
D I S S . E T H N O . 3 0 2 2 7

2 D A N D 3 D G E N E R AT I V E M O D E L S U N D E R
R E A L - W O R L D C O N S T R A I N T S

A thesis submitted to attain the degree of

D O C T O R O F S C I E N C E S

(Dr. sc. ETH Zurich)

presented by

M O H A M A D S H A H B A Z I

M.Sc., Sharif University of Technology

born on 4 February 1994

accepted on the recommendation of

Prof. Dr. Luc Van Gool, examiner
Prof. Dr. Jun-Yan Zhu, co-examiner

Dr. Timo Aila, co-examiner
Dr. Anna Khoreva, co-examiner

Dr. Danda Pani Paudel, co-examiner

2024



Mohamad Shahbazi: 2D and 3D Generative Models under Real-World Constraints,
© 2024



To my Family and my Friends





A B S T R A C T

Recent advancements in generative modeling have transformed visual content cre-
ation, showing tremendous promise in several applications in Computer Vision and
Graphics. However, the adoption of generative models in everyday tasks is hin-
dered by challenges in controllability of the generation process, data requirements,
and computational demands. This thesis focuses on addressing such real-world
constraints in 2D and 3D generative models.

Firstly, we focus on improving the data efficiency of class-conditional Generative
Adversarial Networks (GANs) using transfer learning. We introduce a new class-
specific transfer learning method, called cGANTransfer, to explicitly propagate the
knowledge from old classes to the new ones based on their relevance. Through
extensive evaluation, we demonstrate the superiority of the proposed approach over
the previous methods for conditional GAN transfer.

Secondly, we investigate the training of class-conditional GANs with small
datasets. In particular, we identify conditioning collapse in GANs–mode collapse
caused by conditional GAN training on small data. We propose a training strat-
egy based on transitional conditioning that effectively prevents the observed mode
collapse by additionally leveraging unconditional learning. The proposed method
results not only in stable training but also in generating high-quality images, thanks
to the exploitation of shared information across classes in the early stages of training.

Thirdly, we tackle the computational efficiency of NeRF-GANs, a class of 3D-
aware generative models based on the integration of Neural Radiance Fields (NeRFs)
and GANs, trained on single-view image datasets. Specifically, we revisit pose-
conditioned 2D GANs for efficient 3D-aware generation at inference time by dis-
tilling 3D knowledge from pretrained NeRF-GANs. We propose a simple and
effective method for efficient inference of 3D-aware GANs, based on re-using the
well-disentangled latent space of a pre-trained NeRF-GAN in a pose-conditioned
convolutional network, to directly generate 3D-consistent images corresponding to
the underlying 3D representations.

Lastly, we address the novel task of object generation in 3D scenes without the
need for any 3D supervision or 3D placement guidance from the users. We introduce
InseRF, a novel method for generative object insertion in the NeRF reconstructions
of 3D scenes. Based on a user-provided textual description and only a 2D bounding
box in a reference viewpoint, InseRF is capable of controllable and 3D-consistent
object insertion in 3D scenes without requiring explicit 3D information as input.
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Z U S A M M E N F A S S U N G

Jüngste Fortschritte in der generativen Modellierung haben die Erstellung visueller
Inhalte revolutioniert und zeigen erhebliches Potenzial in verschiedenen Anwen-
dungen der Computer Vision und Grafik. Die Nutzung generativer Modelle für
alltägliche Aufgaben wird jedoch durch Herausforderungen in der Steuerbarkeit
des Generierungsprozesses, den Datenanforderungen und dem Rechenaufwand er-
schwert. Diese Dissertation konzentriert sich darauf, solche realen Einschränkungen
in 2D- und 3D-generativen Modellen zu adressieren.

Erstens konzentrieren wir uns auf die Verbesserung der Dateneffizienz von class-
conditional Generative Adversarial Networks (GANs) durch Transfer Learning. Wir
stellen eine neue klassenspezifische Transfer-Learning-Methode namens cGAN-
Transfer vor, die das Wissen explizit von alten zu neuen Klassen auf Basis ihrer
Relevanz überträgt. Umfangreiche Auswertungen zeigen, dass der vorgeschlagene
Ansatz früheren Methoden für den bedingten GAN-Transfer überlegen ist.

Zweitens untersuchen wir das Training von class-conditional GANs mit kleinen
Datensätzen. Insbesondere identifizieren wir den Bedingungskollaps (conditioning
collapse) in GANs—einen Modus-Kollaps, der durch das Training bedingter GANs
mit kleinen Datenmengen verursacht wird. Wir schlagen eine Trainingsstrategie vor,
die auf Übergangsbedingungen basiert und den beobachteten Modus-Kollaps durch
zusätzliches unbedingtes Lernen (unconditional learning) effektiv verhindert. Die
vorgeschlagene Methode führt nicht nur zu stabilem Training, sondern auch zur
Erzeugung hochqualitativer Bilder, indem in den frühen Trainingsphasen geteilte
Informationen über Klassen hinweg genutzt werden.

Drittens befassen wir uns mit der Recheneffizienz von NeRF-GANs, einer Klas-
se von 3D-bewussten generativen Modellen, die auf der Integration von Neural
Radiance Fields (NeRFs) und GANs basieren und auf Single-View-Datensätzen
trainiert werden. Insbesondere überarbeiten wir pose-conditionierte 2D-GANs für
eine effiziente 3D-bewusste Bilderzeugung zur Laufzeit, indem wir 3D-Wissen aus
vortrainierten NeRF-GANs destillieren. Wir schlagen eine einfache und effektive
Methode für eine effiziente Inferenz 3D-bewusster GANs vor, die auf der Wieder-
verwendung des gut disentangled latenten Raums eines vortrainierten NeRF-GANs
in einem pose-conditionierten konvolutionalen Netzwerk basiert, um direkt 3D-
konsistente Bilder entsprechend den zugrundeliegenden 3D-Repräsentationen zu
erzeugen.

Abschließend behandeln wir die neuartige Aufgabe der Objekterzeugung in 3D-
Szenen ohne die Notwendigkeit einer 3D-Supervision oder 3D-Platzierungsanweisungen
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von Benutzern. Wir stellen InseRF vor, eine neuartige Methode zur generativen
Einfügung von Objekten in die NeRF-Rekonstruktionen von 3D-Szenen. Basie-
rend auf einer vom Benutzer bereitgestellten Textbeschreibung und nur einem
2D-Begrenzungsrahmen in einer Referenzansicht ist InseRF in der Lage, Objek-
te kontrolliert und 3D-konsistent in 3D-Szenen einzufügen, ohne explizite 3D-
Informationen als Eingabe zu benötigen.
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1
I N T R O D U C T I O N

1.1 I N T RO D U C T I O N T O G E N E R AT I V E M O D E L S

Generative models are a class of machine learning models designed to learn the
underlying probability distribution of input data. This allows them to generate novel
samples that resemble the original data. Generative modeling in computer vision and
graphics has seen rapid progress in recent years. The growing interest in generative
models stems from their potential to transform digital art and content creation for
applications such as animation, gaming, and augmented/virtual reality. Digital visual
content creation typically requires hours of painstaking manual work by artists and
graphics experts, who often rely on tools based on handcrafted and imperfect models
of the visual world. Generative models, however, have shown great promise in
significantly decreasing the need for human interaction, and they are able to discover
the underlying structure of the visual content implicitly from real-world data, for
more realistic content generation.

The promise of generative models extends beyond content creation. Generative
models hold tremendous potential for representation learning without the need for
extensive data annotations. For instance, generative models can be used for dataset
synthesis and augmentation to increase the diversity of training data, in setups where
collecting labelled data is challenging [1–3]. Moreover, generative models have the
ability to extract rich, hierarchical representations of data with no explicit supervi-
sion. Such representations have recently been shown to be significantly beneficial in
unsupervised and semi-supervised visual recognition tasks. The representations ob-
tained from generative models have either been directly exploited for unsupervised
visual understanding [4, 5], or they have been used as strong initial priors along with
additional supervision with real or even synthetic data [6–8].

The history of generative modeling traces its roots back to pre-deep learning
techniques, where models such as Hidden Markov Models (HMMs) and Gaussian
Mixture Models (GMMs) played a pivotal role in understanding and generating
data [9, 10]. Moreover, Bayesian Networks [11] were integral in the early landscape
of generative models, providing a foundation for probabilistic reasoning in data
analysis. Building upon these foundational concepts, generative modeling has seen a
significant evolution with the rise of deep learning. There are various deep learning-
based paradigms for generative modeling, which can be mainly categorized as
autoregressive models [12, 13], variational auto-encoders (VAEs) [14], generative
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2 I N T RO D U C T I O N

adversarial networks (GANs) [15], flow-based models [16], and the more recent
denoising diffusion models (DDMs) [17]. Among them, GANs and DDMs have
particularly achieved impressive results in a variety of applications involving the
synthesis and editing of realistic images, videos, and 3D scenes.

GANs, introduced in the seminal work by Goodfellow et al. [15], revolutionized
visual generative modeling by achieving unprecedented realism of the generated con-
tent. For several years, GANs dominated the area of generative modeling, enabling
a variety of applications, including unconditional and class-conditioned genera-
tion [18, 19], image-to-image translation [20, 21], style transfer [22], semantic
editing [23], and text-to-image generation [24]. However, the adversarial dynam-
ics of GANs make them prone to training instability and lack of diversity (mode
collapse), especially when trained on small datasets [25].

Recently, denoising diffusion models [17] have brought about a new wave of
breakthroughs in generative modeling, overtaking GANs in many generative tasks.
Especially, DDMs have achieved extraordinary capabilities in the task of text-to-
image generation [26], unlocking a plethora of applications in computer vision and
graphics. In addition to generative applications, DDMs are making their way into
several image understanding tasks thanks to their rich and strong priors [7, 8, 27].
When it comes to computational efficiency, however, DDMs are currently limited in
their generation speed due to their iterative denoising process. Many efforts have
already been made to improve the efficiency of DDMs [26, 28–30]. Notably, the
integration of DDMs and GANs through adversarial distillation has been shown
promising in multiple studies [30, 31], combining the stable training of diffusion
models with the efficient inference of GAN-based generators.

1.2 G E N E R AT I V E M O D E L S U N D E R R E A L - W O R L D C O N S T R A I N T S

A significant amount of effort has been dedicated to increasing the quality and
complexity of the content generated by generative models [32, 33]. However, there
remains a gap to be filled when it comes to the practical use of such models by
everyday users in their tasks:

1.2.1 Controllability

To start with, controllability is an important prerequisite to the real-world utilization
of generative models. Controllability in generative models pertains to the degree of
influence or guidance users can exert over the output, ensuring that the generated
content aligns with specific criteria or preferences. Such control can be provided
in various forms of model conditioning, such as target categories [18], textual de-
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scriptions [26], images [20], semantic layouts [21], and geometric information [34].
Users should be able to interact with generative models with control signals that are
convenient and intuitive, while providing enough flexibility to steer the generation.

1.2.2 Adaptation to custom data

Another crucial element in making generative models accessible to a broader commu-
nity is their ability to adapt to custom data. Generative models often require training
on large-scale datasets to achieve desirable performance [25]. In many real-world
applications, however, gathering large amounts of data is challenging and costly.
Data collection becomes even more difficult in the case of controllable generation,
where the samples are required to be paired with additional annotations. In scene
understanding tasks, there exist numerous established techniques for increasing the
data efficiency of machine learning models, such as transfer learning [35], data
augmentation [36], few-shot learning [37], and meta-learning [38]. Many of such
methods, however, are not directly transferable to the generative setup. Consequently,
it is important to further explore data-efficient approaches for generative models,
making them applicable to users’ custom and often small-sized data.

1.2.3 Computational efficiency

Last but not least, computational efficiency plays an essential role in streamlining
the wider adoption of generative models. Everyday users often have access to very
limited computational resources for optimization and inference of their models. Even
for large technological companies, large-scale deployment of generative models
requires meeting an increasing demand by thousands or millions of users around
the world, interacting with such models on their personal computers or mobile
devices. Computationally demanding models not only restrict accessibility but
also significantly increase financial and environmental costs. There exist general
methods for the deployment efficiency of deep neural networks, such as model
distillation [39], pruning [40], and quantization [41]. However, incorporating task-
specific considerations during the design of generative models could further enhance
their computational efficiency. Such computational improvements can be explored
in both the model architecture, as well as the training and inference strategies.

1.3 F RO M 2 D T O 3 D G E N E R AT I V E M O D E L I N G

While advancements in 2D generative models have revolutionized image synthesis
and editing tasks, the lack of sufficient 3D priors usually limits their capacity to



4 I N T RO D U C T I O N

represent and generate objects and scenes in 3D. As we live in and interact with
a 3D world, the progression from 2D to 3D generative modeling brings us closer
to a more immersive experience, unlocking new opportunities in applications such
as augmented/virtual reality, gaming, medicine, and architecture. However, transi-
tioning to 3D introduces a new layer of complexity, thereby amplifying challenges
related to accessibility.

Firstly, the acquisition and annotation of 3D data, such as multi-view images,
meshes, and point clouds, are considerably more challenging. Moreover, 3D genera-
tion inherently involves higher dimensionality and modeling geometric structures,
which significantly increase the computational demands during both training and
inference stages. Furthermore, controllability in 3D generative models also becomes
more intricate, as steering the generation in 3D requires additional guidance from
users and extra annotations for the training data. Consequently, 3D generative mod-
eling requires further innovations to overcome these obstacles. Among different
strategies to do so, designing more computationally efficient 3D representations, as
well as 3D-consistent generation using single-view image datasets or pre-trained 2D
generative models have shown great promise in recent years. Nevertheless, numer-
ous opportunities remain to be explored in order to unlock the full potential of 3D
generative models for real-world applications.

1.4 T H E S I S OV E RV I E W

In this thesis, we aim to identify and address some of the problems arising in
existing generative modeling paradigms when used under real-world constraints. We
specifically focus on tackling the limitations of controllable generative models (a.k.a
conditional generative models), including models conditioned on object categories
(classes), textual descriptions, and camera viewpoints. In the next two chapters of
the thesis, we address the training of 2D GANs when the training data is small.
Particularly, in Chapter 2, we explore a method for efficient transfer learning in
class-conditional GANs, and in Chapter 3, we address the training instability of
class-conditional GANs under a small data regime. In chapters 4 and 5, we focus
on conditional generative models for 3D generation and editing. In particular, in
Chapter 4, we investigate the task of 3D-aware image generation from single-view
image datasets in applications where 3D data is not available, with a focus on the
computational efficiency of the inference. Finally, in Chapter 5, we address the task
of text-driven 3D scene editing without the need for supervision with 3D data or any
3D guidance by the users.
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1.4.1 Class-Specific Transfer Learning in GANs

Transfer learning has been a well-established practice for training deep learning
methods on small datasets. The methods common in discriminative models, however,
do not directly transfer to the generative setup. Early studies have shown the potential
of transfer learning for GANs, mainly focusing on unconditional models. The same,
however, has not been well-studied in the case of conditional GANs (cGANs),
which provides new opportunities for knowledge transfer compared to unconditional
setup. In Chapter 2 of this thesis, we specifically focus on transfer learning in
class-conditional GANs. We introduce a new class-specific transfer learning method,
called cGANTransfer, to explicitly propagate the knowledge from the old classes
to the new ones. The key idea is to enforce the popularly used conditional batch
normalization (BN) to learn the class-specific information of the new classes from
that of the old ones, with implicit knowledge sharing among the new ones. This
enables efficient knowledge propagation from the old classes to the new ones, with
a linear increase in BN parameters as the number of new classes grows.

1.4.2 Transitional Conditioning in GANs

Class-conditioning in GANs offers a direct means to control the generation based on
a discrete input variable. While necessary in many applications, the additional infor-
mation from class labels could be expected to benefit GAN training. In Chapter 3, on
the contrary, we observe that class-conditioning causes mode collapse in limited data
settings, where unconditional learning leads to satisfactory generative ability. Moti-
vated by this observation, we propose a training strategy for class-conditional GANs,
called transitional-cGAN, that effectively prevents the observed mode-collapse by
leveraging unconditional learning. Our training strategy starts with an unconditional
GAN and gradually injects the class conditioning into the generator and the objective
function. The proposed method for training cGANs with limited data results not
only in stable training but also in generating high-quality images, thanks to the
early-stage exploitation of the shared information across classes.

1.4.3 Efficient 3D-Aware Generation with Convolutions

One of the main applications of 3D generative models is novel view synthesis, where
the models can generate arbitrary views of novel scenes, conditioned on a target view.
As providing 3D data for generative novel view synthesis is challenging, 3D-aware
generative models capable of learning 3D priors from single-view images, such as
pose-conditioned GANs, have recently become popular. Naive pose-conditioned
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convolutional generative models struggle with generating high-quality, 3D-consistent
images from single-view datasets, due to a lack of sufficient 3D priors. The recent
integration of Neural Radiance Fields (NeRFs) and generative models, such as
GANs, has transformed 3D-aware generation from single-view images. NeRF-
GANs exploit the strong inductive bias of neural 3D representations and volumetric
rendering, at the cost of higher computational complexity. In Chapter 4, we aim to
revisit pose-conditioned 2D GANs for efficient 3D-aware generation at inference
time by distilling 3D knowledge from pretrained NeRF-GANs. We propose a simple
and effective method for efficient inference of 3D-aware GANs, based on re-using
the well-disentangled latent space of a pre-trained NeRF-GAN in a pose-conditioned
convolutional network, to directly generate 3D-consistent images corresponding to
the underlying 3D representations.

1.4.4 Generative 3D Object Insertion

3D generation and editing become even more challenging when it comes to modeling
complex and compositional 3D scenes. Therefore, several studies have recently
exploited the strong priors of the recent language-based 2D diffusion models for the
task of 3D generation and editing. 2D diffusion models have been used for 3D asset
generation [42], single-image object reconstruction [43], and 3D scene editing [44].
In the particular case of 3D scene editing, the existing methods are mainly limited to
modifying [44–46] or removing [47, 48] existing objects in the scenes. Generating
new objects, however, remains a challenge for such methods. In Chapter 5, we tackle
the task of object generation in 3D scenes without the need for any 3D supervision
or 3D placement guidance from the users. We introduce InseRF, a novel method
for generative object insertion in the NeRF reconstructions of 3D scenes. Based
on a user-provided textual description and only a 2D bounding box in a reference
viewpoint, InseRF generates new objects in 3D scenes. Specifically, we propose
grounding the 3D object insertion to a 2D object insertion in a reference view of
the scene. The 2D edit is then lifted to 3D using a single-view object reconstruction
method. The reconstructed object is then inserted into the scene, guided by the
priors of monocular depth estimation methods. InseRF is capable of controllable and
3D-consistent object insertion without requiring explicit 3D information as input.



2
C L A S S - S P E C I F I C T R A N S F E R L E A R N I N G I N G A N S

Generative adversarial networks (GANs) have shown impressive results in both
unconditional and conditional image generation. Previous studies have shown that
pre-trained GANs on different datasets can be transferred to improve the image
generation from a small target dataset. The same, however, has not been well-studied
in the case of conditional GANs (cGANs), which provides new opportunities for
knowledge transfer compared to the unconditional setup. In particular, the new
classes may borrow knowledge from the related old classes, or share knowledge
among themselves to improve the training. This motivates us to study the problem
of efficient conditional GAN transfer with knowledge propagation across classes.
To address this problem, we introduce a new GAN transfer method to explicitly
propagate knowledge from the old classes to the new classes. The key idea is to
enforce the popularly used conditional batch normalization (BN) to learn the class-
specific information of the new classes from the old classes, with implicit knowledge
sharing among the new ones. This allows for an efficient knowledge propagation
from the old classes to the new ones, with the BN parameters increasing linearly
with the number of new classes. The extensive evaluation demonstrates the clear
superiority of the proposed method over state-of-the-art competitors for efficient
conditional GAN transfer tasks.

2.1 I N T RO D U C T I O N

Generative adversarial networks (GANs) [15, 49] are the most common models used
for image and video generation [50], showing very promising results in uncondi-
tional [19, 51, 52] and conditional [18, 53, 54] setups.

Learning from limited data is a well-studied problem in the discriminative setup,
where the concept of knowledge transfer [55] between two different but related
tasks [56] or domains [57] is ubiquitous. In contrast, literature on transfer learning
for generative adversarial models is fairly limited. One may find this unexpected,
since many popular knowledge transfer methods in discriminative setup, in turn, use
generative schemes [58, 59]. However, the limited literature is less surprising when
the complexity of adversarial training and the mode collapse are taken into account.

A notable work by Wang et al. [60] first addressed the problem of training GANs
on limited data using a careful fine-tuning (FT) strategy. Follow-up works [61–63]
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are the variants of [60] that focus on better fine-tuning strategies. On the contrary,
Noguchi & Harada [64] proposed the batch statistics adaptation (BSA) technique, by
learning only the batch normalization parameters on a small target dataset. As most
of the previous works [60, 62, 64] primarily focus on the case of unconditional GANs,
we investigate in a different direction of conditional GANs (cGANs). In particular,
we are interested in producing new classes given a pre-trained class-conditional
GAN. cGANs are strikingly interesting due to their capability of handling a large
number of classes with a single network. For example, BigGAN [18] can generate
images from all 1K classes of ImageNet [65]. In fact, BigGAN is used as the pre-
trained network even by unconditional methods [62, 64]. We refrain from fine-tuning
whenever possible, as we believe that new classes can be introduced within such
powerful cGANs. Moreover, some powerful pre-trained cGANs can potentially be
used to add new classes in the lifelong learning [64, 66–68] fashion, which however
is beyond the focus of our paper.

In this work, we study how new classes with a limited amount of samples can
be added to pre-trained cGANs using knowledge transfer across classes. To do
so, inspired by BSA [64], we aim at learning only the batch normalization (BN)
parameters that generally encode the class-specific information. Our key idea, dif-
ferent from [64], relies on the assumption that the knowledge between old and new
classes can also be transferred by searching for the similarity between them. Our
experimental setup, however, does not allow us to access the old data used for the
pre-trained model. Therefore, the similarity is searched in the conditional space
of the BN parameters, during the training of cGANs. In this process, we learn the
similarity scores explicitly between old and new classes, and implicitly between new
ones. The learned old-to-new similarity scores are then used to derive the batch
statistics of new classes from that of old ones.

It is well-established in [66, 69–74] and many other works, that learning algo-
rithms can greatly benefit from the shared knowledge between classes. Often, such
similarity is either known or discovered when all the classes are accessible. In the
context of domain generalization (or in some special case of adaptation), the source
data is similarly inaccessible partially or completely [75–77]. However, the latter
assumes that the new classes are either the same or largely overlap with the old ones.
Note that in our case, new classes do not even overlap with the inaccessible old ones.
In addition, almost all aforementioned works seek similarity in the feature space with
an exception of [74]. However, [74] is primarily designed to serve discriminative
models. Our generative case, on the other hand, hinders us to access the feature
space. We, therefore, rely on the conditional space of cGANs to establish the sought
class similarities. Up to our knowledge, we learn the inter-class similarities in the
conditional space of the generative models, for the first time.
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In summary, we utilize cross-class knowledge while introducing new classes in
cGANs. While doing so, active searching of similarity scores between new and
old classes with implicit knowledge sharing among new ones is suggested. In this
context, we propose a novel method for finding the similarity between new and old
classes without requiring access to the old data. The proposed method is particularly
suitable when transferring knowledge from pre-trained cGANs.

In summary, the key contributions of our work are as follows:

• We study the new problem of efficient GAN transfer to new classes with
explicit inter-class knowledge propagation in pre-trained cGANs.

• We propose a novel method for learning similarity between old and new
classes and knowledge sharing between new classes using the batch normal-
ization statistics of the old classes in the conditional space of GANs.

• Our experiments on three datasets demonstrate the superiority of our method
both in terms of generated image quality and the convergence speed.

2.2 R E L AT E D W O R K

Class-conditional GANs: Different architectures and loss functions have been
proposed for conditioning GANs on class labels [78–80]. The current state-of-
the-art methods for class conditioning commonly employ cGAN with projection
discriminator [79, 81]. In the generator, conditional batch normalization [82] with
class-specific scale and shift parameters are applied to each layer of the generator.
The discriminator is conditioned on the class labels by computing the dot product
of the last feature layer and the learnable embedding of the desired class. The
performance of the conditional GANs was further improved by adding self-attention
layers to the generator and the discriminator [83]. BigGAN [18] was able to reach
state-of-the-art performance on image generation from ImageNet, mainly by using a
bigger batch size and some architectural improvements such as a hierarchical latent
variable. The conditioning, however, still happens through the class-conditional
batch normalization in the generator and the projection layer in the discriminator.
Transfer Learning in GANs: Iterative image generation approaches, such as DGN-
AM [84] and PPGN [85], could be considered as early attempts at transfer learning
in image generation by generating images via maximizing the activation of the
neurons of a pre-trained classifier. TransferGAN [60] is one of the earliest studies
addressing transfer learning in GANs. The authors showed that, by simply fine-
tuning a pre-trained network on the target dataset, they can outperform training from
scratch in terms of image quality and convergence time. However, naive fine-tuning
on small data still suffers from mode collapse and training instability. Another
method [63] proposes transferring the low-level layers of the generator and the
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FIGURE 2.1: (a): A generator trained on a multi-class dataset. (b): The generator, extended
by new classes without taking the old classes into account. (c): The con-
ceptual diagram of our proposed method for conditional GAN transfer with
knowledge propagation across classes. Here γi and βi (1 ≤ i ≤ 5) represent
the class-specific parameters.

discriminator from the pre-trained network while learning the high-level layers
from scratch for the target data. In a recent study [61], it is shown that simply
freezing the low-level filters of the discriminator is more effective than previous
fine-tuning approaches. BSA [64], on the other hand, instead of seeking ways of
fine-tuning the network, proposed freezing the weights of the pre-trained generator
except the batch normalization parameters. For the target data, new BN parameters
are learned without fine-tuning the generator. This allows BSA to add new classes
without disturbing the old ones. MineGAN [62] learns a small fully-connected miner
network at the input of a frozen pre-trained GAN. The miner learns to shift the
prior input distribution to the most suitable one for the target data. After training
the miner, MineGAN further fine-tunes both the generator and the miner as the final
model. MineGAN is designed to transfer knowledge to a single-class target.
Inter-class Knowledge Transfer: Many works have emerged that focus on extend-
ing models trained on previous examples/images to perform well on new data, and
here is where knowledge transfer becomes essential. For instance, [71] uses memory
and attention modules to transfer labeled data knowledge to a new class example. A
closely related work [73] uses the class similarity between source classes and a target
class to improve the classification performance. [72] is a few-shot meta-learning
method that uses the so-called relation score of a new class example with previous
examples in order to classify the new example. In a more related work [74], BN lay-
ers have been used for knowledge transfer from old classes, mainly targeting binary
classification with a brief empirical study on style transfer. The knowledge transfer
framework of [74] separately performs encoding, pre-selection, and combination of
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old classes. In contrast, our method jointly optimizes the prior knowledge and the
transfer process, leading to an efficient learning paradigm for generative models.

2.3 P RO B L E M D E F I N I T I O N

The task of class-conditional GAN transfer aims at approximating the target data
distribution by transferring knowledge from the source multi-class data to the target
data using pre-trained GAN models. As shown in Fig. 2.1 (a), the pre-trained
GAN model consists of one generator G and one discriminator D, jointly trained
on the source multi-class dataset X = {X1, X2, . . . , XN}, in which Xy is a set
of real images in category y ∈ {1, 2, . . . , N} with the underlying distribution
Py(x) ∈ {P1(x), P2(x), . . . , PN(x)}. In the conditional setup, given a random
noise vector z (usually sampled from N (0, I)) and a class label y as inputs, G is
trained in an adversarial game with D, to generate an image x ∼ Py(x):

x = G(z, y);

z ∼ N (0, I), y ∈ {1, . . . , N} s.t. x ∼ Py(x).
(2.1)

In the state-of-the-art conditional GANs (e. g., [18, 79, 83]), G is commonly
conditioned on the class labels using conditional batch normalization. Specifically,
the layer-wise output fl , of layer l ∈ {1, . . . , L}, is normalized and modulated by
the class-specific scale γ

y
l ∈ {γ1

l , . . . , γN
l } and shift β

y
l ∈ {β1

l , . . . , βN
l } as:

f ′l = γ
y
l

fl − µl
σl

+ β
y
l , (2.2)

where µl and σl represent the batch mean and variance for the l-th layer, and f ′l is the
normalized output of the layer. Thus, the class-specific information is parameterized
by the corresponding scales and shifts.

Transfer learning in conditional GANs can be defined as exploiting pre-trained
GAN models to adapt the generator/discriminator to a new multi-class target
data X ′ = {XN+1, XN+2, . . . , XN+M} with M new categories {y′}, y′ ∈ {N +
1, . . . , N + M}. Mathematically, this task can be defined as the following learning
problem:

x′ = G′(z, y′);

z ∼ N (0, I), y′ ∈ {N + 1, ..., N + M}
s.t. x′ ∼ Py′(x), given G(z, y),

(2.3)

where G′ is the new generator learned for the new categories {y′}. It is often
desirable that G′ can also generate the previous classes, as shown in Fig. 2.1 (b).
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The problem of learning such a generator which is capable of generating images for
both {y} and {y′} can be formulated as:

x = G′(z, y f );

z ∼ N (0, I), y f ∈ {1, ..., N + M}
s.t. x ∼ Py f (x), given G(z, y),

(2.4)

where we denote the final category set as {y f } = {y} ∪ {y′} and the extended
generator as G′.

Transfer learning in the context of GANs is usually approached by a careful fine-
tuning of a pre-trained model [60–63], with or without modifying the architecture.
These architecture modifications include adding either new layers or new batch
normalization parameters, to additionally learn new knowledge of the target data.
Such approaches overlook the shared similarities among the old and new classes,
resulting in an inefficient knowledge propagation. This motivates us to aim for a
more efficient conditional GAN transfer. In particular, we seek explicit knowledge
propagation from old (i.e. source) classes to the new (i.e. target) ones, along with
the possibility of knowledge sharing among target classes. Fig. 2.1 (c) conceptually
illustrates the problem addressed in this paper.

2.4 K N O W L E D G E T R A N S F E R AC RO S S C L A S S E S

We first provide an overview of the proposed method, followed by the details. Our
premise is built upon a known observation in BigGAN [18], where interpolating
between different classes produces visually meaningful intermediate images that do
not exist in the training data. This implies that the learned class-specific parameters
could lie on a smooth manifold, on which new classes also reside. Consequently, it
begs the question: can the similarities between the source and the target classes–as
well as those within the target–be exploited to learn the target representations? This
question leads us to learn the parameters of the new classes, while being dependent
upon the parameters (representing the knowledge) of old classes. More precisely,
we propose to obtain the representation of each target class by learning a suitable
linear combination over the representations of the source classes – which we call
knowledge propagation. In addition, we propose a mechanism to enable knowledge
sharing within target classes by optimizing the source knowledge in favor of the
multiple target classes1. We address the exact problem defined by eq. (2.4), where
the model aims to generate both new and old classes. Such consideration is often

1 Although the focus of our work is on the multi-class target data, our method can also be generalized
effectively to single-class targets (please refer to appendix A).
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ignored in the literature, with an exception of BSA [64]. The details of the proposed
knowledge propagation and sharing strategies are presented in Secs. 2.4.1 and 2.4.2.

2.4.1 Knowledge Propagation

Following the class-conditioning paradigm discussed in Sec. 2.3, we embed the
class-specific representations in the batch normalization (BN) layers as the scale and
shift parameters. Accordingly, knowledge propagation is performed in BN layers.
To obtain the BN parameters (γl and βl in eq. (2.2)) of each new class, our model
linearly combines the BN parameters of old classes {y} using layer-wise similarity
scores, learned during the training step:

γ
y′

l = [γ1
l , γ2

l , . . . , γN
l ]Sy′

γl ,

β
y′

l = [β1
l , β2

l , . . . , βN
l ]S

y′

βl
,

y′ ∈ {N + 1, . . . , N + M}, l ∈ {1, . . . , L}.

(2.5)

Here, Sy′
γl = [s(y

′ ,1)
γl , . . . , s(y

′ ,N)
γl ]⊤ ∈ RN and similarly Sy′

βl
∈ RN are vectors of

learned scores for the class y′ in layer l. Two things are to be noted here. First,
we learn the similarity scores for scale and shift parameters separately. This is
because, the new classes could be similar to some of the old classes in terms of their
distribution mean, while being similar to another set of classes in terms of intra-class
variance. Secondly, we also learn a different set of scores per layer, since different
layers of the network do not necessarily benefit from the same set of old classes.
It is well-known that different layers of neural networks represent different levels
of feature representation. As intuitively shown in Fig. 2.2, some layers could be
responsible for the general shape, some for the color and the texture, and some for
finer details. Such hierarchy of features is also the main motivation of StyleGAN [19]
for using layer-specific styles.

Based on the empirical observations, we propagate class-specific knowledge only
in the generator while simply fine-tune the discriminator. A similar knowledge prop-
agation in the discriminator leads to performance degradation in our experiments.
One possible reason for such degradation is that the knowledge propagation speeds
up the over-fitting problem of the discriminator on small datasets [87].

2.4.2 Knowledge Sharing

In addition to knowledge propagation, we propose a mechanism for knowledge
sharing among target classes. Consider transferring a conditional GAN, pre-trained
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FIGURE 2.2: Intuitive visualization of how different layers might borrow information from
different classes based on the hierarchy of features such as shape and color
(for a better visualization, only two layers are illustrated). Pictures in the
figure are obtained from our experiment on AnimalFace dataset [86] (Please
refer to Fig. 2.9 for more visualizations).

on ImageNet classes, to the AnimalFace [86] dataset containing 20 classes of
different animal faces. Although faces of different animals have their own unique
characteristics, they still share a level of common structure. Therefore, instead of
finding each class representation independently, it is reasonable to exploit the shared
knowledge between all target classes. A basic but indirect example of knowledge
sharing between the target classes can be seen in methods based on fine-tuning the
pre-trained convolutional filters, where all target classes contribute to optimizing the
same filters. The same, however, does not happen when learning the class-specific
BN parameters independent of other classes.

To empower the knowledge sharing among target classes in our method, we pro-
pose to allow the target classes to jointly optimize the prior knowledge (pre-training
BN parameters) during knowledge propagation. Optimizing the prior knowledge
will enable the model to obtain a shared set of intermediate representations, which
are more suitable for all target classes. These shared representations–which we name
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FIGURE 2.3: The visualization of the proposed knowledge sharing and propagation. The
sharing takes place in obtaining the pseudo-classes, by updating the source.
The propagation step combines pseudo-classes to obtain the target. The
sharing and the propagation are performed jointly. The images are obtained
from our experiments (Please refer to Figs. 2.7 and 2.8).

pseudo-classes–then can be combined according to the similarity scores during the
knowledge propagation step. Mathematically, we rewrite the propagation equation
after knowledge sharing as:

γ
y′

l = [γ̂1
l , γ̂2

l , . . . , γ̂N
l ]Sy′

γl ,

β
y′

l = [β̂1
l , β̂2

l , . . . , β̂N
l ]S

y′

βl
,

y′ ∈ {N + 1, . . . , N + M}, l ∈ {1, . . . , l}.

(2.6)

where [γ̂y
l ] and [β̂

y
l ] are obtained by updating a copy of the source BN parameters,

forming the shared representations for layer l. It is important to note that the modified
BN parameters in eq. (2.6) are used only for learning the new classes. We do not
replace the original old BN parameters, as we want to preserve the old knowledge
during the transfer. This process does not further increase the number of parameters
for inference, since the updated parameters (and the similarity scores) are discarded
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after learning the target BN parameters. Fig. 2.3 visualizes the proposed approach
for knowledge sharing in conjunction with knowledge propagation.

2.4.3 Training with Residuals and Sparsity

For the purpose of generalizability, we also consider the classes that cannot be
represented well only by combining the shared intermediate representations. To
address this issue, we propose to add residual vectors ry′

γl and ry′

βl
to the scale and

shift parameters obtained from knowledge propagation, respectively. However, in
order to encourage the model to use the prior knowledge as much as possible, we
minimize the magnitude of the residual vectors using ℓ2 regularization. Moreover,
to encourage the new classes to learn from the most relevant prior knowledge, we
also add an ℓ1 sparsity regularization on the similarity scores.

In summary, we propose conditional GAN transfer from a pre-trained GAN to
multi-class target data via BN parameters of pre-training classes, which are linearly
combined to obtain the new classes’ representations. Moreover, we enable sharing
knowledge within the target classes by allowing them to update the prior knowledge
according to the needs of the target data. An overview of the complete proposed
method is illustrated in Fig. 2.4.
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The final loss function of our method follows eq. (2.7), where Lg is the adversarial
loss [15, 49, 88] used for training the GAN, Lr is an ℓ2 regularization over the
residuals, and Ls is an ℓ1 regularization over the similarity scores:

L = Lg + λrLr + λsLs,

= Lg + λr

L

∑
l=1

N+M

∑
y′=N+1

{||ry′
γl ||

2
2 + ||ry′

βl
||22}

+ λs

L

∑
l=1

N+M

∑
y′=N+1

{|Sy′
γl |+ |Sy′

βl
|},

(2.7)

where λr and λs are the hyper-parameters associated to residual and sparsity losses,
respectively.

2.5 E X P E R I M E N T S

In this section, we provide the details of our experiments, the evaluation of our
method (cGANTransfer), and its comparison with the baseline methods in two
different setups. Then, we provide further analysis of our contributions with an
ablation study and explanatory visualizations.

2.5.1 Experimental Setup

Datasets: To evaluate our method, we use two main experimental setups. In the first
setup, we pre-train the network on 80 randomly-selected classes of CIFAR100 [89].
The remaining classes are used as the target. To have a more thorough evaluation,
we evaluate our method on CIFAR100 with different numbers of target classes and
images per class. For the second setup, we consider the more challenging task of
extending a network pre-trained on ImageNet [65] to the Places365 dataset [90].
Following MineGAN [62], we select 5 classes (i.e., Alley, Arch, Art Gallery, Audi-
torium, Ballroom) and down-sample each class to 500 images. In addition, we use
AnimalFace dataset [86]–containing 20 classes–for further analysis and visualiza-
tions. We down-sample each class to contain a maximum of 100 images.
Architecture: For the cGAN architecture, we use BigGAN [18] with hinge loss, as
it is one of the most widely-used state-of-the-art cGANs. We use hierarchical noise
for training on ImageNet, but not for CIFAR100, following the experimental setup
of BigGAN [18].
Training: To conduct our experiments in the class extension setup, we freeze the
weights of the generator and learn only the parameters of our knowledge transfer
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Method/ Experiment 20/ 600 20/ 300 20/ 100 10/ 600 10/ 300 10/ 100 mFID

Scratch 25.35 47.20 81.90 52.23 62.17 83.68 58.76

TransferGAN 27.67 31.19 48.67 30.58 40.74 64.75 40.60

BSA - early 37.12 32.10 50.88 42.01 40.34 66.76 44.87

BSA - full 28.03 30.89 40.73 30.73 35.62 56.48 37.08

Ours 29.10 30.99 40.04 29.95 35.23 54.95 36.71

TABLE 2.1: Results of the evaluation and the comparison of the proposed method using
FID and KMMD scores for transferring 80 classes of CIFAR100 to 20 classes
or 10 classes. Different columns report the best FID scores in different cases.
The format A/B means using A classes and B images per class for the target.
BSA-early indicates the FID scores for BSA at the iteration where our method
achieves its best FID score.

block. We also find that, if the hierarchical noise is used (e.g. ImageNet setup), it
is also necessary to fine-tune the linear layers that project the noise into the BN
parameters’ space. The reason might be that these linear layers are optimized to add
the detailed style of the dataset to the generated images. Experiments on CIFAR100
are conducted using a single V100 GPU with a batch size of 50, and the experiments
on the second setup are performed using 8 V100 GPUs with a batch size of 256.

2.5.2 Comparison with the State-of-the-Art

To quantitatively evaluate our method, we use Fréchet Inception Distance (FID) [91].
We also provide the KMMD metric (Gaussian kernel with σ = 1) for ImageNet
setup, following BSA and MineGAN [62, 64]. We compare our method against
training from scratch (Scratch), TransferGAN [60], PPGN [85], MineGAN [62]
and BSA [64]. Among these methods, BSA is the only one that performs the class
extension. Therefore, we consider BSA as our main baseline.

Tab. 2.1 shows the results for evaluating our method on CIFAR100 and its com-
parison with the other methods. The experiments include two different numbers of
classes (20 and 10), and 3 different numbers of samples per class (600, 300, 100). As
can be seen, decreasing the number of training samples degrades the performance of
learning from scratch and TransferGAN significantly. On the other hand, BSA and
our method perform more robustly on small data. Compared to BSA, our method
achieves slightly better FID scores (possibly because of the less challenging task
on CIFAR) and a significantly better convergence speed (more than 4x speed-up on
average), as visualized in Fig. 2.5 (left). Our method enjoys such speed-up thanks
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FIGURE 2.5: The convergence comparison between BSA and ours on CIFAR (left) and
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each bar.

to the knowledge propagation through the class representations, as opposed to its
counterpart–BSA.

The superiority of our method becomes even more noticeable in the more chal-
lenging setup of transferring ImageNet to Places365. The classes of Places365 have
large intra-class diversity, and there is a considerable domain gap between the source
and target datasets. Therefore, the task becomes highly challenging when only 500
images per class are used. Tab. 2.2 presents the results for transferring ImageNet
to 5 classes of Places365. As can be seen, our method clearly outperforms the
other methods in terms of FID and KMMD. Fig. 2.5 (right) again shows that the
proposed method is more than 5x faster than BSA in terms of convergence speed.
The comparison between our method and BSA shows that knowledge transfer across
classes results in not only faster convergence but also a more accurate distribution
approximation of the target data. Fig. 2.6 depicts the visual results for our method
and the compared ones in ImageNet-to-Places365 setup.
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Experiment FID KMMD

Scratch* 190 0.96

TransferGAN* 89.2 0.53

PPGN* 139 0.56

MineGAN* 82.3 0.47

BSA 85.9 0.18

Ours 71.1 0.16

TABLE 2.2: Results of the evaluation and the comparison of the proposed method using
FID and KMMD scores for transferring ImageNet to 5 classes of Places365
with 500 samples per class. * adopted from [62].

2.5.3 Ablation Study

To show the effect of each component in our method, we perform the following
experiments on ImageNet-to-Places365 setup: Transferring from previous classes
without updating the prior knowledge or residual learning, transferring from up-
datable prior knowledge without residual learning, updatable prior with residuals,
sharing the combination weights between the layers, and the experiments on the
regularizations. Tab. 2.3 shows the results for the ablation study of our method
when transferring from ImageNet to Places. The ablation study shows that, all the
proposed components contribute meaningfully to the final model.

2.5.4 Fine-tuning

As mentioned in Sec. 2.5.1, we freeze the weights of the generator in our experiments.
This enables a parameter-efficient extension of the cGAN to target classes. However,
when parameter efficiency is not a constraint, fine-tuning the filters could further
improve the performance of the model, as shown in [62]. Therefore, we also provide
the results of further fine-tuning of our model after learning the target BN parameters
in Tab. 2.4. To fine-tune the model, we freeze the knowledge propagation parameters
(prior knowledge and similarity scores) and only fine-tune the residuals, as well as
the rest of the model. The results show the additional benefit of further fine-tuning
of our model.
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FIGURE 2.6: The visual comparison between our proposed method and baseline methods
on Places365. The first three competitors’ results are adopted from [62].

2.5.5 Analysis and Visualizations

To better understand the proposed method, we further analyze its main components
while transferring ImageNet to AnimalFace. The quantitative (FID, KMMD, and
convergence time) and qualitative results of class extension to AnimalFace, with
and without class knowledge propagation, are shown in Fig. 2.7. The results for
AnimalFace are consistent with the previous results provided in Sec. 2.5.2.
Knowledge sharing within target classes: An important component of our method
is knowledge sharing within the target classes. Fig. 2.8. shows the pseudo-classes
(intermediate representations) obtained by our method after training on the target
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Experiment Best FID Iterations

Freezed Prior, w/o Res 96.3 3000

Freezed Prior, with Res 79.4 1100

Tunable Prior, w/o Res 81.2 4000

Shared W, Tunable Prior, w/o Res 79.8 3400

Final architecture w/o reg 82.4 2400

Final architecture w/o l1 84.7 1600

Final architecture w/o l2 81.1 2100

Final architecture, with l1 & l2 71.1 900

TABLE 2.3: Ablation study over GAN transfer from ImageNet to Places365. Iterations:
iteration number for the best FID.

Dataset FID KMMD

Places365 65.48 0.156

AnimalFace 68.92 0.194

TABLE 2.4: The results of further fine-tuning of our model on Places365 and AnimalFace.

data. To visualize these representations, we directly sample the BN parameters from
the updated base representations, instead of combining them to obtain the new class
representations (refer to Fig. 2.3). As it can be seen, the initial class representations of
the ImageNet are transformed to some intermediate “pseudo-class" representations
that contain the shared structure of the target faces, but do not belong to a particular
target class. Thus, our method is able to obtain the representations of each new class
by combining these new pseudo-classes, which are learned using all of the target
classes.
Layer-specific knowledge transfer: Another key aspect of our method, as discussed
in Sec. 5.3 (refer to Fig. 2.2) and supported by the ablation study (Tab. 2.3), is that
the linear transfer weights are different for each layer. Fig. 2.9 visualizes the effect
of using different weights per layer. To obtain these visualizations, after training the
network on the target, we use the learned similarity scores of the first layer for all
the layers. Then, we gradually introduce the learned scores of the next layers. From
the results, we see that the first layers are mostly responsible for the general object
shape, and the later layers introduce color and finer details.
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Experiment FID KMMD Iters Time (Mins)

BSA 91.9 0.25 4800 650

Ours 85.9 0.23 1400 235

B
SA
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FIGURE 2.7: Quantitative (top) and qualitative (bottom) results of transferring ImageNet
to 20 classes of AnimalFace without (BSA) and with (Ours) cross-class
knowledge propagation. Iters: training iteration number for the best FID.

FIGURE 2.8: Knowledge sharing. The intermediate shared representations learned for
AnimalFace as the target data.
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FIGURE 2.9: Layer-wise knowledge transfer. Different layers introduce different infor-
mation to the generated images. The shape is mostly changed by the starting
layers, while colors and finer details are added by the later layers.

2.6 C O N C L U S I O N A N D F U T U R E W O R K

In this chapter, we explored the problem of conditional GAN transfer by transferring
the knowledge across both source and target classes. We represented the knowledge
of individual classes by their respective batch normalization parameters, which
are used for conditioning during the generation. To propagate the knowledge to
new classes, we introduced a method that learns to update and combine the batch
normalization parameters of the source classes. The evaluations on three standard
benchmarks demonstrate a clear advantage of our method, both in terms of training
efficiency and the image generation quality (measured by FID and KMMD), com-
pared to the state-of-the-art methods. Our ablation study highlighted the importance
of jointly using the update and combination steps, which we referred to as sharing
and propagation, respectively.

We believe our study can be followed by several interesting future works, such as
further knowledge propagation on the discriminator, its integration with differen-
tiable augmentation [25, 87], and the extension to lifelong learning.
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Class-conditioning offers a direct means to control a Generative Adversarial Network
(GAN) based on a discrete input variable. While necessary in many applications, the
additional information provided by the class labels could even be expected to benefit
the training of the GAN itself. On the contrary, we observe that class-conditioning
causes mode collapse in limited data settings, where unconditional learning leads to
satisfactory generative ability. Motivated by this observation, we propose a training
strategy for class-conditional GANs (cGANs) that effectively prevents the observed
mode-collapse by leveraging unconditional learning. Our training strategy starts with
an unconditional GAN and gradually injects the class conditioning into the generator
and the objective function. The proposed method for training cGANs with limited
data results not only in stable training but also in generating high-quality images,
thanks to the early-stage exploitation of the shared information across classes. We
analyze the observed mode collapse problem in comprehensive experiments on four
datasets. Our approach demonstrates outstanding results compared with state-of-the-
art methods and established baselines.

3.1 I N T RO D U C T I O N

Since the introduction of generative adversarial networks (GANs) [15], there has
been substantial progress in realistic image and video generation. The generated
contents are often controlled by conditioning the process by means of conditional
GANs [92]. In practice, conditional GANs are of high interest, as they can generate
and control a variety of outputs using a single model. Some example applications
of conditional GANs include class-conditioned generation [18], image manipula-
tion [93], image-to-image translation [22], and text-to-image generation [94].

Despite the remarkable success, training conditional GANs requires large training
data, including conditioning labels, for realistic generation and stable training [95].
Collecting large enough data is challenging in many frequent scenarios, due to the
privacy, quality, and diversity required, among other reasons. This difficulty is often
worsened further for datasets for conditional training, where also labels need to be
collected. The case of fine-grained conditioning adds an additional challenge for
data collection, since the availability of the data samples and their variability are
expected to deteriorate with the increasingly fine-grained details [96].

25
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While training GANs with limited data has recently received some attention [25,
60, 95], the influence of conditioning in this setting remains unexplored. Compared to
the unconditional case, the conditional information provides additional supervision
and input to the generator. Intuitively, this additional information could guide the
generation process better and ensure the success of conditional GANs whenever
its unconditional counterpart succeeds. In fact, one may even argue the additional
supervision by conditioning could alleviate the problem of limited data, to an
extent. Surprisingly, however, we observe the opposite in our experiments for class-
conditional GANs. As visualized in Fig. 3.1, the class-conditional GAN trained on
limited data suffers from severe mode collapse. Its unconditional counterpart, on
the other hand, trained on the same data, is able to generate diverse images of high
fidelity with a stable training process. To our knowledge, these counter-intuitive
observations of class-conditional GANs have not been observed or reported before.

In this paper, we first study the behavior of a state-of-the-art class-conditional
GAN, by varying the number of classes and image samples per class, and contrast
it to the unconditional case. Our study in the limited data regime reveals that
the unconditional GANs compare favorably with conditional ones in terms of the
generation quality. We, however, are interested in the conditional case, so as to be
able to control the image generation process using a single generative model. In this
work, we set out to mitigate the aforementioned mode collapse problem.

Motivated by our empirical observations, we propose a method for training class-
conditional GANs that leverages the stable training of the unconditional GANs.
During the training process, we integrate a gradual transition from unconditional
to conditional generative learning. The early stage of the proposed training method
favors the unconditional objective for the sake of stability, whereas the later stage
favors the conditional objective for the desired control over the output by condi-
tioning. Our transitional training procedure only requires minimal changes in the
architecture of the existing state-of-the-art GAN model.

We demonstrate the advantage of the proposed method over the existing ones, by
evaluating our method on four benchmark datasets under the limited data setup. The
major contributions of this study are summarized as follows:

• We identify and characterize the problem of conditioning-induced mode
collapse when training class-conditional GANs under limited data setups.

• We propose a training method for class-conditional GANs that exploits the
training stability of unconditional GANs to mitigate the observed conditioning
collapse.

• The effectiveness of the proposed method is demonstrated on four benchmark
datasets. The method is shown to significantly outperform the state-of-the-art
and the compared baselines.
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FIGURE 3.1: FID curves (first row) and sample images for training StyleGAN2+ADA un-
conditionally (second row), conditionally (third row), and using our method
(fourth row) on four datasets under the limited-data setup (from left to right:
ImageNet Carnivores, Food101, CUB-200-2011, and AnimalFace). The ver-
tical axis of FID plots is in log scale for better visualization.
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(a) (b)

FIGURE 3.2: The FID scores for different experiments on ImageNet Carnivores using
unconditional, conditional, and our proposed training of StyleGAN2+ADA
by varying (a) the number of classes (number of samples per class is fixed at
100) and (b) the number of images per class (the number of classes is fixed
at 50). The total number of images for the experiments is shown on the data
points. The horizontal axis in (b) is in log scale for better visualization.

3.2 C L A S S - C O N D I T I O N I N G M O D E C O L L A P S E

Training conditional image generation networks is becoming an increasingly im-
portant task. The ability to control the generator is a fundamental feature in many
applications. However, even in the context of unconditional GANs, previous stud-
ies suggest that class information as extra supervision can be used to improve the
generated image quality [97–99]. This, in turn, may set an expectation that the
extra supervision by conditioning must not lead to the mode collapse of cGANs in
setups where the unconditional GANs succeed. Furthermore, one may also expect
to resolve the issue of training cGANs on limited data, to an extent, due to the
availability of the additional conditional labels.

As the first part of our study, we investigate the effect of class conditioning
on GANs under the limited data setup. We base our experiments on StyleGAN2
with adaptive data augmentation (ADA), which is a recent state-of-the-art method
for unconditional and class-conditional image generation under limited-data setup
[25]1. Both unconditional and conditional versions of StyleGAN2 are trained on
four benchmark datasets (more details in Sec. 3.4.1), with the setup of this paper.
The selected datasets are somewhat fine-grained, where the problem of limited
data, concerning their availability and labeling difficulty, is often expected to be
encountered.

1 We originally also considered BigGAN [18] as another baseline. However, we found it to struggle with
limited data in both unconditional and conditional settings.
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In Fig. 3.1, we analyze the training of conditional and unconditional GANs by
plotting the Fréchet inception distance (FID) [91] during training. The analysis is
performed on four different datasets, each containing between 1170 and 2410 images
for training. Contrary to our initial expectation, the conditional version consistently
yields worse FID compared to the unconditional one during the training. To analyze
the cause, we visualize samples from the best model attained during training, in
terms of FID, in Fig. 3.1. For each dataset, the unconditional model learns to generate
diverse and realistic images, while lacking the ability to perform class-conditional
generation. On the other hand, the conditional model suffers from severe mode
collapse. Specifically, the intra-class variations are very small and mainly limited to
color changes, while retaining the same structure and pose. Moreover, the images
lack realism and contain pronounced artifacts.

Next, we further characterize the mode collapse problem observed in Fig. 3.1 by
analyzing its dependence on the size of the training dataset. To this end, we employ
the ImageNet Carnivores dataset [100], which includes a larger number of classes
and images. We perform the analysis by gradually reducing the size of the training
set in two ways. In Fig. 3.2a, we reduce the number of classes while having 100
training images in each class. In Fig. 3.2b, we reduce the number of images per class
while using 50 classes in all cases. In both cases, the conditional GAN achieves
a better FID for larger datasets, here above 5k images. This observation is in line
with previous work [97–99]. However, when reducing the data size, the order is
inverted. Instead, the unconditional model achieves consistently better FID, while
the conditional model degrades rapidly.

Inspired by these observations, we set out to design a training strategy for class-
conditional GANs that eliminates the mode collapse induced by the conditioning.
As visualized in Fig. 3.1, our proposed approach, presented next, achieves stable
training, leading to low FID. The images generated from our model exhibit natural
intra-class variations with substantial changes in pose, appearance, and color. Fur-
thermore, our training strategy outperforms both the conditional and unconditional
models in terms of FID in a wide range of dataset sizes, as shown in Fig. 3.2.

3.3 M E T H O D

3.3.1 From Unconditional to Conditional GANs

As the analysis in Sec. 3.2 reveals, class-conditional GAN training leads to mode
collapse when training data is limited, while the unconditional counterpart achieves
good performance for the same number of training samples. This discovery motivates
us to design an approach capable of leveraging the advantages of unconditional
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FIGURE 3.3: The proposed modified training objective and architecture of StyleGAN2
allows for transitioning from the unconditional to the conditional model
during the training.

training in order to prevent mode-collapse in class-conditional GANs. Our initial
inspections of the generated images during conditional training indicate that the
mode collapse appears from the very early stages of the training. On the contrary, the
corresponding unconditional GAN learns to generate diverse images with gradually
improved photo-realism during training. In order to avoid mode-collapse, we aim to
exploit unconditional learning at the beginning of the training process. Unconditional
training in the early stages allows the GAN model to learn the distribution of the
real images without the complications caused by conditioning. We then introduce
the conditioning in the later stages of the training. This allows the network to adapt
to conditional generation in a more stable way by exploiting the partially learned
data distribution.

In general, we control the transition from unconditional training to conditional
training using a transition function λt ≥ 0. The subscript t denotes the iteration
number during training. Specifically, λt = 0 implies a purely unconditional learn-
ing, i.e. the conditional information does not affect the generator or discriminator
networks. Our goal is to design a training strategy capable of gradually incorporating
conditioning during training by increasing the value of λt. While any monotonically
increasing function λt may be chosen, we only consider a simple linear transition
from 0 to 1 as,

λt = min
(

max
(

t − Ts

Te − Ts
, 0
)

, 1
)

. (3.1)

Here, Ts and Te respectively denote the time steps, at which the transition starts and
ends. More details on the proposed transition function are provided in appendix B.1.
We achieve the desired transition during training by introducing a method for
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controlling the behavior of the generator and the discriminator using the function λt.
An overview of our approach, detailed in the next sections, is illustrated in Fig. 3.3.

3.3.2 Transition in the Generator

The generator G(z) of a GAN is trained to map the latent vector z, drawn from
a prior distribution p(z), to a generated image Ig = G(z) belonging to the distri-
bution of the training data. A conditional generator G(z, c) additionally receives
the conditioning variable c as input, aiming to learn the image distribution of the
training data conditioned on c.

The transition from an unconditional G(z) to a conditional G(z, c) generator
seemingly requires a discrete architectural change during the training process. We
circumvent this by additionally conditioning our generator on the transition function
λt as G(z, c, λt). More specifically, we gradually incorporate conditional informa-
tion during training by using a generator of the form,

G(z, c, λt) = G(S(z) + λt · E(c)) . (3.2)

Here, S and E are neural network modules that transform the latent and condition
vectors, respectively. In case of λt = 0, the conditional information is masked out,
leading to a purely unconditional generator G(S(z)). During the transition step
Ts < t < Te, the importance of the conditional information is gradually increased
during training.

To construct the generator in eq. (3.2), we perform a minimal modification to the
original class-conditional StyleGAN2 [32], where the generator consists of a style-
mapping network and an image synthesis network. The style-mapping network maps
the input latent vector z and the embedding of the condition c to the intermediate
representation w, known as style code. The image synthesis network then generates
images from the style codes. As illustrated in Fig. 3.3, we modify the conditioning
in the generator by feeding the class embeddings to a fully-connected layer, which
is then weighted by λt before adding to the output of the style-mapping network’s
first layer.

3.3.3 Transition in the training objective

The unconditional and conditional GAN frameworks also differ in their training
objectives. The latter’s objective assesses the realism of an image based on its condi-
tioning variable. We propose using both unconditional and conditional objectives
and follow the same transition as in the generator. Our proposed loss function in-
cludes the unconditional objective during the whole training. The conditional term,
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on the other hand, is weighted by the transition function λt. Our total objective is
thus given by,

LD = LD
uc + λt · LD

c ,

LG = LG
uc + λt · LG

c .
(3.3)

Here, LD
uc, LD

c , and LD are the unconditional, conditional, and proposed losses for the
discriminator, respectively. Similarly, LG

uc, LG
c , and LG represent the unconditional,

conditional, and proposed losses for the generator.
As the discriminator is responsible to predict the scores needed for calculating

the loss, the proposed training objective also requires modifying the discriminator’s
architecture. In this regard, the necessary modification must provide both conditional
and unconditional scores. We propose using two prediction branches, separately
dedicated to conditional and unconditional cases, in the last layer of the discriminator,
as shown in Fig. 3.3.

The proposed training objective and discriminator for StyleGAN2 are also visual-
ized in Fig. 3.3. In the discriminator of StyleGAN2, conditioning is performed by
matching the features of the input images with the target class embedding. In other
words, the conditional discriminator assigns scores to the input images by calculating
the dot-product between the features of the input images and the embedding of the
target class c. The proposed discriminator architecture bears some resemblance to
the architecture of projection discriminators [101]. In contrast to our approach, the
projection discriminator aggregates the unconditional and conditional scores inside
the discriminator before the loss function. Additionally, the projection discriminator
does not perform any transition between the two scores.

3.4 E X P E R I M E N T S

In this section, we first provide the details of our experimental setup. Then, we
present the quantitative and qualitative results of the proposed method, as well as the
comparison with existing methods. Finally, we provide more ablation and analysis
of different components of our method.

3.4.1 Experiment Setup

Datasets: We use four datasets to evaluate our method: ImageNet Carnivores [100],
CUB-200-2011 [102], Food101 [103], and AnimalFace [86]. To keep our experi-
ments in the limited-data regime, we decrease the number of classes and images per
class in some of these datasets using random sampling.
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• ImageNet Carnivores is a subset of the ImageNet dataset [65], which contains
149 classes of carnivore animals. The images are further processed to only
contain the animal faces. We use a subset of the dataset with 20 classes and
100 images per class.

• Food101 contains 101 food categories, having a total amount of 101k images.
We use a subset of the dataset with 20 classes and 100 images per class.

• CUB-200-2011 contains 200 categories of different bird species with around
60 images per class. We use a subset of this dataset containing 20 classes with
all the images in each class.

• AnimalFace, similar to ImageNet Carnivores, is a dataset that contains images
of animal faces. However, the animals in AnimalFace are not limited to
carnivores. AnimalFace contains 20 classes with 2432 images in total. Since
AnimalFace is already a small dataset, we do not further reduce its size.

Implementation details: We base our method on the official PyTorch implementa-
tion of StyleGAN2+ADA. The hyper-parameter selection for the base unconditional
and conditional StyleGAN2 is performed automatically as provided in the official
implementation. Training is done with a batch size of 64 using 4 GPUs. For the
transition function, we use Ts = 2k and Te = 4k in all experiments.

Evaluation Metrics: We evaluate our method using Fréchet inception distance
(FID), as the most commonly-used metric for measuring the similarity between the
distribution of real and generated images. As FID can be biased when real data is
small [25], we also include kernel inception distance (KID) [104] as a metric that is
unbiased by design.

3.4.2 Results and Comparisons

To assess the efficacy of the proposed method, we provide a quantitative comparison
with the well-established baselines and existing methods:

• BigGAN+ADA [18]: Achieving outstanding results on ImageNet, BigGAN
has been widely used for class-conditional image generation (more details in
Sec. 3.5). We use the implementation with ADA provided by [105].

• ContraGAN+ADA [105]: A class-conditional model based on BigGAN that
outperforms BigGAN in many setups using self-supervision in the discrimina-
tor (more details in Sec. 3.5).

• U-StyleGAN+ADA: Unconditional training of StyleGAN2+ADA using the
original unconditional architecture.



34 T R A N S I T I O N A L C O N D I T I O N I N G I N G A N S

• C-StyleGAN+ADA: Conditional training of StyleGAN2+ADA using the origi-
nal conditional architecture.

• C-StyleGAN+ADA+projD: The modified version of conditional StyleGAN2
with ADA by replacing its discriminator with the projection discrimina-
tor [101].

• C-StyleGAN+ADA+Lecam: Regularizing C-StyleGAN2+ADA using Lecam
regularizer, recently proposed by [95] for limited-data setup (more details
in Sec. 3.5). The authors have suggested a hyper-parameter in the range of
[0.1, 0.5]. As we did not observe a noticeable difference between different
values in the suggested range, we always set the hyper-parameter to 0.3.

Results are reported in Tab. 3.1. BigGAN and ContraGAN, even though coupled
with ADA, struggle to achieve any good generation quality in our experiments.
Conditional StyleGAN2 shows better results on three of the datasets compared to
that of the other two conditional competitors. However, the FID and KID scores
are still very high. As discussed before, C-StyleGAN is consistently outperformed
by its unconditional counterpart. Replacing StyleGAN2’s discriminator with the
projection discriminator does not yield a noticeable advantage over the original
architecture, as it brings improvements on two of the datasets, but degrades the
performance on the other two. Adding Lecam regularization to the C-StyleGAN2
shows promising results, achieving good FID and KID scores on Food101 and
AnimalFace. However, it still fails to achieve as good generation quality as the
unconditional StyleGAN2. The FID and KID scores for our proposed method
indicate a significant and consistent advantage over all the compared methods in all
four datasets. Our method is able to maintain a stable training and achieve better
generation quality than both unconditional and conditional StyleGAN2.

Method Carnivores Food101 CUB-200-2011 AnimalFace
FID KID FID KID FID KID FID KID

BigGAN+ADA 97 0.0665 111 0.0794 136 0.0860 90 0.0587

ContraGAN+ADA 97 0.0629 124 0.0961 137 0.0934 89 0.645

UC-StyleGAN2+ADA 23 0.0093 24 0.0071 27 0.0059 20 0.0048

C-StyleGAN2+ADA 100 0.0493 42 0.0135 55 0.0197 61 0.0107

C-StyleGAN2+ADA+ProjD 103 0.0503 32 0.0108 54 0.0182 71 0.0186

C-StyleGAN2+ADA+Lecam 62 0.0211 27 0.0086 37 0.0179 26 0.0042

Ours 14 0.0021 20 0.0045 22 0.0032 16 0.0018

TABLE 3.1: Comparison of the proposed method with baselines and existing methods on
four datasets in terms of FID and KID metrics.
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The FID curves during training along with the generated examples using the
proposed method are visualized in Fig. 3.1. FID curves indicate training dynamics
as stable as the unconditional training while achieving better FID. In addition, the
generated images of our method are clearly of more diversity and quality compared
to those of the standard conditional model, showing the advantage of the proposed
method. The results in Fig. 3.2 further demonstrate a clear advantage of our method
over a wide range of data sizes. Our approach maintains the performance of cGANs
for larger datasets, while significantly outperforming the unconditional counterpart
when data is more scarce. This shows that our method enables cGANs to use the
additional label information to achieve better generation quality without falling into
the mode collapse induced by conditioning.

3.4.3 Ablation and Analysis

In this section, we provide further ablation and analysis over different components
of our method. First, we provide an ablation study containing four different variants:

• No transition: Training the modified architecture with the new objective,
without any transition in the objective or the generator (equivalent to using an
auxiliary unconditional loss term to train a conditional model).

• Transition only in G: Performing the transition only in the generator (Sec. 3.3.2),
while the training objective is the summation of the unconditional and condi-
tional term.

• Transition only in loss: Performing the transition only in the training objective
(Sec. 3.3.3), while the generator is fully conditional from the beginning.

• Final method: The final method with all the proposed components.

Tab. 3.2 presents the results of the ablation study on Food101 and ImageNet
Carnivores. The No transition version yields poor results, showing that the mode
collapse is not alleviated by only adding an auxiliary unconditional training objective.
Adding the transition to the generator already brings significant improvement to the
model. Having the transition only in the objective, on the other, does not lead to
good results. To our initial surprise, this reveals that transitioning in the generator is
a crucial part of the method. However, transitioning in the objective in addition to
that in the generator, as proposed in our final method, achieves the best results.

Next, we analyze the impact of when the transition between unconditional and
conditional learning is applied. The total transition time is fixed to Te − Ts = 2k time
steps. We then report the results for the Food101 and ImageNet Carnivores datasets
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Food101 ImageNet Carniv.
Experiment FID KID FID KID

No transition 79 0.0300 110 0.0436

Transition only in G 25 0.0064 17 0.0019
Transition only in loss 80 0.0297 107 0.0539

Final method 20 0.0045 14 0.0021

TABLE 3.2: Ablation study over different components of the proposed method, including
the proposed architecture and objectives, as well as the transition in the
generator and in the objective.

Food101 ImageNet Carnivores
Experiment FID KID FID KID

Ts = 0 24 0.0068 27 0.0075

Ts = 1k 22 0.0057 15 0.0023

Ts = 2k 20 0.0045 14 0.0021

Ts = 4k 21 0.0056 14 0.0021

Ts = 6k 23 0.0056 15 0.0028

TABLE 3.3: Analyzing the importance of the transition starting time (Ts). The transition
period is constant at 2k for all the experiments.

for different starting times Ts in Tab. 3.3. Importantly, we notice significantly worse
results if the transition is started at the beginning of the training Ts = 0. This further
supports the hypothesis that conditioning leads to mode collapse in the early stages
of the training. By introducing conditional information in a later stage, good FID
and KID numbers are obtained without being sensitive to the specific choice of
Ts. In Tab. 3.4, we further independently analyze the transition end time Te, while
keeping Ts = 2k fixed. Again, our approach is not sensitive to its value. Our method,
therefore, does not require extensive hyper-parameter tuning.

Lastly, we visualize the evolution of the generated images and the formation of
classes during training. Fig. 3.4 shows how images generated from the unconditional
phase of training on AnimalFace start to evolve into different images of the class
Panda. In addition to the formation of the classes, Fig. 3.4 shows how the image
quality continues to improve during and after the transition. In appendix B, more
ablation studies (appendices B.6 and B.7), as well as images generated with our
method (appendix B.8) are provided for further assessment of the proposed method.
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t = 1814 t = 2016 t = 2217 t = 2419 t = 3024 t = 4032 t = 6049

FIGURE 3.4: Visualization of the formation of the class “Panda" in AnimalFace during the
transition from unconditional to conditional training. The transition starts at
t = 2k.

3.5 R E L AT E D W O R K

Class-conditional GANs: The first conditional GAN architecture, introduced
by [92], incorporated conditioning by concatenating the condition variable to the
input of the generator and the discriminator. AC-GAN [106] equipped the discrim-
inator with an auxiliary classification task to ensure the conditional generation.
cGAN with projection discriminator [101] proposed a new discriminator architec-
ture, ensuring the class conditioning by computing the dot-product between image
features and class embeddings. Improving over cGAN with projection discrimi-
nator, BigGAN [18] was able to become the state-of-the-art cGAN on ImageNet
dataset [65]. Inspired by the recent progress in self-supervised learning, Contra-
GAN [105] improved over BigGAN by exploiting an auxiliary self-supervised task
in the discriminator for better image representation learning. StyleGAN [19], mainly
known for unconditional image generation, was extended to class conditioning in the
improved version, and coupled with adaptive differentiable augmentation (ADA),
outperformed the state-of-the-art cGANs in the small data setup [25].

cGANs in small data regimes: There exist several directions to address the
problem of training GANs on small data. Transfer learning (TL) exploits large pre-
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Food101 ImageNet Carnivores
Experiment FID KID FID KID

Te = 3k 21 0.0053 16 0.0032

Te = 4k 20 0.0045 14 0.0021

Te = 5k 23 0.0062 15 0.0029

TABLE 3.4: Analyzing the importance of the transition ending time (Te). The starting time
(Ts) is constant at 2k for all the experiments.

training data to provide better initialization for learning the target data. Several works
recently have studied the best practices for TL in GANs [60–64]. As an example,
cGANTransfer [107] proposed class-specific knowledge transfer in class-conditional
GANs by learning the target class embeddings as a linear combination of the ones in
the pre-trained model. Although effective, TL usually requires large pre-training data
with sufficient domain relevance to the target. Data augmentation (DA) is another
technique for addressing small data. To prevent DA from leaking to the generated
images, recent works proposed differentiable DA [25, 87]. Adding adaptive differ-
entiable augmentation (ADA) to StyleGAN2 resulted in a significant improvement
in conditional generation from small datasets, outperforming previous models on
CIFAR10 [25]. In addition to the aforementioned methods, there are other studies
focusing on better architecture or objective design for small data regimes. [108]
proposed a lighter unconditional architecture and a self-supervised discriminator
for StyleGAN. [95] proposed the Lecam regularization to prevent the discriminator
from over-fitting on small data by penalizing the current difference between real and
fake predictions from previous fake and real predictions, respectively.

Conditioning collapse in GANs: Previous studies have reported a decrease in
diversity in tasks with strong pixel-level conditioning, such as semantic masks or
images (e.g. super-resolution) [20, 109–111]. Such lack of diversity is generally
considered to be due to the conflict between the adversarial and reconstruction
losses common in image-conditional GANs. The same effect, however, is not only
unexplored for the class-conditional setting but also does not directly translate to
this setup. In this work, we discover the conditioning collapse for class-conditional
GANs to occur when training data is small (Fig. 3.2).
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3.6 C O N C L U S I O N S

In this chapter, we studied the problem of training class-conditional generative
adversarial networks with limited data. Our empirical study demonstrated that
class-conditioning can lead the training of GANs to mode collapse within the
investigated setup. To prevent such collapse, we presented a method of injecting the
class conditioning by transitioning from unconditional to the conditional setting, in
an incremental manner. To enable such transition, we have proposed architectural
modifications and training objectives, which can be easily adapted by any existing
GAN model. The proposed method achieves outstanding results compared to the
state-of-the-art methods and established baselines, for the limited data setup across
four benchmark datasets. In the future, we will study our method for other types of
conditioning (e. g., semantics and images), as well as other architectures.





4
E F F I C I E N T 3 D - AWA R E G E N E R AT I O N W I T H
C O N V O L U T I O N S

Pose-conditioned convolutional generative models struggle with high-quality 3D-
consistent image generation from single-view datasets, due to their lack of sufficient
3D priors. Recently, the integration of Neural Radiance Fields (NeRFs) and gener-
ative models, such as Generative Adversarial Networks (GANs), has transformed
3D-aware generation from single-view images. NeRF-GANs exploit the strong
inductive bias of neural 3D representations and volumetric rendering at the cost of
higher computational complexity. This chapter aims at revisiting pose-conditioned
2D GANs for efficient 3D-aware generation at inference time by distilling 3D knowl-
edge from pretrained NeRF-GANs. We propose a simple and effective method,
based on re-using the well-disentangled latent space of a pre-trained NeRF-GAN
in a pose-conditioned convolutional network to directly generate 3D-consistent
images corresponding to the underlying 3D representations. Experiments on several
datasets demonstrate that the proposed method obtains results comparable with
volumetric rendering in terms of quality and 3D consistency while benefiting from
the computational advantage of convolutional networks.

4.1 I N T RO D U C T I O N

Generative Adversarial Networks (GANs) [15] have made outstanding progress in
photorealistic image generation and manipulation in many applications [18, 20, 21,
32, 112–115]. Recently, there has been an increasing interest in extending GANs to
3D-aware generation from single-view image datasets, with the goal of providing
disentangled control over the content and the viewpoint of the generated images.

Image GAN models have been historically based on convolutional architectures,
enabling efficient training and generation for 2D tasks. However, pose-conditioned
convolutional GANs (pcGANs) struggle with 3D-consistent image generation due
to their lack of sufficient 3D priors [116]. Therefore, some studies have previously
attempted to disentangle the pose from the content in pcGANs using explicit 3D
supervision [117–119], which, however, is not readily available for most datasets. As
a result, later methods moved away from fully convolutional GANs by incorporating
3D inductive biases in the architecture and training pipeline, such as 3D neural
representations and differentiable rendering methods [116, 120–122].

41
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The advent of Neural Radiance Fields (NeRFs) [123] has recently transformed the
neural 3D representation and the task of novel-view synthesis [124–130]. For this
reason, NeRFs have been successfully integrated with GANs to achieve promising
results in 3D-aware generation [131–137]. NeRF-GANs, in their general form,
map a latent space to a 3D representation of objects and generate images from
queried viewpoints using volumetric rendering. However, volumetric rendering is
computationally demanding due to its ray-casting process, making high-resolution
generation both slow and memory-intensive. Recent works have proposed different
approaches to improve the computational efficiency of NeRF-GANs using more
efficient 3D representations [132, 136, 137] and training protocols [132, 133].
Nevertheless, volumetric rendering remains an integral part of these models.

In recent NeRF-GANs [132, 133, 136, 137], convolutional networks have been
reintroduced in the generator architecture as super-resolution networks or as 3D-
representation generators, in order to scale up NeRF-GANs for high-resolution
generation. In this study, we take a different approach to integrating NeRF-GANs
and convolutional GANs for 3D-aware generation from single-view image datasets.
In particular, we investigate the capacity of convolutional generators to achieve
3D-consistent rendering with explicit pose control when learning from a pre-trained
NeRF-GAN without any additional explicit 3D supervision. A convolutional genera-
tor that fairly preserves the 3D consistency, image quality, and the correspondence
between the generated images and the underlying 3D representation can be used for
efficient multi-view inference in setups where volumetric rendering is not affordable,
such as in mobile applications. However, balancing and minimizing the trade-off
between efficiency and 3D consistency is a highly challenging task, which we set
out to explore in this work.

We propose a simple but effective method for distilling a pre-trained NeRF-GAN
into a pose-conditioned fully convolutional generator. The main component of our
approach is based on exploiting the well-disentangled intermediate latent space of the
NeRF-GAN in the convolutional generator. In particular, our convolutional generator
learns to map each latent code from the 3D generator, along with the target viewpoint,
to the corresponding obtained images by explicit volumetric rendering. By doing so,
we aim to distill the NeRF-GAN’s underlying 3D knowledge into the convolutional
generator, as well as to establish a correspondence between the images of the
generator and the 3D representation of the NeRF-GAN. As demonstrated in Fig. 4.1,
our experiments on three different datasets indicate that the convolutional generator
trained with our method achieves comparable results to volumetric rendering in
terms of image quality and 3D-consistency, while benefiting from the superior
efficiency of convolutional networks.
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Volumetric Rendering (EG3D)

Our Convolutional Rendering

Batch Size

Batch Size

FIGURE 4.1: Top: Views of the same subject cat generated by a volumetric rendering
generator (EG3D) and by our convolutional generator. Bottom: Comparison
of the inference memory consumption and speed (on a fixed GPU budget)
for the two methods.
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Our contributions are summarized as follows:

• We propose a method to distill NeRF-GANs into convolutional generators for
efficient 3D-aware inference.

• We provide a simple and effective method to condition the convolutional
generator on the well-disentangled intermediate latent space of the NeRF-
GAN.

• Through experiments on three different datasets, we show that the generator
trained by our distillation method significantly preserves the 3D consistency,
image quality, and semantics of the pre-trained NeRF-GAN.

4.2 R E L AT E D W O R K

3D-Aware Generation from Single-View Images: Prior works have attempted to
create 3D awareness in 2D GANs using explicit 3D supervision, such as 3D mod-
els [117, 119], pose and landmark annotations [138, 139], and synthetic data [118].
In many applications, obtaining such 3D supervision is not practical. As a result,
later works aimed at unsupervised methods by introducing 3D inductive biases
in GANs, including 3D neural representations and differentiable rendering [116,
120–122]. These methods, although promising, lag far behind 2D GANs in terms
of image quality or struggle with high-resolution generation due to the additional
computational complexity.
NeRF-GANs: NeRFs have shown outstanding potential in compactly representing
3D scenes for novel view synthesis. GRAF [131] and Pi-GAN [132] are the first
works to integrate NeRFs and GANs. While achieving highly consistent 3D-aware
generation, the computational restrictions of the NeRF framework make these meth-
ods impractical for high-resolution generation or environments with constrained
resources. In order to extend NeRF-GANs to higher resolutions, convolutional super-
resolution networks were used in later studies [133, 134, 136], at the expense of
some multi-view inconsistencies. EpiGRAF [135], in contrast, adopts an efficient
multi-scale patch training protocol, but still requires full high-resolution volumet-
ric rendering for inference, which makes it comparatively more computationally
demanding than competitors.

Other studies aim at bringing the recent advances in the efficiency of NeRFs
to NeRF-GANs. Although there exist numerous works on efficient 3D representa-
tions [126, 140–144] and volumetric sampling [145–149] in NeRFs, only a subset of
them [34, 137, 150] have been successfully applied to NeRF-GANs. This is because
they are mainly designed for the single-scene setup, making their adaptation to
the generative setup not trivial. The use of sparse voxel grids in VoxGRAF [137]
and multi-plane image representations in [150] result in efficient and 3D-consistent
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generation while compromising the image quality and the 3D geometry. EG3D [34]
proposes using tri-planes to represent the geometry of the generated objects. Exploit-
ing tri-planes, coupled with carefully designed techniques to enforce 3D consistency,
allows EG3D to significantly improve both computational efficiency and image
quality. Live 3D Portrait [151] is a concurrent work based on EG3D that aims at
real-time one-shot reconstruction of faces by estimating the canonical tri-planes
of a pre-trained EG3D. However, Live 3D Portrait is computationally limited by
the underlying volumetric rendering of EG3D. Most similar to our study, SURF-
GAN [152] aims to discover directions for pose control in a pre-trained 2D GAN
by generating multi-view images using a pre-trained NeRF-GAN. However, using
NeRF-GANs only as multi-view supervision does not fully exploit their underlying
3D knowledge. Moreover, the 2D generator obtained using this method does not
preserve any correspondence between the NeRF-GAN’s 3D representation and the
generated images. Different from SURF-GAN, we exploit the intermediate latent
space of pre-trained NeRF-GANs to distill 3D knowledge into a 2D generator. This
approach establishes a correspondence between the convolutional generator and the
NeRF-GAN’s 3D representation.

4.3 M E T H O D

In this section, we first provide a brief overview of the formulation of NeRF-GANs
and then explain our proposed formulation in detail.

4.3.1 Preliminaries

The general formulation of NeRF-GANs consists of a 3D-representation generator
G3D(z), which maps a latent variable z (usually drawn from a normal distribution)
to a 3D representation of an object. Then, in order to render an image Iz,c from the
target viewpoint (camera parameters) c ∈ R25, volumetric rendering is applied to
the generated 3D representation. We base our method on EG3D [34], as it provides
a strong trade-off in image quality, 3D consistency, and efficiency among recent
NeRF-GANs.

EG3D represents 3D scenes using tri-planes, which are three axis-aligned orthog-
onal feature planes, each with a size of N × N × C, where N is spatial resolution
and C is the number of channels. To represent a 3D position x ∈ R3, x is projected
onto each of the three feature planes, retrieving the corresponding feature vector
(Fxy, Fxz, Fyz) via bilinear interpolation, and aggregating the three feature vectors
via summation. To obtain the color and density at position x, a lightweight MLP
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decodes the feature vector obtained for the queried position to a density and color
value.

The tri-plane generator G3D(z, c) in EG3D consists of a mapping network
M3D(z, c), which maps the input latent code and the target viewpoint to an in-
termediate latent variable w, namely the style code. The style code then is used to
modulate a convolutional synthesis network S3D(w) to generate the tri-planes I3p

z,c.
In order to render an image Iz,c from the target viewpoint c, hierarchical volumetric
rendering is applied to the tri-planes. Since volumetric rendering at high resolutions
is computationally too expensive, EG3D does so at a lower resolution and uses a
convolutional super-resolution network to obtain a final image. More specifically,
the low-resolution output of volumetric rendering in EG3D consists of a 32-channel
feature map I f

z,c, the first three of which represent the low-resolution RGB image
ILR
z,c , which is given as input to the super-resolution network. EG3D is trained in an

adversarial fashion with a viewpoint-conditioned dual discriminator D that ensures
the photorealism of the generated images from the target viewpoints, as well as the
consistency between high-resolution and low-resolution images.

4.3.2 Convolutional Rendering of pre-trained NeRF-GANs

The aim of the proposed method is to distill a pre-trained NeRF-GAN G3D
z,c into a

2D image generator G2D
z,c , such that G2D

z,c directly predicts 3D-consistent multi-view
images I′z,c, corresponding to the volumetric renderings obtained by the underlying
3D representation of G3D

z,c . To this end, we propose to exploit the well-disentangled
style space of G3D to distill the underlying 3D representation into G2D. Sharing
the style space w of the pre-trained 3D generator with the convolutional renderer is
the first step towards establishing a correspondence between the 3D representations
and the generated images. Secondly, it allows training the convolutional generator
for 3D-consistent generation without the need for generating multiple views of the
same objects and enforcing multi-view consistency.

The overall architecture of EG3D and our convolutional generator is visualized in
Fig. 4.2. The convolutional generator is based on StyleGAN architecture [25, 153],
consisting of a mapping network, a low-resolution convolutional feature prediction,
and a convolutional super-resolution network. The mapping network transforms
the style code w of G3D and the target viewpoint c to the style code w′ of G2D.
Then, the low-resolution feature predictor S2D estimates the EG3D features and
low-resolution image obtained by the volumetric rendering. Estimated features and
images are then mapped to the high-resolution outputs using the super-resolution
network. In our setup, the super-resolution network is initialized with EG3D’s
super-resolution network and is jointly optimized with the feature predictor network.
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FIGURE 4.2: Using a student-teacher framework, we distill 3D consistency from a frozen
volumetric rendering based NeRF-GAN (top) to a 2D convolutional renderer
(bottom). A loss consisting of high- and low-resolution image reconstructions
and an adversarial component allows us to retain good image quality and 3D
consistency.

4.3.3 Training

In order to train the proposed convolutional renderer, we use a teacher-student frame-
work, where the volumetric rendering is used to supervise G2D on the viewpoint-
conditioned mapping of (z, c) to I′z,c. A schematic representation of our training
regime is reported in Fig. 4.2. Specifically, for each training sample, we randomly
sample zi and ci and use the pre-trained NeRF-GAN to obtain: the correspond-
ing style code wi, the low-resolution image ILR

zi ,ci
, feature maps I f

zi ,ci rendered by
volumetric rendering, as well as the high-resolution image IHR

zi ,ci
generated by the

super-resolution network. Together, these form a training sample i for the proposed
convolutional renderer.

We input z and c into G2D and compute a loss function composed of three
parts. We first add a reconstruction term LLR

rec between the low-resolution outputs of
the volumetric and convolutional renderers. A second reconstruction loss LHR

rec is
applied between the super-resolved outputs of the two renderers. Lastly, we apply
an adversarial term Ladv.

In the following, we drop the subscripts zi, ci to reduce the clutter in notation.
The low-resolution reconstruction loss LLR

rec consists of a pixel-wise smooth L1 loss
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between the two feature maps, as well as a perceptual loss between the generated
and target low-resolution images,

LLR
rec =λLR

L1 · SmoothL1(I′ f , I f )+

λLR
perc · PerceptualLoss(I′LR, ILR).

(4.1)

Here, λLR
L1 and λLR

perc are the weights for the low-resolution smooth L1 and perceptual
loss, respectively.

Similarly, the high-resolution reconstruction loss LHR
rec is defined as:

LHR
rec =λHR

L1 · SmoothL1(I′ f , I f )+

λHR
perc · PerceptualLoss(I′HR, IHR).

(4.2)

where λHR
L1 and λHR

perc are the weights for the high-resolution smooth L1 and percep-
tual loss, respectively.

The adversarial term Ladv is similar to the one used in EG3D. We use the same
dual-discriminator architecture D as in EG3D to ensure the realism of the high-
resolution images, their consistency with the low-resolution version, and the compli-
ance of the generated image with the queried viewpoints. The total loss Ltotal used
for training G2D is,

Ltotal = LLR
rec + LHR

rec + λadv · Ladv, (4.3)

where λadv is the weight for the adversarial loss.
Two-Stage Training: In practice, empirical experiments show that training the
convolutional renderer using the full objective from the beginning will lead to
high-quality but 3D-inconsistent images. Therefore, we instead propose a 2-stage
training curriculum. In the first stage, G2D is only optimized by pure distillation
of the volumetric rendering G3D using LLR

rec and LHR
rec until the renderer achieves

reasonable generation quality. Then, the adversarial loss Ladv is added to the training
to further improve the performance. By applying this 2-stage curriculum, we are
able to counter the 3D inconsistency induced by the adversarial training.
Pose-Correlated Dataset Bias: As shown in EG3D [34], adversarial training of the
convolutional network is prone to learning pose-correlated dataset biases, such as
more smiling in non-frontal viewpoints in the FFHQ dataset [154], which in turn
results in 3D attribute inconsistencies. To mitigate such biases in the FFHQ dataset,
we use both real images and the images rendered from EG3D as the real examples
shown to the discriminator. The proportion of the EG3D-rendered images shown to
D is controlled by the hyper-parameter α (0 ≤ α ≤ 1), which is set to 0.5 in our
experiments. As we will discuss in Sec. 4.4.6, α can be used to control the trade-off
between image quality and 3D consistency.



4.4 E X P E R I M E N T S 49

4.4 E X P E R I M E N T S

In this section, we first describe our experimental setup for the evaluation of our
method. Then, we compare the proposed method with baselines in terms of visual
quality, 3D consistency, and computational efficiency. Moreover, we provide an
ablation study and a discussion on the benefits and trade-offs of the proposed method.

4.4.1 Datasets

Following EG3D [132], we evaluate our method on three datasets:
Flickr-Faces-HQ (FFHQ) [154]: A collection of 70k high-quality images of real-
world human faces, as well as corresponding approximate camera extrinsics esti-
mated using an off-the-shelf pose estimator.
AFHQ Cats: A sub-category of the Animal-Face-HQ (AFHQ) [155], consisting
of around 5k high-quality images of cat faces, as well as corresponding camera
extrinsics estimated using an off-the-shelf pose estimator.
ShapeNet Cars: A category of ShapeNet [156] consisting of synthetic images
of cars rendered from different viewpoints, as well as the corresponding camera
extrinsics annotations.

4.4.2 Baselines

We consider EG3D [34] and the method proposed in SURF-GAN [152] as our
main baselines for this study. For a more complete evaluation, we also compare our
method to additional relevant baselines:
EG3D [34]: The NeRF-GAN used for distilling 3D knowledge in the convolutional
generator. EG3D serves as the upper bound for the 3D consistency of the proposed
method.
Pose-Conditioned StyleGAN (PC-GAN): A standard conditional 2D GAN, condi-
tioned on the pose annotations without any knowledge distillation.
SURF: Inspired by the proposed method in SURF-GAN [152], we create a baseline
called SURF, where multi-view images of EG3D are used to discover pose-control
in a pre-trained 2D StyleGAN.
LiftGAN [121]: A method predating EG3D and SURF baselines based on differen-
tiable rendering that distills a 2D GAN in order to train a 3D generator.
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4.4.3 Implementation and Evaluation Details

We implement and evaluate the proposed generator using both StyleGAN2 (ST2) [25]
and StyleGAN3 (ST3) [153] architectures. For the pre-trained NeRF-GAN, we use
the official models from EG3D [34] (for ShapeNet Cars, we re-train the model as
the official model does not match the results reported by EG3D). We train our exper-
iments using a batch size of 16. The rendering resolution and the final resolution
are (128, 512) for FFHQ and AFHQ and (64, 128) for ShapeNet Cars. Both training
and inference experiments were conducted using NVidia RTX 3090 GPUs. In all
experiments, we set all of the weights of reconstruction loss terms (λLR

L1 , λLR
perc, λHR

L1 ,
λHR

perc) to the value 1 and the weight of the adversarial loss (λadv) to the value 0.1.

4.4.4 Metrics

We evaluate our method quantitatively in terms of visual quality and 3D consistency.
Fréchet Inception Distance (FID) [91]: The most common metric to assess the
quality and diversity of generation.
Kernel Inception Distance (KID) [91]: An unbiased alternative to FID for smaller
datasets.
Pose Accuracy (PA): Following previous works [34], we measure the ability of the
model in generating images of the query poses by calculating the Mean Squared Error
(MSE) between the query poses and the pose of the generated images, estimated
using an off-the-shelf pose estimator [157].
Identity Preservation (ID): As a metric for 3D consistency, we measure the de-
gree of face identity preservation between different viewpoints with respect to the
canonical pose using ArcFace [158] cosine similarity for the FFHQ setup.
3D Landmark Consistency: As another 3D consistency metric, we measure the
change in facial landmarks between different viewpoints in FFHQ using MSE. The
3D landmarks are estimated using an off-the-shelf estimator [157].

4.4.5 Quantitative Comparison

In the following, we quantitatively compare the proposed method with the baselines
described in Sec. 4.4.2 in terms of inference efficiency, visual quality, and 3D
consistency.
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Method FFHQ AFHQ ShapeNET Cars
FID ↓ KID ↓ FID ↓ KID ↓ FID ↓ KID ↓

EG3D [34] 5.0 0.0018 2.9 0.0003 3.5 0.0017

PC-GAN 19.3 0.0085 4.5 0.0009 6.1 0.0018

LiftGAN [121] 29.8* - - - - -

SURF 31.1 0.0153 - - - -

Ours (ST2) 6.6 0.0019 3.8 0.0011 3.1 0.0013

Ours (ST3) 6.8 0.0023 3.2 0.0007 3.1 0.0012

TABLE 4.1: Comparison of image quality on three datasets in terms of FID and KID
metrics. *The value is borrowed from [121].

4.4.5.1 Efficiency

The efficiency of fully-convolutional networks compared to the rendering-based
methods is well-known. To better assess the practical benefit of the proposed method,
we provide a comparison of inference efficiency between EG3D. Fig. 4.1 visualizes
an example of the inference memory consumption and speed of the two methods
using different batch sizes on a fixed GPU budget (in this case, on RTX 3090
GPU with 24G of memory). As shown, EG3D is restricted to small batch sizes (a
maximum of 14) due to its costly memory consumption, whereas our method can
scale up to a maximum of 96 samples per batch (∼ 7×). As for the speed, our
generator achieves a better frame-per-second, especially when using StyleGAN2 as
its backbone (> 3×).

4.4.5.2 Image Quality

To assess the trade-off brought about by our convolutional generator, we evaluate
the quality of the generated images. Tab. 4.1 shows the FID and KID scores for
our method and the baselines on different datasets. Compared to the PC-GAN and
SURF baselines, our method constantly achieves higher quality. This confirms that
exploiting the style space of the pre-trained NeRF-GAN contributes to the ability of
the convolutional renderer in pose-conditioned generation. Although our method
does not fully match the visual quality of EG3D, it is still able to fairly maintain
high image quality and significantly reduce the compromise in the quality compared
to the other convolutional counterparts.
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Method Pose Acc. ↓ 3D Landmark ↓ ID ↑

EG3D [34] 0.002 0.018 0.75

PC-GAN 0.009 0.062 0.56

SURF 0.044 0.014 0.86

Ours (ST2) 0.002 0.023 0.75

Ours (ST3) 0.002 0.022 0.75

TABLE 4.2: Comparison of 3D consistency metrics on FFHQ.

4.4.5.3 3D Consistency

While, unlike volumetric rendering, 2D convolutions do not guarantee 3D consis-
tency, we show that our approach achieves a good performance in this regard. We
assess the 3D consistency of generated images on FFHQ by measuring the pose
accuracy, 3D landmark consistency, and face identity preservation, as discussed in
Sec. 4.4.4. Based on the results, which are provided in Tab. 4.2, our method achieves
comparable 3D consistency with EG3D, while PC-GAN and SURF struggle. Note
that the high values for identity preservation and 3D landmark consistency in SURF
are due to the limited pose variations, and hence generating similar images regardless
of the input pose, as reflected by the pose accuracy (and the visual examples in
Fig. 4.3).

4.4.6 Ablation

Ablation on Loss Functions: The proposed training objective in Sec. 4.3.3 consists
of different loss terms to ensure both image quality and consistency with the output of
volumetric rendering. In this section, we ablate the importance of these components.
Tab. 4.3 shows the FID scores for the following experiments on the loss terms on
AFHQ dataset:

• LR: Low-resolution reconstruction loss with frozen super-resolution network.
• HR: Only the high-resolution reconstruction loss.
• LR + HR Both low-resolution and high-resolution reconstruction losses.
• HR + ADV: Reconstruction and adversarial losses on high-resolution images.
• Full (LR + HR + ADV): Full training objective, including the reconstruction

and adversarial terms.
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FIGURE 4.3: Qualitative examples of variations in yaw and pitch for FFHQ. Compared to
the pose-conditioned GAN and SURF baseline, our proposed method nearly
matches the 3D consistency and image quality of volumetric rendering
(EG3D).
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FIGURE 4.4: Qualitative examples of yaw and pitch variations for AFHQ cats. In line with
our quantitative experiments, the pose-conditioned convolutional baseline
(PC-GAN) fails to preserve the identity of the subject under different poses.
In contrast, our method exhibits similar preservation of identity to the vol-
ume rendering approach (EG3D), despite the difference in computational
resources and time.
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Method FID ↓

LR 30.55

HR 10.39

LR + HR 9.1

HR + ADV 6.58

Full (LR + HR + ADV) 3.2

TABLE 4.3: Ablation study on different loss functions for training the ST3 convolutional
renderer on AFHQ Cats dataset.

Method Ours (ST2) Ours (ST3)
FID ↓ 3D Landmark ↓ FID ↓ 3D Landmark ↓

α = 0 5.5 0.027 5.7 0.027

α = 0.3 6.3 0.023 6.1 0.024

α = 0.5 6.8 0.022 6.6 0.023

TABLE 4.4: The effect of mixing real images and EG3D-rendered images as real examples
for adversarial training, controlled by the parameter α, on FFHQ dataset.

As shown by the ablation study, the combination of all the proposed loss terms leads
to the best FID scores.
Single-Stage Vs. Two-Stage Training: As mentioned in Sec. 4.3.3, we find that
single-stage training by jointly optimizing for both reconstruction and adversarial
losses results in subtle inconsistencies such as color shifts and geometry warps,
which can be mitigated using the proposed 2-stage training in Sec. 4.3. As the ob-
served inconsistencies are difficult to capture using our quantitative 3D consistency
metrics, we provide a visual comparison between the examples of single-stage and
two-stage training on AFHQ in Fig. 4.5.
Mitigating Pose-Attribute Correlation: In Tab. 4.4, we provide an ablation on
the parameter α introduced in Sec. 4.3.3 for FFHQ dataset. As shown, including
EG3D-generated images (α > 0) improves the 3D consistency at the cost of a lower
generation quality.

4.4.7 Qualitative Comparison

In this section, we provide a visual comparison of our method with the baselines.
In Figs. 4.3 and 4.4, we provide visual examples of variations in yaw and pitch for
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FIGURE 4.5: One-stage training causes subtle color and geometry inconsistencies (first
row). Such inconsistencies can be resolved using our proposed 2-stage
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FIGURE 4.6: Qualitative examples of different camera poses in ShapeNet Cars for three
different car models.
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FIGURE 4.7: First row: Inversion using PTI [159] for EG3D and our method; second row:
interpolation in the latent space of our method; third row: style mixing in the
latent space of our method.

FFHQ and AFHQ Cats. Compared to PC-GAN and SURF, our proposed method
closely matches the 3D consistency and maintains the image quality of volumetric
rendering. Fig. 4.6 additionally provides examples of ShapeNet Cars generated using
our method and their corresponding images from EG3D. Similarly, our method
exhibits preservation of 3D consistency and image quality, despite the difference in
required computational resources.

4.4.8 Inversion, Interpolation, and Style Mixing

As the proposed generator follows a StyleGAN architecture, it can easily benefit
from most of the editing techniques common in the GANs’ literature. Fig. 4.7 shows
examples of inversion using Pivotal Tuning Inversion (PTI) [159], latent space
interpolation, and style mixing.

4.4.9 Discussion: StyleGAN2 Vs. StyleGAN3

StyleGAN2 is more computationally efficient than StyleGAN3. Based on the pro-
vided quantitative evaluations, our method reaches comparable image quality and 3D
consistency with both architectures. However, StyleGAN2 is known to suffer from
more texture stitching and artifacts [153], which we also observe in the generated
images.
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4.4.10 Correspondence between Convolutional and Volumetric Rendering

As mentioned before, exploiting the style space of the pre-trained NeRF-GAN also
provides an opportunity for establishing a direct correspondence between the 3D
representation of the 3D generator and the generated images using the convolutional
generator. A close comparison of images generated using the convolutional and
volumetric rendering in Figs. 4.3, 4.4 and 4.6 indicates that the convolutional ren-
der is able to infer and match many attributes of the underlying 3D representation
from the shared latent space and generate images similar in content to those of
volumetric rendering. However, there still remains a gap in the full correspondence
of the two rendering methods, as semantic and identity changes are visible between
the corresponding images generated by the two methods. Investigating more ex-
plicit approaches for enforcing correspondence could be an interesting direction for
improving the convolutional rendering for NeRF-GAN models.

4.5 C O N C L U S I O N

In this chapter, we presented a method to distill a pre-trained NeRF-GAN into a pose-
conditioned convolutional generator. The proposed method enables considerably
higher efficiency, which is crucial if 3D neural rendering is to become ubiquitous
and deployed at scale. To do so, we proposed exploiting the intermediate latent
space of the pre-trained NeRF-GAN as a conditioning input for the convolutional
generator. We additionally provided a training protocol to further improve the visual
quality and 3D consistency of the images generated using our generator. Through
our experiments, we showed that our method maintains good image quality and
3D consistency, significantly better than previous fully-convolutional methods, and
approaching those of the baseline NeRF-GAN with volumetric rendering. Finally,
while our method takes steps toward achieving full correspondence between the two
rendering methods, there remains a gap in terms of image semantics. Improving this
aspect remains a subject for further research.
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Recently, methods for 3D scene editing have been profoundly transformed, owing to
the use of strong priors of text-to-image diffusion models in 3D generative modeling.
Existing methods are mostly effective in editing 3D scenes via style and appearance
changes or removing existing objects. Generating new objects, however, remains a
challenge for such methods. In this chapter, we introduce InseRF, a novel method
for generative object insertion in the NeRF reconstructions of 3D scenes. Based on
a user-provided textual description and a 2D bounding box in a reference viewpoint,
InseRF generates new objects in 3D scenes. Specifically, we propose grounding the
3D object insertion to a 2D object insertion in a reference view of the scene. The
2D edit is then lifted to 3D using a single-view object reconstruction method. The
reconstructed object is then inserted into the scene, guided by priors of monocular
depth estimation methods. We evaluate our method on various 3D scenes and provide
an in-depth analysis of the proposed components. Our experiments with generative
insertion of objects in several 3D scenes indicate the effectiveness of our method
compared to the existing methods. InseRF is capable of controllable, 3D-consistent
object insertion without requiring explicit 3D information as input.

5.1 I N T RO D U C T I O N

Recent advances in novel view synthesis [123] and generative modeling [17, 26]
have significantly advanced 3D generation and manipulation methods. This has
enabled the development of powerful 3D generative models for applications such as
text-to-3D [42, 160, 161], single-image-to-3D [43, 162–165], and 3D editing [44].
In 3D scene editing in particular, remarkable promise has been shown in modifying
the appearance of real-world scene representations based on textual and spatial
guidance. Nevertheless, methods able to directly generate and edit 3D assets are
limited to simple and object-centric scenes [43, 166–168]. For more complex scenes,
most recent editing methods rely on editing different views of the scenes using
2D models. A prime example of this is Instruct-NeRF2NeRF [44] (I-N2N), which
iteratively edits the input images on which a 3D scene representation is trained with
a global textual editing prompt. Although it achieves great results, I-N2N is limited
to editing the style and appearance of scenes. When prompted with localized edits
or geometry manipulations (such as object removal or insertion), I-N2N often fails

59
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(b)    InseRF (ours)Text prompt + 
Reference bounding box

Put succulent plant  on 
the table

3D Generative Object InsertionMethod inputs

(a)    Instruct-NeRF2NeRF

Text prompt

3D scene
A succulent plant

FIGURE 5.1: Generative 3D object insertion: while Instruct-NeRF2NeRF allows for
altering the overall style of scenes or performing edits with strong positional
priors, it fails at inserting objects in arbitrary locations due to the multi-view
inconsistency of the edits. Our method, in contrast, is multi-view consistent
by design and inserts new objects in user-specified locations.

to perform the desired edits. This is mainly due to the 3D inconsistency of 2D edits
across viewpoints and lack of spatial control.

Recent works have aimed at 3D-consistent [45, 46] and localized editing [46,
169, 170] of 3D scenes. Several works have specifically tackled object removal and
inpainting in 3D scene representations [47, 48, 171–173]. However, generating and
inserting new objects in scenes in a 3D-consistent way remains an open problem and
is mainly limited to cases where edits are strongly constrained by spatial priors (e.g.
putting a hat on a head or a mustache on a face). Therefore, in this work, we focus
on generating and inserting 3D-consistent objects in arbitrary locations in the scene.

Generative object insertion in 3D scenes using 2D generative models is a par-
ticularly challenging task, as it requires 3D-consistent generation and placement
of objects in different views. A simplistic approach is to separately generate the
desired objects using 3D shape generation models [42, 161] and insert them into the
scene using 3D spatial information. However, such an approach requires the accurate
location, orientation, and scale of the object in 3D, a non-trivial requirement, espe-
cially when in contact with other objects in the scene. Moreover, scene-independent
generation of the objects can lead to a mismatch between the style and appearance of
the scene and the inserted objects. As visualized in Fig. 5.1, we propose a method ca-
pable of scene-aware generation of objects in 3D scenes using the textual description
of the objects and a single-view 2D bounding box as spatial guidance.



5.2 R E L AT E D W O R K 61

To circumvent multi-view inconsistencies and the need for explicit 3D spatial
information, we propose anchoring the 3D insertion by a 2D view of the target
object, inserted in one reference view of the scene. Given a 3D reconstruction of the
scene, we first render a reference view. Then, conditioned on a text prompt and a
2D bounding box, we use an image editing method to add the target object in the
reference view. The generated object is then lifted to 3D using a single-view-to-3D
object reconstruction method [43, 162–165]. To place the object in 3D, we propose
using the estimated depth of the object in the reference view. After inserting the
object in the scene, we apply an optional refinement to the fused scene and objects.

We evaluate our method on several 3D scenes. Our experiments indicate the
proposed method’s ability to insert diverse objects in 3D scenes, without the need
for explicit 3D spatial guidance. To summarize our contributions:

• We address the task of consistent generative object insertion in 3D scenes
based on a textual description and a single-view 2D bounding box, which is
beyond the capability of the existing 3D scene editing methods.

• We propose a novel method, based on grounding the insertion using a reference
2D edit, that is capable of 3D-consistent object insertion without requiring
explicit information for the 3D placement.

• Through experiments and visualizations, we show the advantage of our method
for generative object insertion compared to the existing baselines.

5.2 R E L AT E D W O R K

Language-based 3D scene editing: 3D scene editing has recently undergone a con-
siderable transformation by incorporating the strong priors of 2D text-conditioned
diffusion models into 3D generative modeling [44–46, 169, 170, 174, 175]. Instruct-
NeRF2NeRF (I-N2N) [44] proposes an iterative method for 3D scene editing, where
different viewpoints of the scene are edited using a text-based 2D editing model
and used to fine-tune the scene’s NeRF representation. Although highly effective
in modifying the existing content, I-N2N often struggles with 3D-consistent and
localized edits, especially when instructed to remove objects or create new ones
in the scene [45, 48]. To address the view consistency of edits, ViCA-NeRF [45]
proposes a method based on viewpoint-correspondence regularization and a strategy
to align the latent space of edited and unedited viewpoints. DreamEditor [46] tackles
the 3D consistency by adapting the 2D diffusion model to the multi-view images of
the scene using DreamBooth [176], as well as identifying a 3D region of interest
of an existing object based on text-image semantic similarity. The method in [169]
addresses localized editing differently by obtaining a 3D relevance field for the edits
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based on the discrepancy between the predictions of the diffusion model with and
without instruction conditioning. These methods, despite the improvements, remain
limited in their ability to generate new objects, often struggling with cases where a
strong spatial prior for the placement of objects does not exist.
Object removal and replacement: Another direction recently explored in the area
of 3D scene editing is 3D-consistent removal or replacement of objects in the scenes.
Some studies assume having multi-view masks of the target object [47, 171]. For
instance, Reference-Guided NeRF Inpainting [47] is a method mainly designed
and evaluated for removing objects from forward-facing scenes based on accurate
multi-view masks as input. The authors additionally showcase a few examples of
replacing existing objects with new ones using their method. Other studies rely on
user-provided single-view annotations or text-conditioned segmentation models to
automatically obtain multi-view masks of objects to be removed [48, 172, 173, 177].
ReplaceAnything3D [177] is a recent study that enables the replacement of existing
objects within a scene. However, such approaches for extracting multi-view masks
do not transfer to the task of object insertion, as they rely on the assumption that the
objects already exist in the scene.
Generative object insertion: In contrast to global scene editing, object removal, and
object replacement, generating objects in 3D scenes is not well-explored in existing
works. FocalDreamer [178] is a recent work proposed for adding editable parts to
a base 3D mesh. Provided with a text prompt and the rough 3D placement of the
target edits, FocalDreamer applies score distillation [42] to add the desired parts to
the base shape. Although achieving compelling results, FocalDreamer requires user-
provided 3D regions (rotation, translation, and scale), and its generalization beyond
base shapes to complex 3D scenes is not investigated. Language-Driven Object
Fusion [179] is another recent work that aims at fusing an existing or generated
foreground object with a background 3D scene. The authors first adopt a 2D diffusion
model for view synthesis from the scene and the object using DreamBooth [176].
Then, conditioned on a user-provided 3D bounding box, the authors propose a pose-
conditioned dataset update strategy for the training of the scene NeRF containing
the object. The proposed fusion strategy requires users to provide an exact 3D
bounding box. In contrast to the existing language-driven object insertion methods,
our approach works well with both forward-facing and 360 scenes, and it only
requires a rough 2D bounding box from one rendered view of the scene, making it
more suitable for real-world applications.



5.3 M E T H O D 63

Annotated
Reference View

2D
 e

di
tin

g 
m

et
ho

d 
    

Edited 
Reference View

Si
ng

le
 Im

ag
e 

to
 

3D
 m

et
ho

d

Object NeRF 

De
pt

h 
Es

tim
at

io
n

3D
 O

bj
ec

t 
In

se
rt

io
n

Updated Scene NeRF 

Re
fin

em
en

t

A cup

FIGURE 5.2: Overview of the proposed method. Given a single reference view, a 2D
bounding box, and a text prompt describing the object to be inserted, a
2D edit is generated portraying a view of the object. This 2D edit is then
transformed into a 3D model of the object and placed into the scene using
the procedure described in Sec. 5.3.4. After the 3D placement, the object
and the scene representations are fused as described in Sec. 5.3.5. Finally, an
optional refinement can be performed to further improve the appearance.

5.3 M E T H O D

Our method takes a NeRF reconstruction of a 3D scene, a textual description of the
object to be inserted, and a 2D bounding box in a rendered reference view of the
scene. As output, it returns a NeRF reconstruction of the same scene containing the
generated target 3D object placed in a location guided by the 2D bounding box. It is
noteworthy that our method only requires a rough bounding box, as we rely on the
priors of diffusion models for the exact 2D positioning.

Our method consists of five steps: 1) creating a 2D view of the target object in
a chosen reference view of the scene based on a text prompt and a 2D bounding
box; 2) reconstructing a 3D object NeRF from the 2D view previously created;
3) estimating the 3D placement of the object in the scene using monocular depth
estimation; 4) fusing the object and scene NeRFs into a single scene containing the
object in the estimated placement; 5) applying an optional refinement step to the
fused 3D representation to improve the insertion further. Fig. 5.2 shows an overview
of our pipeline. Next, we discuss each step in detail.

5.3.1 Preliminaries

Diffusion Models: Diffusion models are a type of generative model that maps
Gaussian noise to highly realistic and diverse samples. They consist of (1) a forward
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process that maps data samples x0 to noise xT , and (2) a backward process that
creates data samples from noise.

The forward process consists of T steps t ∈ [0, T − 1]:

q(xt+1 | xt) = N (xt |
√

1 − βtxt−1, βt I), (5.1)

with variances βt chosen such that the noise xT ∼ N (0, I).
The backward process, which is used to generate data samples from Gaussian

noise and optionally an additional conditioning signal, has the following shape:

q(xt−1 | xt) = N (xt−1 | µθ(xt, t, c), ∑∑∑
θ

(xt, t, c)), (5.2)

where the parameters of the backward/denoising distributions are predicted by a
U-Net, whose weights θ are optimized by increasing the likelihood of the data
samples. Diffusion models can be conditioned on different types of signals, such as
images or text, as well as masks, and can be extended for different tasks, such as 2D
editing [180–182] and inpainting [183, 184].
Neural Radiance Fields: NeRFs are a novel view synthesis method trained on
a set of posed images by minimizing the photometric loss between ground truth
and rendered pixels. In NeRFs, the density σ and color c at 3D points in space are
predicted by a neural function fϕ. The pixel color corresponding to a ray r = (o, d)
with origin o and viewing direction d can be composed through volumetric rendering.
To do so, a set of points along the ray ri = o+ td is sampled, splitting the ray into
a set of intervals δi = (ti, ti+1]. The pixel color of the ray can then be composed as:

C(r) ≈
N

∑
i=1

wici, (5.3)

wi = Ti(1 − exp{(−σiδi})), (5.4)

Ti = exp

{
(−

i−1

∑
j=1

σjδj)

}
. (5.5)

In the above equations (σi, ci) = f (γ (ti) ; ϕ) , where γ is the positional encoding
function.

5.3.2 Editing the Reference View

Our editing pipeline starts by choosing a rendered view of the scene and inserting a
2D view of the target object from a user-provided text prompt and a 2D bounding
box. This reference view is then used to anchor the 3D insertion by providing the
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desired appearance and location. Since the spatial guidance from text is not sufficient
for localized 2D object insertions [182, 185, 186], we specify the object location
with a 2D bounding box. To ensure insertion within the bounding box, we opt for
a mask-conditioned inpainting method as our 2D generative model. We choose
Imagen [187], a powerful text-to-image diffusion model, and further adapt it to
mask-conditioning by using RePaint [183].

5.3.3 Single-View Object Reconstruction

After obtaining the reference edit, we create a 3D reconstruction of the 2D view of
the object generated within the bounding box using the recent paradigm of single-
view object reconstruction with 3D-aware diffusion models [43, 162–165]. Such
reconstruction methods are typically trained on large-scale 3D shape datasets [188]
and therefore contain strong priors over the geometry and appearance of 3D objects.
We use SyncDreamer [163] for object reconstruction, as it offers a good trade-off
between quality and efficiency.

5.3.4 3D Placement

Depth Estimation: The reference 2D bounding box constrains the 3D location of
the object to a frustum in the scene. To determine the location of the object in the
3D frustum, we propose using the prior from monocular depth estimation methods.
We apply MiDaS [189] on the edited reference image to estimate the depth of the
object with respect to the reference camera. As MiDaS provides non-metric depth
measurements, we perform an extra depth alignment between the estimated depth of
the edited reference view and the reference depth rendered from the scene NeRF by
estimating a global scale and shift between the reference and estimated depth maps.
Specifically, for a more accurate alignment around the object area, we estimate the
alignment parameters using weighted least-square estimation, where measurements
are inversely weighted based on their distance to the center of the object bounding
box. After the alignment, we use the depth of the center pixel d in the object
bounding box as a rough estimate of the object’s center in the frustum, which will
be further optimized in the next step. More details are provided in appendix D.
Scale and Distance Optimization: Using the estimated depth d as the distance of
the object’s center from the reference camera helps with resolving the scale-depth
ambiguity of the 3D object, but is not accurate enough to closely match the original
edit. Additionally, single-view reconstruction methods like SyncDreamer (discussed
in Sec. 5.3.3) are trained to generate multi-view images from fixed camera distance
r′ and focal length f ′. In general, as these parameters are different from those of
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the reference camera, the reconstructed object NeRF appears with a different scale
in the reference view once placed at the estimated distance. Therefore, we propose
an additional optimization step for the scale and the distance of the object with
two constraints: 1) the object must reside at the estimated depth; 2) the rendered
view of the object in the reference camera should match the initial edit in scale and
appearance. To ensure a proper initial state for the optimization, we initialize our
scale s and object’s distance r as:

s0 =
d
r′
· f ′

f
, (5.6)

r0 = s0 · l + d, (5.7)

where s0 and r0 are the initial object scale and distance, and l is the distance of the
3D point corresponding to the center of the bounding box from the origin of the
object NeRF’s coordinate system. Given a 3D point P′ in the original object NeRF’s
coordinate system, the corresponding 3D point P in the scaled coordinate system is
obtained as P = sP′.

To obtain the optimized scale s∗ and distance r∗, we minimize the Mean Squared
Error between the ground-truth 2D edit IG and the image IR rendered with the new
parameters:

r∗, s∗ = arg min
r,s

||IG − IR||2. (5.8)

Fig. 5.6 in our ablation study shows the effect of our optimization.
Rotation and Translation: After obtaining the scale and distance of the object
from the reference camera, we estimate the placement of the object in the scene by
estimating its 3D rotation and translation with respect to the camera. The origin of
the object in the scene’s coordinate system is obtained as the point along the ray
from the reference camera center passing through the center of the bounding box at
the desired distance. To obtain the 3D rotation, we align the x-axis of the object’s
coordinate system to the vector pointing to the reference camera center from the
object’s origin. More details are provided in appendix D.

5.3.5 Scene and Object Fusion

Once the location and orientation of the 3D object in the scene are known, we fuse
the NeRF representations of the object and the scene to be able to render views of
the scene containing the object. Given a viewpoint, we transform the rays to the
coordinate systems of the scene and the object. Each NeRF representation is applied
to their transformed rays to predict the color and density of the object and the scene
at each 3D point. To render a view using the predictions of the NeRFs, we follow
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the strategy of [190], where the density σi and color ci at each 3D point i across a
ray in the fused representation are defined as:

σi = σs
i + σo

i , (5.9)

ci =
σs

i cs
i + σo

i co
i

σs
i + σo

i
, (5.10)

where σs
i and cs

i are the density and the color of the corresponding sample in
the scene NeRF, and σo

i and co
i those in the object NeRF. To be able to use this

formulation in our method for merging the object and the scene, it is crucial to
take the scaling of the object’s coordinate system into account. Going back to the
approximation of the volumetric rendering integration, discussed in Sec. 5.3.1, in
eq. (5.4), σiδi can be seen as the Riemann approximation of the area under the
density curve across the ray at interval δi. Simply replacing σi in eq. (5.4) with the
definition in eq. (5.9) results in an inaccurate estimation of the area under the density
curve for the merged representation, as the intervals between every two consecutive
samples across the rays are not equal between scene and object coordinate systems
due to the scaling of the object coordinate system (discussed in Sec. 5.3.4):

δs
i = s∗ · δo

i , (5.11)

where δs
i and δo

i are the intervals in the scene and object NeRFs, respectively, and s∗

is the optimized scale obtained in Sec. 5.3.4. To compensate for the scaling of the
intervals, we modify eqs. (5.9) and (5.10) as:

σi = σs
i +

σo
i

s∗
, (5.12)

ci =
σs

i cs
i + σo

i co
i /s∗

σs
i + σo

i /s∗
. (5.13)

As we also show in Fig. 5.7 of our ablation study, this modification is necessary for
correct rendering of the fused NeRF.

5.3.6 Refinement

As an optional final step, we refine the fused scene and object to improve the
imperfections introduced in the initial reference edit and single-view reconstruction.
To do so, we adapt the iterative refinement proposed in I-N2N [44] to our setup.
First, a set of images is rendered from different views of the fused NeRF. Then
the sampled views are further refined using the 2D diffusion model and added to
the optimization of the NeRF consecutively. An important difference between our
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FIGURE 5.3: Examples of using InseRF to insert an object into the neural representation
of different indoor and outdoor scenes.

refinement and I-N2N’s is that we restrict the refinement to the object region using
the object’s multi-view masks obtained from the object NeRF for free. Additionally,
we adjust our camera trajectory to revolve around the object. We arrange the sampled
viewpoints so that the more frontal views are prioritized during NeRF optimization.
We find such adjustments to enhance our refinement. The effect of refinement is
shown in Fig. 5.8 of our ablation. More details are provided in appendix D.

5.4 E X P E R I M E N T S

In this section, we explain our training and evaluation procedures. Moreover, we
provide the results of our evaluation and comparison with baselines. Finally, we
provide an ablation study and analysis of the components of our method.
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Original Scene I-N2N MV-Inpainting InseRF (ours)

(a) A mug on the table

Original Scene I-N2N MV-Inpainting InseRF (ours)

(b) A panettone on the tray

FIGURE 5.4: Qualitative comparison of object insertion with baselines. I-N2N modifies
existing objects instead of inserting new ones; MV-Inpainting fails to create
geometry at desired locations; Our method, in contrast, can insert new 3D-
consistent objects at desired locations.

Shum et al., Language-Driven Object Fusion InseRF (Ours)

FIGURE 5.5: Comparison with Language-Driven Object Fusion [179], which requires a
3D bounding box for spatial guidance: a sitting panda sculpture.

5.4.1 Experimental Details

Implementation Details: For the NeRF representation of objects and scenes, we
use MipNeRF-360 [191] adapted to the hash grids introduced in Instant-NGP [127].
For a more exhaustive description of the implementation of our method, we kindly
refer the reader to appendix D.
Datasets: We evaluate our method on a subset of real indoor and outdoor scenes
from datasets proposed in MipNeRF-360 [191] and Instruct-NeRF2NeRF [44].
Baselines: We compare our proposed method with:

• Instruct-NeRF2NeRF (I-N2N) [44]: We choose I-N2N as our main baseline,
as it is a recent and well-established method for 3D scene editing.

• Multi-View Inpainting (MV-Inpainting): We propose another baseline that
follows the refinement strategy in I-N2N, but is additionally provided with



70 G E N E R AT I V E 3 D O B J E C T I N S E RT I O N

accurate multi-view masks for the target object. It is worth emphasizing that,
in contrast, our method only requires a rough 2D bounding box in a single
reference view.

• Language-Driven Object Fusion [179]: We additionally provide a prelimi-
nary comparison with a recent work, Language-Driven Object Fusion [179],
which requires a 3D bounding box as input spatial guidance. We compare with
one of their provided examples by applying the corresponding edit prompt to
one of our scenes.

More details on baselines are provided in appendix D.

5.4.2 Visual Results and Comparisons

Visual Examples: To assess the ability of our method in generative object insertion,
we provide visual examples of applying our method to different 3D scenes in Fig. 5.3.
As shown, our method can insert 3D-consistent objects in the scenes. Notably, our
method is capable of inserting objects on different surfaces, which is a challenging
task in the absence of precise 3D placement information.
Visual Comparison: In Fig. 5.4, we provide a visual comparison with the baselines
discussed in Sec. 5.4.1. Attempting to insert new objects in the scene using I-
N2N often results in global changes in the scene and modifying existing objects
toward the target instead of creating new ones (e. g. I-N2N changes the Lego truck
toward a mug in Fig. 5.4a and the items on the kitchen counter toward a panettone
in Fig. 5.4b). Using multi-view masks in the MV-Inpainting baseline helps with
limiting the 2D edits to the object region and provides strong spatial guidance.
However, 2D edits remain inconsistent from different viewpoints. Therefore, using
the edits to optimize the NeRF representation results in 3D floaters and failure to
generate the target object in a 3D-consistent way. Fig. 5.5 additionally shows a
preliminary comparison the recent method, Language-Driven Object Fusion [179],
which requires a 3D bounding box as input spatial guidance. In contrast, our method
can perform localized modification in the scene and insert 3D-consistent objects
using only one single-view bounding box as spatial guidance. More visual results
and comparisons are provided in appendix D.

5.4.3 Quantitative Comparison

We also provide a quantitative evaluation of the proposed method and its comparison
with our baselines. We follow a similar evaluation protocol as I-N2N [44]. We
evaluate the methods using three different metrics:
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• CLIP Text-Image Similarity (Text-Image): The cosine similarity between
the CLIP [192] embeddings of the edit prompt (e.g. "A blue cup") and the
images rendered from different viewpoints of the edited scene.

• Directional Text-Image Similarity (Directional): Given a text description
of the original scene (e.g. "A table") and an edit prompt describing the edited
scene (e.g. "A table with a mug on top"), it measures the similarity of the
direction of change from the original to the edited scene between the image
and text CLIP embeddings.

• Temporal Direction Consistency (Temporal): Given two adjacent rendered
viewpoints of original and edited scenes, this metric measures how much the
change of image embeddings between the two viewpoints in the edited scene
is consistent with the one in the original scene.

We provide the results of our quantitative evaluation on 15 different edits (5 different
scenes) in Tab. 5.1. All metrics are based on cosine similarity, which ranges from
-1 to 1. We bring the values between 0 and 1 (the higher the better) for ease of
comparison. As depicted, our method effectively outperforms the baselines in all
evaluated metrics.

5.4.4 Ablation and Analysis

Scale and radius optimization: In Fig. 5.6, we provide a visual ablation demon-
strating the importance of the scale and radius optimization proposed in Sec. 5.3.4,
where we compare the object placement in the scene using the initial estimations
(r0 and s0) with the placement after applying the extra optimization. As shown, the
initial estimation would only result in a rough and inaccurate placement of the object.
With the proposed optimization, our method can insert objects with the scale and
depth matching those of the reference view.

Method Text-Image ↑ Directional ↑ Temporal ↑

I-N2N [44] 0.61 0.53 0.60

MV-Inpainting 0.62 0.50 0.75

InseRF (ours) 0.63 0.57 0.81

TABLE 5.1: Quantitative comparison of InseRF and its baselines on different metrics
following a similar evaluation protocol as I-N2N [44]. We perform the evalua-
tion on 15 different edits (5 different scenes). Our method outperforms the
baselines in all metrics.
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5

Ground Truth 2D Edit
No Scale/Distance 

Optimization
Scale/Distance Optimization

FIGURE 5.6: The effect of scale and distance optimization. The object placement is more
realistic and faithful to the original edit when the optimization is performed
to improve the alignment.

Object density scaling: In Sec. 5.3.5, we proposed a strategy to fuse the NeRF
representations of the scene and the object that takes the scaling of the object into
account. In Fig. 5.7, we visualize the importance of our adapted formulation for
accurate rendering of the inserted objects.
Refinement: In Sec. 5.3.6, we proposed an optional refinement step after inserting
the objects in the scenes. Fig. 5.8 shows examples of the effect of the refinement.
As shown, the additional refinement can improve some of the details of the inserted
objects, such as the lighting and the texture.
Inserting multiple objects: Fig. 5.9 shows our method can be readily used to insert
multiple objects in a scene.
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FIGURE 5.7: The effect of density scaling on fusing object and scene. When the object
NeRF scale is not accounted for in the volumetric rendering, the object is
not properly displayed in the rendered views.
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FIGURE 5.8: Visualization of the effect of the refinement step. Our refinement can add
additional texture details and lighting effects.

5.4.5 Limitations and Future Work

Underlying generative models: Our method is a general pipeline for generative
object insertion built on top of existing 2D and 3D generative models, which can be
easily replaced. The performance of our method is limited by the underlying genera-
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Original Scene Edited Scene with Multiple Object Insertions

A teapot
A sugar bowl

                

FIGURE 5.9: Inserting multiple objects: a teapot and a sugar bowl.

tive models, such as the 2D diffusion model or the single-view object reconstruction
method. On the other hand, given our general formulation, future improvements in
such models readily transfer to our pipeline.
Object lighting: As shown in Fig. 5.8, the refinement step from Sec. 5.3.6 further
improves the realism of the insertions. However, our method currently does not
explicitly adjust the lighting of the inserted objects to match the lighting conditions
of the 3D scenes. As explicitly estimating the ambient light in such complex scenes
only from input images (or their NeRF reconstructions) is not trivial, exploring
potential ways of further harmonizing the generated objects with the underlying
3D scenes would be a promising future direction for improving the realism of the
insertions. In this study, we primarily focus on the orthogonal direction of 3D-
consistent object generation in 3D scenes without 3D spatial input, and our method
can serve as a foundation for future studies.

5.5 C O N C L U S I O N

We introduced InseRF, a method for generative object insertion in 3D scenes. InseRF
takes as input a textual description of the desired object and a 2D bounding box in a
single reference viewpoint of the scene. Based on these inputs, InseRF generates
a 3D-consistent object in the scene. To do so, InseRF leverages the priors of 2D
diffusion models and single-view object reconstruction methods. The proposed
method includes several steps necessary to integrate these methods for the task of
in-scene object generation. Through evaluations and visualizations on different 3D
scenes, we showed the ability of InseRF to generate 3D-consistent objects in the
scene without requiring explicit 3D placement information.
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6
C O N C L U S I O N

In this thesis, we addressed different aspects of 2D and 3D generative models under
real-world considerations, including controllability, as well as data and computa-
tional efficiency. In particular, we focused on different conditional generative models,
including class-conditioned, pose-conditioned, and text-conditioned ones, as we
were interested in controllable generation. Here, we summarize the contributions of
the thesis and provide a discussion on the potential future directions for research on
generative models.

S U M M A RY O F C O N T R I B U T I O N S

In Chapter 2, we studied the problem of conditional GAN transfer by transferring
the knowledge across both source and target classes. We represented the knowledge
of individual classes by their respective batch normalization parameters, which are
used for conditioning during the generation. To propagate the knowledge to new
classes, we introduced a method, called cGANTransfer, that learns to update and
combine the batch normalization parameters of the source classes. The evaluations
on three standard benchmarks demonstrate a clear advantage of our method, both in
terms of training efficiency and the image generation quality (measured by FID and
KMMD), compared to the state-of-the-art methods. Our ablation study showed the
importance of jointly using the update and combination steps, which we referred to
as sharing and propagation, respectively.

In Chapter 3, we studied the problem of training class-conditional generative
adversarial networks with limited data. Our empirical study demonstrated that class-
conditioning can lead the training of GANs to mode-collapse within the investigated
setup. To prevent such collapse, we presented transitional-cGAN, a method of
gradually injecting the class conditioning by transitioning from unconditional train-
ing to the conditional case. To enable such a transition, we proposed architectural
modifications and training objectives, which can be easily adapted by any existing
GAN model. The proposed method achieves outstanding results compared to the
state-of-the-art methods and established baselines, for the limited data setup of four
benchmark datasets.

In Chapter 4, we presented a method for distilling a pretrained NeRF-GAN
into a pose-conditioned convolutional generator. The proposed method enables
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considerably higher efficiency, which is crucial if 3D neural rendering is to become
ubiquitous and deployed at scale. To do so, we proposed exploiting the intermediate
latent space of the pretrained NeRF-GAN as a conditioning input of the convolutional
generator. We additionally provided a training protocol to further improve the visual
quality and 3D consistency of the images generated using our generator. Through
our experiments, we showed that our method maintains good image quality and 3D
consistency, significantly better than previous existing fully-convolutional methods
and approaching the performance of the baseline NeRF-GAN.

Finally, we introduced InseRF in Chapter 5. InseRF is a method specifically
designed for generative object insertion in 3D scenes. InseRF takes as input a
textual description of the desired object and a 2D bounding box in a single reference
viewpoint of the scene. Based on the provided inputs, InseRF generates a 3D-
consistent object in the 3D scene. To do so, InseRF relies on the priors of 2D
diffusion models and single-view object reconstruction methods. The proposed
method includes various steps necessary to integrate such methods for the task of
in-scene object generation. Through evaluations and visualizations on various 3D
scenes, we showed the ability of InseRF in the 3D-consistent generation of objects
in scenes without requiring explicit 3D placement information.

O U T L O O K A N D F U T U R E D I R E C T I O N S

Data-Efficient Generation

Since the introduction of cGANTransfer and transitional-cGAN, generative models
have progressed significantly in their capabilities in adapting to small custom data.
Recently, many methods have been proposed to exploit the strong prior knowledge
of large pretrained text-to-image diffusion models for adaptation to smaller datasets.
In particular, a new direction addresses the customization of such models to new
concepts (e.g., new objects and identities) using only a few examples, enabling
diverse generation of the new concepts in new contexts [176, 193, 194]. Additionally,
recent methods such as ControlNet [195] and LoRA [196] provide parameter-
efficient strategies for fine-tuning diffusion models on custom data without losing
the generalizability of the underlying foundation model. Further exploration of such
methods, especially in more extreme cases such as one-shot customization while
preserving the attributes of the reference concept in the novel generated samples,
would be an interesting future direction.
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Computational Efficiency

As discussed in Chapter 1, diffusion models, as the current state-of-the-art generative
models, still suffer from slow inference due to their iterative process. Recent methods,
such as SnapFusion [197] and MobileDiffusion [198] have proposed lightweight
architectures and faster sampling techniques for more efficient inference of diffusion
models. In the 3D domain, Gaussian Splatting [199] has recently emerged as an
efficient framework for representing 3D scenes. Gaussian Splatting could potentially
bring significant improvements to the computational efficiency of 3D generative
models. However, its adaptation to the generative setup is not trivial. Despite the
preliminary attempts [199, 200], there still exist many opportunities for improving
the 3D generative models based on Gaussian Splatting.

Temporal Generation

Finally, generative models have been extensively explored for various 2D and 3D
applications. Exploring the temporal dimension of generative models is another
important research direction. Recently, several diffusion-based methods for video
generation and editing have been proposed [201–205]. However, these methods
are mainly limited to generating short sequences or editing only object-centric
videos while still struggling with temporal consistency. To go one step further,
developing generative models for dynamic 3D scenes remains fairly unexplored.
Existing methods for 4D generation and editing are mainly limited to dynamic
asset generation [206] or possess significantly restricted editing capabilities [207].
Consequently, exploring 4D generative models could open the door to a variety of
new applications for generative models.





A
A P P E N D I X : C L A S S - S P E C I F I C T R A N S F E R L E A R N I N G
I N G A N S

This appendix includes the additional material for chapter 2. First, we provide more
details on the model architecture and implementation of our experimental setup.
Then, we further discuss the quantitative results of CIFAR100 [89] experiments.
Moreover, we discuss source-to-target similarities, training curves, and single-class
target data. Finally, we provide more visual results obtained using our method.

A.1 A D D I T I O N A L I M P L E M E N TAT I O N D E TA I L S

Architecture: We follow [62, 64] to employ the architecture of BigGAN [18] as
our backbone for the GAN transfer tasks. It is worth mentioning that the BigGAN
implementation for CIFAR uses the basic form of BigGAN, which for example,
does not use a hierarchical latent variable. In particular, Tabs. A.1 and A.2 show
the network architecture for CIFAR100 and ImageNet [65] setups. Fig. A.1 shows
the architecture of the residual blocks used in the generator and the discriminator.
The detailed diagram for the conditional batch normalization layer with knowledge
propagation across classes has been provided in Fig. 2.4.
Baselines: The original study proposing batch normalization adaptation (BSA) [64]
uses supervised loss function (L1/Perceptual loss) instead of adversarial loss. In
our experiments, whenever we refer to BSA, we mean training the GAN model
adversarially, while freezing the filters and learning the BN parameters from scratch.
Therefore our implementation of BSA could be considered as the main baseline for
our experiments since it shares the same setup as ours, but without performing any
knowledge transfer across the classes.
Ablation Study Experiments: Tab. 2.2 shows the results for the ablation study on
the ImageNet-to-Places365 setup. In the table, “Prior" refers to the BN parameters
of the previous classes. The table includes the results for using the prior with and
without being further updated via knowledge sharing using target classes. “Shared
W" in the fourth experiment refers to using shared similarity weights over all layers
of the generator to combine previous BN parameters of each layer. The term “w/o
reg" in the fifth experiment refers to not using l1 regularization on the combination
weights and l2 regularization on the residuals.
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z ∈ R128 ∼ N (0, I)

Linear 4 × 4 × 256

ResBlock up 256

ResBlock up 256

ResBlock up 256

BN, ReLU, Conv 3 × 3, Tanh

x ∈ R32×32×3

ResBlock down 64

ResBlock down 128

ResBlock down 256

ResBlock down 512

ResBlock 1024

ReLU, Global Sum Pooling

Embed(y).h + (Linear→1)

TABLE A.1: The network architecture for CIFAR setup: Left: the generator. Right: the
discriminator.

z ∈ R120 ∼ N (0, I)

Linear 4 × 4 × 256

ResBlock up 256

ResBlock up 256

ResBlock up 256

BN, ReLU, Conv 3 × 3, Tanh

x ∈ R128×128×3

ResBlock down 96

None-Local Block (64 × 64)

ResBlock down 192

ResBlock down 384

ResBlock down 768

ResBlock down 1536

ResBlock 1536

ReLU, Global Sum Pooling

Embed(y).h + (Linear→1)

TABLE A.2: The network architecture for ImageNet setup: Left: the generator. Right: the
discriminator.
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FIGURE A.1: The architecture of the residual blocks used in the network. Left: the genera-
tor’s ResBlock (“C-BN+KP" layer indicates the conditional batch normal-
ization with knowledge propagation across classes. Please refer to Fig. 2.4
for more details). Right: the discriminator’s ResBlock.

A.2 F U RT H E R D I S C U S S I O N O N Q UA N T I TAT I V E R E S U LT S

In Tab. 2.1, which shows the FID scores for different experiments on CIFAR100,
the results of the first experiment (20 classes, 600 samples per class) are marginally
different from those of the other experiments. It can be seen that, learning from
scratch performs better than all of the transfer learning methods, since the training
data is large enough for learning the filters from scratch. However, by reducing
the sample number in the next experiments, the performance of learning from
scratch immediately deteriorates, while the transfer learning methods remain more
robust. However, after reducing the training data even more (20/100, 10/600, 10/300,
10/100), fine-tuning (TransferGAN [60]) also degrades significantly compared to
BSA and our method, leading to mode collapse. Comparing the FID scores of BSA
and our method on CIFAR, although comparable, it can be observed that our method
starts to perform better in the experiments with smaller amounts of data, showing
the importance of using prior knowledge from previous classes when training data
is small.
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FIGURE A.2: Top 3 contributing classes (planetarium, Bird House, Mountain Tent)
from the pre-trained network toward the target class “Arch" in Places365
dataset [90]. The classes are selected based on the learned similarity scores
of the first layer. Each row depicts one class, and the images are generated
from the network pre-trained on ImageNet.
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FIGURE A.3: Top 3 contributing classes (Buckeye, Football Helmet, Impala) from the
pre-trained network toward the target class “Deer" in Animal Face dataset.
The classes are selected based on the learned similarity scores of the first
layer. Each row depicts one class, and the images are generated from the
network pre-trained on ImageNet.
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A.3 D I S C U S S I O N O N C L A S S S I M I L A R I T I E S

Our method proposes knowledge transfer from previous classes by learning simi-
larity scores over previous BN parameters and combining the BN parameters using
those scores to construct the BN parameters of the new classes. Previous classes
can contribute to a target class in terms of semantics, shape, texture, or color in
a hierarchical manner from bottom to top layers. As an example, Fig. A.2 shows
the top 3 ImageNet classes of the pre-trained network (planetarium, Bird House,
Mountain Tent) contributing to the target class “Arch" in Places365, based on the
similarity weights learned for the first layer (the first layer is generally more inter-
pretable in terms of class similarities, since it is responsible for determining the
general structure of the output images, as shown in Fig. 2.9). As it can be seen,
these classes contain visual features close to arch structures that can meaningfully
be used to generate images from the target class. Fig. A.3 shows another example
on Animal Face dataset [86] by visualizing the top 3 classes (Buckeye, Football
Helmet, Impala) contributing to the target class “Deer". In this example, we can see
that the third class “Impala" is semantically very close to the target class. However,
the contribution of the first two classes is not as clear as the previous example. These
classes might be contributing to the background, or this might be due to the fact that
the similarity scores are actually learned to combine the pseudo-classes, and this
does not always guarantee semantic similarity to the initial pre-training classes.

A.4 F I D A N D L O S S C U RV E S

As an example of how the losses and the FID scores evolve during the training, the
curves for one of the CIFAR100 experiments (Exp. 10/600) have been provided in
Fig. A.4. The convergence speed-up is clearly depicted in the FID curve, whereas
the same is difficult to derive from the loss plots (due to the adversarial training).

A.5 S I N G L E - C L A S S TA R G E T

Although the main focus of our work is multi-class to multi-class knowledge transfer
using knowledge propagation and knowledge sharing, the proposed method is not
only limited to the multi-class target. As an example, the results of knowledge
transfer to the single class “Arch" in Places365 are provided in Tab. A.3.
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FIGURE A.4: The FID curve (left), the G loss (middle), and the D loss (right) for our
method and BSA on CIFAR(10/600).

Method FID Iterations

BSA 104 4300

Ours 78 500

TABLE A.3: FID scores and number of iterations for knowledge transfer from ImageNet
to the single target class “Arch" in Places365.

A.6 A D D I T I O N A L V I S UA L R E S U LT S

Fig. A.5 and Fig. A.6 show additional visual results obtained from BSA (no knowl-
edge propagation across classes) and our method on ImageNet setup. Regarding
CIFAR setup, we visualize the results of the experiments 20/300 and 10/300 for
BSA and our method in Figs. A.7 and A.8, as examples of CIFAR experiments.
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FIGURE A.5: Visual comparison between the images obtained from BSA (no knowledge
transfer across classes) and our method on 5 classes of Places365.
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FIGURE A.6: Visual comparison between the images obtained from BSA (no knowledge
transfer across classes) and our method on some of the classes of Animal
Face (for each class, the first row is from BSA, and the second row from our
method).
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FIGURE A.7: Visual comparison between the images obtained from BSA (left) and our
method (right) for transferring from 80 classes of CIFAR100 to 20 classes
each containing 300 samples.
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FIGURE A.8: Visual comparison between the images obtained from BSA (left) and our
method (right) for transferring from 80 classes of CIFAR100 to 10 classes
each containing 300 samples.
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A P P E N D I X : T R A N S I T I O N A L C O N D I T I O N I N G I N G A N S

In the following, we provide more details, experiments, and visualizations on the
discovered observation and the proposed method in chapter 3.

B.1 T R A N S I T I O N F U N C T I O N

In Fig. B.1, we provide a detailed visualization of the proposed transition function.
As shown, Ts is the starting time and Te is the end time of the transition. Note that
the end of the training is different from the end of the transition. We have introduced
a new term Tm in Fig. B.1 to represent the maximum training iterations. First, the
model is trained unconditionally from t = 0 until t = Ts. At Ts, the transition to the
condition model starts, λt going from 0 to 1 linearly. After the end of the transition
(Te), the transition function λt remains at its maximum value of 1. In other words,
the weight of each loss in eq. (3.3) does not get adjusted anymore. The end of the
transition Te happens at about half the total training time Tm in our experiments.

t
(0, 0) t = Ts t = Te

t = Tm

Unconditional Model Transition Conditional Model

FIGURE B.1: Visualization of the transition function λt. Ts, Te, and Tm denote the start
of the transition, the end time of the transition, and the end of the training,
respectively.
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Method C20, S500 C50, S50 C50, S300 C100, S300
FID KID FID KID FID KID FID KID

UC-StyleGAN+ADA 7 0.0006 20 0.0022 6 0.0008 6 0.0021

C-StyleGAN+ADA 12 0.0033 23 0.0036 9 0.0025 13 0.0053

Ours 7 0.0006 20 0.0014 6 0.0008 6 0.0012

TABLE B.1: Quantitative results for examples of unconditional and conditional training of
StyleGAN2+ADA, as well as our method, on different subsets of CIFAR100.
In the name of the columns, C indicates the number of classes and S shows
the number of images per class

B.2 M O R E D E TA I L S O N T H E I M P L E M E N TAT I O N

The proposed transition function makes a transition from 0 to 1 in the specified
transition time. However, in the specific case of the AnimalFace dataset, we found
that clipping the output of the transition function to the maximum value of 0.2
achieves the best results, which are reported in Sec. 3.4.2.

B.3 E X P E R I M E N T S O N C I F A R 1 0 0

In addition to the experiments on the four already presented datasets, we provide the
results of training unconditional and conditional StyleGAN2+ADA, as well as our
method, on four different subsets of CIFAR100 ( [89]) in Tab. B.1. In Fig. B.2, as an
example, the FID curves of training the three methods on a subset of CIFAR100 with
100 classes and 300 images per class are visualized. We observe a similar behavior
on CIFAR100, where our approach outperforms the conditional baseline, achieving
FID and KID scores better than or on par with the unconditional baseline. .

B.4 C L A S S - W I S E F I D A N D K I D

Following the common practice (StyleGAN, BigGAN, etc.), we calculate the FID
and KID metrics reported in our experiments unconditionally, with a class sampling
distribution that matches the class distribution of the training dataset. We did not
provide the class-wise FID and KID due to the insufficient class-wise sample size.
In Tab. B.2, we report the class-wise metrics for ImageNet Carnivores and Food101,
by using all the images of corresponding classes, including the additional images
not used for training.
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FIGURE B.2: FID curves for training unconditional and conditional StyleGAN2, as well
as our method, on CIFAR100 with 100 classes and 300 images per class.
The vertical axis is in the log scale.

Note that the values are generally larger for all methods, since a large fraction
of FID/KID reference sets were not used for training. However, the relative values
are still consistent with the metrics reported in Sec. 3.4.2. These measures, along
with the generated images provided later in the appendix (Figs 9-12), show the class
consistency of the proposed method.

B.5 P R E C I S I O N A N D R E C A L L

In Tab. B.3, we provide the precision and recall proposed by [208], with the im-
plementation provided by StyleGAN2+ADA. Based on the results, unconditional
training always yields a higher recall, as it can generate between-mode images
resulting in bigger diversity. Among the conditional methods, our method yields
significantly better recall, while being comparable in terms of precision. Low re-
call values for the conditional baselines confirm the observed mode collapse. In
Tab. B.4, we also provide the class-wise precision and recall for ImageNet Carni-
vores and Food101, calculated in the same manner as the class-wise FID and KID in
appendix B.4.
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Loss Formulation Carnivores Food101
FID KID FID KID

C-StyleGAN+ADA 139 0.179 100 0.079

C-StyleGAN2+ADA+ProjD 151 0.199 97 0.0815

C-StyleGAN2+ADA+Lecam 90 0.096 56 0.027

Ours 30 0.011 44 0.019

TABLE B.2: The class-wise FID and KID for Imagenet Carnivores and Food101 using the
full number of real samples per class in the evaluation.

Method Carnivores Food101 CUB-200-2011 AnimalFace
Pr Rl Pr Rl Pr Rl Pr Rl

UC-StyleGAN2+ADA 0.77 0.300 0.71 0.187 0.70 0.232 0.76 0.430

C-StyleGAN2+ADA 0.80 0.0008 0.74 0.004 0.79 0.002 0.78 0.032

C-StyleGAN2+ADA+ProjD 0.81 0.0 0.74 0.002 0.76 0.067 0.83 0.0

C-StyleGAN2+ADA+Lecam 0.81 0.046 0.73 0.004 0.76 0.097 0.83 0.0005

Ours 0.82 0.263 0.82 0.068 0.77 0.229 0.83 0.314

TABLE B.3: The unconditional precision and recall for the compared methods.

B.6 M O R E A B L AT I O N : S T Y L E G A N 2 W I T H O U T A DA

To investigate whether the occurrence of the conditional collapse and efficacy of the
proposed method in solving it is related to the adaptive differentiable augmentation
(ADA), we perform further experiments on a subset of ImageNet carnivores (50
classes, 500 images per class), without using ADA in the training. As the FID curves
in Fig. B.3 and FID and KID scores in Tab. B.5 show, the observed conditioning
collapse happens even in the absence of ADA. Our method is still able to solve the
problem by leveraging the stable behavior of unconditional training.

B.7 M O R E A B L AT I O N : T R A N S I T I O N I N T H E L O S S F U N C T I O N

In Tab. B.6, we provide the ablation over two choices for transition in the proposed
loss function:

• L = (1 − λt) · Luc + λt · Lc.

• L = Luc + λt · Lc (Ours).
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Method Carnivores Food101
Pr Rl Pr Rl

C-StyleGAN2+ADA 0.75 0.0 0.75 0

C-StyleGAN2+ADA+ProjD 0.68 0.0 0.78 0.00005

C-StyleGAN2+ADA+Lecam 0.67 0.0001 0.70 0.0148

Ours 0.73 0.1205 0.64 0.1049

TABLE B.4: The class-wise precision and recall for the compared methods on Imagenet
Carnivores and Food101 using all of the available real samples per class in
the evaluation.

Method FID KID

U-StyleGAN2 99 0.0795

C-StyleGAN2 13 0.0067

Ours 8 0.0020

TABLE B.5: The FID and KID scores for training unconditional and conditional Style-
GAN2, as well as our method, without using ADA, on ImageNet Carnivores
with 50 classes and 500 images per class.

The results show better performance for our proposed loss formulation. Based on
the results, the unconditional and conditional training are not conflicting in the later
stages of the training. Instead, having the unconditional loss helps the performance.
However, as shown in Tab. 4.3, the two losses seem to be conflicting in the beginning
of the training, resulting in a bad performance in the absence of the transition.

B.8 V I S UA L R E S U LT S

In Fig. B.4, we provide visual results for the comparison of our method with the
baselines. Moreover, more images randomly generated using our method on the four
datasets are visualized in Figs. B.5 and B.8.
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FIGURE B.3: FID curves for training unconditional and conditional StyleGAN2, as well
as our method, on ImageNet Carnivores with 50 classes and 500 images per
class.

Loss Formulation Carnivores Food101 CUB-200-2011 AnimalFace
FID KID FID KID FID KID FID KID

L = (1 − λt) · Luc + λt · Lc 18 0.0047 25 0.0088 25 0.0064 20 0.0035

L = Luc + λt · Lc (Ours) 14 0.0021 20 0.0045 22 0.0032 16 0.0018

TABLE B.6: The FID and KID results for two different loss formulations.
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FIGURE B.4: Visual results for the compared methods on four datasets.
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FIGURE B.5: Randomly generated images using our method trained on ImageNet Carni-
vores dataset. Each row represents a different class. FID score is 14.



B.8 V I S UA L R E S U LT S 101

FIGURE B.6: Randomly generated images using our method trained on Food101 dataset.
Each row represents a different class. The FID score is 20.
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FIGURE B.7: Randomly generated images using our method trained on CUB-200-2011
dataset. Each row represents a different class. The FID score is 22.
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FIGURE B.8: Randomly generated images using our method trained on the AnimalFace
dataset. Each row represents a different class. The FID score is 16.





C
A P P E N D I X : E F F I C I E N T 3 D - AWA R E G E N E R AT I O N W I T H
C O N V O L U T I O N S

This appendix includes the additional material for chapter 4. In the following sec-
tions, we first provide an evaluation of the correspondence between the generated
images using volumetric rendering and our convolutional generator in appendix C.1.
Moreover, in appendix C.2, we extend the efficiency analysis of our method to the
setup of the ShapeNet Cars dataset. In appendix C.3, we discuss some of the imple-
mentation details. Then, we offer a discussion on the limitations of the proposed
method in appendix C.4. Finally, we provide more visual examples for our method
in appendix C.5.

C.1 E VA L UAT I O N O F C O R R E S P O N D E N C E

To establish a baseline for future research, we measure the correspondence between
generated images using our method and the corresponding images rendered from
EG3D using Peak Signal-to-Noise Ratio (PSNR), the results of which are provided
in Tab. C.1.

C.2 A N A LY S I S O F E F F I C I E N C Y O N S H A P E N E T C A R S

In Fig. C.1, we provide a comparison of the computational efficiency of inference
using our method and the baseline NeRF-GAN (EG3D) on ShapeNet Cars setup.
EG3D performs volumetric rendering at the resolution of 64 and super-resolves the
output to the resolution of 128. As seen in Fig. C.1, our method with StyleGAN2 as
its backbone is more efficient than EG3D in terms of both memory consumption
and speed. However, the StyleGAN3 backbone is only more efficient in terms of
memory consumption, but it is slower than the baseline. This is because StyleGAN3
is more computationally demanding than the tri-plane generator in EG3D, which is
based on StyleGAN2. In the setup of ShapeNet Cars, the computational complexity
of the StyleGAN3 convolutional generator outweighs that of the lower-resolution
volumetric rendering in EG3D, resulting in a slower inference (note that the memory
consumption is still lower for the StyleGAN3 convolutional generator).
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Dataset ST2 ST3

FFHQ 28.73 28.65

AFHQ Cats 28.46 28.10

ShapeNet Cars 36.60 36.57

TABLE C.1: PSNR values (↑) measuring the correspondence between the images of EG3D
and our convolutional generator on three datasets. The values are calculated
for 1k images. ST2 and ST3 correspond to the two architectures StyleGAN2
and StyleGAN3 used as the backbone of our method

C.3 I M P L E M E N TAT I O N D E TA I L S

C.3.1 SURF Baseline

In Sec. 4.4, we provided a baseline, which we referred to as “SURF,” inspired by the
method proposed in the SURF-GAN paper [152] for pose/content disentanglement
of a pre-trained 2D StyleGAN. As the code and the pre-trained models for such
disentanglement are not made publicly available, we provided our best effort in
implementing the SURF baseline inspired by their approach.

The proposed method in [152] consists of two main components: 1. a NeRF-
GAN model called SURF-GAN for portrait images 2. a training recipe to add pose
conditioning to a pre-trained StyleGAN2 using multi-view images generated from
the 3D NeRF-GAN. Specifically, the part relevant as a baseline for our proposed
method is the second component, which we re-implement for comparison with our
method. To do so, for a fair comparison with our method, we use EG3D pre-trained
on FFHQ for generating multi-view image triplets from 3 different viewpoints
(source, canonical, and target views). Following [152], we use pSp [209], a pre-
trained inversion encoder to invert the generated multi-view images in the style
space of the 2D generator. Using the multi-view images and their corresponding
style codes obtained using pSp, we train two mapping networks to:

1. map any arbitrary style code to the style code of the canonical viewpoint, and
2. map the canonical style code to the style code of the target viewpoint.

For the mapping networks, we use MLP networks with the same architecture as
StyleGAN2’s mapping network. For the training objective, we include reconstruction
losses both on the images (MSE and Perceptual) and latent codes (MSE), as used
in [152]. This architecture and training regime is inspired by the one in [152], but not
exactly the same. We have adapted the method to the 3D generator network we are
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using (EG3D). Moreover, in the original method, the mapping from the canonical
latent code to the target one is formulated as the linear combination of a set of
learnable pose vectors. In our implementation, we use a more general mapping by
using an MLP network instead. Nevertheless, the implemented baseline provides
a comparison with a proven alternative strategy to enable pose conditioning of a
StyleGAN-like convolutional architecture.

C.3.2 Inversion

In Sec. 4.4.8, we provided examples of inversion in our generator using Pivotal
Tuning Inversion (PTI) [159]. Following EG3D, inversion is performed given a target
image and its camera parameters. For the implementation, we use the adaptation to
EG3D provided at [210]. We use 500 steps for optimizing the latent code and 350
additional steps for fine-tuning the generator according to the PTI method.

C.3.3 3D Consistency Metrics

To calculate the 3D Landmark Consistency and Identity Preservation (ID) in Sec. 4.4.5.3,
we vary the yaw from -40 to +40 and the pitch from -30 to +30, following the evalu-
ation setup of [152]. As an additional visualization, Fig. C.2 shows the comparison
of Identity Preservation for each angle individually.

C.4 L I M I TAT I O N S

In our approach, the outputs of the volumetric rendering branch are used to supervise
our convolutional renderer. Thus, the visual quality and 3D consistency of our
approach is largely bound by the quality and consistency of the pre-trained NeRF-
GAN. However, our formulation is largely agnostic to the volumetric generator used.
Therefore, improvements in volumetric rendering in the context of GANs will also
transfer to the generated quality of our method.

C.5 V I S UA L R E S U LT S

In Fig. C.3, we provide more visual examples generated using our method from the
FFHQ dataset. Fig. C.4 shows examples of generated images from the AFHQ Cats
dataset using the proposed convolutional generator. Finally, in Fig. C.5, we provide
additional samples for the ShapeNet Cars setup, generated using the volumetric
rendering (EG3D) and our method.
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FIGURE C.1: Comparison of the inference memory consumption and speed (on a fixed
GPU budget) for our method and EG3D on ShapeNet Cars.
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FIGURE C.2: Comparison of identity preservation across different camera poses. Our
method performs much better than the pose-conditioned GAN baseline (PC-
GAN), approaching the consistency of volumetric rendering (EG3D). The
higher consistency achieved by SURF is due to its limited pose variations.
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FIGURE C.3: Visual examples of pose control in our convolutional generator and their
comparison to those of EG3D on FFHQ dataset.
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FIGURE C.4: Visual examples of pose control in our convolutional generator and their
comparison to those of EG3D on the AFHQ Cats dataset.
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FIGURE C.5: Visual examples of pose control in our convolutional generator and their
comparison to those of EG3D on the ShapeNet Cars dataset.
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In this appendix, we provide additional visual results, a quantitative evaluation of our
method, and an in-depth discussion of the implementation for the method proposed
in chapter 5:

• appendix D.1 provides more visual examples of single and multiple object
insertions using InseRF, additional visual comparisons with our baselines,
more examples of the refinement step, as well as video visualizations.

• appendix D.2 offers more details on the components of our proposed method:

– appendix D.2.1 provides more details on the bounding box-conditioned
2D editing of the reference view discussed in Sec. 5.3.2.

– appendix D.2.2 provides a detailed description of the depth estimation
and alignment proposed in Sec. 5.3.4.

– appendix D.2.3 provides a detailed explanation on how we estimate the
objects’ rotation and translation in the 3D scenes in Sec. 5.3.4.

– appendix D.2.4 offers additional details on the implementation of the
object and scene fusion proposed in Sec. 5.3.5.

– appendix D.2.5 provides a detailed explanation of our refinement step,
proposed in Sec. 5.3.6, and its differences with the method proposed in
Instruct-Nerf2Nerf [44].

• appendix D.3 offers a detailed discussion on the proposed baselines in Sec. 5.4.1:
I-N2N [44], MV-Inpainting, Language-Driven Object Fusion [179].

D.1 A D D I T I O N A L V I S UA L R E S U LT S

Visual examples: In Figs. 4.1 and 5.3, we provided examples of generative object
insertion in 3D scenes using our proposed method. Here in Fig. D.1, we provide
more visual examples showing the ability of our method to generate objects in 3D
scenes.
Comparison to the baseline: In Fig. 5.4 , we provided visual comparisons between
the proposed method and our baselines (introduced in Sec. 5.4.1). Fig. D.2 shows
more comparisons with the baselines for a better assessment. As depicted, the two
compared baselines struggle with creating the target objects in the scene.
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Refinement: In Fig. 5.8 , we provided a visual ablation on the impact of the
proposed refinement step in Sec. 5.3.6. Here in Fig. D.3, we extend the ablation
to more examples. As can be seen, the proposed refinement step can improve the
texture and details of the inserted objects, resulting in higher-quality and more
realistic insertions. For the details of our refinement step, please refer to Sec. 5.3.6
and appendix D.2.5 of this supplementary.
Multiple object insertions: As shown in Fig. 5.9 , single object insertions using
InseRF can be easily composited into multiple object insertions. More examples of
such compositions are provided in Fig. D.4.
Video visualizations: To better visualize the inserted objects using our method,
we additionally provide video visualizations in the supplementary files, showing
several examples of our inserted objects, as well as examples of the refinement step
and multiple object insertion. We additionally include a teaser video depicting how
InseRF could be used to generate objects in 3D scenes. Please note that the text
prompts shown in the teaser video are slightly modified for the sake of presentation.
The exact prompts used for generating the examples are provided in Figs. 4.1 and 5.3
and Fig. D.1 in this supplementary document.

D.2 A D D I T I O N A L D E TA I L S O N T H E M E T H O D

D.2.1 Inpainting with RePaint

As mentioned in Sec. 5.3.2, to generate a 2D view of the target object in the reference
view, we condition our diffusion model on a bounding box using RePaint [183].
Repaint is a training-free inpainting method for pre-trained diffusion models that is
capable of adding new content to an image in the regions specified by an arbitrary
binary mask. Repaint primarily consists of 2 components: 1.) mask conditioning
and 2.) re-sampling.

To enable mask conditioning, in every step t of the diffusion process, RePaint
applies a mask-based blending to the output xt−1 as follows:

xt−1 = (1 − M)⊙ xknown
t−1 + M ⊙ xunknown

t−1 (D.1)

where xknown
t−1 is sampled using known pixels in the given image, xunknown

t−1 is
sampled from the model given the previous iteration xt, and M is the binary mask.
⊙ denotes element-wise multiplication. In our setup, we set M to be the area inside
the condition bounding box and xknown

t−1 to be noisy versions of the reference image
x0 obtained using the forward diffusion process.

When only applying the mask-based blending, the authors of RePaint observe
that, although the inpainted region matches the texture of the neighboring region,
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it is not well-harmonized in the image. Therefore, an additional re-sampling step
is proposed, where the blended noisy images go through a few forward diffusion
steps and are denoised again, to increase the harmonization of the inpainted regions.
The proposed re-sampling step is characterized by two hyperparameters: 1) jump
length: the number of applied forward diffusion steps, and 2) steps: the number of
repetitions of adding noise and de-noising of the blended images. In our experiments,
we set both parameters to the value 2.

D.2.2 Depth Estimation

As discussed in Sec. 5.3.4, we use the monocular depth estimated by MiDaS [189]
to determine the location of the target object in the 3D frustum formed by the
input bounding box in the reference image. As the estimated depth using MiDaS
is non-metric, we perform a global affine depth alignment with the reference depth
from the scene’s NeRF reconstruction, which we explain in greater detail in the
following.

Let DR be the depth of the reference viewpoint rendered from the scene NeRF
(not containing the object), and D̂E be the estimated depth of the edited reference
view (containing the 2D object) using MiDaS. We define the aligned depth map D̂A
of the edited reference view as:

D̂A = a · D̂E + b, (D.2)

where a and b are the scalar parameters of a global affine transformation. a and b
are estimated by solving the following weighted least-square estimation:

min
a,b

∑
i
∑

j
(1 − M(i,j)) · W(i,j) · (D(i,j)

R − D̂(i,j)
A )2, (D.3)

where M is a binary mask corresponding to the reference bounding box. For a
2D matrix A, A(i,j) denotes the element at row i and column j. W is the matrix
containing pixel-wise weights for the estimation, which correlate negatively with
the distance of the pixel from the center of the bounding box located at row ic and
column jc:

Wij = 1 −
√
(i − ic)2 + (j − jc)2/z, (D.4)

z = max(
√
(i − ic)2 + (j − jc)2), (D.5)

i ∈ {0, ..., h − 1} & j ∈ {0, ..., w − 1}, (D.6)

where z is a normalization term, and h and w are the height and width of the
reference image, respectively. The weighted estimation of the alignment parameters
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helps with a more accurate alignment in the region surrounding the inserted object.
In practice, we perform our alignments on image crops containing the object and its
surroundings instead of the full image.

After aligning the estimated depth map, in order to determine the location of the
object in the 3D scene, we first roughly estimate the distance of the center of the
object from the camera center to be equal to the depth value at the center of the
bounding box d. Then, we perform the scale and distance optimization proposed in
Sec. 5.3.4, with the constraint that the depth of the center of the object’s rendered
view from the reference viewpoint must be equal to d (please refer to the discussion
on the scale and distance optimization in Sec. 5.3.4 for more details).

D.2.3 Rotation and Translation

Here we provide more details on the process of calculating the rotation and transla-
tion of the target object in the scene, discussed in Sec. 5.3.4. Specifically, we obtain
the 3D location pc of the center of the object in the 3D scene as the point along the
normalized direction v pointing from the camera center to the center of the reference
bounding box:

pc = o+ r∗ · v (D.7)

where r∗ is the optimized distance obtained from the scale and radius optimization
(explained in Sec. 5.3.4).

We use the right-handed coordinate system convention for our scene and ob-
ject NeRFs and place the object in an upward position in the scene centered at
pc. Moreover, we align the reference view of the object in its coordinate system
(corresponding to zero azimuth and elevation) with the reference camera viewpoint
in the scene’s coordinate system. In other words, we define the axes of the object
coordinate system in the scene’s coordinate system as follows:

uobject = [0, 0, 1]T , (D.8)

xobject = −v, (D.9)

yobject = normalize(uobject × xobject), (D.10)

zobject = normalize(xobject × yobject). (D.11)

The rotation R and the translation t are then obtained as:

R = [xobject, yobject, zobject]
T (D.12)

t = −Rpc. (D.13)
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Using the obtained rotation, translation, and optimized object scale s∗, a point p in
the scene’s coordinate system can be mapped to a point p′ in the object’s one as
follows:

p′ =
1
s∗
[R, t]p. (D.14)

D.2.4 Scene and Object Fusion

In Sec. 5.3.5, we provided a detailed discussion on how the scene and object NeRFs
are fused in our method. In practice, object NeRFs fused in the scene may be
queried with points in the 3D space that have not been seen during the object NeRF
optimization, resulting in unwanted artifacts. To prevent such artifacts, we consider
a 3D bounding box around the inserted objects, setting the density of the points
sampled outside to zero. The dimensions of the 3D bounding box are determined
based on the camera radius used in the single-view object reconstruction step and
are fixed across edits and scenes.

D.2.5 Refinement

In Sec. 5.3.6, we proposed an optional refinement based on the iterative NeRF
optimization proposed in Instruct-NeRF2NeRF with two modifications: 1) using the
multi-view masks obtained from the inserted object to make the refinement localized
and 2) sampling viewpoints on a sphere encapsulating the inserted object in the
scene. In particular, we sample the viewpoints on a sphere with the radius r∗ (the
optimized object distance) from the object’s center pc. Such a sampling strategy
allows for better edits by the 2D diffusion model. Moreover, instead of randomly
picking the next viewpoint to edit and include in the NeRF optimization, as done in
Instruct-NeRF2NeRF, we order the viewpoints in such a way that more frontal views
are selected first. For example, viewpoints (azimuth, elevation) sampled from n
equally-distanced azimuths with step size ∆theta and m equally-distanced elevations
with the step size ∆phi are arranged as an ordered set V:

V = {(i · ∆θ , j · ∆ϕ)) | i ∈ I & j ∈ J} (D.15)

I = {0, 1,−1..., n/2,−n/2}, (D.16)

J = {0, 1,−1, ..., m/2,−m/2}, (D.17)

Such ordering improves the 3D consistency of the refinement step, as it decreases
the conflict caused by randomly selected and independently edited views.
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D.3 A D D I T I O N A L D E TA I L S O N B A S E L I N E S

Instruct-NeRF2NeRF (I-N2N): For our I-N2N baseline, we created a reimple-
mentation in JAX on top of the Mip-NeRF360 code. Our implementation uses the
official pre-trained checkpoints of Instruct-Pix2Pix [180] and is compatible with the
LLFF datasets used in our experiments.
Multi-View Inpainting (MV-Inpainting): In Sec. 5.4.1, we proposed a baseline
called Multi-View Inpainting (MV-Inpainting). MV-Inpainint is designed to insert
objects into a 3D scene given accurate multi-view binary masks at the input. To
ensure a fair comparison, MV-Inpainting uses the same 2D editing method as ours
(Imagen [187] with RePaint [183]) to generate the target object in each viewpoint
within the corresponding mask. In contrast to I-N2N, MV-Inpainting is equipped
with localized editing to specifically investigate the importance of 3D consistency
between different edited viewpoints.

To obtain the multi-view masks required for MV-Inpainting, we first generate and
insert an object in the scene using our proposed object insertion. Then, we extract
the multi-view masks of the target object by rendering the 3D object into the training
viewpoints. The extracted masks are then used as input to MV-inpainting along with
the corresponding text prompt. We would like to emphasize that our method only
requires a single-view rough bounding box, in contrast to the multi-view accurate
masks in MV-Inpainting.

Language-Driven Object Fusion: In Fig. 5.5 , we provided a preliminary com-
parison with the recent work, Language-Driven Object Fusion (LOF) [179] ([36] ),
introduced and explained in Secs. 5.2 and 5.4.1. LOF fuses an existing foreground
object, represented by a set of multi-view images, into a background 3D scene condi-
tioned on a user-provided 3D bounding box. To extend LOF to generate new objects
in a 3D scene, first a 3D object based on a text prompt using DreamFusion [42]–a
text-to-3D generative models–is generated. Then, their proposed method can be used
to fuse the generated object with the scene based on the user-provided 3D bounding
box, which determines the desired location, orientation and scale.

LOF is mainly designed and evaluated for fusing real objects with 3D scenes,
which is different from and not comparable to our setup. The authors initially had
further evaluated their proposed method on generated objects on two examples,
which eventually was excluded in their final revision. We compare our method
by applying the same prompt as that of one of those examples ("A sitting panda
sculpture") to one of our own 3D scenes.

It is important to note that InseRF, different from LOF, does not rely on a 3D input
bounding box. InseRF addresses a considerably more challenging task where the 3D
placement is determined from only one single-view 2D bounding box from the user.
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InseRF is more suitable for practical applications involving user interactions, as it is
easier for the users to provide rough 2D bounding boxes rather than accurate 3D
ones. Nevertheless, the comparison provided in Fig. 5.5 shows that InseRF achieves
comparable results with LOF despite having no 3D guidance.
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Edited Neural Scene RepresentationReference View Reference Edit

Fig: Visual Examples - Main Paper

A mug

A pepper grinder

A garden gnome

A duck

A cup

A teddy bear

A duck

A succulent

A pink crystal

FIGURE D.1: Examples of using InseRF to insert an object into the neural representation
of different indoor and outdoor scenes. More examples can be found in
Fig. 5.3 .
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Original Scene I-N2N MV-Inpainting InseRF (ours) Original Scene I-N2N MV-Inpainting InseRF (ours)

Original Scene I-N2N MV-Inpainting InseRF (ours) Original Scene I-N2N MV-Inpainting

(a) A cup on the table

Original Scene I-N2N MV-Inpainting InseRF (ours)

(b) A duck on the road

Original Scene I-N2N MV-Inpainting InseRF (ours) Original Scene I-N2N MV-Inpainting InseRF (ours)

Original Scene I-N2N MV-Inpainting InseRF (ours) Original Scene I-N2N MV-Inpainting

(c) A pepper grinder on the counter

Original Scene I-N2N MV-Inpainting InseRF (ours) Original Scene I-N2N MV-Inpainting InseRF (ours)

Original Scene I-N2N MV-Inpainting InseRF (ours) Original Scene I-N2N MV-Inpainting

(d) A pouffe on the carpet

FIGURE D.2: Qualitative comparison of object insertion with different methods. I-N2N
and multiview inpainting both fail at inserting the geometry of the object at
the desired location. Our method, in contrast, can insert new 3D-consistent
objects at the desired location. More examples can be found in Fig. 5.4 .
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(b) A wedding cake

FIGURE D.3: Additional visualizations of the effect of refinement (introduced in
Sec. 5.3.6) on object insertion. Our refinement step can add additional
texture details and lighting effects. More examples are provided in Fig. 5.8 .

Original Scene Edited Scene with Multiple Object Insertions

(a) A panettone and a pepper grinder

Original Scene Edited Scene with Multiple Object Insertions

Original Scene Edited Scene with Multiple Object Insertions

(b) A cup, a wedding cake, and a garden gnome

FIGURE D.4: Multiple object insertion. Single inserted objects using our method can be
arbitrarily composited into the scene, as also visualized in Fig. 5.9 .
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104. Bińkowski, M., Sutherland, D. J., Arbel, M. & Gretton, A. Demystifying MMD
GANs in International Conference on Learning Representations (2018).

105. Kang, M. & Park, J. ContraGAN: Contrastive Learning for Conditional
Image Generation in Conference on Neural Information Processing Systems
(NeurIPS) (2020).

106. Odena, A., Olah, C. & Shlens, J. Conditional Image Synthesis with Auxiliary
Classifier GANs in International conference on machine learning (2017),
2642.

107. Shahbazi, M., Huang, Z., Paudel, D. P., Chhatkuli, A. & Van Gool, L. Efficient
Conditional GAN Transfer with Knowledge Propagation across Classes in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) (2021).

108. Liu, B., Zhu, Y., Song, K. & Elgammal, A. Towards Faster and Stabilized
{GAN} Training for High-fidelity Few-shot Image Synthesis in Submitted to
International Conference on Learning Representations (2021).

109. Ramasinghe, S., Farazi, M., Khan, S., Barnes, N. & Gould, S. Rethinking
conditional GAN training: An approach using geometrically structured latent
manifolds in NeurIPS (2021).

110. Lugmayr, A., Danelljan, M., Yu, F., Van Gool, L. & Timofte, R. Normalizing
Flow as a Flexible Fidelity Objective for Photo-Realistic Super-Resolution
in Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV) (2022), 1756.

111. Lee, S., Ha, J. & Kim, G. Harmonizing Maximum Likelihood with GANs for
Multimodal Conditional Generation in International Conference on Learning
Representations (2019).

112. Karras, T., Aila, T., Laine, S. & Lehtinen, J. Progressive Growing of GANs for
Improved Quality, Stability, and Variation in Proceedings of the International
Conference on Learning Representations (ICLR) (2018).

113. Choi, Y., Uh, Y., Yoo, J. & Ha, J.-W. StarGAN v2: Diverse Image Synthesis
for Multiple Domains in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (2020).

114. Sauer, A., Schwarz, K. & Geiger, A. StyleGAN-XL: Scaling StyleGAN to
Large Diverse Datasets in. abs/2201.00273 (2022).



132 B I B L I O G R A P H Y

115. Sauer, A., Chitta, K., Muller, J. & Geiger, A. Projected GANs Converge
Faster in NeurIPS (2021).

116. Nguyen-Phuoc, T., Li, C., Theis, L., Richardt, C. & Yang, Y.-L. HoloGAN:
Unsupervised Learning of 3D Representations From Natural Images in The
IEEE International Conference on Computer Vision (ICCV) (2019).

117. Tewari, A., Elgharib, M., Bharaj, G., Bernard, F., Seidel, H.-P., Perez, P.,
Zollhofer, M. & Theobalt, C. StyleRig: Rigging StyleGAN for 3D Control
Over Portrait Images in (2020), 6141.

118. Kowalski, M., Garbin, S. J., Estellers, V., Baltrušaitis, T., Johnson, M. & Shot-
ton, J. CONFIG: Controllable Neural Face Image Generation in European
Conference on Computer Vision (ECCV) (2020).

119. Deng, Y., Yang, J., Chen, D., Wen, F. & Tong, X. Disentangled and Control-
lable Face Image Generation via 3D Imitative-Contrastive Learning in IEEE
Computer Vision and Pattern Recognition (2020).

120. Nguyen-Phuoc, T., Richardt, C., Mai, L., Yang, Y.-L. & Mitra, N. BlockGAN:
Learning 3D Object-aware Scene Representations from Unlabelled Images
in Advances in Neural Information Processing Systems 33 (2020).

121. Shi, Y., Aggarwal, D. & Jain, A. Lifting 2D StyleGAN for 3D-Aware Face
Generation in (2021), 6254.

122. Pan, X., Dai, B., Liu, Z., Loy, C. C. & Luo, P. Do 2D GANs Know 3D
Shape? Unsupervised 3D Shape Reconstruction from 2D Image GANs in
International Conference on Learning Representations (2021).

123. Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T., Ramamoorthi, R.
& Ng, R. NeRF: Representing Scenes as Neural Radiance Fields for View
Synthesis in ECCV (2020).

124. Baatz, H., Granskog, J., Papas, M., Rousselle, F. & Novák, J. NeRF-Tex:
Neural Reflectance Field Textures. Computer Graphics Forum 41, 287 (2022).

125. Barron, J. T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R. &
Srinivasan, P. P. Mip-NeRF: A Multiscale Representation for Anti-Aliasing
Neural Radiance Fields. 2021 IEEE/CVF International Conference on Com-
puter Vision (ICCV) (2021).

126. Sara Fridovich-Keil and Alex Yu, Tancik, M., Chen, Q., Recht, B. &
Kanazawa, A. Plenoxels: Radiance Fields without Neural Networks in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (2022).

127. Müller, T., Evans, A., Schied, C. & Keller, A. Instant neural graphics primi-
tives with a multiresolution hash encoding. arXiv preprint arXiv:2201.05989
(2022).



B I B L I O G R A P H Y 133

128. Martin-Brualla, R., Radwan, N., Sajjadi, M. S. M., Barron, J. T., Dosovit-
skiy, A. & Duckworth, D. NeRF in the Wild: Neural Radiance Fields for
Unconstrained Photo Collections 2020.

129. Guo, Y.-C., Kang, D., Bao, L., He, Y. & Zhang, S.-H. NeRFReN: Neural
Radiance Fields With Reflections in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) (2022), 18409.

130. Wu, L., Lee, J. Y., Bhattad, A., Wang, Y. & Forsyth, D. DIVeR: Real-time and
Accurate Neural Radiance Fields with Deterministic Integration for Volume
Rendering 2021.

131. Schwarz, K., Liao, Y., Niemeyer, M. & Geiger, A. GRAF: Generative Radi-
ance Fields for 3D-Aware Image Synthesis in Advances in Neural Information
Processing Systems (NeurIPS) (2020).

132. Chan, E. R., Monteiro, M., Kellnhofer, P., Wu, J. & Wetzstein, G. pi-gan: Pe-
riodic implicit generative adversarial networks for 3d-aware image synthesis
in Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition (2021), 5799.

133. Or-El, R., Luo, X., Shan, M., Shechtman, E., Park, J. J. & Kemelmacher-
Shlizerman, I. StyleSDF: High-Resolution 3D-Consistent Image and Geome-
try Generation in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) (2022), 13503.

134. Gu, J., Liu, L., Wang, P. & Theobalt, C. StyleNeRF: A Style-based 3D Aware
Generator for High-resolution Image Synthesis in International Conference
on Learning Representations (2022).

135. Skorokhodov, I., Tulyakov, S., Wang, Y. & Wonka, P. EpiGRAF: Rethinking
training of 3D GANs. arXiv preprint arXiv:2206.10535 (2022).

136. Niemeyer, M. & Geiger, A. Giraffe: Representing scenes as compositional
generative neural feature fields in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (2021), 11453.

137. Schwarz, K., Sauer, A., Niemeyer, M., Liao, Y. & Geiger, A. Voxgraf:
Fast 3d-aware image synthesis with sparse voxel grids. arXiv preprint
arXiv:2206.07695 (2022).

138. Shoshan, A., Bhonker, N., Kviatkovsky, I. & Medioni, G. GAN-Control:
Explicitly Controllable GANs in Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV) (2021), 14083.

139. Hu, Y., Wu, X., Yu, B., He, R. & Sun, Z. Pose-guided photorealistic face
rotation. CVPR (2018).



134 B I B L I O G R A P H Y

140. Müller, T., Evans, A., Schied, C. & Keller, A. Instant Neural Graphics Primi-
tives with a Multiresolution Hash Encoding. ACM Trans. Graph. 41, 102:1
(2022).

141. Sun, C., Sun, M. & Chen, H.-T. Direct voxel grid optimization: Super-fast con-
vergence for radiance fields reconstruction in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (2022), 5459.

142. Chen, A., Xu, Z., Geiger, A., Yu, J. & Su, H. TensoRF: Tensorial Radiance
Fields in European Conference on Computer Vision (ECCV) (2022).

143. Wizadwongsa, S., Phongthawee, P., Yenphraphai, J. & Suwajanakorn, S. NeX:
Real-time View Synthesis with Neural Basis Expansion in IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (2021).

144. Tucker, R. & Snavely, N. Single-view View Synthesis with Multiplane Images
in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2020).

145. Yu, A., Li, R., Tancik, M., Li, H., Ng, R. & Kanazawa, A. PlenOctrees for
Real-time Rendering of Neural Radiance Fields in ICCV (2021).

146. Garbin, S. J., Kowalski, M., Johnson, M., Shotton, J. & Valentin, J. FastNeRF:
High-Fidelity Neural Rendering at 200FPS (2021).

147. Hedman, P., Srinivasan, P. P., Mildenhall, B., Barron, J. T. & Debevec, P.
Baking Neural Radiance Fields for Real-Time View Synthesis. ICCV (2021).

148. Neff, T., Stadlbauer, P., Parger, M., Kurz, A., Mueller, J. H., Chaitanya,
C. R. A., Kaplanyan, A. S. & Steinberger, M. DONeRF: Towards Real-Time
Rendering of Compact Neural Radiance Fields using Depth Oracle Networks.
Computer Graphics Forum 40 (2021).

149. Hu, T., Liu, S., Chen, Y., Shen, T. & Jia, J. EfficientNeRF Efficient Neural
Radiance Fields in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) (2022), 12902.

150. Zhao, X., Ma, F., Güera, D., Ren, Z., Schwing, A. G. & Colburn, A. Gen-
erative Multiplane Images: Making a 2D GAN 3D-Aware in Proc. ECCV
(2022).

151. Trevithick, A., Chan, M., Stengel, M., Chan, E. R., Liu, C., Yu, Z., Khamis,
S., Chandraker, M., Ramamoorthi, R. & Nagano, K. Real-Time Radiance
Fields for Single-Image Portrait View Synthesis in ACM Transactions on
Graphics (SIGGRAPH) (2023).

152. Kwak, J.-g., Li, Y., Yoon, D., Kim, D., Han, D. & Ko, H. Injecting 3D
Perception of Controllable NeRF-GAN into StyleGAN for Editable Portrait
Image Synthesis in European Conference on Computer Vision (2022), 236.



B I B L I O G R A P H Y 135

153. Karras, T., Aittala, M., Laine, S., Härkönen, E., Hellsten, J., Lehtinen, J.
& Aila, T. Alias-free generative adversarial networks. Advances in Neural
Information Processing Systems 34, 852 (2021).

154. Karras, T., Laine, S. & Aila, T. A Style-Based Generator Architecture for
Generative Adversarial Networks in (2019), 4396.

155. Choi, Y., Uh, Y., Yoo, J. & Ha, J.-W. Stargan v2: Diverse image synthesis for
multiple domains in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition (2020), 8188.

156. Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z.,
Savarese, S., Savva, M., Song, S., Su, H., et al. Shapenet: An information-rich
3d model repository. arXiv preprint arXiv:1512.03012 (2015).

157. Deng, Y., Yang, J., Xu, S., Chen, D., Jia, Y. & Tong, X. Accurate 3D Face
Reconstruction with Weakly-Supervised Learning: From Single Image to
Image Set in IEEE Computer Vision and Pattern Recognition Workshops
(2019).

158. Deng, J., Guo, J., Niannan, X. & Zafeiriou, S. ArcFace: Additive Angular
Margin Loss for Deep Face Recognition in CVPR (2019).

159. Roich, D., Mokady, R., Bermano, A. H. & Cohen-Or, D. Pivotal tuning for
latent-based editing of real images. ACM Transactions on Graphics (TOG)
42, 1 (2022).

160. Lin, C.-H., Gao, J., Tang, L., Takikawa, T., Zeng, X., Huang, X., Kreis,
K., Fidler, S., Liu, M.-Y. & Lin, T.-Y. Magic3D: High-Resolution Text-to-
3D Content Creation in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2023).

161. Wang, Z., Lu, C., Wang, Y., Bao, F., Li, C., Su, H. & Zhu, J. ProlificDreamer:
High-Fidelity and Diverse Text-to-3D Generation with Variational Score
Distillation. arXiv preprint arXiv:2305.16213 (2023).

162. Liu, M., Xu, C., Jin, H., Chen, L., T, M. V., Xu, Z. & Su, H. One-2-3-45:
Any Single Image to 3D Mesh in 45 Seconds without Per-Shape Optimization
2023.

163. Liu, Y., Lin, C., Zeng, Z., Long, X., Liu, L., Komura, T. & Wang, W. Sync-
Dreamer: Learning to Generate Multiview-consistent Images from a Single-
view Image. arXiv preprint arXiv:2309.03453 (2023).

164. Qian, G., Mai, J., Hamdi, A., Ren, J., Siarohin, A., Li, B., Lee, H.-Y., Sko-
rokhodov, I., Wonka, P., Tulyakov, S. & Ghanem, B. Magic123: One Image
to High-Quality 3D Object Generation Using Both 2D and 3D Diffusion
Priors. arXiv preprint arXiv:2306.17843 (2023).



136 B I B L I O G R A P H Y

165. Long, X., Guo, Y.-C., Lin, C., Liu, Y., Dou, Z., Liu, L., Ma, Y., Zhang, S.-H.,
Habermann, M., Theobalt, C. & Wang, W. Wonder3D: Single Image to 3D
using Cross-Domain Diffusion 2023.

166. Bautista, M. A., Guo, P., Abnar, S., Talbott, W., Toshev, A., Chen, Z., Dinh,
L., Zhai, S., Goh, H., Ulbricht, D., Dehghan, A. & Susskind, J. GAUDI: A
Neural Architect for Immersive 3D Scene Generation. arXiv (2022).

167. Chan, E. R., Lin, C. Z., Chan, M. A., Nagano, K., Pan, B., Mello, S. D., Gallo,
O., Guibas, L., Tremblay, J., Khamis, S., Karras, T. & Wetzstein, G. Efficient
Geometry-aware 3D Generative Adversarial Networks in arXiv (2021).

168. Ntavelis, E., Siarohin, A., Olszewski, K., Wang, C., Gool, L. V. & Tulyakov,
S. AutoDecoding Latent 3D Diffusion Models 2023.

169. Mirzaei, A., Aumentado-Armstrong, T., Brubaker, M. A., Kelly, J., Levin-
shtein, A., Derpanis, K. G. & Gilitschenski, I. Watch Your Steps: Local Image
and Scene Editing by Text Instructions in arXiv (2023).

170. Song, H., Choi, S., Do, H., Lee, C. & Kim, T. Blending-NeRF: Text-Driven
Localized Editing in Neural Radiance Fields in Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV) (2023), 14383.

171. Weder, S., Garcia-Hernando, G., Monszpart, Á., Pollefeys, M., Brostow, G.,
Firman, M. & Vicente, S. Removing Objects From Neural Radiance Fields in
CVPR (2023).

172. Mirzaei, A., Aumentado-Armstrong, T., Derpanis, K. G., Kelly, J., Brubaker,
M. A., Gilitschenski, I. & Levinshtein, A. SPIn-NeRF: Multiview Segmenta-
tion and Perceptual Inpainting with Neural Radiance Fields in CVPR (2023).

173. Yin, Y., Fu, Z., Yang, F. & Lin, G. OR-NeRF: Object Removing from 3D
Scenes Guided by Multiview Segmentation with Neural Radiance Fields 2023.

174. Park, J., Kwon, G. & Ye, J. C. ED-NeRF: Efficient Text-Guided Editing of
3D Scene using Latent Space NeRF 2023.

175. Yu, L., Xiang, W. & Han, K. Edit-DiffNeRF: Editing 3D Neural Radiance
Fields using 2D Diffusion Model 2023.

176. Ruiz, N., Li, Y., Jampani, V., Pritch, Y., Rubinstein, M. & Aberman, K. Dream-
Booth: Fine Tuning Text-to-image Diffusion Models for Subject-Driven
Generation (2022).

177. Bartrum, E., Nguyen-Phuoc, T., Xie, C., Li, Z., Khan, N., Avetisyan, A.,
Lanman, D. & Xiao, L. ReplaceAnything3D: Text-Guided 3D Scene Editing
with Compositional Neural Radiance Fields 2024.



B I B L I O G R A P H Y 137

178. Li, Y., Dou, Y., Shi, Y., Lei, Y., Chen, X., Zhang, Y., Zhou, P. & Ni, B.
FocalDreamer: Text-driven 3D Editing via Focal-fusion Assembly 2023.

179. Shum, K. C., Kim, J., Hua, B.-S., Nguyen, D. T. & Yeung, S.-K. Language-
driven Object Fusion into Neural Radiance Fields with Pose-Conditioned
Dataset Updates 2023.

180. Brooks, T., Holynski, A. & Efros, A. A. InstructPix2Pix: Learning to Follow
Image Editing Instructions in CVPR (2023).

181. Hertz, A., Mokady, R., Tenenbaum, J., Aberman, K., Pritch, Y. & Cohen-Or,
D. Prompt-to-prompt image editing with cross attention control (2022).

182. Zhang, S., Yang, X., Feng, Y., Qin, C., Chen, C.-C., Yu, N., Chen, Z., Wang,
H., Savarese, S., Ermon, S., Xiong, C. & Xu, R. HIVE: Harnessing Human
Feedback for Instructional Visual Editing. arXiv preprint arXiv:2303.09618
(2023).

183. Lugmayr, A., Danelljan, M., Romero, A., Yu, F., Timofte, R. & Van Gool,
L. RePaint: Inpainting Using Denoising Diffusion Probabilistic Models in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR) (2022), 11461.

184. Avrahami, O., Lischinski, D. & Fried, O. Blended Diffusion for Text-Driven
Editing of Natural Images in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) (2022), 18208.

185. Patashnik, O., Garibi, D., Azuri, I., Averbuch-Elor, H. & Cohen-Or, D. Local-
izing Object-level Shape Variations with Text-to-Image Diffusion Models in
Proceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV) (2023).

186. Zhang, K., Mo, L., Chen, W., Sun, H. & Su, Y. MagicBrush: A Manually
Annotated Dataset for Instruction-Guided Image Editing in Advances in
Neural Information Processing Systems (2023).

187. Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton, E., Ghasemipour,
S. K. S., Gontijo-Lopes, R., Ayan, B. K., Salimans, T., Ho, J., Fleet, D. J.
& Norouzi, M. Photorealistic Text-to-Image Diffusion Models with Deep
Language Understanding in Advances in Neural Information Processing
Systems (eds Oh, A. H., Agarwal, A., Belgrave, D. & Cho, K.) (2022).

188. Deitke, M., Schwenk, D., Salvador, J., Weihs, L., Michel, O., VanderBilt, E.,
Schmidt, L., Ehsani, K., Kembhavi, A. & Farhadi, A. Objaverse: A Universe
of Annotated 3D Objects in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) (2023), 13142.



138 B I B L I O G R A P H Y

189. Ranftl, R., Lasinger, K., Hafner, D., Schindler, K. & Koltun, V. Towards
Robust Monocular Depth Estimation: Mixing Datasets for Zero-Shot Cross-
Dataset Transfer. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 44 (2022).

190. Schwarz, K., Liao, Y., Niemeyer, M. & Geiger, A. GRAF: Generative Radi-
ance Fields for 3D-Aware Image Synthesis in Advances in Neural Information
Processing Systems (NeurIPS) (2020).

191. Barron, J. T., Mildenhall, B., Verbin, D., Srinivasan, P. P. & Hedman, P.
Mip-nerf 360: Unbounded anti-aliased neural radiance fields in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(2022), 5470.

192. Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S.,
Sastry, G., Askell, A., Mishkin, P., Clark, J., Krueger, G. & Sutskever, I.
Learning Transferable Visual Models From Natural Language Supervision in
Proceedings of the 38th International Conference on Machine Learning (eds
Meila, M. & Zhang, T.) 139 (PMLR, 2021), 8748.

193. Gal, R., Alaluf, Y., Atzmon, Y., Patashnik, O., Bermano, A. H., Chechik, G.
& Cohen-Or, D. An Image is Worth One Word: Personalizing Text-to-Image
Generation using Textual Inversion 2022.

194. Kumari, N., Zhang, B., Zhang, R., Shechtman, E. & Zhu, J.-Y. Multi-Concept
Customization of Text-to-Image Diffusion (2023).

195. Zhang, L., Rao, A. & Agrawala, M. Adding Conditional Control to Text-to-
Image Diffusion Models 2023.

196. Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L.
& Chen, W. LoRA: Low-Rank Adaptation of Large Language Models in
International Conference on Learning Representations (2022).

197. Li, Y., Wang, H., Jin, Q., Hu, J., Chemerys, P., Fu, Y., Wang, Y., Tulyakov, S.
& Ren, J. SnapFusion: Text-to-Image Diffusion Model on Mobile Devices
within Two Seconds in Thirty-seventh Conference on Neural Information
Processing Systems (2023).

198. Zhao, Y., Xu, Y., Xiao, Z. & Hou, T. MobileDiffusion: Subsecond Text-to-
Image Generation on Mobile Devices 2023.

199. Kerbl, B., Kopanas, G., Leimkühler, T. & Drettakis, G. 3D Gaussian Splatting
for Real-Time Radiance Field Rendering. ACM Transactions on Graphics 42
(2023).



B I B L I O G R A P H Y 139

200. Chen, Y., Chen, Z., Zhang, C., Wang, F., Yang, X., Wang, Y., Cai, Z., Yang,
L., Liu, H. & Lin, G. GaussianEditor: Swift and Controllable 3D Editing
with Gaussian Splatting 2023.

201. Blattmann, A., Rombach, R., Ling, H., Dockhorn, T., Kim, S. W., Fidler,
S. & Kreis, K. Align your Latents: High-Resolution Video Synthesis with
Latent Diffusion Models in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2023).

202. Blattmann, A., Dockhorn, T., Kulal, S., Mendelevitch, D., Kilian, M., Lorenz,
D., Levi, Y., English, Z., Voleti, V., Letts, A., Jampani, V. & Rombach, R.
Stable Video Diffusion: Scaling Latent Video Diffusion Models to Large
Datasets 2023.

203. Bar-Tal, O., Chefer, H., Tov, O., Herrmann, C., Paiss, R., Zada, S., Ephrat,
A., Hur, J., Liu, G., Raj, A., Li, Y., Rubinstein, M., Michaeli, T., Wang, O.,
Sun, D., Dekel, T. & Mosseri, I. Lumiere: A Space-Time Diffusion Model for
Video Generation 2024.

204. Peruzzo, E., Goel, V., Xu, D., Xu, X., Jiang, Y., Wang, Z., Shi, H. & Sebe, N.
VASE: Object-Centric Appearance and Shape Manipulation of Real Videos
2024.

205. Kahatapitiya, K., Karjauv, A., Abati, D., Porikli, F., Asano, Y. M. & Habibian,
A. Object-Centric Diffusion for Efficient Video Editing 2024.

206. Bahmani, S., Skorokhodov, I., Rong, V., Wetzstein, G., Guibas, L., Wonka, P.,
Tulyakov, S., Park, J. J., Tagliasacchi, A. & Lindell, D. B. 4D-fy: Text-to-4D
Generation Using Hybrid Score Distillation Sampling. arXiv (2023).

207. Shao, R., Sun, J., Peng, C., Zheng, Z., Zhou, B., Zhang, H. & Liu, Y. Con-
trol4D: Efficient 4D Portrait Editing with Text (2023).

208. Kynkäänniemi, T., Karras, T., Laine, S., Lehtinen, J. & Aila, T. Improved
Precision and Recall Metric for Assessing Generative Models. CoRR
abs/1904.06991 (2019).

209. Richardson, E., Alaluf, Y., Patashnik, O., Nitzan, Y., Azar, Y., Shapiro, S. &
Cohen-Or, D. Encoding in Style: a StyleGAN Encoder for Image-to-Image
Translation in IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR) (2021).

210. EG3D Inversion Projector https://github.com/oneThousand1000/
EG3D-projector.

https://github.com/oneThousand1000/EG3D-projector
https://github.com/oneThousand1000/EG3D-projector

	Abstract
	Zusammenfassung
	Publications
	Acknowledgements
	Contents
	1 Introduction
	1.1 Introduction to Generative Models
	1.2 Generative Models under Real-World Constraints
	1.3 From 2D to 3D Generative modeling
	1.4 Thesis Overview

	2 Class-Specific Transfer Learning in GANs
	2.1 Introduction
	2.2 Related Work
	2.3 Problem Definition
	2.4 Knowledge Transfer Across Classes
	2.5 Experiments
	2.6 Conclusion and Future Work

	3 Transitional Conditioning in GANs
	3.1 Introduction
	3.2 Class-conditioning Mode Collapse
	3.3 Method
	3.4 Experiments
	3.5 Related Work
	3.6 Conclusions

	4 Efficient 3D-Aware Generation with Convolutions
	4.1 Introduction
	4.2 Related Work
	4.3 Method
	4.4 Experiments
	4.5 Conclusion

	5 Generative 3D Object Insertion
	5.1 Introduction
	5.2 Related Work
	5.3 Method
	5.4 Experiments
	5.5 Conclusion

	6 Conclusion
	A Appendix: Class-Specific Transfer Learning in GANs
	A.1 Additional Implementation Details
	A.2 Further Discussion on Quantitative Results
	A.3 Discussion on Class Similarities
	A.4 FID and Loss Curves
	A.5 Single-class Target
	A.6 Additional Visual Results

	B Appendix: Transitional Conditioning in GANs
	B.1 Transition Function
	B.2 More details on the implementation
	B.3 Experiments on CIFAR100
	B.4 Class-wise FID and KID
	B.5 Precision and Recall
	B.6 More ablation: StyleGAN2 without ADA
	B.7 More ablation: Transition in the loss function
	B.8 Visual Results

	C Appendix: Efficient 3D-Aware Generation with Convolutions
	C.1 Evaluation of Correspondence
	C.2 Analysis of Efficiency on ShapeNet Cars
	C.3 Implementation Details
	C.4 Limitations
	C.5 Visual Results

	D Appendix: Generative 3D Object Insertion
	D.1 Additional Visual Results
	D.2 Additional Details on the Method
	D.3 Additional Details on Baselines

	 Bibliography

