional property in our stream processor, the tuple rate r. It
determines how often the operator is expected to produce
tuples. We explicitly note the rate r together with the ex-
pression as an annotated expression E@r.

Matching expressions from a query with the ones from the
execution plans involves comparing both expression subtrees
and their rates. We define a binary matching relation ≺ for
annotated expressions:

Ei@ri ≺ Ej@rj ⇐⇒
(
Ei = Ej

)
∧

(
rj mod ri ≡ 0

)
According to this definition Ej@rj matches Ei@ri if, and
only if, it contains the same subexpression and produces
tuples at an integer multiple rate of Ei@ri, i.e., a superset
of the tuples of the left hand side, hence the ≺ symbol. Note
that ≺ is not symmetric.

We can now provide a more formal definition of a query and
a network execution plan. A query q is a set of annotated
expressions: q = {E1, E2, . . . , Ek}@r. This notation empha-
sizes that all expressions of the query have the same rate
r, determined by the every clause. The set is computed
from the operator tree and it contains one element for each
expression in the select clause.

A network execution plan is also a set of annotated expres-
sions: p = {E1, E2, . . . , Ek}@r. The difference to a query
is that each execution plan maintains a list of queries that
currently use data generated by the plan. This list can be
used as a reference counter of the query. When the list is
empty a plan may be removed. We use P =

⋃
p to denote

the set of all plans p.

Algorithm 1 computes the update set for a query q consid-
ering the set P of currently executing plans. The function
ComputeUpdateSet starts with an empty update set U
and then iterates over all expressions of the given query q
and calls MatchSubExpr to recursively match the subex-
pressions. MatchSubExpr returns a pair (M, U) where M
contains the plans associated to those subexpressions that
could be matched by any expression from the current set of
plans. U contains the unmatched subexpressions. The func-
tion first checks if the entire tree E@r is matched by some
plan (line 11). If not, the function is recursively applied
to the subexpressions (line 16). The matching sets Mi and
update sets Ui obtained from each subexpression tree are
combined (line 17). If no match was found (M = ∅) the en-
tire subexpression is added to the update set and returned
(line 19). Otherwise, the union of the matching plans M
and the update set U is returned (line 20). In ComputeUp-
dateSet the query q is registered with all matching plans
p ∈ M . The update set passed to the query optimizer is the
union of the update sets Ui obtained for each expression.

While matching the expressions of the update set with the
current plans, the plan generator also creates a stream ex-
ecution plan. For each match found, the attribute in the
result stream of the corresponding network plan is extracted

Algorithm 1 Computing the Update Set

1: function ComputeUpdateSet(q,P)
2: U := ∅
3: for all E@r ∈ q do
4: (Mi, Ui) := MatchSubExpr(E@r,P)
5: subscribe q with all plans p ∈ Mi

6: U := U ∪ Ui

7: end for
8: return U
9: end function

10: function MatchSubExpr(E@r,P)
11: if ∃p ∈ P : ∃Ej@rj ∈ p : E@r ≺ Ej@rj then
12: return ({p}, ∅) . match found in plan p
13: else
14: M := ∅, U := ∅
15: for all subexpressions Ei@ri of E@r do
16: (Mi, Ui) := MatchSubExpr(Ei@ri,P)
17: M := M ∪Mi, U := U ∪ Ui

18: end for
19: if M = ∅ then return (∅, {E@r})
20: else return (M, U)
21: end if
22: end if
23: end function

and, if necessary, some additional processing applied, e.g.,
down-sampling or applying a filtering operator. In order to
join two result streams, e.g., computing E1 + E2 from two
streams that provide E1 and E2, the tuples are combined us-
ing an equi-join. For spatial-aggregation queries the join is
performed on the grouping attributes (specified in the group
by clause). In all other cases, tuples that originate from
the same node are joined, i.e., the join is performed on the
nodeid attribute. We can save communication cost by ex-
tracting the nodeid attribute from the origin field of a result
tuple message through the routing layer. Alternatively, the
nodeid attribute could be added implicitly to every execu-
tion plan. However, this enlarges the size of a result tuple.

As an illustration of Algorithm 1 consider the example shown
in Figure 4. Given a query consisting of a single expression
E0@r = E1@r + ωt,10(a1@10r). Let E1@r be an unspeci-
fied expression tree, ωt,10 a tumbling window operator with
a window size 10, and a1 a sensor. There are currently
two execution plans p1, p2 in the system. First, the pos-
sible subexpressions are matched with the plans. Since for
E0@r no match was found, the subexpressions E1@r and
E2@r = ωt,10(a1@10r) are analyzed (line 16). A match for
the E1@r in p1 is found, hence, p1 is added to the set M and
the recursion stops at this point. For E2@r, no match can
be found. Thus, recursion continues to E3@10r = a1@10r.
Also in this case, no match is found. Algorithm 1 considers
the entire branch E2@r to be unmatched and adds it to the
update set (line 19). This update set is passed to the opti-
mizer, which then modifies P such that results for E2@r are
retrieved from the network. This is explained in the next
section. The streams from E1@r and E2@r are joined in
the stream execution plan by adding an addition-operator.
Also, the query is subscribed with the existing plan p1.
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Figure 4: Plan Generator Example

4. QUERY PROCESSING OPTIMIZATION
Unmatched expressions that are passed to the optimizer by
the plan generator need to be included into some execution
plan. The optimizer has two choices to deal with the update
set. Either it can add it as a new plan or merge it with an
existing plan. All changes in the set of execution plans are
associated with a cost. Hence, not only the execution of the
plans but also the set up and removal costs of the plans have
to be considered. There are different strategies the optimizer
can apply, depending on the cost-aspect.

4.1 Cost of submitting Queries
Before we describe the possible optimization strategies we
first state our assumptions on network execution plans:
(1) Execution plans are immutable, i.e., they cannot be mod-
ified after they have been generated. The reason is that
the execution platform does not support modifications of
plans. A modification (besides changing the sampling inter-
val which is possible in, e.g., TinyDB) could in principle con-
sist of large changes. The coordination of these distributed
updates is difficult (global snapshot semantics on the state
of a plan is required), therefore, we decided not to support
updates on plans. The immutability implies that to update
a plan, the plan has be replaced.
(2) The execution of a plan results in a power drain C(p) in
mW (Section 3.2). The actual energy consumption (Joules)
depends on how long a plan is executed.
(3) Setting up a new execution plan gives rise to an energy
cost Cs (in Joules). This energy is spent in disseminating the
plan through radio messages. These costs depend on the size
of the network and the complexity of an execution plan. Our
implementation uses a flooding mechanism, hence, a given
plan message is retransmitted once by every node. This re-
sults in m ·N transmissions for a plan that is disseminated

with m messages. We measured an energy consumption of
589 µJ for sending a full radio message. Let m(p) denote the
number of messages required for representing plan p. Then
the setup cost is

Cs(p) = 589 µJ ·Nm(p) .

(4) For stopping and removing an execution plan an addi-
tional energy cost Cr (in Joules) is defined. In our imple-
mentation a plan is removed when a stop message is received.
Cr is the cost for broadcasting one single single message and
is independent of the plan. Thus, Cr = 589 µJ ·N .
(5) The number of execution plans that can be run concur-
rently in the sensor network is limited. This limitation is not
only due to the limited bandwidth available for the trans-
mission of result tuples but also to the limited CPU/memory
on the sensor node. Our implementation on the Tmote Sky
sensor nodes can execute up to 8 plans concurrently.
(6) Finally, as already mentioned in the previous section, all
annotated expressions Ei@r of a given plan must have the
same rate r.

Obviously, there is a trade-off between cheap execution costs,
i.e., ”good” plans that best match the current set of queries,
and a low update cost due to less frequent changes of the
plan. The goal that is consistent with maximizing the bat-
tery life time is to minimize the energy used to process a
given query load. The query load is characterized by the set
of queries it consists of and the submission and withdrawal
times of each query. In a realistic scenario we cannot assume
that withdrawal times are known beforehand. However, the
execution time of a query plays an important role, e.g., for
a long running query it might be worthwhile to update the
set of execution plans as the update costs are amortized by
the long running queries.

4.2 Optimizer Rules
We study different strategies for the optimizer. The op-
timization strategy determines how the optimizer modifies
annotated expressions from the set P of execution plans and
the update set U . In general, the optimizer can modify P
based on following rules:

1. If an expression Ej@rj is not matching expression Ei@ri,
i.e., Ei@ri 6≺ Ej@rj , because only their rates are in-
compatible while Ei = Ej , the rate of both expres-
sions can be adapted to the least common multiple
lcm(ri, rj). The expressions can then be merged.

E@ri, E@rj −→ E@lcm(ri, rj)

In order to adapt the rate of the result streams rate
conversion operators ρ have to be added to the stream
execution plan. For the stream of E@ri the down-
sampling ratio is lcm(ri, rj)/ri : 1.

2. If E@r is a composite expression, i.e., an operator op
E@r = Ek@rk op El@rl, it is replaced by the subex-
pressions, i.e., Ek@rk and El@rl. The operator op is
added to the stream execution plan such that the two
streams are joined into a stream for E@r.

3. If E@r is an aggregate expression, remove the ag-
gregate. This is a special case of Rule 2. Example:
MAX(E1 +E2)@r is expanded into E1@r +E2@r. This



transformation has a profound impact on the execution
cost, as now the aggregate MAX has to be computed at
the basestation and therefore a tuple from every node
needs to be sent to the basestation. However, if a
stream for (E1 + E2)@r is already available no addi-
tional costs occur. In fact, the costs are reduced as no
processing is required in the network.

4. Combine common subexpressions in P and U . If, e.g.,
E1@r op E2@r is in a current execution plan p and
E1@r ∈ U , then plan p can be replaced by a plan p′

that contains {E1@r, E2@r} instead.

4.3 Optimizer Strategies
How these rules are applied is determined by the optimiza-
tion strategy. In this paper we study the following strategies:

Min-Execution Cost Strategy (Section 4.4) The opti-
mizer aggressively reorganizes the current execution plan so
that the execution cost C(p) is minimized. Costs for the up-
dates, i.e., setting up and removing plans are not considered.
This strategy is motivated by the fact that update costs are
negligible compared to the execution costs for long running
queries, or for queries with low arrival rates.

Delta-Plan Strategy (Section 4.5) For each update set a
new plan is created. When a new plan is added, the existing
plans are not reorganized. This, of course only works up to
a maximum number of plans that can be executed concur-
rently. A plan is removed if no query has subscribed to the
plan. It obviously minimizes the update-costs, however, it
can lead to orphan data being returned as a long running
query might be subscribed with several query plans that,
therefore, cannot be removed. These query plans can also
return data not required by this query.

Single-Plan Strategy (Section 4.6) leads to a single exe-
cution plan, such that all queries are answered from a single
stream. This approach was suggested in [16]. As new queries
are added, the selectivity of the network execution plan de-
creases until it becomes SELECT * EVERY ∆t for the smallest
possible ∆t. From this point on, adding additional queries
does not require any updates in the network. However, in
order to include queries with different sampling intervals,
the period of the resulting plan has to be set equal to the
greatest common divisor of the queries’ sampling interval.
As the evaluation in Section 5 will show, the resulting sam-
pling interval quickly approaches ∆t, leading to redundant
data.

TTMQO Strategy This strategy was described by Xiang
et al. [23]. We have implemented TTMQO for comparison
purposes. In the TTMQO strategy, instead of merging all
queries to one single plan, a query q is merged with the“most
beneficial“ existing plan. The benefit of a plan p is defined
as C(p)+C(q)−C({p, q}), i.e., the savings when merging p
with the query q compared to creating a new plan for q and
running it together with p. In [23] the authors only propose
merging. Splitting a query and assigning it to different plans
is not considered. Thus, their approach essentially bypasses
the plan generator such that the update set contains all ex-
pressions of the submitted query. In the TTMQO strategy,
a plan is not immediately removed as soon as the last query

that uses data from it is withdrawn. Instead, a plan is kept,
thus producing orphan data. The idea is to save update
costs as a new query might be submitted that could make
use of that plan. When such a plan is removed is determined
by an aggressiveness parameter 0 ≤ α ≤ 1. In [23] the au-
thors do not describe how to choose that parameter. Their
plots seem to indicate that the parameter α does not affect
the results significantly.

4.4 Min-Execution Cost Strategy
In this section we describe how to map queries such that
the execution costs are minimized. The min-execution cost
strategy tries to aggressively minimize the execution costs∑

p∈P C(p) of the plans. Costs for starting Cs and removing
Cr plans are not considered. As soon as query is added or
withdrawn the set of current plans is recomputed and plans
are replaced where necessary. This strategy works best if
the query is in the system for a sufficiently long time as long
execution times amortize update costs.

Before describing the strategy we motivate why the update
costs can be ignored in a first approximation. When com-
paring the cost for updating a plan with the execution du-
ration, it can be observed that in the worst case a plan is
amortized soon after it has produced data as a simple calcu-
lation shows (ignoring selective plans and retransmissions).
A plan update (broadcasting a stop command message and
disseminating the new plan p using m(p) messages) leads
to N(m(p)+1) transmissions, assuming that each node for-
wards each message exactly once. A worst case plan in this
case is a plan with the lowest possible execution cost, which
is either a spatial aggregation plan, or a non-aggregation
plan in a star topology (Fig. 3 (c)), leading both to N
transmissions per epoch. Hence a plan is amortized af-
ter > m(p) + 1 epochs. In SwissQM the plan size is only
1 ≤ m(p) ≤ 5 ([18]) even for complex queries with simple
user-defined functions. Thus, update costs can considered
being amortized after having produced data for about 10
epochs. In the common case, the average depth of the tree
is � 1. Then the update cost is amortized even earlier.

Consider a set of queries that leads to the following anno-
tated expression set :

E1 : (a + b)@2r
E2 : (a + b)c@4r
E3 : ω10(c)@r
E4 : b@2r

In this example a, b, and c correspond to sensors whereas @r
specifies the requested tuple rate (frequency). The goal is
to find the cheapest execution plans for the expression set.
This also includes deciding how to split the expressions into
execution plans pi, that each produces a stream of tuples Ti

at one particular rate ri.

The tree for the expressions Ei can be presented as a con-
nected graph (Figure 5 (a)). In the graph we add an edge
(dashed arrows) from a matching expression to all expres-
sions it matches. For example, since (a+b)@2r ≺ (a+b)@4r,
we add an edge from (a + b)@4r to (a + b)@2r. The dou-
bly encircled nodes are the root nodes of the expressions Ei.
Values corresponding to these root nodes are requested by



c ca b

(a+b)c@4r

b@2r

a+b@2r

2
b a

4
4

(c)@rω
1E

E2

E3

E4

c ca b

(a+b)c@4r

b@2r

a+b@2r

4422

2

24
48

12

1

b a

4
4

4

(c)@rω

t

t

t t1 2 3

u

x y
1w

w3

1v 2v

2w

(b)

(c)

(a)

Figure 5: (a) Graph for set of annotated expressions from the example. (b) Weighted graph model for ILP
problem. (c) Construction of inequalities for the ILP problem.

some user query.

Graph Modelling
The graph from Figure 5 (a) can be extended as shown in
Figure 5 (b). Let’s call this extended digraph G = (V, E)
consisting of a set of vertices V and edges E. An artificial
root node t is added to the graph. The expressions are
grouped by their rate ri. Also, for each group a new node ti

is introduced. Since for each rate a fixed header cost has to
be spent regardless of the number of selected attributes, an
edge (t, ti) is added between the artificial root node t and
the common group nodes ti. The edge is weighted by the
cost c(t, ti) = riCm and accounts for the header cost Cm

when using a plan at rate ri. Additional edges (ti, u) are
added between the group nodes ti and the remaining nodes
u of the expressions. These edges are weighted by the costs
w(ti, u) = riCa. The weights reflect the cost of a field in
the result message. Note, since Cm � Ca, as soon as a
rate is selected, adding fields to a tuple is relatively cheap.
All other edges, including the “matching expression” edges
have zero weight. The idea is that computing an expression
from an expression that is reached over a zero-weight edge
is free, since the operand values can be retrieved from the
tuple that is sent to the basestation. When following dashed
lines (Figure 5 (b)), costs are actually saved as redundancy
in the expression set is exploited.

The goal is to select a subset S ⊆ V of edges such that
the corresponding induced graph is connected, and all ex-
pression roots Ei can be reached from t. For optimality,
the minimum cost subset S is of interest. This leads to the
following constraint optimization problem:

min
S

∑
(u,v)∈S

c(u, v) (5)

0-1 Integer Linear Programming
The optimization problem can be mapped to an 0-1 Integer
Linear Programming Problem (ILP). A 0/1 variable xe is
introduced for each edge e. The edge e ∈ S if, and only if,
xe = 1. The objective function is expression (5). Connectiv-
ity and reachability from t is modelled using the constraint
inequalities. The procedure is as follows:

Consider a node u (shown in Figure 5 (c)). This node rep-
resents a binary operator, e.g., x+ y. Hence, it is connected
to the two operand nodes x and y. In order to evaluate the
expression the edges (x, u) and (y, u) have to be selected,
i.e., the operands x and y have to be available. The dashed
edges from w1, w2, and w3 are from “matching expressions”
that provide x + y, at a rate that is an integer multiple of
the one requested by u. Node u also has two outgoing edges
to v1, and v2. The connectivity rules for the inner nodes are
given by the following condition.

(u, vi) ∈ S ⇐⇒

((x, u) ∈ S) ∧ ((y, u) ∈ S) ∨
∨
wj

((wj , u) ∈ S) (6)

In other words, an outgoing edge (u, vi) is in S if and only if
all operand edges (x, u), (y, u) are in S or u is reachable by at
least one “matching expression” edge (wj , u) ∈ S. Note that
the condition must hold for each outgoing edge (u, v1) and
(u, v2). The constraints for expression roots (double circled
nodes in Fig. 5) introduce a similar constraint: either all
operand edges have to be in S or at least one “matching
expression” edge.

In a second step, the set of conditions (6) can be rewritten as
linear inequalities by introducing a structural variable x(u,v)

for each edge (u, v). The equation corresponding to (6) is:

x(x,u) + x(y,u) + 2
∑
wj

x(wj ,u) − 2x(u,vi) ≥ 0 (7)

It can easily be verified that inequality (7) corresponds to (6)
by substituting the structural variables x by values 0 and 1.
The number of variables is equal to the number of edges |E|.
For each out-bound edge there is a constraint inequality. An
additional inequality is obtained for each root node of the
expressions. The objective function of the ILP problem to
be minimized is expression (5).

Example Continued
The assignment of variables x to edges is shown in Figure 6.
For the example, 22 variables x1, . . . , x22 ∈ {0, 1} are intro-
duced. The weights wi are defined as indicated indicated in
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Fig. 5 (b). The objective function to be minimized is

z(x1, . . . , x22) =

22∑
i=1

xiwi .

The constraints for the expression roots Ei are:

x13 + x14 + 2x10 + 2x19 ≥ 2
x5 + x21 ≥ 1

x17 + x18 + 2x12 ≥ 2
x9 + x22 ≥ 1

The remaining constraints are:

x1 − x4 ≥ 0
x1 − x5 ≥ 0

x1 − x10 ≥ 0
x2 − x6 ≥ 0
x2 − x7 ≥ 0
x2 − x8 ≥ 0

x2 − x11 ≥ 0
x2 − x12 ≥ 0
x3 − x9 ≥ 0

x4 + x20 − x13 ≥ 0
x5 + x21 − x14 ≥ 0

x6 − x15 ≥ 0
x6 − x21 ≥ 0
x7 − x16 ≥ 0
x7 − x20 ≥ 0
x8 − x18 ≥ 0
x8 − x22 ≥ 0

x15 + x16 + 2x11 − 2x17 ≥ 0
x15 + x16 + 2x11 − 2x19 ≥ 0

The problem is solved, e.g., using the GNU Linear Program-
ming Kit (GLPK) solver and the following optimal integer
solution can be found.

x2 = x6 = x7 = x8 = x13 = x14 = . . . = x21 = x22 = 1

x1 = x3 = x4 = x5 = x9 = x10 = x11 = x12 = 0

z(x1, . . . , x22) = 60

The selected edges S and the induced graph are shown in
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Fig. 7. The solution contains the two “matching subexpres-
sion” edges x20 and x21 for the operands of a + b@2r as
well as the edge x19 for the expression itself. This can be
considered as sort of redundancy, but since the “matching
subexpression” edges have zero weight they do not add an
additional cost. However, the solution is plausibly minimal
in terms of the cost z.

In a second stage the graph is traversed from t in order to
determine the expressions that are executed in the network,
i.e., the expressions for the tuples fields. This is done by
traversing the graph from t and stopping at a node that
either is the root of an expression Ei or has an outgoing
“matching expression” edge ∈ S. The expression rooted at
this stop node is then used for that particular tuple field.
The expressions are then assigned to plans by their common
rate ri. Concluding the example, the expressions E1,. . . ,E4

can be computed using a single plan p = {a, b, c}@4r.

Spatial Aggregation Queries
For aggregation queries the mapping from the annotated
expressions to the graph has to be extended. As shown by
Equations (3) and (4) (in Section 3.3) spatial aggregate plans
have smaller costs, as only a single message has to be sent
over an edge in the data collection tree. Therefore, both the
fixed costs as well as the attribute cost depend on whether
the spatial aggregation is performed in-network or at the
basestation.

The graph model has to reflect these two choices. The
model is extended as follows: First, the cost in the graph,
i.e., the edge weights, are specified as the total cost includ-
ing the topology parameter CT , rather than just riCa and
riCm (topology independent). Second, for each rate group
ri that contains at least one spatial aggregation expression
the group node ti is split into two nodes ti and ti,agg. If
the latter is reachable over an edge ∈ S the plan will be
executed using a spatial aggregation plan. The weights for
the edges (t, ti) and (t, tt,agg) represent the header cost for
running a non-aggregation plan at rate ri and, respectively,
an aggregation plan at the same rate. Thus, using the cost
metrics from Equations (3) and (4) the weights are:

w(t, ti) = rCT Cm

w(t, ti,agg) = r(N − 1)Cm
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Next, the aggregation expressions are duplicated in the graph.
Remember, that the second level edges (ti, a) to attributes
model the costs of a field in a result tuple, which is also dif-
ferent for spatial aggregation expressions f(a). Note, in an
aggregation plan, leaf nodes are always aggregation expres-
sions f(a) and never the single attribute a, as attributes
cannot be part of an aggregation plan by definition. The
weight costs are as follows:

w(ti, a) = rCT Ca

w(t, f(a)) = r(N − 1)sfCa

Here sa is used to denote the size of the aggregation state
of aggregate f . For example: 1 for MIN, MAX, SUM, 2 for AVG,
3 for VARIANCE, and STDDEV, etc. Finally, the graph is ex-
tended by the corresponding edges from the non-aggregation
component to the aggregation component.

As an example consider the following two expressions:

E1 : max(a)@r

E2 : (a− b)@10r

In this example, E1 is a spatial aggregation expression. The
optimizer has to decide whether the expressions are to be
computed using two separate plans max (a)@r, {a, b}@10r,
or whether they are merged into a single non-aggregation
plan {a, b}@10r. The graph model is shown in Fig. 8. Note
that for the aggregation expression E1 the group nodes tr

is split into tr and tr,agg (dotted rectangle). Also observe
the different weights for (t, tr) and (t, tr,agg). A “matching
expression” edge from a@10r to the a@r node of the non-
aggregation component of E1 is added as well.

As it can be easily verified that as long as

CT >
1

10
(N − 1)

(
1 +

Cm

Ca

)
it is more efficient to run the two plans max(a)@r, (a −
b)@10r than to run a single non-aggregation plan {a, b}@10r.

Limit on the number of concurrent plans
The number of concurrent plans that are generated is equal
to the number of selected edges (t, ti) ∈ S. If the sensor
network imposes a limit of at most NPmax, this limit can be

enforced by adding another inequality∑
i

x(t,ti) ≤ NPmax .

If this constraint is added, it is in principle possible that the
linear program has no feasible solution, i.e., the constraints
lead to an empty feasible region. In this case, the optimizer
learns that a cost-optimal solution is not possible. Instead,
a sub-optimal solution is sought that uses fewer plans but
inevitably leads to data not requested by any query. The
optimizer iteratively reduces the number of rate groups and,
hence, possible plans, by combining groups ti and tj until
a feasible solution is found. Assume that in group i the set
of selected sensors attributes is Ai and Aj for group j then
the amount of superfluous data obtained when merging the
groups is estimated as

lcm(ri, rj)

ri
|Ai\Aj |+

lcm(ri, rj)

rj
|Aj\Ai| .

The optimizer now greedily combines groups that introduce
the least amount of superfluous data until a feasible solution
is found.

This solution for solving the min-execution cost optimization
problem is NP-hard [9]. We believe that there is no efficient
solution for this problem. Nevertheless, for the number of
queries that is reasonable to run in a wireless sensor network,
this approach is feasible in practice.

4.5 Delta-Plan Strategy
For each update set U that is generated when a query is
added a new plan will be created. However, plans are not
reorganized once they are started. The idea for this strategy
is to include the update set with as few updates as possible,
which is clearly the case when the entire set is added as a
new plan. A plan is always removed as soon as no more
query is subscribed to an expression of this plan.

This strategy has two problems. First, a plan might produce
large amounts of orphan data. Consider, for example, a plan
producing tuples with ten fields. All queries are removed
until the last query, which only extracts one single field of
the tuples, resulting in nine orphan fields. However, if this
query is long running the plan is not removed and since it is
not reorganized, the orphan data can significantly increase
the cost. In TTMQO [23] the authors consider this as an
advantage, as new queries might request one of the orphan
fields. In that case, the queries can be answered directly
without any update costs. In fact, in [23], unlike in the
delta-plan approach, even plans that contain only orphaned
fields are not always removed. They are intentionally left
in the sensor network for this reason. TTMQO provides
a tuning parameter that allows adjusting how aggressively
orphaned plans are removed.

Second, as updates lead to new plans, the number of concur-
rent execution plans rapidly increase. Thus, this approach
works only up to the maximum number of concurrent plans.
If the limit is reached, the plans have to be reorganized, e.g.,
using the min-execution cost strategy.

4.6 Single-Plan Strategy



This strategy was described in [16] and is motivated by the
notion of the universal query that returns all attributes of
the sensor nodes in the entire network at the highest possible
rate. As new queries arrive, the selectivity of the single
execution plan is gradually increased towards the universal
query. If a query is withdrawn, a plan is gradually made less
selective, i.e., more specific to the queries.

This approach works well for a workload with many con-
current queries, in particular if there is large overlap in the
requested attributes. The disadvantage is that result rate is
the least common multiple of all user queries. For example,
if the sampling intervals specified in the queries are rela-
tive prime, the greatest common divisor is one, leading to
a plan with the shortest possible sampling interval ∆t. [16]
suggests using introducing a slack in the resulting sampling
interval (a tolerant sampling interval). The optimizer then
can freely pick any sampling intervals within the tolerance
window specified such that the sampling rate of the resulting
execution plan is minimized.

4.7 Queries with Predicates
In this section we extend the expression annotation intro-
duced in Section 3.4 to include filter predicates, i.e., queries
with σ operators. Just as with the sampling rate r, we also
annotate the selection predicate p(Ej) with the expression.
Multiple predicates are represented in conjunctive normal
form. The resulting annotated expression is:

E@r|p(Ej) ∧ . . . ∧ p(Ek)

For example, for the single query the annotated expressions
in the execution plan are:

SELECT nodeid, (light+lightpar)/2

WHERE humid<50 EVERY 1s

p = {nodeid@1s|(humid < 50),

(light + lightpar)/2@1s|(humid < 50)}

When the matching relation is redefined appropriately, the
plan generator does not have to be changed. The matching
operator ≺ for predicates is redefined as:

Ei@ri|p(Ek) ≺ Ej@rj |p(El) ⇐⇒
Ei = Ej ∧ rj mod ri ≡ 0 ∧ p(Ek) ⇒ p(El)

The superset condition still holds. If p(Ek) ⇒ p(El) the
stream Ej@rj |p(El) is a superset for Ei@ri|p(Ek). For the
plan optimizer we add the following rewrite rule.

5. If an expression Ei@ri|p(Ej) is bound to a predicate
p(Ej) the predicate is removed. The predicate p(·) is
then computed at the basestation, i.e., it is added as
a σ operator to the stream execution plan. However,
in order to evaluate the predicate at the basestation, a
stream for the predicate expression Ej has to be avail-
able, thus, it also has to be added to the expression set
together with Ei:

Ei@ri|p(Ej) −→ Ei@ri, Ej@ri

For the query above the humid attribute is also added to the
rewritten annotated expressions.

nodeid@1s, (light + lightpar)/2@1s, humid@1s

The plan generator needs to first decide on the evaluation
order of a list of predicates E@r|p(Ej) ∧ . . . ∧ p(Ek), and
whether a predicate is applied in the network execution plan
at all, i.e., whether rule (5) should be applied.

Again, the cost model is used. However, since execution
plans now can contain selective expressions, the tuple cost
depends on the average selectivity s̄ of a predicate. Hence,
the cost Equations (3) and (4) are redefined as

C(p) = CT
s̄

tp

[
Cm + Can

]
(8)

C(p) = (N − 1)
s̄

tp

[
Cm + Can

]
. (9)

In order to apply this model, the optimizer needs to know
the selectivity of the predicates in the execution plans. As
stated earlier, we use the origin field in the result message
to associate a tuple with a sensor node, hence, the selec-
tivity s of a predicate can be estimated at the basestation
for every sensor node by counting the number of received
tuples. This estimate is inherently affected by message loss,
as missing tuples (due to lost messages) cannot be distin-
guished from filtered tuples. The optimizer uses the average
s̄ over all nodes, thus reducing the influence of individual
losses. Additionally, the decision on whether it makes sense
to continuously use a selective plan, and thereby reducing
reuse for different queries, is made if the selectivity is very
low, e.,g., < 10%. This makes mispredictions due to mes-
sage loss negligible as the delivery probability of a message
is sufficiently high (0.7 − 0.9). In order to determine s̄ for
selective in-network aggregation plans, the number of fused
readings needs to be explicitly counted (e.g., the number of
values that contributed to a MAX aggregate). This statistical
data has to be sent along with the aggregate state. Only
for AVG and COUNT this information can be directly deduced
from the aggregate state. Our system currently does not
estimate the selectivity of aggregation plans. The optimizer
assumes s̄ = 1 in those cases.

5. EXPERIMENTAL RESULTS
5.1 Query Workload
In order to assess the performance of the different optimiza-
tion strategies, a set of queries has to be used. Lacking a
benchmark for query processing in sensor networks, we use
a set of randomly generated queries. For each query in the
workload, a submission time and execution duration is given.

The queries are selected from a considerably large query
space consisting of ≈ 2 · 1013 possible queries. The expres-
sions of the queries are composed using elements that are
randomly picked from a predefined set. In this paper we are
not considering selective queries as results depend on the ac-
tual sensor values. Furthermore, choosing useful predicates
that are repeatable despite the varying nature of the sen-
sor readings is difficult. The workload set consists of three
different types of queries: (1) spatial aggregation queries,



Table 2: Query Workloads
Query Workload WL1 WL2
non-aggregation queries 50% 20%
spatial aggregation queries 30% 60%
temporal aggregation queries 20% 20%

(2) temporal aggregation queries and (3) non-aggregation
queries. Not all queries from the available space are equally
likely to occur in practice. A reasonable assumption is that
exotic queries such as

q1 : SELECT (temp+light/3)*nodeid EVERY 17s

occur less frequently and that sampling intervals will most
likely take values from an “even” range, such as 1 s, 5 s,
15 s, 30 s, 1 min, 5 min, 30 min, 1 h, etc. The query com-
ponents, number of selection expressions, sensor attributes,
and subexpressions are thus selected using a non-uniform
distribution. The sampling intervals take one of 17 possible
values. We are aware of the fact that sampling intervals that
are integer multiples of each other greatly increases reuse of
execution plans for multiple queries. Note that constraining
the possible sampling intervals actually corresponds to using
a slack value as proposed in [16].

As shown in Section 3.3 the cost for running spatial ag-
gregation queries is very different from the cost for non-
aggregation queries. We use two different query workloads
with different query mixtures (Table 2) to investigate these
effects. In workload WL1 non-aggregation queries dominate,
whereas WL2 is dominated by spatial aggregation queries.
An excerpt of queries from the two workloads is listed in the
appendix.

The submission and withdrawal times of each query are
determined using two random models. First, we rely on
the common assumption that the query arrivals are Pois-
son distributed. Second, the time a query is run until it
is withdrawn by the user is exponentially distributed. The
expected number of queries present in the system in steady
state can be estimated by Little’s Law. Assuming a query ar-
rival rate r and an average execution duration T there are rT
queries expected in the systems. This does not consider the
ramp-up phase at the beginning and the ramp-down phase
at the end after the last query has been submitted. A sim-
ple calculation shows that the expected number of queries

in the ramp up phase is rT (1 − e−
t
T ). For t → ∞ this

leads to the asymptotic case of Little’s Law. For the ramp-
down phase started at t0 the number of queries decrease as

rT (1 − e−
t0
T )e−

t−t0
T . The system is ergodic during steady

state phase, hence, it is possible to estimate statistic char-
acteristics (averages) using a time average, i.e., by choosing
a sufficiently large execution window. In the following, it
is thus sufficient to consider a single (large) query set for a
given set of parameters.

5.2 Few Concurrent Queries
We consider a workload of 10 concurrent queries in average.
We select the average arrival rate r = 1/100 queries/s and
the average execution time T = 1000 s. This leads to 10
concurrent queries on average. The number of queries in a

workload set is chosen sufficiently large such that the dura-
tion of the steady state phase is large compared to ramp-up
and ramp-down times. When choosing workload sizes of
200 queries the expected duration of the three phases is dis-
tributed as follows: 19% for ramp-up, 62% for steady state,
and the remaining 19% for ramp-down phase. We consider
steady state after > 9.9 (expectation) queries are in the sys-
tem.

We determine the execution costs for the workloads for four
different topologies in a sensor network consisting of 32 bat-
tery powered sensor nodes and one basestation. The first
three are the topologies shown in Fig. 3. The average hop-
distance in the chain is h̄ = 16.5 graph, in the binary tree
(h̄ = 3.375), and in the star graph h̄ = 1. The fourth topol-
ogy is obtained from the dynamic tree routing mechanism
CTP (Collection Tree Protocol [4]) of the TinyOS 2.0 pro-
gramming platform using a real deployment. The structure
established by the protocol with h̄ = 59

32
≈ 1.8 is close to the

star topology.

We implemented the min-execution cost, delta-plan, and the
single-plan strategy, as well as the TTMQO from [23]. For
the latter we set the aggressiveness parameter to α = 0.5.
We also determined the execution cost when no optimiza-
tion would be used by plugging-in the duration and topology
into the cost model. We use these values as a baseline for
comparison. Additionally, we computed the cost of run-
ning the universal query SELECT * EVERY 1s for the pro-
cessing duration of entire workload set. For this evaluation
we are considering all costs, i.e., costs for execution, setup
and removal. Fig. 9 shows the total energy relative to the
non-optimization scenario for both workloads. A first obser-
vation is that all strategies except min-execution cost lead
to a higher energy consumption than running each query
with a separate plan. As further analysis showed, for the
delta-plan and TTMQO strategies, it turns out there are
few active plans and many orphan expressions remaining in
the network. For the single-plan strategy, the resulting net-
work plan does have orphan expressions but it runs at a
very short interval (1–5s), already close or equal to shortest
possible interval. From Fig. 9 one can see that switching
to the universal query is not beneficial. Compared with the
single-plan strategy, the universal query not only runs at a
too high sampling rate, it also returns sensor attributes not
asked by any query. The figure also shows the influence of
the mixture of the query load as well as the topology.

As expected, in WL2, dominated by spatial-aggregation queries,
the improvement of the min-execution cost algorithm is smaller
than for WL1. For the chain topology the min-execution
cost strategy actually requires slightly (5%) more energy
than the no-optimization strategy. The reason is not com-
pletely clear to us. Obviously, the update costs are higher for
min-execution cost strategy. In the no-optimization strategy
each query is mapped into a separate plan which is never
replaced. For the chain topology, if a spatial aggregation
query is executed by a non-aggregation plan, h̄ = 16.5 more
messages are generated than by an aggregation plan. Thus,
deciding to do aggregation outside of the network is most
heavily penalized by the chain topology. We also note that
the TTMQO has a very high energy consumption, in par-
ticular for WL2.
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Figure 9: Total execution costs for workloads WL1 and WL2 using different strategies and topologies. The
costs is shown relative to the no optimization case
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Figure 10: Absolute update costs for WL1

Fig. 10 shows the absolute update costs for plan submission
and removal when executing WL12. As expected, the ag-
gressive updating of plans by the min-execution cost strategy
leads to largest fraction of update costs. The other strate-
gies have lower update costs than the non-optimization case.
This is due to the orphan expressions and plans which sup-
press creation of new plans when new queries arrive.

Fig. 11 shows the maximum number of concurrent plans pro-
duced by the individual strategies. As described earlier, the
delta-plan strategy may lead to a large number of concur-
rent plans as they are not reorganized. In TTMQO there
are relatively few plans in the network but for a long time,
which also implies orphan data and, hence, high energy cost
(as seen in Fig. 9).

5.3 Many Concurrent Queries
2The plot for WL2 is omitted as it has similar update cost,
although, as Fig. 9 indicates, different total costs.
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Figure 11: Maximum number of concurrent plans

The results for WL1 and WL2 with 10 concurrent queries on
average indicate that the min-execution cost strategy per-
forms well. In order to figure out the behavior for smaller
and larger sets the number of concurrent queries is varied
within the interval 1–50. In this run, the 200 queries from
WL1 and WL2 with the same execution duration T are used
except that the arrival rate r is chosen such that on average
rT queries are in the system.

Fig. 12 shows the total execution costs for each of the opti-
mization strategies for query loads WL1 and WL2. For just
a few queries (around less than 5), running the optimizer
does not pay off. The queries should be run independently.
The delta-plan strategy obviously has a bad performance
over the entire interval, although it works better for WL2.
Thus, a strategy that solely tries to minimize update costs
is not sufficient. The single-plan strategy becomes very effi-
cient as the number of queries increase. The TTMQO strat-
egy performs exponentially bad for less than 20–25 concur-
rent queries. With n ≥ 23 queries (WL1) and n ≥ 33 (WL2)
TTMQO outperforms the min-execution cost strategy. This
an artefact of the experiments that actually favors TTMQO
as the workloads used in the benchmark generate a con-
stant query load. In this case, the orphan expression can
quickly be reused by new queries. TTMQO will perform
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Figure 12: Total energies for different numbers of concurrent queries (arrival rates) using CTP topology

worse on bursty loads or when the query arrival rate is not
high enough to quickly reuse orphans. When comparing the
graphs from Fig. 12 only the min-execution cost plan and
the single-plan strategies show the same characteristics for
both loads.

As a consequence from these measurements, the optimizer
should choose between (1) no optimization, (2) min-execution
cost, and (3) eventually the single-plan strategy. The deci-
sion can be made based on the number of queries that are
present in the system. For a few concurrent queries it should
generate a separate plan for each query. For 5 < n ≤ 30 the
min-execution cost strategy should be applied. For n > 30,
the best strategy is probably the single-plan as it does not
involve any optimization overhead. TTMQO can be used
for a large number of queries if the load is of the right type,
but its effectiveness is highly dependent on the query ar-
rival rate, the aggressiveness factor and the speed at which
orphan expressions can be reused. Thus, it is not a gen-
eral solution. Switching from min-execution to a different
strategy for larger n has the advantage that it prevents the
optimization problem from being intractable. For large n
the ILP problem that results from the min-execution cost
strategy is hard to compute. Thus, difficulties of the NP-
hardness of ILP are not observed in practice.

6. RELATED WORK
Processing of continuous queries is a well known problem
in data streaming systems. In [12] an adaptive multi-query
processing strategy based on Eddies [1] is presented. Our ap-
proach is different, as in contrast to traditional data stream-
ing systems, data streams in sensor networks are pulled into
the stream processing engine rather than pushed. In our
case, execution plan generation also involves creating the
data stream at the source nodes in the sensor network.

The need for sharing wireless sensor networks was also rec-
ognized by [25] and [17]. Both approaches provide a multi-
programming environment on the sensor nodes. Both plat-
forms can be used to execute the merged queries generated
by our approach. The execution plans need to be compiled
into a program and disseminated in the sensor network.

Crespo et al. describe query merging [2] in a publish-subscribe
system in a multi-cast environment. They provide a solution
for a ”battlefield awareness and data dissemination” scenario
where several client submit subscriptions for events with ge-
ographically overlapping ranges. Although completely dif-
ferent in nature, there is a similar trade-off between process-
ing inside the network and outside (at the clients) for query
areas.

Multi-query optimization for sensor networks for spatial ag-
gregation queries is shown in [22]. Query execution is per-
formed in rounds, where the plans are recomputed and dis-
seminated every round. Queries and sensors are represented
in a vector space. This representation leads to a reduction
of the amount of data transmitted if the concurrent queries
are linearly dependent. The number of queries that are ac-
tually processed is equal to the number of dimensions of
the subspace spanned by the query vectors. The linearity
property leads to a reduction of transmission costs for ag-
gregation queries. The evaluation in the paper is limited to
queries having the same aggregate and the same sampling
frequency. Additionally, the representation chosen makes it
difficult to use predicates other than on node IDs.

A recent paper proposes a two-way multi-query optimization
system (TTMQO [23]). The first stage is performed at the
basestation by query rewrite in order to reduce redundancy
in the executed queries. The second stage is performed in
the sensor network using query-aware routing and the prop-
erties of the broadcast medium. The work does not consider
the network topology. They state that the topology is hard
to predict, and instead the authors opt for a lower bound
for transmitted messages, essentially assuming in-network
aggregation or a star topology. Additionally, they do not
consider splitting queries. We implemented the TTMQO
strategy. The results using our implementation indicate that
this strategy is only applicable when the query load contains
many concurrent queries and there is a constant stream of
new queries. Otherwise, the strategy does not pay off and
leads to worse performance than if no optimization is used.

In [20] the efficient evaluation of multiple spatial aggregates



on a subset of source nodes is discussed. In contrast to
our setup the aggregate values are not sent to the basesta-
tion. Instead, they are sent to destination nodes inside the
network, e.g., to control actuators. The proposed solution
minimizes communication costs while the sharing of par-
tially aggregated values is maximized. In their work, they
assume a multi-cast tree rooted at every destination node
that connects the corresponding source nodes. This is a
much stronger requirement for the routing layer than the
single collection tree.

7. CONCLUSIONS
In this paper we present a model for aggregation (spatial and
temporal) and non-aggregation streaming queries for sensor
networks. We tackle the problem of efficiently executing
multiple concurrent queries from a dynamic workload by
applying different multi-query optimization strategies. We
showed that different strategies have different effects on the
total execution cost. Furthermore, there does not seem to
exist a strategy that performs best for any number of con-
current queries. Instead, the query optimizer should choose
the best strategy based on the multi-programming level.

In the paper we also present the min-execution cost strategy
which aggressively reorganized the plans using a cost model
and 0-1 integer linear programming. This strategy performs
well across a wide range of multi-programming levels and
takes into account important factors like network topology.
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APPENDIX
Queries Loads
For illustration purposes the first 16 queries of the two ran-
domly generated workloads are shown in Tables 3 (WL1)
and 4 (WL2).



Table 3: First 16 queries of Workload WL1

ID Query
0 SELECT humid/temp, temp, light*temp, light EVERY 2min

1 SELECT TWINDOW(temp, 3, MEAN) EVERY 60s

2 SELECT SWINDOW(voltage, 20, MIN) EVERY 30s

3 SELECT light/temp EVERY 5min

4 SELECT temp+light, light-temp, light EVERY 2min

5 SELECT lightpar*parent EVERY 60s

6 SELECT depth/light, temp, parent, humid/lightpar EVERY 2min

7 SELECT SWINDOW(parent, 3, SUM) EVERY 5min

8 SELECT depth EVERY 2s

9 SELECT parent*parent, humid EVERY 30s

10 SELECT COUNT(*) EVERY 30s

11 SELECT AVG(light) EVERY 5min

12 SELECT SUM(humid) EVERY 2min

13 SELECT MIN(humid) EVERY 2min

14 SELECT MAX(depth) EVERY 2min

15 SELECT temp/humid, lightpar EVERY 5s

Table 4: First 16 queries of Workload WL2

ID Query
0 SELECT TWINDOW(humid, 5, SUM) EVERY 15s

1 SELECT light EVERY 15s

2 SELECT MIN(parent) EVERY 10s

3 SELECT COUNT(*) EVERY 30s

4 SELECT COUNT(*) EVERY 15s

5 SELECT COUNT(*) EVERY 30s

6 SELECT TWINDOW(depth, 5, SUM) EVERY 5s

7 SELECT AVG(light) EVERY 60s

8 SELECT nodeid, depth-depth EVERY 30s

9 SELECT temp, temp EVERY 30s

10 SELECT MAX(nodeid) EVERY 4s

11 SELECT parent, depth, depth EVERY 2s

12 SELECT parent*parent, humid EVERY 30s

13 SELECT COUNT(*) EVERY 30s

14 SELECT AVG(light) EVERY 5min

15 SELECT SUM(humid) EVERY 2min


