

Formation of a GNSS network in space based on geodetic satellite missions

Other Conference Item

Author(s): Müller, Lukas; Rothacher, Markus; <u>Soja, Benedikt</u> (b); Jäggi, Adrian; Arnold, Daniel

Publication date: 2024-07-18

Permanent link: https://doi.org/10.3929/ethz-b-000691715

Rights / license: In Copyright - Non-Commercial Use Permitted

Formation of a GNSS network in space based on geodetic satellite missions

Lukas Müller, Markus Rothacher, Benedikt Soja, Adrian Jäggi and Daniel Arnold

Motivation

- Increasing number of LEOs with GNSS receivers
- Possibility to form GNSS baselines connecting multiple satellites
 - Double-difference processing
 - Polyhedron in space with highly accurate relative geometry
- Idea: use space-based GNSS
 double-differences to estimate
 - LEO and GNSS satellite orbits
 - Earth's gravity field
 - Ionospheric tomography
- Study: Formation of a pseudoconstellation using GNSS data from geodetic Earth observation missions

Motivation

- Increasing number of LEOs with GNSS receivers
- Possibility to form GNSS baselines connecting multiple satellites
 - Double-difference processing
 - Polyhedron in space with highly accurate relative geometry
- Idea: use space-based GNSS
 double-differences to estimate
 - LEO and GNSS satellite orbits
 - Earth's gravity field
 - Ionospheric tomography
- Study: Formation of a pseudoconstellation using GNSS data from geodetic Earth observation missions

Data

GPS observations from 13 geodetic satellite missions in August 2021

Method

Network processing setup

Method

Network processing setup

Single-satellite orbit determination

Processing strategy

Software	Bernese GNSS software 5.3
Observations	GPS L1/L2 phase and code observations
Gravity model	GOCO06s
Non-gravitational forces	No modelling
Antenna offset, PCV, PCO	applied
Parameterization	 Constant accelerations (r,s,w) Once-per-revolution periodicity (r,s,w) Piecewise-constant accelerations every 6 min
Arc-length	1 day
Sampling	10 s

Single-satellite orbit determination

Daily number of GPS L1+L2 averaged over one month

- Most baseline observations for formationflying satellites
 - GRACE-C and -D
 - SWARM-A and -C
- Smaller number of observations for the tandem Sentinel-6 and Jason-3
- Generally fewer observations for Jason-3
 - Orbit height
 - Data screening on zero-difference level

Integer ambiguity resolution: Median over one month

80

20

0

Widelane ambiguities

Integer ambiguity resolution: GRACE-C/D

Fixing rate per day

Fractional parts of estimated ambiguities

Integer ambiguity resolution: SWARM-A/C

Fixing rate per day

Fractional parts of estimated ambiguities

Integer ambiguity resolution: SWARM-A – Sentinel-3A

Fixing rate per day

Fractional parts of estimated ambiguities

Conclusions

- Good ambiguity fixing rates mainly for GRACE-FO C/D and partly for SWARM A/C
- No resolved narrowlane ambiguities at all for baselines involving Sentinel-1 and -2
 - Poor a-priori orbits and time difference > 1 sec between combined observations
- No resolution of widelane ambiguities for the Sentinel-6A and Jason-3 tandem
 - General problem with wideline fixing with Sentinel-6A due to different types of code observations
 - Poor quality of Jason-3 code observations
- The advantages of network processing in space will only take effect with a high number (> 50) and a uniform distribution of satellites

Next steps

- Improvements of force modelling \rightarrow inclusion non-gravitational forces
- Refined estimation of PCOs/PCVs
- Better strategies for ambiguity-resolution, e.g. bootstrapping with iterations over the entire constellation