
ETH Library

Shared queries in sensor networks
for multi-user support

Report

Author(s):
Müller, René; Alonso, Gustavo

Publication date:
2011

Permanent link:
https://doi.org/10.3929/ethz-a-006780713

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Technical Report / ETH Zurich, Department of Computer Science 508

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-006780713
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Shared Queries in Sensor Networks
for Multi-User Support ∗

René Müller and Gustavo Alonso
Department of Computer Science

Swiss Federal Institute of Technology Zurich (ETHZ)
Zurich, Switzerland

{muellren,alonso}@inf.ethz.ch

ABSTRACT
Wireless sensor networks are still quite limiting in the way
they can be programmed and used. For instance, most ex-
isting platforms for sensors networks allow only a single ap-
plication or user to run on them. This makes it difficult to,
e.g., have mobile users connecting to a local sensor network
as they arrive at a new location. In this paper we tackle the
problem of supporting different applications over the same
sensor network. The idea is to allow applications to request
different data at different rates from different sensors of the
same sensor network while still being able to run the sensor
network in an efficient manner. Our approach is to merge
an arbitrary number of user queries into a single network
query. By doing this, traffic is minimised and the sensors
have better energy consumption behavior than if all user
queries would have been directly sent to the network. In
the paper we describe the algorithms for the transformation
of queries and the resulting data streams. We also provide
an extensive performance evaluation of the algorithms using
sets of over hundred user queries.

1. INTRODUCTION
Sensor networks are starting to be more widely used [1,2,3,
4]. In spite of these early successes, there is still a need for
better tools to program sensor networks. An example is the
lack of support for concurrent users. This makes it difficult
to, e.g., implement a system where mobile users are granted
access to local sensor networks so that each one can extract
whatever data they need.

In this paper we tackle the problem of supporting multiple
applications over a single sensor network. We do this in

∗The work presented in this paper was supported (in part)
by the National Competence Center in Research on Mobile
Information and Communication Systems NCCR-MICS, a
center supported by the Swiss National Science Foundation
under grant number 5005-67322.

the context of query based data acquisition systems [5] and
use TinyDB [6] as the software running on the sensors. By
doing this, we transform the problem of multi-user support
into a multi-query optimisation problem and bring some of
the tools of classical database query optimisation to bear
on the problem. The challenge behind multi-user support
lies in resolving the trade-off between efficient operation of
the network (reduced traffic, sparse duty cycles at the sen-
sors, avoiding redundancy in measurements and messages)
and the number of independent user requests for data that
need to be supported (each one interested in a potentially
different set of sensors and acquisition rates).

1.1 Sharing a sensor network
The system is based on two different query classes and a
translation step between them: User Queries (UQ) and Net-
work Queries (NQ). User queries are those submitted by
users. These are then merged into a single network query
which is then sent to the sensor network for execution. The
main idea behind our solution arises from the following ob-
servation. There is always a limit to the maximum amount
of data that can be obtained from a sensor network: sample
at the highest possible frequency and capture data from all
the sensors of every node. We refer to a such request as
the universal network query. This query would theoretically
produce all the data ever needed to answer any user query.

UQ finished

new UQ new UQ

UQ finished

...
new UQ

attributes
"raw" sensor

* * *

retrieves all

UQ arrives or an existing UQ is cancelled.

first UQ

towards universal NQ

towards specific NQ

NQ=UQ

*) NQ may remain unchanged when a new

universal NQ

Figure 1: Moving between specific network queries
and “universal” network queries as user queries are
started and cancelled.

The universal network query is as follows:

SELECT *

FROM sensors

SAMPLE PERIOD min_sampling_period

This query has the lowest possible selectivity since it returns
all available data. In practice, however, it has been shown
that sensor networks are highly unreliable – specially when
under heavy load. It is thus unlikely that the universal net-
work query will return all the data it requests [7, 8]. It is
also not practical to run the sensor network at such high
regime not knowing whether the data will be used at all.
Nevertheless, the intuitive notion of a universal query seems
to indicate that it should be possible to merge a set of user
queries into a single network query that will produce the
data needed to answer all of the outstanding user queries.

In order to reduce the amount of data that flows through the
network, the goal is to find the most selective network query
that allows to answer all outstanding user queries. Thus, as
new user queries arrive, the resulting network query is pro-
gressively expanded (it is made less selective) according to
the new user queries. Ultimately the system could end up
expanding the network query to be the universal network
query. Conversely, when user queries are withdrawn, the
system must in turn increase the selectivity of the network
query so that it captures only the necessary data. This pro-
cess of reducing selectivity (or moving toward the universal
query as new user queries arrive) and increasing selectivity
(as user queries are removed) is shown in figure 1. Perform-
ing such a process dynamically in an efficient manner is the
main challenge in the system we propose.

After the merging step, the resulting network query is sent to
the sensor network which, in turn, starts to produce data.
Extracting the user data streams from the network query
data stream is the second part of the problem of sharing a
sensor network. The challenge here arises from the need to
down-sample the network data stream. If not done carefully,
the user data stream might miss data and produce results
at a different sampling period then actually requested. The
way caching is implemented as well as how and when data
is forwarded to the user play a big role in defining a correct
solution.

1.2 Related Work
Our proposal complements the work of Jeffery et al. [7, 8],
who have recently proposed a pipeline of processing stages
for cleaning data from sensor networks. This pipeline could
be used in our system to clean the data obtained from a
network query to separate the data needed for each user
query. Other methods [9, 10] that perform error correction
and cleaning of data streams are based on a data model.
These algorithms could also be implemented in the query
mapping layer of our system. In this paper, however, we do
not focus on cleaning the data but on the more basic prob-
lem of extracting correct user data streams from the network
data stream. Our approach is also related to the work in [11]
where the need for a mapping layer between user and sensor
network is also identified. However, the focus of their work
is in-network aggregation and join operations using chains
of flow blocks. This work also complements ours in that,
once our system produces user data streams, additional op-

erations could be applied to such streams to support more
sophisticated user queries. In [12], the problem of multi-
ple query optimisation is also addressed but only for queries
that use the same tuple rate. This is rather limiting as it
does not allow applications to use any sampling period they
may deem fit. It also simplifies the problem considerably.
The processing is also done in batches (by groups of queries
at a time) and not progressively as in the system we describe
in this paper. This prevents new users from joining the sys-
tem whenever they want and long-running queries have to
be reissued multiple times. Several papers [13, 14] describe
the problem of time synchronisation in wireless sensor net-
works and propose different solutions. In this paper, we
focus on post-processing data streams by explicitly taking
inaccuracies of timing into account.

1.3 Contributions
The paper describes a novel system for sharing a sensor net-
work across multiple users. In doing so, several important
problems are also addressed:

• Algorithms are provided to merge multiple queries into
a single network query. These algorithms support the
dynamic addition and withdrawal of queries. We also
discuss an approximated algorithm to match widely
different sampling periods by guaranteeing that the
resulting sampling period observed by the user differs
from the requested sampling period by no more than
parameter ε.

• Algorithms and techniques are provided to extract user
data streams from the network data stream with a cor-
rect sampling period. This is not trivial since the sys-
tem must maintain a constant rate for the different
users while the number of user queries and network
conditions dynamically change (and thus the underly-
ing network query changes).

• The experimental results show that our system is ca-
pable of running several hundred different user queries
over a single sensor network. We are not aware of any
platform for sensor networks capable of doing this.

• Although the paper works with queries both for reason
of clarity and implementation, the ideas presented are
generic and can also be applied to sensor networks that
have a different interface for data acquisition.

1.4 Organisation of the paper
The next section describes the concept of multi-query sup-
port. First, it gives a brief overview over the system and
the working environment. Then two basic operations are de-
scribed: query merging and data extraction. Section 3 pro-
vides a detailed description of how user queries are merged,
i.e., how the network query is adapted when a new user
query arrives or is withdrawn. Section 4 presents a num-
ber of algorithms that can be used to extract tuples from
a network query in order to obtain results for user queries.
Section 5 provides results from the experimental evaluation
of our system. Section 6 concludes the paper.

results

users

Processing
Query

System

gateway

query
network

node

wireless sensor network

query
user

extraction

merging

Figure 2: System Overview: wireless sensor network
and query processing system

2. MULTI-QUERY SUPPORT
2.1 Working Environment
Our system is built atop TinyDB [5], a query-based wireless
sensor network platform where the network is configured
as a tree. The root node of the tree, called gateway node,
receives all the data forwarded from the leaves and inter-
mediate nodes. The gateway node is a dedicated node that
is connected to the query processing system. The gateway
node is used to send queries into the network and gather
result data which is then forwarded to our system. The core
of our solution is a query processing system that sits between
the gateway node and the users and acts as intermediary be-
tween the two (Fig. 2). The query processing system is im-
plemented in Java and can run on a portable device such as
a PDA. Each sensor node (also called mote) in the network
(as well as the gateway) runs TinyDB. Users can request
data from the sensors by posing User Queries (UQ) to the
query processing system which then merges these queries
into a single Network Query (NQ). The network query is
then sent to the gateway node which broadcast it into the
wireless sensor network. User Queries as well as network
queries have the following form:

SELECT select-list

[FROM sensors]

[WHERE where-clauses]

SAMPLE PERIOD sample-period-in-msecs

This syntax is similar to SQL although with a restricted set
of operators (e.g., joins are not supported). The select-list
indicates the values to be measured (e.g., light, temperature,
etc.), the sensors are the nodes to be used (in this paper we
just assume the query refers to the entire network as TinyDB
currently does not support individual node addressing), the
where-clauses are arbitrary boolean predicates (e.g., temper-
ature ≤ 25), and the sample period indicates how often data
has to be produced by the sensor network. For each sam-
pling interval every node reads its sensors and emits a tuple
(if is is not filtered by a predicate in the “where” clause).
The time interval between the emission of two consecutive
tuples is called an epoch. In order to correlate samples from
different epochs they are given a monotonically increasing
number which is inserted as an implicit attribute into the
result tuples. In its current version, TinyDB can only run
two simultaneous queries, only supports boolean predicates

with conjunctions, and the minimum sample period is about
1000 ms.

2.2 Basic Operations
The query processing system merges multiple user queries
into a single network query and extracts tuples from the
network query to produce result tuples for all associated
user queries. To illustrate how user queries are merged into a
single network query and how the result data is extracted, we
use a simple example. Consider the following user queries:

UQ1 : SELECT nodeid, light FROM sensors

SAMPLE PERIOD 5000

UQ2 : SELECT nodeid, light FROM sensors

SAMPLE PERIOD 15000

UQ3 : SELECT light FROM sensors

SAMPLE PERIOD 50000

UQ4 : SELECT nodeid, light, temp

FROM sensors

WHERE nodeid=1 AND temp>100

SAMPLE PERIOD 20000

In spite of the fact that these queries are requesting different
data with different sampling periods, they can be merged
into the following network query:

NQ1 : SELECT nodeid, light, temp

FROM sensors SAMPLE PERIOD 5000

This network query, will deliver data on nodeid, light and
temp every 5 seconds. The query processor takes this stream
of data and extracts the answer for each one of the four
user queries. For UQ1 the rate mapping is 1:1 and only
attributes nodeid and light must be extracted. For UQ2

too the temp data is dropped but only one out of every
three data points is used to enlarge the sampling period to
the requested 15 seconds. For UQ3, the light data must
be extracted from one of each 10 data points to produce
light measurements every 50 seconds. UQ4 receives data
from all sensors but only those tuples are selected where
nodeid= 1∧ temp> 100. Before the selection operation, the
sampling period of NQ1 is matched to fit the one requested
by the user query by selecting every fourth tuple, such that
a tuple is produced once every 20 seconds.

2.3 Query Merging
In this section we provide a more formal background for the
mapping of user queries and into a network query. We will
refer to the set of user queries as U = {u1, u2, . . . , um}. The
network query will be denoted as n. For all queries (user or
network) f denotes a set of sensors, s the sampling period of
the query and p a list of predicates associated to the query.

A first requirement to meet is that the set of attributes n.f
of the network query must be a superset of the attribute set
u.f of any user query associated with network query n. This
leads to the first condition that must be met when a set of

m user queries U is mapped to a network query n:

∀u ∈ U : n.f ⊇ u.f (1)

The next condition involves the sampling periods. The sam-
pling interval n.s must evenly divide the sampling interval
u.s of all its user queries. This guarantees that the data
stream provided by n can be used to answer all queries u
associated with n. Thus;

∀u ∈ U : ∃x ∈ N : u.s = x · n.s . (2)

One way to enforce this condition is to make n.s the greatest
common divisor (GCD) of all user query sampling periods.
Note that if the sampling intervals of two user queries are
relative prime then n.f = 1 which is certainly undesirable.
Also, in many cases, forcing an exact arithmetic match is too
restrictive. Thus, instead of the above condition, we allow
for a relative error in the sampling period up to ε. Instead
of using the GCD algorithm for determining the common
sampling period we then use a “Tolerant” Greatest Common
Sampling period (TGCS) such that for all user queries the
effective sample period observed is within some ε of what
the user requested. The TGCS algorithm is described later
in section 3.3. Thus instead of using (2) we require:

∀u ∈ U : ∃x ∈ N : (1 − ε)ui.s ≤ x · n.s ≤ ui.s (3)

Note that in some cases, the application submitting the user
query may require the data to be delivered exactly in the
time intervals specified. This can be achieved through op-
erators that cache the result for a short period of time until
it is time to send it to the user. Given the uncertainties
in some of the measurements and the lack of precision of
most sensor networks today, such time shifts in the measure-
ments should be acceptable in most applications, specially
if they can be constrained within a well specified error mar-
gin. Also, the formulation just provided allows to adjust
below the requested period since it is easier to cope with
more data than with missing data. The implementation of
rate conversion of the tuple stream is described in section 4.

Selection queries – as implied by the predicate in the where
clause – require special treatment. They are expressed in
SQL with one additional restriction that predicates may
only occur in conjunctions1. Let u.p be the set of predi-
cate conjunction terms in the where clause of user query u,
i.e., u.p = {nodeid = 1, temp > 100}. Using relational
algebra the query can be written as

σnodeid=1∧ temp>100 (sensors) .

1Disjunctions are currently not supported by TinyDB how-
ever they can be easily implemented on our system in
the mapping from user queries to network queries, further
demonstrating the advantages of the architecture we pro-
pose.

In general a query can be represented as a selection over a
conjunction of predicates pi, pj followed by a projection on
a list of attributes a from the set of sensor attributes u.f ,
so for any two queries Qi and Qj .

Qi : πai

“
σpi1∧pi2∧...∧pin

(sensors)
”

Qj : πaj

“
σpj1∧pj2∧...∧pjm

(sensors)
”

In order to allow sharing of common operations, the selection
predicates of any two queries must be brought in relation.
We define the relation “Qi is at most as selective as Qj” as
Qi ≤ Qj where we use

Qi ≤ Qj := pj1 ∧pj2 ∧ . . .∧pjm ⇒ pi1 ∧pi2 ∧ . . .∧pin .

This leads to the last condition that must be met by the
network query. The network query n must be “at most as
selective” as any of its user queries u, i.e., n ≤ u. Thus:

∀u ∈ U : n ≤ u (4)

Summarising (1), (3) and (4) we obtain the following rules
for mapping a set of user queries to a network query:

∀u ∈ U :

n.f ⊇ u.f ∧
n ≤ u ∧

∃x ∈ N : (1− ε)ui.s ≤ x · n.s ≤ ui.s (5)

2.4 Data Extraction
The example given in 2.2 illustrates how user queries can
be transformed into a single network query. It also shows
that once the result tuples for the network query become
available, they need to be processed to produce the answers
to the different user queries. This is done through a pipeline
of data operators that is constructed when each individual
user query is merged into the network query. These opera-
tors are in some cases independent of the adjustment and in
all others can be directly derived from the mapping between
the user query and the network query. For the purposes of
this paper, the set of operators we are considering include:

• Tuple rate conversion and down-sampling (r1, . . . , r3).
These operators take a stream of data points with a
given period and produce a stream of data points with
a larger sampling period (typically a multiple of the
original sampling period). These operators could con-
ceivably also be used to interpolate a series of data
points to increase the sampling frequency. For this
purpose, a model driven sampling strategy such as
those discussed in [10] could be used.

• Time and epoch shift (s1, . . . , s4). Each user query
is treated so that the user gets the impression that it
is the only query running on the network. However,

> 100

1

1

UQ 1

s

r

2s

2UQ UQ 3

π

3s

r

UQ 4

21

π2 3π1 lightnodeid, nodeid,
light light

3:1 10:1

NQ

sensor network

σ1

s

r

4

3 4:1

σ2

nodeid

temp

= 1

Figure 3: Mapping of User Queries (UQ) to Network
Queries (NQ)

the data streams coming from the sensors have time
(epoch) information attached to them that typically
has nothing to do with any concrete user query. The
time and epoch shift operators set the counters to 0
when a user query starts and transforms the epoch
information on the resulting data set so that to the
user it looks like the system just started producing
data for that user query.

• Attribute projection (π1, . . . , π3). Similar to projec-
tion in relational algebra, a projection operator in our
system removes unwanted attributes from the tuple
stream to produce a new data stream with less at-
tributes.

• Selection expressions (σ1, σ2). Similar to the selection
operator in relational algebra, selection operators ap-
ply predicates (those in the “where” clause of the user
query’s SQL statement) so that the data delivered in
response to a user query matches exactly what was re-
quested. In some cases, the selection operator is not
run on the query processing system but pushed down
to the network query (which in turn results in less traf-
fic since the use of predicates increases selectivity).

For the example given in 2.2, the corresponding processing
pipeline with all operators required to map tuples NQ1 to
UQ1, . . . , UQ4 is shown in figure 3. In order to emphasise
that a down-sampling operator r or a selection operator σ
is associated to user query u we use the notation u.opr and
u.opσ respectively.

3. ALGORITHMS FOR QUERY MERGING
3.1 Adding a new User Query
The conditions above state when a network query can be
used to answer a given user query. The challenge however is
how to dynamically manage a network query as user queries
arrive (later on we will discuss what to do when user queries
are withdrawn). The data acquisition system we are using to
access the sensor network (TinyDB) has limited support for
concurrent queries. In principle it does support the process-
ing of multiple concurrent queries but due to severe mem-
ory restrictions in general for average complex queries (i.e.,

queries with a 3–4 selected attributes and 1–2 predicates) no
more than two network queries can be executed in parallel.
Therefore we are forced to map all user queries to a single
network query, while using the second network query only
during the transition phase, i.e., when a network query has
to adapted when a new user query is added or and a user
query is withdrawn. The detailed procedure for adding a
new user query is shown in algorithm 1.

On line 2, if no network query is running, the system makes
the user query the network query. Otherwise the system
checks if the network query that currently delivers data
matches the criteria (1) and (4) described above. If both
conditions are satisfied the existing network query n can
be used and the manager inserts selection operators for all
predicates that are not part of the network query n (line
11). Then it is verified whether the sampling period n.s of
the network query matches the one of u, i.e., criteria (3) is
checked. If the condition is also satisfied the down-sampling
operator u.opr is configured accordingly and integration of
the new user query is completed. Note that in this case the
sensor network is left untouched.

Algorithm 1: Adding a new User Query
1: procedure AddUserQuery(u)
2: if no NQ running then
3: create new NQ n
4: n.f := u.f ; n.s := u.s; n.p := u.p
5: inject new NQ n into the network
6: u.opr := 1 : 1; u.opσ := ∅
7: U := U ∪ {u}
8: return
9: end if

10: if u.f ⊆ n.f ∧ n ≤ u then . use existing NQ
11: u.opσ = u.p\n.p
12: U := U ∪ {u}
13: if TGCS(u.s, n.s) = n.s then
14: u.opr := u.s

n.s
: 1;

15: else . adapt sample period of existing NQ
16: n.s := TGCS (U)
17: inject rate-change (n.s) into the network
18: ∀uj ∈ U : uj .opr :=

uj .s

n.s
: 1

19: end if
20: else . setup new NQ and migrate UQs
21: create new NQ n′

22: n′.s := TGCS({u} ∪ U)
23: n′.f :=

S
uj∈U uj .f ; n′.p =

T
uj∈U uj .p

24: inject new NQ n′ into the network
25: u.opr := u.s

n′.s : 1; u.opσ = u.p\n′.p
26: wait until n′ has received τ tuples
27: for all uj ∈ U do . migrate UQs from n to n′

28: uj .opr :=
uj .s

n′.s : 1
29: uj .opσ := uj .p\n′.p
30: end for
31: U := U ∪ {u}
32: remove NQ n
33: n := n′

34: end if
35: end procedure

If the sampling interval of n cannot be matched to u (con-
dition (3 is not satisfied but conditions (4) and (1) are) the

system adjusts the sampling period of the already running
network query in order to accommodate the new user query.
Since changing the sampling period of a running network
query is less expensive in terms of messages (and, thus, en-
ergy consumption) than starting a new query, we adapt the
sampling period instead of setting up a new query. The new
sampling period of n is computed using a variant of the Eu-
clidean algorithm (described in section 3.3). The sampling
period n.s is set to the largest period possible. Since the pe-
riod of the network query has changed, all down-sampling
operators of the existing user queries have to be reconfigured
(line 18).

The most difficult case occurs when the existing network
query cannot be used. This happens when the new user
query includes attributes that are not retrieved by the cur-
rent network query (condition (1) is not satisfied) or if the
current network is more selective (condition 4 is not satis-
fied) than the user query. The system now has to replace
the current network query n by a new network query n′

such that conditions (1), (3) and (4) are met. The sampling
period n′.s of new network query is determined by apply-
ing the “tolerant” greatest common sampling on all user
queries (including the new query u). The attributes and
the selection predicates of n′ are also chosen based on the
set of user queries (line 23). The attribute set is the union
of the attribute sets of all user queries and the selection
predicate is the largest common set, i.e., the intersection
set of all user query predicates. Next, the down-sampling
and selection operators of the new user query u are con-
figured and the new network query n′ is injected into the
network. It immediately produces data items for user query
u. While n′ is being setup in the network2 the old net-
work query n continues delivering tuples. As soon as n′ has
reached steady state (detected by counting the received tu-
ples, line 26) all user queries from n are migrated to n′ and
their down-sampling operators are reconfigured to the new
common sampling frequency. The constant τ is a tuning
parameter initially chosen to characterise the query setup
behaviour of the network. For example for a deep network
where the most distant nodes are several hops away from the
root node, a larger value of τ has to be used. The attribute
projections of the queries do not need to be reconfigured
because the projections are performed implicitly in our im-
plementation when tuples from network queries leave the
operator chain. Additionally the insertion of selection oper-
ators between the user query and the network query might
be necessary since the new network query can be less selec-
tive. Thus in order to deliver tuples as specified by the user,
further filtering has to be done outside of the network. As
soon as no more user query exists for network query n, n is
removed and n′ becomes the new network query.

3.2 Withdrawing a User Query
What we have discussed so far allows new queries to be
submitted to the system. It remains to be seen how to
deal with user queries that are withdrawn. The routine
StrengthenNetworkQuery (described in algorithm 2) per-

2We observed that using TinyDB it takes about 1 min (de-
pending on the network load and the chosen sampling pe-
riod) for the new network query to reach “steady state”, i.e.,
during the transient phase tuples are lost more frequently.

forms this step. This routine is called periodically3.

Algorithm 2: Withdrawing a User Query
1: procedure StrengthenNetworkQuery
2: if f(n, U) > φm then . penalty > migration cost
3: create new NQ n′

4: n′.s := TGCS(U); n′.f :=
S

u∈U

u.f

5: n′.p :=
T

u∈U

u.p

6: inject new NQ n′ into the network
7: wait until n′ has received τ tuples
8: for all u ∈ U do . migrate UQs from n to n′

9: u.opr := u.s
n′.s : 1

10: u.opσ := u.p\n′.p
11: end for
12: remove NQ n
13: n := n′

14: else if fr(n, U) > φr then . penalty > change cost
15: n.s := TGCS(U) . change interval of NQ
16: inject rate-change (n.s) into the network
17: . adjust down-sampling operators of all u ∈ U
18: for all u ∈ U do
19: u.opr := u.s

n.s
: 1

20: end for
21: end if
22: end procedure

Recall that the query executed by the sensor network can
be changed in two different ways. First, the network query
can be replaced by a different query. Second, the sampling
period of the running network query can changed directly.
Since any modification is associated with a cost, algorithm
2 first analyses whether it is cost effective to change the net-
work query. The algorithm is based on two penalty functions
that indicate how well the current network query matches
the user queries. The first penalty function fr(n, U) com-
pares the sampling periods of all user queries from the set U
with the one of network query n. The shorter the sampling
period n.s of the network query compared to the “tolerant”
common sampling period of the user queries, the larger is
the penalty value. We define this penalty function as follows

fr(n, U) =
TGCS(U)

n.s
− 1 , (6)

such that fr(n, U) = 0 for the optimal sampling period of
the network query. The second penalty function f(n, U)
determines the overall matching by also including the set of
selected attributes and selection predicates. It counts the
number of attributes selected by the network query that
are no longer needed by any user query. This is done by
computing the difference set of the network query’s attribute
set and that of every user query. Additionally, it counts the
selection predicates all user queries have in common that do
not appear in the network query (e.g., these predicates might
have been missing in a previous user query, thus preventing

3It is possible to call the routine as soon as user query
is stopped, however changing the network query too often
would create too much traffic on the network. Therefore the
routine is called periodically with a sufficiently large interval
to minimise overhead.

their inclusion in the network query). The value of f(n, U)
is a weighted sum of these three terms:

f(n, U) = fr(n, U)+

α ·

˛̨̨̨
˛ [
u∈U

n.f \u.f

˛̨̨̨
˛ + β ·

˛̨̨̨
˛ \
u∈U

u.p \n.p

˛̨̨̨
˛ (7)

The parameters α and β are tuning parameters that are
initially chosen to reflect the characteristics and the desired
behaviour of the sensor network. Changing the sampling pe-
riod of a network query is associated with a cost threshold
φr. The expense for replacing a network query and migrat-
ing the user queries to the new network query is associated
with a migration cost threshold φm. In general, setting up
a new network query is more expensive than changing the
sampling period of an existing network query, i.e., φr < φm.
If the value of the penalty function is larger than the corre-
sponding cost the change is performed, i.e., if f(n, U) > φm,
the network query is replaced. Since replacing a network
query may also include an update in the sampling period,
an explicit rate-change is only done if f(n, U) ≤ φm and
fr(n, U) > φr. The cost thresholds are set at configuration
time and are chosen to reflect the characteristics of the net-
work and the desired behaviour of the system. For example,
if the sensor network is not very reliable, i.e., many messages
are lost, and the energy consumption for performing a rate-
change or setting up a new query is large, larger values for
the cost thresholds φr and φm are chosen, such that changes
are performed less frequently.

On line 2 in algorithm 2 the penalty function is evaluated
to determine whether its is worthwhile to replace the net-
work query. If so the system sets up a new network query
n′ with the lowest possible sampling period and only those
attributes that are required by any user query (line 4). By
choosing all selection predicates that are common to all user
queries the selectivity of the network query can be max-
imised (line 5). Next the query is injected into the network.
As in algorithm 1 the system waits until the new query is
set up before migrating the user queries. Then the old net-
work query is removed. If the penalty f(n, U) ≤ φm and
fr(n, U) > φr (line 14) the sampling rate of the current net-
work query is adapted to the “tolerant” common greatest
sampling period (line 15). Next the down-sampling opera-
tors of all user queries are reconfigured to the new sampling
period of the network query (line 19).

3.3 A “tolerant” algorithm for greatest com-
mon sampling period determination

This section describes the “tolerant” greatest common sam-
pling period determination algorithm (TGCS). It is related
to the Euclidean greatest common divisor algorithm (GCD).
The problem is to find the greatest common sampling pe-
riod for a set of user queries U = {u1, u2, . . . um} having
a sampling period of u1.s, u2.s, . . . , um.s milliseconds each.
Since the query processing on the sensor motes is performed
in time steps (heart beats4) of length R the specified period
ui.s is quantised into bui.s

R
c units of R giving an effective

sampling interval duration of bui.s
R
cR milliseconds.

4In TinyDB the heart beat length is R = 256 ms.

The idea of a “tolerant” version is to allow an error in the ef-
fective sampling period in anticipation of a higher common
sampling period (even if some bui.s

R
c are relative prime).

The largest relative error that can be tolerated is specified
by a constant ε5. We enforce that the effective common
sampling period n.s of the network query remains within
the error bounds such that condition (3) holds. Note that
the common sampling interval may be less but never larger
than any ui.s because the user application is more likely to
be able to handle a surplus of data than missing tuples. The
condition (3) states that there must be a sampling period
within the interval [(1− ε)ui.s, ui.s] that is evenly divisible
by n.s. In order to prevent errors from an additional quan-
tisation on TinyDB when processing the network query, we
force n.s to be an integer multiple of the heart beat length
R.

Since the “tolerant” greatest common sampling period n.s
is no larger than the shortest user interval, n.s ≤ min (ui.s)

must hold. Also there are at most bmin(ui.s)
R

c “candidate”
lengths of n.s. The TGCS algorithm then iterates over all
possible candidate lengths and checks if condition (3) is sat-
isfied, as sketched in algorithm 3. The largest candidate
length is always returned because the algorithm starts the
largest “candidate” period and then stepwise reduces the
period until the shortest common sampling interval n.smin

is reached, which can be specified as additional system pa-
rameter. It prevents the system from entering an inefficient
mode of operation due to congestion of the network when
the sampling interval of a network query is chosen too small.

Algorithm 3: Fast “Tolerant” Greatest Common
Sampling period algorithm (TGCS)

1: function TGCS(u1, u2, . . . , um, R, n.smin, ε)

2: p := bmin(ui.s)
R

c
3: while pR > n.smin ∧
4: ¬

`
∀ui.s : ∃x ∈ N : (1− ε)ui.s ≤ pRx ≤ ui.s

´
do

5: p := p - 1
6: end while
7: return pR
8: end function

Algorithm 3 requires at most bmin(ui.s)
R

c− n.smin
R

iterations.
During each iteration, condition (3) has to be checked for all
m user queries. The time complexity (for the range checks)
therefore is O (m ·min{ui.s, ∀i}). Although the algorithm
is in principle expensive, our experimental evaluation has
shown that the overhead is acceptable and completely hid-
den behind other costs (e.g., sending a network query to the
sensor network).

4. ALGORITHMS FOR DATA EXTRACTION
The “tolerant” common sampling algorithm computes the
sampling period for the network query such that the de-
livered tuples can be used as results for the user queries.
However the period determined by the TGCS algorithm is
(in general) smaller than those of the user queries. Thus
the tuple stream received from the network must be down-
sampled before being delivered to the user queries. This

5Note: While this parameter is the same for all queries it
could just as well be specified for every query individually.

n.sn.sn.s

n.sn.sn.s

ui .s

1 e 432e e e

(c)

(b)
in tuple

in tuple

out tupleout tuple

ui .s

1 T2 e

,

1 3 ,,, 44 ,32

11 1’=’= , ’=
3

’=2
4

24

eT

T T e

T e T e

T T e
e

t

in tuple
(a)

1’=
1e
3

e ’=2e 4e
3

t
out tuple

un−

region
certainty

3

e 1

1 2 out tuple

in tuple

tt t

n.s’n.s’n.s

t 3 4t
error

n.s.sui

t

Figure 4: Ratio-based Down-sampling: (a) Down-
sampling ratio 3:1 for network consisting of one sen-
sor node, (b) Down-sampling with ratio 3:1 for net-
work consisting of tree sensor nodes, (c) Timing un-
certainties during rate-change.

is done by an operator that is placed between the network
query and a user query. The result stream is fed into a down-
sampling operator which then emits tuples at a rate specified
by the user. In the following, two different intervals are dis-
tinguished: the incoming sampling period, i.e., the sampling
period of the tuples originating from the network query and
the outgoing sampling period, i.e., the sampling period at
which the user requests tuples.

A valid implementation of a down-sampling operator must
solve two problems: (1) how forwarded tuples are selected
from the incoming stream and (2) how the epoch value of the
forwarded tuples is (re-)computed. In what follows, we de-
scribe two different approaches. The first method forwards
every xth tuple based on the ratio of the outgoing and in-
coming sampling period. Unfortunately, this approach ac-
cumulates inaccuracies of the sampling period, due to jit-
ter, present in the incoming tuple stream. This effect does
not occur in second approach where time stamp information
from previous tuples is used to determine which element is
to be forwarded.

4.1 Ratio-based Down-sampling
The effective sampling period ui.s̃ = n.sbui.s

n.s
c of the user

query ui is not less than (1−ε)ui.s and an integer multiple of
the network query. This is guaranteed by the determination
of n.s using the TGCS algorithm. The ratio-based operator
takes advantage of this by forwarding only every ui.s̃

n.s
th tuple

from a node. The epoch field of the tuple received is then

divided by ui.s̃
n.s

.

This is illustrated in Fig. 4 (a). Tuples T1, . . . , T4 have epoch
values e1, . . . , e4. In the figure ui.s

n.s
= 3, thus every third

tuple is forwarded, i.e., tuple T1 and T4. The epoch values
of the forwarded tuples are divided by three, e.g., e′1 = e1

3
for the forwarded tuple T ′

1. Note that, in general, a tuple is
received every epoch from every sensor in the network, i.e.,
more than one tuple is received per epoch. Furthermore
some tuples may arrive late or may be missing at all. The
forwarding decision thus has to be made based on the epoch
value (see Fig. 4 (b)).

Assume that a tuple T , having epoch number e is sent to the
operator which then decides whether the tuple is to be for-
warded or dropped. It will be forwarded if the effective out-
going interval ui.s̃ evenly divides the time value computed
by the tuple’s epoch number and the incoming interval n.s,
i.e., ui.s̃|(e · n.s). The epoch value of the emitted tuple will
be computed as

e′ =
e · n.s

ui.s̃

However, since the sampling period of the network query
may change, the ratio-based down-sampling operator occa-
sionally must be reconfigured. Unfortunately just changing
the incoming interval from n.s to n.s′ alone does not suf-
fice. There are several difficulties involved (illustrated in
Fig. 4 (c) where the sampling rate is doubled at time t1):

1. The rate-change could be initiated at any time (t1 in
Fig. 4 (c)) during the interval between two user query
tuples. The down-sampling operator has no control
when the change is initiated.

2. Once the change is initiated, i.e., the rate-change mes-
sage has been sent, the change does not immediately
take effect. In Fig. 4 (c) the rate-change message
reaches the sensor nodes at time t2 where the change
takes effect. However, t2 is unknown to the down-
sampling operator.

3. The down-sampling operator cannot determine if a tu-
ple received from the network was created before or af-
ter the rate change took effect by looking at the epoch
number or time stamp of this tuple.

The only way for the system to recognise the rate-change is
to observe the time interval between epochs in the incoming
stream. Assume that at t3 the first tuple after the change
arrives at the operator. Until the down-sampling operator
has seen the next tuple at t4 and is able to compute t4 − t3
it cannot decide whether the change has already occurred.
Thus the tuple arriving at t3 is forwarded yielding a sam-
pling period error of terror.

4.1.1 Advantage
The ratio-based down-sampling operator has the advantage
that it does not require additional storage to maintain state
for the tuples received from every node. Also it allows “late”
tuples from distant nodes to be forwarded as it does not
directly count tuples. Instead, it uses the epoch number.

Therefore there are no restrictions in the arrival times of
the tuples.

4.1.2 Disadvantage
The disadvantage of all ratio-base operators is the depen-
dency on the precision sampling period of the incoming tu-
ple stream. In fact inaccuracies in the sampling periods
are accumulated by this operator as the following analysis
shows:

Assume that the ratio-based operator down-samples a data
stream with a ratio x : 1, i.e., forwards every xth tuple.
Assume that the sampling period is not precisely constant as
it is the case for TinyDB. The tuple stream from the network
has a strong variance in the tuple interval (jitter). Assume
just for the sake of argument that I is the interval length
between tuples of consecutive epochs in the result stream
arriving from a given network node. In order to model the
random behaviour of the jitter we consider I as a random
variable with mean E[I] = n.s and a variance V AR[I]. Let
I ′ be the time interval between tuples in the stream that
leaves the operator. Since the operator effectively counts
the tuples and forwards every xth tuple, the length of I ′

is the sum of the last x intervals I. Thus, as expected, it
follows that E[I ′] = E[xI] = x · n.s, but, unfortunately also
V AR[I ′] = V AR[xI] = x · V AR[I]. This means that the
variance in the outgoing stream is x times larger than the
variance in the incoming stream. In other words the jitter of
x epochs is accumulated, i.e., the overall jitter is amplified
by a factor x. This severely limits the practical use of a
ratio-based down-sampling operator.

4.2 Time-based Down-sampling
The time-based down-sampling algorithm does not count
tuples and therefore does not suffer from the cumulative
jitter effect. It decides which tuples are to be forwarded by
looking at their timestamps. It remembers the time stamp
tk of the last forwarded tuple and then forwards the first
tuple which arrives at a time tl such that tl − tk ≥ ui.s
where ui.s is the sampling period specified in user query ui.
The operator also remembers the epoch value e of the last
tuple forwarded. It then increments e and assigns this value
to the forwarded tuple, yielding a correct epoch value for the
user query stream. However as simple as this idea appears
at first, it has two problems:

1. If there is more than one sensor mote that generates
tuples, the down-sampling does not work as expected.
Assume there are m sensor motes. If no tuples are lost,
m result tuples are received per epoch, i.e., results on
groups of m tuples with the same epoch number will
arrive at the root node every n.s milliseconds where
n.s is the sample period of the network query. How-
ever the time between the arrival of two tuples from
the same epoch is less than n.s (see tuple arrival in
Fig. 4 (b)). Therefore the down-sampling operator as
sketched above will only return one tuple out of an
epoch consisting of m tuples.

2. Too short sampling periods caused by jitter in the net-
work tuple stream can lead to a large error in the ef-

n.s

ui

n.s

(b)

(a)

out tuple t

in tuple

0t t1
too early

out tupleout tuple t

in tuple in tuple

0

(1−ε) n.s (1−ε) n.s (1−ε) n.s

t t t t1 32

too early too early

2t
error

n.stε
(1−ε) n.s(1−ε) n.s

tolerance window

.s=2n.sui

error.s=2n.s

Figure 5: Time-based Down-sampling: (a) without
tolerance window, (b) with tolerance window

fective sample period seen by the user6. This is illus-
trated in Fig. 5 (a). Assume a network query with
sampling period n.s but due to inaccuracies in timing,
tuples arrive with a shorter period (1− ε)n.s. Further
assume that the user has specified a sampling period
ui.s = 2n.s and that the last forwarded tuple had a
time stamp t0 = 0. The next two tuples will then
be received at t1 = (1 − ε)n.s and t2 = 2(1 − ε)n.s
ms. However since t2 − t0 < 2n.s the tuple with time
stamp t2 will not be forwarded but dropped. Only
the next tuple arriving at t3 = 3n.s(1− ε) will satisfy
the inequality and thus be forwarded. By comparing
the timestamps between the forwarded tuples t3 − t0
it can be seen that the resulting interval for the user
is 3(1 − ε)n.s instead of 2n.s. This corresponds to a
relative error of 1

2
(1 − 3ε), i.e., the upper bound is

50%. Note that this error does not originate from the
“tolerant” greatest common sampling algorithm. The
error is introduced solely by the down-sampling oper-
ator and inaccuracies in the timing of the network.

There are remedies for these problems. The problem con-
cerning multiple sensor motes is addressed first. The dif-
ficulty is that the time stamp and epoch count of the last
forwarded tuples has to be stored for every node in the net-
work. Only then are the tuples received in the same epoch
forwarded (provided that spacing of the tuples inside the
group and between the group is accurate enough). This
modification introduces two new difficulties. First, it re-
quires additional storage for each node in the network. Two
integer numbers need to be kept for each node, the epoch
value and the time stamp of the last forwarded tuple. Sec-
ond, this approach requires that the nodeid attribute is al-
ways present in the result field. If the network query does
not select the nodeid field, then there is no way for the op-
erator to associate a result with a node. A solution is to
include the nodeid by default on every network query.

6If the operator is used for a 1:1 mapping between the net-
work query and a user query the resulting error can be up
to 100%.

NQ

 5

 10

 15

 20

 25

 0 1000 2000 3000 4000 5000 6000

%
 o

f a
ll

tu
pl

es

interval ms

UQ

 0

Figure 6: Histogram of measured intervals of user
query tuples from a network query with a sam-
pling period of 2048 ms for a user query with the
same sampling period, using the time-based down-
sampling operator (εt = 0.2)

The second problem can be alleviated by weakening the con-
dition tl− tk ≥ ui.s that must hold between two consecutive
forwarded tuples with time stamp tl and tk. A tolerance
window is added, i.e., the sample period in the stream de-
livered to the user may have a relative error in the range
[−εt, 0] (shorter, but never longer). Now tuples with a too-
short sampling period, expressed by a relative error −ε, are
still forwarded if ε ≤ εt. Fig. 5 (b) shows the effect of using
a tolerance window on tuples arriving with the same error as
in figure 5 (a). If the tolerance window parameter is chosen
such that εt ≥ ε, the tuple arriving at t2 = 2n.s(1− ε) will
be forwarded. This reduces the relative error from 1

2
(1−3ε)

to ε. Then the down-sampling operator does no longer in-
troduces errors. The problem is, of course, only postponed.
If the tuple time stamp happens to be just shortly before the
tolerance window begins, the tuples will still be dropped.

Figure 6 shows the measured intervals between consecutive
tuples for a single user query with 2048 ms sample period.
Since there is only one user query, the network query does
have the same sampling period, i.e., the mapping from the
network query to the user query is 1:1. In principle no down-
sampling is needed, but the ratio 1:1 can be used to illus-
trate the effect this operator has when applied on a tuple
stream that is subjected to jitter. The solid lines represent
the histogram for network query tuples and the dashed lines
the one for the user query tuples. First, observe that the
jitter is already present in the tuple stream from the net-
work query. In addition to the peak around 2000 ms, there
is another peak around 4000 ms. The second peak around
4000 ms is a result of single tuples that are lost, effectively
doubling the sampling interval. More important, however,
is the observation that the amount of tuples that arrive too
late is larger for the user query than for the underlying net-
work query that provided the tuples. Thus, the algorithm
introduces further delays. The reason for this behaviour are
tuples that arrive even earlier than (1 − εt)n.s. The tu-
ples arriving too early will be dropped, thus the next tuple
which then will be forwarded introduces a large error in the
sampling period.

i

sampling with
time−based down−

t

iii

t

down−sampling:

.s .s

.s .s.s

i

simple time−based

tolerance
tuple dropped

(1−ε)t

(1−ε)

in tuple in tuple

out tuple

(1−ε)

error

(1−ε)

in tuple in tuple

out tuple

error

u

n.s (1−ε)

in tuple in tuple in tuple in tuple

(1−ε) (1−ε) (1−ε) (1−ε)

in tuple

out tuple
cached cached

error error

u

n.s

uu

n.s n.s n.s

caching:

u

n.s n.s n.s

(1−ε) n.s

Figure 7: Effect of caching on tuples that arrive too
early.

4.2.1 Advantage
In contrast to the ratio-based operator the simple time-
based down-sampling operator does not accumulate the jit-
ter. In contrast to the ratio-based operator the time-based
operator does not need to know the sampling period of the
incoming tuple stream. Therefore, also no update mecha-
nism is necessary when the sampling interval of a network
query is changed.

4.2.2 Disadvantage
One disadvantage is that the epoch number and the time
stamp of the last tuple forwarded must be stored for every
node in the network. The nodeid attribute must be present
in the network query. Additionally the down-sampling oper-
ator introduces further interval errors due to inaccuracies in
the incoming tuple stream. As figure 6 shows, the operator
in fact amplifies the sampling period errors in the incoming
stream.

4.3 Time-based Down-sampling with Caching
Caching can solve one problem of the down-sampling oper-
ator: the large intervals in the user data stream that result
if the incoming interval is too short in the network data
stream. Instead of dropping a tuple that arrives before its
expected time, the tuple will be cached and then forwarded
when the tuple is due. This is illustrated in figure 7. The
upper time plot depicts the time-based down-sampling op-
erator described in the previous section and the lower plot
shows the effect of caching early tuples. In both cases the
tuples are delivered at a period of n.s(1− ε) instead of n.s.
In the figure the user query sample period ui is considered to
be equal to n.s. It can be seen that without caching the first
and the third tuple are dropped. With caching the tuples
will only be forwarded when they are due. A tuple is only
dropped if there was another, more recent tuple, received
before the deadline of the next user query tuple (the fourth
tuple).

Note that when no caching is used, a tuple will be for-

NQ

 5

 10

 15

 20

 0 1000 2000 3000 4000 5000 6000

%
 o

f a
ll

tu
pl

es

interval ms

UQ

 0

Figure 8: Histogram of measured intervals of user
query tuples from a network query with a sam-
pling period of 2048 ms for a user query with the
same sampling period, using the time-based down-
sampling operator with caching

warded at the moment a new tuple is received. However,
with caching a timer must be used that triggers the release
of the last received tuple. After being sent, the tuple is re-
moved from the cache. As the operator described in the
previous section, this operator must also store the epoch
number and the time stamp of the last tuple forwarded for
every node. However, it also requires additional storage per
nodeid as the tuples themselves also need to be cached. Thus
memory restrictions have a stronger impact on the caching
operator. When an epoch of a user query is due, the op-
erator will forward the cached tuple for every nodeid. Also
note that the time stamp of a tuple is not modified when it
is emitted by the operator. Changing the time stamp obvi-
ously would introduce a zero error (if there are always tuples
available). The meaning of a time stamp changes, though,
since the time stamp should specify when the measurement
was taken.

Figure 8 shows the histogram of the measured tuple inter-
vals for a single user query with a sample period of 2048
ms using the cached down-sampling operator. The network
query that provides tuples for this single user query uses the
same sampling period. When figure 8 is compared with fig-
ure 6 it can be seen that the percentage of tuples that have
an error of 100% or more was reduced. Unfortunately the
deviation from the requested delivery period for the user is
still high. About 29% of all user query tuples have an in-
terval that is more than 20% larger than the specified user
query sample period. However, only 19% of the network
query tuples have an interval that is more than 20% larger
than specified. Even with caching this implementation of
the down-sampling operator introduces further errors. This
is due to the fact that tuples are dropped if they arrive
within the same user query period. However, a dropped
tuple typically results in a longer period for the next epoch.

4.3.1 Advantage
In contrast to the non-cached version, tuples that arrive too
early will not be dropped. They will be forwarded when the
next user query epoch ends. Thus less tuples are dropped by
the down-sampling operator. Only multiple tuples that were

received during a user query epoch are dropped. Measure-
ments show that using caching a more precise result stream
can be generated by the operator (Fig. 8).

4.3.2 Disadvantage
The caching operator also relies on the availability of the
nodeid attribute. Here even more memory is required as
the last tuple received needs to be stored for each node.
Measurements show that the operator amplifies the jitter in
the tuple stream.

4.4 Time-based Down-sampling with Caching
and Retransmission

All down-sampling operators presented so far amplify the
sampling period error of the network data stream. Caching
prevented dropping tuples that arrived to early. Instead,
the tuples are stored and forwarded when a new user query
tuple is due. However since a tuple is only emitted at most
once, the effect of missing tuples or too long intervals in the
incoming stream also propagates through the operator. If
there is no new tuple the operator cannot forward any tuple
when the next user query tuple is required to be emitted.
The operator described below uses a different approach by
slightly changing the semantics of the tuples in the result
stream: it allows retransmission of a cached tuple. If no
new tuple is received, the old tuple is forwarded again.

If a tuple is resent by the operator, its time stamp and epoch
number must be adapted. The client application expects
tuples with a strictly monotonically increasing time stamp
and a strictly monotonically increasing epoch number for
every nodeid. This is achieved by setting the time stamp
of the emitted tuple equal to the time when the timer goes
off for sending a user query tuple. Since the epoch counter
already stored is part of the node state it can simply be
incremented and the new value used for the user query tuple.
So, in principle the user application is not able to recognize
duplicate tuples from their originals, i.e., whether a tuple is
sent for the first time.

Resending a tuple essentially “creates” a new measurement
with new time stamp. However the measurement is not asso-
ciated with any physical process that occurred at that time.
This “virtual” measurement in this sense is a zero-order ex-
trapolation of the previous value. Note that the semantics
of the user query tuple stream is thus changed: not every
tuple originates from a real measurement. However it is rea-
sonable to assume that the application is more likely to be
able to handle duplicate tuples than missing tuples.

However, there are cases when the user application must be
able to recognize a tuple that has already been sent. For
example if an application itself computes duplicate-sensitive
aggregate values (e.g., sum or average) on some attributes
of the tuples. To facilitate the detection, another implicit
attribute field tupleid is added to the tuple in the user data
stream. When a tuple from a network query is received, it
will be assigned a unique identification number tupleid. This
number uniquely identifies those attributes of the tuple that
were explicitly selected by the query, e.g., nodeid, light etc.
The tupleid will not be modified by any operator. The user
then can detect a duplicate tuple by looking at its tupleid

NQ

 5

 10

 15

 20

 25

 30

 0 1000 2000 3000 4000 5000 6000

%
 o

f a
ll

tu
pl

es

interval ms

UQ

 0

Figure 9: Histogram of measured intervals of user
query tuples from a network query with a sam-
pling period of 2048 ms for a user query with the
same sampling period, using the time-based down-
sampling operator with caching and retransmission.
Note that interval is computed from the tuple times-
tamps.

cached
out tuple out tuple t

< 2 u i .s

n.s n.s
in tuplein tuple

(too early) (too early)

cached

Figure 10: Tuples from a time-based down-sampling
operator with caching can still have an interval er-
ror up to 100% even if there are no tuples lost (we
assume ui.s = n.s).

number.

Figure 9 shows the measured interval times between two
tuples for a user query and its underlying network query,
both with a specified sampling period of 2048 ms. Note
that the tuple interval of the user query is computed from
the tuple time stamp, not from the time when the tuples
were delivered to the user application. With retransmission,
the query processing system is always able to deliver tuples
every 2048 ms, yielding a precise sampling period for the
user. There is an upper bound of the interval error at 4000
ms. This corresponds to a 100% error which is caused by the
arrival of the tuples as illustrated in figure 10: if one tuple
arrives almost an entire sampling period early and the next
arrives shortly before expected. However, in any case the
error cannot be larger than 100% because of the resending
mechanism.

4.4.1 Advantage
In addition to the advantages of the caching operator with-
out resending, this operator has the additional advantage
that the positive sample period error of the tuple stream is
bounded.

4.4.2 Disadvantage
In order to allow retransmission of the old tuple, the se-
mantics of the user query tuple stream must be slightly
changed. A tuple can now be a result of a “virtual” mea-
surement caused by the resending process. In order to dis-
tinguish between “real” measurement tuples and “virtual”
measurement tuples an additional implicit tupleid field has
to be added to every tuple delivered to a user. The tu-
pleid uniquely identifies an element from the network query
stream.

5. SYSTEM EVALUATION
5.1 Implementation
The query processing system was implemented in Java and
is run on a Standard Edition JVM. The size of the entire ap-
plication is 3 MB. This also includes the components from
TinyDB that required to access the sensor network. The
size of the query processing system alone is 528 kB. The
gateway node of the network is connected to the serial in-
terface (RS232) of the portable device that runs the query
processing system.

5.2 Evaluation
We tested our implementation on top of TinyDB running on
a deployment of three Mica2 sensor motes [16,15]. The sen-
sor modes are equipped with a light, temperature and sound
sensor as well as an AD converter for monitoring the battery
voltage. The shortest sampling period the network delivers
reliable is 1024 ms. Thus, this period was configured as limit
s min for the the TGCS algorithm. For down-sampling,
the time-based down-sampling operator with caching and re-
transmission (described in section 4.4) was used and the
TGCS algorithm was applied with a relative error tolerance
ε of 10%.

In order to model user behaviour, i.e., submitting and can-
celling queries, we implemented a random query generator.
For the queries, the size of the attribute set is uniformly
distributed and well as the selection of the attribute fields.
The user queries emanate from a Poisson process at a rate
of 1 query/min with an exponentially distributed sampling
interval (average 30 s) and an exponentially distributed ex-
ecution duration (average 10 min). Data was gathered for
120 queries, then the average sampling interval between con-
secutive tuples was measured. After 120 queries have been
executed, the experiment was stopped and the recorded re-
sults analysed offline. The average relative error in the sam-
pling interval, measured as the interval between two tuples
with a consecutive epoch number is shown in Fig. 11(a).
The average relative sampling interval error was found to
be −0.71%, i.e., the sampling rate is on average faster than
expected. This is due to the design of the TGCS algorithm
as it always determines a sampling period for the network
query that is at least as fast as the fastest user query pe-
riod. The largest error for a query interval is 7.42%. This
shows that the sampling period error lies indeed within the
10% error margin specified and also demonstrates that the
system performs well with a sensor network consisting of a
very limited sensor nodes.

Fig. 11(b) shows the absolute sampling errors in millisec-
onds. The largest (absolute) error value is -3570 ms for

−10
−8
−6
−4
−2
 0
 2
 4

 0 20 40 60 80 100

re
l.

er
ro

r i
n

%

user query

relative errors of sampling periods

(a) Relative Error

−4000
−3500
−3000
−2500
−2000
−1500
−1000
−500

 0
 500

 0 20 40 60 80 100

ab
s.

 e
rr

or
 in

 m
s

user query

absolute errors of sampling periods

(b) Absolute Error

Figure 11: Error in sampling period (measured from 120 random queries)

sampling period of network query during experiment

 1000

 2000

 3000

 4000

 5000

 0 1000 2000 3000 4000 5000 6000 7000 8000

sa
m

pl
e

pe
ri

od
 in

 m
s

time in seconds

 0

Figure 12: Sample period of the network query dur-
ing experiment (120 random queries)

query 94. This query has a sampling period of 48100 ms
and is only running for 46 seconds. The interval of the un-
derlying network query is 4096 ms at that time, which yields
a theoretical effective interval of b48100/4096c · 4096 ms =
45056 ms. This query represents an extreme case, thus the
tolerant sampling interval is close to the lower bound yet
still inside the tolerance region.

The results also show that the network query had only to
be replaced once. Starting with the fourth user query, the
network query contained all five sensor attributes. How-
ever, the less expensive rate-change operation 21 times. The
changes of the sampling period of the network query are
shown in figure 12. In figure 12 the highest sampling rate
with 1024 ms period is only used during 26.4% of the exper-
iment time. The largest sampling interval reached during
the test is 4608 ms. This corresponds to an improvement by
a factor 4.5 compared to using the sampling period of the
universal network query.

In order to examine the TGCS algorithm, the sampling pe-
riod of the network query was also computed using the great-
est common divisor (GCD) approach. Starting from the sec-
ond user query, GCD always returned the sampling period
of the universal network query.

6. CONCLUSIONS
We have presented a middleware platform for query-based
sensor networks that provides simultaneous access for mul-
tiple users to a sensor network that is limited in the number
of concurrent queries it can process. The platform is able to
merge user queries into a single network query which is then
sent into the network and executed by the sensor nodes. The
stream of tuples from the network query is then processed
by a chain of operators that adapt the tuple rate and filter
out tuples or attributes not requested by the user queries.

The proposed “tolerant” version of the common sampling
period determination algorithm yields a larger sampling pe-
riod for the network query than the greatest common divisor
(GCD) of the sampling periods of all user queries. Thus the
network can be operated more efficiently while still provid-
ing all data requested by the user queries. The idea is to
allow an error in the effective user query interval in antici-
pation of a larger common sampling period. The algorithm
uses a tolerance parameter, that allows adjusting the trade-
off between the length of the computed sampling period and
the resulting error.

The tolerant common sampling period is always as fast as
the shortest user query sampling period. Therefore the sam-
pling period of the result stream from the network query
must be enlarged by down-sampling to match the one spec-
ified in the user query. Down-sampling of a tuple stream is
not trivial. Four different approaches have been discussed
and tested. A ratio-based downs-sampling where only every
xth tuple is forwarded has the advantage that it does not not
require additional storage for maintaining the state of the
sensor nodes, as it is the case for the other methods. How-
ever it does accumulate jitter present in the data stream
from the network query (proportionally to the sampling-
period ratio between network and user query). This jit-
ter accumulation can be avoided when a time-based down-
sampling approach is used. We discussed time-sampling
with and without caching of tuples and with and without
retransmission of tuples. The analysis showed that caching
helps reducing missing data when the network is delivering
data in a too short interval. Retransmission provides an

upper bound of the sampling period error even in case of
missing tuples. In order to detect duplicate tuples (gener-
ated by retransmission) a unique identification number is
attached to each tuple delivered by the network query.

We believe that the platform described in this paper alle-
viates many of the current shortcomings of sensor networks
as experienced by the user. It provides concurrent access to
the sensor network for multiple users and applications. This
allows, e.g., mobile users to easily access a sensor network,
without disrupting the long-term data acquisition. Without
concurrent queries, the sensor network remains monopolised
by one single application, thus preventing, e.g., other users
from taking advantage of already deployed infrastructure.

The ultimate goal of this project is to provide a declarative
interface that completely abstracts from the underlying sen-
sor network as it is the case for current traditional databases.
In order to reach this goal the middleware platform has to be
extended. Further research will focus on aggregate queries
and queries with GROUP BY and HAVING clauses. Addition-
ally we will explore techniques for post-processing sensor
data, such as outlier-detection and fusing data from several
sensors.

7. REFERENCES
[1] Szewczyk R., Osterweil E., Polastre J., Hamilton M.,

Mainwaring A., Estrin D.: Habitat Monitoring with
Sensor Networks. Communications of the ACM 47:6,
pp. 34–40, June 2004.

[2] Jeongyeup P., Chintalapudi K., Govindan R., Caffrey
J., Masri S.: A Wireless Sensor Network for Structural
Health Monitoring: Performance and Experience.
Proceedings of the Second IEEE Workshop on
Embedded Networked Sensors (EmNetS-II), May 2005.

[3] Szewczyk R., Polastre J., Mainwaring A., Culler D.:
Lessons From a Sensor Network Expedition.
Proceedings of the First European Workshop on Sensor
Networks (EWSN), January 2004.

[4] Szewczyk R., Mainwaring A., Polastre J., Anderson J.,
Culler D.: An Analysis of a Large Scale Habitat
Monitoring Application. Proceedings of the 2nd
international conference on Embedded Networked
Sensor Systems, 2004.

[5] Madden S. R., Franklin M. J., Hellerstein J. M. Hong
W.: TinyDB: an acquisitional query processing system
for sensor networks. ACM Transactions on Database
Systems 30:1, pp. 122–173, March 2005.

[6] TinyDB web page.
http://telegraph.cs.berkeley.edu/tinydb/.

[7] Jeffery S. R., Alonso G., Franklin M. J., Hong W.,
Widom J.: Virtual Devices: An Extensible
Architecture for Bridging the Physical-Digital Divide.
Technical Report UCB/CSD-5-1375, University of
Berkeley, March 2005.

[8] Jeffery S. R., Alonso G., Franklin M. J., Hong W.,
Widom J.: A Pipelined Framework for Online Cleaning
of Sensor Data Streams. ICDE 2006.

[9] Mukhopadhyay S., Panigrahi D., Dey S.: Data aware,
Low cost Error correction for Wireless Sensor
Networks. WCNC, 2004.

[10] Deshpande A., Guestrin C., Madden S. R., Hellerstein
J. M., Hong W.: Model-Driven Data Acquisition in
Sensor Networks. Proceedings of the 30th VLDB
Conference, Toronto, Canada, 2004.

[11] Yao Y., Gehrke J.: Query Processing for Sensor
Networks. Proceedings of the 2003 CIDR Conference.

[12] Trigoni N., Yao Y., Demers A., Gehrke J.: Multi-query
Optimization for Sensor Networks. Technical Report
TR2005-1989, Cornell University, 2005.

[13] Ganeriwal S., Kumar R., Srivastava M. B.:
Timing-sync Protocol for Sensor Networks. Proceedings
of the 1st internaltion conference of Embedded Sensor
Systems, 2003.

[14] Aakvaag N., Mathiesen M., Thonet G.: Timing and
power issues in wireless sensor networks — an
industrial test case. Parallel Processing, ICPP
Workshop, June 2005.

[15] Hill J., Culler D.: Mica: a wireless platform for deeply
embedded networks. IEEE Micro Volume 22, Issue 6,
pp. 12–24, November-December 2002.

[16] MICA2 Wireless Measurement System: Data Sheet.
Crossbow Technology Inc.

http://www.xbow.com

http://telegraph.cs.berkeley.edu/tinydb/
http://www.xbow.com

