

diss . eth no. 30252

I M P R O V I N G N E T W O R K FA I L U R E

D E T E C T I O N A N D R E C O V E RY

W I T H P R O G R A M M A B L E D ATA P L A N E S

A thesis submitted to attain the degree of

D O C T O R O F S C I E N C E S
(Dr. sc. ETH Zurich)

presented by

E D G A R C O S TA M O L E R O
MSc ETH EEIT

ETH Zurich

born on 02.08.1992

accepted on the recommendation of

Prof. Dr. Laurent Vanbever
Dr. Stefano Vissicchio
Prof. Dr. Minlan Yu

2024

Edgar Costa Molero: Improving network failure detection and recovery with
programmable data planes, © 2024

Diss. ETH No. 30252
TIK-Schriftenreihe-Nr. 212

A B S T R A C T

Since its creation, the Internet has grown exponentially in size and use
cases, becoming an integral part of our society. Its seamless operation is
often taken for granted; we only recognize its importance when disruptions
occur. The current Internet’s complexity and scale make it prone to all sorts
of failures, with each minute of downtime costing companies millions of
dollars and damaging their reputation.

In this thesis, we address the critical need for rapid detection and recovery
mechanisms for network failures. We expand beyond conventional hard
failures to explore and address the issue of gray failures in ISP networks,
a subtle and poorly understood issue for which operators lack effective
solutions. By leveraging advances in programmable data planes, we develop
two systems to detect, localize, and recover from network failures.

First, we introduce FANcY, a novel system to detect and localize gray fail-
ures in ISP networks. FANcY utilizes programmable switches to implement
a reliable synchronization and counting protocol, enabling precise packet
loss detection. FANcY adapts to the limited memory capacity of modern
switches with a hybrid approach: dedicated counters for high-priority traffic
and a probabilistic data structure for best-effort traffic. This design ensures
efficient monitoring under various conditions and future-proofs the system
against constantly increasing traffic volumes. We demonstrate FANcY’s ca-
pability for sub-second gray failure detection and reaction through extensive
simulations and a prototype running on Intel Tofino switches.

Second, we present our work on hardware-accelerated network control
planes. This research extends beyond detection, demonstrating that pro-
grammable data planes can run critical control plane functions traditionally
implemented in software. Our working prototype efficiently runs diverse
such tasks in the data plane including: detecting hard, gray, and remote
failures, notifying other devices, executing distributed path-vector com-
putations that adhere to shortest-path and BGP-like policies, and rapidly
updating forwarding states to restore connectivity after failures. Finally,
our work identifies challenges in expressiveness and scalability for pro-
grammable data planes, emphasizing that the careful selection of tasks for
offloading remains a critical area for future research.

iii

Z U S A M M E N FA S S U N G

Seit seiner Entstehung ist das Internet in seiner Größe und seinen Anwen-
dungsbereichen exponentiell gewachsen und zu einem integralen Bestand-
teil unserer Gesellschaft geworden. Sein reibungsloser Betrieb wird oft
als selbstverständlich angesehen; wir erkennen seine Bedeutung erst bei
Störungen. Die derzeitige Komplexität und Größe des Internets machen es
anfällig für Störungen und Ausfälle, dabei kostet jede Minute Unterbruch
Unternehmen Millionen und schadet deren Ruf.

In dieser Arbeit nehmen wir uns schneller Erkennungs- und Wiederher-
stellungsmechanismen für Netzwerkausfälle an. Dabei widmen wir uns
nicht nur den kompletten Ausfällen, sondern auch den partiellen Ausfäl-
len, den sogennanten Gray Failures, ein subtiles und wenig verstandenes
Problem, für das Netzwerk-Betreibern effektive Lösungen fehlen. Wir entwi-
ckeln zwei Systeme zur Erkennung, Lokalisierung und Wiederherstellung
von Netzwerkausfällen durch Nutzung der aktuellsten Entwicklungen in
programmierbaren Netzwerk-Datenebenen.

Zunächst stellen wir FANcY vor, ein neuartiges System zur Erkennung
und Lokalisierung partieller Ausfälle in ISP-Netzwerken. FANcY nutzt
programmierbare Switches, um ein zuverlässiges Synchronisations- und
Zählprotokoll zu implementieren, das eine präzise Erkennung von Datenpa-
ketverlusten ermöglicht. FANcY passt sich mit einem hybriden Ansatz an
die begrenzte Speicherkapazität moderner Switches an: dedizierte Zähler
für priorisierten Datenverkehr und eine probabilistische Datenstruktur für
Best-Effort-Datenverkehr. Dieses Design gewährleistet eine effiziente Über-
wachung unter verschiedenen Bedingungen und sichert das System gegen
ständig steigende Datenvolumen ab. Durch umfangreiche Simulationen
und einem Prototypen auf Intel Tofino Switches zeigen wir, dass FANcY
partielle Ausfälle im Subsekundenbereich erkennen und darauf reagieren
kann.

Dann präsentieren wir unsere Arbeit zu hardwarebeschleunigten Kon-
trollebenen für Netzwerke. Diese Arbeit geht über die Erkennung hinaus
und zeigt, dass programmierbare Datenebenen in der Lage sind, kritische
Funktionen der Kontrollebene zu implementieren, die traditionell in Soft-
ware implementiert wurden. Unser Prototyp setzt verschiedene Aufgaben

v

in der Datenebene effizient um, einschließlich der Erkennung verschiedener
Arten von Ausfällen (komplett, partiell und remote), der Benachrichtigung
anderer Geräte, der Berechnung von neuen Pfaden, basierend auf verteilten
Pfad-Vektor-Algorithmen, welche sich an kürzeste Pfad- und BGP-ähnliche
Richtlinien halten, sowie der schnellen Reparatur der Datenebene zur Wie-
derherstellung der Verbindungen nach Ausfällen. Schließlich zeigt unsere
Arbeit Herausforderungen in Bezug auf Funktionalität und Skalierbarkeit
auf und betont, dass die sorgfältige Auswahl der auszulagernden Aufgaben
ein wichtiger Bereich für zukünftige Forschung bleibt.

vi

P U B L I C AT I O N S

This dissertation is based on previously published conference proceedings.
The list of accepted and submitted publications is presented hereafter.

Hardware-Accelerated Network Control Planes

Edgar Costa Molero, Stefano Vissicchio,
Laurent Vanbever.
In ACM HotNets, Redmon, WA, USA, 2018.

FAst In-Network GraY Failure Detection for ISPs

Edgar Costa Molero, Stefano Vissicchio,
Laurent Vanbever.
In ACM SIGCOMM, Amsterdam, Netherlands, 2022.

The following publications were part of my PhD research and are referenced
in this thesis, but they were led by other researchers.

Blink: Fast Connectivity Recovery Entirely in the Data Plane

Thomas Holterbach, Edgar Costa Molero,
Maria Apostolaki, Alberto Dianotti,
Stefano Vissicchio, Laurent Vanbever.
In USENIX NSDI, Boston, MA, USA, 2019.

Canary: Congestion-Aware In-Network Allreduce
Using Dynamic Trees

Daniele De Sensi, Edgar Costa Molero,
Salvatore Di Girolamo, Laurent Vanbever,
Torsten Hoefler.
In FGCS, 2024.

vii

A C K N O W L E D G M E N T S

This dissertation marks the end of my research journey, which would not
have been possible without the support, guidance, and encouragement
of my advisors, colleagues, friends, and family. I am deeply grateful to
everyone who has participated in this journey. I want to express my sincere
appreciation to those who have helped me make this achievement possible.

First and foremost, I would like to thank Prof. Laurent Vanbever for
allowing me to join the NSG group. I truly appreciate his guidance and
supervision during my master’s thesis, which made me fall in love with
SDN, and later on, for his guidance during my doctoral studies. He has
taught me everything I know about creating outstanding research with a
significant emphasis on communication and presentation skills. I would
also like to thank him for all the support and understanding he has had
for me during the end of my PhD while I had to deal with health issues.
Thanks to his unconditional support, I was able to finish this dissertation.

Second, I sincerely thank Dr. Stefano Vissicchio, my second advisor. I feel
incredibly privileged and lucky to have worked with him from almost the
beginning of my thesis. Discussing low-level and high-level aspects of my
research with Stefano has been a beneficial and enriching experience.

I would also like to thank Prof. Minlan Yu for being part of my disserta-
tion committee, reading the thesis, and providing feedback.

I want to thank my colleagues from the networked systems group (NSG),
who have been incredibly supportive since the beginning and throughout
the entire duration of the thesis, creating a delightful working environment:
Ahmed El-Hassany, Maria Apostolaki, Thomas Holterbach, Rüdiger Birkner,
Tobias Bühler, Roland Meier, Alexander Dietmüller, Albert Gran Alcoz,
Coralie Busse-Grawitz, Rui Yang, Ege Cem Kirci, Romain Jacob, Roland
Schmid, Tibor Schneider, Yu Chen, Georgia Fragkouli, Muoi Tran, Theo von
Arx, Laurin Brandner, Luckas Röllin, Valerio Torsiello. I am particularly
grateful to Thomas Holterbach, my semester and master thesis supervisor
and later collaborator, who was not only a great mentor but also a wonderful
travel companion during our trips to the US. I extend my gratitude to
Rüdiger Birkner, my office mate for most of my PhD. Rüdiger has inspired
and supported me in many ways, both during our time sharing office and

ix

later on. Without him my time here would have been more challenging; I
owe you a lot. I would also like to thank Tobias Bühler, Roland Meier, and
Georgia Fragkouli, for all the conversations, help, and time we shared in
our office. Finally, I would like to thank again Rüdiger, Georgia, and Coralie
for all the feedback I got on the thesis.

Additionally, I would like to acknowledge some external people with
whom I have worked or who have helped me in one way or another. First,
I would like to thank Daniele de Sensi for the time we worked together;
it was a pleasure. Second, I would like to thank Vladimir Gurevich from
Intel, who always (even during weekends and holidays) helped me with
questions regarding Tofinos and P4. I also want to thank the TIK system
admins: Stefan Schindler, Edoardo Talotti, and Niklaus Kappeler, for their
patience and being so fast and reliable with any problem I had.

Of course, I am thankful to Beat Futterknecht, our department adminis-
trator, who has been extremely helpful during these years. Beat has been
of tremendous help with any administrative task within the university,
cantonal offices, or even finding an affordable flat. I enjoyed our random
endless conversations; they were an excellent way to disconnect.

I am also profoundly grateful to my friends from back home and Zurich,
who have been essential during this challenging journey. Ferran, Nil, Adrià,
Gabi, Giulia, Nathalie, Margarita, Carlo, Marcos, Alvaro, Laia, George,
and John, thank you for being there during my lows, for the precious
moments we spent together that allowed me to step away from work, and
for understanding whenever I had to cancel plans or couldn’t meet up due
to my commitments. Your support and friendship have been invaluable.

Finally, I am endlessly grateful to my family for their unwavering love
and support. I sincerely appreciate their understanding and acceptance of
my infrequent visits, constant busyness, and absence from family events
and holidays. Your love and support are incredibly meaningful to me.

Edgar Costa Molero
May 2024

x

C O N T E N T S

Publications vii

Acknowledgments ix

1 Introduction 1

2 Background 5
2.1 Networking foundations . 5

2.1.1 Network routing . 5
2.1.2 Network planes . 6
2.1.3 Transport protocol . 8

2.2 Types of networks . 12
2.3 The evolution of networks: Network programmability 13
2.4 Programmable network data planes 15

2.4.1 Programmable architectures 16
2.4.2 The P4 programming language 19

3 Network failures and existing detection techniques 25
3.1 Network failures . 25

3.1.1 Types of gray failures 26
3.1.2 Characterizing gray failures through vendor bugs . . . 28
3.1.3 Operators survey: gray failures in ISP networks 29

3.2 Network failure detection techniques 35
3.2.1 Existing vendor network failure detection techniques . 36
3.2.2 Advanced network failure detection techniques 42

4 In-network failure detection 51
4.1 Gray failures in ISP networks 54

4.1.1 Gray failures are a problem for a majority of operators 54
4.1.2 What is the impact of gray failures in ISPs? 55
4.1.3 Why is prior work not applicable in ISPs? 55
4.1.4 What about simple designs? 58

4.2 FANcY overview . 58

xi

xii contents

4.3 FANcY internals . 61
4.3.1 Counting protocol . 61
4.3.2 Hash-based trees . 65
4.3.3 Properties of hash-based trees 71
4.3.4 Practical considerations 74

4.4 Sensitivity analysis of FANcY’s parameters 75
4.5 Evaluation . 79

4.5.1 Benchmarking FANcY 80
4.5.2 FANcY on real traffic traces 86
4.5.3 Overhead analysis . 92

4.6 Tofino made FANcY . 92
4.6.1 Hardware implementation 93
4.6.2 Hardware resources and memory usage 95
4.6.3 Case study: fine-grained fast rerouting 96

4.7 Conclusion . 98

5 Hardware-accelerated network control planes 101
5.1 Hardware-based control plane 104

5.1.1 Hardware-based sensing 106
5.1.2 Hardware-based notification 107
5.1.3 Hardware-based computation 108

5.2 Preliminary implementation . 109
5.2.1 Implementation . 110
5.2.2 Intra/inter-domain routing . . . in hardware! 111
5.2.3 Case study . 112

5.3 Hardware is not “all roses” . 115
5.4 Hardware-software codesign meets control planes 117

6 Conclusion and outlook 119
6.1 Open research problems . 120

6.1.1 Integrating the control plane with FANcY 121
6.1.2 Enhancing “weak” traffic signals with adaptive traffic

generation . 121
6.1.3 A mixture of detectors 122
6.1.4 Towards seamless smart network planes integration . 122
6.1.5 Optimizing the network plane’s slow path 123

a Appendix 125

contents xiii

a.1 Cisco and Juniper bug list. 125

Bibliography 133
Own publications . 133
References . 133

1
I N T R O D U C T I O N

The Internet is one of history’s most influential inventions, rapidly becoming
essential to humans. Like the telegraph, telephone, radio, and computer,
the Internet has completely reshaped how we communicate, entertain, and
access information.

The origins of the Internet can be traced back to the early 1960s. During
the Cold War, the US feared the Soviet Union could attack the national
telephone system, the primary long-distance communication system at
that time. This vulnerability highlighted the need for a more robust form
of communication. In response, in 1962, scientists proposed a network
to interconnect the different government research computers nationwide.
Circuit switching, the prevailing communication method at the time, was
slow, prone to data loss, and vulnerable to attacks. To address that, in 1965,
researchers at MIT developed packet switching, a method in which trans-
mitted data is broken into small blocks (packets), each of which may take an
independent route toward its destination, making it robust to transmission
interruptions. This innovation led to the formation of the ARPANET in 1969
by the US Advanced Research Projects Agency (ARPA) [5], the first network
to feature node-to-node messaging between computers. In the following
years, more packet-switching networks emerged; however, these networks
could not communicate without a universal protocol. To solve this issue,
in 1974, a common data transmission protocol and addressing scheme was
introduced, marking the birth of the TCP/IP protocol suite [6], laying the
foundation for the modern Internet.

The rest is history. Grounded in packet switching and TCP/IP, in the
1980s and 1990s, the Internet rapidly transitioned from an academic and
military network to the general public, in part thanks to the creation of
the World Wide Web (WWW) in 1989, the introduction of web browsers,
and the commercialization of Internet access by ISPs [5]. Today, the Internet
connects an estimated 5.3 billion users and over 29.3 billion IP devices [7],
becoming present in every aspect of our daily lives, from communication,
accessing news, shopping, entertainment, and work.

1

2 introduction

Given the Internet’s integral role in everyday life, maintaining its infras-
tructure and ensuring it is always functional is critical. Its scale, complexity,
and combination of various technologies from software to hardware across
multiple layers, make the Internet inherently prone to all sorts of failures.

Major incidents, such as service outages or security breaches, can have
an extensive impact, from affecting the customers of an entire ISP [8] to
causing global disruptions in services. A recent example was the 2021
Facebook outage, in which all its services (Facebook, Instagram, WhatsApp,
etc) became globally unavailable for seven hours, affecting every user [9].

While major outages are often the result of human errors (i.e., miscon-
figurations), they are not the only cause. As the Internet grows in scale
and complexity, the reliability of its infrastructure, comprised of routers,
switches, and other hardware, plays an increasingly significant role in
network failures.

We often associate network failures with the so-called “hard failures”.
These failures typically occur when a networking device’s port, the connect-
ing link to another device, or the device itself completely fails. These failures
immediately affect all the traffic, making them notorious and, therefore,
relatively easy to detect by existing techniques.

In large-scale networks, however, components often fail or malfunction
in unpredictable ways affecting only a subset of the traffic. These subtle
failures are known in the literature as “gray failures” [10]. Gray failures are
much harder to detect than “hard failures.” For example, they might affect
specific types of traffic, such as traffic for certain destination addresses
or specific protocols, or cause random drops on a fraction (i.e., <1%) of
the traffic that crosses a link [11]. Gray failures commonly result from
malfunctioning hardware, software bugs or device misconfigurations.

Since gray failures can affect any random subset of the traffic at any time,
detecting them requires analyzing all the traffic, all the time. Doing so is
unsurprisingly difficult and goes beyond the capabilities of traditional detec-
tion mechanisms, which, to scale, rely on periodically analyzing small traffic
subsets using probing [11], packet counters [12], random sampling [13],
or traffic mirroring [14, 15]. Without effective detection tools, gray failures
often go unnoticed by network operators until customers raise concerns,
leading to service degradation for long periods. Indeed, even minor traffic
losses can significantly impact the quality of Internet services and user
experience [16].

introduction 3

Recent collaborations between researchers and industry have resulted in
the development of several gray failure detectors for data centers and cloud
networks [11, 17]. While these solutions are effective, their deployment
necessitates end-host control or very low inter-device latencies (O(µs)) to
support monitoring at high bandwidths. These requirements limit their
applicability in wider geographically spread networks such as ISPs and
WANs. For example, in ISP networks, where inter-device latencies are
typically in the order of milliseconds and link capacities can reach 100 Gbps
or more, solutions proposed for data centers would require an amount of
memory unavailable in today’s network devices. Furthermore, as network
traffic demands increase and link capacities expand to accommodate those
demands, these limitations become further exacerbated. This scenario calls
for the development of solutions that are not only scalable today but will
remain effective in the face of ever-growing traffic demands in the future.

This dissertation addresses the critical need for practical gray failure
solutions in ISP networks. Our work includes a comprehensive analysis
of the current state of gray failures in ISP networks and the development
of a scalable solution designed to detect, localize, and recover from gray
failures in high-speed and high-delay environments, anticipating future
ever-increasing traffic demands.

Recent research and industry efforts have led to the development of
programmable data plane switches [18]. These switches, programmable
with a domain-specific language, enable custom forwarding logic and the
execution of stateful operations on billions of packets per second [19]. This
technology allows network operators to implement stateful algorithms
directly within the network, eliminating the need for continuous external
packet analysis, a major bottleneck.

In this dissertation, we leverage the capabilities of programmable data
planes to process and execute simple logic on all the packets that cross a
network device. We demonstrate that even with limited state and compute,
it is possible to run detection and recovery algorithms in-network, for
general networks, and without compromising line-rate performance.

In summary, this dissertation focuses on the following research question:

Are gray failures a prevalent issue in ISP networks, and can program-
able data planes help us improve current failure detection and recovery
mechanisms in high-speed and high-delay networks such as ISPs?

4 introduction

This dissertation answers this research question with the following work:

A comprehensive study of gray failures in ISP networks that underscores
the need for dedicated fast gray failure detection and recovery systems in
ISP networks. This study includes an exhaustive analysis of hardware bug
reports from the two leading networking device vendors for ISPs, revealing
over a hundred bugs leading to different types of gray failures. Additionally,
it includes a survey among ISP operators, which indicates that gray failures
are a prevalent issue in ISP networks, that operators are concerned about
them, and that most operators lack practical detection tools.

FANcY [2], a gray failure detection and localization system designed for
current and future high-bandwidth and high-delay networks, such as ISPs.
FANcY leverages programmable switches to implement a novel synchro-
nization and counting protocol between directly connected programmable
data planes enabling switches to precisely compare counters and detect
packet losses at line rate.

Hardware-accelerated network control planes [1], a control plane imple-
mentation in the data plane, that demonstrates how programmable data
planes can accelerate network response to failures. This work shows how the
data plane can run a modified distance vector routing algorithm, enabling
rapid forwarding state updates after detecting a failure.

Dissertation outline. This dissertation is structured as follows.

In Chapter 2, we introduce the reader to some basic background in
computer networks, their evolution, and provide an introduction to pro-
grammable data planes.

In Chapter 3, we dive into network failures, gray failures, and existing
detection techniques. Furthermore, in this chapter, we analyze the results
from our bug study and the operator survey.

In Chapter 4, we present FANcY, our fast in-network gray failure detec-
tion and localization system, which detects gray (and hard) failures within
the data plane using programmable switches.

Next, in Chapter 5, we challenge the traditional split between software-
based control planes and hardware-based data planes and explore the
benefits of offloading key convergence tasks to programmable data planes.

Finally, in Chapter 6, we conclude the dissertation and summarize some
possible future research directions.

2
B A C K G R O U N D

This chapter introduces the reader to important and useful concepts used
throughout the dissertation. First, in Section 2.1, we present foundational
networking concepts that are instrumental in the operations of every net-
work. These include routing algorithms and protocols, as well as the differ-
ent network planes. Then, in Section 2.2, we briefly define the different types
of networks (i.e., Wide Area Network (WAN), Internet Service Provider
(ISP), data center, etc.). Afterward, in Section 2.3, we describe the evolution
of networks over recent years. Finally, in Section 2.4 we give an introduction
to programmable data planes as well as the state-of-the-art hardware that
enable fully programmable networks.

2.1 networking foundations

In this section, we provide an overview of fundamental networking concepts
that are later utilized in this thesis. First, we explain what a routing protocol
is and outline the main types. Subsequently, we briefly outline the network
planes’ abstractions, including their current functionalities, aspects that we
challenge in this thesis. Finally, we describe the two predominant transport
protocols, UDP and TCP, highlighting the importance of understanding
their dynamics under different network conditions and the implications for
designing data-driven in-network applications.

2.1.1 Network routing

Network routing is one of the core components of any communication
network. In routing, network devices, such as routers, determine the best
communication paths by utilizing different routing algorithms. To learn the
best path, routers continuously exchange network state information with
other network participants, and given a defined objective and algorithm,

5

6 background

routers compute the best path to send packets to destinations. There are
two main sub-families of routing protocols: distance-vector and link-state.

Distance-Vector Protocols. In distance-vector protocols, routers periodi-
cally advertise a vector with the distance to known destinations to their
neighbors and run the Bellman-Ford algorithm [20] to compute the best
route. In the beginning, routers only know the distance to direct neighbors.
Whenever a router receives a distance vector from a neighbor, it compares
it with its routing table, and if any destination can be reached at a lower
cost, it updates its routing table and sends a new vector to its neighbors.
The process is repeated until routers converge and learn the route to all
destinations. The most common distance-vector protocols include RIP [21]
and IGRP [22].

Link-State Protocols. In link-state protocols, routers first reconstruct a
global view of the network topology and then locally run the Dijkstra
algorithm [23] on it to compute the shortest path to every destination. To
construct the global view, in link-state protocols, each router broadcasts
Link-State Advertisements (LSAs) messages that contain its local view.
Link status changes trigger a network-wide Link State Advertisements
(LSAs) broadcast. The most utilized link-state protocols are OSPF [24] and
IS-IS [25].

Distance-vector protocols, while straightforward to configure and efficient
in small networks, converge slowly (i.e., it takes long until all routers achieve
a consistent view of the network), especially in large networks. Additionally,
they may encounter the count-to-infinity [26] problem, where a network
failure can cause routing loops. Path-vector protocols emerged as a solution.
While being similar to distance-vector protocols, they include the entire path
in the routing advertisements and not just the path’s length, thus avoiding
loops. The Border Gateway Protocol (BGP) [27] is a notable example of a
path-vector protocol. Meanwhile, link-state protocols converge quickly, and
incur less overhead (i.e., messages are only broadcasted when needed), but
demand more computing and storage resources than distance/path-vector
protocols.

2.1.2 Network planes

In computer networks, specifically in IP router networks, the architectural
framework is partitioned into three operational planes: the control, the data,

2.1 networking foundations 7

Management
Plane CLI (Telnet, SSH,...), SNMP,

REST APIs, NetFlow, SFlow...

Control
Plane Static Routes

Routing Protocols
(OSPF, BGP, RIP,...)

QoS
Tables

Routing
Table

Neighbor
Table

Link-State
Table

Data
Plane xPacket Scheduler

and Queues
Forwarding Table

Router Network planes layered abstraction

Figure 2.1: The role of each networking plane (management, control, and data)
in an IP router and its layered abstraction view.

and the management planes. Figure 2.1 depicts the plane split inside one
IP router and its abstracted layered view at the network level. Each plane
independently manages different parts within the networking stack, and
together, they ensure the smooth functioning of the network device. The
processes and functions involved by each plane are:

The management plane. The network device management plane is in
charge of monitoring and controlling the network. It provides the necessary
functions for a network operator to configure the devices, monitor and
troubleshoot the state of the network, secure it, and maintain it. Monitoring
and configuring are typically done through protocols such as CLIs, REST
APIs, SNMP [12], NetFlow [28], and sFlow [13].

The control plane. The control plane is the “brain” of any traditional
networking device. It carries out the required traffic signaling and is re-
sponsible for routing, learning topology information, and ensuring the
desired Quality of Service (QoS). In short, the control plane decides where
packets have to be sent. Networking devices’ control planes are in charge
of discovering and managing connections with other networking devices
and use routing algorithms to determine the best path through the network
for data packets to reach their destination based on some routing protocol

8 background

(RIP, OSPF, BGP). In traditional networks, most control plane functions are
implemented in software.

The data plane. The data plane is responsible for processing incoming
packets and either forwarding or blocking them based on the combination
of all the different routing algorithms and logic running at the control plane.
In addition, the data plane is in charge of traffic policing and queueing.
In traditional networks, data plane functions are typically implemented in
hardware to maintain current terabits-per-second forwarding speeds.

In short, operators define a network policy in the management plane,
the control plane runs distributed algorithms to compute the needed state
to ensure a given policy, and the data plane executes it by prioritizing,
forwarding, or blocking packets accordingly. As shown in Figure 2.1, in tra-
ditional IP networks, all three planes reside within the router and operators
configure their policies through the management plane interfaces. However,
as we will show in Section 2.3, there have been proposals (e.g., SDN) to
split the planes and move them to different locations to increase operators’
control and protocol flexibility.

2.1.3 Transport protocol

The transport protocol is the fourth layer in the OSI layer model [29]. It is a
fundamental component of any networking stack. It plays a crucial role in
data communication. Specifically, it establishes end-to-end communication
channels between hosts. The main function of the transport layer is to
provide an abstraction over the best-effort IP layer and provide applica-
tions with a way to communicate with each other without necessitating
direct interaction with the IP layer. Today, the two most common transport
protocols in use are the Transmission Control Protocol (TCP) [30, 31] and
the User Datagram Protocol (UDP) [32]. UDP, like the IP layer, operates
on a best-effort end-host protocol and does not introduce substantial ad-
ditional logic, which is delegated to the application. Conversely, TCP is a
byte stream-based protocol that adds a level of abstraction on top of the
IP layer, making it reliable and adaptable under different network condi-
tions. The differences in design between UDP and TCP, especially their
varying responses to network failures, significantly influence the design of
traffic-driven network applications.

2.1 networking foundations 9

2.1.3.1 The User Datagram Protocol (UDP)

The User Datagram Protocol is a connectionless protocol that emphasizes
simplicity and low overhead for fast communications. This focus on simplic-
ity and speed, however, comes at the cost of reliability. UDP lacks delivery
guarantees, does not handle packet re-ordering, and does not offer pro-
tection against packet duplication. Moreover, UDP clients typically do not
adjust their transmission rates in response to varying network conditions,
such as congestion or failures.

A key feature of UDP is its compact header. At only 8 bytes, it significantly
contributes to the protocol’s low overhead. The UDP header consists of only
four fields; source port, destination port, length, and checksum. Note that
the checksum does not provide reliability; it is only used to determine the
packet’s integrity.

The simplicity of UDP makes it an ideal candidate for simple request-
response protocols such as the Domain Name Service (DNS) [33, 34], or time-
sensitive data such as real-time audio or video, which are often transported
over UDP. Furthermore, UDP’s connectionless nature makes it perfect for
broadcasting and multicasting, where a single packet is sent to multiple
recipients without requiring a connection.

2.1.3.2 The Transmission Control protocol (TCP)

The Transmission Control Protocol (TCP) is a connection-oriented protocol
that guarantees reliable data delivery. It achieves this through a combination
of acknowledgments, retransmissions, packet sequencing, and state machine
logic. In contrast to UDP, TCP requires establishing a connection between
sender and receiver before data transmission can begin, a process known
as the “three-way handshake.” In this process, the client and server agree
on the starting sequence number, starting window size, and maximum
segment size.

TCP employs two mechanisms to regulate its transmission rate: flow con-
trol and congestion control. Flow control adjusts the sender’s transmission
rate to avoid overwhelming the receiver. This mechanism is useful when
the receiver’s processing capacity exceeds the sender’s data generation rate.
To communicate its available capacity, the receiver includes its remaining
buffer capacity in the TCP header of each outgoing TCP segment. The
second transmission rate mechanism, congestion control, aims to prevent

10 background

TCP sender TCP receiver

Segment 1

ACK Segment 1Segment 2

Segment 2 lostSegment 3

ACK Segment 1

Retransmission
Segment 2

ACK Segment 3

Segment 4

ACK Segment 4Segment 5

Segment 5 lostSegment 6

ACK Segment 4Segment 7

ACK Segment 4Segment 8

ACK Segment 4
Fast Retransmission

Segment 5
ACK Segment 8

Retransmission
Timeout (RTO)

Figure 2.2: Simple example of TCP’s segment retransmissions triggered by an
RTO timeout and three duplicated ACKs.

packet congestion in the network. TCP’s congestion control utilizes a con-
gestion window to manage the sending rate. The value of the congestion
window determines the number of maximum size segments (MSS) that can
be sent without being acknowledged. At the start of a TCP transmission,
the congestion window is set to one MSS. The window size is increased
as segments are successfully delivered and reduced when congestion is
detected. The amount at which the congestion window increases or de-
creases depends on the specific congestion control algorithm used and its
configuration.

TCP’s congestion control algorithms primarily use packet drops as an
indicator of network congestion. There are two main methods by which
a TCP sender can detect packet drops: (i) by the expiration of a timeout
for an unacknowledged packet or (ii) by the reception of three duplicated
acknowledgments (ACKs) with the same sequence number, triggering a
fast retransmission from the sender. The TCP Fast Retransmission enhances
TCP reaction in the event of packet loss. When the sender transmits data

2.1 networking foundations 11

packets over the network, the receiver acknowledges each received packet
by sending back an acknowledgment (ACK) packet. If a packet is lost and
the sender transmits more packets after, if received, the receiver sends
duplicate ACKs using the last in-sequence packet received. This process
signals a gap in the sequence number to the sender, which, upon receiving
three duplicate ACKs, retransmits the missing packet without waiting for
the expiration of the regular packet’s retransmission timer.

Figure 2.2 illustrates both scenarios. Initially, the sender transmits three
TCP segments. The first is successfully transmitted and acknowledged,
the second is dropped, and the third reaches the destination, triggering
one duplicate ACK. In this case, with no subsequent segments arriving, a
Retransmission Timeout (RTO) eventually leads to the retransmission of
Segment 2. The second scenario, the fast retransmission, is depicted starting
from Segment 4 in Figure 2.2. In this scenario, after Segment 5 is lost, the
successful transmission of Segments 6, 7, and 8 triggers three duplicate
ACKs of Segment 4. Upon receiving these three duplicate ACKs, the sender
rapidly retransmits Segment 5 before an RTO timeout.

TCP congestion control algorithms react differently depending on how
the packet loss occurred. Standard TCP congestion control algorithms
set the congestion window to 1 MSS in case of an RTO timeout. In the
case of three duplicate ACKs, the congestion window is decreased by
half, and fast recovery is activated. These adjustments help to mitigate
network congestion by scaling back the transmission rate in response to
perceived network conditions. It is important to note that these behaviors
are characteristic of standard TCP implementations such as TCP Reno and
TCP New Reno. Other TCP variants might implement different strategies
to adjust the congestion window.

2.1.3.3 UDP and TCP reaction to drops

As previously described, UDP and TCP are designed for distinct use cases.
Among all their differences, the critical distinction for our purposes is the
difference in how they react to packet drops. UDP traffic remains oblivious
to network conditions, and its reaction to traffic drops depends on the
applications built on top. In contrast, TCP uses a congestion control mecha-
nism to dynamically adapt the sender’s rate by modifying the congestion
window in response to detected packet drops. In TCP, any packet drop can
significantly change a flow’s sending rate. As previously discussed, when
TCP detects packet loss through triple duplicate ACKs, the congestion win-

12 background

dow is halved. In contrast, the congestion window is reset to one maximum
segment size (MSS) if the loss is detected via an RTO timeout.

The substantial potential reduction in throughput due to packet drops
underscores the need for rapid and sensitive failure detection mechanisms.
Even network failures impacting a small subset of packets can cause sig-
nificant disruptions in application performance, making the fast detection
and fixing of these issues crucial. Understanding these fundamental differ-
ences in protocol behavior, particularly in response to network failures, is
crucial for developing robust, protocol-aware network monitoring systems
and failure detection mechanisms that can effectively identify and mitigate
issues across diverse traffic types.

2.2 types of networks

Fundamentally, computer networks are interconnected computers and de-
vices exchanging information. Depending on size, complexity, and functions,
the Internet is composed of different network types, such as Wide Area
Networks (WANs), Internet Service Providers (ISPs), Metropolitan Area
Networks (MANs), and Data Center Networks. These networks range from
city-wide to global coverage, facilitating enormous data transfers, enabling
rapid Internet access, efficiently distributing digital content, and providing
the infrastructure for massive computational processes and storage. Each
network type is distinguished by various factors such as geographic cover-
age, bandwidth capacity, node-to-node delay, and underlying infrastructure.
These characteristics have profound implications on the selection and de-
sign of network protocols, as they significantly influence the network’s
performance, scalability, and reliability. Understanding these characteris-
tics is essential when deciding which protocols are best suited to run in
these network environments. In this section, we briefly define the main
characteristics of such networks.

Metropolitan Area Network (MAN). A network that interconnects LANs
into larger geographic areas, such as cities or large campuses. It spans up to
50 kilometers, uses fiber links with high-capacity connections, and typical
delays range from sub-milliseconds to several milliseconds.

Wide Area Network (WAN). A network that interconnects LANs or other
bigger types of networks from different geographic locations. In most cases,
connected networks belong to the same entity. Its bandwidth can vary

2.3 the evolution of networks : network programmability 13

significantly depending on the interconnected networks and technology
used. Delays range from several milliseconds to hundreds of milliseconds.

Internet Service Providers (ISPs). Private organizations that provide ser-
vices for accessing and using the Internet. They can interconnect WANs,
and at the same time, they can be considered a type of WAN. ISPs can span
the entire globe, nation, or region. At high tiers, they can reach hundreds
of 100 Gbps. Node-to-node delays vary from sub-milliseconds to tens of
milliseconds.

Data Center Networks. Private networks usually belonging to private
organizations that interconnect many servers (i.e., hundreds of thousands).
They are designed to be highly efficient, redundant, and provide high
bandwidth (100 Gbps and more) between the servers in the data center.
Within the data center, device-to-device one-way delays are typically below
a hundred microseconds. Data center networks are excellent testing grounds
for innovative networking strategies, given their inherent isolation. Such
unique environment enables operators to deploy customized solutions that
can be fine-tuned to their tenant’s requirements and optimized to specific
traffic patterns. Consequently, the majority of recent advances in network
topology design [35–37], congestion control [38], load balancing [39–41],
failure detection [11, 14, 17, 42, 43], and more, have been designed and
deployed in the context of data center networks.

2.3 the evolution of networks : network programmability

Since its inception, the Internet and other computer networks have been
characterized by the interconnection of many devices such as routers,
switches, firewalls, NATs, load-balancers, and other network management
devices. These devices are equipped with expensive, closed, and proprietary
hardware and software. As pointed out by McKeown [44], the progressive
reduction in the flexibility of network protocols caused by standardization
has perpetuated this status quo. The hardware and software running in
those devices implement network protocols that need to pass years of stan-
dardization and testing, slowing down innovation. For example, the Cisco
hardware integration of VXLAN [45] took several years, which could have
been achieved in weeks if implemented in software [46].

Traditional networking devices depend on vendors to implement new
protocols and features. In many cases, when a software update is insuffi-

14 background

cient, it might be necessary to completely replace networking equipment
with new hardware that supports the new feature. Furthermore, the de-
pendence on vendor-specific implementations aggravates the complexity of
managing these networks. Operators need to individually configure devices
using heterogeneous management interfaces. These interfaces vary between
vendors and sometimes even between products from the same vendor,
making the process complex, tedious, and error-prone. This complexity not
only risks potential errors but also has been a identified as a root cause of
significant network outages, some of which have affected millions of users
for several hours [47, 48].

These challenges highlighted the need for a new approach to networking.
In 2008, a group of researchers addressed this need by proposing Open-
Flow [49], which led to the development of Software-defined networking
(SDN). SDN introduces a new networking abstraction and changes how net-
works should be designed and managed. First, SDN decouples the data and
control planes and moves the control plane to a remote location. Second, the
SDN control plane is logically centralized, capable of orchestrating an entire
network of devices’ data planes using policies and logic defined by the net-
work operator. SDN controllers use a very feature-rich API called OpenFlow
to instruct device data planes on how to forward traffic. OpenFlow abstracts
the data plane to a set of match-action rules organized in tables that dictate
how packets should be handled. An OpenFlow-enabled switch can perform
various actions, including forwarding, dropping, mirroring, flooding, or
modifying specific packet fields. With OpenFlow-enabled switches and
controllers, network operators can write control plane applications that
have a centralized and complete view of the network state and have the
flexibility to make devices behave as a router, switch, firewall, NAT, or a
hybrid between them.

However, while OpenFlow and SDN marked a significant stride towards
improved network management and increased operators’ flexibility, they are
not without limitations. First, although OpenFlow match-action tables give
the control plane some flexibility, packets can only match on a predefined
set of headers fields, such as IP, UDP, TCP, ARP, or ICMP, as specified
by the current OpenFlow standard [50]. Furthermore, the set of available
actions is somewhat limited, with packet modifications restricted to only
specific header fields. Second, a centralized and remote controller brings
with it new challenges. It introduces a potential single point of failure,
necessitating replicas to mitigate this risk. However, these replicas bring
the additional challenge of synchronizing their network views. It raises

2.4 programmable network data planes 15

scalability concerns due to the complexity of managing numerous switches.
Additionally, it brings an increase in overhead and latency between the
control and data planes, which could have an impact on time-sensitive
systems. Finally, as OpenFlow-enabled switch vendors began to diverge in
their feature implementations, the data planes grew increasingly complex
and varied, breaking the initial idea of a simple control plane using a
universal API.

Consequently, the fixed nature of OpenFlow data planes and lack of
control of data plane packet processing has led to what can be seen as the
natural evolution of SDN: making not only the control plane programmable
but also the data plane. This new paradigm provides network operators
complete flexibility to define how network devices should process and
forward packets, the interface between the control and data plane, and
which logic to run in the control plane. In the next section, we dive into the
specifics of this groundbreaking advancement in network technology.

2.4 programmable network data planes

Programmable data planes expand the concept of programmability be-
yond the control plane into the very core of the network packet processing,
the data plane. This expansion offers unparalleled flexibility, enabling net-
work operators to design customized solutions for their networks without
involving device vendors or waiting for long standardization processes.

Historically, data plane programmability has been used in computer
networks, primarily manifesting through software applications running on
general-purpose CPUs such as x86 or ARM. These applications include
software switches like Open vSwitch [51], VPP [52], and NetBricks [53],
as well as userspace I/O accelerators like DPDK [54] and eBPF [55]. Al-
though efficient and endowed with a degree of programmability, these
solutions face significant challenges as they struggle to keep pace with the
constant increase in high-speed links and low-latency requirements while
maintaining complex processing logic.

To achieve both high speed and low latency while maintaining perfor-
mance, Field-Programmable Gate Arrays (FPGAs) have traditionally been
regarded as an attractive solution. These semiconductor devices, with their
matrix of interconnected, configurable logic blocks, allow the designing
and implementing of tailored network functions geared toward high-speed
operations. A notable instance in the context of networking is the NetFPGA,

16 background

an open-source FPGA-accelerated NIC, such as the NetFPGA SUME, which
integrates a Xilinx Virtex 7 FPGA with four 10 Gb Ethernet ports [56].
However, even though FPGAs fulfill most requirements, programming
them can be challenging. Most network operators lack the required digital
systems knowledge and expertise in hardware description languages like
Verilog [57] or VHDL [58], which are not targeted to network packet pro-
cessing, making the approach accessible predominantly to a niche group of
specialized engineers.

Over the past decade, data plane programming has been significantly
reshaped by an innovative approach proposed by a consortium of leading
networking experts [59]. This approach addressed the pressing demand
for truly programmable data planes capable of high-speed, low-latency
packet processing while remaining accessible to network operators without
requiring expertise in an entirely new domain. Their contribution was the
introduction of P4 [60], a domain-specific language tailored explicitly for
programmable data planes. To complement this innovation, they also de-
lineated a model for potential switching ASIC architectures that could be
programmed using the P4 language. This has given birth to architectures
such as the RMT [61], PISA [62], PSA [63], PNA [64], and notably, the
Intel Tofino (TNA) [65] architectures. To illustrate the capabilities of these
architectures, the latest Intel Tofino switch can forward an impressive 25.6
terabits per second (Tbps) and consistently handle up to 10 billion packets
per second while maintaining exceptional packet-processing programmabil-
ity [66].

In the following two subsections, we will describe a typical programmable
architecture, its pipeline, the P4 programming language, and its associated
development workflow.

2.4.1 Programmable architectures

Programmable ASIC architectures are organized as one or multiple pipelines
of a combination of fixed, configurable, and programmable components.
Figure 2.3 shows the pipeline of the PSA architecture. Setting aside minor
details, it shares the same core components with the Intel Tofino TNA
architecture. In the PSA or TNA architectures, when a packet enters the
switch, first, a programmable parser extracts the packet into protocol head-
ers following the parsing logic defined by the programmer and stores those
headers in hardware data structures, called packet header vector (PHV).

2.4
pro

gra
m

m
a

ble
n

etw
o

rk
d

a
ta

pla
n

es
17

Programmable
Parser

Stage 1 Stage N

Programmable
Match-action Pipeline

Programmable
Deparser

Programmable Ingress Pipeline

Packet
buffer and
replication

engine

Configurable
Traffic Manager

Programmable
Parser

Stage 1 Stage N

Programmable
Match-action Pipeline

Programmable
Deparser

Programmable Egress Pipeline

.
Packets Packets

Clone
i2e

Packet Resubmission Clone e2e

Packet Recirculation

State Memory ALU Buffer

Figure 2.3: Portable Switch Architecture (PSA): each pipeline is composed of a programmable parser, a match-action pipeline,
and a deparser. The ingress pipeline is connected to the egress pipeline through a configurable traffic manager.
The PSA architecture also supports advanced packet processing features such as packet resubmission (allowing
packets to be reprocessed by the ingress pipeline), recirculation (enabling packets to go through both pipelines
multiple times), and packet cloning (creating copies of packets for multicast or monitoring purposes).

18 background

PHV fields can be read, written, and used for operations within every
stage of the pipeline. Furthermore, each processed packet has access to
metadata headers. Metadata headers are a set of packet-specific fields that,
like parsed headers, are passed across the switch’s pipeline and can be set,
read, and modified. Metadata headers can be divided into user-defined or
intrinsic metadata. User-defined metadata headers act like local variables
that data plane programmers can use to store and carry information along
packets, which can later be read or modified. For example, user-defined
metadata can serve various functions: it may hold constant values, act
as operands in arithmetic operations, or capture the results of computa-
tions. Intrinsic metadata comprises architecture-specific fields utilized by a
switch’s fixed components, such as the traffic manager. These fields carry
critical information about the packet currently being processed – including
ingress port, timestamps, and packet length. Additionally, the program logic
running in the switch can modify the values of such metadata fields. This al-
lows control of packet forwarding, dropping, and other architecture-specific
functions such as mirroring or multicasting.

Once parsing is complete, the parsed headers, the initialized user-defined
metadata, and the intrinsic metadata are passed on to the ingress pipeline,
more concretely, to a set of match-action stages. In the match-action stages,
packets go through a set of match-action tables (MATs). MATs implement
their matching logic using SRAM and TCAM to store lookup keys and
action data. The action part of MATs is implemented using arithmetic logic
units (ALUs), which enable packet header and metadata modifications
through a set of basic operations (i.e., addition and subtraction). Additional
action logic can be implemented in most architectures using architecture-
specific objects such as counters, meters, or registers.

When the packet has crossed all the pipeline stages, it is sent to the
programmable ingress deparser, which serializes the modified headers, and
based on intrinsic metadata, decides if the packet needs to be resubmitted
back to the ingress parser for further processing, or simply has to pass
it to the traffic manager and replication engine. The traffic manager and
replication engine are a set of fixed functions that use intrinsic metadata
fields to decide what to do with a packet, for example, to which egress port
to forward it and if it has to be dropped, mirrored, or multi-casted. Further-
more, it is also responsible for packet buffering, queueing, and scheduling.
Although not programmable, the traffic manager and replication engine are
highly configurable through fixed control plane APIs. Next, the packet can
be either sent out to the egress interface or to the egress pipeline, where

2.4 programmable network data planes 19

packets can get further processed by the egress pipeline, which, as in the
ingress pipeline, consists of a programmable parser, multiple stages of
programmable match-action tables, and a deparser.

To program and configure each component of a programmable data plane,
network engineers need a programming language to describe how packets
should be parsed and processed by the switch, a compiler that translates
that into a specific hardware configuration for each programmable hardware
component, and a suite of APIs to configure fixed functions and populate
the state of the match-action tables.

Standard programming languages and existing compilers are not a good
fit for specialized hardware network functions. Therefore, in 2013, a group
of researchers proposed P4, a domain-specific programming language
tailored for data plane programming while being abstract enough to be
used with many different architectures (targets). At the time of writing,
P4, or Programming Protocol-Independent Packet Processors, is the most
widely used data plane programming language.

2.4.2 The P4 programming language

The P4 programming language operates on a high level of abstraction,
enabling the definition of packet-processing functions for any type of
switching target. As described in the original paper [59], P4 was developed
with three main objectives in mind:

Reconfigurability. The dynamic nature of network requirements demands
adaptability. Thus, through P4, targets’ forwarding logic should be able
to be reconfigured rapidly and easily through an external API or con-
troller. Furthermore, some packet processing logic should be redefined by
configuring target parameters or state on demand.

Protocol independence. P4 is network protocol agnostic. P4 programmers
must describe how the target switch has to process packets by describing
how the packet parser has to extract bytes into protocol headers for each
packet. This allows network operators to remove unused protocols, and
add others that suit rapidly changing needs.

Target independence. The P4 language is designed to be device indepen-
dent, meaning that the same program can be compiled for many types of
architectures, such as FPGAs, network processors, ASICs, software models,

20 background

or even CPUs. These different architectures are usually called P4 targets or
target switches.

The first version (P414) and language specification [67] was released in
2015. However, to address many of the P414 limitations, in 2016, a new
version of the language (P416) was drafted and released in 2017 [68]. P416
introduced support for different targets and architectures by splitting the
language core components (described in the language specification [60])
from the architecture-specific ones, which now must be provided by the
target vendor, together with a target-specific compiler. Furthermore, P416
introduced strict typing, expressions, many data types, nested data struc-
tures (i.e., stacks), and constructs to allow more modular programming.
In brief, the P416 programming language provides a way to describe and
configure any programmable device’ packet processing pipeline (see 2.4.1).

The core components of the P416 language are described below. For a
detailed definition, refer to the specification [60].

1. Data types: since P416 is a typed language, it includes some of the
most common data types already existing in other programming
languages. It includes bool, signed and unsigned bit integers, strings,
enumeration, headers, headers stacks, header unions, tuples, and lists.
Furthermore, it allows you to define your own types with the keyword
type.

2. Headers: special data type used to define packet protocol headers,
e.g., Ethernet, IPv4 or TCP. A header is composed of a list of one or
multiple-bit fields. Protocol packet headers are typically initialized
and filled during parsing, but also used and modified in the match-
action pipeline.

3. User-defined metadata: data structures similar to headers that are
associated with each packet and carried across the pipeline.

4. Parsers: a finite state machine (FSM) defined in P416 that describes
how incoming packets have to be parsed and deserialized into headers
based on the described parsing logic. For example, after parsing
Ethernet’s header and using the EtherType field, the parser logic can
decide which protocol to parse next, e.g., MPLS, IPv4, IPv6, or any
other protocol.

5. Actions: small code fragments that describe how packet header fields
and metadata are manipulated. When executed as a result of a match-
action table, actions can receive parameters supplied by the control

2.4 programmable network data planes 21

plane as action data. Most expressions available in the P4 core and ar-
chitecture library can be used in actions. Action code will be executed
sequentially or in parallel depending on the target, its compiler, and
variable dependencies.

6. Match-action tables: a match-action table associates user-defined
match keys with a list of actions. The match can consist of one or more
keys each with an assigned match type. The P416 core library defined
three types: exact, ternary and longest prefix match (LPM), however, each
architecture can have its own match types. The list of actions includes
the names of all the actions that can be executed by this MAT. When
defining a MAT, additional attributes include the maximum entry
size, the default action to be executed upon a miss, and constant
entries. P4 match-action tables can be seen as a generalized form of
traditional switch tables such as forwarding tables, access-control lists,
L2 learning tables, etc. MATs are declared in a P4 program. However,
table entries are populated at run-time through control plane APIs.

7. Control blocks: contain the main logic of a P4 program. In control
blocks you can declare variables, execute expressions, actions and
sequences of match-action tables following the programmer’s logic.
Basic program statements such as as if, else, switch, and exit can be
used to achieve that.

8. Deparsers: define which packet headers and in which order they
have to be reassembled together with the packet payload. In some
architectures, e.g., TNA, mirroring, resubmission, and recirculation
are described at the deparser.

The main specific components of a target’s architecture are explained
below. The reader can refer to TNA [69] or v1model [70] architecture P4
definitions to see examples of actual architecture descriptions.

1. Intrinsic metadata: special metadata provided by the target’s vendor
and usually defined in the architecture part of P4. Like regular meta-
data, intrinsic metadata is a set of header fields associated with each
packet and that can be read and written across the pipeline. Intrinsic
metadata fields have mainly two uses: (i) store useful information
provided by the target, e.g., ingress port, timestamps, queueing info,
or (ii) to control the packet’s flow or trigger some actions in the switch,
e.g., deciding the egress port, mirroring, resubmission, recirculation,
port queue, etc.

22 background

2. Externs: architecture-specific construct that extend the P4 core lan-
guage. Like intrinsic metadata, they must be defined in the architec-
ture file. Each target can implement a different set of externs. Some
examples are counters, hash functions, meters, registers, and check-
sums.

Thanks to its well-considered design, the P4 language has become the
de-facto standard for data plane programming. Its influence is evident not
only in the networking research community, where it has gained significant
momentum in recent years, particularly with the advent of the Intel Tofino
switch, but also among network operators that use P4 to optimize their
networks. Companies that own large data centers, like Facebook, Alibaba,
and Google, have adopted P4 to implement custom functions, including net-
work monitoring. Moreover, an increasing number of switch manufacturers
are now offering devices that support P4 programmability [68].

2.4.2.1 The P4 programming workflow

The existing P4 programming tool workflow is one of the keys to P4’s
success. Figure 2.4 illustrates the typical P4 programming workflow. Man-
ufacturers provide the programmable hardware (i.e., Tofino) or software
(i.e., bmv2) target, the architecture definition, and the P4 compiler for the
specific target. P4 programmers provide a P4 program that implements the
desired packet processing logic using the specific P4 target architecture.
The provided program is compiled with the manufacturer compiler, which
produces two outputs. First, the compiler generates a target-specific binary,
which it loads into the target to program it to achieve the programmer’s
desired packet processing logic. Second, it generates a data plane API that
to interact with data plane objects such as match-action tables or externs.

Furthermore, to configure the target at runtime, the P4 programmer
can provide control plane code implemented by leveraging the program-
specific generated data plane API and the target’s static fixed-function
API. Through the APIs, the programmer can dynamically read and write
the state of data plane objects (e.g., tables, registers, and counters) and
configure or read statistics from fixed target components (e.g., port setup,
mirroring, and packet scheduler). Furthermore, many targets allow direct
control plane to target communication through internal PCIe or ethernet
ports. These interfaces can be used to exchange entire packets or small
digests of information.

2.4 programmable network data planes 23

User suppliedP4 program Control plane

P4 architecture
model

P4 compiler Data plane
API

Target-specific
binary

P4 Programmable
data plane

Manufacturer
supplied
(and auto-generated)

Packet
in/out

Tables
read/write

Externs
read/write

Figure 2.4: Diagram of a P4 workflow: the P4 program and control plane code
are typically provided by the user. The other components are either
manufacturer supplied or auto-generated by the compiler.

2.4.2.2 Learning and prototyping P4

Recognizing the barriers that potential data plane programmers or those
eager to learn P4 might face without access to specialized hardware, and
acknowledging the flexibility and convenience software-based environ-
ments offer, the P4 Language Consortium provides and maintains a set of
software-based tools. The P4 Consortium established a dedicated GitHub
repository [71], serving as an invaluable resource, especially for beginners in
P4, and functioning as a central hub of materials. Among the key resources
available are:

Behavioral Model (bmv2). Bmv2 [72] is a C++ software target enabling
P4 programs on x86 architectures. It eliminates the necessity of owning a
physical hardware target for executing of P4 programs and enables an easy
integration with Linux network virtualization tools.

P4C Compiler. P4C [73] is the reference compiler for the P4 language, the
p4c compiler can synthesize P4 code for an array of software targets. Its
modular design allows hardware vendors to create their own target-specific
backends for their proprietary P4 compilers.

Tutorials. To provide a more hands-on understanding, the repository in-
cludes tutorials that offer practical examples.

24 background

In the course of this thesis, we have made significant contributions to the
P4 ecosystem through the development of a P4 prototyping framework and
by expanding existing learning resources:

P4-utils. The Swiss Army knife for P4 development, p4-utils [74], is a Python
package built on top of the Mininet [75] network emulator. It offers users
an intuitive platform to conceptualize, create, and debug virtual networks.
These networks can comprise P4 switches, controllers, hosts, conventional
switches, and routers. Furthermore, for those desiring a plug-and-play
experience, a Virtual Machine and its configuration are provided, ensuring
a seamless transition to P4 prototyping.

P4-learning. Taking the spirit of learning and sharing forward, we have
created a repository named P4-learning [76]. The repository is a collection of
educational materials, including slides from the ETH Zürich Advanced Top-
ics in Communication Networks course, and an extensive list of laboratory
exercises and simple P4 program examples. The exercises and examples, im-
plemented using p4-utils, showcase the features of the P4 language and the
software switch while implementing advanced network functions such as
Layer 2 learning, RSVP, load-balancing, routing, and packet loss detectors.

3
N E T W O R K FA I L U R E S A N D E X I S T I N G D E T E C T I O N
T E C H N I Q U E S

In this chapter, we explore network failures and existing detection mecha-
nisms. In Section 3.1, we provide an introduction to network hard and gray
failures and their impact on ISP networks. First, in Section 3.1.1, we describe
the various types of gray failures and demonstrate their impact on networks
and applications performance. In Section 3.1.2, we provide evidence that
networking devices from leading vendors are not exempt from bugs that
may cause gray failures. At the end of the first part, in Section 3.1.3, we
describe the results of a survey we conducted on the NANOG [77] mailing
list. In this survey, we asked operators about the characteristics of their
networks, the frequency and impact of gray failures, and how they deal
with them.

In Section 3.2, we explore existing failure detection techniques. First, in
Section 3.2.1, we provide an overview of the most relevant existing failure
detection methods available in current networking devices and why they
are insufficient to detect gray failures. In Section 3.2.2, we examine state-
of-the-art failure detection systems, reviewing the latest failure detection
techniques primarily designed for data center networks and highlighting
why they can be ineffective in high-bandwidth and high-delay networks
such as ISPs.

3.1 network failures

Large-scale distributed networks, such as the Internet, are complex systems
prone to various types of failures. Outages caused by DNS server errors [33],
a problem with a DHCP server [78], a routing protocol (e.g., BGP) miscon-
figuration, or even power losses are common examples of failures that can
occur. Such total or partial failures can lead to substantial service disrup-
tions, which inevitably impact many entities, from end users and service
providers to online retailers. A recent Amazon.com outage illustrates this
well. A mere 49-minute downtime resulted in a staggering loss of around

25

26 network failures and existing detection techniques

$4 million in revenue [79]. Hence, speed is a high priority when detecting
and recovering reliably from a downtime, as every second incurs a high
cost. In addition, fast recovery is essential for mitigating financial impact
and preserving customer trust in the service.

While failures can manifest in any part of the Internet, in this thesis, we
focus on failures occurring at the network’s core within networking devices
(e.g., routers or switches), at their interfaces, or in the links that connect
them.

Traditionally, when considering network failures, one might probably
consider the so-called “hard” network failures. Hard network failures man-
ifest through obvious issues such as malfunctioning device ports, complete
link failures, or total device malfunctions and are characterized by their
sudden and total impact on traffic. Despite the difficulty in predicting,
preventing, or sometimes restoring from them, their immediate effects on
the network make them relatively easy to detect.

However, network devices can also malfunction in more subtle ways
beyond the obvious. For example, imagine, for some non-trivial reason,
a device successfully transmits all traffic but drops packets that have a
specific value in the header (e.g., a protocol or a port number), or even
worse, randomly drops a tiny percentage (e.g., 0.1%) of packets without any
apparent reason. These types of failures are known as gray failures. Gray
failures are usually caused by faulty hardware components, software bugs,
or device misconfigurations. The elusive nature of gray failures makes
them complicated to detect, leading to prolonged service degradation
and, in some cases, undetected outages. For example, a simple detection
mechanism, such as sending ICMP ping probes between two points in the
network, becomes ineffective if the gray failure does not impact the probe
packets.

In the following Subsection 3.1.1, we dive deeper into gray failures. We
will see which types exist, the different root causes, and how they affect
traffic.

3.1.1 Types of gray failures

As noted earlier, gray failures refer to any hardware or software malfunction
that results in non-persistent packet loss on a subset of traffic forwarded
by any networking device. Gray failures manifest as service disruptions or

3.1 network failures 27

application performance degradation, and can be classified into different
categories based on their causes and how they affect traffic. This section
summarizes the most common types of gray failures and their impact on
traffic. Our understanding of these failures largely stems from previous
studies conducted by data center operators and from a survey we conducted
on the NANOG mailing list, which is primarily composed of ISP operators
(see Section 3.1.3).

Most gray failures can be classified into one of the following two cate-
gories: random packet drops and packet blackholes. Within these categories,
there are many variants that depend on the frequency of drops, the manner
in which traffic is affected, and the root source of the problem.

Random packet drops. Random packet drops are gray failures in which a
percentage (higher than 0% and lower than 100%) of packets get unexpect-
edly dropped. They often originate from faulty hardware but can also be
caused by software bugs. Random packet drops often affect all the traffic
uniformly, but can also affect specific subsets of traffic. For example, in a
study by Microsoft in one of their data centers, they found random packet
drops affecting all the traffic and specific source and destination pairs,
which experienced a 1% random packet drop. As reported in previous
studies [11, 14], random packet drops tend to be silent. Silent drops are
typically not reported as drops by the switch, making them invisible to tra-
ditional detection techniques (e.g., SNMP [80]). Random packet drops can
be induced by switching ASIC faults, CRC errors, poorly placed line cards,
bent or damaged fiber, transmitter or transceiver issues, among others [11,
14, 16]. Zhuo et al., in their study “Understanding and Mitigating Packet
Corruption in Data Center Networks”, observed that random packet drops
are relatively stable over time and that the loss rate does not depend on the
link’s utilization.

Packet blackholes. In contrast to random packet drops, packet blackholes
(100% loss) are deterministic gray failures typically affecting specific traffic.
For example, packet blackholes may affect one destination address or prefix,
specific protocols, packet sizes, or combinations of them. Like random
packet drops, packet blackholes can also manifest silently, meaning the
drops do not register in the switch’s counters or, for prefixes, in forwarding
table drop counters [14]. Packet blackholes may occur when a switch TCAM
entry gets bit-flipped or corrupted, but they can also happen due to more
general device memory corruption or misconfigurations caused by software
bugs or human errors.

28 network failures and existing detection techniques

3.1.2 Characterizing gray failures through vendor bugs

To better understand how gray failures happen in practice, we analyzed
bug reports published by Cisco and Juniper, the leading routing vendors in
the ISP market. We found roughly 150 bugs resulting in different types of
gray failures.

Methodology. To find the relevant bugs leading to packet drops, we primar-
ily utilized the bug portals of Cisco [81] and Juniper [82]. Access to these
portals requires an account. We used a series of keywords to conduct a
thorough search, as listed in Table 3.1. These keywords were selected based
on their relevance to packet drop scenarios and were used individually
or in combination with other words. This approach allowed us to search
through the bug database systematically.

Search Keywords

dropped drop drops

packet packets silent

silently loss lost

unexpected observed corruption

corrupted memory TCAM

CRC error parity bit flip

Table 3.1: List of keywords used to find network device bugs. We used the
keywords alone or in combination with other keywords.

The complete list of analyzed bugs is available in Appendix A.1. We
categorized each identified bug according to its estimated root cause and
provided a succinct description of the incident and its impact on traffic. It is
important to note that our classification relies solely on the details available
in the bug report and our best capacity to interpret them. Consequently,
while our classification provides valuable insights, it is inherently subject
to the limitations and level of detail provided in the reports. Our main
observations are as follows:

Impact on traffic. Our analysis corroborates that the bug reports align with
our prior characterization of how gray failures affect traffic; they can be spe-
cific to forwarding entries (e.g., IP prefixes) or more widespread, generally
affecting all entries, often impacting certain ports or line cards. Within these

3.1 network failures 29

classifications, the impact on packets varies; some packets might experience
random drops, while others lead to complete entry blackholes. In Table 4.1
of the next Chapter 4, we present a selection of bugs categorized according
to these findings.

Root causes. Out of the 149 analyzed bugs, software bugs, and unintended
configuration or misconfigurations are the predominant root causes, ac-
counting for 43% (65 bugs) and 27% (41 bugs), respectively. Hardware
malfunctions and memory corruption problems contribute to 21% of the
bugs, with the remaining 7% attributable to various other causes. Although
classified as software bugs or misconfigurations, some issues are inter-
twined with hardware problems. For example, poor software-hardware
integration could lead to incorrect hardware states. In misconfiguration sce-
narios, several cases involved unintended configurations (i.e., unanticipated
by the device manufacturers), leading to unexpected device behaviors and
gray failures.

3.1.3 Operators survey: gray failures in ISP networks

Failure detection research in data center networks has extensively doc-
umented the prevalence and frequency of gray failures [11, 17, 83]. To
complement these studies and evaluate the relevance of gray failures across
a broader spectrum of networks, we conducted a survey on the North
American Networks Operators’ Group (NANOG) mailing list. The objective
was to determine whether gray failures present a significant issue in ISP
networks and, if confirmed, identify the strategies operators use to address
them.

The anonymous survey comprised twelve questions and was designed to
take five to ten minutes to complete. Table 3.2 lists these twelve questions,
divided into two categories. First, we asked operators about the type of
networks they operate, such as type, bandwidth, and link delays. Second,
we asked about their experiences with gray failures, including detection
capabilities and the impact on traffic.

Before participating in the survey, we provided operators with a brief
overview of gray failures and references to related studies in data center
networks. For further details, the full thread from the NANOG mailing list
is available online [77].

30 network failures and existing detection techniques

No. Question

What kind of network(s) do you operate?

1 What kind of network do you operate?

2 What link capacity do you commonly use to interconnect
most of your network devices?

3 What link capacity do you commonly use to interconnect your high-capacity
network devices (e.g., devices sitting in the core of your network)?

4 What is the typical (one-way) delay of most of your links?

5 What is the typical one-way delay of your high-capacity links?

What is your experience with gray failures?

6 How often do you have to diagnose gray failures in your network?

7 Are dedicated gray failures detection techniques deployed in your network?

8 When you become aware of the existence of a gray failure in your network
(independently of how), how do you typically determine the root cause?

9 When you become aware of the existence of a gray failure in your network
(independently of how), how long does it take you on average
to determine the root cause of the failure?

10 Have you seen gray failures affecting traffic in the following ways in the past?
(see Table 3.3 for options)

11 What were the root causes of the gray failures you managed to debug in the past?

12 To finish, could you share with us some anecdotes of interesting
(or perhaps particularly frustrating) gray failures you experienced in the past?

Table 3.2: Set of questions asked in the 2022 NANOG survey. Questions are
divided in two categories: network characteristics and gray failures.

In the following subsections, we summarize the key findings learned
from the answers. The results are based on responses from 46 anonymous
network operators. It is important to note that, we excluded unclassifiable
responses, such as “I do not know,” slightly reducing the total number of
respondents for some questions.

3.1 network failures 31

0 10 20 30 40 50 60 70 80 90 100

High
capacity

Most
Common

7

4

46

177

13

2

32

61

2

9

Percentage of links (%)

1 Gbps 10 Gbps 25 Gbps
40 Gbps 100 Gbps 400 Gbps

Figure 3.1: ISPs capacities distribution (1 Gbps to 400 Gbps) for most common
links and high-capacity links.

3.1.3.1 What kind of networks do they operate?

Understanding the characteristics of ISP networks is crucial to determine
the impact of failures and inform the design of an effective detection
mechanism, as we will detail in Section 4.1.3. To this end, we asked operators
about the types of networks they manage and the characteristics of their
links (Questions 1-5).

Most network operators operate a WAN. Nearly 80% of the respondents
operate a WAN network. Just over half report operating a stub ISP (54.3%)
and a data center network (58.7%), while 41.3% are responsible for a transit
ISP or an enterprise network. Notably, 76% of network operators indicated
that they operate two or more network types, with 56% operating three or
more.

Over 50% of ISPs’ high-capacity links have a bandwidth of 100 Gbps or
more. As illustrated in Figure 3.1, these high-capacity ISP links predom-
inantly consist of 100 Gbps links (46%) and 400 Gbps links (7%). When
considering the set of the most common links in all the ISP network together,
61% have a capacity of 10 Gbps. The proportion of links with a capacity of
100 Gbps or more reduces to 21% when evaluating all link types.

Approximately 40% of ISPs’ high-capacity links have a one-way delay
of 1 ms or more. Figure 3.2 presents the one-way delay for all ISPs’ most
common and high-capacity links. Delays of at least 0.1 ms are observed
in 91% of the most common links and in 73% of the high-capacity links.

32 network failures and existing detection techniques

0 10 20 30 40 50 60 70 80 90 100

High
capacity

Most
common

14

7

25

36

34

48

27

9

Percentage of links (%)

 0.1ms 0.1ms to 1ms
1ms to 10ms � 10ms

Figure 3.2: ISPs one-way delay distribution (0.1 ms to 10 ms) for most common
links and high-capacity links.

Furthermore, in both categories, around 40% of links (43% among the most
common links) have delays of 1 ms or more, with delays of 10 ms or more
for 14% of high-capacity links. Notably, while ISP links are less likely to
have short connections like those in data center networks, 27% of ISPs’
high-capacity links have a one-way delay of 0.1 ms or less, compared to
only 9% for the most common links. Although some ISP link delays can
go down to 0.1 ms, there remains a substantial latency gap between ISPs
and data center networks. For perspective, the average propagation latency
within a data center fabric is typically around 1 µs [84].

3.1.3.2 What do ISP operators say about gray failures?

One of the main goals of our survey was to quantify the severity and
significance of gray failures from the perspective of ISP operators, similarly
to how previous studies have been done in data center networks. For that,
we asked operators regarding the frequency they experience and need to
diagnose gray failure-related problems, their detection mechanisms, and
how they manifest on the faulty devices and traffic (Questions 6-12).

Gray failures are a significant problem for ISP operators. Indeed, gray
failures present a real problem for ⇡90% of the operators. Among these, as
depicted in Figure 3.3, 15% experience gray failures every day, 17% weekly,
46% monthly, 78% semiannually, and 95% at least annually. A number
of operators acknowledge that they typically investigate gray failures in
response to customers’ complaints.

3.1 network failures 33

0 10 20 30 40 50 60 70 80 90 100

Every year

Every half year

Every month

Every week

Every day 15%

17%

46%

78%

95%

Percentage of operators (%)

Figure 3.3: Frequency ISP operators experience and need to diagnose gray fail-
ures in their networks.

The reported data, while concerning, likely still underestimate the ac-
tual true number of gray failures occurring in ISPs. Notably, 73.9% of the
operators admit that they lack a specialized gray failure detection tool,
which suggests that numerous gray failures likely remain undetected. The
remaining 23.9% of operators that do use detection tools mostly rely on
rudimentary methods such as regular switch counters (e.g., SNMP) or
endpoint packet probes. Only two operators reported the use of internally
developed tools.

ISP operators struggle to diagnose gray failures. The consensus is clear: if
detected at all, gray failures are difficult, time-consuming, and frustrating
to debug.

Only 13% of the operators can diagnose them within minutes, while
for 35% it takes hours, days for 20%, and weeks for another 20% of the
operators. The remaining operators either do not know or measure how
long it takes. This problem is partially due to the absence of effective tools
to detect and localize gray failures. Commonly, troubleshooting consists
of manual and sequential elimination of hypotheses. Given the hardware-
specific nature of gray failures, operators often need to involve vendors in
this process, slowing the process even further. Worse yet, a considerable
number of gray failures go undiagnosed because they appear intermittently.

34 network failures and existing detection techniques

How is traffic affected by gray failures?

A Failure dropping all packets for some forwarding entries 22 (48.9%)

A failure dropping specific packets (e.g., only small TCP packets)
19 (42.2%)

for all forwarding entries

A failure dropping specific packets (e.g., only small TCP packets)
23 (51.1%)

for some forwarding entries

A failure randomly dropping packets for some forwarding entries 24 (53.3%)

A failure randomly dropping packets for all forwarding entries 22 (48.9%)

Table 3.3: The answers to the survey’s question #10 show that all possible ways
traffic can be affected by gray failures are experienced by ⇡50% of
operators.

Furthermore, one of the operators raised an interesting point. On the one
hand, customers are usually the first ones to notice anomalies. However,
they have very little information about what is going on in the network.
They are left wondering whether the issue is local, congestion, or a gray
failure – they simply have no network visibility. On the other hand, despite
having better insights, operators struggle to correlate between immediate
network events happening within the network and the problems experienced
at the edge.

Roughly 50% of the operators have experienced gray failures of all types.
We asked operators whether they observed some of the most common
forms of gray failure and their impact on traffic. Table 3.3 shows that for
every different way traffic can be affected, roughly 50% of operators have
experienced such pattern. The least frequent observed failure pattern was
“A failure dropping specific packets (e.g., only small TCP packets) for all
forwarding entries” which 42.2% of operators reported.

As described in Section 3.1.1, the root cause of most gray failures can
typically be traced back to software bugs, misconfigurations, TCAM or
memory corruption, parity errors, or malfunctioning line cards. Surveying
operators on past gray failure root causes revealed software bugs as the
predominant issue for 71.7% of the operators, as shown in Figure 3.4.
Misconfigurations and malfunctioning line cards were each reported by
58.7% of operators. A quarter identified TCAM and memory corruption

3.2 network failure detection techniques 35

0 10 20 30 40 50 60 70

Others

Malfunctioning line
card

Parity errors

TCAM corruption

Misconfigurations

Software bugs

26.1%

58.7%

15.2%

26.1%

58.7%

71.7%

Percentage of operators (%)

Figure 3.4: Percentage of operators that encountered each of the most common
root causes of gray failures: Software bugs, misconfigurations, and
malfunctioning line cards are the most common.

as the causes of gray failures. The least commonly observed root cause
of packet drops was parity errors, reported by 15.2% of operators. Finally,
26.1% of operators have encountered other less frequent root causes such
as MTU problems, faulty optics, or damaged cables.

In summary, this survey confirms the significant challenge gray failures
present in ISP networks. Operators agree that gray failures occur frequently
and are particularly challenging to detect. In most cases, operators only
become aware of an issue when a customer complains. Additionally, when
a problem is detected, determining the root cause can be a lengthy process.
It often involves extensive dialogue with hardware vendors, which can be
both cumbersome and time-consuming.

3.2 network failure detection techniques

Network failure detection has been a long-standing problem since the be-
ginning of computer networking. This problem has led to the proposal and

36 network failures and existing detection techniques

development of numerous detection mechanisms. While some mechanisms
are already deployable out of the box with cutting-edge networking devices
(e.g., hardware BFD), while others are vendor-dependent or have been
developed and tested only in controlled environments, such as data center
networks. This section aims to summarize these mechanisms and discussing
their capabilities and limitations. Furthermore, we explore why existing
techniques may not suffice in high-delay and high-bandwidth networks,
such as those operated by ISPs.

3.2.1 Existing vendor network failure detection techniques

Due to the significant impact of network failures and the necessity for rapid
detection, network vendors have developed a wide range of failure detection
mechanisms. Failure detection mechanisms are typically implemented on
most modern network devices across the first three OSI network model
layers [29]. When designing a network, operators select which detection
mechanism to use based on their needs, weighting factors such as detection
speed, overhead, available features, and complexity.

Physical layer detection. At the lower layer of the stack, failures can be
rapidly detected with techniques such as built-in Ethernet auto-negotiation,
carrier delay, loss of light, and link fault signaling. While these techniques
offer simplicity and a fast response time, they are limited to major link
problems. Importantly, they cannot be used to detect unidirectional issues,
problems only visible at a higher layer, or issues caused by cables that result
in spurious transmission errors.

Data link layer detection. Layer-2 technologies also provide failure detec-
tion mechanisms, including technologies such as Link Aggregation Control
Protocol (LACP) [85], Unidirectional Link Detection (UDLD) [86], or link
Operations, administration, and management (OAM) for error frame and
CRC checks [87]. While these Layer-2 mechanisms are generally easy to
configure and widely supported across devices, they rely on the control
plane and, therefore, tend to be slow. For example, UDLD detection time is
in the order of tens of seconds. In the case of LACP, timers can be set to one
second, providing a minimum detection time of 3 seconds. Moreover, these
mechanisms are designed only to detect issues between directly connected
Layer-2 devices rather than end-to-end network issues. Furthermore, like

3.2 network failure detection techniques 37

physical layer mechanisms, data link layer solutions can only detect hard
cable failures.

Network layer detection. The network layer employs HELLO messages in
nearly all routing protocols for basic link failure detection. Protocols such
as OSPF [24] and EIGRP [88] periodically send HELLO messages to all
neighbors, whereas BGP [27] utilizes KEEPALIVE messages to ensure peer
reachability. Although effective for identifying link issues between layer-3
devices, HELLO methods are inherently slow, with detection times in the
order of tens of seconds. To achieve quicker detection times, they require
increasing the frequency of HELLO messages. However, this approach
cannot achieve sub-second failure detection even with the lowest timer
setting. Additionally, lowering the timers would increase device CPU usage,
potentially affect the routing protocol and other processes, and, in the
worst case, result in false positives. To overcome these limitations, Juniper
Networks introduced bidirectional forwarding detection (BFD) [89], a low-
overhead and routing protocol agnostic failure detection protocol designed
for sub-second failure detection. BFD can run either in the control plane’s
software or directly within the data plane’s hardware. However, the second
option is limited to high-end network devices. BFD has two operation
modes: asynchronous and echo. In asynchronous mode, routers running
BFD periodically send packets to all neighbor control planes, which process
them to ensure liveliness. While more efficient than routing protocols’
HELLO mechanisms, BFD asynchronous mode can still incur a high CPU
overhead. Echo mode reduces the CPU load by having the prober send
packets with itself in the destination address. This makes the remote BFD
neighbor forward them back along the same path without involving the
CPU. The echo mode is particularly beneficial as it lowers the receiver’s
CPU usage and tests its forwarding path. BFD can be offloaded to the
device’s line card to further reduce CPU utilization, achieving detection
times as low as 50 ms.

Despite BFD’s efficiency in rapidly detecting network hard failures and its
potential for hardware offloading, BFD still relies on periodic health checks,
limiting its ability to detect failures that only affect a subset of the traffic (i.e.,
gray failures). Furthermore, while offloading BFD to a device’s line card
offers significant performance benefits, this does not entirely mitigate the
potential bottleneck in the control plane during the post-detection response
phase. In the subsequent section, we evaluate the control plane’s influence

38 network failures and existing detection techniques

client
Cisco

Nexus 7000
Cisco

Nexus 7000

serverbackup link

SDN switch

BFD probes

ping probes

Figure 3.5: BFD experiments lab setup: Two Cisco Nexus 7000 switches connected
via an SDN switch to simulate link failures, with a backup link to
reroute traffic upon detection. Two servers are used for convergence
time measurements and to advertise routes.

on overall convergence time following a failure, even when BFD is running
offloaded in the line card.

3.2.1.1 Measuring BFD’s performance under different control plane loads

To evaluate the efficiency of Bidirectional Forwarding Detection (BFD)
under different control plane loads, we conducted a series of controlled
experiments in our laboratory. Figure 3.5 depicts our experimental setup,
which consists of two interconnected Cisco Nexus 7K switches and a layer-2
Software-Defined Networking (SDN) switch placed between them to sim-
ulate link failures. By using the layer-2 switch to drop packets, we ensure
that built-in physical layer detection mechanisms, such as carrier delay, can-
not detect the failure. As a backup, we included a direct cable connection
between the Cisco Nexus 7K switches. Furthermore, we connected a server
to each switch; the server connected to the layer-2 switch activates and deac-
tivates the drop commands, while the servers connected to the Cisco Nexus
7K switches are used for both measurements and route advertisements.

These experiments were designed to thoroughly assess BFD’s perfor-
mance under various conditions, including different timer intervals, routing
protocols, and control plane loads. Our Nexus switches, equipped with
hardware-offloaded BFD features, were set to operate in echo mode for this
evaluation. We tested BFD with varying timer intervals: 15 ms, 30 ms, 50
ms, 100 ms, and 200 ms. BFD utilizes a multiplier, which we configured to

3.2 network failure detection techniques 39

3. This setting implies that a failure is detected only after three consecutive
probe losses.

In the experiments, we measured the total convergence time. The con-
vergence time includes the detection time (done by BFD), routing protocol
computations, and subsequent data plane updates. To this end, we used
the fping [90] tool, configuring it to send one probe every 1 ms to facilitate
accurate measurement of convergence time. We then defined the conver-
gence time as the duration between the failure and the arrival of the first
successful fping probe.

To determine the influence of the running routing algorithm and control
plane load on the convergence time, we ran the experiments under three
different scenarios:

Static routing scenario. We designated the upper link as the primary, with
the lower link set as a backup that activates upon BFD, notifying the control
plane of a failure.

OSPF scenario. We ran OSPF on all router interfaces and adjusted the cost
of the upper link to make it the preferred path for switch-to-switch traffic.

BGP scenario. We positioned the servers in different Autonomous Systems
(AS) and established peering relationships between the first switch and two
additional ASes. These two ASes advertise 10,000 prefixes to the switch.
When a failure is detected, a considerable computation gets triggered to
recompute and update the forwarding entries for these 10,000 prefixes. This
scenario aimed to underscore the potential impact of a busy control plane
CPU on the total convergence time, even when a fast hardware detection
mechanism is in use.

For robustness and to ensure statistical relevance, we ran 60 iterations
of each experiment, covering every BFD timer and routing protocol mix,
resulting in 15 distinct experiment sets and a total of 900 runs. Figure 3.6
illustrates the convergence results of our BFD experiments. Each row corre-
sponds to a different routing protocol scenario, while each column repre-
sents a different BFD probing time in ascending order.

With Static routing, detection times appear to follow a normal distribution
centered around the multiplication of the probing speed by the multiplier.
This suggests that the convergence time is nearly identical to the detection
time due to negligible control plane load.

40 network failures and existing detection techniques

In the OSPF scenario, we notice a similar trend. However, when lowering
the probing timers, we see an increase in worst-case scenarios compared
to static routing. Additionally, the center of the normal distribution is
shifted slightly, indicating longer average detection times. Although the
control plane overhead impacts some runs, given the simplicity of OSPF
computation in our scenario, the overall effect remains limited.

When we incorporate BGP and overload the control plane by forcing it
to recompute and update the forwarding for 10,000 prefixes, the contribu-
tion of detection time to total convergence time becomes less pronounced.
For the smallest probing time, 15 ms, where we would typically expect
convergence times of approximately 50 ms, we encounter a control plane
overhead exceeding 100 ms in most cases. This trend persists with larger
timers, although the proportion of overhead in the total convergence time
becomes less noticeable. This observation raises an interesting point: in
scenarios where the control plane is loaded, or many forwarding rules need
to be updated, the control plane becomes the most significant contributor
to the total convergence time. This underscores the control plane as another
critical area for improvement. We explore this idea in Chapter 5.

In this subsection, we have conducted an in-depth analysis of vendor-
specific failure detection methods, whose applicability varies based on the
unique demands of network design and operational requirements. Our
research particularly emphasizes the advantages of BFD for its speed, sim-
plicity, and efficient resource utilization compared to other alternatives.
Despite the effectiveness of these methods, they primarily address the de-
tection of “hard” network failures, offering limited results for gray failures.
Moreover, our experiments highlight how control plane bottlenecks can
significantly impact total convergence times. This underscores the need for
advanced detection systems for gray failures and innovations to accelerate
control plane’s subsequent steps during the convergence process. In the
next section, our focus shifts to advanced detection mechanisms capable of
detecting a broader range of failures.

3.2
n

etw
o

rk
fa

ilu
re

d
etectio

n
tech

n
iq

u
es

41

Figure 3.6: Comparison of convergence times under varying control plane scenarios and BFD (with hardware-offload)
probing timers. The figure shows histograms and fitted probability density functions for detection times across
three routing protocols (Static, OSPF, and BGP) and five BFD probing intervals (15 ms, 30 ms, 50 ms, 100 ms,
and 200 ms), each with a multiplier of 3. The results illustrate how different routing protocols and control plane
loads affect convergence times in relation to BFD timer settings.

42 network failures and existing detection techniques

3.2.2 Advanced network failure detection techniques

In the previous section, we explored the network failure detection tech-
niques available in standard networking equipment. We explained their
advantages and disadvantages and highlighted their primary focus on
detecting hard rather than gray failures.

This section introduces advanced failure detection and monitoring tech-
niques suitable for both hard and gray failures. Although we call these
techniques advanced, we explore detection techniques that go from straight-
forward packet counting mechanisms, such as polling switch counters (e.g.,
SNMP) or aggregated and sample counter statistics (e.g., NetFlow or SFlow),
to state-of-the-art research solutions that utilize end-hosts, advanced switch
capabilities, and external controllers that hold a global view of the network.
We conclude the section by explaining why most of these solutions do not
work in high-bandwidth (>=100 Gbps) and high-delay (>=1 ms) networks
such as ISP networks.

3.2.2.1 Host-based monitoring techniques

End-host based techniques fall into two categories: passive and active.
Generally, these methods are most applicable to data center networks, as
they require sending traffic probes or monitoring traffic from hosts or
virtual hosts through a hypervisor.

Passive Monitoring. Passive approaches are often integrated within the
host’s network stack or in data centers in the server’s hypervisor [91–97].
These methods focus on tracking flow statistics, such as TCP parameters,
over time. By analyzing data locally and globally, passive monitoring can
infer various types of network issues but struggle to localize them accu-
rately.

Active Monitoring. In contrast, active monitoring techniques inject traffic
probes to assess the current state of the network and to investigate how
specific traffic gets affected [11, 98–100]. Some systems combine active and
passive methods, creating a hybrid approach. These systems initially use
passive monitoring to identify anomalies and then switch to active probing
for a more detailed examination of specific issues.

While end-host based detection systems can detect network failures, de-
vice malfunctioning, and even pinpoint which traffic or hosts are being

3.2 network failure detection techniques 43

affected, their reliance on inference limits the ability to accurately determine
the problem’s location and root causes. These systems generally suffer from
slow detection speed due to the necessity of maintaining a low probing
frequency and typically rely on a central controller or agent for the export
and analysis of host statistics. Furthermore, they contribute to CPU over-
head and, in the case of active probing, additional bandwidth consumption,
which is usually compensated by trading it by detection coverage (i.e.,
monitoring fewer traffic entries). Finally, host-based monitoring techniques
are impractical in ISP networks, where network operators lack control over
end hosts.

3.2.2.2 In-network controller-centric approaches

Unlike end-host based solutions, in-network controller-centric methods
prioritize the monitoring and detecting issues through data collected di-
rectly within network devices, like switches. This data is then exported to a
centralized controller for analysis and interpretation.

In-network controller-centric detection systems range from simple
counter-based techniques, such as SNMP [12], to more sophisticated tech-
niques that use probabilistic data structures, such as sketches or invertible
bloom filters [101].

Packet and Flow-based counters. A straightforward method for detecting
gray failures is using packet counters within network switches. These
devices are typically equipped with counters to track various metrics,
including packet and byte counts for both incoming and outgoing traffic on
each port, as well as packet drops resulting from unusual switch activities.
These basic packet counters are accessible from an external controller
via SNMP [12]. While packet counters can offer a broad view of what
is happening in the network, they fall short of providing the information
required for detecting gray failures or debugging specific issues. Moreover,
as demonstrated by Pingmesh [11], hardware defects or memory corruption
may lead to SNMP counters inaccurately reporting normal operations
amidst actual packet losses.

For enhanced monitoring capabilities, many networking devices also sup-
port flow-based counters that aggregate statistics on TCP and UDP traffic
flows. Protocols like NetFlow [28] and sFlow [13] are commonly employed
for this purpose. Contrary to basic SNMP counters, NetFlow and sFlow
provide flow-level information, enabling operators to record data such as

44 network failures and existing detection techniques

source and destination IP addresses, port numbers, and protocols types,
offering a more comprehensive view of the network’s traffic. However,
despite their advantages over simple counters, flow-based counters still
face challenges when used to detect gray failures. First, the data is often
exported in intervals ranging from several seconds to minutes [28, 102],
leading to delayed detection. Second, to maintain line-rate data recording,
these systems often resort to packet sampling [13], which significantly com-
promises detection accuracy. Finally, accurately identifying packet drops
requires perfect synchronization between exported counters [103], a need
these techniques lack.

Packet mirroring. It is a controller-centric method that involves mirroring
(i.e., making copies) packets from switches to a controller in a coordinated
and synchronized way to detect packet losses between devices. By exam-
ining traffic mirrored from all switches, the controller can identify which
and where packets were lost. Although highly effective for gray failure
identification, packet mirroring becomes impractical in high-bandwidth
settings like ISP networks. This technique would require sending a copy
for every packet that crosses a switch to effectively detect gray failures,
significantly increasing bandwidth demands relative to the path’s link count
and bandwidth. In ISP networks, this would translate into hundreds of
Tbps of traffic to store and analyze, making it an impractical solution.

Previous work has explored more practical packet mirroring options to
circumvent scaling issues. However, the constant increase of network band-
widths and trade-offs required for scaling makes those systems impractical
for gray failure detection. Planck [102] introduces sampling to reduce the
burden, but this makes mirroring non-deterministic and thus ineffective for
loss detection. NetSight [104] truncates the mirrored packets and only sends
the packet header to the controller. However, such efforts are insufficient as
with only headers the aggregated load in the network remains very high
and the number of packets to process remains the same. Alternatives like
Stroboscope [15] and Everflow [14] reduce the load by only mirroring a
subset of packets according to a budget, however, decreasing the coverage
and requiring operators to configure what to monitor, compromising their
utility for detecting gray failures.

In-band Network Telemetry. The emergence of programmable data planes
has revolutionized network telemetry through In-band Network Telemetry
(INT) [105, 106]. Unlike conventional out-of-band methods such as mirror-
ing or counter collection, INT allows real-time collection of network device

3.2 network failure detection techniques 45

state information such as queue depths, delays, port statistics, and path
information. As packets traverse the network, programmable data planes
embed custom metadata into packet headers, allowing operators to tailor
the information added. Upon reaching the destination or a predetermined
sink node, this metadata is extracted and relayed to a telemetry collector for
analysis INT offers immediate, detailed insights into network performance,
latency, and other operational characteristics. Despite being an effective
way to get rich in-network metadata, INT-based solutions like mirroring
solutions, must navigate the balance between coverage and operational cost,
again, limiting its effectiveness for gray failure detection.

Sketches. Sketches offer an alternative to methods like counters and packet
mirroring. They involve instructing switches to store packet measurements
in probabilistic data structures called sketches. These data structures pro-
vide a way to store compressed measurement data, which can subsequently
be extracted, decompressed, and analyzed by a centralized controller. While
many existing sketch solutions [107–116] are effective for approximating
flow sizes and packet counts, they are generally not well suited for specific
tasks such as packet loss detection due to their trade-off between accuracy
and memory efficiency.

In recent years, with the emergence of data plane programmability, spe-
cialized sketches designed explicitly for failure detection have emerged [42,
103, 117].

FlowRadar [103], a networking monitoring system, leverages Invertible
Bloom Filters (IBF [101]) to encode per-flow counters, which are periodically
pulled and decoded at a remote controller. The decoding process the IBFs
from across the network to extract flow counters, enabling loss detection
by comparing the counters from successive hops. FlowRadar has two main
limitations: it scales with the number of active flows, and requires all the
IBFs to be collected in a synchronized way which results in a coarse-grained
detection timescale [42].

LossRadar [42] is a packet drop detector that uses IBFs like FlowRadar.
However, to scale with the number of packet losses and not with the
number active flows, LossRadar periodically XORs the IBFs of two directly
connected switch ports. With this operation, all the successfully transmitted
packets get removed from the IBF, leaving only the lost packet for decoding.
Consequently, this enables precise identification of both the location and the
5-tuple details of packets lost in transit between the two IBFs. Alternatively,
ChameleMon [117] proposes a hybrid between the two (FlowRadar and

46 network failures and existing detection techniques

LossRadar requirements

Average loss rate

Switch Metric 0.1% 0.2% 0.3% 1%

100 Gbps
32 ports

memory size⇤ ⇥ 0.21 ⇥ 0.42 ⇥ 0.63 ⇥ 2.1

read speedup† ⇥ 0.7 ⇥ 1.4 ⇥ 1.9 ⇥ 4.5

400 Gbps
64 ports

memory size⇤ ⇥ 1.7 ⇥ 3.4 ⇥ 5.1 ⇥ 16.9

read speedup† ⇥ 3.7 ⇥ 6.6 ⇥ 9.5 ⇥ 29.5

⇤ LossRadar req. memory / memory available per hardware stage
† LossRadar req. read speed / available hardware read speed

Table 3.4: Even for registers’ (64 bits) and packets’ (1500 B) sizes minimizing
memory reading time, LossRadar exceeds the capabilities of state-of-
the-art switches (see red numbers).

LossRadar) and introduces the FermatSketch an IBT-based data structure
that dynamically allocates its memory to only track “victim” flows and thus
does not suffer from the same scalability problems as FlowRadar.

Despite being effective, controller-heavy based systems, have a common
problem: controllers have to continuously pull large stateful data structures
from the data plane. This requirement makes these solutions impractical
for high-bandwidth networks such as ISPs.

To illustrate that, we consider LossRadar [42], one of the few sketch-based
systems able to detect gray failures. In LossRadar, to ensure a quick failure
detection and avoid the pollution (i.e., by too many packets encoded) of
the IBFs, the IBFs need to be dimensioned accordingly, and they must be
extracted from the data plane to the controller very often (i.e., every 10 ms).

Table 3.4 shows the results of measurements we performed on a state-
of-the-art switch [18]: current switches do not read memory fast enough
for LossRadar to support average loss rates higher than 0.15% in 100 Gbps
switches with 32 ports. LossRadar limitations worsen for higher bandwidth
and port number counts.

Note that switches’ memory size and reading speed constraints limit the
options available to sketch-based approaches: extracting measurements less

3.2 network failure detection techniques 47

frequently requires larger data structures, which however exacerbate hard-
ware limitations. For example, in LossRadar, gathering IBFs less frequently
is counter-productive because it requires increasing their sizes to deal with
the higher number of packets lost during larger intervals for the same loss
rate; yet, larger IBFs further reduce the loss rates detectable by LossRadar.

Our results show that LossRadar fundamentally cannot detect gray fail-
ures efficiently within current and future ISPs (with constantly increasing
bandwidths), unless a major technological breakthrough enables switches
to support significantly more memory and read it much faster than today.
Other sketches may make a more parsimonious use of switches’ memory,
but they are likely to suffer similar scalability limitations with respect to
the tracked traffic. In addition, a recent study [118] shows that all sketch-
based solutions have a significant accuracy drop (up to 94⇥) compared to
theoretical expectations due to the delays in retrieving the data plane state.
Those limitations lead us to design an in-switch failure detection system.

3.2.2.3 In-network computation-centric approaches

In-network computation-centric approaches are programmable data plane
based detection methods that heavily leverage deep in-network programma-
bility to run most of the detection in the data plane, and thus requiring
less data plane to control plane communication. This approach directly
addresses the bottleneck issue prevalent in sketch-based systems by en-
abling a majority (if not all) of the detection process to occur within the data
plane itself. Three techniques have recently been proposed to detect failures
within switches and without much control plane involvement: Blink [3],
NetSeer [17], and dDrops [119].

Blink [3] focuses on detecting failures that affect all flows crossing a re-
mote failed link. It selects a few flows (e.g., 64) per prefix and checks if the
majority of them retransmit within an 800 ms window. Blink fundamentally
cannot detect a gray failure that does not affect most of the flows crossing a
link; in those cases, Blink does not monitor enough affected flows. For cases
in which Blink could select more than 32 affected flows, gray failures in-
crease the likelihood that retransmissions are spread over time, beyond 800
ms windows, since only a subset of the packets is lost, which would again
prevent Blink from detecting the failure. In fact, as the loss rate decreases
(i.e., lower %), Blink’s accuracy also drastically decreases. Extending Blink
to detect gray failures is also challenging as (i) monitoring more flows is
impractical, given switches’ computational and memory resources, and (ii)

48 network failures and existing detection techniques

NetSeer operating regions

Operational

Not Operational

10 µs 100 µs 1 ms 10 ms 0.1 s
0

20

40

60

80

100

Link Latency

Tr
af

fic
(G

bp
s)

Figure 3.7: NetSeer can only report absolute packet losses in typical ISP link
delays (i.e., � 100µs) and traffic volumes. The plot considers 1024B
packets and a 1000-cell NetSeer’s buffer: smaller packets or buffers
further decreases NetSeer’s applicability.

inferring failures from the retransmissions of fewer flows would lead to
many false positives.

NetSeer [17] is an in-switch system designed to detect a variety of events,
including gray failures, in data center networks. It includes mechanisms to
identify packet drops internal to switches (e.g., caused by congestion), as
well as an inter-switch protocol for detecting the most general class of gray
failures.

NetSeer effectively detects internal losses that are accurately logged by
switches. Its inter-switch protocol utilizes switch memory proportional to
the link’s bandwidth and device-to-device delay. While this approach is
efficient in environments with minimal delay, such as data centers, it would
struggle to accurately detect gray failures within ISP networks. Indeed, in
NetSeer’s inter-switch protocol, each upstream switch stores a signature
of sent packets in a buffer, adds a sequence number to sent packets, and
receives NACKs from neighbors whenever any such packet is lost, which
is detected by the downstream switch checking for any gap in received
sequence numbers. Fundamentally, NetSeer’s packet buffers have limited
size, and in ISPs, they are likely to be overridden before NACKs are received,
because of ISPs’ traffic volume and link delays. Whenever this happens, we
say that NetSeer is not operational since it has no visibility on losses per
entry and, therefore, cannot localize the corresponding gray failures.

3.2 network failure detection techniques 49

Figure 3.7 shows the operational regions of NetSeer at 100 Gbps or lower,
considering buffer sizes of 1000 packets per port, in which each cell requires
13 bytes (flow 5-tuple) and assuming a packet average size of 1024 bytes.
Results shown in Figure 3.7 are computed analytically and confirmed by
experiments we conducted in ns-3. Note that smaller average packet and
buffer size further decreases NetSeer’s applicability. Additionally, the as-
sumption of a 1024-byte average packet size is somewhat optimistic, given
that ISP networks often report smaller averages [120]. The parameters se-
lected for the analysis align with those recommended and used in NetSeer’s
own evaluations [17], and in total they require 800 KB of SRAM memory.
With the given fixed buffer allocation, NetSeer’s buffer gets completely
overwritten when the switch receives more than 1000 packets before a
NACK from the downstream is received. Therefore, NetSeer’s operational
area directly depends on the rate at which packets are received, and the
delay between upstream and downstream switches.

Figure 3.7 shows that at 100 Gbps, NetSeer is only operational if the link
delay is 40µ or lower. For 10 Gbps interfaces, the maximum tolerable delay
goes up to 0.4 ms. These findings underscore NetSeer’s operational viability
within data center environments, characterized by minimal delays. However,
it would not be operational in most common ISP settings where traffic per
link exceeds 100 Gbps and link latency is on the order of milliseconds, as
confirmed by the operator survey we conducted.

Figure 3.8 shows the required memory for NetSeer to be operational for
different switch settings and inter-switch link latencies. For instance, to
remain operational at a 1 ms delay, NetSeer requires 20 MB of memory for
a switch equipped with 64 ports at 100 Gbps and 80 MB for a 400 Gbps
switch. Therefore, as Figure 3.8 shows, the required memory increases
proportionally as delay or bandwidth increases. For example, with a 5 ms
delay, the required memory is five times more than for 1 ms.

In ISP environments, where link delays typically span from 1 ms to over
10 ms, the memory required by NetSeer (i.e., hundreds of MBs) exceeds
the available memory in today’s switches. Indeed, current state-of-the-art
switches offer about 12-15 MB of memory per pipeline, with 4-8 pipelines
in total [121]. Moreover, this memory is distributed across the stages of each
pipeline [122, 123], meaning that an in-switch application is, in practice,
constrained by the maximum per-stage memory. In addition, per-pipeline
per-stage memory is shared across all in-switch applications, further reduc-
ing the memory available to each application.

50 network failures and existing detection techniques

NetSeer requirements

100 us 1 ms 10 ms 100 ms

Inter-Switch Link Latency (log scale)

0

100

200

300

400

500

R
eq

u
ir

ed
M

em
o
ry

(M
B

)
64-ports x 100 Gbps

64-ports x 200 Gbps

64-ports x 400 Gbps

Figure 3.8: The required memory for NetSeer to be operational increases pro-
portionally as the delay or bandwidth increases. The plot considers
1024B packets and 13 bytes per packet.

It’s important to note that NetSeer’s limitations are not easily addressed
in the future. This is because traffic forwarded by ISPs is expected to
increase over the years at a much faster rate than the growth of hardware
resources (e.g., memory) in switches. This trend would make NetSeer less
and less suitable for future ISPs.

In this section, we have explored advanced detection mechanisms, ex-
tending our analysis beyond vendor-specific methods. These detection
mechanisms range from simple packet counting to sophisticated solutions
that leverage end-host capabilities, external controllers, or programmable
data planes. Despite their potential, these methods face challenges in high-
bandwidth (� 100 Gbps) and high-delay (� 1 ms) environments like ISP
networks. These findings highlight the need for a solution capable of oper-
ating in such challenging environments. Consequently, in the next chapter,
we introduce FANcY, our novel gray failure detection system specifically
designed to function effectively within ISP network environments.

4
FA S T I N - N E T W O R K G R AY FA I L U R E D E T E C T I O N F O R
I N T E R N E T S E RV I C E P R O V I D E R N E T W O R K S

In this chapter, we present FANcY, a fast in-network gray failure detection
and localization system aimed at high-bandwidth and high-delay networks
such as Internet Service Providers (ISPs). FANcY complements previous
gray failure detection systems, which are mainly tailored for low-delay
networks such as data center networks and are not suitable for ISP networks.

ISPs serve as the backbone of our increasingly interconnected society.
Thus, ensuring the reliable and efficient transmission of data packets is
not only a technical requirement but an economic imperative. Even at
marginal rates, packet losses can significantly impact the quality of Internet
services [16]. Thus, avoiding packet loss is so critical to ISPs that research
and industry efforts focus increasingly on ensuring minimal downtime
upon failures (e.g., [3, 124, 125]). A major result of past efforts is that “hard”
failures affecting all packets crossing a link or node are typically detected
quickly, thanks to existing vendor detection techniques (see Section 3.2.1)
such as the BFD protocol [89].

In practice, however, malfunctioning hardware often causes packet losses
only for subsets of packets sent over a link. As introduced before (Sec-
tion 3.1.1), in this dissertation, we call a gray failure any hardware mal-
function that causes non-transient packet loss on a subset of the traffic
forwarded by any packet-forwarding device – which we generally call a
switch. Consistent with our definition, we do not classify congestion as a
gray failure.

Table 4.1 shows representative examples of device bugs causing gray
failures. As shown in the table, malfunctions might cause random packet
drops or packet blackholes for one or some packet types (e.g., same prefix
or port) or even for all types. Additional examples include misplaced line
cards and bent or dirty fibers [16].

Our survey (see Section 4.1.1) confirms that ISP operators consider gray
failures a significant concern and lack effective techniques to detect and
locate them. Indeed, they often become aware of gray failures only when

51

52 in-network failure detection

customers complain about the failure-induced packet loss, which they end
up troubleshooting for days or weeks.

As described in the previous chapter, in Section 3.2.2, existing state-of-the-
art techniques are ineffective because detecting and localizing gray failures
in ISP networks requires analyzing all the traffic, which is something they
are not capable of doing. Hello-based protocols, including Bidirectional
Forwarding Detection (BFD), do not work because most gray failures do
not impact messages from these protocols. Packet and flow counter tools,
such as NetFlow [28] or sFlow [13], do not help either. They rely on random
packet sampling for scalability, and are unable to support fine-grained
traffic analyses (as also shown in [15]), which would be needed to spot gray
failures.

Gray failures are not specific to ISPs, and recent research aimed at de-
veloping gray failure detectors for data center and cloud networks. Those
detectors’ designs, however, do not match the peculiarities of ISP networks:
they either require control of end hosts [11, 43, 93, 98], assume low packet
loss rates and extremely high-speed interfaces between the control and data
planes (e.g., [42]), or require limited links delay and traffic volumes (e.g.,
[17]).

Finally, mechanisms internal to switches, such as deflection on drop [17],
do not capture several failure cases, including those where the drop flag is
not correctly set on packets because of memory corruption, and link-level
failures.

Therefore, in this chapter, we introduce FANcY, a system that can locate
and detect gray failures in ISP networks.

Vision. We aim at designing an accurate and fast gray failure detector for
ISPs. Similar to BFD, the immediate application of such a detector would
be to support selective fast rerouting on gray failures – i.e., rerouting traffic
only for the disrupted traffic, as fast as possible. We also envision that in
the future, a gray failure detector may assist operators in finding the root
cause of gray failures, and enable new control- and data-plane applications,
such as automated failure repair through ad-hoc forward error correction
mechanisms or hardware reconfiguration (e.g., [126]).

Problem statement. We focus on the following question:

Can we build an ISP-targeted system able to detect and localize intra-
domain gray failures in seconds?

in-network failure detection 53

Real examples of unwanted traffic drops affecting. . .

. . . some packets . . . all packets

. . . one or some
IP prefixes

Neighbor Solicitation [127]
or BGP [128] packets

Packets sent from

a specific line card [129]

Specific IP prefixes [130]

. . . all IP prefixes
With specific sizes [131] Traffic on

With IP ID field 0xE000 [132] certain ports [133, 134]

With wrong CRC [135, 136] Interface flaps [137, 138]

Table 4.1: Representative examples of gray failures plaguing major routing de-
vices (from Cisco and Juniper bug reports).

By localizing, we mean identifying both the switch port suffering from
a gray failure and the affected traffic. Note that our problem statement
does not directly target root cause analysis, nor automated remedies to the
detected failures.

FANcY. We present FANcY, a gray failure detector tailored to ISPs. FANcY
relies on an inter-switch protocol enabling data planes to synchronize
packet counters and detect packet losses by comparing the values of those
counters. Counters provide the minimal information needed to localize
gray failures; frequently exchanging them provides detection speed and
scalability (e.g., consumed memory).

The chapter is organized as follows. In Section 4.1, we show the impact of
gray failures in ISP networks and why existing solutions are not applicable.
In Section 4.2, we provide an overview of FANcY, giving a high-level idea
of how it operates, its inputs and outputs. In Section 4.3 we dive deep into
FANcY internals; its reliable protocol, counter exchange synchronization,
and the different types of counters giving an emphasis on hash-based trees
and their parametrization. In Section 4.4, we do a sensitivity analysis using
real traffic traces to select the best hash-based tree parameters to use in
our evaluation. In Section 4.5, we evaluate FANcY’s ability to capture gray
failures through extensive simulations using our ns-3 [139] implementation.
Since FANcY is traffic-driven, we first assess the minimal traffic require-
ments that allow it to quickly and accurately localize failures. We then

54 in-network failure detection

experiment with real traffic traces, and confirm FANcY’s potential to work
well in real ISPs. In Section 4.6, we introduce FANcY’s prototype imple-
mentation in P4 on an Intel Tofino Switch. We use this implementation
to demonstrate that FANcY enables sub-second selective fast rerouting.
Finally, in Section 4.7, we conclude the chapter with a brief summary.

4.1 gray failures in isp networks

We now revisit why detecting and localizing gray failures in ISP networks
is an important and open research problem. To confirm this, we first sum-
marize the main relevant findings from the operators survey introduced in
Section 3.1.3.2 and the analysis of hardware bugs and the different ways
they affect traffic, as shown in Section 3.1.2. Finally, we detail why prior
work falls short in detecting gray failures in ISP networks using today’s
hardware.

4.1.1 Gray failures are a problem for a majority of operators

The key takeaway from the anonymous survey, which we detail in Sec-
tion 3.1.3.2, is that gray failures are a common problem in ISP networks.
Most operators (⇡90%) have to deal with these issues quite often. For some,
it is a daily problem, and for almost half, it is at least a monthly issue. The
real challenge is not just how often these problems happen but also how
hard they are to find and fix, taking anywhere from hours to weeks.

Most operators say they need better tools to detect gray failures. In fact,
in our survey, we show that 74% of them do not have any specialized tool
for this, highlighting an acute need for practical solutions. Furthermore,
operators often find out about gray failures through customer complaints,
suggesting that many of these failures may go unnoticed.

Another key finding from our survey is that when discovered, gray
failures are difficult, time-consuming, and frustrating to debug. The absence
of specialized tools adds to the difficulty, often requiring manual step-by-
step analysis. Additionally, since gray failures tend to be hardware-specific,
which require the involvement of vendors, further delays the process.

4.1 gray failures in isp networks 55

4.1.2 What is the impact of gray failures in ISPs?

To further assess the impact of gray failures in ISPs, we refer to the analysis
of vendor bugs shown in Section 3.1.2.

We classify gray failures according to (i) the affected forwarding entries
(i.e., all or some IP prefixes) and (ii) the affected traffic (all or some packets
per affected entry). Our classification focuses on the effects of the gray
failures (i.e., what is dropped, which is visible to operators), rather than
their causes (i.e., why packets are dropped, which is usually harder to
estimate and known by vendors only).

Table 4.1 lists a representative selection of examples of gray failures
for each class. It shows that gray failures come in all shapes and forms,
some leading to complete blackholes while others induce drops of very
specific packets only (i.e., affecting one or a few entries). You can find the
full list of bug reports, its estimated root cause, and a short summary in
Appendix A.1.

Our survey (Section 4.1.1) confirms that our classification is representative:
operators state that they have observed at least one gray failure of each
type. For more details about our bug study, refer to Section 3.1.2.

4.1.3 Why is prior work not applicable in ISPs?

We now discuss why prior gray failure detection approaches do not work
in ISPs, and motivate the need for a new in-switch design.

In Section 3.2.2, we detailed all the different types of advanced failure
detection techniques, we classified them by approach (i.e., host-based)
and technique (i.e., passive monitoring of TCP stats) and explained their
strengths but also why most of them are not suited for ISPs.

In this section, we will revisit that idea and explain in general terms
why most existing solutions do not work in ISP networks and what are the
requirements to detect gray failures in them.

In general, to detect and localize gray failures between two points, we
have two requirements: (i) to be able to collect packet information (e.g.,
headers, counters, etc.) on all the traffic, as any packet might be lost, and

56 in-network failure detection

(ii) a mechanism to compare that packet information and communicate
between the two collection points.

Existing ISP monitoring techniques do not collect statistics on all the
traffic. Heartbeat-based protocols such as BFD can only detect failures
affecting the heartbeat packets, solutions that use probe-based [11, 98]
mechanisms are only able to detect problems if probe packets get impacted.
Packet or flow-based counter mechanisms either monitor only basic things
such as port counters (e.g., SNMP) or need to use packet sampling in
order to keep operating at line rate [13, 28]. Similarly, packet mirroring
techniques [14, 15] can only afford to mirror slices of traffic due to the
impossibility of mirroring the aggregated traffic of today’s networks.

Existing data center solutions fall short in ISPs. While some data center
gray failure detection techniques collect packet statistics on all the traffic
and do some sort of comparison or analysis on them, they cannot operate
in ISPs networks. We can easily discard all end-point based solutions,
as ISP operators have either non or very limited end-host control. This
leaves us with either in-network controller-centric approaches or in-network
computation-centric approaches. Given today’s typical link bandwidths
(e.g., � 100 Gbps), these systems can only manage to fulfill the requirements
in low latency networks, such as data centers, where link delays can be
as low as a few microseconds. In contrast, in ISPs, the latency between
devices is in the order of ms (as shown in Section 3.1.3.1), while also having
very high-bandwidth links of 100 Gbps and constantly increasing. In fact,
with consumer demands continually rising, especially for video content,
it is expected that service providers and cloud providers adopt Ethernet
technologies reaching 1.6 Tb/s [140]. The evolving characteristics of current
and future ISPs make failure detection systems designed for data centers
impractical in ISP networks.

To understand the significant impact of link bandwidth and device latency
on the memory requirements for a gray failure detector, let’s revisit the
two aforementioned requirements. To successfully detect gray failures, we
need a system that is able to first collect or store packet information for all
the packets, and after some time, compare the information either directly
in the data plane or in a control plane. Therefore, the memory required
by switches during the collection phase depends on the collection rate,

4.1 gray failures in isp networks 57

the collection complexity, and the minimum required time to perform a
comparison or export the collected data. In more detail:

Collection rate. The amount of packets per unit of time for which the switch
needs to store information. The collection rate directly depends on the link
bandwidth and average packet size.

Collection complexity. The amount of information bits that need to be
stored in the switch per packet. The collection complexity depends on the
detection technique used. For example, NetSeer’s [17] collection complexity
is the packets 5-tuple (13 bytes or 104 bits).

Minimum compare time. The minimum amount of time the detection sys-
tem must be collecting data before it can free its memory. For systems that
use a controller, this is determined by the device-to-controller latency and
reading speed. For in-network systems where devices exchange information
or control signals directly in the data plane, the compare time is bound by
the link delay.

On the one hand, controller-centric approaches capable of detecting gray
failures, such as LossRadar [42], which already face limitations due to the
control plane reading speed (see Table 3.4), would be further limited by the
typical ISP delays between devices and controllers. Note that increasing the
allocated memory to compensate with these delays, would paradoxically
increase the reading time further, exacerbating the initial problem.

On the other hand, in-switch designs such as NetSeer [17], which is also
able to efficiently detect gray failures in data center networks, the high
collection rate and increased delay between devices makes it completely
impractical in ISPs: the required memory by the inter-switch packet loss de-
tection exceeds by a great margin the available memory in today’s switches
(see Figure 3.8).

These limitations are unlikely to be easily resolved in the near future. In
fact, in the next years, the amount of traffic forwarded by ISPs is expected to
significantly increase outpacing the growth in switch memory capacity and
controller-to-device reading speeds [140]. Additionally, the delay between
devices in an ISP is bound to their physical distances which remains rather
constant. Thus, in order to detect gray failures in ISP networks we need a
system whose required memory does not fully depend on the traffic rate
and minimum comparison time.

58 in-network failure detection

4.1.4 What about simple designs?

Based on our observations in Section 4.1.3, we conclude that an effective gray
failure detector for ISPs should operate in-switch, avoid sampling flows,
and minimize the duration of storing per-packet information. At a glance,
it may seem that we can use simple designs matching those constraints by
just exploiting the ability of switches to count packets. Unfortunately, this
is not the case.

First, we cannot count traffic at per-link granularity: this simply does not
provide enough information to localize the gray failure. Also, we cannot
sample traffic to count; otherwise, gray failures affecting small fractions
of traffic would probabilistically take a long, possibly indefinite time to
be even detected. Similarly, we cannot count traffic only for some entries
because gray failures can impact one or a few entries that we do not know
in advance – see Table 4.1.

Conceptually, we instead need to count all packets for each traffic entry.
Once again, however, simply having one counter per entry does not work
in ISPs, as it exceeds the memory available on the switches. For example, if
we consider entries to be all the /24 IPv4 prefixes (⇡ 16 M), covering the
Internet routing table with a conservative estimate of 32 bits per counter
would require about 512 MB per port. This naive solution would require an
order of magnitude more memory than SRAM available in today’s switches
to cover gray failures for only one port.

In the next Section 4.2, we present the design of our in-network gray fail-
ure detection system. This system aims at scaling per-entry packet counters
and circumventing the problems existing solutions face in high-bandwidth
and high-latency environments. Additionally, our design addresses practi-
cal challenges, including distinguishing gray failures from transient drops,
such as those caused by congestion, and ensuring synchronized packet
counting across switches.

4.2 fancy overview

Figure 4.1 illustrates FANcY’s interface and its role within our envisioned
in-network reaction approach. FANcY takes two inputs: (i) the specification
of entries that the operator or applications using FANcY want to monitor,
and (ii) the memory budget per switch. Whenever FANcY detects packet

4.2 fancy overview 59

high priority: 1.0/8, 2.1/16,...
best effort: 2.8/16, 5.0/8,...
switch memory: 1 MB

input: monitoring requirements

FANcY

high priority
1.0/8

2.1/16
...

best effort

output: mismatching entries

APP 1
fine-grained

fast rerouting APP N. . .

data-plane applications

Gray failure on Wed 01:13 AM

[@switch1-eth2] 1.0/8 10% loss
[@switch1-eth2] 5.0/8 1% loss

to control plane

to control plane

Switch

Figure 4.1: High-level view of a FANcY switch.

drops induced by a gray failure, it flags the entries and ports affected by
the failure.

In FANcY, an entry indicates a subset of the header space defined by a
match rule on packets. For example, Figure 4.1 shows that operators can
specify destination prefixes as entries, which would be reasonable if they
aim to support selective fast rerouting in destination-based routed networks.
However, we remark that future applications can dynamically define the
entries monitored by FANcY, for example, for root cause analyses – e.g., to
assess losses per packet size or per value of specific IP fields.

Since fundamental limits constrain how many entries can be monitored
with the limited memory available on switches, FANcY offers two levels
of accuracy for entries to be monitored: high priority, and best-effort. Each
high priority entry is tracked with a dedicated counter. Best-effort entries are
collectively monitored with a hash-based tree. Contrary to existing sketches,
the hash-based tree stores aggregated counters without compressing in-
formation, and is decoded in hardware, at runtime, to identify faulty (i.e.,
experiencing gray failures) entries, in-switch and at line rate.

FANcY’s interface, for example, allows operators to monitor all destina-
tion prefixes, while also maximizing accuracy and reactivity for the ones

60 in-network failure detection

upstream

traffic
manager

port

downstream

traffic
manager

port

tagged
packets

packet gets
corrupted

sent

3

2

dedicated
entries

entry
status

hash-based
counters

best
effort entries

high
priority

1.0/8,
2.1/16,...

recv

2

2

compare
counters

dedicated
entries

hash-based
counters

Figure 4.2: High-level view of a FANcY switch to switch running the counting
protocol.

driving most Internet traffic, which are typically few [141]; we assume this
to be a common goal for ISP operators. If operators want to monitor a
more limited set of entries, they can also specify all entries as high priority.
The system returns an error, if the set of high-priority entries cannot be
supported with the memory budget specified in input.

Figure 4.2 shows a pair of switches running FANcY’s counting protocol.
As shown, FANcY works at a per-link granularity, reporting losses sepa-
rately for each switch port. To detect and localize gray failures affecting
input entries, each upstream FANcY switch sending packets to a down-
stream FANcY switch establishes synchronized counting sessions with the
downstream. A new session is opened as soon as the previous one closes.

During each counting session, the upstream tags packets to be counted
by the downstream with an identifier of the counter to be increased, so that
both switches consistently count the same subset of packets with the same
counters.

At the end of each session, the downstream sends back its counters
to the upstream, which compares the counters and starts a new session
immediately after. When it detects discrepancies between its counters and
the downstream ones, the upstream switch flags the mismatching counters
by populating local registers.

4.3 fancy internals 61

FANcY counters are carefully positioned to avoid recording packet loss
due to congestion. Within any switch, congestion typically occurs at the
traffic manager (TM), which implements the actual switching logic – i.e.,
redirecting packets from the ingress pipeline to the configured egress
pipeline. In FANcY, as shown in Figure 4.2, packet counters are therefore
placed after the TM of the upstream switch and before the TM of the
downstream one.

We designed FANcY’s counting protocol to be resilient to packet loss
while also using minimal memory on switches. To provide good accuracy
for best-effort entries, we rely on a zooming algorithm that allows switches’
data planes to dynamically explore hash-based trees at runtime. This re-
duces FANcY’s memory consumption on switches, thus allowing each
switch to maintain counting sessions with all its downstream switches. We
detail the design of FANcY internals in Section 4.3, and analyze its accuracy,
speed, and resource consumption in Section 4.5 and Section 4.6.

4.3 fancy internals

We now describe the most important FANcY components: the counting
protocol (Section 4.3.1), the hash-based tree data structure (Section 4.3.2),
some hash-based tree properties (Section 4.3.3), and the system interface
and deployment details (Section 4.3.4).

4.3.1 Counting protocol

When designing FANcY’s counting protocol, we need to balance accuracy
(i.e., how often we count packets), reliability (i.e., how to guarantee that
counters are successfully exchanged), and scalability (i.e., how much mem-
ory is needed on switches). We first show that maximizing accuracy leads
to high memory consumption and sub-optimal reliability. This motivates
us to trade some accuracy for much better reliability and scalability.

Strawman: continuous counting with in-packet session IDs. Ideally, we
would like to continuously count all the packets at the upstream and
downstream switches. To achieve that, the upstream can tag packets with a
session ID, and start a new session by just changing the packets’ tag. For
example, increasing it by one for a new session. Upon receiving a packet

62 in-network failure detection

with a different tag, the downstream would then send its counters back to
the upstream.

Unfortunately, this counting approach requires the upstream switch to
allocate memory for at least two sets of counters, respectively, for the current
and previous sessions. The upstream indeed has to wait for the counters
from the downstream switch before it can check for packet drops in the
previous counting session. In addition, the above protocol does not achieve
reliability. If a counter sent by the downstream is lost, all the measurements
for that session are also lost – i.e., a link cannot be monitored if a failure
affects the reverse direction of the traffic. To ensure reliability across k
sessions, both the upstream and the downstream must then keep k � 1
historical counters’ values, and consume k times the memory required for
a single session. Furthermore, when using such counting protocol, packet
reordering would trigger unwanted counting events – i.e., the downstream
sending a counter before the session has ended. Such premature counter
transmissions from the downstream would result in counter mismatches,
undermining the reliability of the counting mechanism.

FANcY protocol. To achieve reliability with minimal memory, FANcY
adopts a protocol akin to stop-and-wait. In FANcY, every counting session
is opened by the upstream switch through a Start control message, and
closed after a Stop message. After sending a Start (resp. Stop) message,
the upstream switch waits for a Start ACK (resp. Report, including the
downstream counters) response from the downstream switch, and it keeps
retransmitting Start (resp. Stop) messages if it does not receive responses
before a timeout.

At any time, FANcY’s counting protocol requires storing a single set of
counters, for the current session, at both the upstream and downstream
switches. Furthermore, FANcY’s stop-and-wait protocol ensures that both
counting ends are perfectly synchronized counting packets for the same
session without needing the intervention of the control plane. Its downside
is that counting is stopped when control messages are exchanged. The time
not counting is directly dependent on the delay between the upstream and
downstream switches. We make this choice because FANcY focuses on
systematic packet drops (e.g., see Table 4.1), and hence stopping counting
for short times may affect detection speed, but does not prevent us from
detecting gray failures, as Section 4.5 confirms.

An important parameter of FANcY’s counting protocol is the frequency of
counters’ exchanges. This parameter influences the accuracy, the detection

4.3 fancy internals 63

Check
Count

Wait
ACK

resend
Start

Count

Wait
Count

resend
Stop

send
Start

receive
Start ACK

send
Stop

receive
Report

sender FSM

Idle

Send
ACK

receive
Start

Count

Wait
ToSend

wait
timer

receive
Start

receive
tagged pkt

receive
Stop

send
Report

receiver FSM

Figure 4.3: Finite state machines run on any pair of upstream (left) and down-
stream (right) FANcY switches.

speed, and the overhead in terms of additional control traffic generated
by FANcY. We discuss reasonable counters’ exchange frequency values in
Section 4.5.

FANcY Finite State Machines (FSMs). FANcY switches implement their
counting protocol by running FSMs directly in the switches’ hardware. We
now detail FANcY’s FSMs. We further describe the implementation and
evaluation of those FSMs within an Intel Tofino switch in Section 4.6 and
Section 4.6.3.

Let A be an upstream switch, and B be the downstream one. To detect
losses of packets sent by A to B, A implements FANcY’s sender FSM, while
B runs the receiver FSM. Figure 4.3 displays both FSMs, and Figure 4.4
illustrates how the FSMs transition from one state to another during a
typical counting session.

To start a new counting session, A resets all its counters for the A ! B
link, and sends a Start message to B. Since it is critical that A and B start
counting from the same packet, A then enters the WaitACK state where it
doesn’t increase any counter but waits for an acknowledgment from B.
When it receives a Start message, B indeed resets its counters, and replies
with a Start ACK message. The Start phase in FANcY is essential for syn-
chronizing the FSMs states and enabling an efficient reset of hardware data
structures without the need for external controllers. This critical synchro-
nization step ensures both reliability and operational efficiency in FANcY’s
FSM processes.

64 in-network failure detection

wait
ACK

count

wait
report

check

start

start ACK

tagged packet

tagged packet

stop

report

send
ACK

count

wait
timer

idle

sender receiver

Figure 4.4: Time sequence diagram showing the implementation of a counting
session with FANcY state machines.

If after a given time Trtx, A does not receive a Start ACK, it sends the
Start message to B again. If A does not receive responses from B after X
attempts (with X=5 by default), A reports a link failure.

Upon successfully receiving a Start ACK, the sender FSM transitions to
the Counting state, where A counts and tags each packet it sends over the
A ! B link. The first tagged packet received after the Start message makes
B transition to its own Counting state.

4.3 fancy internals 65

Packets are tagged by A and counted by B until A sends a Stop message
to B. At that point, A moves to the WaitCounter state until it receives a
Report message from B, with B’s counters.

A stop-and-wait approach, similar to the one implemented for the session
setup, is used to work around possible losses of Stop and Report mes-
sages. In contrast to session opening, however, the downstream switch does
not send the Response message immediately after receiving the Stop one.
Upon receiving such a message, the receiver FSM indeed transitions to the
WaitToSendCounter state, where it can keep counting tagged packets for a
short time interval Twait. This timeout accounts for delayed or reordered
packets. In theory, it should not be possible for packets to be reordered if
they follow the exact same path from the sender FSM to the receiver one
– e.g., if A and B are neighbors. We keep the WaitToSendCounter state in
the receiver FSM to avoid making assumptions on the path from A to B.
After Twait, the receiver FSM sends the counter back to the upstream, which
upon successful reception, checks for counter discrepancies, and if needed
reports the error or flags the entry as faulty. If no counter report is received
at A after Trtx, A sends a Stop message to B again. As before, if A does not
receive responses from B after X attempts (with X=5 by default), A reports
a link failure. Finally, upon a successful counter exchange and checks, A
starts a new counting session.

So far, we have shown FANcY FSMs primarily for synchronizing and
exchanging single packet counters between switches. However, the versatil-
ity of our FSMs extends beyond this singular use. We can generalize their
application to facilitate the exchange of more advanced data structures,
enabling the implementation of more complex algorithms. In the next Sec-
tion 4.3.2, we show an instance of that. It’s important to note that extending
FSMs for exchanging information beyond packet counters only requires to
tweak the semantics that switches associate to packet tags, and adjust the
content of the Report messages.

4.3.2 Hash-based trees

In the previous section, we introduced the FANcY protocol. Its dedicated
counter version uses a pair of counters to monitor traffic entries individually,
a method that’s simple and effective but only suitable for high-priority
traffic due to its poor scalability. For instance, tracking 1 million entries

66 in-network failure detection

0 0 0 7 0 0 0 0 0 . . . 0 0
0 w

0 0 0 0 0 0 0 4 0 . . . 0 0
0 w

Zooming

hash1(entry)

1M entries

hash2(entry)

⇠ 1M/w entries

Figure 4.5: Two-level hash-based counter array illustrating the distribution of
1 million entries into w cells and the subsequent zooming on mis-
matched counters to further isolate aggregated entries at the first
level.

requires 1.25 GB of memory for a 64-port switch, with each pair of state
machines and counters consuming 160 bits.

Recognizing that gray failures are typically sparse – the majority of
entries often do not experience errors at the same time – we identified an
opportunity for an efficient data structure that instead of using dedicated
resources for each traffic entry, which can be inefficient, aggregates multiple
traffic entries into one counter. This approach optimizes memory usage
and is realized through hash-based counter arrays, akin to counting bloom
filters [142]. To count with these arrays we use a hash function on the traffic
entry identifier, such as an IPv4 prefix, to determine which counter index
cell belongs to each traffic entry. Like in the dedicated counter FANcY
protocol, packets are counted in a hash-based array at both upstream and
downstream switches. The counts are exchanged and compared at the
end of every counting session. However, this time, cells with mismatching
counters in the arrays can represent multiple traffic entries, necessitating
a multi-round approach to accurately pinpoint the specific faulty entry or
entries. Figure 4.5 illustrates the process for a two-level hash-based counter
array example monitoring 1 million entries.

Although hash-based arrays provide a scalable way to detect gray failures,
they can only be used to zoom in one cell at a time. To solve that, in FANcY

4.3 fancy internals 67

9 0 0 3
0 w

0 5 9 0
0 w

0 8 0 6
0 w

5 0 0 0
0 w

0 0 0 3
0 w

0 0 1 0
0 w

0 4 0 0
0 w

width

split

counter

depthpacket
H1(pkt)=0

H2(pkt)=2

H3(pkt)=0

Figure 4.6: An example of a hash-based tree implemented within FANcY
switches: each node is an array of counters, and packets are mapped
to counters at each level through a level-specific hash function.

we introduce the hash-based tree data structure. In FANcY hash-based
trees, each tree level stores an array of counters associated with a subset of
best-effort entries. Counter arrays at higher levels of the tree map to larger
sets of entries, while the tree’s leaves map to one or few entries.

Utilizing hash-based trees allows for improved accuracy and scalability
at the cost of slower detection speed, proportional to the tree’s levels. This
is particularly effective for large numbers of entries, where a single counter
array would either be too large or prone to collisions and false positives. By
employing hash-based trees, switches can dynamically explore and zoom
in on counters at lower levels upon detecting mismatches at higher levels.
In the following, we dive into the details of the hash-based trees’ data
structure and the zooming algorithm.

Hash-based trees’ data structure. Figure 4.6 pictures a small hash-based
tree as implemented in FANcY switches. Its nodes are fixed-size arrays of
counters. Each counter is mapped to a specific set of packets through hash
functions. To better define which packets increment which counters, we
first introduce some terminology.

Any FANcY hash-based tree is a balanced k-ary tree, characterized by
three parameters: width, depth, and split. For a given tree, its width w is the
number of counters per node, its depth d is the length of any path from the
tree’s root to a leaf, and its split k is the number of children per node. For
example, w = 4, d = 3, and k = 2 for the tree in Figure 4.6.

68 in-network failure detection

Every packet belonging to a best-effort entry maps to one counter per
tree’s level through a distinct hash function per level, as also shown in
Figure 4.6. Consider a counter ci. A packet p is mapped to ci if and only if
Hj(p) = i, where Hj is the hash function applied at the level j to which ci
belongs, and Hj(p) is a value between 0 and w � 1 obtained by applying
Hj to the fields of p used in p’s entry (e.g., the destination address in
destination-based routing).

We define the hash path of a packet as the list of counter IDs the packet
maps to, ordered from the root to the leaf. For instance, 0 2 0 is the
hash path of the packet shown in Figure 4.6.

Note that any sequence of counters at consecutive levels forms a partial
hash path, and corresponds to a number of entries inversely proportional to
the length of the sequence: the shorter the sequence, the bigger the number
of associated entries.

FANcY zooming algorithm. To detect best-effort entries affected by a failure,
this algorithm incrementally builds partial hash paths of increasing length
for counters affected by a failure. As described before, at every iteration,
the algorithm indeed increases by one the length of the partial hash path
affected by packet loss, and hence it reduces the set of candidate failed
entries.

To understand the zooming algorithm better, let us consider a pair of
FANcY switches. Assume for now that the switches maintain trees of split
1, a counter array of width 4 and a depth of 3, as shown in Figure 4.7.

In the absence of losses, the two switches only update root-level counters.
During each counting session, the upstream switch tags every packet with
the index of the counter to which the packet maps according to the root-
level hash function (h1), and the root-level counters are consistently updated
on both switches, as displayed in Figure 4.7a. At the end of the session, if
no drops have happened, the upstream switch detects the congruence of its
counters with the downstream ones, and starts a new session.

Suppose now that a gray failure occurs and packets for a specific traffic
entry start to get dropped. At the end of the session, the upstream switch
checks its counters against the downstream ones. If it detects mismatches
for more than half of the counters, it flags the failure as a uniform random
one – i.e., “localizing” it to all entries. Otherwise, the switch computes the
root-level counter ci with the maximal difference between the local and the

4.3 fancy internals 69

Hash-based tree zooming stages

1 9 1 6 0 5 0 6

upstream downstream

H1(.)

[2]

[0]

[1]

unused
tree levels

packet with
tag [1]

(a) before any counter mismatch

2 8 3 3

4 2 1 1

2 3 3 2

0 2 0 1

upstream downstream

[1,0]

[3]

[1,2]

packet with
tag [1,0]

(b) counting session after first zoom

2 8 2 4

5 2 1 1

4 0 1 0

2 3 1 4

0 2 0 1

1 0 0 0

upstream downstream

[1,0,0]

[2]

[1,0,2]

mismatching
leaf counter

(c) successful zooming completion

Figure 4.7: Illustration of the zooming algorithm on hash-based trees of width 4,
depth 3 and split 1. The algorithm zooms into one tree layer at each
stage until possibly detecting a mismatching counter at the leaf layer.

70 in-network failure detection

downstream values.1 In our example, after the first counting session, the
upstream computes the counter difference as: 1 9 1 6 � 1 6 1 6 = 0 3 0 0
, detecting a mismatch of 3 packets at c1. In the following session, the
upstream switch then tags packets if and only if they hash to c1, effectively
zooming in the set of entries with the highest drop rate.

Packet tags carry information about the hash path of the counters packets
map to. This way, the downstream switch knows which packets to count
and which counters to increase without having to hash packets consistently
with the upstream. In our example, after detecting a mismatch on counter
ci, the upstream would therefore tag every packet that maps to ci with the
path [i, m], where i is the index of ci in the root-level node and m is the
index of the second-level counter cm to which the packet is mapped – see
Figure 4.7b.

The above procedure is repeated until a leaf node is reached. In our
example from Figure 4.7c, after all the displayed packets in the link have
been transmitted, the leaf counters difference is computed as: 4 0 1 0
� 2 0 1 0 = 2 0 0 0 . At that point, FANcY reports a failure for every
mismatching leaf counter. This, for example, enables the upstream switch
to immediately start rerouting packets whose hash path (i.e., 1 0 0)
corresponds to any of those counters. Note that FANcY technically detects
a failure when it starts zooming in any root-level counter, but reports the
failure only after reaching the tree’s leaves in order to increase accuracy.

For multi-entry failures, FANcY adopts a pipelining approach that in-
creases failure detection speed. To achieve that, it simultaneously zooms in
counters at different levels of the tree. Consider, for example, a failure that
affects two root-level counters c1 and c2. At the end of the first counting
session after the failure, the upstream switch observes packet losses on both
c1 and c2, and selects the one with the maximum packet difference, say
c1. In the following session, the upstream then instructs the downstream
to populate counters at the second level of the tree for packets hashing to
c1 in addition to increasing root-level counters. At the end of this second
session, the upstream observes again packet loss for both c1 and c2. Since it
is already zooming in c1, it starts zooming in c2 this time. So, in the third
session, the upstream and downstream increase root-level counters for all
the packets, second-level counters for packets hashing to c2, and third-level

1 Selecting the counter with maximum losses is instrumental to prioritize failure detection for
most traffic. We however envision that future FANcY implementations can take operators’
policies into account at this step.

4.3 fancy internals 71

counters for packets hashing to c1 and the second-level counter with the
maximum mismatch in the previous session.

A generalized version of the above algorithm is used in trees with split
k > 1. At the end of every counting session, the generalized algorithm
zooms in k mismatching counters rather than only one. In the presence of
multi-entry failures, the algorithm therefore can explore in parallel up to
k hash paths per counting session, and hence supports the simultaneous
exploration of kd�1 different paths in d counting sessions.

4.3.3 Properties of hash-based trees

n this section, we analyze how different hash-based tree parameters impact
accuracy and detection speed. Further, we provide formulas to compute
collision probability and memory requirements for generic hash-based trees
based on their width, depth, and split.

4.3.3.1 Parameters analysis

Since hash paths identify entries affected by failures, the total number and
length of hash paths influence the number of entries that can share a counter.
Both factors depend on the tree’s depth and width, as the number of hash
paths is equal to wd, and their length is bounded by d. Increasing width
and depth increases accuracy by making it more likely that leaf counters
map to a single entry (see below 4.3.3.2 for details). Increasing depth and
width, however, comes at the cost of higher memory utilization (see 4.3.3.3
for details). Additionally, higher depths increase the number of counting
sessions needed, slowing down failure detection and making the failure
harder to detect, thus potentially decreasing accuracy when there is not
enough traffic. As such, width and depth regulate the trade-off between
accuracy on one side and memory and detection speed on the other. In
Section 4.4, we show how the depth, width, and split affect accuracy and
detection speeds with simulations using real traces.

In general, the detection speed for entries mapped to the tree depends on
the performance of the zooming algorithm. As described in Section 4.3.2,
the algorithm explores up to kd�1 paths in d counting sessions. Thus, the
detection speed also depends on the split value k: higher split values speed
up the detection of multi-entry failures (by a factor proportional to k), but it

72 in-network failure detection

also requires more memory (i.e., to store a bigger tree) and implementation
logic.

The duration of counting sessions, which we also denote as zooming
speed, affects detection speed, too: it is quite intuitive that shorter counting
sessions tend to make detection faster. However, decreasing the zooming
speed can also impact FANcY’s accuracy, as it reduces the probability of
observing packet losses during d consecutive counting sessions. In Sec-
tion 4.5, Figure 4.10 shows that a low zooming speed might negatively
affect detection accuracy (as less traffic is monitored).

4.3.3.2 Collision probability

Hash-based tree counters offer a scalable method for monitoring a vast
quantity of traffic entries utilizing minimal memory resources. This ef-
ficiency, however, comes with the trade-off of potential collisions. Such
collisions manifest as false positives for the traffic entries that did not
experience losses but have the same hash path as faulty ones.

To determine the collision probability within our system, we can apply
the theoretical framework of Bloom filters employing a single hash function,
as detailed by Broader et al. [143]. In this context, the number of potential
hash paths corresponds to the size of our conceptual Bloom filter. We
compute the number of hash paths (m) as: m = wd, where w is the number
of cells in a bucket, and d represents the depth of the hash-based tree.

Given that we are solely concerned with collisions occurring in cells that
contain faulty entries, the probability of a collision depends on the number
of total cells (m) and active faulty entries (n). Consequently, the collision
probability (p) can be calculated using the following expression:

p = (1 � e�n/m) (4.1)

The expected number of collisions (or false positives) is influenced by
the total number of distinct traffic entries (t) that cross the hash-based tree
while there are faulty entries. This expected number can be formulated as:

E(t) = p · t (4.2)

Consider a hash-based tree where each bucket contains w = 100 cells,
and the depth is d = 3. This results in m = wd = 1003 possible hash paths.

4.3 fancy internals 73

Imagine a scenario with 105 different traffic entries, among which there is
one entry suffering from packet loss.

The probability of a collision, as described by Equation 4.1 with n = 1
active faulty entry, is given by:

p = 1 � e�
1
m = 1 � e�

1
105 ⇡ 9.999995 ⇥ 10�7.

Employing Equation 4.2, the expected number of collisions, E(t), when
all 105 traffic entries are active while one entry is faulty, is calculated as:

E(105) = p ⇥ 105
⇡ 9.999995 ⇥ 10�7

· 105,

which leads to an average of approximately 0.1 collisions during the pres-
ence of one faulty entry.

4.3.3.3 Tree nodes and memory

The memory footprint of a hash-based tree is determined by its configura-
tion parameters: width (w), depth (d), split factor (k), and the operational
mode. Specifically, if the tree operates in pipelined mode—as detailed in
Section 4.3.2—FANcY needs to allocate memory for the tree’s entire struc-
ture. In non-pipelined mode, FANcY optimizes memory usage by allocating
only the memory necessary for the last layer of the tree (the tree leaves),
which corresponds to the memory needed for the last zooming stage. The
memory allocation for tree nodes can be quantified as follows:

• Pipelined Mode:

nodesp(k, d) =

(
kd�1
k�1 if k > 1

d otherwise

• Non-Pipelined Mode: nodesnp(k, d) = kd�1.

To compute the total memory required for a hash-based tree (excluding
state machine resources, for more info see Section 4.6.2) we only need the
product of the number of counter cells (w) at each node, the number of
layers in the tree (d), the split (k), the number of bits per counter (b), and
the number of nodes (nodes(k, d)). Thus, the memory formula (in bits) is
given by:

Memory(k, d, w, b) = b · w · nodes(k, d)

74 in-network failure detection

If we consider the tree from the example above, with w = 100, d = 3,
a k = 2, pipelining and 32-bit counter cells, the required memory for the
hash-based tree can be calculated as:

M(2, 3, 100, 32) = 32 · 100 · nodesp(2, 3)
= 32 · 100 · 7
= 22400 bits

Note that this is the memory required for a single tree, FANcY requires
two trees per session, one at the upstream and another at the downstream.
Furthermore, FANcY installs one pair of trees at each port.

4.3.4 Practical considerations

We now describe how FANcY design is instantiated.

Input translation. FANcY switches first allocate one dedicated counter for
each input high-priority entry. Each counter occupies 80 bits in total (both
at upstream and downstream), including the required state for the counting
protocol.

Switches then dimension the hash-based tree based on the input memory
minus the amount consumed by dedicated counters. Each node of the tree
requires at each side of the session 32 bits times the width of the tree,
plus 88 bits to support the counting protocol and the zooming algorithm.
Sections 4.3.3.3 and 4.6.2 provide details to compute the number of nodes
and total memory required by any given hash tree.

The question then is how to decide the width, depth, and split of the tree,
which also influences the number of nodes. In the previous Section 4.3.3.1,
we have described how each tree parameter impacts the performance of
FANcY. Further, in the next Section 4.4, we show how those parameters
impact the performance of FANcY’s hash-based tree when detecting gray
failures on real Internet traces. Our analysis indicates that setting split to 2
and depth to 3 provides a good trade-off between memory consumption,
accuracy, and detection speed. Hence, our FANcY implementation uses
those values and adjusts the tree’s width based on the available memory.
ISP operators can customize FANcY’s trees by applying a similar analysis
on their networks’ traffic traces, requirements and available memory.

4.4 sensitivity analysis of fancy’s parameters 75

FANcY returns an error if the memory needed for dedicated counters
and hash-based trees with the above parameters’ values exceeds the input
memory.

Output. FANcY uses two additional data structures to flag the entries
affected by packet loss: a 1-bit register array with one register for each
dedicated counter, and a 2-register Bloom filter associated with the hash-
based tree. When mismatching values are detected for a dedicated counter,
the corresponding register in the 1-bit array is updated. When a counter
in the hash-based tree reports a failure, the hash path for that counter is
stored in the Bloom filter.

Deployment. FANcY is designed to be deployed at every switch, so that
it can monitor all links, one by one; this maximizes accuracy of failure
detection and localization.

We however note that FANcY keeps working when deployed at remote
switches. In this case, FANcY is able to detect gray failures on the path
between the two switches2, although losing the ability to precisely pinpoint
the failure location along the path. This enables practical use cases in
partial and incremental FANcY deployments. For example, if deployed at
the border switches exchanging high volumes of traffic, FANcY provides
support for near real-time detection of gray failures along the internal paths
carrying most traffic: no tool currently available to ISPs offers a similar
capability.

4.4 sensitivity analysis of fancy’s parameters

In this section, before FANcY’s evaluation 4.5, we perform some experi-
ments to show the impact of changing the values of the hash-based tree’s
parameters. We use FANcY’s software implementation (see more details in
the next section) and compare different trees using real Internet traces.

As previously described, hash-based trees can detect the vast majority of
affected traffic entries (especially those carrying most of the traffic) at scale.
The goal of this sensitivity analysis is to determine the impact of increasing
or decreasing memory usage on the detection speed and false positives, as
well as how much the split impacts detection speeds and true positive rates

2 Note that systematic failures can be distinguished from congestion even in partial deployments
of FANcY by monitoring queue sizes on all devices, and discarding all measurements collected
during periods where queue sizes were excessively long.

76 in-network failure detection

symbol depth split width nodes hash paths memory

3 3 205 13 8.6M 1 MB
3 2 190 7 6.9M 500 KB
3 3 100 13 1M 500 KB
4 3 32 40 1M 500 KB
3 2 100 7 1M 250 KB
4 2 44 15 3.7M 250 KB
3 1 110 3 1.3M 125 KB
4 2 28 15 0.6M 125 KB

Table 4.2: Configurations of the eight hash-based tree used for the sensitivity
analysis.

depending on the failure burst size (i.e., how many entries fail at the same
time). In the next section, we will use what we have learned to pick the
parameters of our hash-based trees for FANcY evaluation.

Methodology. We have selected eight different FANcY hash-based tree
configurations ranging from approximately 125 KB to 1 MB of required
memory for a 32-port switch (see details in Table 4.2). To compare them,
we have used the Internet trace with the most active prefixes from the
CAIDA dataset (⇡ 560K, ID 4 4.3) such that we can see how that impacts
the number of false positives with respect to the total number of hash paths
supported by the tree. During the simulation, which lasts 30 seconds, we fail
(100% loss) either 10 or 50 prefixes at the same time. We use multi-failure
scenarios to assess better the impact of the tree split on detection speed
and True Positive Rate (TPR). The process is averaged over 10 runs, each
with a different set of randomly selected prefixes. Note that we only fail
prefixes that can be detected at the zooming speed and depth used by
the system under test (⇡ 120k prefixes). We use the pipelined version of
FANcY; Consequently, we need to reserve memory space for all nodes in
the tree. As shown in the legend of Figure 4.8, system configuration names
are defined as follows: depth/split/width (Memory). For this experiment,
we do not use dedicated counter entries, therefore, we allocate 100% of the
memory to the hash-based tree.

Figure 4.8 shows the result of our simulation. The upper row pertains to
the experiments with 10 failures, whereas the lower row pertains to those
with 50. The plots on the left side depict the average mean detection speed
(of each run) against the average true positive rate, while plots on the right

4.4 sensitivity analysis of fancy’s parameters 77

Speed vs TPR & Bytes vs FP for 10 failures

0.92 0.95 0.975 1
True Positive Rate

1.5

2.0

2.5

M
ed

ia
n

D
et

ec
ti
on

(s
)

0.0 2.5 4.5 6.5
False Positives

0.980

0.985

0.990

0.995

1.000

D
et

ec
te

d
B

yt
es

(%
)

Speed vs TPR & Bytes vs FP for 50 failures

0.6 0.7 0.8 0.9 1.0
True Positive Rate

3.0

4.0

5.0

M
ed

ia
n

D
et

ec
ti
on

(s
)

1 10 20 30
False Positives

0.994

0.996

0.998

D
et

ec
te

d
B

yt
es

(%
)

3/3/205 (1MB)

3/2/190 (500KB)

3/3/100 (500KB)

4/3/32 (500KB)

3/2/100 (250KB)

4/2/44 (250KB)

3/1/110 (125KB)

4/2/28 (125KB)

Figure 4.8: Comparison of the eight different hash-based tree configurations
when 10 (upper) and 50 (lower) failures happen at the same time.

illustrate the average total bytes detected against the average count of false
positives. In the following, we describe the main findings.

Split increases TPR and reduces detection speed. Designs with a higher
split value have the best true positive rates and lowest median detection
speeds, especially in cases affecting many entries. As shown in Figure 4.8,
on the left side, the most rapid and accurate designs have a split of 3. This
pattern is particularly evident with 50 simultaneous failures (lower left),
where the three configurations with a split of 3 (, ,) have the lowest

78 in-network failure detection

detection times and highest TPR. Conversely, the tree with a split of 1 ()
has the worst detection speed and the lowest TPR.

In general, depth increases detection time with a slight decrease in TPR.
When the number of concurrent failures is relatively low (i.e., 10), trees with
greater depth exhibit the highest detection times. This is evident on the top
left side of Figure 4.8, where systems with a depth of 4 (, ,), or a small
split () show the longest detection times. However, in scenarios where
numerous traffic entries are impacted, the tree split becomes crucial as it
enables parallel failure detection. For example, the detection speed of
relatively improves with respect to other trees under 50 concurrent failure,
as seen in the lower left side of the figure. Furthermore, while increasing
depth influences the TPR, this increase does not lead to a drastic reduction
in the rate.

Memory can be traded by speed without sacrificing TPR or increasing
FPs. We have identified cost-effective designs, such as , which achieve a
decent TPR, and small FP (due to its 3.7M hash paths) while being one
of the cheapest designs. However, that comes at the price of an increased
detection time.

Most large traffic entries, which contribute significantly to overall traffic
volume in terms of bytes, are detected by all the evaluated trees. As
depicted on the right side of Figure 4.8, in both failure scenarios, most
systems successfully detect failures for large traffic entries, which account
for most bytes. This is normal as all non-detected entries send very few
packets.

The number of hash paths directly determines the number of FPs. As
previously explained and detailed in Section 4.3.3.2, the number of false
positives in our system is directly influenced by the total number of hash
paths supported, wd. Consequently, trees with a higher number of hash
paths, such as , and , as listed in Table 4.2, tend to have fewer false
positives.

4.5 evaluation 79

4.5 evaluation

We evaluate FANcY against its goal of detecting and localizing gray failures
accurately, quickly, and scalably. Since FANcY is a data-driven solution, its
accuracy and detection speed depend on the amount of traffic it receives
for the entries affected by gray failures. We therefore assess FANcY’s
performance depending on the packet loss rate per disrupted entry. We
do not compare against gray failure detectors proposed in previous work
because they are incompatible with the network characteristics of ISPs, as
already detailed in Section 4.1.3.

To evaluate FANcY, we simulate different gray failures and measure
FANcY’s accuracy and speed to localize each of them. We use synthetic
traffic to quantify the minimal requirements for FANcY to properly work
(Section 4.5.1), and CAIDA traces [144] to evaluate the system-wide perfor-
mance on real traffic (Section 4.5.2). Finally, we analytically assess FANcY’s
scalability in terms of traffic overhead (Section 4.5.3).

In our evaluation, we consider a 64-port FANcY switch which is given
the following input: high-priority entries covering the 500 prefixes driving
the most traffic, best-effort entries for all the remaining traffic, and memory
of 1.25 MB (i.e., 20 KB per port). Accordingly, FANcY uses 500 dedicated
counters and a hash-based tree of depth 3, split 2, and width 190.

When evaluating FANcY’s accuracy, we mainly refer to its true positive
rate (TPR), which is defined as the fraction of the correctly identified
failed entries. Hence, the TPR measures FANcY’s ability to detect and
localize failures. We focus on the TPR because the true negatives are the
complement of the true positives in our case, and the false positives (i.e.,
entries detected as failed despite the fact that they are not) do not depend
on traffic conditions. Indeed, the false positive rate (FPR) is always zero for
any dedicated counter. Also, for the hash-based tree, the FPR depends on
the probability that multiple entries are stored in the same leaf node, and
one of them experiences losses; otherwise, it is zero too. This probability is
a function of the tree’s width and depth (as detailed in Section 4.3.3), and it
is very low for reasonably dimensioned trees. In fact, for traffic extracted
from CAIDA traces, the average number of FANcY’s false positives is 1.1
(resp., 0.59) for 100% (resp., 1%) packet loss in the challenging case of 100
entries failing at the same time.

We measure FANcY’s detection speed as the difference between the
time a gray failure is introduced in an experiment and the time FANcY

80 in-network failure detection

localizes it. Note that this is slightly unfair to FANcY as it may have to wait
sometime before a packet affected by the failure is received, especially if the
corresponding entry drives little traffic or the gray failure has a low packet
drop rate per entry.

To show that FANcY works in large ISPs, we set the inter-switch delay to
10 ms in all the experiments. We also experiment with lower link delays,
for which FANcY’s accuracy slightly increases for low-drop scenarios, and
failure localization speeds up. For example, for 1 ms links, detection speed
doubles for dedicated counters, and increases by ⇡ 15% for hash-based
trees.

Experiments in this section are packet-level simulations performed with
ns-3 [139]. Simulated networks are composed of nodes running our software
implementation of FANcY– i.e., ⇡ 8,000 lines of C++ code implementing
a custom ns-3 switch that closely mimics all the data-plane components
(parsers, ingress, egress, metadata fields, etc.) of a P4 switch.

4.5.1 Benchmarking FANcY

First, we experimentally demonstrate that FANcY requires an amount of
traffic per entry which is realistic to assume in ISP networks.

We are especially interested in the minimum amount of traffic needed for
FANcY to detect different types of failures. We, therefore, evaluate FANcY’s
accuracy and speed for synthetically generated traffic of increasing size: in
separate experiments, we generate traffic with a different number of TCP
flows per second and bitrate per flow. All simulated flows have a duration
of ⇡1 second in the absence of losses, and a retransmission timeout of 200
ms. Of course, failures can significantly increase the duration of flows.

Within the first two seconds of each experiment, we simulate a failure
by instructing a switch to drop a certain percentage of packets for some or
all entries. We then run each experiment for 30 seconds. When we do not
detect any failure across all the repetitions of an experiment, we report a
TPR of 0 and a detection time of 30 seconds. We repeat every experiment
10 times, randomly changing flows’ starting and failure times.

In the following, we first consider gray failures affecting a subset of entries
monitored by FANcY, such as in the cases shown in the first row of Table 4.1.
We do so separately for the dedicated counters (Section 4.5.1.1) and the hash-
based tree (Section 4.5.1.2). We then evaluate FANcY’s performance upon

4.5 evaluation 81

100
.0 75.

0
50.

0
10.

0 1.0 0.1

Loss Rate (%)

500Mbps/250

100Mbps/200

50Mbps/150

10Mbps/150

10Mbps/100

1Mbps/100

1Mbps/50

500Kbps/50

500Kbps/25

100Kbps/25

100Kbps/10

50Kbps/10

50Kbps/5

25Kbps/5

25Kbps/2

8Kbps/2

8Kbps/1

4Kbps/1

E
nt

ry
S
iz

e
(t

ot
al

th
ro

u
gh

p
u
t

an
d

fl
ow

s/
s)

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 0.8

1 1 1 1 1 0.5

1 1 1 1 1 0.2

1 1 1 1 1 0.2

1 1 1 1 0.8 0

1 1 1 1 1 0.1

1 1 1 1 1 0

1 1 1 1 1 0

1 1 1 1 0.8 0

1 1 1 1 0.6 0

Avg TPR

100
.0 75.

0
50.

0
10.

0 1.0 0.1

Loss Rate (%)

0.07 0.07 0.07 0.07 0.07 0.07

0.07 0.07 0.07 0.07 0.07 0.17

0.07 0.07 0.07 0.07 0.07 0.25

0.07 0.07 0.07 0.07 0.1 1.5

0.07 0.07 0.07 0.07 0.09 1.4

0.07 0.07 0.07 0.07 0.35 7.2

0.07 0.07 0.07 0.1 0.38 8.6

0.07 0.07 0.07 0.1 0.51 11

0.07 0.08 0.08 0.1 0.43 14

0.1 0.1 0.1 0.21 3.7 17

0.13 0.15 0.16 0.46 1.4 18

0.23 0.22 0.26 0.43 1.6 23

0.19 0.24 0.28 0.52 3.5 30

0.36 0.38 0.41 0.62 4.5 8

0.85 0.65 0.61 1.4 8.2 30

0.85 0.65 0.61 1.4 8.2 30

0.58 0.73 0.87 2.7 7.5 30

1 0.98 0.93 3.7 7.5 30

Avg Detection Time(s)

0.0

0.2

0.4

0.6

0.8

1.0

5

10

15

20

25

30

Figure 4.9: Accuracy and detection speed of dedicated counters for different gray
failures and traffic volumes.

failures affecting all entries (Section 4.5.1.3), such as link-level problems or
bugs exemplified in the second row of Table 4.1.

4.5.1.1 Dedicated counters

We assess the performance of dedicated counters by simulating single-entry
failures only, because those counters work independently of each other.

We first evaluate the impact of the exchange frequency of counters. In
principle, such a frequency may affect FANcY’s accuracy because packet
losses are not detected when counting sessions are opened and closed. Our
simulations, however, indicate that FANcY’s accuracy is not significantly
impacted unless counters are exchanged extremely often. Accuracy results
are indeed very similar whenever counters’ exchange frequency ranges
between 50 and 100 ms. This also means that the counters’ exchange fre-
quency just affects overhead and detection speed: increasing the exchange
frequency speeds up failure detection but increases the overhead. Hereafter,
we report results for a frequency value of 50 ms.

82 in-network failure detection

We now focus on FANcY’s performance for different traffic volumes and
loss rates. Results are depicted in Figure 4.9.

Accuracy. As displayed in the left part of Figure 4.9, FANcY’s dedicated
counters detect almost all gray failures whenever the induced packet drop
rate is �1%, or the affected entries drive at least 500 Kbps of traffic.

Accuracy decreases for very low drop rates (e.g., 0.1%) of entries at-
tracting little traffic (⇡100 Kbps or less). However, this is not an intrinsic
limitation of FANcY, but mostly an artifact of our experiments. Indeed, very
few packets are generated during these experiments, and chances are low
that any packet is dropped if the loss rate is 0.1%. For example, in 80% of
those experiments, no packet is actually dropped during the 30 seconds of
the experiment. Only in the remaining 20% of the cases at least one packet
is dropped. In those latter cases, FANcY fails to detect simulated failures
because packets are dropped while FANcY closes a counting session or
opens a new one. In real deployments, operators can reduce those cases by
decreasing the counters’ exchange frequency, which would trade detection
speed for higher accuracy in very low drop-rate scenarios.

Detection speed. For dedicated counters, we expect a failure to be detected
just after the first post-failure counters’ exchange. The right part of Fig-
ure 4.9 shows that this is the case as long as the failed entries drive enough
traffic (e.g., at least 500 Kbps). In fact, the top-left part of the right heatmap
shows that the average detection time is ⇡70 ms, which is approximately
the counters’ exchange frequency (50 ms) plus counting sessions’ opening
and closing.

Results may look less intuitive in the bottom part of the heatmap, where
the average detection time increases to ⇡600-1000 ms for blackholes, and to
several seconds for lower packet-drop rates. Again, this does not directly
depend on FANcY. Instead, packets affected by a failure tend to appear
sometime after the failure is introduced for low-traffic entries and low drop
rates. For example, if an entry drives one packet per second, on average the
first packet for that entry is received by FANcY 500 ms after the failure is
introduced.

4.5.1.2 Hash-based tree

Contrary to dedicated counters, the performance of hash-based trees gener-
ally depends on the number of entries failing simultaneously. In fact, the

4.5 evaluation 83

100 75 50 10 0.1

Loss Rate (%)

5

10

15

E
n
tr

y
S
iz

e
R

an
k Zooming 10 ms

Zooming 50 ms

Zooming 100 ms

Zooming 200 ms

Figure 4.10: Minimum entry size for which FANcY has a TPR �95% for different
zooming speeds. The y-axis ranks entries according to the traffic
they drive: lower ranks correspond to smaller traffic.

detection of one failed entry may be delayed or even overlooked when
FANcY zooms in the counters for another entry. We therefore evaluate both
single-entry and multi-entry failure scenarios.

As the first step, we need to decide the duration of the counting sessions,
which we denote as zooming speed for brevity. To do so, we measure the
minimum prefix size required to get a TPR of at least 95% when we vary
the loss rate and zooming speed. Results are plotted in Figure 4.10. All
zooming speeds between 10 and 200 ms reach high TPR values, even for low
loss rates (up to 0.1%), as long as the prefixes drive a reasonable amount
of traffic. Additionally, requirements for traffic per entry are very similar
across zooming speeds higher than 50 ms.

We conclude that FANcY’s accuracy is not very sensitive to the tree’s
zooming speed between 50 ms and 200 ms. In the following, we show the
results obtained using 200 ms as zooming speed, as it matches the typical
value of TCP flows’ retransmission timeout. We note that operators can
fine-tune FANcY’s zooming speed according to their specific requirements,
as faster zooming speeds tend to decrease detection time but also increase
overhead.

We now focus on FANcY’s performance, comparing failures affecting
only one entry (Figure 4.11) with those impacting 100 entries at the same
time (Figure 4.12).

84 in-network failure detection

100
.0 75.

0
50.

0
10.

0 1.0 0.1

Loss Rate (%)

500Mbps/250

100Mbps/200

50Mbps/150

10Mbps/150

10Mbps/100

1Mbps/100

1Mbps/50

500Kbps/50

500Kbps/25

100Kbps/25

100Kbps/10

50Kbps/10

50Kbps/5

25Kbps/5

25Kbps/2

8Kbps/2

8Kbps/1

4Kbps/1

E
nt

ry
S
iz

e
(t

ot
al

th
ro

u
gh

p
u
t

an
d

fl
ow

s/
s)

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 0.2

1 1 1 1 1 0.1

1 1 1 1 1 0.1

1 1 1 1 1 0.1

1 1 1 1 0.4 0

1 1 1 1 0.2 0

1 1 1 1 0 0

1 1 1 1 0 0

1 1 1 0.9 0 0

1 1 1 0.2 0 0

1 1 1 0.2 0 0

1 1 1 0.1 0 0

1 1 1 0 0 0

Avg TPR

100
.0 75.

0
50.

0
10.

0 1.0 0.1

Loss Rate (%)

0.68 0.68 0.68 0.68 0.68 0.68

0.68 0.68 0.68 0.68 0.68 0.68

0.68 0.68 0.68 0.68 0.68 0.75

0.68 0.68 0.68 0.68 0.68 4.8

0.68 0.68 0.68 0.68 0.68 5

0.68 0.68 0.68 0.68 1.4 14

0.68 0.68 0.68 0.68 2.3 1.9

0.68 0.68 0.68 0.68 2.4 2.8

0.68 0.68 0.68 0.73 7.3 3.8

0.68 0.68 0.68 0.9 17 30

0.68 0.68 0.73 1.4 14 30

1 0.97 1.1 3.3 30 30

0.68 0.87 0.94 7.4 30 30

1.4 1.3 1.3 8.5 30 30

2.4 2.2 2.5 15 30 30

2.4 2.2 2.5 15 30 30

5.5 3.8 5.4 15 30 30

7.1 5.4 7.6 30 30 30

Avg Detection Time(s)

0.0

0.2

0.4

0.6

0.8

1.0

5

10

15

20

25

30

Figure 4.11: Accuracy and detection speed of FANcY’s hash-based tree for single-
entry failures and different traffic volume.

Accuracy. For single-entry failures, FANcY always identifies the failed
entry as long as the packet loss rate is higher than 10%. For lower loss
rates, FANcY’s accuracy worsens for low-traffic entries. This is a direct
consequence of our design: FANcY fully detects a failure after observing
packet loss in three consecutive counting sessions, which becomes unlikely if
it receives a few failure-affected packets. Indeed, in 97.5% of the experiments
where FANcY fails to detect simulated failures, at no time are packets
dropped during three consecutive counting sessions. We expect entries with
those characteristics to collectively account for a limited percentage of real
ISPs’ traffic (see also Section 4.5.2), which makes this limitation not critical
in real deployments.

For multi-entry failures, TPR values are consistent with those for single-
entry failures, as evident when comparing the left part of Figure 4.12 with
the left part of Figure 4.11. TPR decreases only for very low-traffic entries
(e.g., 4-8 Kbps). For 80% of the runs in which FANcY fails to detect failures,
no packets are dropped during three consecutive counting sessions – with

4.5 evaluation 85

100
.0 75.

0
50.

0
10.

0 1.0 0.1

Loss Rate (%)

200Mbps/200

100Mbps/200

50Mbps/150

10Mbps/150

10Mbps/100

1Mbps/100

1Mbps/50

500Kbps/50

500Kbps/25

100Kbps/25

100Kbps/10

50Kbps/10

50Kbps/5

25Kbps/5

25Kbps/2

8Kbps/2

8Kbps/1

4Kbps/1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 0.45

1 1 1 1 1 0.46

1 1 1 1 0.98 0.02

1 1 1 1 0.73 0.02

1 1 1 1 0.4 0.01

1 1 1 1 0.25 0

1 1 1 1 0.08 0

1 1 1 1 0.03 0

1 1 1 0.89 0.02 0

1 1 1 0.46 0.01 0

1 1 1 0.32 0 0

1 1 0.97 0.05 0 0

1 1 0.97 0.05 0 0

0.84 1 0.62 0.03 0 0

0.8 0.81 0.37 0.01 0 0

Avg TPR

100
.0 75.

0
50.

0
10.

0 1.0 0.1

Loss Rate (%)

5.3 5.7 5.7 5.7 5.7 5.6

5.2 5.7 5.7 5.7 5.7 5.7

5.2 5.7 5.6 5.6 5.7 6.8

5.3 5.7 5.7 5.6 5.7 15

5.3 5.7 5.6 5.6 5.7 15

5.3 5.7 5.7 5.7 14 15

5.3 5.7 5.7 5.7 15 17

5.2 5.7 5.7 5.7 15 22

5.2 5.7 5.7 5.8 15 19

5.3 5.7 5.7 7.2 16 30

5.2 5.8 5.8 13 13 30

5.5 5.8 6 15 19 30

5.9 6 6.5 15 18 30

6.4 6.3 7.2 14 17 30

11 10 15 13 12 30

11 10 15 14 12 30

17 15 16 15 30 30

18 17 15 14 20 30

Avg Detection Time(s)

0.0

0.2

0.4

0.6

0.8

1.0

10

15

20

25

30

Figure 4.12: Accuracy and detection speed of FANcY’s hash-based tree for 100-
entry failures and different traffic volume.

packets lost while FANcY zooms in another entry in the remaining 20% of
the experiments. Again, we expect entries attracting so little traffic to be
not critical for ISPs. Those results thus suggest that FANcY’s trees should
be able to cover the practically relevant entries in ISPs’ switches, even for
failures simultaneously affecting a hundred entries.

Detection speed. FANcY is fast to detect failures of single entries with a
reasonable amount of traffic and high loss rates: as shown by the right part
of Figure 4.11, single-entry failures are typically detected in 680 ms, which
roughly matches the lower bound of three times the selected zooming speed
(i.e., 200 ms). FANcY detection slows down lower-traffic entries and low
loss rates: for example, it changes from sub-second to a few seconds for
single entries attracting 50 Kbps of traffic.

Increasing the number of failed entries has a more significant impact than
the entry size. For 100-entry failures, the average detection time increases
from 600 ms to about 5.3-5.7 seconds for high-loss high-traffic entries. This
increase is motivated by the fact that FANcY zooms in a limited number of
counters in each counting session – e.g., one root-level counter per session.

86 in-network failure detection

This choice enables FANcY to scale, but intrinsically degrades detection
speed for many-entry failures, which we believe are relatively uncommon.
We also stress that for all the scenarios where FANcY has high accuracy,
the detection speed remains around 5-10 seconds, which is significantly
much faster than the days or weeks currently needed by most operators.

4.5.1.3 Uniform failures.

We finally simulate failures affecting all entries simultaneously, such as
random packet losses over a link, or bugs affecting all IP prefixes in Table 4.1.
To be realistic, we simulate a network with 100 Gbps links, and assign traffic
to entries mimicking a Zipf distribution. We experiment with packet loss
rates per entry between 100% and 0.1%.

In all our experiments, FANcY detects the introduced failures and cor-
rectly identifies them as uniform random drops. Its average detection
time matches one zooming interval (200 ms). This is consistent with the
procedure used in FANcY to detect uniform failures, which is based on
checking if the majority of root-level counters in the hash-based tree have
mismatching values (as detailed in Section 4.3).

4.5.2 FANcY on real traffic traces

We now evaluate FANcY on CAIDA traces. The goal is to assess the traffic
coverage provided by the whole system, combining the dedicated counters
and hash-based tree, when traffic per entry follows a realistic distribution.

For that, we selected four different traces captured on different links and
days. Further, we made sure that the selected traces exhibit different traffic
conditions such as bit rate, packet rate, flow rate and even average packet
size. Table 4.3 lists them and some of their characteristics.

4.5
eva

lua
tio

n
87

ID Link Date Bit Rate Packet rate Flow rate Trace Size Duration

1 caida-equinix-chicago.dirB 19-06-2014 6.25 Gbps 759.1 Kpps 28.3 Kfps 163 GB 3719 s

2 caida-equinix-nyc.dirA 19-04-2018 3.86 Gbps 557 Kpps 26.4 Kfps 125 GB 3719 s

3 caida-equinix-nyc.dirB 16-08-2018 5.79 Gbps 2.03 Mpps 104.5 Kfps 465 GB 3719 s

4 caida-equinix-nyc.dirB 17-01-2019 4.72 Gbps 1.56 Mpps 90.7 Kfps 345 GB 3720 s

Total 1.1 TB 4.1 h

Table 4.3: List of CAIDA traces [144] that we use to evaluate FANcY.

88 in-network failure detection

We stress that CAIDA traces constitute a challenging test for FANcY that
we do not expect to be matched in real ISPs, for two reasons. First, the overall
traffic rate (4-6 Gbps) in CAIDA traces is two orders of magnitude lower
than typical rates in ISPs’ links. Second, we assume that FANcY switches
hold one forwarding entry for each /24 prefix observed in the trace (on
average ⇡250K), because IP addresses in the traces are anonymized at the
/24 prefix granularity [145]. However, this assumption artificially inflates
the number of entries with little traffic, which are exactly the ones more
challenging for FANcY (see Section 4.5.1). As a reference, ⇡ 60% (versus
the 100% in our experiments) of the prefixes currently advertised on the
Internet are /24s, according to public BGP data [146].

We rely on CAIDA traces because we are not aware of better publicly
available ISP traffic traces. We however expect that in current ISPs and
even more in future ones, FANcY’s performance will be better than the
already good results it achieves in the below experiments because FANcY’s
accuracy and speed generally improve with higher traffic per entry – see
also Section 4.5.1.

Methodology. For each CAIDA trace, we assign a dedicated counter to
each of the 500 prefixes with the most bytes during the entire trace (1h),
mimicking an allocation based on historical data. Then, we randomly select
a 30-second slice from each trace. Note that the prefixes carrying more
traffic during each slice do not generally coincide with those covered by
dedicated counters.

We then implement a traffic generator that closely reproduces any input
slice. In the absence of failures, the generator re-injects all the packets
of each flow exactly when they appear in the slice, preserving the bit
rate, packet rate, and RTT of flows. The generator relies on ns-3’s TCP
implementation, enabling us to run closed-loop experiments, with TCP
sources reacting to packet losses.

We use each slice to perform experiments simulating the failure of the
top 10,000 prefixes (which carry � 95% amount of the total traffic in the
entire trace), one by one, at a random time. For each prefix and loss rate, we
repeat the experiment 3 times, with the time of the failure changing in each
repetition. As for the simulations in Section 4.5.1, there is no guarantee that
packets for the failed entries are actually dropped within the duration of
the experiment, especially for low drop rates.

4.5
eva

lua
tio

n
89

Loss
TPR Bytes TPR Prefixes Detection Time

Rate Total Dedicated Hash-Tree Total Dedicated Hash-Tree Top 1K Top 5K Total Top 1K Top 5K

100% 91.3% 57.1% 34.2% 84.5% 100% 83.6% 89.2% 87.8% 2.03 s 0.67 s 1.38 s

75% 96.0% 57.1% 38.9% 90.9% 100% 90.3% 95% 94% 2.59 s 0.86 s 1.78 s

50% 98.7% 57.1% 41.5% 93.1% 100% 92.6% 98.3% 97.3% 2.65 s 0.81 s 1.86 s

10% 96.5% 57.1% 39.4% 72.8% 100% 71% 97.6% 85.9% 4.96 s 0.73 s 3.48 s

1% 77.5% 57.1% 20.4% 19.5% 98.9% 14.7% 85.4% 33.4% 8.91 s 4.19 s 8.49 s

0.1% 56.6% 55.9% 5.30% 5% 86.7% 0.1% 39.6% 0.084% 6.29 s 6.13 s 6.29 s

Table 4.4: Average accuracy and detection speed of FANcY over four CAIDA traces (See Table 4.3 for more information on
the used traces).

90 in-network failure detection

FANcY’s performance. As shown in Table 4.4, FANcY detects between
91.3% and 98.7% of affected bytes in 2-5 seconds when the loss rate is
�10%. For the same failure scenarios, the TPR in terms of detected entries
is 72.8%-93.1%, a bit lower than the TPR in terms of bytes: this happens
because traffic per prefix is very skewed in CAIDA traces.

For loss rates 1%, FANcY’s accuracy is significantly impacted (5%-
19.5%), mainly because the hash-based tree’s TPR decreases sharply, in line
with the results presented in Section 4.5.1. The main reason for those low
TPR rates is the lack of packet drops during three consecutive counting
sessions, which directly prevents FANcY’s failure detection in ⇡80% (resp.,
>99.8%) of the experiments with a loss rate of 1% (resp., 0.1%). Those
results further stress the importance of the hash-based tree in our design:
FANcY covers only 56.6% of the bytes affected by failures when the tree’s
TPR is close to zero versus ⇡ 99% when the tree’s TPR is high.

It may seem surprising that FANcY does not perform at best when traffic
is blackholed (100% loss rate). This is because FANcY measures packet loss
on the observed traffic, and a hard failure immediately slows down all the
TCP flows, reducing all affected traffic to just retransmissions. Namely, for
each flow, FANcY receives the first retransmission after the expiration of the
TCP retransmission timeout (typically 200 ms), and further retransmissions
at exponentially increasing times. In other words, TCP congestion control
makes it more likely for FANcY not to receive packets for the failed entries
in three consecutive counting sessions, thus reducing the tree’s TPR. In
contrast, FANcY performs very well when the loss rate is around 50%,
where TCP reduces the flow rate much less significantly and less abruptly.

Comparison to baselines. We compare FANcY’s results with the simpler de-
signs outlined in Section 4.1.4: a single counter per link, and one dedicated
counter for each prefix.

Both designs achieve a slightly higher accuracy than FANcY: their TPR
for prefixes is ⇡97-99.6% for a loss rate �10%, ⇡84% for a loss rate of
1%, and ⇡35% for a loss rate of 0.1%. Their accuracy is not 100% because
switches may not receive traffic for the failed entries before our experiments
terminate, and may not detect packet losses when exchanging counters.

However, a single counter cannot localize any failure; the number of false
positives in each experiment is the total number of prefixes minus the failed
ones – i.e., ⇡250K. In contrast, the solution with one dedicated counter per

4.5 evaluation 91

entry has zero false positives, but it requires 320 MB (including support
for the counting protocol) versus the 1.25 MB consumed by FANcY in
total. Note that the memory required by one dedicated counter per entry is
expected to be ⇡4 times in real ISPs holding the full BGP table (i.e., ⇡900K
prefixes).

We then consider two additional alternatives compatible with FANcY’s
memory usage. The first alternative is to allocate only dedicated counters
but without exceeding FANcY’s memory budget. With 1.25 MB, we can
allocate a maximum of 1,024 dedicated entries per port. This approach
is accurate and fast for the covered prefixes, but detects no failure for
any of the remaining ⇡249K ones, which carry ⇡40% of the traffic in the
considered CAIDA traces. As the second alternative, we consider allocating
all the memory to a counting Bloom filter. The TPR of such a Bloom filter
is largely consistent with the single-counter approach. However, for each
detected single-entry failure, the Bloom filter reports ⇡100 false positives
versus the ⇡0.03 of FANcY. Once again, we expect that the number of false
positives for the Bloom filter solution to be much higher in real ISPs, where
switches typically hold significantly bigger routing tables.

Takeaways. Our results confirm FANcY’s ability to detect different types of
gray failures, covering the vast majority of the real-world traffic, while also
achieving a much better trade-off between accuracy, speed, and scalability
than simple designs.

We expect FANcY to perform significantly better when deployed in actual
ISPs. Indeed, CAIDA traces contain unrealistically low traffic per entry with
respect to current and future ISP settings – a condition unfavorable to
FANcY as already demonstrated in Section 4.5.1.

Results in this section are consistent with those for synthetic, non-bursty
traffic, described in Section 4.5.1. They also provide consistent indications
on the limits of FANcY: tiny failures of entries driving little traffic tend to
be very hard to detect with hash-based trees. If operators want to protect
specific entries from low loss rates, one option within FANcY’s design is to
specify them as high-priority entries in the FANcY’s input.

92 in-network failure detection

4.5.3 Overhead analysis

We now show that FANcY’s overhead is minimal on ISP-scale links. In
FANcY, we have two overhead components: control packets (including
counters) and packet tags added by FANcY switches.

We first consider the overhead of control packets. For dedicated counters,
FANcY sends five minimum-size packets (e.g., 64 B Ethernet frames) for
each link and each counting session. With 500 dedicated counters exchanged
every 50 ms on a 10 ms delay link, FANcY uses ⇡0.014% of a 100 Gbps link’s
capacity. For hash-based trees, FANcY also exchanges five control packets,
including the hash-tree counter that carries 5320 B in the pipelined version
of the zooming algorithm. The resulting traffic overhead is ⇡0.00017% on
100 Gbps links for a zooming speed of 200 ms.

To tag packets, FANcY needs 2 bytes to specify the counter ID on each
packet matched by a dedicated counter. The same amount of bytes are
added to packets counted in the hash-based tree, where one byte encodes
the hash path of the tree’s node, and the other identifies the counter within
the node. The tagging overhead is therefore 0.13% on a 1,500 B packet. Note
that tags can also be encoded in unused header fields, which would lead to
zero overhead.

4.6 tofino made fancy

In this section, we first introduce FANcY’s hardware implementation. Our
implementation of FANcY is composed of ⇡3200 lines of P4 code running
on a first-generation Intel Tofino switch [18] with 32 ports. Second, we give
an overview of the hardware resource utilization and detail the amount of
memory consumed by each key component of our implementation. Finally,
throughout a case study we show how FANcY can detect failures and react
to them only using data plane logic.

4.6 tofino made fancy 93

4.6.1 Hardware implementation

We first describe our implementation of the state machines, and then we
focus on how we support hash-based trees.

State machines. While implementing each state is relatively simple (i.e.,
storing a state ID and possible counters in registers), supporting state
transitions is not. In programmable switches such as Intel Tofino, state is
maintained using registers. In Intel Tofino switches, register memory is
local to a pipeline stage. Therefore, it can only be accessed once as it crosses
the pipeline [147]. Furthermore, read and write operations on register
memory are performed in one operation, with a very limited update logic
(i.e., you cannot write complex update operations that depend on the read
value). This limitation makes the implementation of state machines quite
challenging as it requires us to read state, do relatively complex operations
and then update the state in a single step. To address this limitation, we
implemented a novel two-step approach.

The first step only triggers the state transition and is based on a match-
action table, called next_state table. This table defines all the possible state
transitions. When a FANcY switch receives a packet, it reads the current
state from a register and matches the packet against the next_state table, if a
transition needs to be made, The switch logic will (i) write in the state_lock
register, in order to avoid additional transitions while the state is being
updated, (ii) store all the information needed to update the state in the
current packet’s metadata, and (iii) force the packet to cross the pipeline
again to perform the state update.3

The second step actually performs the transition. The recirculated packet
updates the stored state ID, resets the state counters (e.g., timers), and
releases the state_lock. Based on prior and next states information in its
metadata, the packet also triggers a transition-specific action: either drops
the packet, performs a computation, or transforms it into a control message
(ACK, STOP, etc.) to send out. A final note concerns time-based transitions
(e.g., timers). Since time-based events are not supported by current switches,

3 For technical reason, we resubmit packets in ingress FSMs and clone packets in egress FSMs
(making sure we remove unneeded clones)

94 in-network failure detection

we approximate them using traffic and packet counts. In the absence of
traffic, the internal traffic generator can be used.

Hash-based tree and zooming algorithm. We implement the hash-based
tree (depth 3 and split 1) by using four register arrays. One register array,
which we call node register, stores actual nodes of all the trees kept by the
switch (i.e., one per port). The other three register arrays store metadata
to support the zooming algorithm: for each tree, the zooming stage register
array keeps information on the depth we are currently zooming in, the
max0 register indicates the counter at layer zero we are zooming in, and the
max1 register stores the same information but for the counter at layer one.
The procedure to update counters in any tree T of width w is implemented
as follows. Each incoming packet is hashed according to one hash function
per tree’s level. We then decide if the node register has to be updated by
checking whether the zooming stage register for T is 0 (i.e., we always update
counters when not zooming), or comparing the result of the packet’s H0
with max0 (if the zooming stage register for T is 1) and packet’s H0, H1 with
max0 and max1 (if the zooming stage register for T is 2). If the node register
has to be updated, we increase the counter at the address (Hi mod w + o),
where i is the value stored in the zooming stage register for T and o is the
port offset that identifies T within the node register.

In addition to increasing packet counters, we also support two other
operations. First, the downstream switch sends all T’s counters in the node
register to the upstream at the end of each counting session. Since register
arrays can be accessed only once per packet, we recirculate packets w times
to read all such counters from the node register.

Second, the upstream switch compares local counters in T with those
reported from downstream switches. Again, since only one register can
be read for each packet, we recirculate packets w times to compare the
counters one by one. If the zooming stage register for T is 2, we simply
report (to our reroute app or externally) all the counters with mismatching
values. Otherwise, if the zooming stage register for T is 0 or 1, we need
to compute the counter in T’s node register with the biggest difference of
values between upstream and downstream. We do so by storing the current
maximum difference and counter index in a custom header of the packet
that we recirculate. After all the counters in T’s node register are compared,
we finally copy the counter index in the recirculated packet’s metadata to
either max0 or max1 (depending on the current value in the zooming stage
register) and increase the zooming stage register by one modulo three.

4.6 tofino made fancy 95

Dedicated Full FANcY +

Resource Counters FANcY Rerouting switch.p4

SRAM 4.80% 6.65% 8.1% 29.58%

Statefu ALU 16.66% 27.08% 33.33% 14.58%

VLIW Actions 9.4% 14.1% 15.6% 36.72%

TCAM 1.4% 2.1% 2.1% 32.29%

Hash bits 5.8% 11.8% 13.1% 34.74%

Ternary Xbar 1.8% 3.10% 3.10% 43.18%

Exact Xbar 5.1% 10.8% 12.3% 29.36%

Table 4.5: Hardware resource usage of FANcY compared to the baseline
switch.p4 on a 32-port Intel Tofino switch.

4.6.2 Hardware resources and memory usage

In the following section, we give an overview of the hardware resources
used by FANcY on an Intel Tofino switch. Further, we detail how much
SRAM is used by each component of our design.

Table 4.5 summarizes the resource usage of FANcY, using switch.p4 as
a baseline. Overall, FANcY uses a modest amount of hardware resources,
including only 6.65% of SRAM (8.1% with rerouting). Stateful ALUs are
the only resource that FANcY uses more than switch.p4: this is because
FANcY performs several stateful operations to support counters and the
counter exchange protocol. For more details about SALUs usage read below.
Note that SRAM is the only resource that increases when FANcY is given a
higher memory budget and then uses more dedicated counters or larger
trees.

FANcY scales and fits very well in current hardware switches. We now
detail the resources needed for each component in a 32-port Tofino switch.
Note that the software and hardware implementations use the same data
structures, however the hardware implementation runs non-pipelined hash-
based trees, which heavily reduces the memory consumption. For more
details on memory utilization for any type of hash-based tree, see Sec 4.3.3.3.

State machines. Each state machine uses three registers (at ingress and
egress): State counter (or timer), current state, and state lock, 32, 8, and
8 bits, respectively. We need one array cell in each of those registers for

96 in-network failure detection

each sub-state machine used by either dedicated counters or a hash-tree.
For each state machine pair, FANcY needs (32 + 8 + 8) · 2 = 96 bits. If
we want to have 512 state machines per port in a 32-port switch, we need
96 · 512 · 32 = 192 KB.

Dedicated counters. Each entry covered by dedicated counters requires one
pair of 32-bit registers to count packets in each direction, 32 · 2 = 64 bits per
entry per switch. Our implementation of FANcY includes 512 dedicated
counters per port. The memory consumption of those counters in a 32-port
switch is therefore 64 · 512 · 32 = 128 KB.

Hash-based tree and zooming algorithm. Supporting any hash-based
tree requires five registers in total. First, we need the two 32-bit registers
where we will store tree’s nodes. Then, at the egress pipe, we have three
registers used by the zooming algorithm; zooming stage, max0 and max1,
8, 16, and 16 bits, respectively. Since we implement a hash-tree zooming
algorithm without split and pipelining, we can reuse the same memory
cells for each tree layer, considerably reducing the memory needed. The
hash-based trees in our implementation have width w = 190. Each of them
therefore needs 32 · 2 · 190 = 12160 bits per port for the counters, and
8 + 16 + 16 = 40 bits to keep zooming state. In total, for a 32-port switch
we need (12160 + 40) · 32 = 47.6 KB.

Rerouting. Supporting the rerouting logic also needs some switch memory.
We use 3 registers (all at the ingress) for that: one for dedicated counter
entries and one for failures detected with the hash-based tree. For dedicated
counter entries, we use a 1-bit wide array, thus we need 1 bit per entry and
port. For 512 entries and 32 ports, we need 2 KB. For failures detected via
the hash-based tree, we additionally need to use a Bloom filter implemented
as two 1-bit registers of 100K cells. The memory used for the rerouting is
26.4 KB.

Total memory. For a 32 port switch, with 512 dedicated counter entries, one
hash-based tree of width 190 per port and depth 3 is 367.6 KB (394 KB with
rerouting).

4.6.3 Case study: fine-grained fast rerouting

As a case study, we build an application on top of FANcY that reroutes
packets as soon as the corresponding counters are flagged as mismatching

4.6 tofino made fancy 97

FANcY
Switch

Link
Switch

Traffic
Sender

Traffic
Receiver

port1

port4 port2

port3

port5

port1

port2

port3

main link

return link

reroute
backup link

E

Figure 4.13: Case study topology with two Tofino switches, one running FANcY
sender and receiver pipelines, and the other acting as a middle
switch to simulate gray failures.

by FANcY (see Section 4.3.4). Note that simply rerouting might not be
enough to fix some of the problems shown in Table 4.1. However, it might
be enough for inter-switch gray failures caused by faulty links. We now
detail our experiments with this application.

Setup. Figure 4.13 illustrates the case study setup. We use two servers, a
sender and a receiver, and two Wedge 100BF-32X [18] Intel Tofino switches.
The servers are equipped with Intel Xeon E5-2670 v3 2.30GHz CPUs, 256
GB of RAM, and a Mellanox ConnectX-5 100 Gbps NIC.

We connect each server to the Tofino switch that runs FANcY. The
sender server generates TCP flows for a total of 50 Gbps of traffic, and
50 Mbps of UDP traffic. For each port, the FANcY switch maintains 500
dedicated counters, and implements a hash-based tree of depth 3, split 1,
and width 190. Dedicated counters are exchanged every 200 ms, and the
zooming speed for the tree is set to ⇡200 ms. We run separate experiments
for prefixes mapped to dedicated counters, and for those covered by the
hash-based tree.

We use the second Tofino switch as a link switch connecting two ports of
the FANcY switch. After 2 seconds from the start of each experiment, we
instruct the link switch to drop 1%, 10%, or 100% of the packets (in different
experiments). We also deploy a third link between the FANcY switch and
the link switch, to provide the former with a backup next-hop.

Experimental results. Figure 4.14 shows the traffic throughput as measured
in our experiments. In each experiment, the FANcY switch always detects
the failure event less than one second after it is introduced, even when the

98 in-network failure detection

0 1 2 3 4 5
0

25

50

Dedicated entry
Loss 100%

Loss 10%

Loss 1%

0 1 2 3 4 5
0

25

50

Hash-based entry
Loss 100%

Loss 10%

Loss 1%

Time (s)

B
an

d
w

id
th

(G
b
it
s/

se
c)

Figure 4.14: Case study using our FANcY implementation on a Tofino switch:
FANcY detects gray failures even when affecting only 1% of the
packets per entry, and reroutes the traffic only for the affected entries
in less than one second.

drop rate is only 1%, and the affected traffic is monitored by the hash-based
tree. As expected, the detection time is proportional to three times the
zooming speed (here, 3 ⇥ 200 ms) when failures affect entries covered
by the hash-based tree. On the other hand, dedicated counters ensure a
predictable detection time, which depends only on the counting session
duration (250 ms). Note that we have used a relatively higher counting
session duration than the one used during the evaluation (50 ms) so that
the impact of the failure is noticeable in the plot.

4.7 conclusion

In this chapter, we introduced FANcY, a data-plane system designed to
detect intra-domain gray failures within Internet Service Providers (ISPs).
FANcY enables programmable switches to synchronize counters in a way
that is both reliable and scalable, all without the need for direct control
plane intervention. FANcY’s hybrid counter-based approach complements
pre-existing failure detection systems, which are effective in data center
networks, but present limitations with the high-traffic volumes and link
delays typical of ISPs.

Although FANcY focuses on detecting and reporting (but not directly
fixing) failures, its interface enables future applications such as selective fast

4.7 conclusion 99

rerouting or root cause analyses. As a feasibility proof, we implemented and
made an open prototype of FANcY in a commercial Tofino 1 switch, and
demonstrated how our implementation enables sub-second fast rerouting
around gray failures.

Our evaluation shows that FANcY can detect and localize gray failures
quickly and accurately in ISP settings, except those that induce few, sporadic
packet losses per entry – as expected, since FANcY is a data-driven system.

It’s important to note that FANcY’s performance actually improves with
increasing traffic volumes, thereby affirming its future-proof design.

5
H A R D WA R E - A C C E L E R AT E D N E T W O R K C O N T R O L
P L A N E S

In the previous chapters of this dissertation, we conducted a comprehensive
study of network failures, focusing on gray failures within ISP networks.
Our research highlighted gray failures as a significant issue affecting Inter-
net users, for which network operators lack efficient solutions. We intro-
duced a novel technique utilizing advances in programmable data planes,
demonstrating how in-network programmability can facilitate effective and
efficient detection algorithms that operate on all traffic at line rate.

In this chapter, we go one step further and explore the potential and bene-
fits of accelerating the network control plane by offloading some of its tasks
directly to network hardware. With FANcY, we have demonstrated how pro-
grammable data planes are an excellent technology that can help improve
network monitoring. In this chapter, we show that programmable data
planes are also powerful enough to run key control plane tasks, including
notification, connectivity retrieval, and even policy-based routing protocols.
We implement a prototype of such “hardware-accelerated” control plane
functions in P4 and illustrate its benefits through a case study.

Despite such benefits, we acknowledge that offloading tasks to hardware
is not a silver bullet. We discuss its trade-offs and limitations, and outline
future research directions towards hardware-software codesign of network
control planes.

As the “brain” of the network, the control plane is one of its most
important components. Among other things, a traditional control plane is
responsible for sensing the status of the network (e.g., which links are up
or which links are overloaded), computing the best paths along which to
guide traffic, and updating the underlying data plane accordingly. To do so,
the control plane comprises many dynamic and interacting processes (e.g.,
routing, management and accounting protocols) whose operation must
scale to large networks. In contrast, the traditional data plane is “only”
responsible for forwarding traffic according to the control plane decisions,
albeit as fast as possible.

101

102 hardware-accelerated network control planes

These fundamental differences lead to very different design philoso-
phies. Given the relative simplicity of the data plane and the “need for
speed,” it is typically entirely implemented in hardware. That said, software-
based implementations of data planes are also commonly found (e.g.,
OpenVSwitch [51]) together with hybrid software-hardware ones (e.g.,
CacheFlow [148]). In short, data plane implementations cover the entire
implementation spectrum, from pure software to pure hardware. In con-
trast, there is much less diversity in control plane implementations. The
sheer complexity of the control plane tasks (e.g., performing routing com-
putations) together with the need to update them relatively frequently (e.g.,
to support new protocols and features) indeed calls for software-based
implementations, with only a few key tasks (e.g., detecting physical fail-
ures, activating backup forwarding state) being (sometimes) offloaded to
hardware [149, 150].

We argue, however, that a number of recent developments are creating
both the need and opportunity for rethinking basic design and implementa-
tion choices of network control planes.

Need. There is a growing need for faster, more scalable, and yet more
powerful control planes. Nowadays, even beefed-up and highly optimized
software control planes can only process thousands of (BGP) control plane
messages per second [151] and can take minutes to converge upon large
failures [152, 153]. Parallelizing only marginally helps: for instance, the BGP
specification [154] mandates to lock all Adj-RIBs-In before proceeding with
the best-path calculation, essentially preventing the parallel execution of
best path computations. A concrete risk is that convergence time will keep
increasing with the network size and the number of Internet destinations.
At the same time, recent research has repeatedly shown the performance
benefits of controlling networks with extremely tight control loops, among
others to handle congestion (e.g., [38, 39, 155]).

Opportunity. Modern programmable switches (e.g., [156]) can perform
complex stateful computations on billions of packets per second [19]. Run-
ning (pieces of) the control plane at such speeds would lead to almost
“instantaneous” convergence, leaving the propagation time of the messages
as the primary bottleneck. Besides speed, offloading control plane tasks
to hardware would also help by making them traffic-aware. For instance,
it enables updating forwarding entries consistently with real-time traffic
volumes rather than in a random order. Furthermore, as shown in the
previous chapter, tasks like monitoring, traditionally implemented in the

hardware-accelerated network control planes 103

control plane, considerably benefit from running directly within the data
plane.

Research questions. Given the opportunity and the need, we argue that it is
time to revisit the control plane’s design and implementation by considering
the problem of offloading parts of it to hardware. This redesign opens the
door to multiple research questions including: Which pieces of the control
plane should be offloaded? What are the benefits? and How can we overcome
the fundamental hardware limitations? These fundamental limitations come
mainly from the very limited instruction set (e.g., no floating point) and the
memory available (i.e., around tens of megabytes [19]) of programmable
network hardware. We start to answer these questions in this paper and
make two contributions.

First, we illustrate that programmable switches are powerful enough to
run control plane tasks beyond failure detection directly in hardware. Specif-
ically, we implement a working prototype of a hardware-accelerated control
plane in P4 [157]. Our approach enables P4-enabled switches’ hardware to
perform the following tasks, autonomously and at line rate: (i) detect hard,
gray and remote failures; (ii) run distributed path-vector computations that
support both shortest-path and BGP-like policies; and (iii) directly update
the forwarding state.

Our implementation compensates for the computation and memory limi-
tations with additional packet exchanges. For example, during path com-
putations, each switch only stores the best path, forgetting its alternatives.
This implies that more packets have to be exchanged upon configuration
or topological changes. Yet, this only induces a marginal cost for hardware
implementations, as packet processing takes nanoseconds [158].

Second, we discuss the pros and cons of offloading control plane tasks
to hardware. Based on this analysis, we sketch a research agenda centered
around the investigation of a software-hardware codesign approach to
network control planes, aimed at systematically exploring the trade-offs of
running tasks in software, hardware, or a combination of the two.

Our observations complement recent proposals on hardware offloading
for network monitoring tasks [159–161], congestion control [162], coordina-
tion services [163], consensus algorithms [164, 165], and application-level
caching [19, 158]. A few proposals, like DDC [166], have also shown how
to offload specific functions to the data plane, such as maintaining connec-

104 hardware-accelerated network control planes

tivity. We expand on this intuition, considering any control plane task as a
candidate for hardware offloading.

Overall, we think that offloading control plane tasks to hardware has the
potential to radically change the way networks are designed in the future.

5.1 hardware-based control plane

Networks are organized around two planes: the control plane and the
data plane. The Control Plane (CP) is the “brain” of the network and is
responsible for computing forwarding paths. It can be either logically-
centralized, as in SDN networks, or distributed, as in “traditional networks”
running distributed protocols (IGP, BGP, etc.). The role of the Data Plane
(DP) is simply to forward traffic (as fast as possible) according to the
CP decisions. While the DP can be implemented in either hardware or
software, the CP is typically implemented in software and involves three
main processes:

1. Sensing: The CP monitors the network topology and configuration, in
order to detect changes (e.g., link failures) that may require adapting
the forwarding state.

2. Notification: When detecting a change, the CP notifies the path com-
putation component. If the CP is logically centralized [49], the central
controller is notified. If the CP is distributed, all the network nodes
must be notified about the change.

3. Computation: When becoming aware of a topological change, the
routing component of the CP recomputes the forwarding paths. Once
new paths are computed, the CP updates the data-plane.

In this section, we show that each step can run directly in hardware,
paving the way for hardware-based CPs.

We use the 4-switches network of Figure 5.1 as visual support. The figure
illustrates how a hardware-based CP senses and retrieves connectivity upon
a partial link failure occurring between switches B and C.

5.1
h

a
rd

w
a

re-ba
sed

co
n

tro
l

pla
n

e
105

1
2
2

destination

#received & forwarded packets run #1

B C

start
counting

stop
run #1

traffic

3
2
2

detection state
stored in registers

#sent packets
run #1

Sensing
C detects a gray failure on B, C A B C D

1

0output port

• Ø

destination

cost

path

0 [A] data-plane generated
path-vector

Notification
C notifies D of the failure

50

· · ·

A 10

C 1

prefix to
index

link
cost

statically
configured

150 • [A B C]

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

port cost path

forwarding state
stored in registers

050 10 [A D]

dynamically
computed

Computation
D computes an alternative path via A

Figure 5.1: Despite being limited in terms of computation logic and memory, programmable data planes are powerful
enough to run key control plane tasks enabling them to compute forwarding state entirely on their own.

106 hardware-accelerated network control planes

5.1.1 Hardware-based sensing

As shown in Section 3.2.1, some forms of hardware-based sensing are
already available today. Existing approaches rely on either monitoring
properties of the physical medium (e.g., loss of light in an optical fiber) or
running the Bidirectional Forwarding Detection (BFD) protocol [149]. BFD
sends small echo packets every x ms (50 ms by default [167]) and generates
an alert if more than k packets have not been received.

Challenges. Existing hardware sensing schemes can only detect local hard
failures, such as a link or a node failing within a network domain. However,
these sensing systems fail at detecting gray and remote failures. Gray fail-
ures, which are partial and affect only a subset of the traffic (e.g., packets
matching a specific forwarding entry [11]), present a unique challenge. De-
tecting gray failures requires them to be exerted by actual traffic, preventing
simple hardware hello-based mechanisms from working.

Remote failures, which occur beyond our immediate network domain,
pose a substantial challenge. The slow convergence time associated with
these failures, often exceeding 30 seconds [153], is a consequence of the
control-plane-driven process, which requires the propagation of BGP up-
dates on a per-router and per-prefix basis. Although previous work, such
as Swift [153] has sought to reduce this convergence time by predicting the
extent of a remote failure from only a few BGP updates, the propagation
of the first BGP update post-failure can still take up to minutes [3]. This
control-plane-induced delay highlights the critical need for an innovative
solution capable of detecting such failures directly from data-plane signals.

Our approach. A simple solution would be to generalize the concept of
BFD to detect both hard and gray failures, in hardware. That could be
achieved by programming adjacent switches to “acknowledge” the data-
plane traffic that they exchange, rather than BFD hello packets. While this
may seem excessive, acknowledgments only need to contain enough header
information to identify the rule being touched by the packet (e.g., the 32-
bit destination prefix). Assuming 32-bit acknowledgments,1 the overhead
would be 267 Mbps for 100 Gbps of traffic with 1500 bytes packet. With
minimal-size packets (64 bytes), the same volume of traffic would require
6.25 Gbps of acknowledgments.

1 Here, we consider the use of protocol-independent switches which do not mandate the use of
an Ethernet header.

5.1 hardware-based control plane 107

To avoid acknowledging every single packet, we propose a scheme in
which switches synchronously exchange packet counts processed by any
given forwarding rule. Specifically, an upstream switch instructs a down-
stream switch to start and stop counting packets matching a given forward-
ing rule. When receiving the stop signal, the downstream switch sends the
counter back to its upstream which compares it with its own packet count.
This process is illustrated in Figure 5.1 (left), where C, the upstream switch,
sends packets to B. The different counter values for the red destination
indicate a gray failure which is reported by C network-wide.

Although effective, this relatively simple packet-counting approach can
only be used when the number of forwarding entries to monitor is relatively
small, due to hardware resource constraints. To address this scalability issue
for local failure detection, we utilize FANcY, as introduced in Chapter 4.3.
FANcY offers a scalable hybrid solution by incorporating dedicated coun-
ters for high-priority monitoring needs while aggregating other entries in
a hash-based tree data structure. This approach allows for efficient mon-
itoring without the limitations imposed by current hardware, adapting
dynamically to the network-wide range of monitoring needs.

We integrate Blink [3]2 into our data-plane sensing design to detect
remote failures. Blink is a data-driven system that leverages data-plane
signals, specifically TCP flows, for remote failure detection, as opposed to
slower control-plane ones. Blink is based on the observation that, follow-
ing a failure, TCP clients retransmit packets with the same SEQ number
repeatedly following an exponential backoff. When aggregated across mul-
tiple flows, such a pattern provides a strong signal indicative of a failure.
By deploying Blink at the network’s edge, our hardware-based sensing
framework can detect and recover from remote failures before receiving the
regular control-plane signals (i.e., BGP withdrawals), thereby reducing the
recovery time from potentially minutes to sub-second intervals.

5.1.2 Hardware-based notification

We take inspiration from the simplest, least memory-consuming routing
protocols, and implement a broadcasting notification mechanism in hard-
ware. As shown in Figure 5.1, notifications correspond to the generation
of path-vector messages. Those messages are also used during the path

2 The Blink project is part of this thesis. Although the author made a substantial contribution
and is credited as a co-author, he was not the lead researcher

108 hardware-accelerated network control planes

computation, and carry information on: (i) affected destinations; (ii) the
most updated path (i.e., empty for the link failure in the figure); and (iii) its
cost (i.e., infinity for failures).

Challenges. Broadcasting in hardware poses two main challenges. First,
notifications must be exchanged reliably to guarantee correctness. Imple-
menting reliable communication in hardware is challenging as it requires
maintaining state, tracking timers, and dealing with the inevitable retrans-
missions. Second, broadcasting notifications requires extra care to avoid
broadcast storms in the presence of physical cycles.

Our approach. We deal with packet loss in two ways. First, we classify con-
trol packets in high-priority queues, reducing the likelihood of packet loss.
Second, we leverage that the cost of processing a packet is almost negligible
in hardware, and either duplicate messages k times, for notifications, or
repeat them regularly, e.g., every few ms, for regular state exchange. While
continuously repeating state exchange guarantees its eventual consistency
network-wide, there is still a small probability that some switches will
not receive any of the k retransmitted notifications, leading to a partially
converged network. In future work, we intend to develop a lightweight
form of reliable message exchange.

To avoid broadcast storms, the originator switch attaches its identifier
and a sequence number to the broadcasted packet. Each switch maintains
a register with the last sequence number observed for every other switch.
Whenever a switch receives a broadcast message, it checks whether the
sequence number is smaller than the one stored for the message originator,
and drops the packet if it is the case. The sequence number is increased by
one during the next broadcasting.

5.1.3 Hardware-based computation

We implement a distributed path-vector routing algorithm in hardware in
which switches exchange vectors and locally select the vector with the best
attributes, e.g., the one with the lowest cost or the one with the highest
preference. By doing so, our hardware computation supports policy-based
(i.e., BGP-like) routing logic.

Challenges. A key challenge is that the computation logic available is limited
and geared towards forwarding pipelines, not distributed algorithms. For

5.2 preliminary implementation 109

instance, P4 match-action primitives do not support basic constructs like
loops. On top of that, resources are heavily limited (in terms of size and
data structure types), which clashes with the typical choice of routing
protocols to maintain a lot of state, such as all the routes received or the
entire network map. Finally, supporting routing policies adds an extra level
of complexity as the presence of policies render many routing problems
computationally-hard [168].

Our approach. To manage complexity and reduce the amount of state
maintained by each switch, we only make them store the best path and its
attributes. This simplifies the computation as it removes the need to iterate:
a switch only needs to compare the received attributes with the currently
best known path, and possibly adapt the latter accordingly. Of course, it
also reduces the amount of state maintained by each switch to the bare
minimum.

Observe that this strategy is sufficient to compute a new best path if
some input changes, provided each switch re-advertises its best-known
path upon a change. To ensure this, the failure notifications are flooded
and necessarily trigger a re-advertisement. While doing so leads to more
messages than software CPs storing alternative paths, we stress that this
is not a problem since hardware-based computation can process billions of
such packets per second [19].

Finally, we leverage the seminal results from Sobrinho [169] to compute
the outcome of policy-based protocols such as BGP in hardware. Those
results show that generic path-vector protocols can emulate the semantics of
policy-based protocols, if the right set of costs is chosen. This observation
enables to move the complexity of dealing with policies from the protocol to
the path costs. We show how our hardware-based CP encodes typical BGP
policies (prefer customer over peer over provider routes) in Section 5.2.

5.2 preliminary implementation

We now describe a preliminary P4 implementation of our hardware-
accelerated control plane and illustrate its usefulness through a case study
in which switches converge entirely independently, for both intra- and
inter-domain destinations.

110 hardware-accelerated network control planes

5.2.1 Implementation

We implement our algorithms in P416 [60] and use the bmv2 [72] behavioral
model to test them. We also implement a software-based control plane logic
which is in charge of populating the switches’ initial state. The remaining
part of the logic is implemented solely within the switches following the
approaches described in Section 5.1. Overall, our implementation consists
of 1800 lines of P4 and 3000 lines of Python code.

We performed our experiments on a server equipped with a 2⇥12 Xeon
E5-2670 2.30GHz, 128GB RAM and running Ubuntu 16.04. In the future,
we intend to adapt and run our algorithms on Tofino switches [156] with a
dynamic control plane.

Challenges. We enumerate some of the implementation-related challenges
we encountered and how we solved them. These challenges mainly arise
from either limitations in the data plane programming language (P4) itself,
or from restrictions imposed by the programmable switch architecture.

• Modifying the forwarding state at line rate: In P4, the content of the for-
warding tables is provisioned by the control plane through dedicated
APIs. Unfortunately, the content of these match-action tables cannot
be modified at line rate unless the hardware architecture supports
it. We solved this challenge by making the LPM match-action tables
(TCAM) point to stateful objects (i.e., registers implemented using
SRAM), which can then be modified at line rate.

• Loops: P4 does not allow loop constructs. We address this by unrolling
loops and performing each iteration step in parallel. If the loop is
longer than the maximum number of parallel steps supported by the
switch, we recirculate the packet.

• Generating packets: P4 does not enable to instruct the switch to generate
packets3. To address this limitation, we use the actual traffic as a carrier
for our protocols. If not enough traffic is present, we periodically send
empty packets from the network edge. Alternatively, if available, one
can use the switch’s internal traffic generator.

• Parsing limits: Current hardware switches can parse up to 300 bytes
per packet to maintain line rate [170], hence limiting the amount

3 Specific targets are equipped with an internal traffic generator that can be programmed with
APIs

5.2 preliminary implementation 111

of data switches can exchange in a packet. We use this limit as a
constraint in our design, mandating the switches to generate smaller
packets.

5.2.2 Intra/inter-domain routing . . . in hardware!

We now describe the key insights behind our path-vector implementation
and how it manages to compute intra-domain and inter-domain paths.

Computing intra-domain routes Each switch keeps the best cost, path and
output port towards every other switch in stateful registers (see Figure 5.1).
Switches periodically advertise a vector [(IDi, costi, path)i, ...]. To generate
it, the switch reads a fixed amount of register entries and pushes them
into a new header. If the number of switches is bigger than the maximum
number of times we can read a register, we recirculate the packet. Once
the entire vector is placed into the packet, the switch sends it to all its
neighbors.

Upon receiving a vector, a switch parses a fixed amount of fields and
runs the shortest path computation in parallel for all of them. Specifically,
the switch checks if the cost stored plus the cost to reach the advertising
neighbor is smaller than the advertised cost. To avoid count-to-infinity, the
switch also verifies that it is not present in the path. If both hold, the switch
updates its register with the new cost, path and output port. This process is
repeated until the entire vector is processed. If any cost is changed during
the updating phase, the switch generates an advertisement.

Our prototype assumes that the switch receives a failure notification from
the notification system. Upon receiving it, the switch iterates through its
distance vector register and forgets all the routes using that link. Finally it
generates an advertisement.

Computing inter-domain routes. To compute new egresses for inter-domain
routes, switches keep both: (i) a register that maps a prefix to the best exit
point known in the network; and (ii) a register with prefixes that the switch
can reach from its external peers. To support the normal BGP decision
process, switches also keep the AS path length for each route along with
the type of peering relationship (e.g., customer/peer/provider) for all the
egress points.

112 hardware-accelerated network control planes

The computation process is triggered once a switch receives a prefix
withdrawal from one of its peers or from the notification system running
Blink. It then proceeds in two steps. First, it broadcasts a special packet
indicating that the prefix cannot be reached through that egress. Second,
the switch removes the corresponding route (if it exists).

Upon receiving a broadcasted prefix withdrawal, a switch looks at its
registers to check whether it affects its egress. If so, it removes the route.
If it uses another egress or if it knows how to reach the prefix via one of
its direct peers, the switch broadcasts a message announcing the backup
egress.

Each switch runs a BGP-like route selection algorithm upon receiving a
backup announcement and compares the best route they currently know
with the advertised one. Route selection is done as follows: if the local pref-
erence is higher, the egress is accepted as a backup; if the local preference
is equal, the egress with the shortest AS path length is selected; if the path
lengths are equal, the shortest distance to the egress is used; otherwise, the
route is rejected. Besides computing the best egress point, upon an egress
update, switches also immediately block all the traffic that violates export
policies (e.g., traffic from a peer to a peer).

5.2.3 Case study

We now show that our implementation enables programmable switches to
converge on their own upon different failures.

Methodology. We use a small topology consisting of 5 internal switches
running our hardware-based control plane algorithms (Figure 5.2). Each
switch is externally connected to either one customer or one peer.

We generate two TCP flows, one from AS1 and one from AS2, both
flows have network X (in AS7) as a destination. To show that switches
can react autonomously to internal and external failures, we introduce
two events at different times. First, we fail the internal link S2-S3, which
will trigger the intra-domain computation. Then, after some seconds, we
send a withdrawal for prefix X to S1 from AS3, henceforth triggering the
inter-domain computation and enabling the switches to find the second
best egress for destination X.

We start the experiment with a converged network in which the control
plane has populated the forwarding register that maps external prefixes to

5.2 preliminary implementation 113

AS1

A
p1

AS2

B
p2

S1

S2
S3

S4

S5

peer

cust

3

1

2

2

1

1

(1) internal link
failure

3

AS3 C

cust

(3)prefix x
withdrawal

AS4

D
peer

AS6

E

AS5

Fpeer

AS7

G

H

(2)external link
failure

x

Figure 5.2: Case study topology illustrating a network with programmable
switches and various scenarios. The topology shows 5 internal
switches (S1-S5) running our hardware-based control plane, and
connected to external Autonomous Systems (AS1-AS7). Customer
(cust) and peer relationships are indicated. Three key events are high-
lighted: (1) internal link failure between S2 and S3, (2) external link
failure between C and G, and (3) a withdrawal notification from AS3
to S1. Traffic originates from AS1 (p1) and AS2 (p2), both destined
for network X in AS7.

the best egress IDs using BGP. Each switch also stores in memory which
external prefixes can be reached via itself. To avoid being CPU bounded
during the study, we set the bandwidth of every link to 10Mbps.

Results. We study how and for how long failures affect traffic that crosses
our hardware-based control plane network. Figure 5.3 depicts the through-
put observed over the link S1-AS3 and S5-AS5. Initially, we see that both
flows are using S1-AS3 to leave the network (i.e., using the customer link)
and, as such, get on average a throughput of 5Mbps.

We first fail the link S2-S3 and send a notification to the affected switches
200 ms after the failure, which triggers the intra-domain routing algorithm.
As we can see in Figure 5.3 (left), the failure affects both flows for a short
period of time, mainly due to the detection delay.

114 hardware-accelerated network control planes

� �� ��
WLPH�>V@

�

�

�

�

�

��

%D
QG
Z
LG
WK
�>0
%�
V@

LQWHUQDO�
IDLOXUH ZLWKGUDZDO

/LQN��6��$6��

)ORZ�IURP�$6�)ORZ�IURP�$6�

� �� ��
WLPH�>V@

�

�

�

�

�

��

%D
QG
Z
LG
WK
�>0
%�
V@

LQWHUQDO�
IDLOXUH ZLWKGUDZDO

/LQN��6��$6��

Figure 5.3: Per flow bandwidth at two egress points towards prefix X. Red vertical
lines indicate network events

We then fail the link S1-AS3 by sending a withdrawal to S1. S1 immedi-
ately removes its route and starts dropping packets.4 S1 then broadcasts
that network X cannot be reached, making S3 and S5 broadcast back their al-
ternative egress point. This in turn triggers the inter-domain route selection
algorithm on all switches. Since S3 and S5 have the same local preference,
the tie is broken using the AS path length making S5 the preferred egress.
As S5-AS5 is a peer link, only the customer flow from AS2 is allowed (due
to BGP export policy violations). Accordingly, we can see in Figure 5.3
(right) that S1 stops forwarding traffic and that the flow coming from AS2
starts egressing at S5-AS5 at 10Mbps.

Overall, we see that our data-plane implementation is able to automati-
cally converge while respecting the BGP policies.

4 We leave for future work the implementation of a mechanism to maintain connectivity while
learning the backup egress.

5.3 hardware is not “all roses” 115

5.3 hardware is not “all roses”

In this section we discuss the pros and cons of offloading control plane
tasks to hardware.

The pros. A key motivation to offload control plane tasks to programmable
hardware is that most control plane operations are compatible with pro-
grammable hardware’s capabilities. In our approach, for example, sensing,
notification and computation are implemented by exchanging packets of a
given format, processing them in a predefined way, updating the hardware
state, and generating packets of potentially a different format as a result.
Receiving, elaborating, and generating packets is exactly what the hardware
is powerful at.

In addition, it is very natural for the hardware implementation of con-
trol plane tasks to be driven by data-plane traffic, so that the forwarding
state is computed and updated according to the actual data traffic. In our
prototype, forwarding entries tend to be updated in an order consistent
with per-destination traffic volumes: since packets trigger actions from the
hardware-based control plane, traffic for destinations carrying more traffic
is probabilistically rerouted first. This produces fewer packet losses than
updating forwarding entries in a random order, as software control planes
often do.

Even better, running the control plane in hardware unlocks capabilities
that cannot be easily implemented otherwise, such as the cheap and prompt
detection of gray failures (Section 5.1). In fact, state-of-the-art approaches
to detect gray failures either generate and post-process a huge amount of
data-plane traffic, like [11], or do use programmable hardware to track
packets as they cross different devices [42].

Maintaining connectivity during failures is another case where hardware
offloading is strictly needed as waiting for the control plane to react would
necessarily lead to packet losses. This is the reason why existing fast-
reroute frameworks, like [150], pre-load backup paths in the switches, so as
to activate them, in hardware, as soon as the failure is detected. Of course,
pre-loading backup states consumes a lot of memory and is generally
not scalable with respect to the exponential number of possible failure
cases. Recent works, like DDC [166], show that performing control-plane
computations in hardware enables to break this otherwise-fundamental
trade-off between switch memory and reaction time.

116 hardware-accelerated network control planes

Finally, being able to make forwarding decisions entirely in the data
plane, without any control plane or controller, can be critical in environ-
ments where microseconds matter. For example, in data center networks
where traffic loads change rapidly, decisions have to be taken almost in-
stantaneously. Having a control-loop that goes though a software control
plane leads to outdated decisions. Recent research, has shown that being
able to load-balance traffic entirely in the data plane is not only possible,
but surprisingly simple and effective (e.g., [39, 155, 171]).

In general, the investigation of additional use cases opened by the hard-
ware implementation of control plane capabilities is an interesting direction
for future research.

The cons. Hardware offloading is not infinitely expressive: some tasks cannot
be delegated to hardware. For example, hardware sensing cannot be used
for detecting software failures, hence detection and reaction mechanisms to
these types of failures must remain in software.

Also, even when technically possible, offloading tasks to hardware might
not be desirable. For example, it makes little sense to implement proto-
cols like BGP and the underlying TCP in hardware. First, a hardware
implementation would consume many hardware resources for little or no
gain—especially if we consider that BGP performance is often limited by
the TCP’s internal algorithms [172]. Second, performance and capabilities
cannot be radically changed without revisiting the implementation of the
protocol on multiple administrative authorities.

For the remaining control plane tasks for which offloading to hardware
can come with benefits, a major limitation is represented by the scalability of
hardware implementations, a characteristic for which a software component
of the control plane is likely to be needed in many realistic settings. In
particular, hardware offloading is likely to scale poorly with the number
of control plane tasks. On the one hand, hardware resources, like ASICS
registers or memory, are typically scarce, and hard (and expensive) to scale.
On the other hand, offloading control plane tasks are likely to consume a lot
of hardware resources, e.g., because of the need to store messages, data, and
computation parameters in hardware. Combined together, these two factors
create the need for limiting the number of tasks offloaded to hardware, and
hence to accurately select which functions to offload to hardware.

5.4 hardware-software codesign meets control planes 117

Carefully, and perhaps dynamically, allocating resources to different
hardware computations is an interesting challenge to address in future
research.

5.4 hardware-software codesign meets control planes

So far, we have shown the benefits but also the limitations of offloading
tasks to hardware. This duality indicates that accelerating the control plane
by offloading some tasks to hardware and keeping others in software can
lead to control plane design points of great practical interest.

Our vision is that the search for an optimal design point can be for-
malized as a hardware-software codesign problem and solved using the
classical 4-phases methodology [173]: specification, analysis or optimization,
synthesis and validation. Instantiating this methodology to our context is a
challenging problem that calls for interesting future research contributions.

Figure 5.4 illustrates our vision of the first 3 phases of the hardware-
software codesign problem in the context of networking. More specifi-
cally, the specification phase requires precise models of the current control
plane functions (e.g., failure detection, routing, and updates). These models
should allow for the efficient evaluation of the performance and cost of
performing each function in software, hardware, or a mix of both. Inter-
estingly, realistic models and cost functions must take into account the
dynamic interaction between distinct control plane components, which
potentially makes the cost of each specific design higher than the cost of
running each component separately. Furthermore, these models should also
account for the cost of “hybridizing” control plane tasks by allocating some
parts in software and others in hardware (e.g., accounting for the cost of
synchronizing both entities).

Likewise, the analysis and synthesis phases call for the design of efficient
search heuristics that leverage domain-specific knowledge to navigate the
exponential space of possible hardware-software codesigns (a problem
known to be NP-hard [174]). In particular, we plan to explore if it is possible
to learn probabilistic models of the likelihood that a particular design is
better than another.

Finally, the validation of (partially) offloaded control planes opens up
interesting verification questions such as how to ensure that a specific
design will perform accordingly both feature- and performance-wise.

118
h

a
rd

w
a

re-a
ccelera

ted
n

etw
o

rk
co

n
tro

l
pla

n
es

Specification

Software

Hardware

problem
graph

mapping
set

architecture
graph

functions

Costi(.)

Per f ormancei(.)

constraints

8i :
pred(i) <100

Optimization

cost(x)=120

Software

Hardware

cost(y)=80

perf(y)=200

Software

Hardware

min
n
Â

i=1
Costi(.)

max
n
Â

i=1
Per f ormancei(.)

Synthesis

configurations C/C++

Software
runtime

API

configurations P4 Code

Hardware

Figure 5.4: Example of our vision for the codesign pipeline for control plane optimization, detailing: (i) Specification phase,
where control plane functions and possible interactions are modeled; (ii) Optimization phase, which employs
these models to determine the best trade-offs between performance and cost analytically; and (iii) Synthesis
phase, which generates the optimal software and hardware configurations, code, and runtime interfaces for
efficient control plane acceleration.

6
C O N C L U S I O N A N D O U T L O O K

In this dissertation, we explored the significant yet overlooked impact of
gray failures in ISP networks, a problem previously only explored in the
context of data center networks. We identified that recent advancements
in programmable network data planes provide a unique opportunity to
implement scalable failure detection systems directly within the network
infrastructure. We developed a system capable of detecting and localiz-
ing gray failures in high-speed and high-delay environments such as ISP
networks. Furthermore, we demonstrated that programmable data planes
are not only useful for failure detection, but can also accelerate network
recovery by automatically rerouting traffic in the data plane.

In Chapter 3, we provided an overview of network failures, specifically
putting an emphasis on gray failures and the different ways they manifest.
This chapter established a foundation for understanding the complex nature
and significant impact of such network disruptions, and the necessity for
better detection systems. Through an analysis of bug reports from leading
ISP router vendors, we illustrated that even the most advanced networking
equipment is susceptible to gray failures. A survey conducted among ISP
operators confirmed that gray failures are a common and frequent issue in
their ISP networks, emphasizing the need for detection systems designed
with the challenges of these specific networks. Finally, we highlighted the
limitations of existing detection techniques, including those considered
state-of-the-art for data center networks, when applied to high-traffic and
high-delay networks such as ISPs.

In Chapter 4, we presented FANcY, a novel data plane system designed
to detect and localize gray failures in ISP networks efficiently. FANcY
leverages programmable switches to implement a reliable inter-switch syn-
chronization protocol, enabling switches to exchange and compare counters
to detect packet losses precisely. With each counter, FANcY tracks individ-
ual traffic entries, such as IP prefixes. However, direct monitoring of all
prefixes is unfeasible due to the limited memory capacity of switches. To
address this limitation, we introduced a hybrid solution with two modes of
operation: (i) dedicated counters for high-priority traffic, ensuring fast and

119

120 conclusion and outlook

accurate monitoring, but requiring memory for each monitored entry, and
(ii) hash-based trees for best-effort entries, optimizing for memory with
constant use, but potentially slower and reduced accuracy. We showed that
FANcY’s reliable synchronization protocol and hybrid counting approach
make it not only ideal for ISP networks, but also a future-proof design
for the constantly increasing traffic volumes. Our extensive evaluations,
conducted via simulations and with a prototype running on an Intel Tofino
switch, demonstrated that FANcY enables sub-second detection and reac-
tion (i.e., rerouting) upon gray failures, except in instances where the failure
causes minimal packet losses.

In Chapter 5, we went one step further and explored the feasibility
of offloading control plane tasks traditionally implemented in software
into hardware, utilizing programmable data planes. We showed that pro-
grammable data planes are not only an excellent technology that can help
improve detection systems, as shown with FANcY, but can also implement a
broader range of control plane tasks. With a working prototype, we demon-
strated that programmable data planes can efficiently handle diverse tasks:
(i) detect regular, gray (FANcY) and remote failures (Blink); (ii) notify other
devices; (iii) run simple distributed path-vector computations that support
both shortest-path and BGP-like policies; and (iv) update its forwarding
state, enabling switches to restore connectivity after a failure. Finally, we
concluded with an analysis of the advantages and disadvantages associated
with offloading functions to programmable data planes. We found that
despite their potential, certain tasks might not benefit from or are currently
not suited for offloading due to current limitations in expressiveness and
scalability. This realization makes task selection an open challenge worth
investigating in future research.

6.1 open research problems

In this section, we explore open research problems and propose future
enhancements for the systems detailed in this dissertation and any future
systems that leverage data plane offloading. Initially, we propose three
research directions to improve FANcY and failure detection in general.
Subsequently, we discuss two emerging challenges introduced by the decen-
tralization of state and computational resources across different network
planes.

6.1 open research problems 121

6.1.1 Integrating the control plane with FANcY

FANcY is a data-plane-only solution with minimal interaction with the
control plane. We identify opportunities to integrate the control plane into
the detection loop. One such opportunity is for the control plane to initiate
periodic active measurements for selected traffic entries, enabling faster or
preemptive (even without traffic) failure detection. This mechanism can
use the built-in traffic generator and FANcY’s dedicated counters. Another
potential research direction could be implementing root cause analysis
and tools for guided or automatic in-depth debugging. Currently, upon
detecting a failure, FANcY only informs the control plane and flags the
affected data plane entry to activate a backup route. Future research could
expand on this by leveraging the control plane to analyze reported failure
events over time and pinpoint the underlying cause of the problem, or if
needed, start an automatic debugging process to gather further relevant
information. Finally, with that information, the control plane could either
attempt self-repair or generate a comprehensive report that operators could
use for further manual debugging or repair.

6.1.2 Enhancing “weak” traffic signals with adaptive traffic generation

FANcY’s detection accuracy highly depends on the traffic volume it mon-
itors. In scenarios of gray failures, where only a subset of packets may
be dropped, a sufficient traffic volume is crucial for generating a “strong”
failure signal. Furthermore, the volume of traffic, and consequently its
loss signal, tends to decrease during failures. This reduction is due to the
nature of Internet traffic, dominated by TCP flows that reduce their sending
rate following packet losses, diminishing the failure signal and making
failures harder to detect. FANcY’s evaluation reveals that while this is
not a predominant issue for entries monitored with dedicated counters, it
poses a significant challenge for hash-based trees, which rely on detecting
packet drops across multiple consecutive intervals. We believe that we could
mitigate this by enhancing passive detection systems, such as FANcY, with
active, adaptively triggered (i.e., only when needed) traffic generation.

While several methods for generating traffic exist, we believe in-network
generation, particularly from programmable switches, offers a unique ad-
vantage due to its inherent in-network visibility and potential direct interac-
tion with the monitoring system already running in the switch. That would

122 conclusion and outlook

allow the generation of traffic in reaction to identified weak signals or as
requested by the monitoring system. For instance, FANcY could request a
signal enhancement when the zooming process does not successfully fin-
ish. Our preliminary work [175] demonstrates that today’s programmable
data planes are capable of fulfilling these requirements. They can generate
adaptive stateless and stateful traffic (emulating the TCP state machine),
potentially benefiting FANcY and other passive in-network applications
reliant on robust data plane signals. Future work could dive into better
combining passive in-network systems with adaptive in-network traffic
generation to boost their performance.

6.1.3 A mixture of detectors

While the state-of-the-art data center gray failure detectors such as Loss-
Radar [42] and NetSeer [17] excel at detecting packet losses, their applicabil-
ity within ISPs faces limitations due to the significant memory requirements
in high-bandwidth and high-delay networks (see details in Section 4.1.3).
FANcY, in comparison, offers the flexibility of detecting packet losses in a
more diverse set of environments but requires a minimum amount of traffic
to operate properly. Inspired by the mixture of experts concept from machine
learning [176], where distinct models are tailored to handle specific subsets
of the input data, we propose a hybrid approach to failure detection and
envision the concept of mixture of detectors. For example, with this approach
one could utilize FANcY for initial traffic monitoring through its hash-
based tree, and upon partial detection issues (e.g., incomplete zooming),
redirect the relevant traffic entries for further scrutiny by systems such as
LossRadar or NetSeer, which thanks to the reduced traffic input would not
face limitations. Future research could focus on finding the optimal way of
integrating different detection systems to leverage their individual strengths
while avoiding their weaknesses and creating a robust and versatile failure
detection system.

6.1.4 Towards seamless smart network planes integration

Shifting to network designs where both control and data planes indepen-
dently compute and update their states may temporarily introduce state
inconsistencies, commonly referred to as “split-brain” in distributed sys-
tems. In our work on hardware-accelerated control planes, we show that

6.1 open research problems 123

while the data plane can autonomously compute forwarding states and
recover from failures, it might result in selecting suboptimal paths due to
limitations in computational complexity and available memory. The control
plane, typically slower but not subject to such limitations, has to ensure
that the data plane runs in the optimal state whenever possible. However,
improper coordination between control and data plane can lead to incon-
sistent data plane states, potentially causing network disruptions such as
temporary blackholes, routing loops, or violations of network policies. An
interesting area for future research could involve a comprehensive analysis
of the interface requirements between “smart” network planes across a
wide range of network applications, including identifying existing limita-
tions and requirements, and developing a set of primitives to facilitate the
seamless integration between network planes.

6.1.5 Optimizing the network plane’s slow path

Another significant challenge that arises from distributing intelligence
across different layers of the networking stack is the resultant increase in
required communication between the data and control plane. As detailed
in our thesis (see Section 3.2.2.2), gray failure detection systems that rely
on high-frequency polling of data plane data structures, are already sig-
nificantly impacted by the high-delay and low-bandwidth between the
control and data planes. This situation is further aggravated by the constant
increase in the data plane’s processing capabilities, bandwidth, and topol-
ogy complexity, which directly translates into an increase in the required
data exchange between the control and data planes. Therefore, the slow
path between the control and data planes, which traditionally has not been
considered critical and has received little attention, is becoming one of the
biggest bottlenecks. This issue underscores the pressing need for dedicated
research toward improving this part of the communication stack. Future
work should focus on identifying standard primitives for infrastructure
control protocols and designing an architecture that balances flexibility
with performance, ensuring predictable response times, efficient handling
of common data structures, and fast data plane table updates.

A
A P P E N D I X

a.1 cisco and juniper bug list.

This appendix presents a comprehensive list of bugs associated with gray failures in Cisco and Juniper network
devices. Each entry includes the following information: vendor, bug code, root cause, and a brief description of the
bug’s impact on network traffic.

Table A.1: List of reported bugs on Cisco and Juniper bug portals.

ID Vendor Bug Code Root Cause Short Description

1 Cisco CSCsz10107 Software bug Some connections get dropped when the Cat6k with ACE module is reloaded.

2 Juniper PR1423310 Configuration issue IPv6 multicast traffic might get dropped if ig and eg are on different VC members.

3 Juniper PR1308438 Others With large scale routes(e.g., 650k) GRE tunneled traffic might get dropped.

4 Juniper PR1161485 Configuration issue L3 multicast traffic experiences continuous drops after a down/up of an interface.

5 Cisco CSCtb21313 Configuration issue Connections get dropped after rebalanced to a different L7 policy.

6 Juniper PR1459692 Others In a MC-LAG scenario, VRRP-virtual MAC traffic gets dropped by PFE.

7 Cisco CSCta03825 Configuration issue When UDP booster is enabled, every first connection packet is dropped.

8 Juniper PR1425927 Configuration issue Drops in encapsulation flexible Ethernet services on specific interfaces.

9 Cisco CSCsl82712 Configuration issue HTTP method request exceeds the configured maximum HTTP header length.

Continued on next page

125

126
a

ppen
d

ix

Table A.1 – continued from previous page

ID Vendor Bug Code Root Cause Short Description

10 Cisco CSCve98991 Software update Traffic outage seen after the image on the line card module is upgraded.

11 Juniper PR1463092 Software bug When deleting the IRB not removed from PFE leading to traffic blackhole.

12 Cisco Nan Hardware malfunction Specific Fabric module causes packet drops during a power cycle.

13 Juniper PR1402626 Software bug VLAN tagged traffic on VPLS interface dropped due to PFE programming failure.

14 Cisco CSCsm34992 Configuration issue Connections dropped post policy map action mod from SIP/RTSP/Skinny to HTTP.

15 Juniper PR1472083 Software bug Traffic loss on MX with EQ MPC under fusion scenario with ’rate-limit’ CoS policy.

16 Cisco CSCuz95179 Hardware malfunction UDP packets with specific port ranges or fragmented frames get dropped.

17 Cisco CSCvr35120 Others Cisco ACI fabric drops incoming non-VxLAN traffic with specific UDP port.

18 Juniper PR1450545 Configuration issue Traffic loss might occur when there are around 800,000 routes in FIB.

19 Juniper PR1436119 Software bug Traffic loss on MX/PTX post rapid LDP session flaps and ecmp-fast-reroute enabled.

20 Juniper PR1456905 Configuration issue Traffic loss in seamless MPLS with pseudo-wire and MVPN processing and GRE.

21 Cisco CSCvq60859 Hardware malfunction Traffic loss line card post-reload, due to HW programming delay in selective VRF.

22 Juniper PR1327062 Software bug Drops during initial ARP refresh in EVPN-VXLAN multi-homed CE.

23 Juniper PR1313977 Hardware malfunction Traffic drops due to CRC error.

24 Cisco CSCvk01435 Configuration issue Traffic for specific multicast group dropped when the PTP feature is disabled.

25 Juniper PR1439251 Software bug Traffic blackholing due to delayed PathTear message from Juniper LER.

26 Juniper PR1376057 Software bug Pass-through traffic dropped due to routers using indirect next hop and LB.

27 Juniper PR1403727 Others TCP traffic experience drops and increased latency.

28 Juniper PR1444186 Software bug GRE packets larger than MTU are dropped when sampling is enabled.

29 Juniper PR1446132 Software bug Dynamic tunnels with ECMP send traffic with incorrect VLAN IDs, leading drops.

30 Juniper PR1430685 Software bug Enabling TCP proxy-based and rst-invalidate-session features lead to TCP reset drops.

31 Juniper PR1387895 Configuration issue Changing MTU configuration leads to packet drops of the SUN-RPC traffic.

32 Juniper PR1364657 Hardware malfunction Improper device state leading to malfunctioning PE blackholing specific IPs.

33 Juniper PR1379734 Software bug Configuring sampling or pkt capture leads to packet drops.

34 Juniper PR1420103 Hardware malfunction Post-RE switchover with GRES and NSR, LDP label corruption leads to BGP session drops.

Continued on next page

A
.1

cisco
a

n
d

ju
n

iper
bu

g
list.

127

Table A.1 – continued from previous page

ID Vendor Bug Code Root Cause Short Description

35 Juniper PR1458499 Software bug Timing issue in updating firewall filter leads to traffic blackholes or MPC crashes.

36 Juniper PR1428935 Software bug Post-GRES delay in BPDU transmission causes traffic loss.

37 Cisco CSCvu02712 Hardware malfunction Intermittent CRC errors leading to packet drops.

38 Juniper PR1440847 Configuration issue After device reboot DDOS limits get to default values. Can lead to drops.

39 Juniper PR1450928 Configuration issue ARP packet drops by PFE after chassis restart.

40 Juniper PR1348029 Software bug ARP update failure leading to packet drops at routing engine.

41 Cisco CSCvn53560 Configuration issue Packets drops on ToR switch when returned from service device on 2nd path.

42 Juniper PR1475031 Software bug After payload changed by SIP, fragmented packets might get dropped.

43 Juniper PR1459698 Others Silent dropping of traffic upon interface flapping after DRD auto-recovery.

44 Cisco CSCsy84895 Configuration issue ACE drops server packets larger than advertised MSS.

45 Juniper PR1470619 Software bug RED drop could be seen on an interface even when there is no congestion.

46 Cisco CSCvd43653 Hardware malfunction Random frame drops on MDS 9700 platforms due to timeout in port buffers.

47 Juniper PR1455388 Hardware malfunction QSFP-100G-SR4 transceivers on QFX5110 cause CRC errors and packet loss.

48 Cisco CSCea91692 Software update PSA corrupted entry. Affects IP traffic for specific line card.

49 Cisco CSCvm59661 Hardware malfunction Incorrect L2 entry leading to intermittent reachability issues.

50 Juniper PR1422877 Software bug PDP context response messages dropped due to packet size issues.

51 Juniper PR1407424 Software bug Packet drops after setting packet filter and RPD restart.

52 Juniper PR1394085 Configuration issue Packet loss might occur on unrelated traffic when AppQos rate limiter applied.

53 Juniper PR1429899 Hardware malfunction FPGA back pressure on with SPC3 cards leads to minor packet loss.

54 Cisco NaN Others Packet drops can occur in CSR if any of the CPUs reaches 100% utilization.

55 Juniper PR1474674 Configuration issue Packet drops when add/del interfaces from MACsec with specific settings.

56 Juniper PR1421857 Configuration issue Wrong config speed leads can lead to traffic drops for that interface.

57 Juniper PR1423989 Software bug Adding an unconnected port to an existing LAG might cause packet drops.

58 Juniper PR1387746 Software bug After link flap, router does not install BGP LU label causing traffic to be dropped.

59 Juniper PR1443345 Others With source NAT and under high traffic load, TCP-SYN packets might be dropped.

Continued on next page

128
a

ppen
d

ix

Table A.1 – continued from previous page

ID Vendor Bug Code Root Cause Short Description

60 Juniper PR1398407 Others BGP packets might be dropped under high CPU usage.

61 Juniper PR1462825 Software bug Wrongly calculated MTU leads to packets being dropped.

62 Juniper PR1475395 Software bug Traffic blackhole in L3 VPN when destination resolved with two LPSs.

63 Juniper PR1338444 Configuration issue Enabling/disabling ICCP/ICL link leading to ARP learning problems.

64 Juniper PR1441047 Hardware malfunction Specific UDP port packets dropped due to erroneous VXLAN filter hit.

65 Juniper PR1309613 Hardware malfunction Traffic loss might be seen while CRC errors of the same interface keep increasing.

66 Juniper PR1177499 Hardware malfunction Packet loss and framing errors with QSFP+40GE-LX4 transceiver.

67 Juniper PR1429543 Software bug Specific types of genuine IPv4/6 traffic are improperly filtered and discarded.

68 Juniper PR1169700 Memory corruption Parity error on interfaces affecting MMU unit memories and corrupting counters.

69 Juniper PR1433300 Hardware malfunction Traffic loss on LC1105 line card when MACsec is configured and handling PF.

70 Juniper PR1289546 Configuration issue Temporary drops after deleting and adding 1K LAG interfaces.

71 Juniper PR1409631 Software bug Intra-VLAN traffic loss when restarting FPC with MC-LAG enhanced-convergence.

72 Juniper PR1348659 Configuration issue Traffic blackhole with EVPN-VXLAN and VRRP when deleting IRB intf.

73 Juniper PR1296089 Memory corruption Upon config changes, fd memory corruption leading to traffic loss on certain ports.

74 Juniper PR1243724 Memory corruption Memory corruption during route-next hop or EDF job, leading to packet drops.

75 Juniper PR1460406 Hardware malfunction Transient voltage fluctuations trigger fabric healing process leading to drops.

76 Juniper PR1433648 Software bug Firewall config changes cause transit packet drops in PFE due to timing issues.

77 Juniper PR1447170 Software bug Resource exhaustion due to unfreed data structures leading to packet loss.

78 Juniper PR1401802 Software bug Unexpected multicast packet drops when active RPF path is disabled.

79 Juniper PR1388082 Hardware malfunction Intermittent loss when flapping RTG primary interface.

80 Juniper PR1466659 Software bug IPv6 traffic loss in L3VPN networks on specific configuration.

81 Juniper PR1409773 Software bug Transient traffic loss with MC-LAG during routing daemon restart with new config.

82 Juniper PR1443466 Configuration issue RED traffic drops following a link flap or CoS configuration change.

83 Juniper PR1410233 Configuration issue Packet drops due to reroute failures in ECMP routing.

84 Juniper PR1459446 Software bug Traffic blackhole during link recovery in open Ethernet access ring.

Continued on next page

A
.1

cisco
a

n
d

ju
n

iper
bu

g
list.

129

Table A.1 – continued from previous page

ID Vendor Bug Code Root Cause Short Description

85 Juniper PR1389120 Software bug Unexpected multicast packet drops during failure recovery.

86 Juniper PR1427842 Software bug Packet drops at the time of routing engine switchover if system up for long.

87 Juniper PR1329141 Configuration issue CoS incorrectly applied on PFE leading to egress packet drops on some intfs.

88 Juniper PR1426734 Hardware malfunction Resource leakage on ARP table leading to 50% of entries experiencing drops.

89 Juniper PR1436494 Configuration issue Traffic drop might be seen after deactivate/activate “class-of-service".

90 Juniper PR1295774 Configuration issue TCP connection drops during large file transfers at high speeds through MP.

91 Cisco CSCvg17452 Software bug Router incorrectly programs egress LIF for VLAX, leading to traffic drops.

92 Cisco CSCvt25313 Configuration issue Inter-pod traffic drop on spine switches, due to tunnel nh set to global bounce.

93 Cisco CSCvt56182 Software bug Transient drops during ND ISSU particularly when BFD enabled.

94 Cisco CSCtx61116 Software bug After upgrade, NAT unreasonably drops all traffic for random source ports.

95 Cisco CSCvk38405 Software bug Fragmented PIM BSR packets punted to CPU and dropped.

96 Cisco CSCvr30525 Software bug Mcast Traffic Loss To All Receivers After One Receiver Sends Multiple Leafs.

97 Cisco CSCvs50407 Software update After OS upgrade. Multicast traffic drop on ISSU.

98 Cisco CSCvs06516 Hardware malfunction Multicast group not programmed in hardware leading to traffic drop.

99 Cisco CSCvg34717 Hardware malfunction Multicast CP packets are dropped by F2/F3 module.

100 Cisco CSCvd44475 Software bug Multicast traffic loss during switch ID change.

101 Cisco CSCvq04585 Software bug Multicast traffic loss with module reload and other triggers.

102 Cisco CSCvh87462 Hardware malfunction MIPv6 packet of 320B size dropped by M3 module as invalid.

103 Cisco CSCvf86400 Software bug killing lisp manually on a scaled ITR/ETR configuration causes traffic loss.

104 Cisco CSCuv31196 Software bug Unicast IP packets with specific IP ID get dropped.

105 Juniper PR1427866 Configuration issue IPv6 traffic might be dropped when static /64 Ipv6 routes are configured.

106 Juniper PR1434757 Software bug Intermittent packet drop might be observed if IPsec is configured.

107 Juniper PR1469596 Software bug Ingress traffic dropped in EVPN-VXLAN when interface flaps causing blackhole.

108 Juniper PR1455973 Configuration issue Traffic loss observed during seamless migration from VPLS to EVPN.

109 Juniper PR1392261 Software bug DHCP packets get drooped with specific DHCP configuration.

Continued on next page

130
a

ppen
d

ix

Table A.1 – continued from previous page

ID Vendor Bug Code Root Cause Short Description

110 Juniper PR1461983 Software bug Extended traffic loss during NSSU.

111 Juniper PR1350103 Hardware malfunction Traffic drop when MIC is physically removed and reinserted in an MPC.

112 Juniper PR1416487 Software bug Traffic silently dropped due to long LSP switchover during RSVP-signaled LSP.

113 Juniper PR1444845 Hardware malfunction CRC errors after VC connections are disrupted, due to improper VCP init.

114 Juniper PR1447187 Software bug Multicast traffic loss in PIM with BGP PIC when a link flap occurs.

115 Juniper PR1452866 Software bug Traffic blackhole after LACP timeout in LACP with Unilist next-hop scenario.

116 Juniper PR1462583 Configuration issue Traffic loss in l2circuit with local-switching due to MTU mismatch.

117 Juniper PR1417139 Configuration issue Traffic blackhole in JunosFusion with dual-AD due to ICL link not coming up.

118 Juniper PR1434567 Hardware malfunction IPv6 neighbor solicitation packets getting dropped due to hardware party errors.

119 Juniper PR1311773 Software bug Traffic loss from IP Fabric to EVPN in collapsed L2/L3 multi-homed GW topology.

120 Juniper NaN Configuration issue Traffic drop when configuring GRE with ECMP NH instead of unicast NH.

121 Juniper PR1441402 Configuration issue Traffic drop after QinQ interface flap or vlan-id-list change.

122 Juniper PR1395186 Configuration issue PTPoETH traffic dropped when IGMP and PTP are configured on the same VLAN.

123 Juniper PR1355878 Software bug MPLS routes become dead after quick enable/disable or label number change.

124 Cisco CSCsu42225 Software bug UDP packets with 32000 bytes of payload dropped when load balanced.

125 Juniper PR1454907 Software bug Temporary traffic drop when modifying large number of configured policies.

126 Cisco CSCvr11055 Software bug GRE traffic with incorrectly formed IP header payload dropped.

127 Juniper PR1468570 Configuration issue FTP data connection timeouts when FTP traffic is routed through the dialer intf.

128 Cisco CSCtg98720 Software bug Fabric plane connectivity issues and packet drops due to a system time change.

129 Juniper PR1429714 Hardware malfunction Traffic loss due to random fabric drops when packet traverse different FPCs.

130 Juniper PR1231402 Software bug Incorrect PE router attached to ESI in EVPN/VXLAN causing partial blackholes.

131 Juniper PR1322288 Software bug Permanent loss for some hosts due to unsynchronized ARP entries after expiry.

132 Juniper PR1441816 Hardware malfunction Egress stream flush and traffic blackholes during repeated link flaps.

133 Cisco CSCvs19509 Software bug CP traffic loss when dst IP set via a static route through BGP-learnt EVPN route.

134 Juniper PR1424705 Software bug Traffic blackholing when an interface on the primary node is disabled.

Continued on next page

A
.1

cisco
a

n
d

ju
n

iper
bu

g
list.

131

Table A.1 – continued from previous page

ID Vendor Bug Code Root Cause Short Description

135 Juniper PR1359841 Software bug Disabling a LAG member from a L3 IRB might cause traffic loss.

136 Cisco CSCuy06749 Configuration issue Traffic drop between two isolated EPGs affecting L2 and specific L3 packets.

137 Cisco CSCvi58895 Hardware malfunction CRC errors increment randomly on 10G interfaces leading to drops.

138 Juniper PR1449406 Hardware malfunction Unexpected CRC errors seen on the VCP, leading to system performance issues.

139 Cisco CSCvq45166 Configuration issue CP traffic affected by high rate of NetFlow record packets on in-band.

140 Cisco CSCuy29638 Software bug Whenever the AN sends a packet to a subnet without label it gets malformed.

141 Juniper PR1282349 Software bug ARP reply drop when recovering from local and peer MC-AE being down.

142 Juniper PR1414509 Software bug Traffic originated from the device itself might be dropped in IPsec tunnel.

143 Cisco CSCsv49518 Configuration issue ICMP packet loss on servers tagged for load-balancing VLAN.

144 Cisco CSCsm52480 Software bug IPv4/6 multicast traffic not bridged by ACE module in VLANs with IGMP snooping.

145 Cisco CSCvg19938 Configuration issue High CPU leads to drops when shutting down an interface in large scale IPv6.

146 Cisco CSCvp01676 Software bug Packet loss for traffic destined to prefixes learned via routing protocols.

147 Cisco CSCti14290 Memory corruption Drops after a router reload, upgrade or crash due to corrupted hardware-forwarding.

148 Cisco CSCvq65959 Configuration issue 80% packets loss in route leaking environment after changing SVI IP address.

149 Cisco CSCtc33158 Configuration issue Drops for specific packet sizes when L2TPv3 cookies are enabled.

O W N P U B L I C AT I O N S

[1] Edgar Costa Molero, Stefano Vissicchio, and Laurent Vanbever.
“Hardware-Accelerated Network Control Planes”. In: Proceedings
of the 17th ACM Workshop on Hot Topics in Networks. HotNets ’18.
Redmond, WA, USA: Association for Computing Machinery, 2018,
120.

[2] Edgar Costa Molero, Stefano Vissicchio, and Laurent Vanbever. “FAst
In-Network GraY Failure Detection for ISPs”. In: Proceedings of
the ACM SIGCOMM 2022 Conference. SIGCOMM ’22. Amsterdam,
Netherlands: Association for Computing Machinery, 2022, 677.

[3] Thomas Holterbach, Edgar Costa Molero, Maria Apostolaki, Alberto
Dainotti, Stefano Vissicchio, and Laurent Vanbever. “Blink: Fast
Connectivity Recovery Entirely in the Data Plane”. In: 16th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
19). Boston, MA: USENIX Association, 2019, 161.

[4] Daniele De Sensi, Edgar Costa Molero, Salvatore Di Girolamo, Lau-
rent Vanbever, and Torsten Hoefler. “Canary: Congestion-aware
in-network allreduce using dynamic trees”. In: Future Generation
Computer Systems 152 (2024), 70.

133

R E F E R E N C E S

[5] Barry M. Leiner, Vinton G. Cerf, David D. Clark, Robert E. Kahn,
Leonard Kleinrock, Daniel C. Lynch, Jon Postel, Larry G. Roberts,
and Stephen Wolff. “A Brief History of the Internet”. In: SIGCOMM
Comput. Commun. Rev. 39.5 (2009), 22.

[6] Vinton G. Cerf and Robert E. Icahn. “A Protocol for Packet Network
Intercommunication”. In: SIGCOMM Comput. Commun. Rev. 35.2
(2005), 71.

[7] U Cisco. “Cisco annual internet report (2018–2023) white paper”. In:
Cisco: San Jose, CA, USA 10.1 (2020), 1.

[8] Holly Honderich. Rogers outage: Why a network upgrade pushed millions
in Canada offline. https://www.bbc.com/news/world-us-canada-
62174477. Accessed: [2023]. 2022.

[9] Celso Martinho and Tom Strickx. Understanding how Facebook disap-
peared from the Internet. https://blog.cloudflare.com/october-
2021-facebook-outage. Accessed: [2023]. 2021.

[10] Peng Huang, Chuanxiong Guo, Lidong Zhou, Jacob R. Lorch,
Yingnong Dang, Murali Chintalapati, and Randolph Yao. “Gray
Failure: The Achilles’ Heel of Cloud-Scale Systems”. In: Proceedings
of the 16th Workshop on Hot Topics in Operating Systems. HotOS ’17.
Whistler, BC, Canada: Association for Computing Machinery, 2017,
150.

[11] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong Dang, Ray
Huang, Dave Maltz, Zhaoyi Liu, Vin Wang, Bin Pang, Hua Chen,
et al. “Pingmesh: A large-scale system for data center network la-
tency measurement and analysis”. In: ACM SIGCOMM Computer
Communication Review. Vol. 45. 4. ACM. 2015, 139.

[12] J. Case, R. Mundy, D. Partain, and B. Stewart. Introduction and Appli-
cability Statements for Internet-Standard Management Framework. RFC
3410. http://www.rfc-editor.org/rfc/rfc3410.txt. RFC Editor,
2002.

135

https://www.bbc.com/news/world-us-canada-62174477
https://www.bbc.com/news/world-us-canada-62174477
https://blog.cloudflare.com/october-2021-facebook-outage
https://blog.cloudflare.com/october-2021-facebook-outage
http://www.rfc-editor.org/rfc/rfc3410.txt

136 bibliography

[13] Peter Phaal, Sonia Panchen, and Neil McKee. InMon Corporation’s
sFlow: A Method for Monitoring Traffic in Switched and Routed Networks.
RFC 3176 (Informational). http://www.ietf.org/rfc/rfc3176.txt.
Internet Engineering Task Force, 2001.

[14] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg, Guohan Lu,
Ratul Mahajan, Dave Maltz, Lihua Yuan, Ming Zhang, Ben Y. Zhao,
and Haitao Zheng. “Packet-Level Telemetry in Large Datacenter
Networks”. In: Proceedings of the 2015 ACM Conference on Special In-
terest Group on Data Communication. SIGCOMM ’15. London, United
Kingdom: Association for Computing Machinery, 2015, 479.

[15] Olivier Tilmans, Tobias Bühler, Ingmar Poese, Stefano Vissicchio, and
Laurent Vanbever. “Stroboscope: Declarative Network Monitoring
on a Budget”. In: 15th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 18). Renton, WA: USENIX Association,
2018.

[16] Danyang Zhuo, Monia Ghobadi, Ratul Mahajan, Klaus-Tycho Forster,
Arvind Krishnamurthy, and Thomas Anderson. “Understanding
and Mitigating Packet Corruption in Data Center Networks”. In:
Proceedings of the Conference of the ACM Special Interest Group on Data
Communication. SIGCOMM ’17. Los Angeles, CA, USA: Association
for Computing Machinery, 2017, 362.

[17] Yu Zhou, Chen Sun, Hongqiang Harry Liu, Rui Miao, Shi Bai, Bo Li,
Zhilong Zheng, Lingjun Zhu, Zhen Shen, Yongqing Xi, et al. “Flow
event telemetry on programmable data plane”. In: Proceedings of the
Annual conference of the ACM Special Interest Group on Data Commu-
nication on the applications, technologies, architectures, and protocols for
computer communication. 2020, 76.

[18] Barefoot. Barefoot Tofino, World’s fastest P4-programmable Ethernet
switch ASICs. https://barefootnetworks.com/products/brief-
tofino/.

[19] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee,
Nate Foster, Changhoon Kim, and Ion Stoica. “Netcache: Balancing
key-value stores with fast in-network caching”. In: Proceedings of the
26th Symposium on Operating Systems Principles. ACM. 2017, 121.

[20] R. Bellman. “On a Routing Problem”. In: Quarterly of Applied Mathe-
matics (1958).

[21] Gary S. Malkin. RIP Version 2. RFC 2453. https://www.rfc-editor.
org/info/rfc2453. 1998.

http://www.ietf.org/rfc/rfc3176.txt
https://barefootnetworks.com/products/brief-tofino/
https://barefootnetworks.com/products/brief-tofino/
https://www.rfc-editor.org/info/rfc2453
https://www.rfc-editor.org/info/rfc2453

bibliography 137

[22] Cisco. Interior Gateway Protocol (IGRP). https://www.cisco.com/c/
en/us/support/docs/ip/interior-gateway-routing-protocol-
igrp/26825-5.html. 2005.

[23] Edsger W Dijkstra. “A note on two problems in connexion with
graphs”. In: Numerische mathematik (1959).

[24] John Moy. OSPF Version 2. RFC 2328. https://www.rfc-editor.
org/info/rfc2328. 1998.

[25] Juniper Networks. IS-IS Routing Protocol. https://www.juniper.net/
documentation/us/en/software/junos/is-is/topics/concept/
is-is-routing-overview.html. 2023.

[26] Janne Lindqvist. “Counting to infinity”. In: Seminar on Internetwork-
ing, Helsinki University of Technology Telecommunications, Software and
Multimedia Laboratory. Citeseer. 2004.

[27] Y. Rekhter, T. Li, and S. Hares. A Border Gateway Protocol 4 (BGP-4).
RFC 4271 (Draft Standard). 2006.

[28] Benoit Claise. Cisco Systems NetFlow Services Export Version 9. RFC
3954 (Informational). http://www.ietf.org/rfc/rfc3954.txt.
Internet Engineering Task Force, 2004.

[29] Bobbi Sandberg. “Networking The Complete Reference”. In: 3rd.
McGraw-Hill Education Group, 2015. Chap. Chapter 2.

[30] Jon Postel. Transmission Control Protocol. STD 7. http://www.rfc-
editor.org/rfc/rfc793.txt. RFC Editor, 1981.

[31] W. Eddy. Transmission Control Protocol (TCP). STD 7. RFC Editor,
2022.

[32] J. Postel. User Datagram Protocol. STD 6. http://www.rfc-editor.
org/rfc/rfc768.txt. RFC Editor, 1980.

[33] P. Mockapetris. Domain names - concepts and facilities. STD 13. http:
//www.rfc-editor.org/rfc/rfc1034.txt. RFC Editor, 1987.

[34] P. Mockapetris. Domain names - implementation and specification. STD
13. http://www.rfc-editor.org/rfc/rfc1035.txt. RFC Editor,
1987.

[35] Radhika Niranjan Mysore, Andreas Pamboris, Nathan Farrington,
Nelson Huang, Pardis Miri, Sivasankar Radhakrishnan, Vikram Sub-
ramanya, and Amin Vahdat. “PortLand: A Scalable Fault-Tolerant
Layer 2 Data Center Network Fabric”. In: ().

https://www.cisco.com/c/en/us/support/docs/ip/interior-gateway-routing-protocol-igrp/26825-5.html
https://www.cisco.com/c/en/us/support/docs/ip/interior-gateway-routing-protocol-igrp/26825-5.html
https://www.cisco.com/c/en/us/support/docs/ip/interior-gateway-routing-protocol-igrp/26825-5.html
https://www.rfc-editor.org/info/rfc2328
https://www.rfc-editor.org/info/rfc2328
https://www.juniper.net/documentation/us/en/software/junos/is-is/topics/concept/is-is-routing-overview.html
https://www.juniper.net/documentation/us/en/software/junos/is-is/topics/concept/is-is-routing-overview.html
https://www.juniper.net/documentation/us/en/software/junos/is-is/topics/concept/is-is-routing-overview.html
http://www.ietf.org/rfc/rfc3954.txt
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc768.txt
http://www.rfc-editor.org/rfc/rfc768.txt
http://www.rfc-editor.org/rfc/rfc1034.txt
http://www.rfc-editor.org/rfc/rfc1034.txt
http://www.rfc-editor.org/rfc/rfc1035.txt

138 bibliography

[36] Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kan-
dula, Changhoon Kim, Parantap Lahiri, David A. Maltz, Parveen
Patel, and Sudipta Sengupta. “VL2: A Scalable and Flexible Data
Center Network”. In: Proceedings of the ACM SIGCOMM 2009 Con-
ference on Data Communication. SIGCOMM ’09. Barcelona, Spain:
Association for Computing Machinery, 2009, 51.

[37] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. “A
Scalable, Commodity Data Center Network Architecture”. In: SIG-
COMM Comput. Commun. Rev. 38.4 (2008), 63.

[38] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Devavrat Shah,
and Hans Fugal. “Fastpass: A centralized zero-queue datacenter
network”. In: ACM SIGCOMM Computer Communication Review 44.4
(2015), 307.

[39] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman,
and Jennifer Rexford. “Hula: Scalable load balancing using program-
mable data planes”. In: Proceedings of the Symposium on SDN Research.
ACM. 2016, 10.

[40] Soudeh Ghorbani, Zibin Yang, P. Brighten Godfrey, Yashar Ganjali,
and Amin Firoozshahian. “DRILL: Micro Load Balancing for Low-
Latency Data Center Networks”. In: Proceedings of the Conference of
the ACM Special Interest Group on Data Communication. SIGCOMM
’17. Los Angeles, CA, USA: Association for Computing Machinery,
2017, 225.

[41] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ra-
manan Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam,
Francis Matus, Rong Pan, Navindra Yadav, and George Varghese.
“CONGA: Distributed Congestion-Aware Load Balancing for Data-
centers”. In: Proceedings of the 2014 ACM Conference on SIGCOMM.
SIGCOMM ’14. Chicago, Illinois, USA: Association for Computing
Machinery, 2014, 503.

[42] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. “LossRadar:
Fast Detection of Lost Packets in Data Center Networks”. In: Pro-
ceedings of the 12th International on Conference on Emerging Networking
EXperiments and Technologies. CoNEXT ’16. Irvine, California, USA:
ACM, 2016, 481.

bibliography 139

[43] Behnaz Arzani, Selim Ciraci, Luiz Chamon, Yibo Zhu, Hongqiang
Harry Liu, Jitu Padhye, Boon Thau Loo, and Geoff Outhred.
“007: Democratically finding the cause of packet drops”. In: 15th
{USENIX} Symposium on Networked Systems Design and Implementa-
tion ({NSDI} 18). 2018, 419.

[44] Nick McKeown. SDN: Getting the humans out of the way. https://www.
juniper.net/documentation/us/en/software/junos/network-
mgmt/topics/topic- map/switches- interface- oam- lfm.html.
(Accessed: 2023-07-24).

[45] Mallik Mahalingam, Dinesh Dutt, Kenneth Duda, Puneet Agarwal,
Larry Kreeger, T. Sridhar, Mike Bursell, and Chris Wright. Virtual
eXtensible Local Area Network (VXLAN): A Framework for Overlaying
Virtualized Layer 2 Networks over Layer 3 Networks. RFC 7348. 2014.

[46] Elie F. Kfoury, Jorge Crichigno, and Elias Bou-Harb. “An Exhaustive
Survey on P4 Programmable Data Plane Switches: Taxonomy, Appli-
cations, Challenges, and Future Trends”. In: CoRR abs/2102.00643
(2021).

[47] Richard Chirgwin. Google routing blunder sent Japan’s Internet dark
on Friday. https://www.theregister.co.uk/2017/08/27/google_
routing_blunder_sent_japans_internet_dark/. 2017.

[48] Yevgeniy Sverdlik. “Configuration Issue” Halts Trading on NYSE.
https://www.datacenterknowledge.com/archives/2015/07/08/
technical-issue-halts-trading-on-nyse. 2016.

[49] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
“OpenFlow: enabling innovation in campus networks”. In: ACM
SIGCOMM Computer Communication Review 38.2 (2008), 69.

[50] The open networking fundation. OpenFlow Switch Specification Version
1.5.1. https://opennetworking.org/wp-content/uploads/2014/
10/openflow-switch-v1.5.1.pdf. 2015.

[51] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan J Jackson, Andy Zhou,
Jarno Rajahalme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar,
et al. “The Design and Implementation of Open vSwitch.” In: NSDI.
Vol. 15. 2015, 117.

https://www.juniper.net/documentation/us/en/software/junos/network-mgmt/topics/topic-map/switches-interface-oam-lfm.html
https://www.juniper.net/documentation/us/en/software/junos/network-mgmt/topics/topic-map/switches-interface-oam-lfm.html
https://www.juniper.net/documentation/us/en/software/junos/network-mgmt/topics/topic-map/switches-interface-oam-lfm.html
https://www.theregister.co.uk/2017/08/27/google_routing_blunder_sent_japans_internet_dark/
https://www.theregister.co.uk/2017/08/27/google_routing_blunder_sent_japans_internet_dark/
https://www.datacenterknowledge.com/archives/2015/07/08/technical-issue-halts-trading-on-nyse
https://www.datacenterknowledge.com/archives/2015/07/08/technical-issue-halts-trading-on-nyse
https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf

140 bibliography

[52] David Barach, Leonardo Linguaglossa, Damjan Marion, Pierre Pfis-
ter, Salvatore Pontarelli, and Dario Rossi. “High-Speed Software
Data Plane via Vectorized Packet Processing”. In: Comm. Mag. 56.12
(2018), 97.

[53] Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls, Sylvia Rat-
nasamy, and Scott Shenker. “NetBricks: Taking the V out of NFV”.
In: 12th USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI 16). Savannah, GA: USENIX Association, 2016,
203.

[54] Linux Foundation. Data Plane Development Kit (DPDK). Accessed:
2023-08-15. 2023.

[55] Toke Høiland-Jørgensen, Jesper Dangaard Brouer, Daniel Borkmann,
John Fastabend, Tom Herbert, David Ahern, and David Miller. “The
EXpress Data Path: Fast Programmable Packet Processing in the Op-
erating System Kernel”. In: Proceedings of the 14th International Confer-
ence on Emerging Networking EXperiments and Technologies. CoNEXT
’18. Heraklion, Greece: Association for Computing Machinery, 2018,
54.

[56] Noa Zilberman, Yury Audzevich, G. Adam Covington, and An-
drew W. Moore. “NetFPGA SUME: Toward 100 Gbps as Research
Commodity”. In: IEEE Micro 34.5 (2014), 32.

[57] Samir Palnitkar. Verilog HDL: A Guide to Digital Design and Synthesis.
USA: Prentice-Hall, Inc., 1996.

[58] Volnei A. Pedroni. Circuit Design with VHDL. Cambridge, MA, USA:
MIT Press, 2004.

[59] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKe-
own, Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat,
George Varghese, and David Walker. “P4: Programming Protocol-
Independent Packet Processors”. In: SIGCOMM Comput. Commun.
Rev. 44.3 (2014), 87.

[60] The P4 Language Consortium. P416 Language Specification (Version
1.2.4). https://p4.org/p4-spec/docs/P4-16-v1.2.4.pdf. 2023.

[61] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick
McKeown, Martin Izzard, Fernando Mujica, and Mark Horowitz.
“Forwarding Metamorphosis: Fast Programmable Match-Action Pro-
cessing in Hardware for SDN”. In: Proceedings of the ACM SIGCOMM

https://p4.org/p4-spec/docs/P4-16-v1.2.4.pdf

bibliography 141

2013 Conference on SIGCOMM. SIGCOMM ’13. Hong Kong, China:
Association for Computing Machinery, 2013, 99.

[62] Dan Daly Calin Cascaval. P4 Architectures. https://opennetworking.
org/wp-content/uploads/2020/12/p4-ws-2017-p4-architectures.
pdf. 2017.

[63] The P4.org Architecture Working Group. Portable Switch Architecture
(PSA) version 1.2. Accessed: 2023-08-15. 2022.

[64] The P4.org Architecture Working Group. Portable NIC Architecture
(PNA) version 0.7. Accessed: 2023-08-15. 2022.

[65] Intel. Intel Tofino Native Architecture - Public Version. Accessed: 2023-
08-15. 2021.

[66] Intel. Switching to Intelligence: Intel Tofino Intelligent Fabric Processors.
Accessed: 2023-08-15. 2022.

[67] The P4 Language Consortium. P4 Language Specification (Version
1.0.5). https://p4.org/p4-spec/p4-14/v1.0.5/tex/p4.pdf. 2018.

[68] Elie F. Kfoury, Jorge Crichigno, and Elias Bou-Harb. “An Exhaustive
Survey on P4 Programmable Data Plane Switches: Taxonomy, Appli-
cations, Challenges, and Future Trends”. In: CoRR abs/2102.00643
(2021).

[69] Open Tofino. Tofino 1 P4 Architecture Description. 2022.
[70] P4 Language Consortium. Simple Switch/v1model Architecture Descrip-

tion. 2021.
[71] P4 Language Consortium. P4 Language GitHub. https://github.

com/p4lang/. 2018.
[72] P4 Language Consortium. P4 behavioral model. https://github.com/

p4lang/behavioral-model. 2018.
[73] P4 Language Consortium. P4c Compiler. https : / / github . com /

p4lang/p4c. 2018.
[74] Edgar Costa Molero and Jurij Nota. P4Utils. https://github.com/

nsg-ethz/p4-utils. 2018.
[75] Bob Lantz, Brandon Heller, and Nick McKeown. “A Network in

a Laptop: Rapid Prototyping for Software-defined Networks”. In:
Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in
Networks. Hotnets-IX. Monterey, California: ACM, 2010, 19:1.

[76] Networked Systems Group ETH Zürich. P4-learning. https : / /
github.com/nsg-ethz/p4-learning. 2018.

https://opennetworking.org/wp-content/uploads/2020/12/p4-ws-2017-p4-architectures.pdf
https://opennetworking.org/wp-content/uploads/2020/12/p4-ws-2017-p4-architectures.pdf
https://opennetworking.org/wp-content/uploads/2020/12/p4-ws-2017-p4-architectures.pdf
https://p4.org/p4-spec/p4-14/v1.0.5/tex/p4.pdf
https://github.com/p4lang/
https://github.com/p4lang/
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/p4c
https://github.com/p4lang/p4c
https://github.com/nsg-ethz/p4-utils
https://github.com/nsg-ethz/p4-utils
https://github.com/nsg-ethz/p4-learning
https://github.com/nsg-ethz/p4-learning

142 bibliography

[77] Laurent Vanbever. Do you care about "gray" failures? Can we (network
academics) help? A 10-min survey. https://mailman.nanog.org/
pipermail/nanog/2021-July/214217.html. 2021.

[78] Ralph Droms. Dynamic Host Configuration Protocol. RFC 2131. http:
//www.rfc-editor.org/rfc/rfc2131.txt. RFC Editor, 1997.

[79] Matteo Adriani and Maurizio Naldi. “Whose fault is it? correctly
attributing outages in cloud services”. In: 2019 Federated Conference
on Computer Science and Information Systems (FedCSIS). IEEE. 2019,
433.

[80] Jeffrey D. Case, Mark Fedor, Martin Lee Schoffstall, and James R.
Davin. Simple Network Management Protocol (SNMP). STD 15. http:
//www.rfc-editor.org/rfc/rfc1157.txt. RFC Editor, 1990.

[81] Cisco. Cisco: Bug Search Tool. https://bst.cisco.com/bugsearch/.
2022.

[82] Juniper Networks. Problem Report Search. https : / / prsearch .
juniper.net/home. 2022.

[83] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. “Lossradar:
Fast detection of lost packets in data center networks”. In: Proceed-
ings of the 12th International on Conference on emerging Networking
EXperiments and Technologies. ACM. 2016, 481.

[84] Rishi Kapoor, George Porter, Malveeka Tewari, Geoffrey M. Voelker,
and Amin Vahdat. “Chronos: Predictable Low Latency for Data
Center Applications”. In: Proceedings of the Third ACM Symposium
on Cloud Computing. SoCC ’12. San Jose, California: Association for
Computing Machinery, 2012.

[85] Ramki Krishnan, Lucy Yong, Anoop Ghanwani, Ning So, and Bhu-
mip Khasnabish. Mechanisms for Optimizing Link Aggregation Group
(LAG) and Equal-Cost Multipath (ECMP) Component Link Utilization in
Networks. RFC 7424. 2015.

[86] Marco Foschiano. Cisco Systems UniDirectional Link Detection (UDLD)
Protocol. RFC 5171. 2008.

[87] Juniper Networks. Network Management and Monitoring Guide: OAM
Link Fault Management. https://www.juniper.net/documentation/
us / en / software / junos / network - mgmt / topics / topic - map /
switches-interface-oam-lfm.html. (Accessed: 2023-07-01).

https://mailman.nanog.org/pipermail/nanog/2021-July/214217.html
https://mailman.nanog.org/pipermail/nanog/2021-July/214217.html
http://www.rfc-editor.org/rfc/rfc2131.txt
http://www.rfc-editor.org/rfc/rfc2131.txt
http://www.rfc-editor.org/rfc/rfc1157.txt
http://www.rfc-editor.org/rfc/rfc1157.txt
https://bst.cisco.com/bugsearch/
https://prsearch.juniper.net/home
https://prsearch.juniper.net/home
https://www.juniper.net/documentation/us/en/software/junos/network-mgmt/topics/topic-map/switches-interface-oam-lfm.html
https://www.juniper.net/documentation/us/en/software/junos/network-mgmt/topics/topic-map/switches-interface-oam-lfm.html
https://www.juniper.net/documentation/us/en/software/junos/network-mgmt/topics/topic-map/switches-interface-oam-lfm.html

bibliography 143

[88] Donnie Savage, James Ng, Steven Moore, Donald Slice, Peter Paluch,
and Russ White. Cisco’s Enhanced Interior Gateway Routing Protocol
(EIGRP). RFC 7868. 2016.

[89] D. Katz and D. Ward. Bidirectional Forwarding Detection. RFC 5880.
Internet Engineering Task Force, 2010.

[90] David Schweikertnet. fping. https : / / github . com / schweikert /
fping. (Accessed: 2023-07-01).

[91] Masoud Moshref, Minlan Yu, Ramesh Govindan, and Amin Vah-
dat. “Trumpet: Timely and Precise Triggers in Data Centers”. In:
Proceedings of the 2016 ACM SIGCOMM Conference. SIGCOMM ’16.
Florianopolis, Brazil: Association for Computing Machinery, 2016,
129.

[92] Minlan Yu, Albert Greenberg, Dave Maltz, Jennifer Rexford, Lihua
Yuan, Srikanth Kandula, and Changhoon Kim. “Profiling Network
Performance for Multi-Tier Data Center Applications”. In: Proceed-
ings of the 8th USENIX Conference on Networked Systems Design and
Implementation. NSDI’11. Boston, MA: USENIX Association, 2011, 57.

[93] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, and Alex C Snoeren. “Pas-
sive Realtime Datacenter Fault Detection and Localization”. In: Nsdi
(2017), 25.

[94] Behnaz Arzani, Selim Ciraci, Boon Thau Loo, Assaf Schuster, and
Geoff Outhred. “Taking the Blame Game out of Data Centers Opera-
tions with NetPoirot”. In: Proceedings of the 2016 ACM SIGCOMM
Conference. SIGCOMM ’16. Florianopolis, Brazil: Association for
Computing Machinery, 2016, 440.

[95] Behnaz Arzani, Selim Ciraci, Luiz Chamon, Yibo Zhu, Hongqiang
(Harry) Liu, Jitu Padhye, Boon Thau Loo, and Geoff Outhred. “007:
Democratically Finding the Cause of Packet Drops”. In: 15th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
18). Renton, WA: USENIX Association, 2018, 419.

[96] Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Balaji Prabhakar,
Mendel Rosenblum, and Amin Vahdat. “SIMON: A Simple and
Scalable Method for Sensing, Inference and Measurement in Data
Center Networks”. In: 16th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 19). Boston, MA: USENIX
Association, 2019, 549.

https://github.com/schweikert/fping
https://github.com/schweikert/fping

144 bibliography

[97] Anurag Khandelwal, Rachit Agarwal, and Ion Stoica. “Confluo:
Distributed Monitoring and Diagnosis Stack for High-speed Net-
works”. In: 16th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 19). Boston, MA: USENIX Association, 2019,
421.

[98] Cheng Tan, Ze Jin, Chuanxiong Guo, Tianrong Zhang, Haitao Wu,
Karl Deng, Dongming Bi, and Dong Xiang. “Netbouncer: Active
device and link failure localization in data center networks”. In: 16th
{USENIX} Symposium on Networked Systems Design and Implementa-
tion ({NSDI} 19). 2019, 599.

[99] François Aubry, David Lebrun, Stefano Vissicchio, Minh Thanh
Khong, Yves Deville, and Olivier Bonaventure. “SCMon: Leverag-
ing Segment Routing to Improve Network Monitoring”. In: IEEE
INFOCOM 2016 - The 35th Annual IEEE International Conference on
Computer Communications. San Francisco, CA, USA: IEEE Press, 2016,
1.

[100] Yanghua Peng, Ji Yang, Chuan Wu, Chuanxiong Guo, Chengchen
Hu, and Zongpeng Li. “deTector: a Topology-aware Monitoring Sys-
tem for Data Center Networks”. In: 2017 USENIX Annual Technical
Conference (USENIX ATC 17). Santa Clara, CA: USENIX Association,
2017, 55.

[101] David Eppstein, Michael T. Goodrich, Frank Uyeda, and George
Varghese. “What’s the Difference? Efficient Set Reconciliation with-
out Prior Context”. In: Proceedings of the ACM SIGCOMM 2011 Con-
ference. SIGCOMM ’11. Toronto, Ontario, Canada: Association for
Computing Machinery, 2011, 218.

[102] Jeff Rasley, Brent Stephens, Colin Dixon, Eric Rozner, Wes Fel-
ter, Kanak Agarwal, John Carter, and Rodrigo Fonseca. “Planck:
Millisecond-Scale Monitoring and Control for Commodity Net-
works”. In: SIGCOMM Comput. Commun. Rev. 44.4 (2014), 407.

[103] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. “FlowRadar:
A Better NetFlow for Data Centers”. In: 13th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 16). Santa Clara,
CA: USENIX Association, 2016, 311.

[104] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, David
Mazières, and Nick McKeown. “I Know What Your Packet Did Last
Hop: Using Packet Histories to Troubleshoot Networks”. In: 11th

bibliography 145

USENIX Symposium on Networked Systems Design and Implementation
(NSDI 2014) (2014), 71.

[105] Changhoon Kim and Parag Bhide and Ed Doe and Hugh Holbrook
and Anoop Ghanwani and Dan Daly and Mukesh Hira and Bruce
Davie. In-band Network Telemetry (INT). P4 specification. 2016.

[106] Ran Ben Basat, Sivaramakrishnan Ramanathan, Yuliang Li, Gianni
Antichi, Minian Yu, and Michael Mitzenmacher. “PINT: Probabilistic
In-Band Network Telemetry”. In: Proceedings of the Annual Confer-
ence of the ACM Special Interest Group on Data Communication on
the Applications, Technologies, Architectures, and Protocols for Computer
Communication. SIGCOMM ’20. Virtual Event, USA: Association for
Computing Machinery, 2020, 662.

[107] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar,
and Vladimir Braverman. “One sketch to rule them all: Rethinking
network flow monitoring with univmon”. In: Proceedings of the 2016
ACM SIGCOMM Conference. 2016, 101.

[108] Balachander Krishnamurthy, Subhabrata Sen, Yin Zhang, and Yan
Chen. “Sketch-based change detection: Methods, evaluation, and
applications”. In: Proceedings of the 3rd ACM SIGCOMM conference on
Internet measurement. 2003, 234.

[109] Ashwin Lall, Vyas Sekar, Mitsunori Ogihara, Jun Xu, and Hui Zhang.
“Data streaming algorithms for estimating entropy of network traf-
fic”. In: ACM SIGMETRICS Performance Evaluation Review 34.1 (2006),
145.

[110] Masoud Moshref, Minlan Yu, Ramesh Govindan, and Amin Vah-
dat. “Scream: Sketch resource allocation for software-defined mea-
surement”. In: Proceedings of the 11th ACM Conference on Emerging
Networking Experiments and Technologies. 2015, 1.

[111] Minlan Yu, Lavanya Jose, and Rui Miao. “Software Defined Traffic
Measurement with OpenSketch”. In: 10th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 13). 2013, 29.

[112] Nikita Ivkin, Zhuolong Yu, Vladimir Braverman, and Xin Jin. “Qpipe:
Quantiles sketch fully in the data plane”. In: Proceedings of the 15th
International Conference on Emerging Networking Experiments And Tech-
nologies. 2019, 285.

146 bibliography

[113] Qun Huang, Patrick P. C. Lee, and Yungang Bao. “Sketchlearn:
Relieving User Burdens in Approximate Measurement with Auto-
mated Statistical Inference”. In: Proceedings of the 2018 Conference of
the ACM Special Interest Group on Data Communication. SIGCOMM
’18. Budapest, Hungary: Association for Computing Machinery, 2018,
576.

[114] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi Gong, Yang Zhou,
Rui Miao, Xiaoming Li, and Steve Uhlig. “Elastic Sketch: Adaptive
and Fast Network-Wide Measurements”. In: Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication.
SIGCOMM ’18. Budapest, Hungary: Association for Computing
Machinery, 2018, 561.

[115] Zaoxing Liu, Ran Ben-Basat, Gil Einziger, Yaron Kassner, Vladimir
Braverman, Roy Friedman, and Vyas Sekar. “Nitrosketch: Robust
and General Sketch-Based Monitoring in Software Switches”. In:
Proceedings of the ACM Special Interest Group on Data Communication.
SIGCOMM ’19. Beijing, China: Association for Computing Machin-
ery, 2019, 334.

[116] Yikai Zhao, Kaicheng Yang, Zirui Liu, Tong Yang, Li Chen, Shiyi Liu,
Naiqian Zheng, Ruixin Wang, Hanbo Wu, Yi Wang, and Nicholas
Zhang. “LightGuardian: A Full-Visibility, Lightweight, In-band
Telemetry System Using Sketchlets”. In: 18th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 21). USENIX
Association, 2021, 991.

[117] Kaicheng Yang, Yuhan Wu, Ruijie Miao, Tong Yang, Zirui Liu, Zicang
Xu, Rui Qiu, Yikai Zhao, Hanglong Lv, Zhigang Ji, and Gaogang
Xie. “ChameleMon: Shifting Measurement Attention as Network
State Changes”. In: Proceedings of the ACM SIGCOMM 2023 Confer-
ence. ACM SIGCOMM ’23. New York, NY, USA: Association for
Computing Machinery, 2023, 881.

[118] Hun Namkung, Daehyeok Kim, Zaoxing Liu, Vyas SekaR, and Pe-
ter Steenkiste. “Telemetry Retrieval Inaccuracy in Programmable
Switches: Analysis and Recommendations”. In: Proceedings of the
ACM SIGCOMM Symposium on SDN Research (SOSR). New York,
NY, USA: Association for Computing Machinery, 2021, 176.

[119] Mimi Qian, Lin Cui, Xiaoquan Zhang, Fung Po Tso, and Yuhui
Deng. “dDrops: Detecting silent packet drops on programmable
data plane”. In: Computer Networks 214 (2022), 109171.

bibliography 147

[120] Trace Statistics for CAIDA Passive OC48 and OC192 Traces. https:
//www.caida.org/catalog/datasets/trace_stats/. 2023.

[121] Intel Tofino 3 Brief. https://www.intel.com/content/www/us/en/
products/network-io/programmable-ethernet-switch/tofino-3-
brief.html.

[122] Ran Ben-Basat, Xiaoqi Chen, Gil Einziger, and Ori Rottenstreich.
“Efficient Measurement on Programmable Switches Using Proba-
bilistic Recirculation”. In: 2018 IEEE 26th International Conference on
Network Protocols, ICNP 2018, Cambridge, UK, September 25-27, 2018.
IEEE Computer Society, 2018, 313.

[123] Mary Hogan, Shir Landau-Feibish, Mina Tahmasbi Arashloo, Jen-
nifer Rexford, David Walker, and Rob Harrison. “Elastic Switch
Programming with P4All”. In: Proceedings of the 19th ACM Work-
shop on Hot Topics in Networks. HotNets ’20. Virtual Event, USA:
Association for Computing Machinery, 2020, 168.

[124] Kausik Subramanian, Anubhavnidhi Abhashkumar, Loris D’Antoni,
and Aditya Akella. “D2R: Policy-Compliant Fast Reroute”. In: SOSR.
ACM, 2021, 148.

[125] Stephane Litkowski, Ahmed Bashandy, Clarence Filsfils, Pierre
Francois, Bruno Decraene, and Daniel Voyer. Topology Independent
Fast Reroute using Segment Routing. Internet-Draft draft-ietf-rtgwg-
segment-routing-ti-lfa-08. Work in Progress. Internet Engineering
Task Force, 2022.

[126] Zhizhen Zhong, Manya Ghobadi, Alaa Khaddaj, Jonathan Leach,
Yiting Xia, and Ying Zhang. “ARROW: Restoration-Aware Traffic
Engineering”. In: Proceedings of the 2021 ACM SIGCOMM 2021 Con-
ference. SIGCOMM ’21. 2021, 560.

[127] Juniper Bug: PR1434567 – IPv6 neighbor solicitation packets getting
dropped on PTX. (Open Registration Required). https://prsearch.
juniper.net/InfoCenter/index?page=prcontent&id=PR1434567.

[128] Juniper Bug: PR1398407 – On SRX4600 and SRX5000 line of devices,
BGP packets might be dropped under high CPU usage.. (Open Registration
Required). https://prsearch.juniper.net/InfoCenter/index?
page=prcontent&id=PR1398407.

[129] Cisco Bug: CSCea91692 - PSA has a corrupted cef entry, affecting IP:IP
traffic. https://quickview.cloudapps.cisco.com/quickview/bug/
CSCea91692.

https://www.caida.org/catalog/datasets/trace_stats/
https://www.caida.org/catalog/datasets/trace_stats/
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-3-brief.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-3-brief.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-3-brief.html
https://prsearch.juniper.net/InfoCenter/index?page=prcontent&id=PR1434567%20
https://prsearch.juniper.net/InfoCenter/index?page=prcontent&id=PR1434567%20
https://prsearch.juniper.net/InfoCenter/index?page=prcontent&id=PR1398407%20
https://prsearch.juniper.net/InfoCenter/index?page=prcontent&id=PR1398407%20
https://quickview.cloudapps.cisco.com/quickview/bug/CSCea91692
https://quickview.cloudapps.cisco.com/quickview/bug/CSCea91692

148 bibliography

[130] Cisco Bug: CSCti14290 - VPN Aggregate Label dmac corruption in hard-
ware forwarding entry. https://quickview.cloudapps.cisco.com/
quickview/bug/CSCti14290.

[131] Cisco Bug: CSCtc33158 - 7600-ES+40G3CXL drops random sized L2TPv3
packets with cookies enabled. https://quickview.cloudapps.cisco.
com/quickview/bug/CSCtc33158.

[132] Cisco Bug: CSCuv31196 - Random MPLS Packet Drops With IP Multicast
Over L3 Ring on ASR901. https://quickview.cloudapps.cisco.
com/quickview/bug/CSCuv31196.

[133] Juniper Bug: PR1296089 – Traffic received from core are not sent to lo-
cally attached circuit due to QSN timeout. https://www.juniper.
net/documentation/en_US/junos/information-products/topic-
collections/release-notes/18.1/jd0e17997.html.

[134] Juniper Bug: PR1450545 – Traffic loss might occur when there are around
80,000 routes in FIB (Open Registration Required). https://prsearch.
juniper.net/InfoCenter/index?page=prcontent&id=PR1450545.

[135] Juniper Bug: PR1313977 – Traffic drop occurs on sending traffic over
“et” interfaces due to CRC errors. https : / / www . juniper . net /
documentation / en _ US / junos / information - products / topic -
collections/release-notes/17.4/jd0e19328.html.

[136] Juniper Bug: PR1309613 – Traffic loss may be seen if sending traffic via
the 40G interface. https://www.juniper.net/documentation/en_
US/junos/information-products/topic-collections/release-
notes/17.4/jd0e19328.html.

[137] Juniper Bug: PR1459698 – Silent dropping of traffic upon interface flap-
ping after DRD auto-recovery (Open Registration Required). https://
prsearch.juniper.net/InfoCenter/index?page=prcontent&id=
PR1459698.

[138] Juniper Bug: PR1441816 – Egress stream flush failure and traffic blackhole
might occur (Open Registration Required). https://prsearch.juniper.
net/InfoCenter/index?page=prcontent&id=PR1441816.

[139] Network Simulator 3. https://www.nsnam.org/. 2018.
[140] Ethernet Alliance. 2023 Ethernet Roadmap. https://ethernetalliance.

org/technology/ethernet-roadmap/. Accessed: 2023-11-07. 2023.
[141] Nadi Sarrar, Steve Uhlig, Anja Feldmann, Rob Sherwood, and Xin

Huang. “Leveraging Zipf’s law for traffic offloading”. In: ACM
SIGCOMM Computer Communication Review 42.1 (2012), 16.

https://quickview.cloudapps.cisco.com/quickview/bug/CSCti14290
https://quickview.cloudapps.cisco.com/quickview/bug/CSCti14290
https://quickview.cloudapps.cisco.com/quickview/bug/CSCtc33158
https://quickview.cloudapps.cisco.com/quickview/bug/CSCtc33158
https://quickview.cloudapps.cisco.com/quickview/bug/CSCuv31196
https://quickview.cloudapps.cisco.com/quickview/bug/CSCuv31196
https://www.juniper.net/documentation/en_US/junos/information-products/topic-collections/release-notes/18.1/jd0e17997.html
https://www.juniper.net/documentation/en_US/junos/information-products/topic-collections/release-notes/18.1/jd0e17997.html
https://www.juniper.net/documentation/en_US/junos/information-products/topic-collections/release-notes/18.1/jd0e17997.html
https://prsearch.juniper.net/InfoCenter/index?page=prcontent&id=PR1450545
https://prsearch.juniper.net/InfoCenter/index?page=prcontent&id=PR1450545
https://www.juniper.net/documentation/en_US/junos/information-products/topic-collections/release-notes/17.4/jd0e19328.html%20
https://www.juniper.net/documentation/en_US/junos/information-products/topic-collections/release-notes/17.4/jd0e19328.html%20
https://www.juniper.net/documentation/en_US/junos/information-products/topic-collections/release-notes/17.4/jd0e19328.html%20
https://www.juniper.net/documentation/en_US/junos/information-products/topic-collections/release-notes/17.4/jd0e19328.html%20
https://www.juniper.net/documentation/en_US/junos/information-products/topic-collections/release-notes/17.4/jd0e19328.html%20
https://www.juniper.net/documentation/en_US/junos/information-products/topic-collections/release-notes/17.4/jd0e19328.html%20
https://prsearch.juniper.net/InfoCenter/index?page=prcontent&id=PR1459698%20
https://prsearch.juniper.net/InfoCenter/index?page=prcontent&id=PR1459698%20
https://prsearch.juniper.net/InfoCenter/index?page=prcontent&id=PR1459698%20
https://prsearch.juniper.net/InfoCenter/index?page=prcontent&id=PR1441816%20
https://prsearch.juniper.net/InfoCenter/index?page=prcontent&id=PR1441816%20
https://www.nsnam.org/
https://ethernetalliance.org/technology/ethernet-roadmap/
https://ethernetalliance.org/technology/ethernet-roadmap/

bibliography 149

[142] Sasu Tarkoma, Christian Esteve Rothenberg, and Eemil Lagerspetz.
“Theory and Practice of Bloom Filters for Distributed Systems”. In:
IEEE Communications Surveys & Tutorials 14.1 (2012), 131.

[143] Andrei Broder and Michael Mitzenmacher. “Network Applications
of Bloom Filters: A Survey”. In: Internet Mathematics. Vol. 1. 2002,
636.

[144] CAIDA. The CAIDA UCSD Anonymized 2013/2014/2015/2016/2018
Internet Traces. http://www.caida.org/data/passive/passive_
2013_dataset.xml.

[145] Summary of Anonymization Best Practice Techniques. hhttps://www.
caida.org/projects/predict/anonymization/.

[146] Visibility of IPv4 and IPv6 Prefix Lengths in 2019. https://labs.ripe.
net/Members/stephen_strowes/visibility-of-prefix-lengths-
in-ipv4-and-ipv6.

[147] Sharad Chole, Andy Fingerhut, Sha Ma, Anirudh Sivaraman, Shay
Vargaftik, Alon Berger, Gal Mendelson, Mohammad Alizadeh,
Shang-Tse Chuang, Isaac Keslassy, Ariel Orda, and Tom Edsall.
“DRMT: Disaggregated Programmable Switching”. In: Proceedings of
the Conference of the ACM Special Interest Group on Data Communication.
SIGCOMM ’17. Los Angeles, CA, USA: Association for Computing
Machinery, 2017, 1.

[148] Naga Katta, Omid Alipourfard, Jennifer Rexford, and David Walker.
“Infinite cacheflow in software-defined networks”. In: Proceedings of
the third workshop on Hot topics in software defined networking. ACM.
2014, 175.

[149] D. Katz and D. Ward. Bidirectional Forwarding Detection. RFC 5880.
Internet Engineering Task Force, 2010.

[150] Clarence Filsfils, Pradosh Mohapatra, John Bettink, Pranav Dharwad-
kar, Peter De Vriendt, Yuri Tsier, Virginie Van Den Schrieck, Olivier
Bonaventure, and Pierre Francois. BGP Prefix Independent Convergence
(PIC) Technical Report. Tech. rep. http://www.cisco.com/en/US/
prod/collateral/routers/ps5763/bgp_pic_technical_report.
pdf. Cisco, 2011.

[151] Aristidis Lambrianidis and Eric Nguyen Dyu. “Route Server Imple-
mentations Performance”. Euro-IX Forum, Amsterdam, The Nether-
lands. 2012.

http://www.caida.org/data/passive/passive_2013_dataset.xml
http://www.caida.org/data/passive/passive_2013_dataset.xml
hhttps://www.caida.org/projects/predict/anonymization/
hhttps://www.caida.org/projects/predict/anonymization/
https://labs.ripe.net/Members/stephen_strowes/visibility-of-prefix-lengths-in-ipv4-and-ipv6
https://labs.ripe.net/Members/stephen_strowes/visibility-of-prefix-lengths-in-ipv4-and-ipv6
https://labs.ripe.net/Members/stephen_strowes/visibility-of-prefix-lengths-in-ipv4-and-ipv6
http://www.cisco.com/en/US/prod/collateral/routers/ps5763/bgp_pic_technical_report.pdf
http://www.cisco.com/en/US/prod/collateral/routers/ps5763/bgp_pic_technical_report.pdf
http://www.cisco.com/en/US/prod/collateral/routers/ps5763/bgp_pic_technical_report.pdf

150 bibliography

[152] Allen Taylor, Benedikt Rudolph, Daniel Spierling, and Johannes
Moos. “An IXP Route Server Test Framework”. Euro-IX Forum,
Barcelona, Spain. 2017.

[153] Thomas Holterbach, Stefano Vissicchio, Alberto Dainotti, and Lau-
rent Vanbever. “SWIFT: Predictive fast reroute”. In: Proceedings of the
Conference of the ACM Special Interest Group on Data Communication.
ACM. 2017, 460.

[154] Y. Rekhter, T. Li, and S. Hares. A Border Gateway Protocol 4 (BGP-4).
RFC 4271 (Draft Standard). 2006.

[155] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ra-
manan Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam,
Francis Matus, Rong Pan, Navindra Yadav, and George Varghese.
“CONGA: Distributed Congestion-aware Load Balancing for Data-
centers”. In: Proceedings of the 2014 ACM Conference on SIGCOMM.
SIGCOMM ’14. Chicago, Illinois, USA: ACM, 2014, 503.

[156] Barefoot Tofino. https://barefootnetworks.com/products/product-
brief-tofino/.

[157] The P4_16 Language Specification - Version 1.0.0. https://p4.org/p4-
spec/docs/P4-16-v1.0.0-spec.html.

[158] Amedeo Sapio, Ibrahim Abdelaziz, Abdulla Aldilaijan, Marco
Canini, and Panos Kalnis. “In-Network Computation is a Dumb
Idea Whose Time Has Come”. In: Proceedings of the 16th ACM Work-
shop on Hot Topics in Networks. HotNets-XVI. Palo Alto, CA, USA:
ACM, 2017, 150.

[159] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh
Goyal, Venkat Arun, Mohammad Alizadeh, Vimalkumar Jeyakumar,
and Changhoon Kim. “Language-directed hardware design for net-
work performance monitoring”. In: Proceedings of the Conference of the
ACM Special Interest Group on Data Communication. ACM. 2017, 85.

[160] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich,
S Muthukrishnan, and Jennifer Rexford. “Heavy-hitter detection
entirely in the data plane”. In: Proceedings of the Symposium on SDN
Research. ACM. 2017, 164.

https://barefootnetworks.com/products/product-brief-tofino/
https://barefootnetworks.com/products/product-brief-tofino/
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html

bibliography 151

[161] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Moham-
mad Alizadeh, David Walker, Jennifer Rexford, Vimalkumar Jeyaku-
mar, and Changhoon Kim. “Hardware-software co-design for net-
work performance measurement”. In: Proceedings of the 15th ACM
Workshop on Hot Topics in Networks. ACM. 2016, 190.

[162] Mina Tahmasbi Arashloo, Monia Ghobadi, Jennifer Rexford, and
David Walker. “HotCocoa: Hardware Congestion Control Abstrac-
tions”. In: Proceedings of the 16th ACM Workshop on Hot Topics in
Networks. 2017, 108.

[163] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee,
Robert Soulé, Changhoon Kim, and Ion Stoica. “NetChain: Scale-Free
Sub-RTT Coordination”. In: 15th USENIX Symposium on Networked
Systems Design and Implementation. 2018.

[164] Huynh Tu Dang, Marco Canini, Fernando Pedone, and Robert Soulé.
“Paxos made switch-y”. In: ACM SIGCOMM Computer Communica-
tion Review 46.2 (2016), 18.

[165] Huynh Tu Dang, Daniele Sciascia, Marco Canini, Fernando Pedone,
and Robert Soulé. “Netpaxos: Consensus at network speed”. In:
Proceedings of the 1st ACM SIGCOMM Symposium on Software Defined
Networking Research. 2015, 5.

[166] Junda Liu, Aurojit Panda, Ankit Singla, Brighten Godfrey, Michael
Schapira, and Scott Shenker. “Ensuring Connectivity via Data Plane
Mechanisms”. In: Presented as part of the 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 13). Lombard, IL:
USENIX, 2013, 113.

[167] Cisco IOS. IP Routing: BFD Configuration Guide. https://www.cisco.
com/c/en/us/td/docs/ios-xml/ios/iproute_bfd/configuration/
15-mt/irb-15-mt-book/irb-bi-fwd-det.html.

[168] Timothy G. Griffin and Gordon Wilfong. “An Analysis of BGP Con-
vergence Properties”. In: Proceedings of the Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communication.
SIGCOMM ’99. Cambridge, Massachusetts, USA: ACM, 1999, 277.

[169] Joao Luis Sobrinho. “Network routing with path vector protocols:
Theory and applications”. In: Proceedings of the 2003 conference on
Applications, technologies, architectures, and protocols for computer com-
munications. ACM. 2003, 49.

https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/iproute_bfd/configuration/15-mt/irb-15-mt-book/irb-bi-fwd-det.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/iproute_bfd/configuration/15-mt/irb-15-mt-book/irb-bi-fwd-det.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/iproute_bfd/configuration/15-mt/irb-15-mt-book/irb-bi-fwd-det.html

bibliography

[170] Amedeo Sapio, Ibrahim Abdelaziz, Abdulla Aldilaijan, Marco
Canini, and Panos Kalnis. “In-Network Computation is a Dumb
Idea Whose Time Has Come”. In: Proceedings of the 16th ACM Work-
shop on Hot Topics in Networks. HotNets-XVI. Palo Alto, CA, USA:
ACM, 2017, 150.

[171] Soudeh Ghorbani, Zibin Yang, P. Brighten Godfrey, Yashar Ganjali,
and Amin Firoozshahian. “DRILL: Micro Load Balancing for Low-
latency Data Center Networks”. In: Proceedings of the Conference of the
ACM Special Interest Group on Data Communication. SIGCOMM ’17.
Los Angeles, CA, USA: ACM, 2017, 225.

[172] TCP Behavior of BGP. https://archive.psg.com/121009.nag-bgp-
tcp.pdf. 2012.

[173] Stephen Edwards, Luciano Lavagno, Edward A Lee, and Alberto
Sangiovanni-Vincentelli. “Design of embedded systems: Formal
models, validation, and synthesis”. In: Proceedings of the IEEE 85.3
(1997), 366.

[174] Péter Arató, Zoltán Ádám Mann, and András Orbán. “Algorithmic
aspects of hardware/software partitioning”. In: ACM Transactions on
Design Automation of Electronic Systems (TODAES) 10.1 (2005), 136.

[175] Jurij Nota. “Enhancing Data Plane Signals for Network Monitoring
Systems”. Master’s thesis. ETH Zürich, 2022.

[176] Saeed Masoudnia and Reza Ebrahimpour. “Mixture of experts: a
literature survey”. In: Artificial Intelligence Review 42.2 (2014), 275.

https://archive.psg.com/121009.nag-bgp-tcp.pdf
https://archive.psg.com/121009.nag-bgp-tcp.pdf

	Abstract
	Zusammenfassung
	Publications
	Acknowledgments
	Contents
	1 Introduction
	2 Background
	2.1 Networking foundations
	2.1.1 Network routing
	2.1.2 Network planes
	2.1.3 Transport protocol

	2.2 Types of networks
	2.3 The evolution of networks: Network programmability
	2.4 Programmable network data planes
	2.4.1 Programmable architectures
	2.4.2 The P4 programming language

	3 Network failures and existing detection techniques
	3.1 Network failures
	3.1.1 Types of gray failures
	3.1.2 Characterizing gray failures through vendor bugs
	3.1.3 Operators survey: gray failures in ISP networks

	3.2 Network failure detection techniques
	3.2.1 Existing vendor network failure detection techniques
	3.2.2 Advanced network failure detection techniques

	4 In-network failure detection
	4.1 Gray failures in ISP networks
	4.1.1 Gray failures are a problem for a majority of operators
	4.1.2 What is the impact of gray failures in ISPs?
	4.1.3 Why is prior work not applicable in ISPs?
	4.1.4 What about simple designs?

	4.2 FANcY overview
	4.3 FANcY internals
	4.3.1 Counting protocol
	4.3.2 Hash-based trees
	4.3.3 Properties of hash-based trees
	4.3.4 Practical considerations

	4.4 Sensitivity analysis of FANcY's parameters
	4.5 Evaluation
	4.5.1 Benchmarking FANcY
	4.5.2 FANcY on real traffic traces
	4.5.3 Overhead analysis

	4.6 Tofino made FANcY
	4.6.1 Hardware implementation
	4.6.2 Hardware resources and memory usage
	4.6.3 Case study: fine-grained fast rerouting

	4.7 Conclusion

	5 Hardware-accelerated network control planes
	5.1 Hardware-based control plane
	5.1.1 Hardware-based sensing
	5.1.2 Hardware-based notification
	5.1.3 Hardware-based computation

	5.2 Preliminary implementation
	5.2.1 Implementation
	5.2.2 Intra/inter-domain routing … in hardware!
	5.2.3 Case study

	5.3 Hardware is not ``all roses''
	5.4 Hardware-software codesign meets control planes

	6 Conclusion and outlook
	6.1 Open research problems
	6.1.1 Integrating the control plane with FANcY
	6.1.2 Enhancing ``weak'' traffic signals with adaptive traffic generation
	6.1.3 A mixture of detectors
	6.1.4 Towards seamless smart network planes integration
	6.1.5 Optimizing the network plane's slow path

	A Appendix
	A.1 Cisco and Juniper bug list.

	 Bibliography
	 Own publications
	 References

	Curriculum Vitae

