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Abstract An improvement in the supervised artificial neural network classification
of sedimentary organic matter images from palynological preparations is presented.
Sedimentary organic matter encompasses the entire acid-resistant organic micro-
particles (typically with a diameter of 5–500 µm) recovered from a sediment or sed-
imentary rock. Supervised neural networks are trained to recognize patterns within
databases for which the correct classifications are already known. Once trained, they
are verified on pre-classified samples not seen by the network, and then used for
classification of samples whose class is not known. Such networks have an input,
hidden and output layer. Typically, these networks determine what the output class
is by adjusting weights associated with the layer interconnects, and by modifying
the signals that propagate through the hidden layer by a non-linear transfer function.
In this example, the inputs in each network are the salient features selected from an
available set of 194, while the outputs are the sedimentary organic matter classifi-
cations which were formerly developed with the rationalization of descriptive terms
from previous classification schemes. The author’s past work tested the supervised
back propagation neural network for the classification of sedimentary organic matter
images. This gave an overall correct classification rate of 87%. However, because the
back propagation network underperformed on two of the four classes, the radial basis
function neural network was tested on the same databases initially used in an attempt
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to improve the recognition rate of these two classes. The difference between the back
propagation and radial basis function networks lies in the non-linear transfer func-
tion applied in the hidden layer, which was modified by a Gaussian function in the
latter. In the best-case scenario, this improved the recognition rate by 4% to just over
91%. This has also determined that a series of different supervised neural networks
may be better for classification of sedimentary organic matter images. These results
are encouraging enough to prompt further research that may result in a commercially
viable system.

Keywords Back propagation · Radial basis function · Image analysis · Palynofacies

Introduction

The semi-automated capture, analysis and classification of sedimentary organic mat-
ter (OM) in palynological preparations were formerly described for palynofacies
studies (Weller et al. 2005). Such studies encompass the entire acid-resistant or-
ganic micro-particles (typically with a diameter of 5–500 µm) recovered from a sed-
iment or sedimentary rock (Fig. 1). Once these palynological residues have been ex-
tracted through a series of chemical digestion techniques and mounted on microscope
slides for analysis and counting, the particles can be identified and classified for use
in geochronological, biostratigraphical, paleoecological and/or paleoenvironmental
analysis (Traverse 1988). Traditionally, this material is manually analyzed with a mi-
croscope in a time consuming manner. By automating this ‘routine identification’
component, more emphasis can be placed on distinguishing rarer (‘unknown’) parti-
cles and placing them in a descriptive context for assessment of geological change.

The classification scheme adapted in this work uses a rationalization of morpho-
logically and texturally descriptive terms from three previous classification schemes
(Boulter 1994; Tyson 1995; Batten 1996) with the removal of redundant descrip-
tors (Table 1). Previously, a series of multi-layer back propagation (BPN) supervised
artificial neural networks (ANNs) were used to classify the 1st order class and subse-
quently the 2nd order classes; this demonstrated an average correct recognition rate
of 87% (Weller et al. 2005). The test data comprised 3266 manually assigned 1st or-
der particles of sedimentary OM, which were split into four subsets: 1st order, 2nd
order amorphous (501 particles), 2nd order palynodebris (1475 particles) and 2nd
order palynomorphs (1290 particles), which corresponded to the proposed classifica-
tion scheme (Table 1). By using BPN ANNs, the 1st order and 2nd order amorphous
classes were found to have a relatively low classification rate (66–85%) compared
to the 2nd order palynodebris and the 2nd order palynomorphs classes (>92%). To
improve this recognition rate the radial basis function (RBF) supervised ANNs have
been trained and tested on these original databases; the results of which are presented
here. These studies indicate that different ANN paradigms can be used in a series for
ultimate classification. This will be useful for characterization tasks that involve vast
quantities of multivariate data and potentially use a series/hierarchy for classification.
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Fig. 1 Example sedimentary OM images (×200 magnification, not to scale); classified according to Ta-
ble 1. Note dark particles on light background. A Membranous material; arrow indicates fibrous structural
element. B and C Brown wood; arrow on (B) indicates (structural) cross-hatch pattern; arrow on (C)
indicates fibrous structural element. D Opaque material with sharp, distinct outline. E Filament. F Amor-
phous OM of aquatic origin with a spongy, granular appearance and indistinct outline; arrow indicates
possible pyritization. G Amorphous OM of terrestrial origin; arrow indicates remnants of structural ele-
ments. H Fungal material (elongated hyphae). I Compact colonial species of chlorophyte algae; note elon-
gated cells with smooth surface textures. J Acritarch; note branching projections. K and L Angiosperm
pollen grains; arrow on (K) indicates one of three pores present (triporate); arrow on (L) indicates one
of five pores present (periporate). M Saccate gymnosperm pollen grain; arrow indicates one of two air
sacs present (bisaccate). N Tetrad pollen grain. O and P Prasinophyte algae; arrow on (O) indicates su-
ture through which the cell contents are released; note double wall layer in (P). Q Foraminiferal linings;
arrow indicates single chamber. R and S Spores (note bilateral symmetry); (R) is a spheroidal spore, with
arrow indicating a rectilinear germinal aperture (monolete spore); (S) is a tetrahedral spore, with arrow
indicating a three branching germinal aperture (trilete spore). T Proximochorate dinocyst (i.e. projections
between 10 and 30% of the diameter); arrows indicate different wall layers. U Proximate dinocyst (i.e. pro-
jections <10% of the diameter); top arrow indicates apical horn, bottom arrow indicates archeopyle (su-
ture-breakage) where excystment has occurred. V Proximochorate dinocyst; arrow indicates archeopyle.
W Chorate dinocyst (i.e. projections >30% of the diameter); note tip termination of projections which
differs between dinocysts with projections. X Proximate dinocyst; top arrow indicates archeopyle, bottom
arrow indicates one of pair of antapical horns. Y Chorate dinocyst; arrow indicates ‘intergonal ridges’ (i.e.
features relating to the parasuture). For further examples and greater explanation, refer to Weller (2004)
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Table 1 Adapted palynofacies classification scheme, including hierarchic descriptives (1st and 2nd order)
with simple morphological and textural description

1st order descriptive 2nd order
descriptive

Morphological and textural description

Amorphous (1) Terrestrial origin
(1)

Pale to brown; no opening in surface; diffusive outline (not
sharp); irregular (no straight, curved or corners) edges; no
coiling or projections; some internal (degraded) structure (not
high proportion of lineations); speckled appearance; & not
homogeneous

Aquatic origin
(2)

Pale to brown; no opening in surface; diffusive outline (not
sharp); irregular (no straight, curved or corners) edges; no
approx. parallel sides, coiling or projections; no internal
structure; speckled appearance; & not homogeneous

Palynomorphs (2) Spores and
pollen (3)

Pale to brown; sharp distinct outline (not diffusive); some
edge curvature; no approx. parallel sides, coiling; maybe some
projections; some internal structure; no (black) inclusions; &
not homogeneous

Dinoflagellate
cysts (dinocysts),
acritarchs and
other algae(4)

Pale to brown; sharp distinct outline (not diffusive); maybe
projections; some internal structure; no (black) inclusions;
maybe speckled texture; & not homogeneous

Foraminiferal
linings (5)

Pale to brown; no opening in surface; sharp distinct outline
(not diffusive); some edge curvature (not straight or corners);
no projections; maybe some (internal structure) lineations (not
random, radiate from point or high proportion); no (black)
inclusions; not speckled texture; & not homogeneous

Fungal material
(6)

Brown; not sheet-like; sharp distinct outline (not diffusive);
either curved or straight edge (no corners or irregular); no
coiling; maybe multiple lineations (not random); no (black)
inclusions; not speckled texture; & not homogeneous

Prasinophyte
algae (7)

Pale to brown (not black); sharp distinct outline (not
diffusive); curved edge; no corners or irregular edge; no
elongation, approx. parallel sides, coiling or projections; some
internal structure (no approx. parallel lineations); no (black)
inclusions; & maybe speckled & homogeneous

Palynodebris (3) Opaques (8) Black; sharp distinct outline (not diffusive); no coiling or
projections; no internal structure; maybe parallel pitting; &
homogeneous

Membranous
material (9)

Pale; sheet-like; sharp distinct outline (not diffusive); no
coiling or projections; maybe some internal structure; no
speckled texture; & maybe homogeneous

Brown wood
(10)

Brown; maybe sheet-like; sharp distinct outline (not
diffusive); no coiling or projections; maybe some internal
structure; no speckled texture; & maybe homogeneous

Tubes, filaments
and hairs (11)

Pale to brown; no opening in surface; not sheet-like; sharp
distinct outline (not diffusive); no irregular edge; elongated
with approx. parallel sides; no coiling or projections; some
internal structure; no random, radiating or high proportion of
lineations; no (black) inclusions; no speckled texture; &
maybe homogeneous
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Data Preprocessing

Images of sedimentary OM are captured through a (transmitted-light) microscope-
mounted camera at ×200 magnification, and each (darker) particle is segmented from
the (lighter) background (Fig. 1) and filed along with a total of 194 image analysis
(IA) measurements of its internal and external features. These include morphological,
color, textural and Fourier descriptors, as well as geometric moments (for a full list,
refer to Table 2). The IA software used (Halcon: MVTec GmbH 2004) is a platform-
independent, “machine vision” software suite with a library of over 1150 operators.
To facilitate the understanding of the individual contributions of each of these IA fea-
ture measurements, and to reduce the effects of the curse of dimensionality (Liu et al.
2001), classification tree models were developed with the Exhaustive search CHAID
(chi-square automatic interaction detector) algorithm of SPSS AnswerTree (SPSS
Inc 2004). The curse of dimensionality is a measure of the overall mean recognition
probability as a function of input feature measurement complexity and database size.
Given a pattern recognition environment with enough input complexity and a sizable
database covering all classification scenarios, there is an underlying discrete proba-
bility structure found within (Hughes 1968). SPSS AnswerTree software highlights
important segments of datasets where the best groups of salient features are efficiently
determined by using scalable classification tree algorithms. SPSS AnswerTree is also
able to give its own ‘cross-validation’ assessment (in percent) which is based on the
predicted accuracy of the classification trees produced.

Twelve classification trees were constructed, three for each of the four classes (1st
order, 2nd order amorphous, 2nd order palynodebris and 2nd order palynomorphs;
Table 1) of varying accuracy based on SPSS AnswerTree cross-validation. Table 3
shows the number of salient features extracted from those available (194) at various
accuracies. For a full description, including salient features identified for automated
palynofacies studies, refer to Weller et al. (2006). The twelve sets of salient fea-
tures were then extracted into databases that were used to train and test the ANN
classifiers. For this, NeuralWorks (NeuralWare 2003) ANN software was utilized, a
multi-paradigm ANN prototyping and development tool that can design, build, train,
test and deploy ANNs to solve complex problems, such as classification.

Supervised Neural Networks

Supervised ANNs can be trained to recognize patterns within training data for which
the correct classification is already known. The performance of the network is first
evaluated by comparing the predicted classes of samples not seen by the network with
their known class. The network can then be used to classify samples whose class is
not known (Balfoort et al. 1992). As the identity of a particle is known in this system
(Table 1), supervised ANNs are used for automated classification.

In general, such networks have an input and output layer with a number of simple
processing units, or ‘neurons’, consisting of one or more hidden layers in between.
Typically, layers receive signals, process them and feed them forward to units in the
next layer. The way these signals are processed depends on the settings of the ANN
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Table 2 Full list of 194 IA features measured. Manually assigned features are those that have a series of
integrated steps within the IA software (Halcon) to derive a measurement based on the manual morpholog-
ically and texturally descriptive features (Table 1). Note the deletion of several Fourier shape descriptors;
this is due to the repetition of measurements

Descriptor type(s) Input Specific measurement Description

Morphological 1 Anisometry (external) Elliptic radii (Ia/Ib) (calculated from
geometric moments) (circle = 1)

2 Bulkiness (external) Relates elliptic axes to area (massiveness)

3 Structure factor (external) Elliptic shape parameter
((anisometry*bulkiness)-1)

4 Elliptic Ra axis Elliptic long (a) axis

5 Elliptic Rb axis Elliptic short (b) axis

6 Convexity (external) Measure of outward curves or bulges

7 Compactness (external) Area to contour length ratio

8 Circularity (external) Similarity to a circle (circle=1)

9 Distance (external) Mean distance of contour from area center

10 Sigma (external) Standard deviation of contour from area
center

11 Roundness (external) Relation between distance and sigma
(1-sigma/distance)

12 Sides (external) Number of polygon pieces if a regular
polygon is concerned

Manually assigned 13 Small circle radius Smallest surrounding circle

14 Inner circle radius Largest inner circle

15 Circle difference Small circle minus inner circle

Fourier 16 Real f0 Normalized Fourier shape descriptor—real
(x) coefficient

. . .

54 Real f38 .

55 Real f40 .

56 Real f42 .

. . .

94 Real f80 .

95 Imaginary f0 Normalized Fourier shape
descriptor—imaginary (y) coefficient

. . .

133 Imaginary f38 .

134 Imaginary f40 .

135 Imaginary f43 .

. . .

172 Imaginary f80 .

Geometric moment 173 µ11 Normalized 2D boundary shape descriptor
(product of inertia of axes through center
parallel to coordinate axes)

174 µ20 Normalized 2D boundary shape descriptor
(2nd order line-dependent)
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Table 2 (Continued)

Descriptor type(s) Input Specific measurement Description

175 µ02 Normalized 2D boundary shape descriptor
(2nd order column-dependent)

Manually assigned 176 Straight lineations (external) Amount of external straight lineations

177 Curve lineations (external) Amount of external curved lineations

Color 178 Mean red Mean red color

179 Mean green Mean green color

180 Mean blue Mean blue color

Manually assigned 181 Straight lineations (internal) Amount of internal straight lineations

182 Curve lineations (internal) Amount of internal curved lineations

183 Radiate points Amount of points that lineations radiate from

184 Parallels (internal) Amount of internal parallel lineations

185 Number stretched lineations Amount of lineations that stretch from side
to side

Textural descriptors 186 Mean (internal) Mean particle gray value

187 Deviation (internal) Gray value standard deviation over particle

188 Entropy gray (internal) Gray level disorder

189 Anisotropy gray (internal) Gray value symmetry

190 Energy Intensity of gray value distribution

191 Correlation Reciprocal relation of gray value distribution

192 Homogeneity Local similarity of gray values

193 Contrast Gray value differences over particle

Manually assigned 194 Number internal ROI Amount of dark (near circular) inclusions

Table 3 Number of salient features (inputs) selected from 194 available (Table 2) for 80, 90 and 100%
SPSS AnswerTree cross-validation accuracy. Gray cells indicate those databases used for RBF ANN clas-
sification

Database Number of
original inputs

Number of inputs
for 80% accuracy

Number of inputs
for 90% accuracy

Number of inputs
for 100% accuracy

1st order 194 27 56 92

2nd order amorphous 194 1 9 25

2nd order palynodebris 194 8 13 23

2nd order palynomorphs 194 31 38 43

paradigm parameters. The neurons are connected in an organized way by intercon-
nections of varying weights (Fig. 2). The training process involves repeatedly prop-
agating different input vectors through the network from input to hidden to output
layer until the network has learned the training samples. As vectors are passed for-
ward through the network, they are multiplied by the appropriate weight associated
with the interconnect. Initially weights are set to random values. At each neuron in
the hidden layer, inputs are modified by a non-linear transfer function. In the output
layer, the values associated with each hidden layer neuron are then summed, indi-
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Fig. 2 Basic supervised ANN
architecture displaying input
layer (i.e. salient features:
Table 3), hidden layer(s) and
output layer (i.e. classification:
Table 1)

cating the ANN’s estimation of the corresponding output classifier (Malmgren and
Nordlund 1997). The difference (or error) between the actual and expected output is
then used as a basis for adjusting the weights and the parameters of the non-linear
transfer function so as to reduce the difference. ANNs can also easily accommodate
new classes of data by simply adding a new output node for each class and retraining
the network. With multivariate statistical methods, this proves difficult as a new class
would have to be introduced or programmed (Frankel et al. 1996).

Following the training process, the ANN is tested. Testing involves presenting
the network with previously unseen examples for which the tester knows the correct
classification. On the basis of a successful outcome (a high correspondence between
the network’s classifications and the actual classifications) the network can be used
to classify data for which the classification is not known.

Radial Basis Function Neural Networks

The RBF ANN is a type of probabilistic neural network that was designed for clas-
sification tasks (Kartalopoulos 1996). They have been shown to have an efficiency
of operation with the ability to produce reasonable decisions for, or reject patterns
of, unknowns (Wilkins et al. 1996; Al-Haddad et al. 2000). They can also be easily
retrained to incorporate unknowns into the network (Morris et al. 2001).

Previously, the RBF ANN was successfully applied to the classification of mineral
deposits (Singer 2006). The results suggest that they can classify mineral deposits
(when given comprehensive quantitative models) as well as experienced economic
geologists. The difference between the BPN and RBF ANN lies in the neurons of
the hidden layer. The RBF ANN replaces the BPN’s sigmoidal non-linear transfer
function with kernels (basis functions) to represent the data (Boddy et al. 2001). In
this case, a Gaussian shaped kernel of the following form was chosen

Output = exp

(−x2

2σ 2

)
, (1)
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where σ controls the spread of the function, and x is the Euclidean distance be-
tween the kernel center and vector of interest. The kernels have a defined response
to the input data that varies according to the distance of the data point from the ker-
nel center. The kernel centers can be positioned with the aim of ensuring that their
locations approximate the distribution of each class. For training, binary notation is
required as an output. For example, if the classifier consists of three classes, three
output columns are required, two of which could be 0, while the actual classification
would be 1. During training, the positions of the kernel centers are determined along
with the kernel widths and output layer vectors, respectively. Kernels are typically
radially symmetric when the distance between the kernel center and vector of interest
is Euclidean (as in this case), or non-radially symmetric (Wilkins et al. 1996). In test-
ing, the output layer combines the nonzero response of the signals from the hidden
layer whose magnitude is a function of the distance between the input and the kernel
center and performs the classification (Boddy et al. 2001). The output node with the
highest value (to a maximum of 1) is taken as the winner, and the network is said to
have classified that particular input vector as belonging to the class represented by
that node.

RBF ANNs were chosen because they have been found to produce consistent
and accurate results (Culverhouse et al. 2002), display rapidity of training (Specht
1990), and to be at least as successful as other ANN paradigms or statistical methods
(Wilkins et al. 1994; Culverhouse et al. 1996; Morgan et al. 1998). In addition, they
do not make assumptions about distributions within the data (Singer 2006), and they
are able to deal with incomplete datasets (Boddy et al. 1998).

Radial Basis Function Neural Network Results

For 1st order and 2nd order amorphous particle classification, the six original data-
bases were used. Two classes each had 80, 90 and 100% SPSS AnswerTree cross-
validation accuracy (Table 3). Each of the RBF ANN input vectors are made up of
the salient features selected which were not normalized (values between 0 and 1).
The output vectors indicate the class (Table 1). One layer of hidden neurons was
used, their number determined heuristically by initiating with the same number of
nodes as in the input layer and increasing by 10 until the best ANN configuration was
found (the highest ANN recognition rate). If the number of nodes in the input layer
were less than 10, then this number was used to initiate the number of neurons in the
hidden layer. The ANNs were then trained until the lowest root mean square (RMS)
error was found, which is an estimate of the standard deviation.

There were two test phases for the RBF ANNs. Initially, with both training and
testing on the complete database (100% of data), a best classification rate of 89.41%
was obtained for the 1st order class (with 80% SPSS AnswerTree cross-validation
accuracy and 30 neurons in the hidden layer) and of 98.2% for the 2nd order amor-
phous class (with 90% SPSS AnswerTree cross-validation accuracy and 90 neurons
in the hidden layer). This is an improvement over BPN ANNs of approximately 3
and 6%, respectively (Table 4). The best configuration was then used to test the RBF
ANNs with a partitioned database (the best number of neurons in the hidden layer).
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Table 4 RBF ANN results where 100% of data was used for both training and testing to determine best
number of neurons in hidden layer

Database SPSS AnswerTree
cross-validation
accuracy (%)

Number of neurons
in hidden layer 1

RMS error RBF ANN
recognition rate (%)

1st order 80 10 0.43 85.73

1st order 80 20 0.41 87.84

1st order 80 27 0.52 78.08

1st order 80 30 0.39 89.41

1st order 80 40 0.42 86.56

1st order 80 50 0.46 83.96

1st order 90 10 0.48 81.78

1st order 90 20 0.47 82.82

1st order 90 30 0.45 83.99

1st order 90 40 0.45 85

1st order 90 50 0.45 84.48

1st order 90 56 0.5 79.98

1st order 100 10 0.5 80.16

1st order 100 20 0.47 82.42

1st order 100 30 0.47 82.55

1st order 100 40 0.47 82.52

1st order 100 92 0.5 79.36

1st; 2nd order amorphous 80 2 0.8 51.3

1st; 2nd order amorphous 80 10 0.69 71.66

1st; 2nd order amorphous 80 20 0.66 73.85

1st; 2nd order amorphous 80 30 0.65 73.85

1st; 2nd order amorphous 80 40 0.64 74.45

1st; 2nd order amorphous 80 50 0.64 75.05

1st; 2nd order amorphous 80 60 0.64 75.25

1st; 2nd order amorphous 80 70 0.64 75.25

1st; 2nd order amorphous 80 80 0.64 75.25

1st; 2nd order amorphous 80 90 0.64 75.05

1st; 2nd order amorphous 90 9 0.65 77.45

1st; 2nd order amorphous 90 10 0.45 90.02

1st; 2nd order amorphous 90 20 0.42 92.22

1st; 2nd order amorphous 90 30 0.4 93.21

1st; 2nd order amorphous 90 40 0.38 94.21

1st; 2nd order amorphous 90 50 0.37 94.21

1st; 2nd order amorphous 90 60 0.35 95.41

1st; 2nd order amorphous 90 70 0.33 96.81

1st; 2nd order amorphous 90 80 0.31 97.6

1st; 2nd order amorphous 90 90 0.3 98.2

1st; 2nd order amorphous 90 100 0.3 98
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Table 4 (Continued)

Database SPSS AnswerTree
cross-validation
accuracy (%)

Number of neurons
in hidden layer 1

RMS error RBF ANN
recognition rate (%)

1st; 2nd order amorphous 100 10 0.43 90.62

1st; 2nd order amorphous 100 20 0.41 91.62

1st; 2nd order amorphous 100 25 0.54 83.83

1st; 2nd order amorphous 100 30 0.4 93.21

1st; 2nd order amorphous 100 40 0.39 94.01

1st; 2nd order amorphous 100 50 0.36 94.81

1st; 2nd order amorphous 100 60 0.33 96.01

1st; 2nd order amorphous 100 70 0.32 95.41

Table 5 Results of independently testing RBF ANNs on 10 and 20% of data

Database SPSS AnswerTree
cross-validation
accuracy (%)

Test data
size (%)

Number of
neurons in
hidden layer 1

RMS error RBF ANN
recogni-
tion rate
(%)

1st order 80 10 30 0.43 85.93

1st order 80 20 30 0.46 84.1

1st order 90 10 40 0.44 85.02

1st order 90 20 40 0.46 83.03

1st order 100 10 30 0.53 77.37

1st order 100 20 30 0.48 81.35

1st; 2nd order amorphous 80 10 60 0.74 64

1st; 2nd order amorphous 80 20 60 0.78 62

1st; 2nd order amorphous 90 10 90 0.61 80

1st; 2nd order amorphous 90 20 90 0.55 85

1st; 2nd order amorphous 100 10 60 0.57 80

1st; 2nd order amorphous 100 20 60 0.56 83

This is done so that each ANN can be independently tested with previously unseen
examples, and so that the recognition rate is not biased. Each of the six databases was
split so that 80 and 90% of data was used for training and the remaining 20 and 10%,
respectively, was used for testing the RBF ANN (Table 5).

Discussion

On initial examination, it can be seen that RBF ANNs have a difference of −0.79%
mean, 2% mode and 1.28% median recognition rate when compared to BPN ANNs
for both the 1st order and 2nd order amorphous classes (Table 6). With a standard
deviation of 7.99% (RBF ANNs) and 5.06% (BPN ANNs), a difference of 4.82%
is observed between the two paradigms. This anomaly is due to poor training of the
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Table 6 Comparison of best BPN and RBF ANNs configurations with 10 and 20% of test data

Database SPSS AnswerTree
cross-validation
accuracy (%)

Test data
size (%)

BPN ANN
recognition
rate (%)

RBF ANN
recognition
rate (%)

Difference (%)

1st order 80 10 84.4 85.93 1.53

1st order 80 20 81.8 84.1 2.3

1st order 90 10 84.71 85.02 0.31

1st order 90 20 82.11 83.03 0.92

1st order 100 10 78.59 77.37 −1.22

1st order 100 20 84.71 81.35 −3.36

1st; 2nd order amorphous 80 10 78 64 −14

1st; 2nd order amorphous 80 20 66 62 −4

1st; 2nd order amorphous 90 10 78 80 2

1st; 2nd order amorphous 90 20 80 85 5

1st; 2nd order amorphous 100 10 80 80 0

1st; 2nd order amorphous 100 20 82 83 1

Average (mean) 80.03 79.23 −0.79

Average (mode) 78 80 2

Average (median) 80.9 82.18 1.28

Standard deviation 5.06 7.99 4.82

RBF ANN on the 2nd order amorphous class with 80% SPSS AnswerTree cross-
validation accuracy. Having just one salient feature in this class (Table 3), there is a
difference of −14 and −4 for 10 and 20% of the partitioned test data, respectively.
This has proved difficult for an RBF ANN to train on.

If these two anomalous results are eliminated, the recognition rate difference be-
tween the RBF and BPN ANNs is improved by 0.85% mean, 0% mode and 1.12%
median for both the 1st order and 2nd order amorphous classes. This is justified be-
cause this database has also been shown empirically to be too small and limited to
facilitate the construction of accurate classifiers (Weller et al. 2005). This was as-
sessed using the Gamma M-Test which is an indicator of the minimum quantity of
data required to construct an effective model by knowing the variance of the statistical
noise within it (Corcoran et al. 2003), which is inevitable in natural data. The standard
deviation difference has also dropped to 0.27%. Separately, the RBF ANN demon-
strated a classification improvement by approximately 0.5% for the 1st order class
and approximately 1.5% for the 2nd order amorphous class. This is in accordance to
previous RBF ANN classification studies. Table 7 gives the best ANN paradigm to
use for each of the twelve databases after independent verification.

Across the spectrum of sedimentary OM classification, the initial BPN ANN se-
ries recognition rate of 87% has been improved to a best-case scenario of just over
4% to >91%. This is an improvement on previous automated sedimentary OM clas-
sification studies. Dabros and Mudie (1986) developed a system that identified and
counted particulate OM which reduced labor-intensive user analysis (including iden-
tification and counting) by at least 60%, and France et al. (2000) developed a system



Math Geol (2007) 39: 657–671 669

Table 7 Number of images per database, best ANN paradigm, test data size and ANN recognition rate

Database SPSS AnswerTree
cross-validation
accuracy (%)

Number
of available
images

Best ANN
paradigm

Test data
size (%)

ANN
recognition
rate (%)

1st order 80 3266 RBF 10 85.93

1st order 90 3266 RBF 10 85.02

1st order 100 3266 BPN 20 84.71

1st; 2nd order amorphous 80 501 BPN 10 78

1st; 2nd order amorphous 90 501 RBF 20 85

1st; 2nd order amorphous 100 501 BPN 20 82

1st; 2nd order palynodebris 80 1475 BPN 20 98.65

1st; 2nd order palynodebris 90 1475 BPN 10 97.3

1st; 2nd order palynodebris 100 1475 BPN 10 98.65

1st; 2nd order palynomorphs 80 1290 BPN 20 94.57

1st; 2nd order palynomorphs 90 1290 BPN 10/20 94.57

1st; 2nd order palynomorphs 100 1290 BPN 10 92.25

to differentiate between three taxa of pollen grains which correctly classified to an
average of 82%. This is also marginally better than previous RBF ANN-automated
particulate classification studies. Culverhouse et al. (1996) identified 23 species of
toxic and noxious dinoflagellates from European coastal waters to an accuracy of
85%. Jonker et al. (2000) identified 20 species of marine phytoplankton to an accu-
racy of 88.9% and Culverhouse et al. (2002) categorized 23 species of dinoflagellates
to consistent and accurate results of between 72 and 90% recognition.

Summary and Conclusions

In a previous study (Weller et al. 2005), the authors tested a BPN ANN on twelve
databases comprising 1st order, 2nd order amorphous, 2nd order palynodebris and
2nd order palynomorph sedimentary OM classes of different size, which gave an
overall correct classification rate of 87%. Since the BPN ANN performed poorly for
1st order and 2nd order amorphous classes, the authors tested a RBF ANN on the
same databases in an attempt to improve the recognition rate. This demonstrated a
classification improvement by approximately 0.5% for the 1st order class and ap-
proximately 1.5% the 2nd order amorphous class, making their incorporation in an
ANN series appealing for sedimentary OM classification. The initial BPN ANN se-
ries recognition rate of 87% has been improved to a best-case scenario of just over 4%
to >91%. For better recognition performance, a classifier consisting of both BPN and
RBF ANN paradigms may be utilized for the classification of sedimentary OM. For
a productive system, a RBF ANN may be used to classify the 1st order and 2nd order
amorphous classes, while a BPN ANN should classify the 2nd order palynodebris
and palynomorph classes (Fig. 3).

This system was not designed to replace or threaten human experts. Instead, it was
designed to facilitate their work by reducing the cost (and time) involved in analysis,
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Fig. 3 The system initially captures an image of a particle which is segmented from background and
filed in database along with 194 feature measurements (Table 2). Each database is then reduced in size
to associated salient features (Table 3). These are finally passed through RBF and BPN ANN series to
provide classification

and to accommodate precise, consistent and continuous operation. It frees the worker
from routine microscopy tasks with automatic slide scanning and increases objectiv-
ity in classification. The system acts as a new tool for the quantification of particle
numbers and characteristics by increasing the sampling volume (and thus the accu-
racy). It provides standardized and automated measurement procedures. Ultimately,
an electronic morphotype (species?) database may be developed through this system.
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