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On either side of the Manger that night it was 

quiet at one A.M. and it was quiet at two A.M. 

and it was quiet at three A.M. and it was such 

a loud quietness at four A.M. that everyone 

blinked, sat up in bed, and listened. 

 

Ray Bradbury, “We’ll Always Have Paris” (2009) 
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Abstract 

Songbirds (Passeri) have evolved a network of brain areas dedicated to one specific task – 

learning to produce complex song. This close link between structure and behavior is a rare trait 

in the animal kingdom, presenting them as an excellent model for the study of neural motor 

learning and control. Research in this field, however, still lacks behind technical advances of high-

yield electrophysiology because songbirds are particularly small and sensitive to the weight of a 

chronic implant.  

To address these challenges, we developed a lightweight chronic Neuropixels implant assembly 

(NIA). Enabling independent placement of the headstage and the NIA, it surpasses previous 

designs in its adaptability and flexibility to target brain areas at more extreme angles while 

maintaining a minimal weight. Combined with refined surgical and behavioral protocols, this 

enabled a fast recovery time and reduced burden when tested in freely moving zebra finches 

(Taeniopygia guttata). Consequently, birds resumed singing within days after implantation, 

facilitating the collection of an extensive dataset (> 350 hours) consisting of spiking activity from 

both the cortex-like premotor region LMAN (lateral magnocellular nucleus of the anterior 

nidopallium) and the basal-ganglia-like area including Area X.  

We tested the neural recording quality over several days and evaluated spike sorting results for 

sessions with significant amount of singing. The results showcase the effectiveness of the custom-

designed NIA in facilitating high-yield recordings, capturing up to 100 units simultaneously. 

Despite a slow but gradual decline in spiking signals, we collected comprehensive datasets with 

substantial singing and robust neural counts (> 140 h). In part of these datasets, we effectively 

classified neuronal cell types in Area X, affirming the validity of our approach by both replicating 

and building upon previous research. Crucially, these recordings allowed the first-ever 

assessment of neuronal interactions between LMAN and Area X during singing, offering 

unprecedented insights into the coupling between these two areas and unveiling a complex 

interplay within the neural network. 

To gain further insight into the relationship between LMAN and song behavior, we analyzed pitch 

variability from one rendition to the next using a latent dynamic model combined with song 

recordings from birds both before and after LMAN lesioning. Our analysis revealed a stochastic 

pattern in pitch variability which is closely linked to LMAN, supported by a robust linear relationship 

between lesion volume and the reduction in estimated variability. Extending this approach to our 

Neuropixels recordings, we find significant neuro-behavioral correlations that align with the idea 

of LMAN’s involvement in pitch variability. However, comparing neuro-behavioral correlates 

between estimated and observed pitch variability yielded inconclusive results and hints towards 

a more intricate neural control mechanism responsible for regulating vocal variability.  

Lastly, we developed a semi-supervised method for efficiently segmenting and clustering 

vocalizations of adult zebra finches, a previously tedious task often impeded by background 

noises. We use a dimensionality reduction technique to embed short, overlapping segments of 
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the sound spectrogram in a 2D plane. In a human-in-the-loop approach, we allow users to explore 

and define a given vocalization type by specifying pairs of high-density regions in the 2D 

embedding, one region associated with vocalization onsets and the other with offsets. We 

demonstrate our two-neighborhood (2N) extraction method by identification of various 

vocalization types from continuous data streams. Our approach yields lower false positive rates 

than comparable approaches and, owing to our purpose-built graphical user interface (GUI) for 

visualizing and annotation data, can be performed in a fast and user-friendly manner.  

Taken together, we present a novel implant design facilitating the recording of high-yield 

electrophysiological data from freely moving and singing birds. Notably, the chronic nature of the 

implant allowed the acquisition of an extensive dataset of neural activity during intrinsically 

motivated singing, female elicited singing, playback of the birds own song, and sleep, and will 

hopefully help to further our understanding of the neuronal code in the LMAN/Area X network with 

respect to the questions addressed in this thesis and beyond.  
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Zusammenfassung 

Singvögel (Passeri) besitzen ein dezidiertes Netzwerk an Hirnstrukturen, das sich einer 

spezifischen Aufgabe widmet – dem Erlernen und Produzieren von komplexen Gesängen. Diese 

enge Verbindung zwischen Struktur und Verhalten ist einzigartig im Tierreich und postuliert 

Singvögel dadurch als exzellentes Forschungsmodell für die Untersuchung von neuronalen 

Mechanismen der motorischen Kontrolle und des motorischen Lernens. Aktuell hält die 

Forschung in diesem Bereich jedoch nicht mit den technischen Fortschritten hochskalierter 

elektrophysiologischer Messungen mit, da Singvögel besonders klein sind und empfindlich auf 

das zusätzliche Gewicht neuartiger Messgeräte in einem chronischen Implantat reagieren. 

Um diese Herausforderungen anzugehen, haben wir eine leichtes, chronisches Hirnimplantat auf 

Basis von Neuropixels Elektroden (NIA) entwickelt. Durch die unabhängige Platzierung der 

Hilfselektronik und dem NIA übertrifft es frühere Entwürfe in Bezug auf die experimentelle 

Anpassungsfähigkeit und Flexibilität. Es kann dadurch Hirnareale unter extremen Winkeln 

ansteuern, während es ein minimales Gewicht beibehält. In Kombination mit verfeinerten 

chirurgischen und verhaltensbiologischen Protokollen ermöglicht unser Ansatz eine schnelle 

Erholungszeit nach der Implantierung und reduziert die generelle Belastung, wie Tests in frei 

beweglichen Zebrafinken (Taeniopygia guttata) zeigen. Die getesteten Vögel fingen innerhalb der 

ersten Tage nach der Operation wieder an zu singen. Dies ermöglichte die Aufnahme eines 

umfangreichen Datensatzes (> 350 Stunden), der erstmalig simultan die neuronale Aktivität in 

dem kortikalen prämotorischen Areal LMAN (lateraler magnozellularer Kern des vorderen 

Nidopalliums) und der gesangsrelevanten Region in den Basal Ganglien Area X erfasst. 

Wir testeten die Qualität der neuralen Aufzeichnungen über mehrere Tage und bewerteten die 

Ergebnisse nach Zuordnung der Aktionspotentiale für Aufnahmen mit einer hohen Anzahl an 

Gesangswiederholungen. Die Ergebnisse zeigen die Wirksamkeit des speziell entwickelten NIAs 

für die skalierte Messung intrakortikaler Aktionspotentiale, bei denen bis zu 100 individuelle 

Neurone bzw. Gruppen davon gleichzeitig erfasst werden konnten. Trotz eines langsamen, aber 

stetigen Rückgangs der neuronalen Signale sammelten wir umfassende Datensätze mit 

erheblichem Gesang und einer robusten Anzahl neuronalen Einheiten (> 140 Stunden). In einem 

Teil dieser Datensätze klassifizierten wir neuronale Zelltypen in Area X, was die Gültigkeit unseres 

Ansatzes sowohl durch die Replikation als auch durch den Ausbau vorheriger Forschung 

untermauert. Ein wesentlicher Beitrag unserer Arbeit ist, dass diese Aufzeichnungen die allererste 

Untersuchung neuronaler Interaktionen zwischen LMAN und Area X während des Singens 

ermöglichen. Dies bietet ein beispielloser Einblick in die flächenübergreifende Kopplung und 

enthüllten ein komplexes Zusammenspiel innerhalb der verschiedenen Hirnregionen. 

Um weitere Einblicke in die Beziehung zwischen LMAN und dem Gesangsverhalten zu gewinnen, 

analysierten wir die Variabilität in der Tonhöhe einer Gesangssilbe die über mehrere 

Wiederholungen zu beobachten ist. LMAN ist eine zentrale Quelle dieser Variabilität, doch ist 

bisher unklar, wie gross der Anteil an Variabilität bezogen auf LMAN ist und welche Merkmale ihn 

beschreiben. Anhand eines latenten Variablenmodellen analysierten wir die Gesangsaufnahmen 

von Vögeln vor und nach bilateraler Läsionierung von LMAN. Unsere Analyse deutet auf ein 
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stochastisches Muster in der Variabilität der Tonhöhe hin, das mit LMAN assoziiert ist. Die 

Korrelation zwischen der Läsionsgrösse und der Veränderung dieser Art latenter Motorvariabiltät 

war nahezu perfekt, und sie war stärker als die Korrelation mit der Veränderung der 

Tonhöhenvariabilität. Wir erweiterten diesen Ansatz auf unsere Aufnahmen mit Neuropixels 

Elektroden erweiterten und fanden signifikante Korrelationen zwischen prämotorischer 

neuronaler Aktivität in LMAN und Tonhöhe, in Übereinstimmung mit der Idee das LMAN zu 

Variationen in der Tonhöhe beiträgt. Der Vergleich von Korrelationen zwischen latenter und 

beobachteter Tonhöhenvariabilität lieferte jedoch inkonsistente Ergebnisse und deutet auf einen 

komplexeren neuralen Kontrollmechanismus hin, der für die Regulierung der vokalen Variabilität 

verantwortlich ist. 

Zuletzt entwickelten wir eine semi-überwachte Methode zur effizienten Segmentierung und 

Annotieren von Gesängen erwachsener Zebrafinken, eine zuvor mühsame Aufgabe, die oft durch 

Hintergrundgeräusche erschwert wird. Unser Ansatz basiert auf Methoden, die die 

Dimensionalität grosser Datenmengen reduziert und kurze, überlappende Segmente des 

Audiospektrogramms in einer 2D-Ebene einbettet. Im Gegensatz zu anderen Methoden, bezieht 

unser Ansatz Benutzer aktive in die Entscheidungsfindung mit ein. Wir ermöglichen es den 

Benutzern einen bestimmten Vokalisationtyp zu erkunden und zu definieren, indem sie Regionen 

hoher Dichte im zweidimensionalen Embedding angeben: eine Region, die mit dem Anfang 

assoziiert ist, und eine mit dem Ende. Wir veranschaulichen unsere Extraktionsmethode durch 

die Identifikation verschiedener Arten von Vokalisation in Gesangsaufnahmen, die sich über 

mehrere Tage erstreckten. Unser Ansatz führt zu niedrigeren falsch-positiv Raten als 

vergleichbare Ansätze und kann dank unserer speziell entwickelten grafischen 

Benutzeroberfläche (GUI) für die Visualisierung und Annotieren von Daten auf schnelle und 

benutzerfreundliche Weise durchgeführt werden. 

Zusammenfassend präsentieren wir ein neuartiges Design für Hirnimplantate, die die 

Aufzeichnung von skalierten neuronalen Messungen in sich frei bewegenden und singenden 

Vögeln erleichtert. Insbesondere die chronische Natur der Implantate erlaubte es uns, einen 

reichhaltigen Datensatz von intrakortikaler neuronaler Aktivität zu sammeln – und zwar während 

des intrinsisch motivierten Singens, des Balzgesangs, beim Abspielen des eigenen Gesangs 

sowie während des natürlichen Schlafzustandes. Diese Erkenntnisse erhoffen wir, werden einen 

wertvollen Beitrag leisten, um das Verständnis der neuronalen Kodierung im Vorderhirn der Vögel 

zu vertiefen, sowohl in Bezug auf die in dieser Arbeit adressierten Fragestellungen als auch 

darüber hinaus.  
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Introduction  
 

 

Functional neurobiology with extracellular electrophysiology  

From intrinsic electricity to fine neural potentials 

The constant drive to understand the forces at play in the coding of our nervous system that 

ultimately underly the complex behavior observed in humans and animals has gone hand in hand 

with advances in neural recording techniques.  

The first landmark in this journey was the recognition that electricity is the fundamental mean of 

neural communication in the body of all animals. This was showcased by Luigi Aloisio Galvani in 

1791 when he published a series of carefully conducted experiments demonstrating that electrical 

stimulation elicit muscle twitches (Galvani, 1791). Although there had been similar observations 

before, it was the thoroughness of the experiments and conclusions drawn from the results that 

convinced scientists at the time that electricity must play a fundamental role in neural signaling. 

The pivotal shift in the comprehension of the nervous system did not convince everyone. 

Opponents, such as Alessandro Volta, continued pointing out that the experiments did not 

conclusively establish the intrinsic nature of the observed electricity (reviewed in Finger, 2005). It 

was clear that a device capable of detecting electrical voltage in an unstimulated animal was 

necessary to fully substantiate Galvani's hypothesis. 

Almost 40 years after Galvani’s publication, Emil Du Bois-Reymond mastered such recordings. 

With the aid of an electromagnetic galvanometer1, he was able to measure the current flowing 

through the body of various animals (and himself). Technically skilled, he also managed to 

measure the current during muscle contraction. He overcame the galvanometer’s insensitivity to 

transient deflections with the brilliant idea to apply high-frequency stimulation to a dissected 

muscle. Upon tetanic contraction, he was able to observe negative deflections (Du Bois‐

Reymond, 1843; Finkelstein, 2013) which he named 'action potential' to contrast them from the 

positive deflections observed in passive preparations termed 'resting potential'. 

Following Santiago Ramon y Cajal's histological study on the avian cerebellum (Ramón y Cajal, 

1888) and the subsequent shift toward the "neuron doctrine", which posits that the brain consists 

of individual neurons connected by synapses (Sherrington, 1906), there emerged an increased 

interest in understanding the functional properties of these units. However, the recording 

techniques employed such as Du Bois-Reymond’s galvanometer proved too coarse to detect the 

small potentials generated by individual nerves. 

 
1 A galvanometer operates on the laws of electromagnetism and measures electric current using a wire coil 
placed inside a permanent magnetic field. Passing current through the coil generates a magnetic field that 
aims to align with the outer magnetic field, subsequently rotating the coil and pivoting a coil-attached needle. 
In an astatic setting, the deflection of the coil is proportional to the intensity of the current passing through 
it. 



 
16 

 

The experimental limitation prompted another technological evolution, marked by the 

development of amplification systems capable of multiplying signals up to 7000 times with minimal 

distortion (summarized in Finger, 2005b). This methodological revolution enabled the detection of 

subtle electrical fluctuations, first in peripheral nerve bundles (Gasser & Erlanger, 1922) and later 

in single nerves, revealing fundamental features of neural coding such as the all-or-nothing 

principle, rate coding and adaptation in both the sensory and motor domain (Adrian, 1926; Adrian 

& Bronk, 1928; Adrian & Zotterman, 1926b, 1926a). A decade later then, Renshaw, Forbes, and 

Morrison successfully adopted electrophysiology to perform the very first intracortical recordings 

of action potentials (Renshaw et al., 1940). They actuated a thin electrode in juxtaposition to 

hippocampal neurons to measure their fine neuronal potentials in anesthetized cats. Notably, 

accomplishing such experiments required a high technical understanding of signal processing in 

combination with surgical talent and most importantly perseverance. For instance, David H. Hubel 

and Torsten N. Wiesel, known for their groundbreaking work on neural processing in the visual 

cortex, used 40 cats and yielded an average of 7.5 neurons per animal in their acute experiments 

(Hubel & Wiesel, 1962). In the following years, experimental recordings of neurons remained an 

immense effort. 

Scaling intracortical recording techniques 

Today, electrophysiological recording methods remain the gold standard in neuroscience because 

of their ability to measure neural activity with high temporal resolution in almost any brain location 

and any animal model. Intracellular recording techniques, albeit more insightful with respect to 

changes in the resting potential, are experimentally more challenging. Especially in freely moving 

animals, it is difficult to keep the recording micropipette in place for long enough and even in head-

fixed settings, it can happen that the pipettes break. Extracellular recording methods offer more 

reliability, are commonly employed in freely moving settings and have the advantage of capturing 

multiple signals at once.  

Owing to the evolution in electronic manufacturing, characterized by miniaturization, increased 

automation, the emergence of advanced semiconductor technologies, and the shift towards more 

sustainable and efficient manufacturing practices, electrophysiology has evolved into an almost 

plug-and-play discipline. Furthermore, the technical advancements of the past decades have 

given rise to new electrode types, specifically designed for extracellular electrophysiology aiming 

to scale neural yield. These various types are illustrated in Figure 1.3 and are succinctly reviewed 

in chronological order. 

Microwire electrodes (Figure 1A) consist of thin and stiff wires, usually made from metal such as 

tungsten, metal alloys such as nichrome, or carbon fibers that can be inserted into the brain to 

record the activity of individual neurons. They are covered by a biocompatible, insulating material, 

e.g. glass or Parylene-C so that only the tip is exposed and in contact with the tissue. The goal of 

microelectrode recordings is to capture action potentials of single neurons with excellent signal to 

noise ratio. This is usually accomplished by placing the electrode on a drive so that it can be 
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actively positioned in close proximity to a neuron. Their main shortcoming is the limited scalability 

and neural recording yield. With one contact site per wire, the width of a multi-wire shank grows 

linearly with the number of wires, which increases undesirable brain damage. Furthermore, 

controlling the position of individual wires can be challenging because the necessary mechanical 

or electrical components add weight that scales proportionally with the number of individually 

actuated units (e.g. Voigts et al., 2013).  

An alternative approach is to configure a combination of multiple shanks of wires or wire bundles 

to increase the recording yield. Such an approach has been realized with Utah arrays (Figure 

1.1B). Developed in the 1990s, they consist of a silicon-based 2D or 3D array of closely spaced 

microelectrodes (Rousche & Normann, 1998). With each shank carrying one electrode contact 

site at the tip, this configuration allows for high spatial resolution and increases the likelihood of 

recording many neurons simultaneously. Compared to actuated microwires, Utah arrays are 

implanted and placed permanently. They are particularly useful for brain-machine interfaces and 

neural prosthetics as they provide a particular good balance between independent placement, 

neural readout, and long-term stability in primates (X. Chen et al., 2023; Sponheim et al., 2021). 

However, because of the configuration of one electrode contact per shank, Utah arrays keep an 

undesirable low electrode sites/penetration ratio. 

Advances in technology led to the development of more sophisticated multielectrode arrays 

(MEA), including passive MEAs, named so because they simply transmit signals from one contact 

point in the brain to another at the connector without passing the signal through active 

components. Using semiconductor lithography technology, passive MEA such as Michigan-style 

Figure 1.1 Different electrode types used for in vivo extracellular electrophysiology. Points indicate 

electrode sites. MEA: Multi-electrode array. See section Scaling intracortical recording techniques for 

details. 
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arrays, can consist of multiple electrodes on a single substrate either in a single or multi-shank 

configuration (Figure 1.1C). Passive MEAs thus provide a compromise between the spatial 

resolution of microwires and the scalability of Utah arrays. They allow for large-scale recordings 

from multiple neurons and are often used in research involving chronic implants. The channel 

count is limited by the number of electrode lines fitting into a shank and similar to microwire or 

Utah arrays, by the interface cable connecting the MEA with substrate that carries electrical 

processing components. 

Active MEAs (Figure 1.1D) are an evolution of passive arrays incorporating the necessary signal 

processing circuitry on the same substrate. Compared to passive MEAs, they must be powered 

which is used to the advantage of multiplexing the signals into one data stream. They also allow 

for on-site amplification of neural signals, reducing noise and improving signal quality. Because 

of the actively powered circuitry and small components, active MEAs cannot be used for electrical 

stimulation experiments yet. However, because they can incorporate modern complementary 

metal-oxide-semiconductor (CMOS) technology, it is possible to place many electrode contacts 

in line which yields an unprecedented balance between shank size and electrode number.  

Interestingly, another branch of microwire electrodes has recently emerged. Combining modern 

microfabrication techniques and material science, it became possible to manufacture flexible 

electrical wires that can carry multiple contact sites (Figure 1.1F). Because the wire can move 

with the tissue, it promises long-term recording stability with minimal tissue irritation(Lycke et al., 

2023; Zhao et al., 2023). A major challenge, however, is the initial placement of the wires. 

Strategies involving a needle-guided insertion have been proposed but the width of these needles 

is to-date larger than those of commercially available active MEAs (Hong & Lieber, 2019). It is 

very likely that these will advance in time and such designs will become commercially available.  

Promises and challenges of large-scale neural recordings with multielectrode arrays 

The field of neuroscience has been fundamentally transformed by the advent of large-scale 

electrophysiological recording techniques, particularly through the use of passive and active 

MEAs. A key promise of these techniques lies in their ability to simultaneously record the activity 

of multiple neurons (Steinmetz et al., 2018). Additionally, the non-specific nature of 

electrophysiology allows for the recording of a diverse range of cell types, each characterized by 

unique electrophysiological properties (Goldberg et al., 2010a; Goldberg & Fee, 2010a; Mitchell 

et al., 2007). This capability provides a rich dataset crucial in unraveling the neural codes and 

networks that underlie various cognitive processes and behaviors, marking a significant step 

forward in our understanding of neural dynamics. 

Another major stride in electrophysiology is its ability to record neural populations within and 

across distributed brain areas (Girardeau et al., 2017; Lemke et al., 2019; Semedo et al., 2022; 

Steinmetz et al., 2019) coupled with the capacity to access deep brain structures (Gadagkar et 

al., 2016; Girardeau et al., 2017; Hesse & Tsao, 2020; Ruder et al., 2021), a feat challenging for 

other techniques such as calcium imaging. Recording across various regions offers a 

comprehensive view of brain functionality, crucial for understanding the coordination and 

integration of information across the brain, essential in studying complex cognitive functions. 
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Furthermore, the depth penetration achieved by electrophysiology is invaluable for investigating 

subcortical regions involved in fundamental neural processes and implicated in numerous 

neurological disorders. This dual capability of encompassing both superficial and deep brain 

areas provide a more complete picture of neural activity, which is crucial for fully understanding 

the brain's intricate architecture and functioning. 

However, these advancements come with significant challenges. Spike sorting, the process of 

categorizing the action potentials of different neurons from recorded signals, remains a complex 

and time-consuming task. As the number of simultaneously recorded neurons increases, the 

complexity of spike sorting escalates exponentially, requiring sophisticated algorithms and 

substantial computational resources (reviewed in Carlson & Carin, 2019). This challenge is 

compounded by the massive volume of data generated by large-scale recordings. Managing, 

storing, and analyzing this data demand advanced data processing techniques and significant 

computational power. On the analytical side, statistical tools have been proposed that leverage 

the high dimensionality of data (Cunningham & Yu, 2014; Gokcen et al., 2022; Semedo et al., 

2020) which ask for a new understanding of brain representations yet to be reconciled with the 

classical single-neuron doctrine (Stevenson & Kording, 2011; Yuste, 2015). These challenges 

represent substantial hurdles in fully harnessing the potential of large-scale neural recording 

techniques in electrophysiology. As the field progresses, developing more efficient spike sorting 

methods and data management strategies will be crucial for advancing our understanding of the 

brain. 

A remaining challenge is the adoptability of MEA designs, especially in freely moving animals. All 

recent developments in large-scale neural recordings heavily focus on just a few animal models 

studied under very restricted experimental conditions (Keifer & Summers, 2016). Instead of solely 

pursuing new developments, there is growing interest in transferring existing tools to non-classical 

animal models and studying the neural correlates of their natural behavior.  

 

Functional neurobiology requires behavior 

The relevance of neuroethological studies  

Animals exhibit a rich diversity of behaviors that are highly dynamic and rooted in the interaction 

with their ecosystem, their ontogenesis, and evolution (Tinbergen, 1963, 1989). The study of such 

natural behavior has led to key insights into the neural basis of toad’s pray detection (Ewert, 

1974), bat’s echolocation (Yartsev et al., 2011; Yartsev & Ulanovsky, 2013), or vocal learning 

(Konishi, 1965; Nottebohm et al., 1986) just to name few. Neuroethology in general, and 

computational neuroethology in particular, are growing fields of research that accelerated in 

recent years thanks to a scaling of technical and analytical tools. Computational neuroethology 

aims to gain insight into the neural principles that enable and control natural behaviors by means 

of big data collections and simulations (Beer, 1990; Chiel & Beer, 1997). Practically, advanced 

recording systems that sample information simultaneously from multiple sensors allow to track 

individual animals spontaneously behaving in natural conditions. Analytical tools, on the other 

hand, are beginning to become available to leverage these extensive datasets. Based on modern 
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machine learning algorithms, analytical tools, on the other hand, are available to describe the vast 

amount of collected data by discretizing and labelling actions and motifs either in supervised or 

un-supervised fashion (Datta et al., 2019; Sainburg & Gentner, 2021).   

Songbirds for neuroethological research  

Songbirds are exemplary animal models in (computational) neuroethology. They demonstrate a 

rich array of behaviors, particularly in their vocalizations, which are easily observable and can be 

efficiently recorded, even for large-scale studies. The most notable characteristic is that they learn 

a vocal song repertoire through imitation of conspecifics (Marler, 1970; Marler & Peters, 1977; 

Marler & Tamura, 1964; Thorpe, 1958). This is a rare trait in the animal kingdom, and compared 

to mammals, much more common in birds as it includes songbirds (>5000 species), parrots and 

hummingbirds (Hyland Bruno et al., 2021). Furthermore, the ability to learn vocalizations in 

songbirds shares genetic, developmental, and neural commonalities with human speech 

acquisition (Haesler et al., 2007; Lipkind et al., 2019; Prather et al., 2017; Teramitsu et al., 2004; 

reviewed in Doupe & Kuhl 1999). 

Zebra finches (Taeniopygia guttata) are the most commonly studied songbird in neuroscience and 

animal vocal learning research (Lattenkamp & Vernes, 2018). These small and hardy birds easily 

adapt to captivity, and their capability for year-round breeding, coupled with a rapid reproductive 

cycle, makes them ideally suited for research in a laboratory setting.  

Figure 1.2 Zebra finch vocal ontogeny and adult song. A Spectrogram of the tutor song and the 
juvenile’s evolving copy. he tutor's song motif, characterized by the 'a b c' syllable sequence, is illustrated 
at the top. Progressively, as shown in the lower spectrograms, the juvenile gradually adopts this sequence. 
The transformation begins with the initial babbling in the subsong, advances to a more mature temporal 
structure in the plastic song phase and culminates in a well-defined imitation of the tutor’s song. Graphic 
adapted from Goldberg and Fee (2011). B Example spectrogram of an adult zebra finch song. The song 
bout begins with an introductory note and is followed by a set of syllables grouped into reoccurring motif. 
The last motif in this example was aborted prematurely. The lower spectrograms are randomly chosen motif 
renditions from other song bouts. Note the subtle variations in spectral features such as the frequency 
contour in the harmonic syllable from one rendition to the other in the overall highly stereotyped behavior. 
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In zebra finches, only males sing. They learn their song from a tutor, usually their father, during a 

critical developmental period (reviewed in Bolhuis & Gahr, 2006; Doupe & Kuhl, 1999; Kuhl, 

2004). After approximately three months after hatching, they crystalized their initial babbling into 

their final acoustically complex structured song (Funabiki & Konishi, 2003, Figure 1.2A). The adult 

song structure typically begins with introductory notes and proceeds to one to ten repetitions of a 

fixed sequence of syllables (vocalizations separated by brief moments of silence), known as the 

motif (Sossinka & Böhner, 1980). Each male has a unique motif. Figure 1.2B shows an example 

song together with a selection of randomly chosen motif renditions demonstrating that while the 

motif exhibits overall stereotypy, each motif rendition displays subtle spectral and temporal 

differences.  

Interesting for neuroscience studies, songbirds evolved with a special set of brain regions 

dedicated to song learning and control (Nottebohm & Arnold, 1976; Ölveczky et al., 2005a; 

Roberts et al., 2012). It consists of two distinct premotor pathways (Figure 1.3). Both converge on 

the downstream analogue of the mammalian motor cortex (the robust nucleus of the arcopallium, 

RA) but each of them appears to provide different functionality. The ‘motor’ pathway directly 

connects the premotor region HVC (former acronym now used as a proper name) to RA and is 

required to produce stable adult song (Nottebohm et al., 1976; Simpson & Vicario, 1990). The 

anterior forebrain pathway (AFP) indirectly connects HVC to RA, via a loop that includes the 

cortical-like nucleus LMAN (lateral magnocellular nucleus of the anterior nidopallium), the basal 

ganglia Area X, and a thalamic nucleus (medial portion of the dorsolateral thalamic nucleus, DLM). 

The AFP is a homologue of the mammalian cortico-basal ganglia-thalamo-cortical loop (Gale & 

Perkel, 2010; Reiner, 2002; Reiner et al., 1998, 2004) and is relevant for song plasticity, e.g., 

Figure 1.3 Schematic of a songbird 

brain in sagittal section highlighting 

song-related neural structures. The 

motor pathway is required for the 

faithful production of the learned 

song, the anterior forebrain pathway 

(AFP) is responsible for initial song 

learning and adult plasticity. 

Neuromodulatory input from 

midbrain regions to the AFP has 

recently been demonstrated vital to 

the AFP’s functionality. (Ͱ excitatory, 

►inhibitory, ● modulatory input; LC 

locus coeruleus, VTA ventral 

tegmental area, LMAN lateral 

magnocellular nucleus, DLM medial 

portion of the dorsolateral thalamic 

nucleus, RA the robust nucleus of 

the arcopallium, HVC and Area X 

proper names). 
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during initial song acquisition in juveniles (S. Bottjer et al., 1984; Ölveczky et al., 2005a) or later 

to adapt features of the song to environmental changes in adults (Ali et al., 2013a; Andalman & 

Fee, 2009a). Research in recent years has further elucidated the critical roles of neuromodulatory 

input to the AFP from midbrain regions. Dopaminergic innervation from the ventral tegmental area 

(VTA) and noradrenergic input from the locus coeruleus (LC) were demonstrated to significantly 

influence vocal plasticity and variability in songbirds (Alvarado et al., 2021a, 2023; Hisey et al., 

2018; Hoffmann et al., 2016; Leblois & Perkel, 2012; Xiao et al., 2018).  

This close link between structure and behavior presents songbirds as an excellent model for the 

study of neural motor learning and control in general, and in the context of neuroethology in 

particular since songbirds sing and learn to sing naturally without external experimental incentive.  

 

Neural control of vocal variability: current state of research 

Despite the availability of large-scale neural recording methods in neuroscience, they been 

applied only sparingly in songbird research. While single-cell recordings in the motor pathway 

have shown structured neural correlates of song (Hahnloser et al., 2002a; Leonardo & Fee, 2005; 

Lynch et al., 2016; Sober et al., 2008; Vallentin et al., 2016), which led to a progressive 

understanding of the neural computations on a systems level, research on song variability and 

adaptability of the AFP on the systems level is comparably limited. We will briefly review the 

current understanding of the AFP and highlight open questions that we believe could be 

addressed through neuron population recording studies. 

The causal role of the AFP 

The AFP is the main driver of spectral song variability and plays a crucial role in vocal learning, 

especially during the initial song ontogeny (S. W. Bottjer et al., 1984; Ölveczky et al., 2005b; 

Scharff & Nottebohm, 1991). During development, the neural functionality of the AFP appears to 

shift from LMAN initially driving RA to later modulating it (Aronov et al., 2008). A residual of this 

capacity remains after song crystallization and the AFP’s role in the subtle acoustic variability of 

adult song has been conclusively demonstrated by studies involving lesions, temporary 

inactivation, or disruption of synaptic transmission (Hampton et al., 2009; Kao & Brainard, 2006; 

Ölveczky et al., 2005b; Stepanek & Doupe, 2010; Warren et al., 2011), especially on the level of 

the AFP’s output, LMAN. 

In LMAN, these interventions consistently lead to reduced spectral variability mostly tested on 

fundamental frequency of a part of a syllable with stable harmonic stack (pitch). Additionally, 

targeted electrical microstimulation of LMAN subregions disrupt and alter the vocal output 

transiently after a short latency (around 50 ms) indicative of a direct contribution of LMAN to the 

ongoing vocal performance (Giret et al., 2014a; Kao et al., 2005a; Kojima et al., 2018a).  

Causal experiments in Area X and DLM in adults are comparably sparse. An earlier study 

examined their impact performing lesions in birds with disrupted motor pathway. After lesioning 

HVC, Area X ablation caused a slowing and simplification of the acoustic structure of song. This 

effect was also observed after DLM lesion but manifested itself even stronger suggesting that 
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along the AFP pathway complexity increases (J. R. Chen et al., 2014). A more fine-grained 

acoustic analysis of pitch after Area X lesion was reported by Kojima et al. (2018a). The authors 

found Area X lesion to decrease pitch fluctuations within a harmonic stack without affecting the 

variability across renditions (that might stem from LMAN).  

Experimental paradigms of behavioral relevant motor variability 

In the study of AFP-induced variability, three experimental paradigms have led to key insights into 

its behavioral relevance: 

Firstly, inducing deafness in birds, such as through cochlear removal, leads to a progressive 

degradation of their song, a phenomenon not observed in birds with normal hearing (Lombardino 

& Nottebohm, 2000; Nordeen & Nordeen, 1992). However, this degenerative effect is prevented 

when lesions are made to LMAN, highlighting the AFP's essential role in preserving the integrity 

of the learned song (Brainard & Doupe, 2000). 

Secondly, reinforcement learning paradigms have been employed to study the intricacies of 

the AFP’s role in spectral song adaptation. In these experiments, birds receive feedback, usually 

a loud white noise burst, if they sing a particular syllable rendition higher (or lower) than they 

usually do. The birds adapt their pitch and systematically shift in the direction that escapes the 

aversive stimulus (Tumer & Brainard, 2007). This behavior, often referred to as ‘pitch-shifting’, 

depends on the AFP (Ali et al., 2013b; Andalman & Fee, 2009b).  

Thirdly, the social context significantly influences song variability. Songs directed at females 

exhibit less spectral variability compared to those sung in isolation, indicating a more consistent 

and refined vocal output during courtship or social interactions (Kao et al., 2005a; Kao & Brainard, 

2006; Stepanek & Doupe, 2010). This distinction suggests that females are attuned to and show 

a preference for less variable songs, a behavior confirmed through phonotaxic tasks 

demonstrating females' discernment of these nuanced differences (Woolley & Doupe, 2008). 

Importantly, the reduction in song variability due to social context is negated when LMAN is 

bilaterally lesioned or inactivated (Kao et al., 2005a; Kao & Brainard, 2006; Stepanek & Doupe, 

2010). 

These findings collectively underscore that the variability induced by the AFP is not just a 

byproduct but is actively employed in song modification. The distinct differences between directed 

and undirected singing lead to the hypothesis that directed song represents a 'performance' state, 

whereas undirected singing embodies a 'vocal exploration' state, essential for ongoing song 

maintenance and adaptability. 

Neural correlates of vocal variability 

A fundamental question remains as to the neural correlate of vocal variability and how it is actively 

controlled, e.g., during female directed singing. LMAN as the output of the AFP has been the 

target of several studies investigating this question.  
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LMAN 

One line of research has highlighted the role of spiking regularity and bursting. When singing 

towards a female, which exhibits less spectral variability, LMAN neurons spike regularly. In 

contrast, during undirected singing, spiking is more irregular from one rendition to the next with 

an increase in bursting (Hessler & Doupe, 1999c; Kao et al., 2008a). The causal role of bursting 

in conveying deviant behavior and inducing plasticity has been recently shown by chronic 

augmentation with bicuculline methiodide (BMI)  (Moorman et al., 2021a). BMI increases bursting 

in LMAN by blocking of GABAA receptors and potassium channels. The sustained bilateral 

administration of BMI had widespread effects on the birds’ adult temporal and acoustic song 

structure, including production of longer, distorted syllables, stuttering and variable sequencing. 

Interestingly, after BMI cessation, the birds recovered within several days to the original song 

(Moorman et al., 2021a).  

On a network level, Darshan and colleagues (2017a) proposed that LMAN neurons are 

uncorrelated. In theory, such input would average out in a random feedforward network and have 

no effect on downstream motor units. However, assuming recurrent amplification and 

topographically organized excitatory projections, their model simulations show how LMAN could 

contribute to behavioral variability through irregular and uncorrelated neural activity. They support 

their model with simultaneous recordings of neurons within LMAN that show no correlated activity.  

These indirect and qualitative measures have been highly valuable, however, a direct account on 

the relationship between spiking in LMAN and vocal output is still missing. Considering that 

previous studies typically involved sequential single-cell recordings, it's plausible that vocal 

variability is more closely tied to the collective activity of neuron populations. In other words, 

neuron population activity could reveal features of neural coding not apparent on the level of a 

single neuron. This hypothesis aligns with findings in rodent and non-human primate studies, 

where analysis of motor variability from trial to trial (or rendition to rendition) helped to understand 

the relationship between variable neural spiking and motor control (reviewed in Gallego et al., 

2017). 

Furthermore, it's important to acknowledge that vocal motor variability is likely to arise from 

multiple processes. For example, even after bilateral lesion of LMAN or during singing directed at 

females, a degree of spectral variability persists. To gain a deeper understanding of how the brain 

governs movement, behavioral modeling, complemented by extensive, long-term recordings, 

appears promising. This approach could unravel the hidden contribution of LMAN and reveal its 

effects of neural processes contributing to motor variability in vocalization. 

Thus, research on LMAN's role in vocal motor variability could benefit from two promising areas: 

behavioral modeling of longitudinal recordings and neuron population recordings to better 

understand LMAN's role in vocal motor variability. Current research indicates a complex 

relationship between LMAN spiking patterns and vocal output, yet a direct link remains 

unestablished. Investigating this at a population level, alongside comprehensive behavioral 

modeling and extensive neural recordings, could unveil the intricate contributions of LMAN to 

vocal variability, enhancing our understanding of neural mechanisms in vocal motor control. 
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Area X and DLM 

In Area X and DLM, neurons are highly song selective (Goldberg et al., 2010a; Goldberg & Fee, 

2010a, 2012; Hessler & Doupe, 1999a; Woolley et al., 2014a). Interestingly, Area X is a 

heterogeneous cell hub containing both striatal and pallidal cell types (Person et al., 2008) 

representing it as an amalgamation of cells that are anatomically distributed in the mammalian 

basal ganglia (Gerfen & Bolam, 2010; Watkins & Jenkinson, 2016). All these neuron types exhibit 

song-related activity which is modulated by social context (Alvarado et al., 2021a; Goldberg et al., 

2010a; Goldberg & Fee, 2010a; Woolley et al., 2014a). Notably, the social modulation of 

cholinergic neurons has not been tested yet and more recently, Budzillo and collegues (2017) 

traced a new neuron type with in-vitro similarities to subthalamic neurons that drive pallidal output 

neurons in the mammalian brain (Budzillo et al., 2017). Whether and how this subthalamic-like 

neuron is song-and socially modulated, and how these neurons interact is an unanswered 

question. 

Correlates on the network level 

Due to a lack of data, there remains an unresolved question about the communication and 

functional connectivity within the AFP and how this results in vocal variability. LMAN projections 

to Area X are mostly GABAergic and DLM projections to LMAN are mostly glutamatergic (S. W. 

Bottjer et al., 1989; Farries & Perkel, 2002; Goldberg et al., 2010b; Livingston & Mooney, 1997a; 

M. Luo & Perkel, 1999a, 1999b). Given the diversity of cell types in Area X, the mechanisms of 

information integration and transmission remain unclear. 

Evidence suggests the existence of both direct and indirect pathways between striatal and pallidal 

neurons (Gale & Perkel, 2010). The direct pathway posits that striatal neurons transmit 

GABAergic projections to pallidal neurons, leading to an inhibition of these pallidal neurons. This 

inhibition, in turn, results in the disinhibition of DLM and subsequently LMAN neurons. Conversely, 

the indirect pathway suggests that activation of striatal neurons indirectly leads to the disinhibition 

of pallidal neurons, which would then increase the activity of both DLM and LMAN neurons (Gale 

& Perkel, 2010). Additionally, considering the recurrent projections from LMAN neurons back to 

Area X, it is plausible that LMAN also exerts a neural influence on Area X. This complex interplay 

of pathways and projections raises intriguing questions about the regulatory mechanisms within 

this circuit and the consequences for communication schemes within the AFP. 

Cross-areal recordings could be instrumental in uncovering the mechanisms of communication 

and signal transmission within the AFP. Such methodologies have already provided insights into 

distributed coding schemes and the development of inter-area brain coupling during sensory 

processing and learning in rodents and non-human primates (Girardeau et al., 2017; 

Kondapavulur et al., 2022; Lemke et al., 2019; Santos et al., 2015; Semedo et al., 2022; Steinmetz 

et al., 2019).  

Applying simultaneous recordings in both LMAN and Area X could reveal crucial insights. 

Specifically, such an approach could help to determine whether Area X exerts an excitatory or 

inhibitory influence on LMAN. Moreover, simultaneous recordings could elucidate how the 

interactions between LMAN and Area X vary between female-directed singing and undirected 
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singing. Understanding these dynamics is essential for a comprehensive picture of how the AFP 

controls spectral song variability. 

Objectives and outline of this dissertation 

This dissertation focuses on advancing songbird research in neuroscience by integrating large-

scale neural recording techniques. Our primary aim is to enhance the understanding of vocal 

control and learning in songbirds through high-yield electrophysiology. Specifically, we investigate 

the functional connectivity between LMAN and Area X, aiming to uncover the dynamics of 

recurrent signal transmission. Additionally, we explore the neural-behavioral relationship between 

LMAN spiking and vocal variability, such as the rendition-to-rendition pitch variability.  

In the first chapter, we present the cornerstone of this thesis: the design, testing, and validation 

of a novel Neuropixels implant for neural recordings. Neuropixels represent an advanced multi-

electrode array technology, capable of recording from 384 sites along a 1 cm shank. Our study 

targets both LMAN and Area X, utilizing the chronic capabilities of the device to capture neural 

activity across various behavioral states including singing, silent wakefulness, sleep, playback, 

and pitch-shifting. This has resulted in a dataset of unparalleled depth, allowing us to both 

replicate and expand upon previous single-cell recording studies, as well as analyze network 

interactions between LMAN and Area X that have previously not been possible. The chapter is an 

expanded version of a manuscript prepared for submission to a peer-reviewed journal, adapted 

to the thesis format and offering additional insights into the developmental process and the 

extensive dataset collected. 

In chapter 2, I contributed to a project spearheaded by Dr. Anja Zai investigating motor control 

theories revealed by different sources of motor variability. She developed a stochastic dynamical 

systems model to fit different sources of pitch variability and validated the estimated impact of 

LMAN in a lesion study (Zai, 2019). My contribution consisted of additional data, conducting 

similar lesion experiments but employing a pitch-shifting paradigm before the lesion surgery. I 

also contributed data from chapter 1 and performed the analysis on the correlation between LMAN 

activity and observed pitch variation versus an estimate of the hidden LMAN’s contribution. The 

study is in preparation to be submitted to a peer-reviewed journal. I wrote the entire chapter in the 

scope of this thesis. Ideas, methods and figures taken from co-authors are clearly labeled. 

Chapter 3 is an excursion into vocal data analysis and describes a novel approach of segmenting 

and clustering vocalizations of microphone recordings that contain vocalizations of single and 

multiple zebra finches amid background noises. In contrast to classical machine learning 

methods, a user-guided strategy was developed that allows both exploration of big data sets as 

well as immediate segmentation and classification. My contribution was in refining the graphical 

user interface and the preparation of the manuscript, as well as accompanying the revision and 

publishing process. The study was published in Frontiers in Bioinformatics (Lorenz et al., 2021).  
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Chapter 1 

Custom-designed Neuropixels device for chronic 

recordings in freely moving zebra finches enable 

high-yield recordings in the cortico-basal ganglia 

pathway 

 

The last decades have seen the emergence of neural recordings techniques in freely moving and 

singing birds. While performing such experiments is already difficult in itself, another dimension 

of this difficulty in applying these techniques to freely moving and singing birds is the weight on 

the head that might be supported by an animal. Zebra finches, one of the most common songbird 

species used, usually weight ~15g. Chronic implants should thus be less than 2g, since adding 

weight is a burden and causes a decrease in singing rate (Yamahachi et al., 2020). Previous 

chronic recording devices developed in songbirds are mostly based on single electrodes or 

tetrodes, sometimes mounted on a microdrive that can be motorized or not (Fee & Leonardo, 

2001; Jovalekic et al., 2017; Schregardus et al., 2006). These devices can be wired or wireless, 

the latter bringing one more difficulty related to the weight of the battery required for powering the 

recording system. These various techniques contributed to elucidating the neuronal coding 

associated with song production (Giret et al., 2014b; Hahnloser et al., 2002b), learning (Crandall 

et al., 2007; Ölveczky et al., 2011) or perception (Menardy et al., 2014; Prather et al., 2008). 

Despite these advances, neuronal data acquired are usually restricted to one or a few single 

neurons recorded simultaneously in a single brain area.  

Indeed, multielectrode arrays have been adopted in prior songbird studies focusing on auditory 

perception, decision making or sleep (e.g., Beckers and Gahr, 2010, Beckers et al., 2014, Lim et 

al., 2016, Cazala et al., 2019, Theilman et al., 2021). The experimental settings benefit from the 

fact that perception and sleep can be studied in head-fixed settings and decision-making tasks 

can be studied with external incentives (e.g., food reward). However, songbirds don’t sing 

naturally in head-fixed settings and external incentives contrast the self-motivated nature of the 

behavior.  

More recently, several studies managed to translate existing technology to songbirds and perform 

neural recordings during singing through means of imaging (Moll et al., 2023, Cohen et al., 2020, 

Alvarado et al., 2021) or multichannel extracellular recordings (Das and Goldberg, 2022, Arneodo 

et al., 2021, Egger et al., 2020, Elmaleh et al. 2021). While imaging is limited to a surface and can 

only allow for limited depth access, electrophysiological recordings were restricted to one brain 

area in the mentioned studies (Das and Goldberg, 2022, Arneodo et al., 2021, Elmaleh et al. 

2021). Yet, the song system is a network of interconnected brain nuclei that are densely populated 

with neurons. To better understand the neuronal dynamics at play within the song system, there 
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is a clear need for designing new recording techniques that must allow the simultaneous 

recordings of several neurons within and between different brain areas.  

Here we designed a new implant assembly to perform large-scale chronic electrophysiological 

recordings in freely moving adult male zebra finches using Neuropixels probes. The assembly 

allows simultaneous recordings from neurons in the premotor region LMAN and the song related 

basal ganglia Area X. We report the recording quality in terms of number of units per electrode 

channel in each brain area and number of song modulated units that are socially modulated. 

Further, we provide the fraction of cell types that could be identified in the heterogeneous cell hub 

of Area X. Comparing these numbers to anatomical estimates is a quality assessment that, to our 

knowledge, has not been used before. Lastly, we leverage the acquired data to investigate the 

communication between LMAN and Area X.   

Part I – Mechanical design and data acquisition 

In this part, we introduce the Neuropixels probe and present the mechanical design and methods 

of acquiring neurobehavioral data chronically in small birds.   

The Neuropixels probe and headstage 

Neuropixels represent a cutting-edge advancement in neuroscientific instrumentation, combining 

miniature multielectrode arrays (MEA) that seamlessly integrate contemporary complementary 

metal-oxide semiconductor (CMOS) technology with on-chip amplification, filtering, and 

digitization. Developed by an international collaboration of neuroscientists and the Interuniversity 

Microelectronics Center (imec), the Neuropixels probe is designed to record neurophysiological 

activity at high yield. The following will describe the probe and acquisition components briefly.  

The first released Neuropixels 1.0 probe comprises an array of 960 switchable electrodes, or 

pixels, each measuring only 12 x 12 um. These electrodes are tightly distributed (16 um column 

pitch, 20 um row pitch, Figure 2.1) along the shank that has a mere cross-section of 70 x 24 um. 

Figure 2.1 The Neuropixels probe 1.0 and headstage. A The Neuropixels probe has 960 low-

impedance TiN contact sites scattered along the shank arranged in a chessboard configuration. B The 

electrode sites are distributed along the 1 cm long shank. Their signals are processed (amplified, filtered, 

digitized) on chip, allowing the direct transfer of digital data from the Neuropixels probe. A flex cable 

connects the probe with the headstage via a ZIF (zero insertion force) connector. C The headstage 

organizes the data transmission between the Neuropixels and the National Instrument acquisition 

system and contains additional control and debugging functionally. Pictures taken from 

www.neuropixels.org. 

http://www.neuropixels.org/
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Surfaced with porous titanium nitride (TiN), the contact sites feature a low impedance of ~150 

kOhms (at 1 kHz in PBS) and promise to capture neural activity from multiple neurons 

simultaneously at low noise (5.5 - 8 μVrns (Lopez et al., 2017)). Because of the spatial organization 

along the shank, spike signals are likely captured by multiple neighboring electrodes. This is a 

deliberate property as differences in spatial co-occurrence can allow differentiating spikes 

stemming from different sources. 

Of the 960 electrode sites, 384 can be chosen to stream input to the integrated circuit on the 

upper end of the shank. The signal is amplified and split into a high-frequency component 

accommodating spiking activity, and the low-frequency LFP signal. In a final step, the multiplexed 

signal is digitized and streamed to the headstage via the 4 mm long flex cable. 

The headstage is a 15 x 16 mm printed circuit board (PCB) that organizes the power supply of 

the MEA implanted in the brain and transmits the neural signals recorded by the MEA to the 

remote acquisition system. It connects to the MEA via a ZIF connector and to the acquisition cable 

via a reliable Omnetics connector. Besides interfacing, it provides some additional functionality 

for testing and debugging.  

One Neuropixels 1.0 probe weighs 0.4 g and the headstage weighs 0.9 g. Here, we only tested 

Neuropixels 1.0. A newer version (Steinmetz et al., 2021) became available recently in 2023.  

Existing chronic Neuropixels implant designs 

Neuropixels probes were not designed to be used for chronic recordings yet the trade-off between 

the number of electrode contacts and its weight and size make it an appealing choice for this 

purpose. To our knowledge, at least four designs have been reported that enable the Neuropixels 

system to be used in a chronic fashion in freely moving animals, all of them adopting the system 

for use in rodents (Figure 2.2).  

The first design for chronic use published by Juavinett et al. (2018) features an all-in-one implant 

accommodating both the headstage and the probe altogether weighing only 2.0 g. The design 

was successfully tested in freely moving mice showing that the animals with implant behave 

comparable to naïve mice when placed in an experimental arena (Juavinett et al., 2019). A slightly 

heavier but more protective version was proposed by Van Daal and colleagues in 2021, 

encompassing the electronic components with added material to safeguard against potential 

damage in experiments involving stronger rodents such as rats. Both previous designs underwent 

testing over several weeks. Luo and colleagues (2020) further extended the evaluation period to 

months-long recordings using rats. Their design, the heaviest at 3.5 g, situates the headstage in 

elongation to the probe, thus, contrasting the adjacent placement in previous designs. Given that 

adult laboratory rats (commonly weighing around 300 g) can better accommodate heavier 

implants, the need for increased protection can be met by stronger and heavier enclosing 

material.  
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More recently, a fourth design was introduced (Steinmetz et al., 2021), in line with the 

encapsulation approach of the initial two designs but allowing for the placement of two 

Neuropixels 2.0 probes with the updated headstage. This newer design, totaling 2.76 g, maintains 

an unparalleled balance between weight and functionality. It was successfully tested in mice and 

rodents (Steinmetz et al., 2021). However, like the previous designs, it shares a fixed alignment 

of the headstage with the probe, foregoing the potential flexibility of independent placement. This 

choice likely stems from the complexity and increased surgical time associated with a more 

intricate scaffold or multiple components. However, based on our previous observations, 

deviations and misalignments of implants negatively impact a bird’s well-being. Extreme angles 

or positions of an implants can significantly alter the center of mass, introducing torque in the neck 

that animals must cope with.  Thus, to harness the advantages of Neuropixels probes for chronic, 

freely moving recordings in zebra finches, we developed a novel implant. This design, while 

comparable in weight to the lightest existing option (~2 g), introduces increased flexibility by 

allowing independent positioning of the headstage and probe. 

Figure 2.2 Existing chronic Neuropixels implant designs. A The first and lightest, all-in-one 

mechanical implant design by Juavinett et al. (2019). It holds the probe and headstage in a scaffold that 

only weighs around 2 g including all components. B Van Daal and colleagues (2021) proposed a similar 

but slightly heavier design that additionally covers the electronical parts. C Luo et al. (2020) chose to 

place the headstage in elongation to the Neuropixels probe. The single probe design adds up to 3.5 g, 

the dual probe option doubles to 6.8 g. D The most recent publication of a chronic Neuropixels design 

allows for recordings with the new Neuropixels 2.0 probe and the corresponding headstage that can 

connect two probes (Steinmetz et al., 2021). The design is very similar to A and B, combining all 

electronical components in one 3D printed mechanical part. The simple design with one probe as shown 

weighs 2.67 g. All designs unites that the headstage is aligned to the probe and therefore the penetration 

angle which is usually defined by the target location. Photos taken from their original publication. 
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Design of the novel implant assembly 

Mechanical components  

Our assembly consists of a Neuropixels 1.0 probe and two custom-designed parts: the holder and 

the casing (Figure 2.3A). The holder is manufactured from Torlon(R) with a computerized milling 

machine. This material comprises two key aspects for the design: it is very hard but at the same 

time extremely light. Together with the screws, this component only weighs 0.4g. It securely 

frames and carries the Neuropixels probe. The two protruding M1 screws act as fixation points on 

the skull. Their length can be chosen according to the implantation requirements. The casing is 

3D printed and designed such that it can slide along the holder and protect the delicate shank 

from the side and front. The backside of the cavity is covered by the tightly bent flex cable (Figure 

2.3B) and the headstage (Figure 2.3C). Together with all parts, the final implant adds up to 1.9g 

(with cement ~2g, Table 1.1.).  

Figure 2.3 Neuropixels 1.0 implant design for chronic use. (A) The Neuropixels implant assembly 

(NIA) consists of a lightweight holder that carries the Neuropixels 1.0 probe permanently and a 3-D 

printed casing that protects the protruding part of the probe from the front and side. (B) The bent flex 

cable protects the probe from the back. (C) The headstage is fixated to the skull independently using 

only two stiff wires loosely tied to it. Kapton tape protects the electric parts and enforces the alignment 

of the wires. (D) The NIA allows for flexibility and reusability. The threads in the back of the holder allow 

the M1 screws to be replaced e.g. after explantation and their length can be chosen to accommodate 

different penetration angles (E). The independent placement of the NIA allows to keep the headstage in 

a position orthogonal to the animal’s natural head position. (E). A custom-designed stereotactic holder 

facilitates the surgical implantation and explantation steps. The NIA is safely secured in the holder with 

lateral screws. All custom-designed elements except for the casing were manufactured with a 

computerized milling machine. Threads were created manually. 
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Functionality and flexibility 

Besides the weight, orientation and placement are two additional factors that determine the 

success of a chronic recording experiment. Especially in freely moving animals, the external 

components of an implant should always be placed as close as possible to the head (reducing 

torque) and at an angle that is perpendicular and in elongation to the natural head position. 

Oftentimes, however, a more extreme orientation or placement of the external components is 

required to penetrate the multiple brain areas of interest. Our NIA design allows for flexibility in 

this scenario as it can accommodate a wider range of penetration angles relative to the animal’s 

head posture. First, the screws of the holder can be adjusted in length to accommodate the 

placement on the skull (Figure 2D). Second, the headstage and NIA are placed independently. 

This independence ensures that the headstage can always be placed at a 90 degrees angle, in 

elongation to the animal’s natural position (Figure 2.3E). Together, the implant can be placed more 

optimally in the weight bearing axis of the body (Figure 2.4). 

 

Component Weight [g] 

Neuropixels probe 1.0 0.40 

Holder  0.27 

Screws (x2) 0.08 

Casing 0.26 

Headstage 1.0 0.90 

2 cm long stiff wire 0.05 

∑ 1.96 

 

Reusability 

The NIA is fully reusable also for experiments with different requirements. The screws and wires 

can be removed and replaced. The wires fixating the headstage can simply be cut and the casing 

can slide off the skull at the end of an experiment. Explanting the Neuropixels and its holder 

(Figure 2.2B) requires more manual work specially to free the screws from cement. We designed 

a custom-designed surgical holder (Figure 1F), to secure the implant during the implantation 

surgery and, more importantly, during the explantation step when the probe must be pulled up 

once it is no longer fixated on the skull.  

We regularly re-used probes. After successful extraction, we could consistently see that the shank 

was almost clean with only minimal residual tissue covering it, owing to the smooth extraction 

procedure. We cleaned the probe as suggested by the manufacturer with enzyme detergent and 

found that in each cycle, the number of usable channels decreased by a maximum of one channel. 

Table 1.1 Weight of the individual 
components and net-weight of the full 
NIA with headstage. Components with less 
than 0.01 g are neglected (silver wire for 
grounding the animal, adhesives used 
during assembling). Together with adhesives 
for fixating the implant on the skull, the 
weight adds up to ~ 2 g. 
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The fact that the probe is permanently attached to the holder did not prevent us from re-using it 

in different configurations. We usually tested the implant design by targeting the anterior forebrain 

in zebra finches. In this case, the optimal configuration is to place all components close to the 

Figure 2.4 NIA configurations. A Sagittal schematic of a zebra finch brain with annotated brain regions of 

interest. B Approximate placement of the brain in the bird skull and ideal penetration angle. Shown is the 

schematic in a photo of a zebra finch skull (© Lorenz). The skull is rotated to depict the birds natural head 

orientation. Targeting LMAN and Area X in one line is most successful at 15 degrees off. C Estimation of 

the center of mass (red points) without and with alignment of the headstage. From left to right: Without any 

alignment, the center of mass moves 17.42 mm up and 3.89 mm posterior. Aligning the headstage with the 

weight bearing axes reduces the posterior displacement by 73 % to 1.04 mm. A more extreme placement 

in the anterior direction can compensate for the additional weight distribution. The calculations were taken 

with following parameters: Natural center of mass (red dot): 2 g head weight around center of most weight 

bearing organs (eyes, brain, tongue). Neuropixels: 0.04 g with 0.5 mm shank protruding and 22.9 x 7.2 mm 

size. Headstage: 0.09 g with 15 x 16 mm size, lower end aligned to Neuropixels PCB. Note that the 

estimations neglect the additional effect of the tether that impacts the displacement additionally if not 

aligned. D Schematic of an alternative implant configuration. When targeting HVC and RA, which require a 

more lateral penetration, the configuration can be adapted. The NIA and the headstage can be placed 

parallel to the coronal plane and individually rotated to ensure for the headstage, connector and tether to 

align with the weight bearing axis.  
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midline in parallel to the sagittal plane (Figure 2.4A and B). We could successfully replicate this 

configuration in several birds even with re-used probes. More importantly though, we also tested 

the design implanting a reused probe in HVC and RA in a canary (Serinus canaria forma 

domestica). This required a 90-degree rotation of the entire implant and a rotation of the probe 

relative to the headstage (Figure 2.4D). The surgery was successful, and the animal appeared 

recovering in the first hours after the surgery. However, the bird died in the night after the 

implantation likely due to respiratory problems unrelated to the implant or surgery. The alternative 

placement including the rotation of the implant (facing dorsal instead of lateral) confirms the 

flexibility of the design.  

Protocols 

Detailed protocols on the assembling of the NIA (P1), the steps of surgical implantation (P2) and 

explantation (P3) are attached in the appendix (Appendix I). 

 

Figure 2.5 Acquisition systems and interfaces. Neuropixels data (imec, highlighted in yellow) 

undergoes division into low-pass filtered signals (LF) and high-pass filtered signals (AP), both of which 

are concurrently recorded with auxiliary input (e.g., audio signals, nidq, depicted in green) through a 

shared PXI module. Simultaneously, a custom-written LabVIEW program (RecOOrder) samples the 

microphone signal (depicted in blue) and captures vocal behavior outside the neural recording sessions. 

This system offers additional functionality, including online syllable detection (perceptron) and playback. 

On the software side, SpikeGLX is employed to manage imec data acquisition and to visualize incoming 

data streams online during neural recording sessions. The RecOOrder interface serves to visualize the 

audio signal and continuously monitor behavior. 
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Data acquisition  

Hard- and software configuration 

The Neuropixels acquisition system comprises two modules, one dedicated to organizing neural 

data transfer (imec) and one managing auxiliary input (nidq). We configured settings and 

established connections to capture microphone audio signals as auxiliary analog input, and in 

subsequent stages, we expanded the input to incorporate a digital switch indicating experimental 

conditions (female absent or present). Due to the rapid accumulation of acquired neural data with 

the system (~60 GB/h), recordings were performed in sessions that lasted between one and six 

hours. Throughout these sessions, data was acquired continuously to monitor potential drift in the 

neural spiking data, with intermittent breaks for interventions such as placing the female in the 

box or unwinding the tether. The modules were visualized and recorded with SpikeGLX 

(https://billkarsh.github.io/SpikeGLX).  

In addition to the Neuropixels acquisition system, a custom-written LabVIEW software, the 

RecOOrder, (Herbst et al., 2023) facilitated continuous monitoring of audio events, including 

vocalizations and songs even outside the neural recording sessions, and offered real-time control 

of syllable detection and feedback. Selected signals from this process were looped back into the 

nidq system, enhancing data post-processing and analysis capabilities within one domain. 

Figure 2.5 illustrates the interconnected hardware and signal routing. A stepwise protocol is given 

in the appendix (Appendix II).  

Recording routine and file structure  

Birds were routinely connected to the interface cable in the morning. Due to the lack of a 

commutator2 it was not possible to keep them connected continuously. However, thanks to the 3 

m long and flexible interface cable, it was possible to unwind the cable, when necessary, on the 

bird’s end and move the entanglement to the acquisition end where it would not cause any 

experimental disturbance. We conducted between one and three sessions per day.  

To ensure smooth data management, raw files were saved in folders that adhered a strict 

convention of folder naming: 

/animal_ID/Ephys/raw/session_ID/   % raw neural and audio data 

/animal_ID/Ephys/spksort/session_ID/   % pre-processed neural data 

/animal_ID/ArchiveCollection/…/session_ID/ % pre-processed audio data 

/animal_ID/Analysis/…/session_ID/   % analyzed data 

/animal_ID/Figures/…/session_ID/   % figures and image data  

 
2 We tested a mercury commutator (Dragonfly®) and a custom-made slip ring. Both were able to provide 
the power supply to the Neuropixels chip but unable to support the data transfer that runs on an ultra-high 
data rate. A recent publication mentioned success using the Adafruit 1196 (De La Crompe et al., 2023, 
personal correspondence). 

https://billkarsh.github.io/SpikeGLX
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The animal ID was the unique identifier taken from the animal database. The session ID was a 

composition of the date of recording and a running number of recording sessions within a day, i.e. 

YYYYMMDD_nn. 

In case of short interruptions, e.g. when the recording chamber was opened to disentangle the 

animal, SpikeGLX recordings were paused and subsequently resumed after closing the chamber. 

This resulted in several “epochs” per recording session that reflect as such in the file structure:  

/animal_ID/Ephys/raw/session_ID/epoch01/  % first epoch 

      …/epoch02/  % second epoch 

In the beginning, we used epochs to indicate different experimental conditions (e.g. directed vs 

undirected singing) and later incorporated a digital switch indicating the social context. 

Post-acquisition pre-processing 

Temporal alignment 

The nidq and imec system each have their own clock and run asynchronously. Additionally, 

sample clock rates are temperature sensitive. This introduces drift and ultimately temporal 

misalignment between data streams. SpikeGLX offers an option to correct this misalignment by 

calibrating the drift based on a digital synchronization pulse. We found that even after calibration, 

especially in long recordings, the drift was not accounted for completely. Thus, in a preprocessing 

Figure 2.6 Temporal alignment of nidq and imec data streams.  A Example of the aligned 

synchronization pulse in the nidq and imec system. Shown is the TTL signal at the beginning (left) and 

end (right) of a recording session. The bottom panel provides a close-up view of the moment when the 

TTL signal transitions from 0 to 1, with annotation indicating the time difference between the detection 

of the switch in both systems. After 2h 46 min, the difference accumulated to almost 9 ms. B Analysis 

of time discrepancy in detecting TTL switches between the imec and nidq systems (top). After correcting 

for a linear drift with offset, the signal is detrended, revealing transient fluctuations likely attributable to 

temperature variations that affect the clock. The oscillating values within the range of -0.2 and 0.2 ms 

result from the different sampling rates (imec lf 2.5 kHz, nidq fs = 20 kHz). 
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step, we estimated the additional drift using the changepoint times in the TTL synchronization 

pulse in the imec and nidq acquisition. Calculating the linear relationship between the two times 

series, it is possible to derive a post-hoc correction factor for the timing of spikes relative to the 

behavioral data streams (Figure 2.6). The parameters are saved together with the figures in the 

specified figure folder (see File structure). 

File concatenation 

The spike sorting algorithm, Kilosort (Pachitariu et al., 2023) is designed to process a single file 

as input. In sessions that involve multiple epochs, it becomes necessary to concatenate the high-

pass filtered *.ap files for spike sorting. To streamline this procedure, I developed a user-friendly 

Graphical User Interface (GUI), details of which are provided in the appendix (Appendix III). Given 

the nested structure, the GUI facilitates browsing through different sessions in a convenient and 

fast manner or to run and assess the temporal alignment. 
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Part II – Behavioral testing and data evaluation  

In this second part, we assess the behavior of animals carrying the novel NIA and evaluate the 

quality of recorded neural signals. Methods are attached in Appendix IV. 

Zebra finches return to a stable singing rate during neural recordings 

We tested the NIA in eight adult’s male zebra finches, placing the Neuropixels probe 15 degrees 

relative to the natural head orientation in order to penetrate two nuclei of the AFP: the cortex-like 

premotor nuclei LMAN and the song-related basal ganglia region Area X (Figure 2.7A, see 

Methods, Appendix IV). The shank was inserted up to 5 mm leaving the upper 5 mm standing out.  

First, we were interested in how the animals can cope with the added weight of the implant. Zebra 

finch birds have an intrinsic motivation to sing but experimental procedures and interventions such 

as social isolation, the additional weight of an implant, and tethering impair the behaviour and 

usually cause a decrease in singing (Yamahachi et al., 2020). To counteract this implication, a 

weight-reliever in the form of a counterweight was attached to the headstage. The weight of the 

counterweight was adjusted for each individual bird daily throughout the experiment based on 

visual assessment. We observed that birds adapted to the weight of the implant within the days 

after the implantation and could cope without the weight reliever. 

To habituate the birds to the acquisition cable and to maintain a predictable routine, birds were 

tethered daily after the surgery. It happened routinely that the tether cable entangled due to the 

lack of a commutator still within the recording chamber which required a short intervention. To 

reduce the stress of catching the animal, we decided to take advantage of the 3 m length of the 

cable and moved the twist to a remote part. With these measures, birds recovered to a stable 

singing rate comparable to birds with other types of implants (e.g. manual/motorized microdrive 

of 1.5 g, Yamahachi et al., (2020)) within a few days after the surgery (Figure 2.7B) which shows 

that zebra finches can cope with the challenge of a chronic Neuropixels implant with our NIA.  

Figure 2.7 Chronic implant of a Neuropixels probe in freely moving birds. (A) Sagittal schematical 

view of the motor and anterior forebrain pathways. In order to properly hit LMAN and Area X, the probe 

must be implanted with a specific angle. (B) Picture of an adult male zebra finches with the headstage 

holding the Neuropixels probe. (C) Chronically implanted birds resume singing in a few days post-surgery. 

Singing rates under different conditions taken from (Yamahachi et al., 2020). 
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Table 1.2 Data summary. List of birds detailing surgical parameters, experimental conditions, and outcome 

evaluations. Birds r5n5, r15v15, and r11n11 underwent implantation with previously recovered Neuropixels 

probes which exhibited one defective channel. The implant coordinates are given relative to the lower 

boundary of lambda, representing the confluence of sinuses. Experimental conditions included singing in 

isolation (UD), presence of a female (FD), playback of the bird's own song (PB), pitch-contingent auditory 

feedback using white noise (PCAF), and recordings during dark phases (SLEEP). Sessions were 

considered 'good' if over 100 motif renditions were detected, excluding conditions of SLEEP and PB. * This 

bird had a two-month recording break due to a COVID-19 related lockdown, after which spiking signals 

were no longer detectable. Thus, despite the bird maintaining good health with the implant intact, data from 

the subsequent acquisition period was excluded. ** Neural data could not be processed because the files 

were corrupted likely arising during data transfer. *** The shank of the Neuropixels broke while removing 

cement during the explantation. 

Neural recording quality  

Because of the rather quick recovery of the birds after the implantation, we were able to perform 

several consecutive recording sessions in awake, freely moving and singing birds. Spike sorting 

was carried out offline with the Kilosort (v2.0) algorithm (Pachitariu et al., 2023), followed by a 

manual curation using phy (https://phy.readthedocs.io/). Several units located along the entire 

shank of the electrode were simultaneously recorded (Figure 2.8A). We reconstructed the 

channels covering the two areas of interest, LMAN and Area X, from the trace of the probe and 

the depth of its tip that were both easily visible on a few consecutive histological slices thanks to 

the applied red dye on the probe before the implantation (Figure 2.8B). Units were thus detected 

in the two areas of interest and also above (pallium), in between and below (striatum) these areas.  

A fundamental aspect of the usability of our NIA is the signal quality not only during a single 

recording session, or day, but also over several consecutive days. We evaluated signal quality as 

the number of neural units after spike sorting and manual curation in recording sessions with at 

Bird Surgery 

date 

Age at 

surgery 

Npxls number  # useable 

channels 

Implant coord. 

(AP, ML, DV) 

[mm] 

and head angle 

Experimental 

conditions 

# good 

sessions 

Npxls 

recovered 

 

g4r4 11.07.2019 112 18005112662 384 5.1, 1.75, 4.8 
51 deg  

UD, FD, PB, 

PCAF, SLEEP 

21 Yes 

o11y3 21.10.2019 133 18005112742 384 4.85, 1.7, 4.3 

51 deg 

UD, FD, PB, 

PCAF, SLEEP 

5 No** 

j8v8* 19.02.2020 75 19051017451 384 5.0, 1.75, 4.5 

50 deg 

UD, FD, PB, 

PCAF, SLEEP 

21 Yes 

r5n5 19.10.2020 81 19051008742    

(2nd use) 

383 5.5, 1.75, 4.5 

50 deg 

UD, SLEEP 2 Yes 

r15v15 30.10.2020 112 19051017451    

(2nd use) 

383 5.2, 1.7, 4.3 

50 deg 

UD, FD, PB, 

PCAF, SLEEP 

28 Yes 

r11n11 14.11.2020 73 19051008742   

(3rd use) 

383 5.3, 1.7, 4.5 

52 deg 

UD, SLEEP 2 Yes 

r14n14 04.12.2020 93 18005102621 384 5.3, 1.7, 4.75 

50 deg 

UD, FD, PB, 

PCAF, SLEEP 

12 Yes 

p11r5 06.12.2021 134 19051017152 384 5.0, 1.6, 4.5 

51 deg 

UD, FD NA* Yes 

https://phy.readthedocs.io/
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least 100 renditions of a bird’s motif. Both single and multi-units were detected in our recordings 

up to two weeks after the implantation (Figure 2.8C). Different units with low or high firing rates, 

especially in the Area X (Figure 2.8C), were still been detected after days of recordings, yet with 

a large decrement compared to the first recording sessions post-implantation. We also observed 

that spike clustering was more difficult in LMAN and subsequently resulted in larger fractions of 

multiunit clusters as compared to Area X, for instance (Figure 2.8C). 

Overall, the number of detected units progressively decreased over days, with ~100 units on the 

first few days post-implantation to ~50 units after two weeks of recordings. There were also 

Figure 2.8: Number of detected units remains stable for a few days post-implantation. (A) Raw 

traces of a subset of simultaneously recorded channels along the shank of the Neuropixels probe 

(schematic on the left) in an awake non-singing bird. (B) Sagittal slices of two example birds showing in 

red the trace of the implanted probe previously surrounded with a red dye. Limits of LMAN and Area X 

are highlighted by the dashed white lines. (C) Distribution of single and MUA along the shank of the 

probe according to the spike amplitude in two example birds (same birds than in B) over several days. 

Marker size reflects spike rate. Channels covering LMAN and Area X are highlighted by the red and blue 

boxes. (D) Number of units detected following days post-implantation in all the birds. The two birds with 

dashed lines (r11n11 and r5n5) had loose implant that fell off a few days post-implantation. (E top) 

Absolute number of units detected on several days post-implantation in LMAN, the pallium without 

LMAN, Area X and the striatum without Area X in all the birds. (E bottom) Relative number of units 

detected according to the number of channels covering the areas of interest. 
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interindividual differences in the number of detected units and how this number change over days 

(Figure 2.8D,E). For two birds (r11n11 and r5n5), the number of units almost dropped to zero in 

less than a week after the implantation (Figure 2.8D, dashed lines). We later found that these 

birds were actually having a loose NIA due to a lack of fixation at the anterior end of the skull 

where the bone structure is generally thinner. To circumvent this problem, we recommend placing 

insect pins in between the bone layers. In other birds (e.g. g4r4, j8v8), the signal remains of very 

good quality for many days, allowing the detection of tens of units two weeks after the 

implantation. We also wondered whether the overall decrement of detected units was similarly 

affecting the probe, independently of the location of the channels. We thus determined the number 

of units in various areas of interest: LMAN, the pallium without LMAN, Area X and the striatum 

without Area X. First, we noticed that the number of units detected in LMAN is usually higher for 

all the birds, which reflect the high neuronal density within that nucleus paired with the larger cell 

bodies (Figure 2.8E top). In comparison, the number of units detected in the Area X is quite low, 

in spite of its relatively large size. This is particularly clear after normalizing the number of units 

by the number of channels covering the area of interest (Figure 2.8E bottom). While units were 

detected on more than half of the channels covering LMAN for most of the birds, and for several 

days of recordings, units were usually detected on less than 10% of the channels covering Area 

X, consistent with a systematic dependency between neural yield and anatomical position 

reported by (Luo et al., 2020). 

In all but one bird, thanks to our customized NIA holder (Figure 2.3F), we managed to recover the 

probe at the end of the experiment (Table 1.2). After proper cleaning and checking, the probe was 

reusable for another implant. In three cases, we used a recovered probe. We did not specifically 

test for the loss of SNR but could obtain signal quality as good as for the first use. 

Singing-related neuronal activity  

Recordings sessions were carried out on a daily basis and lasted at least 1 and up to 6 hours. 

During a session, the bird was either left alone or presented with a female partner in order to elicit 

female directed singing. We compared the spike waveform of each individual unit at the beginning 

and at the end of a recording session to ensure the stability of the signal processing (Figure 2.9 

Suppl Fig 1). In spite of the fixed position of the implanted probe, single and multi-units detected 

on two consecutive days were never considered as being the same.  

We conducted a more in-depth analysis of singing-related neural activity in one recording session 

of each of the five birds with good and stable neural readout (solid lines in Figure 2.8D). Figure 

2.9A shows an excerpt of the raw neural recording traces covering LMAN and Area X from the 

example bird shown on the bottom of Figure 2.8B. Spike times and assigned clusters are 

annotated and condensed in the multisite raster in Figure 2.9B, which reflects the strong song-

modulation of recorded units, especially pronounced around the song offset. 

In the pooled subset, we computed song-related activity related to the stereotyped and compared 

it to spontaneous activity during silent periods motif (see Methods, Appendix IV). Most of the units 

recorded in LMAN (118/139) and Area X (69/75) exhibited song modulated activity (Figure 2.9A), 

with a higher firing rate when the bird is singing (LMAN: 20.73 ± 14.10 Hz, Area X: 62.19 ± 60.32 
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Figure 2.9 Chronic Neuropixels probe implants allow the recording of several song-modulated units. 

A Raw traces of a subset of simultaneously recorded channels along the shank of the Neuropixels probe 

(schematic on the left) in an awake singing bird (log-power spectrogram on top). Spike-sorted units are 

color coded and boundaries of LMAN (orange) are Area X (blue) are shown on the left. B Spike raster plot 

of several LMAN (orange line) and Area X (blue line) units simultaneously recorded during ten song motor 

renditions. C-D Comparison of the average firing rate of each individual unit recorded in all the birds (one 

marker type per bird, n = 5 birds; marker O corresponds to the example bird in A and B) in LMAN (n= 139 

units), Area X ( n= 75 units), the pallium without LMAN ( n= 125 units) and the striatum without Area X ( n= 

33 units) when the bird is singing alone vs not singing (see Methods). Single and multi-units are in red and 

grey, respectively, with filled markers for significantly song-modulated units. D Absolute number of units 

detected in LMAN, Area X, the pallium without LMAN and the striatum without Area X per bird. E Same 

than in D but with the relative number of units to the total number of channels covering the area of interest. 

*, p<0.05. 
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Hz, mean ± SD during UD) compared to silence (LMAN: 8.14 ± 5.21 Hz, Area X: 28.27 ± 43.10 

Hz, mean ± SD during silent periods). Much less fluctuations of the firing rate according to song 

production were measured in the units located in the pallium but outside of LMAN and in the 

striatum without Area X (Figure 2.9C,D). 

 

Types of Area X neurons  

The avian BG Area X is an amalgamation of cell types that exhibit specific electrophysiological 

properties in relation to the singing behavior. In our subdataset of 75 Area X neurons collected in 

5 adult birds, most of the units fired more during singing than during silent period (69/75=92%; 

Figure 2.10A). We identified high-frequency (HF) and low-frequency (LF) neurons, with 

spontaneous non-singing firing rates >60 Hz (n=16, mean=107.5 ± 28.6) and <50 Hz (n=75, 

mean=8.1 ± 10.4), respectively. Following previous reports (Farries & Perkel, 2002; Goldberg & 

Fee, 2010b; Leblois et al., 2009; Woolley et al., 2014b), HF neurons are putative pallidal neurons 

while LF neurons are putative striatal neurons and can be further classified in various neuronal 

categories.  

In the mammalian BG, previous reports identified two types of pallidal cells that are both located 

in the Globus Pallidus (GP). The first population of neurons makes external projections from the 

BG to the thalamus (GPe) while the other population of neurons locally projects to the BG (GPi). 

In the avian BG Area X, GPe and GPi-like neurons that share anatomical and firing properties 

with the mammalian GPe and GPi were also described. Both GPe and GPi-like neurons exhibit 

high-firing (HF) rates. GPe-like neurons exhibit bursts with high peak firing rates and pauses in 

firing, especially during singing, while GPi-like neurons rarely burst. GPi-like neurons also 

increase their firing during singing and display regular fast spiking. To determine whether the set 

of putative pallidal units include both types of neurons, we computed the Fano Factor against the 

spontaneous firing rate (Figure 2.10B). We set a threshold of the Fano factor at 0.8 to distinguish 

units on their burstiness. Units with a Fano factor higher than the threshold fell into the GPe-like 

category. 

Four types of striatal units were previously described: medium spiny neurons (MSN), fast-spiking 

interneurons (FS), low-threshold spiking neurons (LTS) and cholinergic (or tonically activated) 

units (ACH). MSNs make up the largest number of striatal cells in Area X (Gale & Perkel, 2010). 

They exhibit sparse firing often locked to behavioral events, such as a birdsong syllable, and very 

low spontaneous firing rate (Alvarado et al., 2021b; Goldberg & Fee, 2010b). To characterize 

whether MSN were present in our dataset, we first plotted the firing rate during undirected singing 

against a sparseness index (see Methods, Appendix IV). This allowed us to identify a subset of 8 

units with sparse firing (sparseness index >0.15) and low firing rate (<15Hz). We then plotted the 

spontaneous firing rate of this subset of units as a function of the median interspike interval to 

extract bursty neurons and so the putative MSNs neurons (Figure 2.10C). We were thus able to 

isolate 5 putative MSNs. A representative example is shown on Figure 2.10F (other examples are 

shown on Figure 2.10 Suppl 1).  
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Figure 2.10 Identification of Area X neuron types. A Striatal and pallidal units distinguished by 

spontaneous firing rate, threshold at 60Hz, with higher rates in undirected songs (UD); black line shows 

average rate. B GPe and GPi cells classified by Fano factor on UD song motifs; threshold at Fano Factor 

= 0.8. C Striatal units' firing rate during UD singing versus sparseness index (SI); subset under 15 Hz rate 

and over 0.15 SI plotted against median interspike interval, identifying putative MSN. D Striatal units 

(excluding MSN) Fano Factor versus UD singing rate to identify putative LTS neurons based on their high 

variability, Fano Factors > 3. E Median interspike interval versus peak firing rate for striatal units (excluding 

MSN & LTS) to differentiate putative ACH from FS units at 500 Hz peak rate. F Examples of putative GPe, 

GPi, MSN, LTS, Ach, and FS units, including spectrograms, spike raster plots for UD and FD songs, 

spontaneous activity, and average firing rates. Additional markers in subpanels relate to Fig. 5 Suppl. Fig. 

1. UD: Undirected singing, FD: Female-directed singing, GPe: External Pallidal Cells, GPi: Internal Pallidal 

Cells, MSN: Medium spiny neurons, LTS: Low threshold spiking neurons, ACH: Cholinergic neurons, FS: 

Fast spiking neurons. 
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Low threshold spiking (LTS) neurons display long, high-frequency bursts during singing, and 

much less during silent periods. LTS neurons discharge mostly irregularly throughout the song. 

Here, we computed the Fano factor to account for this irregularity from rendition to rendition 

against the firing rate during undirected singing. We were able to identify two putative LTS neurons 

in our dataset (Fano Factor > 3, Figure 2.10D). These two putative LTS neurons were highly 

bursty during singing.  Fast spiking (FS) interneurons were previously reported as exhibiting 

steady low-firing rate during silent period. During song production, they display high-firing rate, 

brief high-frequency bursts, and, contrary to MSN, are active during the entire song (Goldberg & 

Fee, 2010b). These properties are similar to those of ACH units that are tonically activated during 

non-singing epochs and that display a higher firing rate during singing. A key difference between 

FS and Ach is supposed to be the peak of firing, with ACH units expressing lower peaks than FS. 

To identify these two Area X neuron types in our dataset, we plotted the median interspike interval 

of the putative striatal units (after removing putative MSN and LTS units) against the peak firing 

rate (Figure 2.10E). It allowed us to identify two well separated clusters according to the peak of 

firing rate, with a threshold set at 500 Hz (Goldberg & Fee, 2010b).  

Social modulation of singing related neuronal activity  

Since we managed to perform recordings when the birds were either singing alone in their cage 

(undirected singing, UD) or for a female (female directed singing, FD), our data provide insights 

on whether and how social context impacts both LMAN and Area X singing related neuronal 

properties, and whether it differs according to the putative cell types (Figure 2.10 Suppl Fig 2A). 

Several earlier studies highlighted the social modulation of LMAN neuronal activity (Hessler & 

Doupe, 1999d; Kao et al., 2005b, 2008b). Our data confirms that singing related activity of most 

of LMAN neurons was lower (lower firing rate and peak of firing rate), less bursty (higher median 

interspike interval) and more reliable (lower Fano factor and higher cross-correlation of the 

instantaneous firing rate) during FD than UD.  

In Area X (Figure 2.10 Suppl. Fig 2B), putative pallidal cells exhibit lower firing rate and peaks of 

firing rate, and higher Fano factor, interspike intervals and cross-correlation of the instantaneous 

firing rate during FD than UD, thus illustrating a decrement of burstiness and cross-rendition 

irregularity when the bird is producing FD. Putative striatal units do not exhibit major social 

modulation, with the notable exception of the putative MSN. As shown by the examples in Figure 

2.10F and Figure 2.10 Suppl Fig 2B, we noticed that MSN tend to exhibit more sparse firing for 

FD than for UD. Overall, MSN tend to fire less during FD than UD. While most of the putative ACH 

units (7/10) were upregulated by the social condition with a higher mean firing rate for FD than for 

UD, the overall difference did not reach significance (-6.9 ± 12.17 Hz for FD – UD FR). This is the 

first report on the modulation of ACH firing properties and the first-time upregulated spiking activity 

has been observed in Area X from UD to FD to our knowledge.  

Interestingly, a recent in vitro study by Budzillo and colleagues (2017), described non-cholinergic 

neurons within Area X that propagate an increased excitatory drive in pallidal neurons when 

exposed to dopamine, a neuromodulator whose concentration in Area X is higher during FD than 

UD (Sasaki et al., 2006). These anatomically identified cells bear resemblance to subthalamic 

cells identified in mammals, exhibiting spontaneous activity at approximately 20 Hz in slice 
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preparations (Budzillo et al., 2017). It remains a possibility that some of the putative acetylcholine 

(ACH) units could be of this novel subthalamic-like cell type, but it remains challenging to 

definitively distinguish between the two given the unknown spiking properties of subthalamic cells 

in vivo. Further research and functional studies are yet to be conducted to clearly unravel the 

specific role of these cell types in the complex neural network during singing behavior. 

Since we were able to identify only two putative LTS and three putative FS neurons, we cannot 

provide reliable assessment on their property, although it is interesting to note that both LTS and 

2/3 FS exhibit an important decrease of singing-related activity during FD singing (LTS unit 1 

shown in Figure 2.10 from 112.15 to 55.06 Hz, LTS unit 2 shown in Figure 2.10 Suppl Fig 1 from 

106.85 to 16.37 Hz). Finally, many units from the Area X that we were not able to assign to a 

specific class do exhibit significant social modulation consistent with previous reports (Hessler & 

Doupe, 1999c).   

Cross-areal interaction between LMAN and Area X during singing 

One notable advantage of Neuropixels probes is their capability to facilitate simultaneous 

recordings from distributed brain regions, providing a unique opportunity to comprehensively 

characterize neuronal dynamics across different areas of the brain. In our study, we focused on 

recording the concurrent activities of neuronal populations in LMAN and Area X. To investigate 

their functional connectivity and the distinct influences they may exert on each other, we employed 

two analytical methods on the beforementioned data from our five birds.  

Initially, we applied Canonical Correlation Analysis (CCA; see Methods, Appendix IV) to the neural 

data from Area X and LMAN. CCA, a multivariate linear regression approach, seeks to maximize 

the correlation between two neural populations, thereby estimating the upper limit of potential 

interactions or coupling between brain regions (Semedo et al., 2020). In the case of one bird, 

g4r4, the population coefficient distribution shows a pronounced peak, indicative of a functional 

coupling between LMAN activity around 150 ms after motif onset and activity in Area X preceding 

by 50 ms (Figure 2.11A). This peak exceeds the shuffle predictor benchmark, suggesting a 

possible real-time influence of Area X on LMAN.  

While a 50 ms lag might seem substantial, a similar analysis in the macaque visual system 

conducted by Semedo et al. (2022) identified feedback-driven periods during early cortical 

processing of visual stimuli with similar time lags (around 50 ms). While feedforward-driven 

interactions in this study were temporally sharper, peaking at a delay of 2 – 3 ms, feedback 

interactions displayed less temporal precision. This could be attributed to factors like polysynaptic 

connectivity or a modulatory influence from an alternative source  (Semedo et al., 2022). Similarly, 

the impact of Area X on LMAN might also exhibit a delay and less precision, potentially due to a 

polysynaptic route that includes transmission DLM. This hypothesis is supported by from (Kojima 

et al., 2013) which found that lesions in Area X led to reduced bursting patterns in LMAN.  

However, it's also possible that an alternate source could simultaneously affect both LMAN and 

Area X, resulting in slightly varied delays due to distinct influences within their neural networks. 
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Contrastingly, in the other four birds studied, CCA failed to identify moments of correlated neural 

activity surpassing the shuffle predictor threshold (Figure 2.11B). 

Figure 2.11 Bird-specific effects of Area X and LMAN coupling revealed by Canonical Correlation 

Analysis. A Left: An example of a raster plot displaying LMAN and Area X units sorted by firing rate and 

aligned to the motif onset that is shown as a spectrogram on the top. Canonical Correlation Analysis (CCA) 

was conducted on paired segments of each 40 ms sliding in 5 ms steps of the analysis window -50 ms 

before motif onset to 100 ms before motif offset. Right: Leveraging the data from 794 motif renditions, 

correlation coefficients around 150 ms after the motif onset reveal a robust correlation between the neuron 

populations, with Area X leading by around 50 ms. This effect is not observed in shuffled controls. B The 

same CCA analysis conducted in four other birds did not yield conclusive results. Correlation coefficients 

fall within the range of shuffled control data. Note the color coding of correlation coefficients is scaled for 

each bird individually but the same across conditions. 
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As LMAN and Area X share direct and indirect connections in the recurrent anterior forebrain 

pathway (Figure 2.12A), we next asked whether it is possible to identify the timing and valence of 

propagated activity from Area X to LMAN and vice versa between individual pairs of neurons. We 

used the cross-correlation between spike trains as a function of temporal lag and the cross-

covariance as a readout of the momentary physiological transmission (see Methods, Appendix 

IV). We hypothesized that the direct, glutamatergic projection from LMAN to Area X causes an 

increase in the cross-covariance function at a short time lag when LMAN leads. Vice versa, 

increased activity in Area X can transmit negative feedback by inhibiting the excitatory drive of 

LMAN from DLM (S. W. Bottjer et al., 1989; Farries & Perkel, 2002; Goldberg et al., 2010b; 

Livingston & Mooney, 1997a; M. Luo & Perkel, 1999a, 1999b), which we expected to cause a 

negative deflection when Area X leads. Accounting for the multisynaptic propagation and many 

indirect pathways, we expected this effect to occur at a larger time lag (8 - 12 ms) with a potentially 

broader peak.  

Figure 2.12B presents an example of a pair consisting of an LMAN neuron and a classified MSN, 

both of which display a notable increase in activity during the motif. The cross-correlation analysis 

of this pair, as depicted in Figure 2.12C, reveals a peak at approximately 100 ms, mirroring the 

peak in the shuffle predictor's cross-correlation function (refer to Methods section for details). To 

better understand the immediate impact of the pair-wise interactions and reduce the bias of 

average firing patterns, we utilized cross-covariance analysis. This method calculates the 

difference between the cross-correlation of matched pairs of renditions and their shuffled 

counterparts.  

The average cross-covariance function for all neuron pairs showed no significant deviations within 

the +/- 50 ms lag, suggesting that diverging effects might be averaging out. Therefore, we 

conducted a detailed analysis of individual neuron pairs to identify those with significant deviations 

in their cross-covariance functions. We evaluated the magnitude and timing of these deviations 

under various conditions: undirected singing, female-directed singing, and baseline (no singing). 

This analysis involved determining whether and when the values surpassed a significance 

threshold, set at three standard deviations from a control based on Jackknife resampling, across 

lags from 2 to 50 ms.  

Figure 2.12D presents the cross-covariance functions for two representative neuron pairs, 

illustrating the variable effects across conditions. The first pair exhibits increased functional 

connectivity with the LMAN neuron leading during undirected singing; this connectivity decreases 

and shifts, with Area X taking a leading role during female-directed singing. In contrast, the second 

neuron pair shows no significant functional connectivity, as indicated by a flat cross-covariance 

function during undirected singing. However, a negative deflection occurs in the LMAN leading 

component when the bird sings to a female, highlighting the diverse neuronal interactions 

observed. 

At the population level, our analysis shows that approximately 25% recorded Area X units 

influence simultaneously recorded LMAN units. The proportion of functionally connected units per 

Area X unit demonstrates variability across different conditions: undirected singing (UD) at an 
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average of 25±1.2%, female-directed singing (FD) at 26±1.3%, and non-singing baseline (BL) at 

31±1.3%. Statistical analysis using a one-sided ANOVA revealed significant differences (p = 

0.014), with a higher fraction of units functionally connected during baseline than during 

undirected singing, as confirmed by post-hoc comparisons (p=0.014). Time lags were consistent 

across all conditions, centered around 18±10 ms (one-sided ANOVA p = 0.78). Interestingly, 
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covariance coefficients displayed a bimodal distribution, indicating both positive and negative 

influences from Area X to LMAN (Figure 2.12E, left). We observed significant variability in these 

coefficients across all conditions (one-sided ANOVA p < 10-6), with the smallest values recorded 

during undirected singing (UD: -6.16*10-04), followed by silent periods (SP: 7.86*10-04), and the 

strongest during female-directed singing (FD: -0.0026). Post-hoc analysis revealed significantly 

stronger coefficients during female-directed singing compared to both undirected singing (p = 

0.008) and silent periods (p < 10-4). 

Similarly, when examining the influence of LMAN leading times, we noted a small yet significant 

difference in the proportion of functionally connected cells across conditions: UD at 23±1.2%, FD 

at 24±1.3%, and SP at 30±1.4% (one-sided ANOVA p = 0.015). There was a higher fraction of 

connected units during baseline than during singing conditions, as evidenced by post-hoc 

comparisons (BL vs UD: p = 0.001; BL vs FD: p = 0.008, UD vs FD: p = 0.83). Time lags during 

spontaneous periods were consistent, averaging around 18 ms in all conditions (one-sided 

ANOVA p = 0.14). Additionally, as in the Area X leading analysis, cross-covariance coefficients 

showed significant variability across all conditions, with the most extreme values recorded during 

female-directed singing (UD: -5.45*10-04, FD: 0.004, SP: 0.0013; one-sided ANOVA p < 10-13). 

Post-hoc comparisons further highlighted marked differences between all conditions (UD vs BL: 

p = 0.01; other comparisons p < 0.0001). 

These results highlight the intricate dynamics of neural interactions within this songbird circuit, 

with bimodal distributions (Figure 2.12E) underscores differences in connectivity patterns across 

neuron pairs, and particularly during female-directed singing, where correlation coefficients are 

significantly lower compared to other conditions. 

 

Figure 2.12 Cross-covariance analysis in simultaneously recorded Area X and LMAN units during 

various behavioral states. A Illustration of the neural circuitry between LMAN and Area X, highlighting 

the direct and indirect pathways involved on the left. On the right, a hypothesis of the interaction between 

pairs of LMAN and Area X units is depicted. Because of the anatomical connectivity, we hypothesized that 

LMAN exerts a direct excitatory effect on Area X neurons whereas the effect of Area X has a larger lag 

accounting for the multisynaptic connection and exerts and inhibitory effect. B A representative pair of an 

LMAN neuron and a classified MSN, which both exhibit pronounced activity during the motif, is given. The 

panel depicts an example spectrogram of the motif and aligned spike raster, with average firing rates plotted 

below. C Cross-correlation analysis of the example pair from B, showing a peak at around 100 ms, which 

coincides with the shuffle predictor's peak, suggesting the need for further analysis to discern genuine 

connectivity. This led to the use of cross-covariance analysis. D Two example neuron pairs and their cross-

covariance function during undirected and directed singing are shown. E Displayed is the distribution of 

covariance coefficients at the first significant deviation for various conditions: undirected singing (UD), 

female-directed singing (FD), and non-singing (BL). The data exhibits a bimodal distribution in all 

conditions, with more pronounced extremes during singing compared to baseline. Notably, the size of the 

correlation coefficients is significantly different across conditions. Female-directed singing shows lower 

coefficients than undirected singing, and both singing conditions display lower coefficients than the non-

singing baseline. 
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Discussion  

Neuropixels probes are a promising tool for large scale electrophysiological recordings in freely 

moving animals. Systems were previously designed for allowing recordings in freely moving rats. 

Here, we aimed at going one step further in the usability of these probes by adapting it to the 

constraint of a small and light animal model, the songbird zebra finch. We were facing several 

unknowns. First, we were unsure of the capacity of the birds to support the implant and to sing 

after recovery. Second, previous studies have tested Neuropixels only in the mammalian brain 

and the possibility to use the probe to perform recordings in two brain areas simultaneously in an 

avian brain remains unclear. Third, we wanted to ensure the capacity of the probe to provide 

sufficient signal-to-noise ratio allowing a proper discrimination not only of single units but also of 

the unit types. Lastly, we wondered whether the recording quality will remain at a sufficient level 

over multiple days to cover a minimum period allowing birdsong learning. We were able to design, 

adjust and validate a new headstage that is light enough to allow small birds (~15g) expressing 

their natural singing behavior. We successfully recorded single units simultaneously in two brain 

areas critical for the birdsong behavior, thus opening a great opportunity to better understand 

neuronal dynamics at the network level during the expression of a naturally occurring behavior.  

Probe casing and protection  

Since the development and commercial release of the Neuropixels, several groups successfully 

designed their own probe holder system to perform chronic recordings in rodents, in relationship 

with their own experimental goals. Yet, none of these designs are adapted for the constraints of 

light-weight animals standing on two legs such as small songbirds. Carrying chronic 

electrophysiology with zebra finches implies designing an implant weighting 2 g maximum 

including cement (Fee & Leonardo, 2001; Yamahachi et al., 2020). In comparison, rats and mice 

can carry up to 25 g and 5 g on the cranium, respectively. Previous Neuropixels holders designed 

for rodents weighted between 2g and 2.6g (Juavinett et al., 2019; T. Z. Luo et al., 2020a). While 

the model designed for mice is light enough to theoretically be transferable to birds, implantation 

strategy is not compatible because having the center of mass far away from the skull with only a 

narrow elongation is difficult to balance for birds. We thus decided to separate the probe from the 

headstage. It has the double advantage of offering flexibility in the angle of implantation of the 

probe, thus allowing to target areas in various locations, and to ensure that the headstage remains 

at 90 degrees angle in elongation to the animal’s natural position whatever the probe implanting 

site, which is an optimal position for body balance. The probe is protected with a 3D printed casing 

securely fixed to the skull thanks to the two light screws which length can be adjusted to 

experimental needs (according to the brain areas of interest). We also designed a specific 

stereotaxic arm to maintain the probe holder and that can be used both for implantation and 

explantation surgeries. Successful explantation critically depends on the amount of cement used 

for implantation. After proper cleaning of the explanted probes, and as reported before (T. Z. Luo 

et al., 2020a), we were able to perform recordings of comparable quality than first-time implanted 

probes. 
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Extension to Neuropixels 2.0 edition 

A newer version of the probe, the Neuropixels 2.0, accompanied by a new headstage was 

reported recently with improved specifications (Steinmetz et al., 2021). A single probe weighs only 

~0.16 g, i.e. less than half of the initial version. The new headstage also decreased to merely 0.6 

g and a smaller size of 10 x 14 mm. Both the probe and headstage also advanced in terms of 

functionality. In the first edition, only one probe could be connected and sampled from per 

headstage whereas now, two probes can be handled by one headstage. Additionally, the probes 

can now be purchased in a version with one shank carrying 1280 electrode sites, or a multi-shank 

version with four shanks overall comprising 5120 electrodes. Although one can still ‘only’ choose 

a subset of 384 electrodes to stream and record from, the increased spatial spread allows 

capturing more independent brain tissue in the coronal or sagittal plane in one animal.  

It was not possible to include and test the new Neuropixels 2.0 probe in this study because it only 

became available in the second quarter of 2023 and the ordering process has a lead time of six 

months. Nevertheless, we believe that the results with respect to the neural quality and the 

behavioral recovery will be comparable if not better. The holder and casing need slight 

modification as the attached part of the probe became slimmer. We believe that these 

modifications will be minor and straight forward to implement, even holding the potential to reduce 

the weight. Moreover, replacing the electrical component by the new and lighter versions in a 

single probe configuration theoretically results in an implant weight of less than 1.42 g. We can 

only speculate at this point, but it is reasonable based on our experience that the lighter weight 

speeds up the recovery process after the implantation surgery, therefore increasing the chance 

of sessions early on with good neural readout and much singing. The overall lighter implant further 

creates the possibility of applying the design in even smaller birds. For instance, juvenile birds 

that are still in the critical sensory and sensorimotor song learning phase are smaller and thus 

more affected by an implant’s weight. Collaborators successfully implanted the here described 

design in juvenile zebra finches of around 60 dph. At least two juveniles started singing in the 

days after the implantation surgery. A lighter design will likely accommodate their needs further 

and increase the success rate of these experiments, and potentially allowing experiments even 

in younger zebra finches. 

Alternatively, one could also consider extending the configuration to leverage two probes, for 

instance with one probe per hemisphere. Such an implant including two Neuropixels 2.0 probes 

and one single headstage of the newer edition would add up to approximately 2.03 g. Although 

this weight compares to the weight of the here presented NIA, it is unclear how the animals would 

cope with it. It is possible that the added size that comes with an additional probe, holder, and 

casing will impact them in their natural behavior, e.g., during pecking, but it remains to be tested 

at this time. If the added dimensions are manageable, we would expect a similar recovery and 

habituation process as seen in the here presented results. A challenge will remain to find a 

configuration to place and attach all components on the skull. Additionally, the implantation 

surgery will require more time. The mapping of an additional brain area and the cementing of an 

additional probe will take approximately an hour that needs to be considered. If these challenges 
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are met, however, such a configuration would scale up the number of recorded units and give 

exciting insight, e.g., into the cross-hemispheric interplay during singing.  

Limits & consequences 

During the course of the experiments, we encountered several issues that we report below, 

together with some suggestions for changes and/or improvements. First, after a few hours of 

recordings, in absence of a commutator between the cable plugged on the bird’s head and the 

acquisition system, the cable plugged on the bird’s head was unsurprisingly getting untangled. 

Cable loops in the vicinity of the bird’s head were manually moved away without unplugging the 

cable, allowing the bird to keep freely moving in his home cage and allowing us to pursue with 

the recordings. Yet, this is not a perfect solution and there is a clear need for a reliable 

commutator, especially for ones aiming at performing long-term and undisturbed recording 

sessions.  

Second, an unexpected issue that we faced considering claims in previous reports (T. Z. Luo et 

al., 2020a) was the decrement in signal quality in terms of the number of (single or multi) units 

isolated. There was overall a continuous loss of the number of units recorded from one day to 

another and after about one-week post-implantation, almost no units were detected anymore. Luo 

and colleagues (2020) reported that the number of units was rather stable for more than two 

months on channels deeper than 2mm. Here, the decrease was affecting the entire shank, 

independently of the depth of the channels. Since reimplanted probes exhibited performance in a 

similar range that first-implanted probes, it argues in favor of changes in the neural tissue around 

the probe rather than in technical issues of the implanted probe itself. Neuropixels probes are 

made of silicon, a material that induces higher activation of glial cells, which will eventually 

constitute a glial scar around the probe, and thus reduce the signal quality (Moshayedi et al., 

2014). Recently developed biocompatible polymer probe-based systems may allow solutions to 

circumvent these limitations of the silicon probes (Chung et al., 2019; Salatino et al., 2017). 

Another way to extend the usability of the probe would be to connect it to a microdrive which 

would offer the possibility to compensate micromovements of the probe and to move the probe 

post-implantation. This would require adjustments of our design since it would add more weight 

on the bird’s head. A simpler possibility would be to attach the NIA to a small screw. In both cases, 

one remaining issue is that about half of the probe stands out of the bird brain. Future designs of 

the probe itself could include a length option so it could be more appropriate to small brains or to 

target areas located not deeper than 5 mm. Instead of the loss of recorded units in a few days, 

we were able to follow the same units for several hours on a single recording session. This is 

promising because it allows following putative changes in neuronal tuning over song practice or 

conditions, as we report between undirected vs female directed singing. 

Large-scale electrophysiological recordings in freely moving birds 

In the past twenty years, methods for performing chronic electrophysiological recordings in birds 

have moved from single to multi-channel systems, increasing progressively the number of 

simultaneously recorded channels: 1, 8, 16, 32, 256 channels using either tungsten wires, carbon 

fibers or glass pipettes (Arneodo et al., 2021; Cazala et al., 2019; Das & Goldberg, 2021; Elmaleh 
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et al., 2021; Giret et al., 2014b; Guitchounts et al., 2013; Hahnloser et al., 2002b; Jovalekic et al., 

2017). Some methods were done only in head-fixed or restrained animals while others aimed at 

performing recordings in freely moving, and singing, birds. Most of these previous methods only 

allowed recordings in a single brain area. However, the singing behavior is under the control of a 

set of interconnected brain nuclei and a proper understanding of the dynamics at play requires 

multi-areal recordings. To our knowledge, only one study intended to simultaneously record in 

freely moving and singing birds more than one brain area using electrodes (single tungsten wires) 

implanted into the RA and LMAN nuclei (Darshan et al., 2017b).  

Given the nuclei distribution in the songbird brain, the length of the Neuropixels probe and the 

angle flexibility for implantation provided by our designed headstage, many combinations of multi-

areal recordings can be envisioned, such as HVC/RA, HVC/NIf, HVC/Field L, or maybe even 

HVC/Field L/Area X. Owing to the length of the Neuropixels shank, one can even envision  to 

reach deep structures in the thalamus (e.g. DLM) or in the midbrain (e.g. VTA), thus opening a 

wealth of possibility to investigate neurophysiological mechanisms across brain areas. Here, we 

focused on LMAN and Area X. We were able to simultaneously record for several hours dozens 

of neurons in LMAN and Area X while birds were resting, singing alone or in the presence of a 

female.  

Area X includes several neuron types (Goldberg et al., 2010b; Goldberg & Fee, 2010b). Here, we 

were able to identify cells with properties corresponding to the different striatal and pallidal Area 

X cell types. Surprisingly, while MSN neurons are supposed to be the most frequent cell type in 

Area X, only a few examples were detected in our dataset. One reason might be related to the 

sparse firing that MSN neurons exhibit when the birds are singing and to the way the spike sorting 

algorithm handles sparseness of spikes occurrence. The Kilosort algorithm that we used allows 

adjusting the minimum firing rate, but it increases the number of false detections. So there was a 

need to perform manual curation of the data, which on the one hand is time consuming but on the 

other hand is the sole possibility to merge or split units. Improving spike sorting algorithms or 

curation methods were beyond the topic of the current study, but future research into providing 

reliable and reproductible spike sorting is still required (Buccino et al., 2020).  

Insights into the neural processing within the AFP 

Although our main aim was to design and adapt chronic recordings with Neuropixels probes to 

songbird, our data might provide some insights on the neural dynamics within the AFP underlying 

socially induced song modulation. Zebra finch songs are more variables when a bird sings alone 

(UD) than when he sings for a female (FD). While modulations of neural variability in the AFP 

reflect the song-to-song spectro-temporal variability, the respective contribution of LMAN and 

Area X, and how activity in one area impacts activity in the other, remains open to debate. Here, 

we confirmed that, as populations, most of LMAN and Area X neurons tend to exhibit both song 

and socially-modulated activity (Hessler & Doupe, 1999d; Kao et al., 2008b; Kojima et al., 2018b). 

We also corroborated that LMAN neurons exhibit more bursts of spikes during UD than during FD 

(Hessler & Doupe, 1999b; Kao et al., 2008b; Moorman et al., 2021b; Ölveczky et al., 2005a). 

Results are less clear regarding each putative Area X neuron type. Putative striatal neurons did 

not exhibit clear changes between FD and UD. The absence of social modulation of putative LTS 
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and FS during FD and UD might be related to the low number of each neuron type. It is worth 

noticing that only putative MSNs tend to fire less and that the example neuron exhibits a clear 

increase in sparseness during FD than UD. It is consistent with previous report showing that viral 

manipulations that reduce Area X MSN activity yield to decrease in song variability (Heston et al., 

2018). On the other hand, both types of putative pallidal neurons (GPe and GPi) fired less with 

slightly lower burstiness (increased median ISI) during FD than UD. These results support the 

hypothesis that increased activity of pallidal neurons contribute to song variability (Kojima et al., 

2018b).  

Considering the local network within Area X, with all the different cell types, and the nature of the 

projections from one area to another within the AFP loop, various scenarii have been suggested 

to account for socially-modulated song variability (Heston et al., 2018). LMAN-Area X projection 

neurons are mostly glutamatergic, Area X-DLM projecting neurons are mostly GABAergic and 

DLM-LMAN projecting neurons are mostly glutamatergic (S. W. Bottjer et al., 1989; Farries & 

Perkel, 2002; Goldberg et al., 2010b; Livingston & Mooney, 1997a; M. Luo & Perkel, 1999a, 

1999b). Within Area X, evidences support the existence of direct and indirect pathways between 

striatal and pallidal neurons (Gale & Perkel, 2010). The direct pathway supports the hypothesis 

that striatal neurons send GABAergic projections to pallidal neurons thus contributing to an 

inhibition of the pallidal neurons and thus to a disinhibition of DLM and in turn LMAN neurons. On 

the other hand, the indirect pathway would induce opposite effects: activation of striatal neurons 

contributes indirectly to a disinhibition of pallidal neurons, which in turn would yield to an increase 

of DLM and LMAN neuronal activity (Gale & Perkel, 2010). But since LMAN neurons send 

recurrent projection to Area X, it is also possible that it exerts a neural drive on Area X.  

Our comprehensive dataset with simultaneous recordings of several LMAN and Area X neurons, 

provide us a unique starting point from which to decipher the intricate dynamics at play within this 

neural network. The analysis we conducted, employing canonical correlation analysis (CCA), 

revealed that the hypothesized prominent peaks surpassing the shuffle predictor's range were 

largely absent. This was true for all but one bird, which notably had a higher number of renditions, 

suggesting that an ample dataset may be crucial for uncovering significant neural interactions. 

Our findings are based on analysis from a single recording session per bird. However, CCA's 

strength lies in its capacity to abstract from individual instances, focusing instead on low-

dimensional patterns within the population activity. Thus, expanding our analysis to cover multiple 

sessions may provide a more robust framework for detecting subtler patterns of connectivity, 

potentially overcoming the constraints imposed by a limited dataset.  

An alternative interpretation of our results might suggest that, in mature zebra finches, the signal 

transmission within the recurrent loop of the AFP could be predominantly characterized by 

stochastic fluctuations, which may also influence vocal output but not biasing it. This notion aligns 

with findings in rodents, where the coupling between interconnected striatal and cortical areas 

tends to solidify or become more pronounced throughout the learning trajectory (Kondapavulur et 

al., 2022; Lemke et al., 2019). Therefore, it is conceivable that during periods of active vocal 

learning or during adult reinforcement learning, the AFP may engage in a more coordinated 
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activity between LMAN and Area X. In the absence of such learning-related tasks, this functional 

coherence may recede into the background.  

Indeed, in addition to the undisturbed singing condition, pitch-shifting experiments were 

undertaken with a subset of the birds while performing simultaneous neural recordings from 

LMAN and Area X with our NIA (detailed in Table 2.2). Preliminary examination of this data 

revealed that merely one bird consistently altered its vocal pitch in response to the contingent 

aversive feedback. Nonetheless, this observation positively reinforces the notion that the 

songbirds, when carrying a NIA, can modulate their vocal pitch. 

Taken together, our study demonstrates a significant advancement in neural recording techniques 

for small, freely moving songbirds using Neuropixels probes. Our lightweight implant design has 

facilitated the collection of an extensive neurobehavioral dataset. Furthermore, our primary results 

reveal intricate dynamics within key song-related brain regions. The findings, while replicating 

many of the observations previously reported, hint at a more variable neural transmission within 

the AFP than expected, providing a fresh perspective on the neural underpinnings of songbird 

communication. This foundational work not only enhances our understanding of avian neural 

networks but also lays the groundwork for future research into the broader implications of neural 

flexibility and behavioral adaptation. 
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Chapter 2 

Quantitative modeling and neural signatures of 

motor variability in zebra finches 

Introduction 

Movements are inherently variable. Even though we can repeat the same movement again and 

again, it is almost impossible to perform it in precisely the same manner twice. This holds true 

even for highly stereotyped behaviors such as playing a musical piece that was practiced for many 

hours, or a sports performance that was trained to perfection (Bisio et al., 2014a; Van Beers et 

al., 2013).  

Indeed, motor variability from one rendition to the next (from here on shortened as motor 

variability) originates as part of many processes along the motor pathway. For instance, diverse 

cellular and neural processes, sometimes as early as during sensation, introduce variation due to 

their inherent stochasticity. This includes the random opening and closing of ion channels that 

affect the timing of action potentials, or fluctuations at the neuromuscular junction which contribute 

to variations in muscle-force (Faisal et al., 2008; Lisberger & Medina, 2015).  

Assuming that the nervous system is primarily interested in reliably executing stable motor 

behavior, such variability seems counteractive. However, in absence of supervision, motor 

variability can be convenient in that it provides the capacity to explore and learn from better 

outcomes and to adapt to changing conditions.  

Adaptive control is a key component of motor learning theories. Behavioral and modelling studies 

in humans, for example, proposed the concepts of learning-related central planning variability and 

peripheral execution variability to reconcile incidental and meaningful motor variability (Therrien 

et al., 2016; Van Beers, 2009; Van Beers et al., 2004). Support for a central source of meaningful 

motor variability comes from neurophysiological investigations in non-human primates and 

rodents. These studies identified correlates of movement variations in neural population dynamics 

in motor specific cortical regions (Churchland et al., 2006, 2010; Kondapavulur et al., 2022). 

Cross-areal recordings and perturbation studies further indicated that the central contribution is 

represented in a distributed network spanning across cortical, striatal and thalamic regions 

(Kondapavulur et al., 2022; Peters et al., 2014; Sauerbrei et al., 2020). Still, a direct link between 

latent, central factors and neural substrates of exploration remains elusive.  

Zebra finches (Taeniopygia guttata) provide insight into this matter. Adult male zebra finches 

repeat their song plentiful throughout the day; however, each rendition features subtle variations.  

Birdsong variability largely stems from the anterior forebrain pathway, notably its output LMAN. 

LMAN’s contribution to vocal variability has been firmly established through lesioning, temporal 

inactivation, or experiments that disrupt synaptic transmission (Hampton et al., 2009; Kao & 

Brainard, 2006; Ölveczky et al., 2005b; Stepanek & Doupe, 2010; Warren et al., 2011). These 
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interventions consistently lead to reduced spectral variability mostly tested on the pitch of a 

syllable. Additionally, targeted electrical microstimulation of LMAN subregions disrupts and alters 

the vocal output transiently after a short latency (40-50 ms) indicative of a direct contribution to 

the ongoing vocal performance (Giret et al., 2014a; Kao et al., 2005a; Kojima et al., 2018a).  

The variability that the AFP introduces plays a crucial role in vocal learning, especially during the 

initial song ontogeny (S. W. Bottjer et al., 1984; Ölveczky et al., 2005b; Scharff & Nottebohm, 

1991). During development, the neural functionality of the AFP appears to shift, with LMAN initially 

driving RA and later modulating (Aronov et al., 2008). After song crystallization, a remnant of this 

capacity to adapt features persists as evident in classical reinforcement learning paradigms. In 

these paradigms, birds receive feedback, usually a loud white noise burst, if they sing a particular 

syllable rendition higher (or lower) than an experimentally set threshold (commonly based on the 

prior feature distribution). The birds adapt their pitch and systematically shift in the direction that 

escapes the aversive stimulus. Such behavior is often referred to as ‘pitch-shifting’ and relies on 

the functionality of the AFP (Ali et al., 2013; Andalman & Fee, 2009; Tumer & Brainard, 2007; Zai 

et al., 2020).  

It has led to the idea that the AFP generates explorative variability (Fee & Scharff, 2010) that is 

reinforced contingent on reward through phasic dopamine release in the basal ganglia (Duffy et 

al., 2022; Gadagkar et al., 2016; Hisey et al., 2018). Nevertheless, LMAN does not account for all 

observed variability as residual variability remains even after complete lesion (Kao et al., 2005a; 

Kao & Brainard, 2006). Similarly, diurnal fluctuations in pitch have been observed in zebra finches 

(Wood et al., 2013) and more recently in entropy (Brudner et al., 2023). The origin of these 

fluctuations are yet unclear but similar circadian correlates have been described in human sports 

performance with peaks of performance in the afternoon (e.g. López-Samanes et al., 2017) and 

correlating with endogenous processes such as body temperature (reviewed in Atkinson & Reilly, 

1996). It remains an open question how songbirds control adaptation in the midst of the 

conglomeration of learning-related and unrelated effects and the magnitude of the AFP’s impact 

on the observed vocal variability.  

In this chapter, we build on the work of Zai (2019) to discern and quantify the precise role of LMAN 

in shaping vocal motor variability and adaptation. Similar to prior birdsong studies (Hampton et 

al., 2009; Kao & Brainard, 2006; Zai et al., 2020), we adopt an atomistic approach, focusing on 

the pitch of a distinct syllable with clear harmonic structure (atomic pitch). By applying a dynamic 

latent variable model to atomic pitch trajectories, we aim to unveil the AFP’s influence by 

comparing model parameters before and after LMAN lesion. Linking the identified noise source 

to learning factors, we analyze data from a set of birds engaged in the pitch-shifting task. Lastly, 

we test the model by correlating LMAN spiking activity with observed atomic pitch trajectories and 

latent LMAN pitch contribution, respectively. 

The findings suggest that LMAN introduces noise in a random manner, thereby accounting for 

70% of the observed atomic pitch variability on average across tested animals. Together with 

excellent fits of atomic pitch adaptation trajectories during pitch-shifting, this supports the notion 
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that LMAN variability is fueling adaptive control by integrating explorative and evaluative signals 

independently.  

Methods 

Animals 

21 adult male zebra finches were subjected to the study in this chapter. The animals were bred 

and raised either in the avian facility at the Institute of Neuroinformatics, Zurich, Switzerland or in 

the avian facility of the Institut des Neurosciences Paris-Saclay, France. The animals’ age ranged 

between 90 and 200 dph at the beginning of the experiment. They were housed individually in 

sound-attenuated recording chambers with access to food and water ad libitum throughout the 

experiment. The day/night cycle was set to 14 hours of day mimicked by artificial light and 10 

hours of night. 

All experimental procedures were performed in accordance with the Veterinary Office of the 

Canton Zurich, or the French Ministry of Research and the ethical committee of Paris-Sud et 

Centre. 

Song recording  

Audio signals were recorded with a wall-attached microphone (Audio-Technica PRO42). The 

signal was amplified, filtered, and digitized at 32 kHz, and continuously analyzed by a custom 

written LabView (National Instruments, Inc.) program (Herbst et al., 2023) that triggered saving 

upon the detection of harmonic sounds. 

Automatic syllable detection and pitch assessment 

Like in Canopoli et al. (2014) and Zai et al. (2020), an additional module of the custom written 

software in LabVIEW (National Instruments, Inc.) was employed that includes two features. The 

first feature consists of a two-layer neural network for automatic online detection of specific audio 

events. The network was pre-trained to detect a pre-selected target syllable. The second feature 

applies an adaptation of the Harmonic Product Spectrum algorithm (Noll, 1970) to the incoming 

audio signal to provide a pitch estimation of the last 16 ms every 4 ms. The detections were 

manually curated at the end of the experiment.  

Operant conditioning of pitch 

After a minimum of seven days of habituation and experimentally undisturbed singing, we started 

to play back a loud sound of white noise (WN) contingent on the pitch of the pre-selected target 

syllable. Upon detection of the target syllable, pitch was assessed and WN was played 

immediately (20 ms) for 40 ms through a loudspeaker (Harman/Kardon HKS 4BQ) as a response 

to renditions that were below (or above) a set threshold. This well-established conditioning 

protocol has revealed a form of adult song plasticity that allows birds to adapt their pitch to avoid 

the aversive sound.  

The threshold was updated daily to the median pitch of the previous day. The sign, i.e., whether 

WN was played on high or low renditions, was determined randomly at the beginning of the 

experiment and remained constant throughout the conditioning period.  
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Lesion surgery 

Lesion surgeries were performed under general anaesthesia (0.7-1.2% isoflurane, induction at 

2%). Pain was managed by analgesia administered both globally through subcutaneous injection 

(0.05 ml lidocaine solution) and locally along the planned skin incision (0.05 g Emla® creme). 

Craniotomies were performed based on stereotactic coordinates (5.3 mm anterior to the 

confluence of sinuses and 1.7 mm lateral to the midline, at a 35-degree angle of the flat anterior 

part of the skull). In each hemisphere, the location and edges of LMAN were confirmed 

electrophysiologically using a single Tungsten wire electrode of 0.8-1.2 MΩ impedance (Micro 

Probe, Inc.). 

Lesions were induced with ibotenic acid (Sigma-Aldrich I276), diluted and pressure injected 

(Picosprizter® III, Parker) into LMAN at three sites along the coronal plane using a micropipette. 

Pipettes were custom-made out of a borosilicate glass rods (BF-120-69-10, Sutter Instrument) 

that were pulled with a micropipette puller (P-97, Sutter Instrument).  

The penetrations targeted the center of LMAN and positions 250 µm medially and laterally to it to 

account for the oval shape of the nuclei that stretches along the coronal plane. 

Histology 

At the end of the experiment, birds were euthanized and subsequently perfused intracranially with 

phosphate-buffered saline (PBS) followed by 4 % paraformaldehyde. The cerebrum was 

recovered and submerged in 4% paraformaldehyde for at least 24 hours before further histological 

preparation. 

The cerebrum was then cut along the midsagittal plane and each hemisphere was processed 

individually. The medial part of the hemisphere was glued to a metal platform and subsequently 

embedded in 4% agar (Sigma Aldrich) to fixate the tissue and ensure even slicing. The specimen 

was cut in 80-µm thick sections along the sagittal plan using a vibratome. All slices were then 

Nissl stained with a 0.3 % cresyl violet acetate solution.  

Lesion volume quantification 

Two zebra finch brain atlases (Lovell et al., 2020; Nixdorf-Bergweiler & Bischof, 2007) were 

considered for the estimation of LMAN’s location in sagittal slices. In general, LMAN can be 

identified by its large cell nuclei and its location in the nidopallium, dorsal to Area X and located 

between the lamina frontalis superior and the lamina pallio-subpallialis as shown in Figure 3.1A 

(Lovell et al., 2020; Nixdorf-Bergweiler & Bischof, 2007). The lesioned LMAN volume was 

estimated relative to the average intact LMAN volume in unmanipulated (control) animals. In 

control brains, the area of LMAN was quantified in each sagittal section (ImageJ) and multiplied 

by the section thickness. The resulting volumes were averaged across animals (n = 8 birds) and 

hemispheres to result in a unihemispheric reference volume of 0.12 +/- 0.02 μm3 3.  

 
3 Performed by Anja T. Zai. 
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In experimental birds with lesion (n=21), the unlesioned LMAN volume was quantified in the same 

fashion as in controls4. The fraction of lesioned volume in a hemisphere was then calculated as 

the difference between the remaining volume and the reference volume and normalized by the 

reference volume: 

𝑉𝑙𝑒𝑠𝑖𝑜𝑛 =  
𝑉𝑐𝑜𝑛𝑡𝑟𝑜𝑙 − 𝑉𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔

𝑉𝑐𝑜𝑛𝑡𝑟𝑜𝑙 
 

The final fraction of lesioned LMAN volume in each bird was averaged across the right and left 

hemispheres: 

𝑉𝑙𝑒𝑠𝑖𝑜𝑛 =  
𝑉𝑙𝑒𝑠𝑖𝑜𝑛 𝑟𝑖𝑔ℎ𝑡 + 𝑉𝑙𝑒𝑠𝑖𝑜𝑛 𝑙𝑒𝑓𝑡

2
  

Dynamic latent variable model of pitch5 

In order to estimate the impact of unknown underlying factors that affect syllable pitch, a stochastic 

latent variable model was applied (Zai, 2020). The model assumed that the atomic pitch 𝑝𝑡 of a 

syllable rendition 𝑡 is a linear combination of independent motor primitives 𝑌𝑡 and an independent 

and identically distributed (iid) source of noise, characterized by a Gaussian distribution with zero 

mean 𝜖𝑡~𝑁(0, 𝜎𝜖
2)  

𝑝𝑡 = 𝑌𝑡 +  𝜖𝑡 

Four different primitives were included in the final model to account for diverse effects in atomic 

pitch production: the song memory, slow fluctuations, circadian patterns, and history dependence.  

The Song memory p* was assumed to be the fixed atomic pitch component that birds sing ad 

libitum and was estimated as the mean pitch that birds sing under unconstrained conditions. 

Slow fluctuations 𝒄𝒕 were considered to affect pitch deviations like a random walk. They were 

modeled with a temporal autocorrelation structure that decays exponentially conditional on the 

time constant 𝜏, in combination with a Gaussian noise term 휀𝑡~𝑁(0, 𝜎𝜀
2) 

𝑐𝑡 = (1 − 𝜏)𝑐 𝑡−1 + 휀𝑡 

The circadian pattern 𝑫𝒕 was empirically motivated based on the re-occurring pitch trajectories 

in a 24-hour cycle that have previously been shown (Wood et al., 2013; Zai, 2019) and likewise 

observed in the recorded data. These macroscopic fluctuations were approximated by a 

piecewise linear function. First, timestamps within a day were converted to relative numbers so 

that individual timepoints ℎ(𝑡) of a rendition 𝑡 ranged between 0 and 1 (0 ≤ ℎ(𝑡) < 1). Next, 

𝑁𝐷 intervals [𝐻𝑖, 𝐻𝑖+1] were set with the constrain that each interval covered the same number of 

renditions on average across days. This was important in order to reduce the impact of 

fluctuations in the diurnal singing rate as birds tend to sing more in the morning. ℎ(𝑡) was then 

 
4 Eight birds were analyzed by the author, the remaining animals were previously published (Zai, 2019). 
5 The model was developed and applied by Anja T. Zai. A more detailed description of a former but 
comparable version of the model is available in Zai (2019).  
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associated with the interval 𝑗 ∈ [1, 𝑁𝐷] it occurred in 𝐻𝑗 ≤ ℎ(𝑡) < 𝐻𝑗+1. Finally, the relative 

timepoint of the rendition within this interval 𝜃ℎ(𝑡)
𝑗

 was multiplied by the clock parameter 𝑑𝑗. 

Formally, this can be expressed as  

𝐷𝑡 = ∑ 𝑑𝑗𝜃ℎ(𝑡)
𝑗𝑁𝐷

𝑗=1 ,   where   𝜃ℎ(𝑡)
𝑗

= {
1 −

ℎ(𝑡)−𝐻𝑗

𝐻𝑗+1−𝐻𝑗
if  𝐻𝑗 ≤ ℎ(𝑡) < 𝐻𝑗+1

0 otherwise
 

 

Five intervals returned good fits without substantial improvement thereafter and was therefore 

kept for all fits (𝑁𝐷 = 5). 

A history dependence 𝑩𝒕 was assumed to bias pitch so that the time difference from the current 

to the previous syllable (ℎ(𝑡) − ℎ(𝑡 − 1)) would have an added effect on the current pitch, thus, 

accounting for differences between syllables within a song bout, for instance. The effect was 

modeled as a step function that built upon the inter rendition interval distribution (IRI) of the relative 

timepoints ℎ(𝑡). The effect was thought to be universal across birds, thus, the IRI was split into 

𝑁𝐵 periods with edges ∆𝑗, 𝑗 = 1,…𝑁𝐵 + 1 so that all periods had to contain the same number of 

renditions averaged across all birds from all experiments. The individual timepoint ℎ(𝑡) associated 

with the 𝑗-th period was then multiplied by the history parameter 𝑏𝑗. This is expressed formally as 

𝐵𝑡 = ∑ 𝑏𝑗𝛿𝑡
𝑗𝑁𝐵

𝑗=1 ,   where    𝛿𝑡
𝑗
= {

1 if Δ𝑗 ≤ ℎ(𝑡) − ℎ(𝑡 − 1) < ∆𝑗+1
0 otherwise

 

The IRI was well-approximated by five splits and subsequently used as parameter for all birds 

(𝑁𝐵 = 5). 

The Final composition 𝒀𝒕 was approximated as follows: 

𝑌𝑡 = 𝑐𝑡 + 𝐷𝑡 + 𝐵𝑡 + 𝑝
∗ = (1 − 𝜏)(𝑌𝑡−1 − 𝐷𝑡−1 − 𝐵𝑡−1 − 𝑝

∗) + 휀𝑡 + 𝐷𝑡 + 𝐵𝑡 + 𝑝
∗

= (1 − 𝜏)𝑌𝑡−1 + 𝜏𝐷𝑡−1 + 𝐷𝑡 − 𝐷𝑡−1 + 𝜏𝑝
∗ + 𝐵𝑡 − (1 − 𝜏)𝐵𝑡−1 + 휀𝑡

≈ (1 − 𝜏)𝑌𝑡−1 + 𝜏(𝐷𝑡 + 𝑝
∗) + 𝐵𝑡 − 𝐵𝑡−1 + 휀𝑡 

Model extension to reinforcement learning 

Zebra finches can learn to bias their pitch when they receive aversive or appetitive pitch 

contingent feedback (Andalman & Fee, 2009b; McGregor et al., 2022; Zai et al., 2020). To account 

for this reinforcement related motor bias in the operant pitch conditioning paradigm (see above), 

the model was extended and another independent latent variable 𝑟𝑡 was added: 

𝑝𝑡 = 𝜖𝑡 + 𝑌𝑡 + 𝑟𝑡 

The bias was modelled as a stochastic leaky integrator that steadily decays over time while 

integrating upon rewarded renditions. The decay was parametrized by 𝛿, and the reward term 

𝑅𝑡was scaled by the learning rate 𝛼, and 𝜂𝑡~𝑁(0, 𝜎𝜂
2) was a gaussian noise source with unknown 

variance 𝜎𝜂
2 : 
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𝑟𝑡 = (1 − 𝛿)𝑟𝑡−1 + 𝛼𝑅𝑡−1 ∙ 𝜖𝑡−1 + 𝜂𝑡 

The reward term was set to 𝑅𝑡 = 0 on escape trials (no WN played) and 𝑅𝑡 = −1 on hit trials (WN 

played).  

Parameter estimation and model constrains 

The latent variable model was interpreted as a linear Kalman filter6 with time-dependent 

coefficients and inputs. Parameters were fitted iteratively using the expectation maximization 

algorithm (Ghahramani & Hinton, 1996; Shumway & Stoffer, 1982), where the objective is to 

minimize the error in the model prediction by maximizing the log-likelihood of observing the data 

given the model parameters. More details can be found in Zai (2020). 

The song memory term 𝑝* and the history parameters 𝑏𝑗 are pure additive factors. To overcome 

this redundancy in the model and to circumvent the model from being under constrained, the first 

history parameter was fixed to zero (𝑏𝑗 = 0) so that renditions with small IRI are closest to 𝑝∗ in 

the absence of conditioning stimuli. 

Neurobehavioral analysis 

We leveraged data from Neuropixels recordings in LMAN and Area X from Chapter 1 and used 

one recording session per bird for further analysis in this chapter. For methodological details on 

the electrophysiological data collection see Chapter 1. Details specific to this chapter are 

described in the following. 

Atomic pitch was computed post-acquisition in target syllables with a stable harmonic stack. We 

used a custom-written Matlab function7 of the same algorithm described before (p. 61). This 

process involved the time-dependent power decomposition of the target syllable’s sound 

waveforms. Specifically, a spectrogram was generated using the discrete Fourier transform 

applied to a 16 ms sliding window which advanced in increments of 4 ms. 

In all except one bird, we directly computed the atomic pitch on the audio recording of the 

Neuropixels system (see Chapter 1). In one bird (g4r4), we leveraged the continuous monitoring 

system that recorded vocalizations during all times and computed the atomic pitch of a target 

syllable from the RecOOrder data (Figure 1.5, SFigure 3.2). To align the timepoints in the neural 

data stream, we cross-correlated the pseudo-RMS of the RecOOrder spectrogram and the 

Neuropixels system’s (nidq) spectrogram (SFigure 3.3).  

The detrended atomic pitch was calculated by removing trends from the atomic pitch trajectory, 

utilizing a moving average over 50 samples. We considered this method as an approximation to 

isolate what we hypothesized to be independent and identically distributed (iid) noise, presumably 

originating from the LMAN. The last and first 25 samples as well as renditions that were sung 

towards a female were excluded from the analysis. 

 
6 The Kalman filter is widely adopted in various disciplines such as control systems, robotics and signal 
processing because of its ability to produce good estimates of internal states from noisy observations. 
7 The function was written by a former graduate student Joshua Herbst. 
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Neural premotor activity was derived from LMAN units (see Chapter 1) and counting the number 

of spikes in the 40 ms window that preceded the atomic pitch assessment by 60 ms. This 

timeframe was chosen based on findings from previous studies (Giret et al., 2014a; Kao et al., 

2005a) which identified a premotor lead time in LMAN of approximately 40-50 ms. It was 

additionally advanced to account for the pitch evaluation process which is based on the 

specrogram. Notably, each column of the spectrogram represents the sound waveform of the 

preceding 16 ms. These two factors culminated in a 60 ms lead time for our assessment of neural 

premotor activity. Furthermore, we chose a 40 ms window to allow for longer premotor lead times 

(Kao et al., 2005b).  

Correlation analysis  

To evaluate the relationship between premotor activity in an LMAN unit and the variability of 

atomic pitch, we employed Pearson’s correlation (Pearson & Galton, 1997). The correlation 

between the number of spikes 𝑆 in the premotor window and the observed or detrended atomic 

pitch 𝑃𝑋, respectively, was calculated using the formula:  

𝜌𝑋 = 
𝑐𝑜𝑣(𝑆, 𝑃𝑋) 

𝜎𝑆𝜎𝑃𝑋
 

where 𝑐𝑜𝑣 denotes the covariance and 𝜎 is the standard deviation.  

The explanatory power of the correlation was determined through a simple linear regression 

(Freedman, 2009) . In this model, 𝑆 is the predictor variable, while 𝑃𝑋 is the dependent variable. 

with 𝜖 representing the residuals. The explained variance was calculated using the formula for 𝑅2 

𝑅2 =  1 −
∑ ( 𝑃𝑥,𝑖 − 𝑃�̅�)

2
𝑖

∑ 𝜖𝑖𝑖
 

This equation quantifies the proportion of the variance in the observed/detrended atomic pitch 𝑃𝑋 

that is predicted by the number of spikes 𝑆.  

The same equations were used to compute correlations and corresponding explanatory power 

for the relationship between lesion extent and changes in 𝜎𝑝𝑖𝑡𝑐ℎ 
2 and 𝜎𝜀

2, respectively (Figure 3.2D). 

To quantify the relationship between 𝜎𝜀
2 in freely singing and pitch-shifting conditions (Figure 

3.3D), a type-II linear regression was fit that takes into account that both variables are dependent 

(Ludbrook, 2010). 𝑅2 values were derived as stated above. 

Results 

In this chapter, we built on the thesis of Anja T. Zai (2019). We leveraged a similar lesion approach 

as in prior birdsong investigations (Hampton et al., 2009; Kao & Brainard, 2006; Thompson et al., 

2011) and used pre- and post-lesion observations to fit a dynamic latent variable model that 

estimates different structures of variability. In combination with atomic pitch trajectories during a 

reinforcement learning paradigm, this modeling approach allowed us to identify and quantify the 

induced variability by LMAN and its involvement in adult spectral song plasticity.  
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Figure 3.1 LMAN lesion affects atomic pitch variability but not diurnal pattern in the example bird 

o11y4. A LMAN’s anatomical localization in sagittal brain slices. LMAN is part of the forebrain’s nidopallium, 

located dorsal to Area X, between the lamina frontalis superior (LFS) and the lamina pallio-subpallialis 

(LPS) (A, top, schematic with relevant structures marked by thick lines). In Nissl-stained brain sections, 

Area X and LMAN stand out because of the high neural density and large cell nuclei (A, bottom, song nuclei 

indicated by arrows). Brain slices from animal b2j2. B In lesioned brains, the same markers were used to 

determine LMAN’s former location. Remaining parts of LMAN were quantified in magnified images (bottom, 

dashed lines corresponding to bold lines A, red crosses indicate parts of LMAN that were lesioned). In this 

example, 23% of LMAN (30 % left, 16 % right) remained intact. C The overall acoustic and temporal 

structure of the bird’s motif was unaffected by the lesion as shown by two examples before and after the 

lesion. To test for fine-grained acoustic variability, pitch was obtained at a target syllable with clear harmonic 

structure (atomic pitch, arrow). D Recordings over several days showed a strong diurnal pattern in this bird 

with renditions of higher pitch in the morning and lower pitch in the evening. The pattern persisted after the 

lesion but with an overall lower degree of variability. E The decrease in pitch variability can also be seen in 

a steepening of the cumulative density functions after the lesion (each day is plotted individually and 

centred around its average). 
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Histology  

21 birds were subject to ibotenic acid lesions that targeted LMAN in both hemispheres8. The 

lesioned volume was quantified with respect to healthy controls and varied between 0 and 100 % 

lesion (61 % +/- 28 %, mean +/- std, Supplementary Figure 3.1). In previous studies, lesion extent 

and reported song changes after LMAN lesion were uncorrelated (Kao and Brainard et al., 2006, 

Hampton et al., 2009). However, lesion sizes were already substantial in these studies (> 40% in 

Kao and Brainard (2006), > 70 % in Hampton et al., (2009)) which could have led to a ceiling 

effect. Additionally, Thompson et al. (2009) found evidence that mere surgical intervention tends 

to reduce pitch variability, an effect that can introduce an offset between the relationship between 

variability drop and lesion extent. Thus, assuming that the extent of LMAN lesion can be positively 

correlated with the decrease in song variability and to account for effects related to the surgical 

intervention but unrelated to the lesion extent, we decided to include all birds in our further 

analyses. 

Exemplary evidence for distinct sources of atomic pitch variability 

Figure 3.1 shows the histology and behavioral recordings of an example bird with substantial 

bilateral LMAN lesion (77 %). Like previous studies (Hampton et al., 2009; Kao & Brainard, 2006), 

the motif structure remained unaltered after the lesion intervention. The holistic, ‘gestalt’ like 

appearance was qualitatively comparable between healthy and lesioned conditions (Figure 3.1 

C). This allowed us to focus our analyses on the pitch of a selected target syllable with clear 

harmonic structure (the atomic pitch, Figure 3.1C). We tracked the atomic pitch of this syllable 

over several days before and after the lesion which gave us access to extensive behavioral time-

series data (Figure 3.1D).  

This bird exhibited a robust daily pattern, with renditions of higher pitch in the morning than in the 

evening (Figure 3.1D). While such slow, diurnal fluctuations are widespread in zebra finches 

(Wood et al., 2013), they are often overlooked in analyses limited to a subset of renditions within 

a day (e.g. Kao & Brainard, 2006) or analyses that aggregate the data (e.g. Kojima et al., 2018a).   

Leveraging our comprehensive time-dependent atomic pitch trajectories, we found evidence that 

LMAN is not implicated in producing the diurnal pattern; the bird persisted in singing at higher 

pitch in the morning compared to the evening in the post-lesion condition. Consistent with 

previous findings (Kao and Brainard, 2006, Thompson et al., 2011), on the other hand, we see a 

strong decrease in the overall variability after lesioning LMAN (Figure 3.1D, E). 

Dynamic model of atomic pitch attributes LMAN to a random noise source 

Interested in modeling the different sources of motor variability that accumulate to observable 

song variations, we extended the thesis work by Anja Zai (2019) with additional animals. We fit a 

dynamical latent variable model to atomic pitch trajectories of individual birds before and after 

lesioning LMAN.  

The model consists of a linear combination of time- and history dependent factors and a random 

noise source that supplement the memorized template (see Methods, Figure 3.2A). Each factor 

 
8 13 birds were part of Anja Zai’s thesis (Zai, 2019). 
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adds relevant power to the model and the final combination can faithfully simulate bird-specific 

pitch trajectories (see Zai, 2019).  

We hypothesized that in each rendition, the AFP drives the atomic pitch away from its memorized 

template in a random fashion (Figure 3.2A). Indeed, comparing parameter fits of atomic pitch 

before and after lesion (Figure 3.2B, C), we found that the lesion extent is an excellent predictor 

of the decrease in independent and identically distributed gaussian noise variance 𝜎ϵ
2 (n = 17, 

𝑅2 = 68%) and both variables are highly correlated (ρ =  0.84, 𝑝 < 10−5, Figure 3.2D). In 

comparison, a fit between the LMAN lesion extent and the decrease in observed atomic pitch 

Figure 3.2 Dynamic pitch modelling associates LMAN with iid gaussian noise A We modeled pitch 

trajectories as a linear combination of four different, latent sources (jagged arrows) that cause fluctuations 

around the fixed song memory (straight arrow). B Distinct brain circuitries previously identified to control 

the production of pitch. Variability can arise at any stage and propagate down to the syrinx but with various 

structure and behavioral relevance. We hypothesized that the anterior forebrain pathway acts as a random 

noise source and that lesioning LMAN will affect the corresponding model parameter 𝜖 (light blue color in 

A and B). C Over 20000 renditions before and after LMAN lesion were used to differentiate and quantify 

the variability induced by LMAN per bird. Data shown for the example bird o11y3 in Figure 3.1. D The lesion 

extent accounts for a large fraction of variance of the decreased random noise variability (𝜎𝜖
2, blue) and 

only a smaller fraction of the directly observed variability (𝜎2, black). Shown is the type-1 linear regression 

with 95 % confidence interval (100 bootstrapped replicates) and annotated statistics (ρ Pearson correlation 

coefficient, 𝑅2 percent explained variance, * p<0.05, *** p<0.001). Data from the example bird in C and 

Figure 1 is highlighted with a star. 
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variance 𝜎2 was less effective (𝑅2 = 33%) and the correlation between both variables was weaker 

(ρ =  0.58, 𝑝 < 0.05).  

We also observed that the parameter 𝑐𝑡  (reflecting slow fluctuations) became larger after lesioning 

LMAN. However, compared to 𝜎ϵ
2, the change of 𝑐𝑡  was unrelated to the lesion extent. The 

parameters that represent the history-dependent source and to the diurnal pattern in the pre-

lesion condition were similar in comparison to their estimates in post-lesion conditions.  

Reward associated with random noise source can account for non-monotonic pitch 

adaptation. 

We trained 24 adult zebra finches9 in the pitch-shifting paradigm where renditions of low (or high) 

atomic pitch triggered a white noise burst. Adjusting the threshold incrementally, we observed that 

birds systematically shifted away from their learned target to escape the aversive feedback 

consistent with previous reports (Ali et al., 2013; Andalman & Fee, 2009; Tumer & Brainard, 2007).  

Like the example bird in Figure 3.3A, we observed that roughly half the birds produced atomic 

pitch trajectories with non-monotonic shifts. These birds would change their atomic pitch to 

escape white noise feedback over the course of several days, but their within-day change followed 

the opposite direction (Figure 3.2B, upper left quarter). Consequently, within a day, these birds 

would sing so to receive more white noise in the evening than in the morning (Figure 3.2A, B). 

This behavior seems counterintuitive and suboptimal in theory but could be reconciled if the 

diurnal pattern (and other noise sources acting against the learning gradient) were independent 

of the learning-related explorative noise source. Consequently, diurnal patterns that are 

orthogonal to the learning gradient remain unchanged and instead mask the adaptive changes 

within a day, as observed in our subset of birds with non-monotonic shifts. 

To test this hypothesis, we asked whether an extension of the dynamic latent variable model that 

incorporates reinforcement signals is sufficient to explain these behavioral trajectories during 

pitch-shifting. Figure 3.3C shows a schematic of the amended model. Notably, the model is 

constructed so that the reward is associated only with the random noise source that was 

previously attributed to LMAN and is unrelated to the remaining behavioral primitives. In this 

sense, the learned bias 𝑟𝑡  is the discounted bias accumulated in the past plus an update that 

scales with the injected random noise if the rendition was punished.  

Estimating parameters of the extended model in the context of our atomic pitch adaptation data 

provided good fits and was able produce adaptive shifts over the course of multiple days with 

non-monotonic behavior within days. Furthermore, the derived 𝜎𝜖
2 during pitch-shifting was almost 

perfectly correlated with the parameter derived from the model that was independently fit on data 

during free singing (Figure 3.3E, n=19, rho = 0.99, p <10-14). This suggests that the underlying 

noise structure attributed to LMAN is comparable during free singing and under conditions of 

externally driven adaptive control. In combination with the validity of the model, this supports the 

idea that LMAN drives adaptive changes while retaining the same magnitude of exploration. In 

 
9 16 birds were trained and recorded by Anja Zai or Alessandro Canopoli.  
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other words, independent forces of exploration and adaptation are sufficient to explain our 

empirical atomic pitch-adaptation data.  

Figure 3.3 Associating reward with latent iid gaussian noise can explain non-monotonic pitch 

adaptation. A Shown is data from the example bird from Figure 3.1 during the pitch shifting paradigm. The 

top shows an excerpt of the bird’s song with two renditions of the target syllable. In this bird, low pitch 

renditions triggered an aversive white noise burst. The first rendition escaped the punishment since the 

pitch was higher than the threshold. The second rendition was produced with pitch lower than the threshold 

which triggered the white noise burst. Below is the atomic pitch trajectory during days of undisturbed singing 

followed by the first three days of pitch-shifting. B Like the example bird, half of the tested animals (n = 24) 

performed better (receiving less white noise) in the morning than in the evening. This is reflected in negative 

changes between morning and the evening performance (x-axis). On the other hand, all birds including 

those with non-monotonic daily learning, adapted their atomic pitch over a larger timescale as evident from 

consistent positive changes in direction of the shift from one morning to the next (y-axis). Plot by A. Zai C 

The amended model integrates a reward signal 𝑅𝑡  in the rendition 𝑡 with the output of the independent 

noise source 𝜖𝑡 to simulate a behavioral bias 𝑟𝑡 as in the pitch-shifting paradigm. This model can simulate 

adaptation trajectories with non-monotonic diurnal features.  See Methods for details on the model. D The 

variance of the independent noise source estimated from data during pitch-shifting almost perfectly 

matches the parameters derived from undisturbed, baseline data (n = 19 birds, Pearson correlation 

coefficient ρ= 0.99, p< 10-6, bold black line shows type-II linear regression fit).  
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Neural correlates between LMAN premotor spiking and atomic pitch variability 

If LMAN introduces random iid gaussian noise among various sources of atomic pitch variability, 

a fundamental question persists regarding how this influence is represented in neural activity. A 

prior study in the downstream recipient of LMAN and main driver of vocal behavior, RA, revealed 

correlation between RA spiking activity and variations in of syllable specific features including 

pitch, entropy and amplitude on a rendition-to-rendition basis (Sober et al., 2008). We applied a 

similar analysis to the neurobehavioral recordings of five birds that carried a chronically implanted 

Neuropixels probe in LMAN (see Chapter 1).  

All five birds produced syllables with at least one flat harmonic stack that allowed us to derive 

atomic pitch trajectories over the course of the neural recording (Appendix II). Given the 

comparably short recordings, we approximated the latent influence of LMAN on atomic pitch 

variations by determining the residuals from the smoothed trajectory (detrended atomic pitch).  

We assessed premotor neural activity by counting spikes in LMAN units within a 40 ms premotor 

window, set 60 ms before the evaluation of atomic pitch. Panel A and B in Figure 3.6 show data 

from an example bird (j8v8), in which we succeeded in recording 28 spiking units in LMAN (Figure 

3.6A) during a five-hour long session that contained 1375 syllable renditions (Figure 3.6B, green 

points).  

The two fundamental questions we aimed to address here were:  

1. Can (part of) the atomic pitch variation be explained by the variation in premotor neural 

activity in LMAN? 

2. Is the prediction better for the detrended atomic pitch attributed to LMAN?  

To do so, we computed correlations between 1. premotor neural activity and observed atomic 

pitch and 2. premotor neural activity and detrended atomic pitch and compared the prevalence 

and strength of significantly correlated units. The example unit in the top panel of Figure 3.4C 

yielded a weak, but significant (p = 0.015) negative correlation with observed atomic pitch. In 

contrast, the correlation analysis between this unit and detrended atomic pitch was weaker and 

not significant (p = 0.89).  Similarly, 𝑅2 values were small for observed atomic pitch variations (𝑅2 

= 0.004, meaning 0.4 % of the variance can be explained by spiking variation in this premotor 

time window of this unit) and absent for detrended atomic pitch variations (𝑅2 < 10-5).  

We repeated the analysis for all units in this bird (Figure 3.4C, D). Out of the 29 units, seven were 

significantly correlated with the observed atomic pitch variation with almost equal number of 

positively and negatively correlated units (four positive vs three negative significant correlations).  

In contrast, only three units were significantly correlated with the detrended atomic pitch and all 

of them yielded positive correlation with comparable strength to correlations with observed atomic 

pitch. Notably, there was no overlap in units being significantly correlated with observed atomic 

pitch variations and units that were significantly correlated with variations in the detrended atomic 

pitch (Figure 3.4C).  
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We extended our analysis to include data from four additional birds, pooling a total of 126 LMAN 

units from five birds. Each bird produced at least one syllable with a stable harmonic component, 

adding up to atomic pitch trajectories from six syllables. We set a significance level at 5% and 

anticipated that a similar percentage of units might demonstrate significant correlations merely by 

chance. Our results exceeded this threshold: 12 % of the units showed a significant correlation 

with the observed atomic pitch, while 10% correlated significantly with the detrended atomic pitch 

(Figure 3.4E).  

Among the significantly correlated units, six were present in both groups (significantly correlated 

with both observed and detrended atomic pitch), 

with comparable correlation strength and 

direction. In the other units, correlation directions 

were generally consistent with one exception 

where the direction inverted (Figure 3.4C, fifth 

unit from the top, 𝜌𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑  = -0.079, p = 0.003, 

𝜌𝑑𝑒𝑡𝑟𝑒𝑛𝑑𝑒𝑑= 0.046, p = 0.09).  

This uniformity in correlation direction might result 

from the fact that observed and detrended atomic 

pitch variations were highly correlated in all 

syllables. This observation could account for the 

similar proportions of significant correlations, 

while also suggesting that any differences might 

manifest more in the strength of these 

correlations. However, our data did not support 

this hypothesis. The absolute coefficients of 

significant correlations were overall small but 

comparable ( |𝜌𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑| = 0.098 ± 0.059, n = 15; 

|𝜌𝑑𝑒𝑡𝑟𝑒𝑛𝑑𝑒𝑑| = 0.122 ± 0.066, n =12, mean±SD; 

two-sided Wilkoxon rank sum test p = 0.32).  

Figure 3.4 Correlation analysis of LMAN spiking and atomic pitch variation A Multisite raster of LMAN 

units aligned to the onset of the atomic pitch evaluation for one example bird Top: Spectrogram of the target 

syllable. Centre: Raster plot of 29 LMAN units depicted in alternating colors, each illustrating 20 randomly 

selected rendition. Bottom: Average spike rate for each unit, and average across all units (bold, +/-SD) 

across 1375 renditions. The grey area highlights the premotor analysis window. B The atomic pitch 

trajectory as a function of daytime or rendition count since the start of neural recording. The latent 

contribution of LMAN was estimated as the detrended atomic pitch calculated as the deviation from the 

smoothed trajectory (blue). Note that in this recording, the neural data acquisition was interrupted while the 

system continued saving the auxiliary audio input (black dots). C Correlation coefficients for one example 

unit (top) and summary of all units (bottom) in relation to both observed and detrended atomic pitch from 

the recordings shown in A and B. Significant correlations are marked with stars (** p<0.01, *p<0.5). D 

Aggregated significant correlations for bird j8v8. E Cumulative histogram summarizing all significant 

correlations for the entire dataset of 126 LMAN units and six syllables. 

Figure 3.5 Explanatory power in significant 

neurobehavioral correlations. Empirical 

cumulative distributions of the explained variance 

(R² values) for LMAN units with neural activity that 

significantly correlates with observed atomic pitch 

(in blue, n = 15) and detrended atomic pitch (in 

orange, n = 12). The explained variance reflects 

the proportion of pitch variability that can be 

accounted for by the neural activity. 
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The explained variance for significant correlations was generally small. Figure 3.5 shows the 

empirical cumulative distributions for the two groups. For the significant correlations between 

LMAN units and observed atomic pitch, the 𝑅2 ranged between 0.3 and 6% (1.9 ± 0.2 %, n = 15, 

mean±SD). In the case of significant correlations between LMAN units and detrended atomic 

pitch, the range was comparable, spanning from 0.3% to 7%, and on average slightly but not 

significantly smaller (1.3 ± 0.2 %, n = 12, mean±SD; two-sided Wilkoxon rank sum test p = 0.32).  

Discussion 

In this chapter, we assessed the contribution of the AFP, and particularly LMAN, to the acoustic 

variability of adult zebra finch song. We focused on the atomic pitch of a selected target syllable 

with clear harmonic structure as a statistically amenable and observable acoustic feature of song 

variability.  

LMAN’s contribution to atomic pitch variability 

Atomic pitch variability has previously been reported to originate in part in LMAN in studies that 

lesioned LMAN (Kao and Brainard, 2006, Hampton et al., 2009, Stepanek and Doupe, 2010, 

Thompson et al., 2011) or impeded the synaptic transmission in the downstream RA (Stepanek & 

Doupe, 2010). We used a similar approach and compared pre- and post-lesion conditions to fit a 

dynamic latent variable model. Our quantitative model shows that LMAN’s effect to atomic pitch 

variability is well-explained by a random noise source with iid properties. This was possible 

because of the extensive recordings over several days and parameter comparisons between pre- 

and post-lesion conditions.  

A latent learning strategy accounts for non-linear adaptation patterns 

LMAN, as part of the AFP, has also been shown to be necessary to adapt atomic pitch to external 

feedback as in the pitch-shifting task (Andalman & Fee, 2009b; Tumer & Brainard, 2007; Zai, 

2019). Contrary to previous assumptions, our research reveals that pitch adaptation in songbirds 

does not always adhere to a linear pattern. About half of our birds adapted their pitch in a non-

monotonic way, i.e. they sang to receive more punishment in the evening than in the morning but 

systematically shifted away from the punishment over the course of several days (also reported 

in Zai, 2019). This stands in contrast to prior work that came to the conclusion that songbirds 

adapt their pitch by reinforcing instances that avoided punishment (Charlesworth et al., 2011) and 

challenges classical reinforcement learning models that primarily associate learning with reward 

history (Williams, 1992).  

To better understand this phenomenon, we amended the dynamic latent variable model by 

integrating reward signals and fitting behavioral trajectories during pitch-shifting. By linking the 

reward signal exclusively to the noise attributed to LMAN, while considering other sources 

independent, we were able to account for the observed non-linear pitch changes. This approach 

also reconciles the empirical data with traditional reinforcement learning theories, suggesting a 

more complex, latent learning strategy in songbirds. 

Our modeling during pitch-shifting indicates that the exploratory behavior underlying learning 

remains constant throughout the process. This finding contrasts with those from human motor 
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learning studies, where motor variability is typically higher in beginners who just began acquiring 

a new skills such as playing tennis or throwing darts, and diminishes as they become more skilled 

(Bisio et al., 2014b; Van Beers et al., 2013). However, it must be acknowledged that these tasks 

are more analogous to the initial song learning phase in songbirds, during which the variability in 

vocal output decreases as the development progresses (Fee & Goldberg, 2011), than the pitch 

reinforcement learning studied here. Nevertheless, it is worth noting that the near-perfect 

alignment of parameters derived from model fits to pitch adaptation and freely singing trajectories 

(Figure 3.3D) indicates that in adult songbirds, motor variability is not modulated based on 

learning progress. This suggests a possible difference in how variability is regulated during initial 

learning compared to vocal plasticity in adults. 

Sources of behavioral primitives 

The origin of motor variability other than that stemming from LMAN remain elusive at this moment. 

Previous research by Wood et al. (2013) investigated diurnal pitch variations in zebra finches but 

did not observe any central modulation through serotonergic pathways that are implicated in sleep 

and other circadian behaviors (Monti, 2010). An alternative agent essential for regulating sleep-

wake cycles and circadian rhythms in vertebrates is Melatonin (Cassone, 1990). It could exert an 

indirect effect of diurnal pitch variation by altering core body temperature (Cagnacci et al., 1997), 

which in turn affects neural signal transmission and was shown to impact motor performance 

(Atkinson & Reilly, 1996). Melatonin might also have a direct, central effect. The presence of 

melatonin receptors in the primary song control nuclei (Bentley & Ball, 2000; Gahr & Kosar, 1996) 

indicates that melatonin could establish a daily rhythm through internal brain regulatory 

processes. While our results suggest that diurnal patterns are not under the direct control of the 

AFP, the hypothesis that melatonin may affect atomic pitch by modulating spike activity within the 

song motor pathway remains an intriguing avenue for future research. 

Neural correlates of LMAN’s contribution to atomic pitch variability 

If LMAN causes variations in syllable pitch from one rendition to the next in an iid manner, a 

fundamental question remains how this is represented in neural activity. Leveraging the neural 

spiking data recorded in Chapter 1, we asked if variations in premotor neural activity in LMAN can 

generally explain atomic pitch variations, and 2) whether the prediction is stronger or more 

prevalent for the detrended atomic pitch which approximates the distinct contribution of to LMAN.   

Our analysis identified a fraction of LMAN units whose spiking activity was significantly correlated 

with atomic pitch variations. The prevalence these significant correlations were half as high 

compared to those observed in the RA in Bengalese finches (12 % vs 26 %), and the predictive 

power was more than four times lower (1.9 % vs 8 %) (Sober et al., 2008). Yet, the discovery of 

significant correlations between LMAN spiking and atomic pitch variation is a crucial first step in 

linking acoustic variability to a premotor area.  

Consistent with Sober and colleagues’ findings in RA (2008), we found both positive and negative 

correlations. Given that neurons in LMAN that innervate RA exert an excitatory influence on 

downstream neurons through NMDA receptors (Mooney & Konishi, 1991) and considering that 

the projections from LMAN to RA are organized topographically (M. Luo et al., 2001), it is possible 
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that these varying directions of correlation are a reflection of this organizational structure. Another 

possibility is that our recordings were made from LMAN interneurons, which are known to inhibit 

projection neurons (Boettiger & Doupe, 1998; Livingston & Mooney, 1997b). This mechanism 

could influence RA neurons and their subsequent pathways in a contrary manner. However, as 

Kao et al. (2008a) noted, recording from these interneurons, both in anesthetized adult birds and 

in slice preparations, has proven difficulty (Livingston & Mooney, 1997b; Rosen & Mooney, 2000) 

and to our knowledge, there are no reports of recordings of LMAN interneurons during 

wakefulness or singing. 

The function of recorded several units, which were not significantly correlated with atomic pitch 

variation, is still not well understood. Recent insights from neuron population analysis discovered 

that neurons, even those not specifically tuned to or associated with a certain motor behavior, can 

provide valuable insights through the dynamics of neural populations (Gallego et al., 2017). It 

indicates that the influence and function of individual neurons on specific behaviors, such as 

atomic pitch variation, might be better understood and appreciated when analyzed in the broader 

context of their collective neural activity. 

Our results showed comparable outcomes between observed and detrended atomic pitch. We 

can think of several technical reasons explaining this observation. Firstly, unlike the initial phase 

of our study that examined behavioral trajectories across several thousand renditions recorded 

over many days, the analysis of atomic pitch trajectory in the latter analysis was confined to a few 

hours in the day when we performed neural recordings. Secondly, there is a high correlation 

between observed and detrended atomic pitch. This, coupled with the limited number of 

renditions, could obscure small differences. Thirdly, due to the restricted number of renditions, we 

estimated the latent contribution of LMAN by detrending the time series using a moving average 

filter. There is a chance that employing the latent variable model, even with this smaller dataset, 

might reveal distinctions between correlations between LMAN spiking and observed or LMAN-

influenced variations in atomic pitch, respectively. 
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Chapter 3 

Interactive extraction of diverse vocal units from a 

planar embedding without the need for prior sound 

segmentation 

Summary 

Research on animal vocal communication heavily relies on the analysis of vocal signals. However, 

to dissect, categorize, and proofread an individual’s vocal output still requires intense human 

labor, especially when the vocabulary is unknown and there are background noises that must be 

ignored. These challenges are usually met by preprocessing steps such as sound segmentation, 

annotation of training data sets for machine learning, and/or by visual inspection of a 

representative subset of data, which all introduce additional challenges.  

We propose a simple and efficient semi-automated clustering approach aiming to speed up and 

automize part of this time-consuming pipeline. We segment the audio recordings into small, 

overlapping snippets and bypass the segmentation problem by projecting all segments 

independent of their content into the plane. In this plane, the different vocalization types tend to 

appear as distinct elongated structures. From these structures, we extract vocal instances by 

defining pairs of characteristic regions, one region related to vocal onset and the other related to 

the vocal offset. We present a simple graphical user interface (GUI) for manual tuning of these 

vocalization-defining regions which allows a trained user to cluster the vocal output of a zebra 

finch from a day-long recording within a few minutes. The clustering is precise and requires little 

human post processing. With this simple and intuitive method for extracting arbitrary vocal units 

from large data sets, we hope to increase the convenience of analyzing longitudinal recordings of 

animal vocalizations. 

The study has been published in Frontiers of Bioninformatics in 2023 (Lorenz et al., 2023). I 

contributed to the concept and the design of the study, created visualizations and took part in the 

writing of the paper. I also refined the graphical user interface and its underlying code and created 

tutorials on its usage (https://gitlab.switch.ch/hahnloser-songbird/published-

code/automtedclustering/2n-extraction). 

The following is a direct copy of the original publication (Lorenz et al., 2023) with figure and section 

numbering adjusted to match the document style.  

https://gitlab.switch.ch/hahnloser-songbird/published-code/automtedclustering/2n-extraction
https://gitlab.switch.ch/hahnloser-songbird/published-code/automtedclustering/2n-extraction
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Abstract 
Annotating and proofreading data sets of complex natural behaviors such as vocalizations are 

tedious tasks because instances of a given behavior need to be correctly segmented from 

background noise and must be classified with minimal false positive error rate. Low-dimensional 

embeddings have proven very useful for this task because they can provide a visual overview of 

a data set in which distinct behaviors appear in different clusters. However, low-dimensional 

embeddings introduce errors because they fail to preserve distances; and embeddings represent 

only objects of fixed dimensionality, which conflicts with vocalizations that have variable 

dimensions stemming from their variable durations. To mitigate these issues, we introduce a semi-

supervised, analytical method for simultaneous segmentation and clustering of vocalizations. We 

define a given vocalization type by specifying pairs of high-density regions in the embedding plane 

of sound spectrograms, one region associated with vocalization onsets and the other with offsets. 

We demonstrate our two-neighborhood (2N) extraction method on the task of clustering adult 

zebra finch vocalizations embedded with UMAP. We show that 2N extraction allows the 

identification of short and long vocal renditions from continuous data streams without initially 

committing to a particular segmentation of the data. Also, 2N extraction achieves much lower false 

positive error rate than comparable approaches based on a single defining region. Along with our 

method, we present a graphical user interface (GUI) for visualizing and annotating data. 
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Introduction 

Many real-world bioinformatics problems are best dealt with using semi-supervised approaches 

(Käll et al., 2007; Wrede and Hellander, 2019; Peikari et al., 2018), in particular when supervised 

and unsupervised methods are either unfeasible or unsuitable. For example, supervised learning 

is impractical when for a given task no training data is available or when the task definition is 

unclear, e.g., during explorative analysis.  On the other extreme, unsupervised learning may 

provide interesting information, but perhaps not in a way that best suits a user, e.g., the 

components discovered in a data set may not be of the granularity of interest. The goal of semi-

supervised learning is to combine the best of both supervised and unsupervised approaches to 

provide maximally useful insights with minimal human effort.  

Animal behavior is an example domain well suited for semi-supervised learning, as each 

individual animal exhibits its own repertoire of complex actions. The task of segmenting behavioral 

sequences into their constituent parts is particularly challenging in the vocal space, because many 

vocal behaviors such as birdsongs consist of re-occurring elements that tend to be hierarchically 

organized (Sainburg et al., 2019) and that contain long-range structure (Markowitz et al., 2013). 

Here we set ourselves the goal of rapidly clustering the different types of vocalizations emitted by 

an individual songbird. For this type of problem, dimensionality reduction techniques come in 

handy because they allow to display even high-dimensional data points such as complex vocal 

utterances on a two-dimensional computer screen (Kollmorgen et al., 2020; Sainburg et al., 2019, 

2020). However, in distance-preserving embeddings such as t-SNE (Maaten and Hinton, 2008) 

or UMAP (McInnes et al., 2018), the distance between two points in the plane only approximates 

the true distance between the pair of vocalizations in the higher-dimensional space of the original 

data (Kollmorgen et al., 2020). In fact, embedding distances are not perfectly preserved because 

local neighborhoods in two dimensions are much smaller than the true neighborhoods in the high-

dimensional space. How to efficiently deal with such embedding distortions remains a bottleneck 

in data browsing, proofreading, and annotation tasks (Chari et al., 2021).  

Moreover, natural vocalizations tend to have variable durations, which clashes with the rigid 

dimensionality of embeddings. Although there are workaround techniques such as zero padding, 

these depend on segmenting the signal into foreground and background as a preprocessing step, 

which tends to introduce errors caused by background noises. For example, when a background 

noise occurs just before or after a vocalization, that vocalization might be missed or inferred as 

being too long; and similarly, when a noise happens between two vocalizations, these might be 

interpreted as a single vocalization instead of as a pair. In general, to deal with the segmentation 

problem as a pre-processing step acts against end-to-end extraction of vocalizations from raw 

data. All these caveats and challenges limit the widespread adoption of dimensionality reduction 

techniques for annotating and proofreading vocalizations.  

In general terms, the goal of our data annotation task is to extract flexibly defined and variably 

sized events from a continuous data stream. Our approach to vocal clustering is somewhat 

orthogonal to previous approaches where automated classifiers are optimized for the assignment 

of pre-computed segments to labels, either in a supervised (Tachibana et al., 2014; Nicholson, 

https://sciwheel.com/work/citation?ids=1240003,13554863,5771050&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=7298470&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=946212&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=8067166,7298470,9869702&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=8067166,7298470,9869702&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=5007595&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=12611897&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=8067166&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=11607569&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=4083703,12679859,12548086,11047877,12085232&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
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2016; Cohen et al., 2022; Goffinet et al., 2021; Steinfath et al., 2021) or unsupervised manner 

(Goffinet et al., 2021; Sainburg et al., 2020). The goal there is to identify an efficient workflow that 

minimizes human involvement. In contrast, our aim is to place the human expert in in the center 

of the process along the lines of modern visual analytics (Thomas and Cook, 2006; Cui, 2019). 

We want to provide the flexibility of exploring and navigating audio data while visually extracting 

diverse vocalizations in a fast and intuitive workflow.  

We address the problem of clustering zebra finch vocalizations, which is to distinguish the diverse 

vocalizations they produce from all other sounds in the environment. In essence, the task is to 

correctly identify in midst of noise, all vocalizations including their types, their onset times, and 

their offset times. To robustly extract variable vocalizations from possibly distorted embeddings, 

we introduce for each vocalization type a pair of distinguishing feature sets, one anchored to the 

onset of the vocalization and the other to the offset. Hence, unlike traditional approaches, where 

vocalizations are represented by single dots in the embedding plane (Goffinet et al., 2021; 

Sainburg et al., 2020; Steinfath et al., 2021; Sainburg et al., 2019; Kollmorgen et al., 2020), in our 

workflow, vocalizations are represented by pairs of dots. Also, because we extract vocalizations 

without segmentation as a pre-processing step, our definition of vocalizations by their onset- and 

offset-anchored feature sets implicitly solves the segmentation problem.  

 

Methods  

Datasets and sound preprocessing 

Our data stem from single-housed birds (n=2) recorded with wall-mounted microphones as 

described in Canopoli et al. (2014) or from a pair (n=1) of birds which wore harnesses carrying 

accelerometers that signal body vibrations stemming from self-produced vocalizations (Anisimov 

et al. (2014). Although all birds have been recorded in acoustically isolated environments, the 

extraction of vocal units problem is in species such as the zebra finch that produce not just 

harmonic sounds but that also emit broadband vocalizations which can resemble non-vocal 

sounds (Figure 3.1, Supplementary Figure 3.1).  

We sampled sound (and vibration) signals at 32 kHz and computed log-power spectrograms using 

the short-time Fourier transform in 512-sample Hamming windows and hop size among adjacent 

windows of 128 samples (i.e., 4 ms). We pre-segmented the data into sound intervals (assuming 

that without sound there is no vocalization) by thresholding the spectral power of microphone 

signals in the range 312 Hz to 8 kHz and of accelerometer signals (illustrated in Figure 3.3D) in 

the range 312 Hz to roughly 4 kHz. The threshold for sound interval extraction (Figure 3.1) was 

set to 5 standard deviations above the average spectral power calculated during periods of 

silence.  

Neighborhood extraction from 2d-embedded spectrogram snippets  

2N extraction was performed by dividing the spectrograms (within sound intervals) into 

spectrogram snippets of fixed width in the range of 12-16 columns (corresponding to snippet 

https://sciwheel.com/work/citation?ids=4083703,12679859,12548086,11047877,12085232&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=11047877,9869702&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=3355027,10143738&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=11047877,9869702,12085232,7298470,8067166&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=11047877,9869702,12085232,7298470,8067166&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=1354070&pre=&suf=&sa=0&dbf=1
https://sciwheel.com/work/citation?ids=1353571&pre=&suf=&sa=0&dbf=1
https://sciwheel.com/work/citation?ids=1353571&pre=&suf=&sa=0&dbf=1


 
83 

 

durations of 48-64 ms). The snippet duration is a variable that a user can adjust; in general, 

snippets should be large enough to yield robust separation of different vocalization types in the 

embedding plane and small enough to be able to cleanly slice a vocalization without cutting into 

adjacent vocalizations. The hop size between adjacent segments was given by one column (i.e., 

4 ms), Figure 3.1. To the first data snippet associated with a sound interval, we ascribed a time 

lag 𝑑 = 1. The onset time 𝛿𝑜𝑛 of that snippet precedes the sound interval onset by 𝛿𝑜𝑛 = 4 

spectrogram columns (i.e., 16 ms, Figure 3.1). Similarly, to the last snippet of a sound interval we 

associated a time lag 𝑑 = −1; the offset time of that snippet exceeds the sound interval offset by 

𝛿𝑜𝑓𝑓 = 6 (i.e., 24 ms). These choices ensured that brief silent gaps before and after syllables were 

included in the defining characteristics of a vocalization. By definition, the second snippet of a 

sound interval had a time lag of 𝑑 = 2 (i.e., 4 ms) and the second-last snippet had a time lag of 

𝑑 = −2 (i.e., −4 ms), etc. This dissection of the data into snippets resulted in a total of 581k 

snippets for the day-long recording of the bird shown in Figure 3.1 (given the chosen snippet 

duration of 64 ms).  

We then embedded the snippets into the plane using UMAP (McInnes et al., 2018) and visualized 

high-density neighborhoods associated with a given time lag 𝑑, as follows: We drew a small disk 

of radius 𝑟 around every point (Figure 3.2A, red dots) in the embedding plane that had a time lag 

Figure 3.1: The task of extracting vocalizations is to correctly detect the onsets and offsets (dashed 

lines) of vocalizations and to determine their type (here A to E) amidst diverse non-vocal sounds (noise). 

Shown is a time-frequency log spectrogram of adult zebra finch song. Our approach to extraction of 

vocalizations is to first extract sound intervals (based on threshold crossings of sound amplitude) and to 

dissect these into 64-ms long snippets (light blue bars) with 60 ms overlap among adjacent snippets. To 

achieve robustness to segmentation errors, we consider each snippet a potential onset or offset of a 

vocalization. The first snippet associated with an amplitude threshold crossing precedes the threshold 

crossing by a small margin 𝛿𝑜𝑛 (free parameter). The shown spectrogram was produced by concatenating 

two recording segments (at the second black dotted line), chosen to illustrate the diversity of vocalizations 

and noises. 

https://sciwheel.com/work/citation?ids=12611897&pre=&suf=&sa=0&dbf=0
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of either 𝑑 or 𝑑 + 1 if 𝑑 was positive (onsets), and either 𝑑 or 𝑑 − 1 if 𝑑 was negative (offsets). 

Thresholding the number of overlapping disks per pixel with a density threshold 𝜗 revealed supra-

threshold (high-density) regions of points, which we refer to as neighborhood-defining blobs 

(Figure 3.2A, outlined in blue). The blobs for 𝑑 = 1 are shown in Figure 3.2B.  

By changing the lag value 𝑑, blobs were interactively moved to unique regions along the 1d 

manifold of a vocalization type where no points from other vocalizations could be found (the latter 

we verified by visually inspecting spectrograms associated with a given neighborhood using our 

GUI). The points falling into a selected onset-related blob (Figure 3.2A, filled symbols) were then 

associated with that vocalization type. The vocalization onset times were given by the timestamp 

of the chosen snippets (i.e., the earliest snippet in case several adjacent points were found) minus 

the chosen time lag 𝑑 (the smaller lag in case blobs were defined by two time slices). The time 

differences between the extracted vocalization onsets and the start times of the underlying sound 

intervals are shown as a cumulative density in Figure 3.3A. The analogous density for vocalization 

offsets relative to sound-interval endings is shown in Figure 3.3B and Figure 3.3C,D show the 

population averages. 

2N extraction algorithm 

In the following, we describe the detailed extraction procedure of vocalizations, starting with their 

onsets. Extraction is parameterized by three variables: a time lag 𝑑, a radius 𝑟, and a density 

threshold 𝜗. The 2N extraction algorithm consists of the following steps: 

1. Define an integer time lag  𝑑 > 0 as small as possible (start with 𝑑 = 1). 

2. Identify all points in the embedding plane associated with this lag 𝑑. 

3. Replace each identified point with a disc of radius 𝑟 and sum up these discs, yielding a 2d 

density. 

4. Identify the regions where the 2d-density exceeds a threshold 𝜗. These regions we refer 

to as blobs, they are the defining characteristics of vocalization onsets. 

5. Change 𝑑, 𝑟, and 𝜗 to place and shape the blob such that it defines a uniquely 

characteristic region of the vocalization of interest. Ideally, choose 𝑑 close to zero such 

that the blob is close to the onset. 

6. Repeat steps 1-5 up to 𝐾 times to define diverse onset blobs for a given vocalization type 

(typically, 𝐾 = 1 because there is a unique blob for each vocalization type).  

7. Identify all points inside the 𝐾 blobs. These points uniquely define the onsets of the 

extracted vocalizations given by their timestamps minus the anchoring time lag 𝑑𝑖 of the 

underlying blob (𝑖 = 1,… , 𝐾). 

In this procedure, the optimal choices of radius 𝑟 and threshold 𝜗 depend on the local density of 

points and should be individually chosen for each vocalization type and each blob. Essentially, 

the radius should be chosen as large as possible to not miss any onsets and likewise the threshold 

should be as low as possible to make the blob as large as possible to maximize the number of 

points harvested. However, a blob should not extend into points associated with confounding 

vocalizations, so a bit of manual fine-tuning is required for each vocalization type.  

When all onsets of a vocalization type are defined, we perform the analogous definition of offsets; 

the lags of offset-defining blobs satisfy 𝑑 < 0; the parameters 𝑑, 𝑟, 𝜗, and 𝐾 of offset blobs needed 
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similar fine-tuning in practice. Once both onset and offset blobs are defined for all vocalizations, 

we extract the vocalizations as the spectrogram regions delimited by an onset and a subsequent 

offset. Cases in which an onset was followed by an offset of another type were discarded. Also 

discarded were onsets following an onset with missing intervening offset (and vice versa, 

discarded were offsets following an offset with missing intervening onset). In the three birds 

analyzed, we extracted 5, 7, and 9 vocalization types per bird, respectively. We then visually 

inspected the extracted spectrograms and manually corrected segmentation and clustering 

errors. That is, onset and offset times were manually adjusted by an expert in 4-ms steps to the 

nearest true onset or offset; and, misclassified vocalizations were assigned to the correct 

vocalization type or to noise (we observed neither, see Section 2.3). 

Practical notes In all adult zebra finches examined, we managed for each vocalization type to find 

distinct onset and offset blobs. We carefully selected each blob as close as possible to its extreme 

position, i.e., as close as possible to the onset resp. offset of the associated sound interval. In 

nearly all birds, we found at least one point cloud in the embedding plane corresponding to non-

vocal noise; in this cloud it was impossible to select both onset and offset blobs, presumably 

because noise tends to be unstructured, i.e., for noise there were no distinct time lags to amplitude 

threshold crossings at which noise snippets appeared more similar with each other than with 

snippets at other lags. We therefore extracted noise segments as the time intervals from the 

extracted onset until the ending of the underlying sound interval or the next vocalization onset, 

whichever came first. 

Evaluation measures 

In all birds, all 2N-extracted vocalizations were correctly classified into their types, as revealed by 

visual inspection of spectrograms. However, we observed occasional segmentation errors, where 

syllable onsets or offsets slightly deviated from the assessment by an expert. To calculate the 

precision of 2N extraction, an expert determined for all 2N-extracted vocalizations of a given type 

the fraction 𝑓 of correctly classified 4-ms time bins.  

The goodness of the implicit segmentation obtained with 2N extraction was evaluated by 

comparing the onset times of the extracted sound intervals to the corresponding onset times of 

the manually curated vocalizations, shown as a cumulative density in Figure 3.3A. The same 

procedure was performed for offsets, shown in Figure 3.3B. Averages of onset and offset 

cumulative densities are shown in Figure 3.3C,D, the less deviation between 2N-extracted and 

human-annotated segments, the better the segmentation performance. 

To quantify the benefits of defining vocalizations from both ends instead of just one, we repeated 

the same calculation for 1N-extracted vocalizations that were defined by considering only the 

onsets blobs or only the offset blobs rather than both. In the onset-anchored 1N baseline, we 

extracted a vocalization from the time difference Δ𝑡 = 𝑡𝑎 − 𝑡𝑏 , where 𝑡𝑏 is the timestamp of a point 

in the onset blob minus the selected time lag 𝑑 and 𝑡𝑎 is the end of the underlying sound interval 

or the timestamp of the next point in an onset blob, whichever came first. Analogously, in the 1N-

offset baseline, we extracted a vocalization from the timestamp of a given point in the offset blob 

minus the selected (negative) time lag 𝑑, backwards, until the previous point in an offset blob or 
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the beginning of the underlying sound interval, whichever came first (going backwards in time). 

The corresponding extraction errors 𝜖 = 1 − 𝑓 are shown in Figure 3.4 for diverse vocalization 

types and birds. 

Results 

The first step of our extraction method is to detect sound intervals (as opposed to intervals of 

silence). In line with other approaches (SAP http://soundanalysispro.com, Avisoft 

http://www.avisoft.com), we assume that very often (but not necessarily always), a vocalization 

onset corresponds to a lower (low-to-high) threshold crossing of sound amplitude, and an offset 

Figure 3.2: Two-neighborhood (2N) extraction of vocalizations from dense spectrogram 

embeddings. A) Schematic illustrating the definition of a blob. After projecting all data snippets into the 

plane using UMAP, we replace the points corresponding to upward threshold crossings (𝑑 = 1, red circles, 

first light blue bar in Figure 3.1) by large, filled disks (light red) of radius 𝑟 that we sum up. All pixels at which 

the sum exceeds a given threshold 𝜗 (blue horizontal bar) are grouped into a blob (delimited by blue dashed 

line). All points that fall into this blob correspond to extracted vocalization onsets, including points that were 

dissected at a lag different from 𝑑 (black filled squares). B) Projected data snippets (black dots) from a one-

day long recording. The onset blobs corresponding to the time slice 𝑑 = 1 are shown in color (different 

colors for different vocalization types). The yellow arrows point to indistinguishable snippet embeddings 

stemming from different vocalization types. The letters A-E indicate manually chosen onset slices ‘+’ and 

offset slices ‘-‘ for each vocalization type (same lettering as in Figure 3.1). The cluster labelled ‘N’ (gray) is 

a noise cluster without distinct onset and offset behavior, this cluster was ignored. The small blue blob next 

to the A+ blob is an onset variant of the introductory note, which can either be included in the definition of 

A+ (introductory note) or excluded.  C), D) Spectrograms of example syllables taken from blob D+ (C) and 

blob E+ (D). Same bird as in Figure 3.1. 
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corresponds to an upper (high-to-low) threshold crossing. In other words, we assume that either 

before or after a vocalization there are brief periods of silence, implying that sound intervals often 

begin and end with vocalizations.  We then densely dissect the sound spectrograms associated 

with sound intervals into overlapping snippets (Figure 3.1). By considering each snippet as a 

potential vocalization onset or offset, the vocal segmentation problem remains unresolved at this 

processing step (it will be resolved at a later step).  

We then project all spectrogram snippets into a plane, similar to the continuous UMAP 

embeddings in Sainburg et al. (2020). However, in our case, the first snippet of a sound intervals 

protrudes the sound-interval onset by 𝛿𝑜𝑛 and the last snippet protrudes the offset by 𝛿𝑜𝑓𝑓 (Figure 

3.1), which makes vocalizations appear as distinct 1D structures in the embedding plane with 

clear boundaries rather than as a single excessively long 1d structure as in Sainburg et al. (2020). 

Provided that for a given vocalization type, there are sufficiently many vocal renditions that are 

precisely segmented by sound amplitude, the corresponding snippet embeddings will lie close to 

each other in the embedding plane and form a dense cloud of points. In general, we expect to 

find an extended cloud of points in the embedding plane for each vocalization type that ranges 

from self-similar onset snippets on one end to self-similar offset snippets on the other.  

Among the cloud of onset-related points, we will also find points that display a nonzero lag to the 

nearest threshold crossing of sound amplitude. Namely, due to noise, we expect that some 

vocalizations are not cleanly segmented by sound amplitude but that instead are preceded or 

followed by a suprathreshold noise, which means that the time lag to an amplitude threshold 

crossing can be arbitrarily large. Such noisy vocalizations can nevertheless be correctly extracted 

with our method because for extraction we rely not on prior segmentation but on similarity with 

cleanly segmented renditions.  

In short, to extract vocalizations of a given type, we define in the embedding plane a dense region 

of points (a blob) associated with the onsets of this vocalization type, and a blob associated with 

the offsets of that type. Blobs are defined by points of a given lag value d, see Figure 3.2A (𝑑 = 1 

for onsets and 𝑑 = −1 for offsets). To minimize effects of embedding distortions and to 

disambiguate confounding vocalization types, we set a blob’s lag variable to a suitable value. We 

set the size of a blob as a function of the local density of points by adjusting two parameters: a 

radius 𝑟 and a threshold 𝜗. The radius 𝑟 sets the size of the disks that are placed at the locations 

of the embedding points and the threshold 𝜗 sets the height that the summed disks must exceed 

for a pixel to be included in a blob (Figure 3.2A), for details, see Methods Section 2.2.1.  

The extracted vocalizations are then defined as the spectrogram chunks that start at the 

timestamp of a point in an onset blob minus the blob’s lag value 𝑑 and end at the timestamp of 

the first subsequent point within an offset blob minus the blob’s lag value, i.e., we extract 

vocalizations simply within the shortest (lag-corrected) time intervals between pairs of points in 

an onset and an offset blob. Importantly, we harvest all points within a blob, including points that 

were sliced at different time lags than the blob defining lag. Therefore, although the definition of 

vocalizations depends on the time lags to amplitude threshold crossings, the harvesting is 

https://sciwheel.com/work/citation?ids=9869702&pre=&suf=&sa=0&dbf=1
https://sciwheel.com/work/citation?ids=9869702&pre=&suf=&sa=0&dbf=1
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oblivious of these lags, and so our method can correctly extract vocalizations that are not cleanly 

segmented by sound amplitude.  

When during this extraction process, an onset of a given type is followed not by an offset of the 

same type but by another type of event such as either an onset, the end of the sound interval, or 

the end of the file, we simply extract a vocalization from the onset until one time bin before the 

said event. Alternatively, when the onset is followed by an offset of another type, we extract no 

vocalization (to maximize precision10). 

We illustrate our extraction method on a one-day-long recording of an isolated male zebra finch. 

We sliced the recorded sounds intervals into more than half a million snippets of 64 ms duration 

each that we embedded into the (2d) plane using UMAP. As can be seen in Figure 3.2B, snippets 

from different syllables can appear indistinguishable in the embedding plane, either 1) because a 

bird repeats an indistinguishable sub-syllable or note in a different context (i.e., as part of a 

different syllable as illustrated in Figure 3.2: parts of syllables E and D), or 2) because of UMAP 

projection errors (i.e., when nearest neighbors are hallucinated (Kollmorgen et al., 2020) — the 

latter we visually found to be quite common). When such non-discriminability occurs at either an 

onset or an offset, the respective snippet loses its distinguishing characteristic for that syllable 

(Figure 3.2B, yellow arrows).  This situation is quite common in zebra finches that tend to sing 

different syllable types with indistinguishable endings. This ambiguity implies that the spectrogram 

snippets near an upper threshold crossing do not uniquely define the ending of that syllable type 

(presumably the same is also true for some syllable onsets). As a workaround to such repetitive 

structure inherent in birdsong (and language for that sake), our method provides the freedom to 

define syllable endings and beginnings at fixed time lags away from threshold crossings, at places 

within a syllable where the defining snippet becomes unique for that syllable.  

Using our GUI (Supplementary Material), users can increase and decrease the lag variable 𝑑 to 

observe the blobs move around in the embedding plane until they reach a region in the plane 

where there are no confounding points from other vocalization types. Such confounding points 

can be recognized thanks to the elongated 1d-structure of vocalizations in the embedding plane 

(Sainburg et al., 2020): the confounding points are the ones where two different 1d-structures 

come too close to each other (see Figure 3.2B, yellow arrows). For example, the bird in Figure 

3.2B produced two very long and complex song syllable types in rapid succession, whereby the 

second type (E) displayed an additional small down sweep at the syllable beginning, making it 

clearly distinct from Syllable D only by virtue of this down sweep (Figure 3.2C, D). As a result, the 

endings of syllables D and E in the embedding plane coincided with each other, which is why we 

had to define the offset-anchored blob E- not far from the onset-anchored blob E+ in a region 

where it was distinct from any neighborhood of D-, to make sure the endings of syllable D are not 

confounded with parts of syllable E.  

 
10If one wants to optimize also recall, one could extract two different types of vocalizations, one starting with 
the onset and ending after the median duration of that type, and the other ending with the offset and starting 
the median duration before (but that would correspond to 1N extraction, which is not the aim of this work). 

https://sciwheel.com/work/citation?ids=8067166&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=9869702&pre=&suf=&sa=0&dbf=0
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For the bird shown in Figure 3.1 and 4.2B, about 96.6% of extracted vocalizations had cleanly 

segmented onsets and about 98.7% had cleanly segmented offsets (i.e. onsets and offsets 

coincided with sound amplitude threshold crossings). In another bird, also recorded with a 

microphone and kept alone in a soundproof box, clean segmentation was even more frequent 

(99.9% for onsets and 99.0% for offsets, respectively). However, in birds housed in pairs and 

recorded with a wireless accelerometer mounted to their back, the fraction of cleanly segmented 

vocalizations was much lower (down to 72% for onsets and 89% for offsets, respectively). Thus, 

the level of noise depends strongly on the recording method, but our method allows harvesting 

vocalizations even in noisy situations.    

Performance evaluation  

How good are the extracted vocalizations? We computed two performance measures associated 

with the extraction procedure: 1) The quality of the segmentation in terms of the time differences 

of extracted onsets and offsets relative to gold standard human annotations; and 2) the clustering 

Figure 3.3: 2N-extracted vocalizations (black curve) are similarly segmented as human-extracted 

vocalizations (red). A) Shown is the cumulative percentage of vocalizations with an onset that falls within 

a given time lag (x-axis) following a sound amplitude threshold crossing. B) Same for offsets that are within 

a given time lag preceding a sound-amplitude threshold crossing. Same bird as in Figure 3.1. C,D) 

Cumulative percentage averaged across n=4 birds. The insets in D show typical errors made by 2N 

extraction (green bars), which is to interpret a string of two calls as a single call (here labelled ‘B’, green 

bounding box) or to introduce segmentation errors (red bars) from too generous inclusion of surrounding 

noises (blue bounding box), data taken from an accelerometer-recorded bird. (A-D) Segments extracted by 

amplitude threshold crossings (dashed) trivially display no time lag whatsoever. 
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performance in terms of the false-positive error rate of misclassified time bins, again assessed by 

human experts (see Methods).  

With regards to 1) the quality of the segmentation, for the bird shown in Figures 1 and 2B and for 

both onsets and offsets, the time lags to threshold crossings were similarly distributed for 2N- and 

for human-extracted vocalizations (Figure 3.3A, B), suggesting that 2N extraction extracts 

vocalizations from background noise in similar manners as humans do. For both onsets and 

offsets in this bird, the largest time lags to amplitude-threshold crossings were up to 1 s long. In 

all birds tested (n=2 mic and n=2 accelerometer birds), we found similarity between 2N-extracted 

vocal segments and the human gold-standard counterparts, constituting a big improvement over 

simple sound amplitude thresholding (i.e., defining onsets and offsets as lower and upper 

crossings of sound amplitude thresholds, respectively, Figure 3.3C, D).  

Some disagreements were seen when data was noisy; namely, we observed a tendency in human 

evaluators to segment the offsets earlier, which we found was often due to double misses that 

occurred in strings of calls where both an offset and the following onset were missed, leading to 

the hallucination of a much longer call than there actually was (Figure 3.3D). We do not evaluate 

workarounds for such problems but propose to fix them by detecting for each vocalization type 

the outlier renditions of excessively long durations and by discarding these. The shorter 

segmentation errors within 10-20 ms of true syllable offsets were almost always caused by 

inclusion of respiratory or movement artifacts near syllable boundaries (Figure 3.3D) and very 

rarely were they caused by truncations of parts of syllables, which would be more detrimental for 

subsequent feature-based syllable analysis. In summary, our method provides improved vocal 

segmentation compared to simple sound amplitude thresholding, in particular when recordings 

are noisy as in pair-housed birds recorded with animal-borne sensors.   

With regards to 2) the clustering performance, an expert evaluated the precision of 2N extraction 

in terms of the fraction of 4-ms time bins that were assigned to the correct vocalization type. We 

were particularly interested in comparing our findings to a baseline of extracting vocalizations not 

from two defining (sets of) regions in the embedding plane, but from only a single region, either 

anchored to the onset or the offset, but not both. In these 1N extraction baselines, we extracted 

vocalizations from a point in a blob until either the next point in the blob or until the end of the 

sound interval, whichever came first (see Methods).  

We found that 2N extraction outperformed 1N extractions by a large margin, achieving 3-6 times 

fewer extraction errors (Figure 3.4). The superior precision of 2N extraction came only at a 

minimal cost of lower recall. Namely, for the bird shown in Figure 3.1, 2N extraction retrieved 

almost as many time bins as did 1N extraction, namely 99.6%. On average (n=4 birds), the 

fraction of time bins retrieved with 2N extraction was 96.9% relative to the mean number of bins 

retrieved with 1N extractions (averages across onset- and offset-based 1N extraction methods). 

Thus, the added benefit of much lower extraction error came only at a minimal cost of potentially 

retrieving fewer vocalizations. Thus, in terms of extraction performance, it pays off to extract vocal 

units in terms of two sets of defining characteristics, one anchored to the onset and the other to 

the offset. In terms of manual processing time, 2N extraction comes at the obvious cost of twice 
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the workload compared to 1N extraction. However, given that 2N extraction can be routinely done 

within less than five minutes for an experienced user, irrespective of the size of the data set, this 

overhead seems negligible in practice. 

  

Figure 4: 2N-extracted vocalizations achieve higher precision than their 1N-extracted counterparts. 
The fraction of extracted (4-ms) time bins that are misclassified (extraction errors) is shown for diverse 
methods: 2N extraction and either onset-anchored (on) or offset-anchored (off) 1N extraction. A) For each 
vocalization type, the error is lower when vocalizations are extracted from two neighborhoods than when 
extracted from one neighborhood. Same bird as in Figure 3.1 and 3.2. B) Same data, averaged over all 
syllable types and after normalizing by the error rate of 2N extraction (shown is average ± std across 
vocalization types). The retrieval error of 1N extraction is 2-4 times higher than that of 2N extraction. C) 
Normalized relative extraction error (average ± std across 4 birds). 2N extraction achieves 3-6 times fewer 
errors. 
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Discussion 

We presented a simple and intuitive method for extracting arbitrary vocal units in embeddings of 

a continuous stream of data. Embedding methods such as UMAP and t-SNE have been criticized 

for the distortions they can create, especially in genomic data (Chari et al., 2021)(Chari et al., 

2021)(Chari et al., 2021). While we find similar distortions in vocal data, our workaround is to flexibly 

define vocal units based on regions in the embedding plane that are far from ambiguities and 

presumably also from distortions. 

Our key contribution is to identify vocalizations via two sets of characteristics near the onsets and 

offsets, rather than through a single set of characteristics tied to either the onset, the offset, or 

even the entire vocalization. The benefits of this dual recognition are better segmentation and 

higher clustering performance, because 2N extraction is designed to suppress errors resulting 

from vocal ambiguities, cage noises, and embedding distortions. The method works best when 

onset and offset defining blobs are sufficiently far apart such that there is no overlap between 

them.  

2N extraction is flexible and can be tailored to meet specific user requirements such as correctly 

detecting syllable variants even when they are composed of sub-syllables forming a small 

unwanted silent gap, which birds sometimes produce. Short gaps can be ignored for example by 

smoothing sound amplitudes before computing sound intervals (which our GUI allows). With 

smoothed amplitudes, split syllables are robustly extracted when the defining neighborhoods are 

tied to the stable sub-syllable parts (rather than the gap). 

2N extraction makes most sense on large data sets because there is only a time penalty for 

computing the embedding but virtually no overhead for defining the onset and offset blobs. We 

routinely calculated UMAP embeddings of up to 1 million sound snippets using standard desktop 

PCs with 32 GB of RAM. Since our method is not tied to a particular embedding method, we 

expect it to work also on other planar embedding types (we obtained similar results on t-SNE 

(Maaten and Hinton, 2008) embedded data).  

2N extraction is a very flexible annotation method, providing 4+4 degrees of freedom for each 

vocalization type: the radius, the threshold, the lag, and the number of blobs (for each onset and 

offset). As noted, the defining regions of a vocalization type need not constitute a connected set. 

For example, we could have chosen to combine syllables D and E in Figure 3.1 into a single 

syllable type by defining its onset characteristic in terms of the two blobs labeled D+ and E+ in 

Figure 3.2. Thus, our GUI provides the user with high flexibility of defining vocal units, which 

minimizes the need for postprocessing including the correction of segmentation errors.  

Our human-centered workflow is in line with other semi-supervised methods in bioinformatics 

(Wrede and Hellander, 2019) that focus on reducing knowledge-requiring and time-consuming 

algorithmic optimization. For the problem of extracting vocalizations, we see it as an advantage 

that users can resolve ambiguous situations by making an informed decision after exploring the 

full vocal repertoire (such as deciding whether some vocalizations belong to the same type or not 

https://sciwheel.com/work/citation?ids=11607569&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=5007595&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=13554863&pre=&suf=&sa=0&dbf=0


 
93 

 

as in Figure 3.1, syllables D and E). Such fine decisions are part of critical data assessment 

(Thomas and Cook, 2006; Cui, 2019) and are common when working with animal data. 

Currently, our method requires a pre-segmentation into sound intervals, as otherwise we do not 

obtain the time lag 𝑑 needed for defining blobs and for extracting vocal units. In data that is so 

noisy that there are barely any vocalizations that are cleanly segmented by sound amplitude, our 

method is not trivially applicable. We would recommend trying to use another sound feature than 

sound amplitude to obtain blobs as in in Figure 3.2A: Provided the feature identically dissects a 

significant number of vocalizations, high-density regions of dots should emerge in the embedding 

plane, which would make our method applicable.  

We imagine that our approach to extraction of vocalizations can generalize to biological and 

physical processes other than vocalizations. Namely, we believe that our approach will work well 

for the extraction of units in natural processes that contain rigid elements that sequentially unfold 

in variable sequences and at variable speeds. The duration of entities of interest should be 

typically longer than the snippet size. When overlapping data snippets from such processes are 

projected onto the plane, elongated structures will result, ideally displaying uniquely defining 

beginnings and endings as in Figure 3.2B. Our method might also work for spatial rather than 

temporal data, provided that the same requirement of repetitive sequential structures applies. We 

hope that our GUI can be of use to researchers wanting to adopt our methods for their work and 

as a basis for further developments. 

 

Data availability statement 

The GUI presented in this study together with instructions and tutorials on how to use it can be 

found in the  ETH Research Collection https://doi.org/10.3929/ethz-b-000582761 or on 

https://gitlab.switch.ch/hahnloser-songbird/published-code/automtedclustering/2n-extraction. 

Further inquiries can be directed to the corresponding author. 

 

Conflict of Interest 

The authors declare that the research was conducted in the absence of any commercial or 

financial relationships that could be construed as a potential conflict of interest. 

 

Author Contribution  

RHRH, XH, TT, LR and CL contributed to the concept and design of the study. LR recorded data 

from backpack experiments. RHRH implemented the algorithm and initial GUI and performed the 

analysis. RHRH and CL created visualizations and wrote the manuscript. CL refined the GUI. XH, 

TT, and LR edited and provided feedback on early versions of the manuscript and the GUI.  

 

https://sciwheel.com/work/citation?ids=3355027,10143738&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://doi.org/10.3929/ethz-b-000582761
https://gitlab.switch.ch/hahnloser-songbird/published-code/automtedclustering/2n-extraction


 
94 

 

Acknowledgement 

We thank Anja Zai for performing additional song recording experiments and Heiko Hörster for 

his help thereof. All experimental procedures were approved by the Veterinary Office of the 

Canton of Zurich.  

 

Funding 

This study was partly funded by the Swiss National Science Foundation (Grant 31003A_182638; 

and the NCCR Evolving Language, Agreement No. 51NF40_180888) and by the China 

Scholarship Council (Grant No. 202006250099). 

  



 
95 

 

 

Anisimov, V. N., Herbst, J. A., Abramchuk, A. N., Latanov, A. V., Hahnloser, R. H. R., and 

Vyssotski, A. L. (2014). Reconstruction of vocal interactions in a group of small songbirds. Nat. 

Methods 11, 1135–1137. doi:10.1038/nmeth.3114. 

Canopoli, A., Herbst, J. A., and Hahnloser, R. H. R. (2014). A higher sensory brain region is 

involved in reversing reinforcement-induced vocal changes in a songbird. J. Neurosci. 34, 

7018–7026. doi:10.1523/JNEUROSCI.0266-14.2014. 

Chari, T., Banerjee, J., and Pachter, L. (2021). The Specious Art of Single-Cell Genomics. BioRxiv. 

doi:10.1101/2021.08.25.457696. 

Cohen, Y., Nicholson, D. A., Sanchioni, A., Mallaber, E. K., Skidanova, V., and Gardner, T. J. 

(2022). Automated annotation of birdsong with a neural network that segments spectrograms. 

eLife 11. doi:10.7554/eLife.63853. 

Cui, W. (2019). Visual analytics: A comprehensive overview. IEEE Access 7, 81555–81573. 

doi:10.1109/ACCESS.2019.2923736. 

Goffinet, J., Brudner, S., Mooney, R., and Pearson, J. (2021). Low-dimensional learned feature 

spaces quantify individual and group differences in vocal repertoires. eLife 10. 

doi:10.7554/eLife.67855. 

Käll, L., Canterbury, J. D., Weston, J., Noble, W. S., and MacCoss, M. J. (2007). Semi-supervised 

learning for peptide identification from shotgun proteomics datasets. Nat. Methods 4, 923–925. 

doi:10.1038/nmeth1113. 

Kollmorgen, S., Hahnloser, R. H. R., and Mante, V. (2020). Nearest neighbours reveal fast and 

slow components of motor learning. Nature 577, 526–530. doi:10.1038/s41586-019-1892-x. 

Maaten, L. van der, and Hinton, G. (2008). Visualizing Data using t-SNE. Journal of Machine 

Learning Research 9, 2579–2605. https://www.jmlr.org/papers/v9/vandermaaten08a.html  

Markowitz, J. E., Ivie, E., Kligler, L., and Gardner, T. J. (2013). Long-range order in canary song. 

PLoS Comput. Biol. 9, e1003052. doi:10.1371/journal.pcbi.1003052. 

McInnes, L., Healy, J., and Melville, J. (2018). UMAP: Uniform Manifold Approximation and 

Projection for Dimension Reduction. arXiv. doi:10.48550/arxiv.1802.03426. 

Nicholson, D. (2016). Comparison of machine learning methods applied to birdsong element 

classification. in Proceedings of the 15th Python in Science Conference Proceedings of the 

python in science conference. (SciPy), 57–61. doi:10.25080/Majora-629e541a-008. 

https://sciwheel.com/work/bibliography/1353571
https://sciwheel.com/work/bibliography/1353571
https://sciwheel.com/work/bibliography/1353571
https://sciwheel.com/work/bibliography/1354070
https://sciwheel.com/work/bibliography/1354070
https://sciwheel.com/work/bibliography/1354070
https://sciwheel.com/work/bibliography/11607569
https://sciwheel.com/work/bibliography/11607569
https://sciwheel.com/work/bibliography/12548086
https://sciwheel.com/work/bibliography/12548086
https://sciwheel.com/work/bibliography/12548086
https://sciwheel.com/work/bibliography/10143738
https://sciwheel.com/work/bibliography/10143738
https://sciwheel.com/work/bibliography/11047877
https://sciwheel.com/work/bibliography/11047877
https://sciwheel.com/work/bibliography/11047877
https://sciwheel.com/work/bibliography/1240003
https://sciwheel.com/work/bibliography/1240003
https://sciwheel.com/work/bibliography/1240003
https://sciwheel.com/work/bibliography/8067166
https://sciwheel.com/work/bibliography/8067166
https://sciwheel.com/work/bibliography/5007595
https://sciwheel.com/work/bibliography/5007595
https://www.jmlr.org/papers/v9/vandermaaten08a.html
https://sciwheel.com/work/bibliography/946212
https://sciwheel.com/work/bibliography/946212
https://sciwheel.com/work/bibliography/12611897
https://sciwheel.com/work/bibliography/12611897
https://sciwheel.com/work/bibliography/12679859
https://sciwheel.com/work/bibliography/12679859
https://sciwheel.com/work/bibliography/12679859


 
96 

 

Peikari, M., Salama, S., Nofech-Mozes, S., and Martel, A. L. (2018). A Cluster-then-label Semi-

supervised Learning Approach for Pathology Image Classification. Sci. Rep. 8, 7193. 

doi:10.1038/s41598-018-24876-0. 

Sainburg, T., Theilman, B., Thielk, M., and Gentner, T. Q. (2019). Parallels in the sequential 

organization of birdsong and human speech. Nat. Commun. 10, 3636. doi:10.1038/s41467-019-

11605-y. 

Sainburg, T., Thielk, M., and Gentner, T. Q. (2020). Finding, visualizing, and quantifying latent 

structure across diverse animal vocal repertoires. PLoS Comput. Biol. 16, e1008228. 

doi:10.1371/journal.pcbi.1008228. 

Steinfath, E., Palacios-Muñoz, A., Rottschäfer, J. R., Yuezak, D., and Clemens, J. (2021). Fast and 

accurate annotation of acoustic signals with deep neural networks. eLife 10. 

doi:10.7554/eLife.68837. 

Tachibana, R. O., Oosugi, N., and Okanoya, K. (2014). Semi-automatic classification of birdsong 

elements using a linear support vector machine. PLoS ONE 9, e92584. 

doi:10.1371/journal.pone.0092584. 

Thomas, J. J., and Cook, K. A. (2006). A visual analytics agenda. IEEE Comput. Graph. Appl. 26, 

10–13. doi:10.1109/mcg.2006.5. 

Wrede, F., and Hellander, A. (2019). Smart computational exploration of stochastic gene 

regulatory network models using human-in-the-loop semi-supervised learning. Bioinformatics 

35, 5199–5206. doi:10.1093/bioinformatics/btz420.  

   

https://sciwheel.com/work/bibliography/5771050
https://sciwheel.com/work/bibliography/5771050
https://sciwheel.com/work/bibliography/5771050
https://sciwheel.com/work/bibliography/7298470
https://sciwheel.com/work/bibliography/7298470
https://sciwheel.com/work/bibliography/7298470
https://sciwheel.com/work/bibliography/9869702
https://sciwheel.com/work/bibliography/9869702
https://sciwheel.com/work/bibliography/9869702
https://sciwheel.com/work/bibliography/12085232
https://sciwheel.com/work/bibliography/12085232
https://sciwheel.com/work/bibliography/12085232
https://sciwheel.com/work/bibliography/4083703
https://sciwheel.com/work/bibliography/4083703
https://sciwheel.com/work/bibliography/4083703
https://sciwheel.com/work/bibliography/3355027
https://sciwheel.com/work/bibliography/3355027
https://sciwheel.com/work/bibliography/13554863
https://sciwheel.com/work/bibliography/13554863
https://sciwheel.com/work/bibliography/13554863


 
97 

 

 

 

   

 

  

Supplementary Figure 3.1: Illustration of data sets. Shown are example sound amplitudes and 

spectrograms of bird vocalizations. Signals were acquired with microphones from single-housed birds (A, 

B) or with wireless accelerometers from a pair of birds (C). In (C), soft calls (highlighted in magenta) are 

poorly segmented by a simple amplitude threshold (red line): co-occurring noises can cause premature 

onset detection (1) or push the vocal signal above threshold during pauses so that multiple vocalizations 

are extracted as one (2).  
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Conclusion and outlook 
 

In this thesis, we set out to bring high-yield electrophysiology to birdsong research (Chapter 1) 

with the goal to understand neural processes that feature intrinsically motivated singing (Chapter 

1 & Chapter 2) and vocal adaptation (Chapter 2). Complementing this approach, we introduce a 

human-in-the-loop strategy specifically designed to streamline the vocal annotation process in 

extensive vocal recordings (Chapter 3). In the following, we summarize the main findings, 

highlight their relevance, outline limitations, and engage in a discussion regarding future steps 

that we envision at this stage. 

Large-scale electrophysiology in freely moving songbirds  

Ever since the first intracortical recording of action potentials (Renshaw et al., 1940), much insight 

has been gained into how individual neurons enable a faithful interpretation of the world and 

coordinate bodily actions. In the last decades then, we have seen neural recording technologies 

advance and reach unprecedented granularity and scale (Hong & Lieber, 2019). Thanks to 

advances in micro- and nano-circuit technology, the capacity for recording sites per penetrating 

shank dramatically increased enabling the simultaneous recording of significantly larger numbers 

of neurons (Hong & Lieber, 2019; Steinmetz et al., 2018). Fast forward to the present day, studies 

such as those by Steinmetz et al. (2021) and Zhao et al. (2023) show the capability of capturing 

the simultaneous activity of over a thousand neurons, offering a much more comprehensive 

understanding of the neural processes in the brain that enable complex behaviors.  

The advantages of these technological advancements are twofold. First, they allow for the 

acceleration and scaling of neuronal recordings, which traditionally has been an expensive and 

time-consuming endeavor. Second, by capturing the activity of numerous neurons at once, 

researchers can identify patterns and features that might not be apparent when observing 

individual neurons in isolation. For instance, this holistic view of neural activity has provided a 

new understanding of how populations rather than individual neurons encode complex behaviors 

within and distributed across brain areas (Fortunato et al., 2023; Kondapavulur et al., 2022; 

Lemke et al., 2019; Mante et al., 2013; Semedo et al., 2022; Steinmetz et al., 2019; Stringer et 

al., 2019). 

However, the implementation of high-yield electrophysiological techniques in naturalistic settings 

presents its own set of challenges. The equipment required for scaled recordings can be 

cumbersome, often necessitating experiments to be conducted with subjects in a head-fixed 

position. The restricted mobility can be particularly limiting since it suppresses behaviors that are 

inherently motivated. For example, song production in zebra finches serve as an ideal model for 

the study of complex motor behaviors, owing to the ease of collecting extensive behavioral data 

and the accessibility of their underlying neural circuitry. Zebra finches have been shown to sing in 

a head-fixed setting, but this appears only possible by externally incentivizing them with the 

presentation of a female (Moll et al., 2023; Picardo et al., 2016) which contrasts the self-motivated 

nature of the behavior and, more importantly, is produced in a different brain state than undirected 
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singing (see Chapter 1, Kao et al., 2008a; Kao & Brainard, 2006; Stepanek & Doupe, 2010; 

Woolley et al., 2014a). In contrast, their natural singing behavior demands experimental designs 

that accommodate the bird’s mobility and welfare (Yamahachi et al., 2020) clashing with the 

rigidity and weight of common large-scale neural recording tools. 

To address these challenges, we adopted a large-scale recording approach and tailored it for the 

use in small songbirds. We developed a custom chronic implant device equipped with a state-of-

the-art microelectrode array: the Neuropixels (Jun et al., 2017). This device stands out for its 

lightweight and its capability to target brain regions at more extreme angles of entry (Table 2.1 

and Figures 2.3), offering improvements over previous designs (Juavinett et al., 2019; T. Z. Luo 

et al., 2020b; Steinmetz et al., 2021; Van Daal et al., 2021). Zebra finches adapt well to this 

implant, and resume singing few days after the surgery. Together, this enabled us to compile a 

comprehensive dataset of neural activity in song-relevant brain regions in the anterior forebrain 

during intrinsically motivated singing. 

Comparing our approach for large-scale neural recordings in freely moving songbirds 

Our approach introduces a novel aspect that we believe complements alternative techniques 

recently seen arising in birdsong research. For instance, calcium imaging is increasingly 

employed nowadays also in freely moving songbirds thanks to miniaturized microscopes 

(Alvarado et al., 2021a; Cohen et al., 2020; Daliparthi et al., 2019; Düring et al., 2020; Roberts et 

al., 2017; Scherrer et al., 2023). One of the key advantages of calcium imaging is that it captures 

high-yield neural activity in superficial brain areas and that it can be employed to target and study 

specific cell types (Alvarado et al., 2021a; Düring et al., 2020). However, this method faces 

challenges in accessing deeper brain structures without the use of penetrating lenses, requires 

viruses to deliver fluorescent indicators which take a significant lead time to express, and the 

signal kinetic is slower than the underlying dynamic of an action potentials (Grienberger et al., 

2022).  

In contrast, electrophysiological methods are readily usable and capable of reaching deep brain 

structures, enabling high-yield recordings with exceptional temporal resolution. The advantages 

have led to a surge in recent studies that have successfully utilized multielectrode arrays (MEAs) 

for chronic neural recordings in areas such as RA, HVC or in subthalamic regions (Arneodo et al., 

2021; Das & Goldberg, 2021; Egger et al., 2020; Elmaleh et al., 2021). Notably, these studies 

employed passive MEAs with electrodes situated only at the tip of the shank, thereby missing the 

chance to sample activity along the shank and perform multi-areal recordings. In contrast, there 

have been instances of simultaneous cross-areal recordings in LMAN and RA, yet these were 

confined to single -electrode or tetrode setups, lacking the scalability and spatial coverage offered 

by MEAs  (Darshan et al., 2017a; Tian et al., 2023). Our adoption of an active MEA (the 

Neuropixels probe) allowed the deployment of 384 electrode sites along the entire penetrating 

area of the shank, facilitating access to neural tissue with precise spatial resolution across both 

striatal and pallidal structures including two brain regions relevant for song learning and 

production.  
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Adaptability of our device to other songbirds and small animals 

While our device has been tested for multi-areal recordings in the LMAN and Area X, its design 

promises wide-ranging adaptability for various experimental setups. The Neuropixels’ long shank 

and the flexibility of our device to enter the cranium at angles different from that of the headstage 

(Figure 2.3), support a multitude of multi-areal recording strategies in the songbird brain, including 

combinations like HVC with RA, NIf, or potentially Area X. While our work concentrated on zebra 

finches, these experiments can also be performed in on other songbirds like Bengalese finches 

(Lonchura striata domestica) or canaries (Serinus canaria domestica), that are established 

subjects in neuroscience because they produce statistically amenable songs with variable 

sequences (Cohen et al., 2020; Koparkar et al., 2024; Veit et al., 2021).  

Our device equally offers the opportunity to investigate unique vocal behaviors in other songbirds 

whose neural mechanisms are yet to be fully understood. For example, nightingales (Luscinia 

megarhynchos) can instantly mimic the pitch of a whistle they just heard, indicating a precise and 

seamless translation from the auditory perception to motor execution (Costalunga et al., 2023). 

With our device, it would be possible to record neural activity in auditory (e.g., Field L, Nif) and 

motor areas (e.g., HVC) simultaneously, facilitating the exploration of neural processes during 

pitch matching within and across areas. Similarly, territorial birds such as European robins 

(Erithacus rubecula), offer valuable insights into context- and season-specific singing behaviors, 

from defending their territory and repelling intruders all-year round to attracting mates during 

courtship in breeding seasons (Lack, 1965; Young, 1955). Investigating whether neural changes 

in the AFP during territorial singing correspond with those during female-directed singing (see 

Chapter 1)  could reveal functional nuances and regulatory mechanisms of song production. Such 

research, facilitated by the adaptability of our device for use in small, freely moving songbirds of 

any kind, could significantly enhance our understanding of vocal control mechanisms and enrich 

our knowledge of the neural foundations of communication and social interaction. 

Overall, we believe that the wide-ranging utility of our device is not limited to small songbirds. 

While we have not directly tested its application, the device might also be suitable for larger 

songbirds, such as starlings or corvids. Potential challenges posed by their aversion to chronic 

implants could be mitigated by their capability to accommodate additional weight. Enhancing the 

device with supporting materials and protective layers, such as a protective cylinder, could 

improve the implant's durability and foster greater acceptance. 

In addition to avian research, the flexibility of our device's design may also extend to applications 

in small mammals, including species such as mice, rats, or even small primates such as the 

mouse lemur (Microcebus). For instance, the lightweight nature of our device is an improvement 

over previous designs, potentially reducing the burden even on small animals like mice. Should 

our device not align with certain experimental requirements, we are confident that the distinct 

aspects, including the minimalistic design, the detachability of the headstage and probe or the 

selection of materials, could serve as a source of inspiration for researchers, encouraging them 

to adapt and innovate based on our work. 
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Challenges and decisions related to the preprocessing of our Neuropixels recordings  

The extensive access to neural tissue enabled by Neuropixels recordings comes with the 

challenge of managing large datasets. A single hour of recording with 384 active electrodes 

accumulates ~60 GB of raw data and around ~30 GB during preprocessing. Because 

continuously recordings provide more stable spike sorting results and allow for the detection of 

mechanical drift, we decided to acquire neural data in session that usually lasted between one 

and six hours. With one or two sessions per day in eight birds, in different experimental conditions 

(undirected singing, female directed singing, naturally sleeping, exposed to playback), this led to 

the collection of over 350 hours of neural and behavioral data which altogether generated a 

massive and complex dataset of more than 30 TB.  

Managing, storing, and analyzing such a vast amount of data necessitates efficient data 

processing tools and substantial computational resources. Fortunately, we were able to leverage 

existing solutions for most tasks. For instance, the detection and clustering of action potentials 

were facilitated by an automated spike sorting algorithm (Kilosort, Pachitariu et al., 2023). 

Nonetheless, manual curation of the spike sorting results and handling of individual files (e.g. 

cutting, concatenating, moving11) was necessary, and in particular because of the large size of 

the files, added substantial time needed during preprocessing. 

We observed early on that recordings shorter than 30 minutes did not provide enough data to the 

Kilosort algorithm to produce reliable spike sorting outcomes. Therefore, we opted to record a 

minimum of one hour and only spike sorted sessions that lasted at least ~60 minutes and featured 

at least ~100 renditions of a bird’s motif. This resulted in the spike sorting and manual curation of 

over 140 hours of recorded data from 91 sessions. Including the screening of all audio recordings 

for song time and the time spent developing scripts and graphical user interfaces (GUIs) to 

facilitate the data management, completing this step required multiple months.  

Summary and availability of the recorded Neuropixels data  

In line with our dedication to open science, we intend to publish and make the data set from 

Chapter 1, including the results from spike sorting and vocal analysis, publicly available (data 

publication in preparation). The dataset will comprise a consolidated version of the data combining 

all raw signals and all preprocessing results. In addition to the extensive recordings conducted 

during undirected singing, we anticipate that the availability of this data set will inspire further 

analysis of the data captured under various experimental conditions. 

The chronic nature of our recordings facilitated the data collection not only during instances of 

free singing but also across multiple behavioral states, without necessitating additional effort. Our 

primary focus was on capturing free and undirected singing, yet we also introduced a female 

zebra finch occasionally to evoke social context modulation. Our analysis of the spiking activity 

under these varied conditions not only confirmed but also extended previous findings regarding 

 
11 Raw files from individual session had to be concatenated for the spike sorting and copied to the computer 
that ran the algorithm on a fast GPU. Applying the algorithm to data on the mapped network server would 
have extended the duration vastly because the algorithm loads batches of the data multiple times. 
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changes in spiking within Area X and LMAN in different social contexts (Figure 2.10, Figure 2.10 

Suppl Fig 2) and their cross-areal communication (Figure 2.12). 

Furthermore, to delve into the neural complexities of the songbird brain, particularly within the 

AFP, we performed recordings during natural sleep. During these recording sessions, we 

repeatedly observed the complete cessation of ongoing spiking activity in the raw signal of all 

electrode channels covering LMAN. Analyzing neural population activity, we could confirm that 

during sleep, LMAN spiking fluctuates between phases of synchronized firing and silence, and 

states of desynchronization, akin to the sleep modulation of cortical activity observed in mammals 

(Chauvette et al., 2010; Kobak et al., 2019; Steriade et al., 1993; Xu et al., 2019). Although this 

data is not elaborated upon within this thesis, it is worth noting that our findings reveal a significant 

and global sleep-related modulation of spiking and local field potential (LFP) signals, with these 

modulations being more marked in the pallium than in the striatum. A publication investigating this 

topic together with Janie Ondracek’s group at the Technical University in Munich, the group of 

Arthur Leblois at the University of Bordeaux, and the group of Nicolas Giret at the University Paris-

Saclay, together with the publication of a combined dataset, is in preparation (Appendix III). 

Additionally, we exposed the birds in some sessions to auditory stimuli, such as playback of their 

own song or white noise bursts. The latter were triggered contingent on the pitch of a specified 

syllable with the goal of inducing pitch shifting in a subset of the subjects. Despite only one bird 

demonstrating consistent pitch shifting away from the normal pitch, we believe that this diverse 

data set holds an added value for other researchers interested in investigating questions related 

to auditory processing and reinforcement learning.  

Evidence of vocal exploration and adaptation originating in the AFP  

The songbird’s AFP is a thalamo-pallio-striatal circuit necessary for vocal learning and adaptive 

control (Ali et al., 2013b; Andalman & Fee, 2009b; S. W. Bottjer et al., 1984; Scharff & Nottebohm, 

1991; Sohrabji et al., 1990; Tachibana et al., 2022; Zai et al., 2020). Using our custom-designed 

Neuropixels recording device, we were the first to record and report simultaneous activity in two 

brain areas part of this circuit: the cortical-like premotor LMAN and Area X, which is part of the 

basal ganglia (Chapter 1). We were able to replicate findings from previous intra-areal studies, 

including increased spiking activity during singing (Figure 2.9), the identification of different cell 

types from song-related spiking patterns in Area X (Figure 2.10), and the social modulation 

observed in these neurons when the otherwise isolated bird sings towards a female (Figure 2.10 

Suppl. Figure 2)(Goldberg et al., 2010a; Goldberg & Fee, 2010a; Hessler & Doupe, 1999c; Kao 

et al., 2008b; Woolley et al., 2014b). 

The results from our cross-areal analyses revealed a lack of significant patterns in functional 

neural connectivity between neuron populations in LMAN and Area X during singing when using 

CCA, with one notable exception. One explanation for this inconclusive finding is that signal 

transmission within the AFP of mature zebra finches primarily involves stochastic fluctuations that 

affect vocal output without introducing bias. This observation is consistent with studies in rodents 

showing that neural connections between striatal and cortical areas strengthen with learning 

(Kondapavulur et al., 2022; Lemke et al., 2019), implying that the AFP's neural coordination 
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between LMAN and Area X might intensify during vocal learning or adaptation but diminishes in 

the absence thereof.  

The  hypothesis is in line with proposed frameworks of reinforcement learning theory in the 

songbird literature where synaptic connectivity (and therefore information transmission) is 

strengthened upon rewarded actions (Fee & Goldberg, 2011; Woolley & Kao, 2015). Reward 

signals in Area X have been reported in the form of transient increases in DA release by neurons 

projecting to Area X from the ventral tegmental area (VTA) (Gadagkar et al., 2016). Dopaminergic 

modulation in Area X is also a necessary and sufficient driver of pitch shifting (Hisey et al., 2018; 

Hoffmann et al., 2016; Xiao et al., 2018) and has been shown to facilitate synaptic plasticity in 

slice preparations (Ding & Perkel, 2004).  

Motor exploration or variability is another key component of reinforcement learning theory. The 

AFP, and notably LMAN as its output, is a source of vocal variability (Hampton et al., 2009; Kao 

& Brainard, 2006; Thompson et al., 2011). Our analysis on different sources of vocal variability in 

Chapter 2, reveals that LMAN's contribution to pitch variability aligns with a random noise source 

with independent and identically distributed (iid) properties. Additionally, we discovered that LMAN 

neural spiking can, to some extent, predict pitch variations, with about 12% of LMAN units 

demonstrating predictive capability. Despite the modest and limited explanatory power of these 

correlations, they importantly suggest that a part of acoustic variability in song is centrally 

generated by LMAN activity. 

Evidence from modeling studies suggest that the DA-mediated reward signal in Area X from VTA 

is tuned around the average acoustic variations during undisturbed singing but re-tunes when the 

bird is trying to bias its output, for instance in presence of a new vocal target (Duffy et al., 2022; 

Toutounji et al., 2022). The adjustment, or motor bias, is the third critical element of the 

reinforcement learning framework, with evidence showing a decrease of the learned bias upon 

the transient inactivation of LMAN during pitch-shifting tasks (Ali et al., 2013b; Andalman & Fee, 

2009b; Tachibana et al., 2022), with Area X being critical to this facilitate this bias (Ali et al., 2013b; 

Zai, 2019). In Chapter 2, we expanded the dynamic latent variable model to incorporate both a 

reward signal and a motor bias in the context of pitch-shifting (illustrated in Figure 3.3C). By 

specifically associating the reward signal with the noise attributed to LMAN and dismissing other 

factors like diurnal effects as irrelevant to the learning strategy, our model adeptly captures pitch 

adaptation trajectories during pitch shifting, even when birds demonstrate non-linear learning 

dynamics. This finding brings our observations in line with conventional reinforcement learning 

theories and suggest that songbirds adopt an optimal learning strategy within this framework. 

The assumptions of our model are consistent with the anatomical arrangement in which RA-

projecting neurons in LMAN extend collaterals to Area X  (Vates & Nottebohm, 1995), providing 

a crucial copy of the motor signal for integration with the dopamine (DA)-mediated reward signal 

in Area X. The exact neural mechanisms through which synaptic reinforcement in Area X 

enhances motor bias in LMAN are yet to be determined. Between Area X and LMAN exists a 

complex network involving both excitatory and inhibitory routed through DLM (see Chapter 1, 

Figure 2.12A). While it is yet unclear how information is transmitted and processed within this 
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network, it is clear that it is drives bursting activity in LMAN (Kojima et al., 2013) and is necessary 

to facilitate the motor bias in pitch-shifting paradigms (Ali et al., 2013b; Zai et al., 2020).  

We can draw two important predictions from the reinforcement framework. First, a rewarded 

rendition should prompt a transient DA increase in Area X, reinforcing synaptic connections and 

resulting in more consistent activity patterns in LMAN (or Area X) across successive renditions. 

In contrast, unrewarded renditions are expected to produce more varied activity patterns, 

signaling a reinforcement deficit. This mechanism should be particularly evident when vocal 

behaviors are deliberately altered, such as during pitch-shifting experiments (Tumer & Brainard, 

2007) or targeted imitation tasks (Lipkind et al., 2017; Toutounji et al., 2023), suggesting that DA-

mediated reinforcement reliably induces specific activity patterns in Area X. These, in turn, trigger 

persistent changes in LMAN that mediate the motor bias. Over time, this process may lead to 

detectable correlation patterns between these brain regions.  

Exploring these predictions offers a compelling direction for future research, potentially bridging 

the gap between our inconclusive CCA findings and theoretical frameworks, as well as allowing 

a direct comparison with studies conducted in rodents (Kondapavulur et al., 2022; Lemke et al., 

2019) and primates (Toni et al., 2002). 

Vocal analysis in the era of big data 

In many fields including natural science, there is a growing trend towards amassing large data 

sets in hope to reveal patterns and insights that remained undetectable before. In birdsong 

research, collecting vocal recordings, such as those of laboratory songbirds, is cost-effective and 

easily scalable. In fact, many studies recorded vocalizations over the course of weeks, months or 

even years, for instance, to investigate the intricacies of vocal learning (e.g., Marler & Peters, 

1982). A major challenge arises in the segmentation and clustering of these vocalizations, 

especially in the presence of background noise or when vocalizations from various animals 

overlap. Traditionally, this process has been executed manually, demanding considerable time 

and labor. Because the effort scales linearly with the number of vocalizations, the manual pre-

processing of lengthy recordings becomes an arduous undertaking. Consequently, many of the 

original studies performed sporadic recordings, or, vice versa, focused their analysis on a sparse 

subset of vocalizations.  

In Chapter 2, we took a different approach and recorded the song of zebra finches over the course 

of several weeks before and after brain manipulation and while they performed in a reinforcement 

learning paradigm. We focused on one specific feature of a particular syllable in a bird’s motif. 

Thanks to an automatic detection of this syllable, the pre-processing was minimal and 

subsequently facilitated the atomic pitch extraction that resulted in extensive behavioral time 

series. Our results show that observed pitch variability can be approximated by a model of 

different variability generating sources. Most sources are independent of the central AFP system 

that is involved in song learning and adult plasticity (Ali et al., 2013b; Andalman & Fee, 2009b; S. 

W. Bottjer et al., 1984; Scharff & Nottebohm, 1991; Zai et al., 2020).  

It is likely that other song features are also influenced by diverse sources of motor variability. 

While the pitch is a representative acoustic feature of song, it would be interesting to test if the 
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identified behavioral primitives (daily pattern, slow fluctuations, and history dependence) exhibit 

consistent patterns across syllables and features. For instance, a recent publication suggested 

diurnal changes in syllable entropy (Brudner et al., 2023). However, to corroborate this statement, 

a more comprehensive analysis would be necessary including extensive segmentation and 

clustering efforts. fitted of atomic pitch trajectories  

Modern machine learning techniques promise to facilitate this facet of vocal analysis especially in 

the context of extensive datasets. Automatic classifiers optimized for the assignment of pre-

computed segments to labels, either in a supervised (Tachibana et al., 2014; Nicholson, 2016; 

Cohen et al., 2022; Goffinet et al., 2021; Steinfath et al., 2021) or unsupervised manner (Goffinet 

et al., 2021; Sainburg et al., 2020) have been put forth as a solution for the song (and call) 

clustering problem. Some of these indirectly find vocalization on- and offsets because of the 

matching between training and test data sets, thus, implicitly solving the segmentation problem. 

Yet, in most cases, either preprocessing a training set or manual post-curation or both are required 

for clean results. In contrast, we propose an alternative approach in Chapter 3 that places the 

human expert in the center. We embed acoustic events in a plane that allows users to visually 

inspect and browse the content to make an informed decision (Lorenz et al., 2023). 

Our approach might still be of interest in the light of new approaches that rely on better algorithms. 

For instance, colleagues recently adopted the Whisper Transformer Model (Radford et al., 2023) 

to detect animal vocalizations based on a small training set, reaching excellent performance 

values for segmenting vocal activity in different animal species (Gu et al., 2023). Given the 

significant improvements and heightened performances seen by deep-learning models (LeCun et 

al., 2015), this promises a road map to a fully end-to-end annotation tool for vocal recording. 

However, because deep neural networks are susceptible to short-cut learning (Geirhos et al., 

2020), and optimizing a training set or network can be time-consuming and requiring in-depth 

knowledge about the architecture and training procedure, a human-in-the-loop approach could be 

a suitable and efficient compromise. For instance, users can correct biases and resolve 

ambiguous situations (such as deciding whether some vocalizations belong to the same type or 

not as in Figure 4.1, syllables D and E). Such fine decisions are part of critical data assessment 

(Thomas and Cook, 2006; Cui, 2019) and are common when working with animal data. 

Machine learning tools and algorithms that can detect patterns in large and high-dimensional data 

sets also give rise to new interpretations of birdsong. Embedding the raw or spectro-temporal 

representation of the sound waveform in a lower dimensional space by means of statistical 

structure analysis, has led to new insights into developmental processes (Brudner et al., 2023; 

Kollmorgen et al., 2020) or neurobehavioral correlates of fine-grained variations from one 

rendition to the next (Alvarado et al., 2021a).  

Taken inspiration from these more holistic approaches, we can envision a structure analysis 

detached from predefined spectral features. For our Neuropixels data, we implemented an 

analysis along those lines, where we tested whether the relationship between LMAN population 

spiking and the spectro-temporal variation in song are continuous (Appendix IV). We found initial 

evidence for such a structured mapping where small changes in neuron population space relate 

https://sciwheel.com/work/citation?ids=4083703,12679859,12548086,11047877,12085232&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=4083703,12679859,12548086,11047877,12085232&pre=&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&suf=&sa=0,0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=11047877,9869702&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=11047877,9869702&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=3355027,10143738&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
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to small changes in vocal space. This suggest a promising avenue for future research, where the 

nuanced interplay between neural dynamics and vocal output can be further explored, potentially 

uncovering new dimensions of how brain activity orchestrates complex behaviors. 

 

Summary 

The contributions of this thesis are threefold. First, we introduce a novel chronic implant device 

that enables the recording of high-yield electrophysiological data with a Neuropixels probe in 

freely moving birds. The chronic nature of the implant allowed for the acquisition of an extensive 

data set of simultaneous neural activity in LMAN and Area X during singing. 

Second, we employed a dynamic latent variable model and identified sources of pitch variability 

with different stochastic properties. The strong correlation between LMAN lesion extent and 

changes in parameters from the independent noise source suggest that LMAN produces 

variability that is independent from one rendition to the next. Neural spiking activity in LMAN was 

significantly correlated with pitch variability, which corroborates the notion that LMAN is a central 

source of motor exploration.  

Third, we complement our work by proposing a user-guided segmentation and clustering 

approach that takes advantage of a structured low-dimensional embedding of vocalizations. 

In conclusion, this thesis has advanced the methodological arsenal of neural recording techniques 

in freely moving songbirds and vocal data analysis, and elucidated the central contribution to 

motor exploration and learning originating in the AFP. Songbirds provide a suitable model system 

for further studies to understand how neural communication within and across the nuclei of the 

AFP implicates vocal learning and adaptation. 
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Appendix Chapter 1  
 

P1: Neuropixels implant assembly (NIA) construction and preparation  

Parts 

• Neuropixels 1.0 w/o metallic cap  IMEC  

• Torlon® based implant holder  CNC-milled by the Department of Physics UZH 

workshop 

• M1 screws     commercially available  

Consumables 

• Fast drying adhesive  Hardman Double/Bubble non-sag epoxy  

• Kapton tape  

• Deionized water  

Tools 

• Stereotaxic socket  CNC-milled by the workshop at the Department of Physics UZH 

• Vice or clamp  Proxxon Machine vice  

• ESD safe tweezers Bernstein stainless steel tweezers 

• Soldering iron   

Assembling the implant  

The first step in the assembly of a new implant involves permanently affixing the Neuropixels 

probe to the holder. To achieve this, we recommend positioning the holder in the stereotaxic 

socket and firmly securing it to the workbench, such as with a sturdy vice. Subsequently, apply 

adhesive to the inner surface of the holder and insert the lower rectangular body of the probe into 

the inset. The probe is securely in place when the slight widening on the upper end contacts the 

edges of the holder. Utilizing a helping hand to apply gentle pressure to the glued part ensures 

that the probe and holder maintain horizontal alignment. It is advisable to adjust the helping hand 

before applying or mixing the adhesive. In general, conducting a dry run with a dummy probe is 

recommended to acquaint oneself with the equipment and the assembly procedure. 

Placing the screws  

The selection of screws should be based on the final implant's configuration. In our case, we 

utilized a longer screw (M1x10mm) for the anterior thread and a shorter screw (M1x8mm) for the 

posterior thread, considering the relatively shallow penetration angle. It is important to note that 

maximizing the stability of a fully tightened screw is advised. For example, instead of inserting a 

shorter screw halfway into the thread, it is recommended to trim a longer screw to fit. Additionally, 

when assembling the implant for the first time, we suggest placing the screws before seating the 

Neuropixels.  
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P2: Surgical procedures and implantation 

Parts 

• Neuropixels implant assembly (NIA)  

• Implant cover   3D printed by the Department of Biochemistry UZH workshop 

Consumables 

• 0.9% saline solution 

• Betadine 

• Cotton tips 

• Kapton tape  

• Deionized water 

• Dental cements 

• Kiwk Sil® 

• Soft, two-component silicone gel (artificial dura) 

• Superglue 

• Toothpicks 

Tools 

• General surgery setup for small animals (stereotactic and anesthesia system, heating pad, 

microscope) 

• Surgical instruments (scalpel, forceps) 

• Dental drill  

• Custom-built acute recording equipment for single tungsten electrodes 

• Soldering ion  

Medical supplies 

• Isoflurane and oxygen  

• General analgetic (e.g., 2% Lidocaine solution for injection) 

• Local analgetic (e.g., Anesderm® or Emla®) 

The day of the surgery, food sources are removed from the cage approximately half an hour 

before the start of the surgery.  

Animals are anesthetized with Isoflurane (0.6-1.5% inhalation) and placed in the stereotactic 

apparatus once the flexion reflex is no longer observable. For general analgesia, Lidocaine (0.05 

μl of 2 % diluted lidocaine) is administered subcutaneously. In a next step, local analgesia 

(Anesderm® or Emla®, 0.5 g) is applied to the exposed head skin along the caudo-rostral axis 

after removing feathers and disinfecting the area with ethanol and betadine. A long incision along 

this axis ranging from the beak almost to the neck muscles is made before the exposed skull is 

prepared for the implant. The skin is lightly pushed to the side and the skull surface is cleaned 

using saline soaked cotton tips, followed by drilling multiple small holes in the first bone layer that 

serve as anchor points for the cement later.  

A small craniotomy contralateral to the final implant is made to place a silver wire in contact with 

the dura that serves as electrical ground. The main craniotomy is made on the right hemisphere 

around 1.7 mm lateral to the superior sagittal sinus and 4.5 mm anterior to lambda, the confluence 

of sinuses, with the flat part of the anterior skull rotate to a 50-degree angle. The positions of 
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LMAN and Area X are to be mapped with high-impedance tungsten-electrode recordings, 

identifying the brain areas based on the firing rate properties thereof. A Neuropixels probe version 

1.0 (Jun et al., 2017) is implanted between 4 and 4.8mm deep to penetrate the putative centers 

of LMAN and Area X. Before the implantation, the probe is covered in fluorescent dye (DiIC18(3), 

Sigma Aldrich 42364) to facilitate tracing the probe in histological slices. 

Next, the custom-made holder that carries the Neuropixels probe is fixated to the skull with dental 

cement and the craniotomy is sealed with a soft two-part silicone gel before it is enclosed with the 

custom-made casing. Gaps between the casing and the skull are closed and covered with cement 

or fast-drying two-component silicon (Kwik Sil). The headstage is put in place such that the flex 

cable formed a narrow, horizontal ‘S’ that also adds protection from the back. The skull is then 

tilted to a 35-degree angle which corresponds to the natural position of the birds’ head and the 

headstage is put in its final position by fixating the two flanking wires to the skull with cement. 

Finally, the ground wire is connected and open holes along the implant are sealed with fast drying 

two-component silicon.  

Still under anesthesia, a thread is glued to the medial side of the headstage that carries the 

counterweight and is adjusted immediately after placing the bird in the home cage to help the 

animal cope with the added weight. 

A subset of implants (n=1) was performed with a previous version of the implant design, and the 

first three implants were covered with a grounded copper shield instead of the 3D printed cover 

design. Results were similar across birds and therefore combined.   
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P3: Implant recovery and histological examination  

Explantation 

To recover the implant assembly with the probe, animals are euthanized and placed in the 

stereotaxic apparatus. The headstage is removed by cutting the adjacent wires and disconnecting 

it from the flex cable. Next, the cover is freed from cement and glue and taken off. The bird’s head 

is tilted such that the stereotactical holder can smoothly be brought in laterally to hold the implant 

assembly. Screws at the stereotactic holder socket are tightened before cement around the 

screws is removed with a drill or by cutting. In cases with excessive cement, we immediately cut 

the skull and bring up the implant with part of the skull and the cement. Both are then removed 

piecewise with clamps or fine scissors.  

Removing the screws and cleaning 

Directly after explanting the probe, screws are removed from the implant assembly. The probe 

shank is then placed in a 1% Tergazyme® solution for at least 24 hours. In a final step, the probe 

shank is dipped in de-ionized water several times before storing it in a clean, enclosed box. 

Histology 

The cerebrum of each animal was recovered after the explantation and fixated with 4% buffered 

formaldehyde solution for a minimum of 24 hours. Sagittal or coronal brain slices of 80 um 

thickness were obtained using a vibratome. The trace of the shank relative to the brain areas of 

interest was identified under the microscope using bright-field and light of the wavelength that 

excites the dye (550 nm) and allows for visualizing the position of the probe after removal.  
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P4: Data acquisition 

Tools 

• Neuropixels data acquisition system  National Instruments and IMEC 

• Microphone, preamplifier and filter 

• Data collection and storage computer   

• Webcam  

 

Programs 

• Custom-written LabVIEW program for experimental studies with songbirds  

• SpikeGLX (Bill Karsh, https://github.com/billkarsh/SpikeGLX) 

• VLC media player 

Audio signals are captured with a wall-attached microphone, preamplified, band-pass filtered, and 

digitized at 32 kHz. The saving is controlled by a custom-written labview program that also 

implements an online song detection algorithm and pitch calculation, and which controls playback 

and pitch contingent auditory feedback.  

Concurrent audio signals during neural recordings are split before feeding into the recorder and 

acquired by the nidq system at 20 kHz. SpikeGLX is used to start and stop, as well as monitor 

and save neural recordings (.ap data sampled at 30 kHz, .lf data sampled at 2.5 kHz).  

Birds are routinely connected to the interface cable in the morning and untangled manually if 

necessary. Neural activity and simultaneous audio signals are recorded in sessions that last 

between one- and five-hours using Spike GLX. In recording sessions with social modulation, we 

present a female zebra finch in a separate cage inside the recording chamber. To study effects of 

vocal and neural plasticity, we play a loud white noise burst sound contingent on the pitch of a 

stable, harmonic part of a syllable being above or below the median pitch in the preceding day or 

hours.  

  

https://github.com/billkarsh/SpikeGLX
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Data preprocessing tools 

 

1. Graphical User Interface for file navigation and pre-processing: xsummary.mat 
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Methods  

 

Animals 

Eight adult male zebra finches were subjected to the study in this chapter. The animals were bred 

and raised in the avian facility of the Institut des Neurosciences Paris-Saclay, France. The 

animals’ age ranged between 70 and 133 dph at the beginning of the experiment. They were 

housed individually in sound-attenuated recording chambers with access to food and water ad 

libitum throughout the experiment. The day/night cycle was set to 14 hours of day mimicked by 

artificial light and 10 hours of night. 

All experimental procedures were performed in accordance with the French Ministry of Research 

and the ethical committee of Paris-Sud et Centre under the license 2017-25-10. 

 

Neurobehavioral analysis 

Song related neural activity was analyzed in windows that covered complete motifs offset by -100 

ms to account for the premotor nature of the activity in LMAN and Area X. Spontaneous activity 

was derived in periods of silence in a randomly selected subwindow that matched the median 

duration of the motif.  

Criteria for significant behavioral modulation  

Whether a unit was song modulation was assessed by comparison of the song-related firing rate 

in each rendition against the spontaneous firing rate in motif-matched windows during silent 

periods. We used an unpaired, non-parametric test (Wilkoxon signrank) and units were classified 

as song modulated if p<.001. Similarly, social modulation was evaluated by comparison of the 

song-related firing rate between the two conditions using the same test and significance level.  

Sparseness Index (Gini Index) 

We used the Gini Index (Hurley and Rickard, 2009) as a measure of sparseness of song related 

spiking activity. We first computed the average song-related activity as a function of time, binning 

the spike data in 10 ms bins, averaging across bins and smoothing the resulting trajectory with a 

Gaussian with SD of 15 ms. We then computed the sparseness index as  

𝑆𝑝𝑎𝑟𝑠𝑒𝑛𝑒𝑠𝑠 𝐼𝑛𝑑𝑒𝑥 = 1 − 2𝐵 

where B is the sum of the area under the Lorenz curve, i.e. the sum of the ordered and normalized 

average song-related activity per bin. 

Peak Firing Rate 

Peak firing rate was derived from the interspike intervals (isi) that considered all spikes within the 

song-related analysis window and computed as the 1st percentile of the isi distribution. 
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Fano Factor 

To measure the irregular spiking activity from rendition to rendition, we computed the Fano Factor 

of the song related neural activity for each unit. We counted the number of spikes 𝑛𝑠 elicited in 

the related analysis window of each rendition 𝑖 and calculated  

𝐹𝑎𝑛𝑜 𝐹𝑎𝑐𝑡𝑜𝑟 =  
𝜎𝑛𝑠
2

𝜇𝑛𝑠
 

Canonical Correlation Analysis 

To investigate cross-areal coupling, we compute the canonical correlation analysis (CCA, Semedo 

et al., 2020). Briefly, CCA is a multivariate linear regression method that finds the linear 

combination of two neural datasets 𝑋 of size n×m  (n neural units, m renditions) and Y  size k×m  

(k neural units, m renditions)  that have maximum correlation 𝜌 with each other. Formally, it can 

be described as 

𝜌 = 𝑐𝑜𝑟𝑟(𝑎𝑇𝑋, 𝑏𝑇𝑉) 

where a and b are the vectors maximizing this correlation, formally defined as: 

(𝑎,  𝑏) = argmax
𝑎,𝑏

𝜌 

Our CCA computation focused on neural units within LMAN and Area X. We analyzed the time-

warped data using a 40 ms sliding window, advancing in 5 ms increments beginning 50 ms before 

the motif onset and ending 100 ms before the motif offset. In each 40 ms window, spike times 

were binned in 5 ms bins and vectorized similar to (Mante et al., 2013). This approach allowed 

the temporal examination of the coupling between the two populations. To validate the 

significance of our findings, we employed a shuffle predictor as a control where the same analysis 

was performed with permutated renditions in the dataset of Area X. This comparison helped in 

discerning the relevance of the observed effects against chance correlations. 

The analysis was conducted using MATLAB’s cancorr.m function set to find the embedding 

maximizing Pearson’s correlation coefficient (Pearson & Galton, 1997). 

 

Cross-Correlation and Cross-covariance 

The cross-correlation (xcor) between the spike trains of two units x and y describes a measure of 

similarity as a function of displacement. In our analysis, we apply the unbiased sample cross-

correlation between the binned spike trains (2 ms bins). For a given temporal lag τ, it is formally 

described as 

�̂�𝑥,𝑦 (𝜏) =

{
 

           
1

𝑁 − τ
 ∑ 𝑥(𝑘 + 𝜏)𝑦(𝑘)

𝑁−𝜏

𝑘=1
            𝑖𝑓 𝜏 ≥ 0

⬚
                  𝑅𝑦,𝑥 (−𝜏)                                        𝑖𝑓 𝜏 < 0 .
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If the spike trains are taken from 𝑖 different renditions of the same motor behavior, we average 

across the rendition-wise cross-correlations  

�̂�𝑥,𝑦 (𝜏) = 〈�̂�𝑥,𝑦,𝑖(𝜏)〉𝑖. 

The cross-covariance is the normalized version of the rendition-average cross-correlation. It 

describes the momentary similarity that is disconnected from the rendition-average activity by 

subtracting the shuffle predicted cross-correlation  

�̂�𝑥,𝑦 (𝜏) = �̂�𝑥,𝑦,𝑠𝑎𝑚𝑒 (𝜏) − �̂�𝑥,𝑦,𝑠ℎ𝑢𝑓𝑓𝑙𝑒 (𝜏) . 

We evaluated whether peaks in cross-correlation �̂�𝑥,𝑦  or cross-covariance �̂�𝑥,𝑦 functions are 

systematic by determining whether they exceed three standard deviations (SDs). The standard 

deviation was estimated by Jackknifing renditions (leave-one-out resampling). All functions were 

smoothed by a gaussian kernel with a 6 ms standard deviation. 
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Supplementary figures 

   

 

Figure 2.9 Suppl Fig 1: Spike raster and waveform for each unit in LMAN and Area X in Figure 

2.9AB. Each panel depicts the raster during directed (red) and undirected (black) singing and the 

average firing rate aligned to the motif onset. On the right side of each panel, the average +/- SD spike 

waveform from 100 randomly selected spikes within the first and last 20 % of the recording is shown. 

Spike waveforms were stable for all units shown.   
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Figure 2.10 Suppl Fig 1: Other examples of putative GPe, GPi, MSN, LTS & ACH single or 

multiunits (identified with small letters in the different subpanels of Figure 2.10). One example of 

unknown cell type is also shown. From top to bottom, spectrogram of a song motif, spike raster plots 

of consecutive undirected songs (black, UD) and female directed songs (red, FD) aligned to song motif 

onset, raster of 30 spike trains of spontaneous activity, average firing rate during undirected songs 

(black), female directed songs (red), and average spontaneous firing rate (dotted line). At the right of 

each raster plots are shown the average firing rate (in Hz) and coefficient of variation (CV) for the 

corresponding spike train. Boxplots of firing rate (Hz) and CV for undirected and female directed songs 

are shown underneath. 
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Figure 2.10 Suppl Fig 2. Social modulation in units of LMAN and Area X. Average motif firing rate, 

Fano factor, coefficient of variation (CV), median interspike interval (ISI), peak firing rate (FR), 

instantaneous firing rate coefficient of correlation (IFR CC) during undirected (UD) and female directed 

(FD) songs for LMAN units (A) and for putative GPe, GPi, MSN, LTS, ACH, FS, LF unknown and other 

Area X unknown cells (B). Non-parametric paired tests (Wilcoxon signed rank) were applied to the 

data. 
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Figure 2.11 Suppl Fig 1 Effect of window size. The population correlation peak around 150 ms post motif onset for 
LMAN activity and Area X leading by around 50 ms is stable across different segment lengths of 20 and 40 ms but 

washes out for larger segments lengths.  
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Supplementary data overview  
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Appendix Chapter 2  

Supplementary figures 
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Suppl. Figure 2.1 LMAN extent in slices of healthy and lesioned brains Shown is the LMAN volume in 

each hemisphere of the eight controls (top) and seven lesioned birds (bottom panel). The volume is plotted 

as a function of consecutive sagittal brain slices. The evolution of LMAN in controls was fit with a polynomial 

function (dashed line). The average fit (upper panel, bottom right) is shown as a reference for remaining 

LMAN volume in lesioned brains (bottom, solid line). The data from experimental birds was centered to best 

fit the reference and does not reflect possible lateralization.  

  

Suppl. Figure 3.2 Atomic pitch evaluation and trajectories for g4r4. A The atomic pitch was evaluated 

post-hoc in a 16 ms long window 16 ms before the online detection of the syllable (hop size 4 ms). Shown 

is the spectrogram of one syllable rendition (top), and the mean pitch and standard deviation across 

renditions of one day as a function of time (n = 4086). B Atomic pitch trajectories over the course of several 

days (top) and a zoom in into the first day with highlighted periods of simultaneous neural recording.  
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Supplementary data overview 

The following shows a data summary for each bird and target syllable evaluated together with 

results. The upper left panel shows the spectrogram of one syllable rendition together with the 

pitch statistics as a function of time below. The gray bar highlights the time window of the atomic 

pitch. On the bottom left spike trains of all LMAN units in 20 renditions are shown, units are shown 

in different colors, followed by the smoothed histogram (gaussian, 10 ms SD) of all units. 

The upper right shows the atomic pitch of each rendition as a function of time (left) and rendition 

(center) and plotted against the detrended atomic pitch values (right). The detrended atomic pitch 

was computed as the residual after smoothing the trajectory with a moving averaged over 50 

samples (center, orange).  

The lower left plot shows Pearson’s correlation coefficients between spiking activity in the 

premotor window and atomic pitch (blue) or detrended pitch (orange), respectively, for each unit. 

Significant correlations are marked with a star (p < 0.05).  

 

Suppl Figure 3.3 Temporal alignment of nidq recordings to RecOOrder recordings. The automatic 

detection of the harmonic stack as well as the pitch computations are performed by custom-written LabView 

software (RecOOrder, see Methods). Upon detection, it sends a digital signal to the nidq system that records 

the neural data in combination with the same microphone signal. The alignment of the two microphone 

signals to the digital trigger shows a temporal delay in the spectrograms and its z-scored root-mean-square 

(zRMS, A, left). The peak in the cross-correlation function between the zRMS at -9 ms indicates that the 

detection in the nidq system was 9 ms delayed in this example (A, right). The delay was computed and 

corrected for each detection (B, top). The temporal lag varied; it was distributed around -9 ms and ranged 

between -11 and -7 ms (B, bottom). 
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Appendix III – Cortico-striatal network dynamics 

during sleep in songbirds 
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Abstract 

During vocal learning in songbirds, juvenile songbirds use auditory feedback and motor learning 

to transition from acoustically simple, highly variable songs to complex and stereotypical adult 

songs. Similar to skill learning in mammals, vocal learning in songbirds requires a set of 

interconnected brain areas that make up a basal ganglia-thalamocortical circuit known as the 

anterior forebrain pathway. Within the AFP, the pallial structure LMAN exerts a direct influence on 

vocal output though its projection to premotor area RA, and through this influence on the motor 

pathway, drives variability that can be used for learning. Area X, part of the avian striatum, 

receives an efference copy of activity in LMAN, thus placing Area X in a position to evaluate 

exploratory activity in LMAN in the context of the ongoing song. While it is clear that cortico-basal 

ganglia circuits are required for learning in both birds and mammals, little is known about the 

specific activity patterns that drive cortico-striatal plasticity, or when they occur during 

learning.  One intriguing possibility is that neural activity patterns during 'offline' periods such as 

sleep may have a central role in driving cortico-striatal plasticity during learning. We used 

chronically implanted Neuropixels probes to investigate the cortico-striatal network dynamics 

during natural sleep in male zebra finches. Zebra finches share many features of sleep with 

mammals, including transitions through slow wave sleep (SWS) and rapid-eye movement (REM) 

sleep. We found: (1) Pallial and striatal neurons transition from sparse synchronous firing to 

asynchronous firing during sleep;(2) Cross-areal (LMAN-AreaX) gamma-band coherence is low 

and does not change as a function of sleep stage, whereas the cross-areal beta-band coherence 

is significantly modulated by sleep stage. Intra-areal LFP coherence in delta, theta and beta bands 

are high and modulated by sleep stage; (3) Phases of high delta activity in the LFP during sleep 
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are associated with increased spiking variability for LMAN neurons but not Area X; (4) LMAN 

neurons show reactivation-like bursting activity during REM sleep. 

 

Introduction  

Cortical and basal ganglia (BG) circuits regulate behavioral variability, as evidenced by studies of 

habit and skill learning in mammals. 1–5 In the case of skill learning, the ability to consistently 

produce a skilled action is accompanied by emerging coordinated neural activity across the motor 

cortex and striatum during action execution. 5–7 

Vocal learning in songbirds is a developmentally restricted learning paradigm, during which 

juvenile songbirds use auditory feedback and motor learning to transition from acoustically simple, 

highly variable “subsongs” to complex and stereotypical adult songs [citation]. Similar to skill 

learning in mammals,  vocal learning in songbirds requires a set of interconnected brain areas 

that make up a basal ganglia-thalamocortical circuit (Figure 1a) known as the anterior forebrain 

pathway (AFP).8–12 

Within the AFP, the pallial structure LMAN (lateral magnocellular nucleus of the nidopallium) 

exerts a direct influence on vocal output though its projection to premotor area RA (robust nucleus 

of the arcopallium), and through this influence on the motor pathway, drives variability that can be 

used for learning.13 Area X (proper name), part of the avian striatum, receives an efference copy 

of activity in LMAN,14 thus placing Area X in a position to evaluate exploratory activity in LMAN in 

the context of the ongoing song. 

While it is clear that cortico-striatal circuits are required for learning in both birds and mammals 

[citation], little is known about the specific activity patterns that drive cortico-striatal plasticity, or 

when they  occur during learning.  One intriguing possibility is that neural activity patterns during 

'offline' periods  such as sleep may have a central role in driving cortico-striatal plasticity during 

learning. 

This possibility is motivated by evidence that 'reactivations' of training-related neural activity 

patterns during sleep promote motor skill learning in mammals 15,16 and songbirds. 17–19 However, the 

specific activity patterns that may impact cross-area connectivity during sleep in birds remains 

unknown. 

We used chronically implanted neuropixel probes to investigate the cortico-striatal network 

dynamics during natural  sleep in male zebra finches. Zebra finches share many features of sleep 

with mammals, including transitions through slow wave sleep (SWS) and rapid-eye movement 

(REM) sleep. 20,21 

 

 

 

https://www.zotero.org/google-docs/?fEUImi
https://www.zotero.org/google-docs/?LAc0ru
https://www.zotero.org/google-docs/?1n7D9M
https://www.zotero.org/google-docs/?VH1YXp
https://www.zotero.org/google-docs/?41xLIw
https://www.zotero.org/google-docs/?OaKryc
https://www.zotero.org/google-docs/?W0HD1T
https://www.zotero.org/google-docs/?jzXABu
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Results 

Pallial and BG neurons transition from sparse synchronous firing to 

asynchronous firing during sleep 

We investigated cortico-striatal dynamics during sleep in male zebra finches (n = 7) chronically 

implanted with a Neuropixels probe (Figure 1b). The probe was implanted such that both the 

pallial structure LMAN and the striatal structure Area X within the avian BG were targeted (Figure 

1c). 
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We observed that during sleep, slow wave delta activity (1-4 Hz) was widespread throughout the 

pallium and striatum, spanning more than 4 mm (Figure 1d). Neural spiking was synchronized 

with the slow wave dynamics and was observable as sparsely bursting patterns of activity in both 

pallial and striatal neurons (Figure 1d). We also observed fast transitions from periods of slow 

wave-dominated, bursting activity to short periods of asynchronous firing (Figure 1d, e, gray 

shading). 

We tracked transitions from high delta activity to low delta activity by calculating the ratio of delta 

activity (δ, 1-4 Hz) to gamma activity (γ, 30-90 Hz). This method is analogous to metrics that have 

been used with rodents,22,23 but accounts for the dominant frequency bands present during avian 

sleep.20,21,24  

We found that the δ\γ ratio tracked sleep transitions for pallial sites better than for deeper striatal 

sites (Figure 2a). When using a centrally-located pallial site to calculate δ\γ (Figure 2a, black line), 

low δ\γ values corresponded to putative REM states and high δ\γ corresponded to putative SWS 

states (Figure 2b). Median δ\γ values, calculated over the entire duration of sleep, showed some 

variability across birds (Table 1, Figure 2c) but were within the range of values previously reported 

using similar metrics.21. 

 

 

  

Appendix III Figure 1: Cortical-basal ganglia dynamics during sleep in a songbird. (a) Schematic 

depicts the basal ganglia-thalamocortical circuit (blue arrows). Black arrows indicate other important 

connections of the AFP. HVC, proper name; RA, robust nucleus of the arcopallium; LMAN, lateral 

magnocellular nucleus of the nidopallium; Area X, proper name; DLM, medial dorsolateral nucleus of the 

thalamus. (b) Image of a male zebra finch implanted with a Neuropixels probe. (c) Histological brain slice 

depicting the Neuropixels electrode track (red DiI fluorescence). Area X is indicated with a dotted black line. 

St, striatum; d, dorsal; a, anterior; v, ventral; p, posterior; for other abbreviations, see (a). (d) 10 s segment 

of local field potentials recorded during sleep. Recording sites were located in the pallium (red shading) and 

basal ganglia (blue shading) and are organized according to depth. (e) Corresponding spiking activity for 

identified pallial or striatal neurons. Firing rate is indicated with the color scale, and neurons are sorted 

according to firing rate. Note how neural activity transitions from sparse and synchronous firing aligned to 

the LFP troughs to asynchronous firing at 912-914 s (black box). 

https://www.zotero.org/google-docs/?2Jp6sF
https://www.zotero.org/google-docs/?c4pxmc
https://www.zotero.org/google-docs/?6WwIAx
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Bird Median iqr 

g4r4 153.5 127.2 

r15v15 210.1 134.3 

j8v8 58.84 51.1 

rr 92.0 60.4 

o6 61.6 33.6 

r5n5 212 250.7 

Yellow 120 51.8 

Appendix III Figure 2: Identification of sleep stages and representative neural dynamics. (a) Ratio of 

δ/γ power for consecutive depths along the Neuropixels recording electrode. Each trace is separated by 

200 microns. Black trace indicates a centrally located pallial site. Numbers and arrows indicate low (1), 

middle (2), and high (3) δ/γ values. (b) 3-second segments of local field potential activity from pallial and 

BG sites for the low, middle, and high δ/γ values indicated in (a). Each trace is separated by 80 microns. 

Note the large amplitude slow wave dynamics present for high δ/γ values indicated in (3). Color scale for 

visualization purposes only. Data from ZF g4r4. (c) Bar plots indicate average δ/γ values calculated over 

the duration of the sleep phase per bird. The box bottom and top edges represent the 25th and 75th 

percentile, respectively, and the middle dot represents the median. Whisker extends to the 25-75 percentile, 

and outliers beyond this range are indicated as open circles.  

Appendix III Table 1: Median δ/γ values for three 

zebra finches. iqr, inter-quartile range. 
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Phases of high delta activity in LFP during sleep associated with increased 

spiking variability for LMAN neurons but not Area X 
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Appendix III Figure 3: Spiking variability is significantly higher for LMAN neurons compared to Area 

X neurons. (a) Box plots summarize δ/γ ranges for 3 zebra finches, where the box bottom and top edges 

represent the 25th and 75th percentile, respectively, and the middle dot represents the median. Whisker 

extends to all points outside of the 25-75 percentile range. (b) Scatter plots indicate the CV versus δ/γ 

values for 3 different zebra finches (ZF 1, ZF 2, ZF 3) and for LMAN neurons (red dots) and Area X neurons 

(blue dots). The marginal distributions for the CV values are plotted (right) for LMAN (red line) and Area X 

neurons (blue lines). Green and black arrows (ZF 1 subplot) indicate the CV and δ/γ values that correspond 

to the 10 s snippet of data plotted in (c) and (d). (c) Spiking raster plot for 31 LMAN neurons for a low CV 

value (left plot) and a high CV value (right box). Each tick corresponds to a spike. Data correspond to green 

and black arrows for red LMAN data in (b). (d) Spiking raster plot for 27 Area X neurons for a low CV value 

(left plot) and a high CV value (right box). Figure conventions same as in (c). 
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We focused our next analysis on two specific structures within the AFP of songbirds: the pallial 

structure LMAN and a striatal structure within the songbird basal ganglia called Area X. We 

observed that during sleep, population-wide spiking activity occurred for pallial LMAN neurons 

that was often aligned to slow wave troughs in the LFP (see Figure 1d, e). In order to quantify the 

different patterns of spiking activity that we observed during sleep, we calculated the coefficient 

of variation (CV, standard deviation divided by the mean) for identified LMAN and Area X neuron 

populations in 20 ms bins (Figure 3b, c). We found that median CVs ranged from 0.23 (Area X) 

to 1.81 (LMAN; see Table 2 for individual values), and CV values were significantly higher for 

LMAN neurons compared to Area X neurons in all birds (median LMAN CV over all birds = 1.44 

± 0.16 (s.e.m.); median Area X CV for all birds was = 0.28 ±  0.12).  

The CV can be thought of as a measure of spike train variability: CV values for the population 

rate will approach zero when all neurons are Poisson and statistically independent.25 High CV 

values for LMAN neurons compared to lower CV values for Area X neurons suggests that the 

spike trains for LMAN neurons are more irregular than for Area X neurons. Indeed, when we 

examined spike rasters corresponding to high and low CV values for LMAN and Area X 

populations (Figure 3 a-c), spiking patterns were conspicuously irregular - albeit largely 

synchronized across the population - for LMAN neurons for high CV values. CV values were 

significantly lower for Area X neurons (Figure 3 d-e), capturing their regular spiking patterns and 

high firing rates (Figure 3 a-h).  

Bird LMAN CV median ± SEM Area X CV median ± SEM wilcoxon ranksum test  

g4r4 0.77 ± 0.02 0.28 ± 0.00 1.54E-161 

r15v15 1.69 ± 0.04 0.61 ± 0.01 3.23E-72 

j8v8 0.75 ± 0.02 0.27 ± 0.00 3.13E-315 

redred 1.44 ± 0.06 0.67 ± 0.01 6.01E-56 

orange 6 1.33 ± 0.03 0.27 ± 0.00 3.84E-129 

r5n5 1.64 ± 0.04 1.04 ± 0.01 1.03E-82 

yellow 1.81 ± 0.02 0.23 ± 0.00 2.04E-219 

Population 1.44 ± 0.16 0.28 ±  0.12 
 

We observed that the CV values fluctuated closely with δ\γ values, such that high CV values were 

associated with high δ\γ values: this trend was especially obvious for LMAN neurons (Figure 3g). 

Indeed, we found that CV values for LMAN neurons were highly correlated with δ\γ values for 

almost all birds (n = 6 out of 7 birds); this was also largely true for Area X neurons as well (n = 4/7 

birds). 

Appendix III Table 2: Median CV values were significantly higher for LMAN neurons 

compared to Area X neurons. 

Median values ± SEM. p value is the result of a Wilcoxon rank sum test. 

 

https://www.zotero.org/google-docs/?VHKdRQ
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These findings suggested that LMAN neurons are dynamically driven by the sleep state: Irregular 

spiking patterns emerge from populations of LMAN neurons during putative SWS (high δ\γ 

values), whereas regular firing patterns dominate for putative REM sleep (low δ\γ values).  

 

 
LMAN: CV versus δ\γ 

 
Area X: CV versus δ\γ 
 

 
R p 

 
R p 

g4r4 0.64 5.84E-59 
 

0.68 2.46E-68 

r15v15 0.50 1.92E-22 
 

0.06 0.2479 

j8v8 0.36 5.52E-32 
 

0.25 4.19E-15 

redred 0.17 0.0025 
 

-0.28 4.56E-07 

orange 6 0.09 0.0814 
 

-0.02 0.6728 

r5n5 0.69 1.21E-55 
 

-0.01 0.8525 

yellow 0.15 0.0001 
 

-0.13 0.0008 

 

 

  

Appendix III Table 3: CV values were significantly and positively correlated with δ/γ values for 6/7 zebra 

finches. R, Pearson correlation coefficient. 



 
159 

 

LFP coherence in the delta, beta and theta bands are modulated by sleep 

stage 

Area X receives direct input from LMAN neurons. We were curious whether LMAN neurons affect 

Area X activity during sleep. In order to investigate functional connectivity between Area X and 

LMAN during sleep, we first used a clustering-based sleep scoring method 20,26 to categorize sleep 

into discrete bins of REM sleep, SWS, or intermediate sleep (IS). IS is a transitional stage of sleep 

that has been compared to the early stages of mammalian non-REM sleep.20,26 SWS segments 

generally corresponded to high δ\γ values, and REM sleep generally corresponded to low δ\γ 

values (Figure 4A). 

Then we calculated the magnitude squared coherence (coherence) between all pairs of LMAN 

and Area X neurons for 6-s long REM and SWS segments (Figure 5a). This technique quantifies 

the neuronal patterns of synchronicity measured between spatially separated recording sites.27 

We focused on several frequency bands of interest: 1-4 Hz (delta activity), 4-12 Hz (theta activity), 

12-30 Hz (beta activity), and 30-90 Hz (low gamma activity), and 90-145 Hz (high gamma activity; 

Figure 5).  

 

Appendix III Figure 4 

https://www.zotero.org/google-docs/?3TQcVt
https://www.zotero.org/google-docs/?zPI9IO
https://www.zotero.org/google-docs/?POiTzp
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To illustrate the differences in coherence across locations as a function of sleep state, average 

pairwise cross-coherency plots were made for each passband of interest (Figure 5a,b). We found 

that pallial areas, and specifically LMAN sites (Figure 5a; pink shading) displayed high intra-area 

coherence for low frequency passbands during both SWS and REM sleep (Figure 5b; LMAN-

LMAN). Inter-area coherence between pallium and BG were highest during putative SWS phases 

(Figure 4c,d; top left quadrant).  

To quantify coherence between LMAN and Area X, we compared two electrodes that were located 

in the center of these brain areas based on histological reconstructions. The coherence of this 

pair of electrodes was calculated on 3-s segments of data as a function of the δ\γ value. When 

pooled over all δ\γ values, coherence values for the 3 zebra finches were significantly higher for 

the 1-4 Hz and 4-15 Hz frequency bands compared to the 30-90 Hz gamma band (Table 4; Figure 

5a). 
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Appendix III Figure 5: LMAN - Area X coherence is low across birds for high frequency bands 

independent of sleep state (a) Box-plots summarize the coherence between a pair of LMAN - Area X 

electrodes in 3 different birds for low (1-4 Hz), medium (4-15 Hz), and high (30-90 Hz) frequency bands. 

The box bottom and top edges represent the 25th and 75th percentile, respectively, and the middle line 

represents the median. The whiskers extend to the most extreme data points not considered outliers, and 

the outliers are plotted as individual dots. (b) Box-plots summarize low frequency LMAN-Area X coherence 

for identified REM, I (Intermediate), and SWS phases. Sleep phases were identified using the IQR method. 

Color scheme same as in (a). (c) Box-plots summarize the low frequency LMAN-Area X coherence for 

identified REM and SWS phases using the K-Means segmentation method. Color scheme same as in (a). 

(d, e) Box-plots summarize middle frequency LMAN-Area X coherence; figure conventions same as for (b) 

and (c). (f, g) Box-plots summarize high frequency LMAN-Area X coherence; figure conventions same as 

for (b) and (c). 
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ZEBRA 

FINCH 

1 – 4 Hz 4 – 12 Hz 12 – 30 Hz 30 – 90 Hz 90 – 145 

Hz 

ANOVA 

blackcyan 0.34 ± 

0.004 

0.31 ± 

0.004 
0.24 ± 

0.003 
0.20 ± 

0.002 
0.21 ± 0.002 F(4) = 405.12 , p < 0.001 

extnolabel 0.28 ± 

0.006 

0.34 ± 

0.007 
0.18 ± 

0.004 
0.12 ± 

0.003 
0.11 ± 0.003 F(4) = 461.63 , p < 0.001 

g4r4 0.60 ± 

0.003 
0.72 ± 

0.002 
0.44 ± 

0.002 
0.21 ± 

0.002 
0.15 ± 0.002 F(4) = 12444.15, p 

<0.001 

j8v8 0.27 ± 

0.005 
0.39 ± 

0.005 
0.25 ± 

0.004 
0.18 ± 

0.003 
0.14 ± 0.002 F(4) = 668.08 , p < 0.001 

nolabel 0.43 ± 

0.004 
0.53 ± 

0.003 
0.26 ± 

0.003 
0.11 ± 

0.002 
0.08 ± 0.001   

orange6 0.59 ± 

0.005 
0.66 ± 

0.005 
0.70 ± 

0.003 
0.32 ± 

0.003 
0.14 ± 0.002   

r11n11 0.53 ± 

0.002 
0.53 ± 

0.002 
0.31 ± 

0.002 
0.26 ± 

0.001 
0.24 ± 0.001   

r15v15 0.51 ± 

0.003 
0.51 ± 

0.002 
0.27 ± 

0.002 
0.14 ± 

0.001 
0.11 ± 0.001   

r5n5 0.43 ± 

0.005 
0.48 ± 

0.005 
0.24 ± 

0.004 
0.13 ± 

0.003 
0.12 ± 0.002   

redred 0.44 ± 

0.004 
0.50 ± 

0.004 
0.49 ± 

0.003 
0.20 ± 

0.002 
0.14 ± 0.002   

Appendix III Table 4: Mean coherence values were significantly different across frequency bands for three 

zebra finches. Mean values ± s.e.m. ANOVA, one-sided ANOVA test. 

 

Appendix III Table 5: Mean coherence values were significantly different across frequency bands for 

all 10 zebra finches. Mean values ± s.e.m. ANOVA, one-sided ANOVA test reported as F statistic 

(degrees of freedom) and p-values. 
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LMAN neurons show bursting reactivation activity during sleep 

We recorded neural activity in each of the three zebra finches under slightly different sleeping 

conditions: ZF-1 (g4r4) was recorded during a sleep session at the beginning of the night (4-5:00 

pm); ZF-2 (j8v8) was recorded after a night of ``natural sleep'' at 5:00 in the morning, and ZF-3 

(r5n5) was recorded during the day after the lights were turned off. 

Interestingly, in ZF-2, but not in ZF-1 and ZF-3, we observed neural activity in LMAN that was 

highly reminiscent of ``replay activity'' reported in mammalian hippocampus (citations) and zebra 

finch (Long paper). In order to examine this activity in greater detail, we designed an algorithm 

that detected unsynchronized bursts of activity during sleep. Unsynchronized bursts of activity 

were present during bouts of awake singing (Figure 6a, b), and highly similar bursts of activity 

were present across the population of LMAN neurons during sleep (Figure 6a, b). These activity 
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patterns were less bursty than for awake singing, but still more patterned than control periods of 

activity that occurred during sleep (Figure 6e, f). 

The occurrence of bursting events followed a long-tail distribution, with many events occurring 

within 10 minutes of each other (Figure 6g, h) and other events occurring within 30 minutes or 

more.  We were curious whether these unsynchronized bursts occurred more frequently during 

phases of REM sleep or SWS. For all of the detected unsynchronized bursts, we calculated the 

δ\γ value associated with the LFP of a reference electrode located in LMAN. On average, the 

median δ\γ value for all burst detections was lower than for all of the detected events combined 

(Figure 6i), suggesting that these events are more likely to occur during putative REM periods. 

 

Materials and Methods 

Subjects 

Eleven male zebra finches (Taeniopygia guttata) were used in this study; data were pooled across 

two laboratories in France (the Institute of Neuroscience in Orsay and the Bordeaux 

Neurocampus). The age of the animals ranged from 66 days post-hatch (dph) to 232 dph at the 

time of recording. The animals were bred and housed in the animal facilities of the laboratories. 

During the experiment, animals were housed individually with water and food ad libitum under a 

14:10 hr light/dark cycle. The description of the dataset can be found in the repository where the 

data is stored. All experimental procedures were approved by the French Ministry of Research 

and the ethical committee ``Paris-Sud et Centre'' (CEEA No. 59, project 2017-25) and “Poissons 

Oiseaux Nouvelle Aquitaine” (CEEA No. 73, project S73) and performed under the license 2015-

25 and APAFIS#13413-2018020713145795. 

Surgery and experiments 

Surgery 

The day of the surgery, food and water sources were removed from the cage approximately 30 

minutes before the start of the surgery. Animals were anesthetized with isoflurane (0.6-1.5\% 

inhalation) and placed in the stereotactic apparatus once the flexion reflex was no longer 

observable. 0.05 microliters of diluted lidocaine (0.5mg/kg, don’t remember the name of the 

lidocaine we use) was administered subcutaneously and a local anesthetic (0.5 g Emla®  creme) 

was applied to the exposed head skin along the caudo-rostral axis after removing feathers and 

disinfecting the area with ethanol and betadine. The scalp was resected and the exposed skull 

was prepared for the implant by drilling several small holes in the outer bone layer. A small 

craniotomy contralateral to the final implant was made to place a silver wire in contact with the 

dura that served as the electrical ground.  

The main craniotomy was made on the right hemisphere around 1.7 mm lateral to the superior 

sagittal sinus and 4.5 mm anterior to lambda, the confluence of sinuses, with the flat part of the 
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anterior skull rotated to a 50-degree angle. The positions of LMAN and Area X were mapped with 

high-impedance single-electrodes in order to identify the brain areas based on the firing rate 

properties thereof.  

A Neuropixels probe version 1.0 28 was implanted 4 mm deep to penetrate the estimated center of 

LMAN and Area X. The custom-made holder that carried the Neuropixels probe was fixed to the 

skull with dental cement and the craniotomy was sealed with a two-part silicone gel (Dow Dowsil 

TM) before it was covered with a custom-made casing. The headstage was fixed at a 35 degree 

head angle, which corresponded to the natural position of the birds’ head. Finally, the ground wire 

was connected and open holes along the implant were sealed with fast drying two-component 

silicone gel (Kwik-Sil). Immediately after the surgery, a weight reliever with adjustable 

counterweight was added to help the animals cope with the additional weight of the implant (1.9 

g). 

Histology and channel estimation 

Post-hoc control of the electrode location in the brain was performed through histological 

examination of brain tissue. Birds were sacrificed at the end of the experiment with a lethal 

intraperitoneal injection of Exagon (pentobarbital sodium, 400 mg/mL), perfused intracardially 

with PBS 0.01 M sometimes followed by 4% paraformaldehyde as fixative. The brain was 

removed, always post-fixed in 4% for 24 hr, and cryoprotected in 30% sucrose. We then cut 50-

micron thick sections in the parasagittal or horizontal (for cerebellum) plane with a freezing 

microtome. Slices were mounted with Mowiol (Sigma Aldrich) and observed under 

epifluorescence. Images were analyzed using ImageJ software (Rasband WS, NIH, Bethesda, 

Maryland, USA). The electrode track as indicated by colored/fluorescent dye, was clearly visible 

on consecutive brain slices (see Figure 1c).  

We defined the boundaries of LMAN and Area X based on darkness of the tissue in regular light 

or the fluorescent background, as these two brain areas showed a clear contrast with surrounding 

tissue due to higher myelination, cell density, and size (Niwdorf-Begweiler and Bishof, 2007). The 

reconstruction of electrode channels to be assigned to LMAN or X was performed based on the 

location of the electrode tip on the histological pictures, the coordinates of the channels on the 

electrode (https://www.neuropixels.org/support) and the above-mentioned boundaries of LMAN 

and X.  

Data acquisition 

Animals were housed individually in sound-attenuated recording chambers and neural recording 

sessions were performed once or twice per day with sessions lasting between one and four hours. 

Sleep-related activity was recorded either during the start or end of natural sleep. Specifically, one 

bird (j8v8) was recorded at 5:00 in the morning at the end of the ``natural sleep'' phase. The other 

two birds (g4r4 and r5n5) were recorded at the start of the natural sleep phase, beginning at 16:00 

(g4r4) or 17:00 (r5n5). Extracellular activity was recorded with the chronically implanted 

Neuropixels probe at 30 kHz. Video recordings were acquired in one bird r5n5 to confirm sleeping 

https://www.zotero.org/google-docs/?GnRWn8
https://www.neuropixels.org/support
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behavior. Extensive information on the dataset can be found in the data repository where our data 

is stored. 

Data analysis 

Data preprocessing and spike clustering 

For neural analysis, spike sorting was performed on all active channels using Kilosort 2.0 and 

Kilosort 2.5 29 and manually curated using phy (https://github.com/kwikteam/phy) or automatically 

curated using SpikeInterface (script available in our data repository). The channels that covered 

LMAN and Area X were determined based on the characteristics of the raw voltage signal, 

histological examination of the probe's trace in sagittal brain slices, and spiking behavior of 

detected spike clusters.  

Sleep staging 

The sleep staging was performed based on a previously described automated method in 

songbirds. Since we did not have EEG measurements, we computed the sleep stages from an 

LMAN LFP channel (identified medially located LMAN channel along the dorsoventral axis of 

recording) with bins of 3 sec and a window shift of 1 sec. Spectral parameters were computed 

from the multitaper spectral analysis (Prerau et al. 2016) of the downsampled (250 Hz) LFP.  After 

the classification of the sleep stages, we incorporated an additional step of screening. Based on 

manual video observation where available and the microphone signal, each bin was classified as 

wake or movement upon the observation of a sustained artifact in the microphone signal (larger 

than n times the signal’s chunk mean noise minus the standard deviation of the same chunk, n 

being an integer defined by visual inspection) of microphone amplitude). We computed the final 

sleep stages if the microphone signal and/or video also confirmed a lack of movement.  Even 

though this process resulted in classification into 3 sleep stages, REM, SWS, and IS, the number 

of bins classified as IS was much smaller and shorter in duration. So, for the rest of our analysis, 

we continued with only the bins identified as either REM or SWS. 

 

Coefficient of Variation 

Temporal variability in the spiking patterns was quantified using the coefficient of variation for the 

spike rate. A sliding window of length 20 s with 50\% overlaps was used to measure the variability 

in spiking activity. Each window was divided into sub-windows of length 20 ms, and the total 

number of spikes (from all units either in LMAN or in Area X) were counted in each sub-window. 

The coefficient of variation (CV) was obtained as the standard deviation of spike counts divided 

by the mean spike count across all sub-windows in each window. Furthermore, the average firing 

rate of LMAN and Area X neurons was calculated as the total count of spikes (from all units either 

in LMAN or in Area X) per second in the same 20-s windows that CV was computed.  

https://www.zotero.org/google-docs/?lzae2F
https://github.com/kwikteam/phy
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The Pearson’s correlation coefficient was used to quantify the relevance between Delta/Gamma 

ratio and the CV of spike activation. In order to align these two variables, Delta/Gamma values 

were averaged within the corresponding 20-s windows, where CV was computed.  

Coherency Analysis 

The computation of coherence was done as follows: first, we extracted the LFP data from .bin 

files utilizing SpikeInterface (https://spikeinterface.readthedocs.io/en/latest/overview.html) with 

phase shift correction using spikeinterface.preprocessing.phase_shift. Next, we removed artifacts 

from the LFP signal by establishing a threshold based on 80% of the maximum absolute trace 

value and Z-scored the trace using elephant.signal_processing.zscore. After that, we identified 

consecutive six seconds within the same state (chunk_length). We used six seconds to guarantee 

at least six cycles for our lowest frequency of interest (FOI), i,e, 1Hz. Afterward, we determined 

the number of available chunks for each sleep state, and what was the common minimum 

between states (n_chunks). We excluded birds that had less than 15 n_chunks to ensure enough 

computation resolution. We then proceeded by segmenting and concatenating LFP data with the 

same n_chunks for REM and NREM sleep states. Finally, we computed coherence using the 

scipy.signal.coherence (https://docs.scipy.org/doc/) with the number of points per segment 

(nperseg) equal to chunk_length multiplied by the signal’s sampling frequency, with no overlap, 

and detrending set to ‘constant’. Considering that NREM's available chunks were often more 

numerous than REM’s, to prevent bias and analyze as much of the data as possible across each 

recording, coherence was computed N times (the integer division of the total NREM available 

chunks divided by n_chunks) using random sampling without replacement. The Python scripts 

used for this analysis can be found in our data repository. 

Sleep replay event detection 

Sleep replays were observed in one bird as varying, unsynchronized bursts of spiking in the LMAN 

region similar but slightly weaker to the spiking behavior during singing. To detect replay events 

during sleep, we introduced a bursting index binning all spikes originating from units in LMAN in 

XX ms long bins and convolving the discretized signal with a 50ms boxcar kernel to distinguish it 

from synchronized spiking during deep sleep (Figure 3). Sleep replays were defined as times 

when the smoothed bursting signals surpassed a threshold of 0.12 and had a prominence of 0.1. 

The delta/gamma ratio during these sleep events was computed on the central channel in LMAN 

in a 3 s window around the center of the sleep replay independent of the length thereof. 

 

Supplementary Figures 

 

 

https://spikeinterface.readthedocs.io/en/latest/overview.html
https://docs.scipy.org/doc/
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Appendix III Suppl. Figure 1. Scatter plot showing CV against delta/gamma and boxplot of delta/gamma distribution 
(lower right) for each bird. 
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Appendix IV – Nearest neighbor analysis of 

neurobehavioral correlates 
 

Birdsong is a complex, learned skill that is controlled by a distinct network of interconnected brain 

areas. Here, we asked whether the mapping from the spiking activity in the premotor LMAN to 

the vocal output is continuous, i.e., if small changes in neural space relate to small changes in 

vocal space similar to findings of V1 responses to a high-dimensional stimulus set in mice 

(Stringer et al., 2019). 

 

We used data from chapter 1 and defined continuity in terms of neighborhoods (Kollmorgen et 

al., 2020). We used the motif spectrograms (see Methods Chapter 2) and LMAN population 

spiking as readouts that span a high-dimensional vocal and neural space, respectively. For a find 

grained analysis that considers time-varying effects of LMAN activity (Kao et al., 2005a), we 

choose a 40 ms window in both domains (step size 20 ms). Spiking times were binned in 4 ms 

bins.  

We defined neighborhoods using the Euclidean distance 𝑑 and computed the summed distance 

in neural space between a target rendition 𝑖 and its 𝑘 nearest neighbors in vocal space (𝑘𝑣𝑛) 

relative to the summed distances in neural space to the 𝑘 nearest neighbors in neural space 

Figure IV.1 Testing for neurobehavioral continuity. See text for details. 
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(𝑘𝑛𝑛). We call the ratio the ‘expansion factor’ to reflect the inflation from one space to the other 

(Figure IV.1). It is formally defined as: 

𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟  𝑒 𝑖 =  
∑ 𝑑𝑘𝑣𝑛 (𝑥𝑖,  𝑥𝑘)

∑ 𝑑(𝑥𝑖 ,  𝑥𝑘)𝑘𝑛𝑛
⁄  

Figure IV.2  Small changes in neural space relate locally to small changes in vocal space 

We tested for continuity using a 40 ms sliding window across the motif spectrogram and binned 

spiking signals with different time lags τ. Shown are the spectrograms and the smoothed neural 

population spiking of one rendition (name of the bird and number of rendition given on top of the 

spectrogram). The heatmap on the bottom of each panel depicts the average difference between 

the shuffled predictor and expansion factor. Significant differences are marked with a white star. 

The significance level was set to 5% and adjusted for multiple testing using Bonferroni correction.  
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For statistical testing, we introduced a shuffle predictor for each neighborhood expansion where 

the true 𝑘 neighbors in 𝑘𝑛𝑛 are replaced by 𝑘 random neighbors.   

We chose a neighborhood size of 𝑘 = 10 and computed the expansion factor and shuffle predictor 

for pairs of LMAN population activity and motif sections at time lags 𝜏 ranging from 30 to 130 ms 

to account for varying premotor time lags (Kao et al., 2005a). 

We hypothesized that if 𝑒 is smaller than the shuffle predictor, there is evidence for 

neurobehavioral continuity between LMAN premotor activity and vocal output. We applied a one-

sided, paired Wilcoxon signed test to assess this statistically (5 % significance level, Bonferroni 

corrected for each bird).  

We show the results individually for each bird (n=5) in Figure IV.2. Using our parameter-free 

method, we find local evidence for continuity between LMAN spiking activity and vocal output. In 

each bird, there are moments in the motif where the neighborhood is better preserved than 

expected by chance (marked by white stars in the heatmap at the bottom of each panel). In some 

birds like r11n11 or r15v15, there is a very limited number of such moments. In j8v8 and r14n14, 

on the other hand, the effect is widespread. In j8v8, for instance, a continuous mapping is evident 

almost throughout the first half of the motif at several time lags.  

Could age be a reason for the varying degree of continuity? As zebra finches mature, LMAN’s 

influence on singing behavior diminishes (Aronov et al., 2008; S. W. Bottjer et al., 1984; Scharff 

& Nottebohm, 1991). Despite both j8v8 and r11n11 being approximately 80 days post-hatch at 

the recording time, they exhibited distinct continuity patterns. This discrepancy suggests that the 

direct correlation between chronological age and song development may not fully account for the 

differential impact of LMAN on song continuity. In line with developmental differentiation of neural  

behavior found in previous studies (Vallentin et al., 2016) it raises the hypothesis that LMAN's 

influence is potentially more significant in birds whose song structures are in earlier stages of 

song learning, indicating that developmental factors could play critical roles in the manifestation 

(or diminishing) of neurobehavioral continuity. This perspective warrants further investigation into 

the interplay between song developmental stage and LMAN's role in shaping neurobehavioral 

outcomes in songbirds. 

In conclusion, we derived a parameter-free definition of continuity for neurobehavioral mappings 

in terms of neighborhoods. Using this method, we find evidence that the neural-to-vocal mapping 

from the premotor nuclei LMAN to vocal output is continuous at specific moments in the song 

motif.  
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