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Exact Arithmetic at Low Cost — a Case Study in Linear Programming *

Bernd Gértner!

Abstract

We describe a new exact-arithmetic approach to linear programming when the number
of variables n is much larger than the number of constraints m (or vice versa). The algo-
rithm is an implementation of the simplex method which combines exact (multiple precision)
arithmetic with inexact (floating point) arithmetic, where the number of exact arithmetic
operations is small and usually bounded by a function of min(n,m). Combining this with a
“partial pricing” scheme (based on a result by Clarkson [9]) which is particularly tuned for
the problems under consideration, we obtain a correct and practically efficient algorithm that
even competes with the inexact state-of-the-art solver CPLEX! for small values of min(n,m)
and and is far superior to methods that use exact arithmetic in any operation. The main
applications lie in computational geometry.

1 Introduction

Linear Programming (LP) — the problem of maximizing a linear objective function in n variables
subject to m linear (in)equality constraints — is the most prominent optimization problem, and
efficient methods have been devised to solve such problems in practice. The values of n and m
for which solutions can nowadays be computed, range up to several millions for max(n, m) and
several thousands for min(n,m). The simplex method, invented by G. Dantzig 50 years ago [10],
is still among the most practical methods to solve linear programs, and state-of-the art solvers
like CPLEX implement variants of it.

While the simplex method in its theoretical description smoothly works for any values of n
and m, the typical values of these parameters encountered in an application greatly influence the
way it is implemented best.

The scenario in which we work here is that min(n,m) is a small constant, at most 30, say, while
max(n,m) can get very large. This is not the scenario usually encountered in operations research.
The NETLIB collection, a popular set of benchmark LPs (see http://www.netlib.org/lp/data/)
only features a few problems with min(n, m) < 100, most of them also having max(n, m) relatively
small.

However, in computational geometry (CG), our scenario is more common, and the applications
we present below come from this area. Usually, problems arising in CG have to do with large
point sets (or sets of other simple objects) in small-dimensional space and lead to small values of
min(n,m) whenever they can be formulated as linear (or more general) optimization problems.
Two examples (which don’t look like LP at first glance) illustrate this.
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Figure 1: Smallest enclosing annulus

Figure 2: Largest disk in kernel

Problem 1.1 (Smallest enclosing annulus)
Given n points in the plane, find the annulus of smallest area covering all the points (see
Figure 1).

This annulus is a device for testing ‘roundness’ of the point set. The problem can be formulated
as LP in 4 variables and 2n constraints. A suitable generalization to dimension d leads to an LP
in d + 2 variables and 2n constraints — we come back to this problem in the last section where
we use it as our major test problem.

Problem 1.2 (Largest disk in kernel)
Given a simple n-vertex polygon in the plane, find the largest disk in its kernel, that is the
region of the polygon from which all vertices are visible (see Figure 2).

This problem is LP with 3 variables and n constraints. By solving it, one can in particular
test the polygon for being starshaped, and if so, obtain a ‘central’ point of its kernel.

A major issue any serious LP solver must deal with is numerical accuracy, for two reasons.
First, the program must not crash due to numerical problems, and second, the computed result
should be correct. While the first reason is indisputable, the second one needs further consider-
ation. Namely, what correctness means, as well as what the best way is to achieve correctness,
depends on the application.

If, for example, the input values are already approximations of true values obtained by mea-
surements, it may suffice if the output satisfies certain tolerances. On the other hand, if the
objective is to test whether a certain point lies inside a given 0-1-polytope (a problem which
can be formulated as LP), a wrong answer to this decision problem might have disastrous ef-
fects in an ambient algorithm, or lead to theoretical ‘insights’ which are none. This also applies



if the LP under consideration is a relaxation of a more difficult integer linear program (ILP),
supposed to yield an upper bound for the optimal solution of the latter. Here, solution values
of 16.998 and 17.001 make a tremendous difference. In general, if combinatorial rather than just
numerical information has to be extracted from the input, there is a need for exact computa-
tions. Good examples are vertex- or facet-enumeration algorithms — they typically offer exact
arithmetic [2, 7, 14].

Also, in choosing the means of achieving correct results, properties of the input are important.
For example, if we know the problem to be nondegenerate, with intermediate solutions well
separated (as it is typically the case in randomly generated problems), numerical stability becomes
much less an issue.

The point is that a general purpose LP solver must be able to handle any problem but may
take advantage of inputs it typically expects to be confronted with. It seems that existing solvers
either ignore the ‘may’ part (we call their strategy ‘expecting the worst’) or neglect the ‘must’
part (in which case they follow the paradigm ‘hoping for the best’).

Expecting the worst. This strategy avoids numerical errors altogether by performing all
computations in rational arithmetic over an exact multiprecision number type. If both n and
m are small, this is certainly the method of choice, and for max(n, m) not too large, one can
still obtain solutions in reasonable time (see our tests below). The strategy is implemented, for
example, in the LP solvers that are part of the vertex-enumeration codes [2, 14] mentioned above.

However, the approach is in no case competitive with solvers like CPLEX — it is too pessimistic
in the sense that floating point operations are assumed to go wrong all the time, where in practice,
they work fine most of the time.

Hoping for the best. This strategy — used e.g. by CPLEX — tries do do as well as possible,
purely with floating point arithmetic. Although this is fast and will in most cases compute
the correct optimal solution, it will fail on some problems. Checking the result with exact
arithmetic is possible, of course, but really helps only if the result is actually correct. Otherwise,
a postoptimization phase has to be started (which is not an obvious task if the computed solution
is neither primal nor dual feasible).

The approach is too optimistic in the sense that all problems are assumed to be well-behaved
(with respect to the numerical techniques that are applied), where in practice, only most of them
are.

Summarizing, expecting the worst is always correct but also always slow, while hoping for the
best is always fast and usually correct. For our particular scenario, we propose a mixed strategy,
combining floating point and exact arithmetic, which will always be correct and usually fast.

Our solver accepts floating point input, and most arithmetic operations are done in fast float-
ing point arithmetic. Assuming m < n, in most cases only O(m?) out of the ©(nm) arithmetic
operations performed in a single iteration of the simplex method, need to be done exactly. Find-
ing a pivot is done completely in floating point, verifying (or rejecting) it requires the additional
evaluation of a simple semi-static error bound (and O(m) exact computations if the bound does
not suffice); performing the actual update step takes O(m?) exact operations. Since the number
of iterations required to solve an LP by the simplex method usually depends only on m, the
overhead we get for exact arithmetic is then just an additive constant depending on m. As our
tests show, this constant is very reasonable for small values of m.



In ‘bad’ cases, many pivots might get rejected under exact arithmetic, before a suitable can-
didate is found, and a single iteration might require ©(nm) exact operations. In such situations,
however, pure floating point implementations are more likely to fail, either (our tests below
demonstrate this).

The idea of combining floating point with exact arithmetic is not new, and floating point filters
have successfully been applied in computational geometry before [13]. Although the motivation
is similar (avoid exact arithmetic whenever floating point computations suffice), our approach is
different in two respects.

Classical filter techniques apply interval arithmetic, i.e. they maintain for each floating point
value computed during the algorithm an interval which is guaranteed to contain it. In any
arithmetic operation, the result’s interval is computed from the intervals of the operands. Exact
comparisons of two values can then be done fast if their intervals do not overlap.

First of all, this approach already leads to a constant-factor slowdown, even if the problem is
of the most well-behaved kind (Ndher and Mehlhorn report a floating point filter operation to be
about four times slower than the underlying floating point operation [17]). Our approach incurs
only an additive overhead in this case.

Second, interval arithmetic works only for expressions of low arithmetic degree. Already
in the process of solving an m x m linear system (a routine similar to this appears in any
simplex implementation), the error bounds obtained from interval arithmetic are typically a
gross overestimate, making them too large to be useful, even for small values of m. However,
Bronnimann et al. [5] have recently described a technique to obtain good error bounds for the
solution of a linear system, using a posteriori error analysis of an approximate (floating point)
inverse of the matrix defining the linear system. The intuition is that if this inverse is a good
approximation of the real inverse (as one expects in most practical cases), the error in the solution
will be small. In this situation, the semi-static error bounds necessary to verify the chosen pivot
will still work well under this small additional error. Empirical evidence for the efficiency of this
scheme does not yet exist.

The rest of the paper is organized as follows. In Section 2 we give a brief description of the
simplex method and sketch the main ideas of our implementation. Section 3 contains the more
technical part describing details of the implementation. In Section 4 we give test results.

2 Linear Programs and the Simplex Method

We consider problems of maximizing a linear function in n variables subject to m linear equality
constraints, where the variables must assume nonnegative values. Such problems can be written
as

(LP) maximize c!x
subject to Az = b, (1)
x>0,

where ¢ is an n-vectors, A an m X n-matrix, b an m-vector, and z an n-vector of variables.

If a vector z* = (z7,...,x}) exists that satisfies all the constraints, the problem is called
feasible, otherwise infeasible. In the former case x* is a feasible solution (FS). If the objective
function z = ¢z is bounded from above on the set of feasible solutions z*, the problem is called
bounded, otherwise unbounded.

The restriction to equality constraints is no loss of generality, because slack variables can be
introduced to turn inequalities into equalities. Moreover, the simplex method (and our code) can



handle explicit bounds [; < z; < u; on the variables. However, for ease of exposition, we restrict
attention to the standard form as given by (1).

Tableaus and basic feasible solutions. For an ordered subset J = {ji,...,jx} C [n], let
zy denote the k-vector (z;,,...,zj,). If n > m, a tableau for (1) is a set of equations
z = 2z + ’)’TIENa

B,N C[n],|B] =m,|N|=n—m,BUN = [n], A an m x (n — m)-matrix, v an (n — m)-vector,
B an m-vector, zy a number, such that the equations above the solid line are equivalent to the
system Ax = b, expressing the m-vector xp of basic variables in terms of the (n — m)-vector of
nonbasic variables x . The last row stores the objective function value z as a (linear) function
of the nonbasic variables. A feasible solution z* arises from the tableau by assigning nonnegative
values to the nonbasic variables zy in such a way that the implied values of zp are nonnegative
as well. z* is a basic feasible solution (BFS) if any nonbasic variable assumes the value 0.

If the matrix A of (1) does not have full (row) rank, there is no tableau for (1), so even if the
problem is feasible, it need not have a BFS. However, if it has a BFS at all, then it must have a
BF'S which is an optimal FS for (1), unless the problem is unbounded.

Let Ap resp. Ay collect the columns of A corresponding to the basic resp. nonbasic variables
(cp and cy are defined similarly). Then the tableau is uniquely determined via

B = Agh,

A = AptAy,

2 = chAR'D, 3)
¥ = c%—cql;AglAN.

We refer to Ap as the basis matriz. A is the tableau matriz, v the vector of reduced costs, B
the basis and N the nonbasis.

A BFS is therefore uniquely specified by the basis B. In particular, there are only finitely
many BFS. For proofs and further details we refer to Chvétal’s book [8].

The Simplex Method.

The simplex method consists of two phases, commonly called phase I and phase II. Phase I takes
as input the initial LP (1) and either reports that the problem is infeasible, or generates an
equivalent problem (with n > m), along with a tableau and a BFS z* associated with it. This is
done by solving an auxiliary problem for which an initial tableau is easily constructed [8].

Given a tableau and associated BFS z*, an iteration of phase II either asserts that z* is
optimal for (1), reports that the problem is unbounded, or constructs a new tableau with a
corresponding BFS y* satisfying ¢! y* > ¢’ z*. In the latter case, the process is repeated. Since
there are only finitely many BFS, phase II finally terminates, unless a sequence of tableaus repeats
itself forever. This phenomenon — known as cycling — can occur but there are techniques to avoid
it [8]. In any case, it can happen that although the basis changes, the BFS z* remains the same
for several iterations. Such iterations are called degenerate.

Contrary to the standard simplex method, the revised simplex method does not explicitly
maintain the tableau (2) but retrieves all necessary information from the implicit representation
given by (3), the key quantity being the basis matrix Apg.



An iteration, also known as a pivot step consists of three main parts, the pricing, the ratio
test and the update. In the following we assume n > m.

Pricing. From the tablau (2), we can immediately deduce that if the reduced cost vector
v satisfies v < 0, then the associated BFS z* is optimal. Namely, xy > 0 then implies z =
20 + v 'z < 2, where 2y is the objective function value associated with z*. The pricing step
evaluates the vector v and eiter certifies v < 0 or delivers an index j with ; > 0. According to
(3), the computational primitives in the pricing step are the following.

(i) computation of v” := cLAZ",
(ii) evaluation of reduced cost values ¢c; —vT'A;, j € N.

Assuming that Ag' is available, (i) can be done in time O(m?), while (ii) costs O(nm), if all
7; are examined. In case of n > m, (ii) dominates the runtime of the pricing step and should
therefore be done fast. Our strategy will be to compute »” in exact arithmetic but evaluate the
inner products UTA]' in floating point arithmetic, using a floating point approximation v of v.
However, we make sure that the index j that is finally returned truly satisfies ; > 0. In this
case, x; is called the entering variable.

Another important ingredient of our pricing scheme will be partial pricing, where we only
search for the index j among a small subset S C N. Only if no candidate is found among S,
we enlarge S according to a certain rule. The larger the ratio n/m is, the more effective partial
pricing becomes. Section 3 contains the details.

Ratio Test. Given a variable z; with v; > 0, it is clear from (2) that increasing its value
by ¢ > 0 increases the objective function value by -y;t and gives rise to a solution z*(t), where
z7(t) =t and
wp(t) =z — tA;,

A; the tableau column corresponding to the variable ;. The ratio test consists of finding the
largest value of ¢ such that z*(t) is still feasible, equivalently, 27 (¢) > 0. If no such value exists,
the problem is obviously unbounded. Otherwise, let £y denote this maximum value. Then there
is i € B such that z}(t9) = 0. z; is called the leaving variable. Solving the i-th tableau equation
for x; and substituting the resulting expression for z; into the other tableau equations, we obtain
a new tableau in which z; is basic and z; nonbasic. If £, > 0, the objective function value has
increased, otherwise we have performed a degenerate iteration. The computational primitives in
the ratio test are

(i) computation of the pivot colum A; = AZ'A;,
(ii) solution of linear equations z}(t) = 0, for all i € B.
The cost of the ratio test only depends on m, and we completely do it in exact arithmetic. As in

the pricing, (i) can be done in O(m?) time if A5' is available, (i) in O(m).

Update. In the revised simplex method, we do not explicitly perform the tableau update
mentioned in the ratio test. Rather, we just replace B with B’ := B U {j} \ {i}, and by (3),
this would suffice to have all necessary information available in the next iteration. However, it is
crucial that the computations of chgl and A]_BIAj are done efficiently, and this requires some



preprocessing to bring Ap into a suitable format. Many formats are possible, but the chosen
one should at least be easy to update when Ap changes to Ap/, the update being substantially
cheaper than preprocessing A from scratch. As already suggested above, we explicitly keep the
exact inverse of Agl. As we show in Section 3, this basis inverse is easily updated in time O(m?).

In standard inexact solvers dealing with large sparse problems, one rather stores some fac-
torization of Ap, because if Ap is sparse, there is a chance that also a sparse factorization is
found, even if AE,I is dense. Moreover, this factorization usually has better numerical properties
than the inverse. Because we deal with relatively small values of m, sparsity is not an issue
(but consider the remark on this in the conclusion), and because we compute exactly, numerical
stability need not be taken into account, either. But then the simplicity of the update routine is
in favor of the explicit inverse.

3 An Exact Implementation of the Simplex Method

In the previous section we have roughly indicated which computations are to be done exactly and
which ones in floating point arithmetic. Before we go any further, let us specify the requirements
for the exact number type T, assuming that the floating point arithmetic is done in a floating
point type F'.

First of all, because our solver accepts floating point input, 7" must contain F' as a subset
(where overflows and exceptional values need not be considered). Apart from that, 7" is a subset
of the real numbers and must form a ring, so addition, subtraction and multiplication must be
defined. Moreover, we assume division to be available for operands whose quotient is an element
of T again. In Section 4 we present a type that fulfills these requirements.

Now we can describe our concrete realizations of the pricing and update step (the ratio test
is straightforward and works over T', as described above). Let us start with the representation
format for Agl and its update if column ¢ of Ap is replaced with a new column A;.

Maintaining the Basis Inverse.

If M = Ap contains entries from 7, Cramer’s rule states that the entries of M ~! are rational
numbers over T', with common denominator det(M), so that M ! can also be stored as a matrix
over T', keeping the denominator separately.

Now assume that the ¢-th column of M is replaced by a new column Aj;, the resulting matrix
being M = Apr. Defining A := M~ 4;, we have

where X\ can be written as A\ = A,/ det(M), X} of type T, for k = 1...m. It follows that



hy =
1 1 E : 1
M =— det(M) M,
— A Ai
so the entries of M ! can be written as rational numbers over T with common denominator
A det(M), and performing the matrix multiplication gives the corresponding numerators ayg,

M- — ake .
RE " N det(M)

Note that the values X} are readily available, because A = M _1Aj is nothing else than the pivot
column A; already computed in the ratio test prior to this update (see previous section).
On the other hand, we know that the entries of M ~! have a rational representation

g bie
Mkel = 0
det(M)

which is the one we are actually interested in. From (4) we get det(M) = det(M)); = X.
Consequently,

by = 2 det(M) _  ape
Nodet(M)  det(M)’
and the divsion must be without remainder over 7.
The whole update step can be performed in time O(m?) (for technical reasons, we always
keep the absolute value |det(Ap)| as the denominator). This technique of updating the basis
inverse has been discovered before by J. Edmonds and termed ‘Q-pivoting’ [11]. It has been

implemented, for example, by D. Avis in his vertex enumeration algorithm 1rs [2].

Pricing.

In the process of finding the entering variable, i.e. an index j with reduced cost v; > 0, we
almost exclusively apply floating point arithmetic. Pricing is the most flexible step in the simplex
method, because typically many indices j qualify, in which case we are free to choose. The actual
choice is then made according to a pivot rule. We start (without referring to arithmetic) by
specifying the rule we use, called partial reduced cost pricing. This rule accesses and manipulates
a global subset S C N of active indices, initially chosen to be relatively small (see below).

For an ordered index set I C N, define max([) as the first index j € I with v; = max{y;,k €

I}.
Algorithm 3.1 (partial reduced cost pricing)

(* returns j with v; > 0 or optimal *)
J := max(S)
IF 7; > 0 THEN
RETURN ;
ELSE



Vi={keN\S |y >0}
IF V = () THEN
RETURN optimal
ELSE
S:=5SuUV
RETURN max (V)
END
END

If subsequently the basis B is updated to B’ = BU {j} \ {i}, S is set to SU{i} \ {j} in the
next iteration.

The choice of max(I) (resp. max(V')) as return index is Dantzig’s rule. The idea is that
variables with large reduced cost values will lead to a fast increase in objective function value
when chosen as entering variable.

The intuition behind the partial pricing scheme is that S and V' are always small and that
S is augmented only a few times. In this case, most iterations are cheap, because they operate
on a small index set, while only a few ones run through the whole nonbasis N to find the set V.
Exactly this intuition lies also behind Clarkson’s LP algorithm [9] that works in a dual setting
(few variables, many constraints) and can easily be formulated as a dual simplex method. The
interpretation of Clarkson’s algorithm as a dual partial pricing scheme has already been suggested
by Adler and Shamir [1]. A related technique known in operations research is ‘column generation’
which is typically used to solve large problems that do not fit into main memory. Applying a
technique quite similar to partial reduced cost pricing, Bixby et al. have been able to handle
very large-scale LP [4].

To prove the above intuition rigorously, we need an assumption about the LP that is unfor-
tunately not always satisfied. While in theory, we would then abandon the rule, in practice, we
keep applying it and find that it still works well. The purpose of the theoretical result in this
case is not to supply a proof of efficiency in a worst-case scenario but to give an idea how to
reach efficiency in practice.

Lemma 3.2 (Clarkson [9])
If the LP is nondegenerate, the following holds in Algorithm 3.1.

(i) If S is a random subset of N of size r, then the expected size of V' is at most m(n—r)/(r+1).

(i) If V. #0, V contains at least one element of any optimal basis B.

(ii) implies that S is augmented at most m times, while (i) yields an estimate of |V|, at least
when we enter the pricing step for the first time with a random subset S. For example, if we
choose |S| = m+/n, the expected size of V' will be no more than \/n. One can even prove that
V' is that small in the subsequent augmentation steps [15], so that in total, no more than 2m./n
indices are ever expected to appear in S. In our implemetation, we use m/n as the intial size of

S.

Arithmetic. The steps in Algorithm 3.1 that require arithmetic are the computations of
max(S) (and max(V') if necessary). Thus, we need to compute the index j with largest value

o T g T _ -1
v =cj—v AjvT =cpAy .



Recall that we store the rational entries of Ag.l only as their numerators and keep the denominator
D := | det(Ap)| separately. In this situation, the vector w? = DcgAy' has entries in T, and we
are better off considering

Vi := Dy, = Doy, —w” Ag, k € S, (5)

which is an expression over T'. Now, instead of evaluating (5) exactly, we compute floating point
approximations

%:D@ck—wTQAk,keS, (6)

where D, & are floating point approximations of D and w that are computed once in the beginning
of the pricing step, ® and ® the floating point multiplication resp. dot product. The obvious
candidate for max(S) is then the index j with largest value ¥;. (In case D or an entry of w
is larger than the largest representable floating point number, both D and w are scaled by a
suitable power of two before computing the approximation.)

Note that for the correctness of the method, it does not matter whether j = max(S) really
holds, the important property is that 7, is positive. This, however, can be checked with exact
arithmetic at cost O(m). The benefit of Dantzig’s rule in this context is that -y; is actually very
likely to be positive, because it has been found to be largest under floating point computations.

If the check succeeds, j is returned. Otherwise, we just proceed with the computation of V.
Note that we might have missed a candidate j € S with ; > 0 due to inexact computations, but
we ignore that in the hope of finding another one later in N\ S.

Only if also from N \ S (which is handled as S before), we cannot retrieve any candidate in
this way, we need to do more work (just declaring the whole problem as optimally solved, would
be a blunder, of course).

The straightforward solution would be to recompute all reduced costs again in exact arithmetic
to check whether a candidate for the entering variable has been missed. This, however, is not
necessary in most cases. We know that all inexact values 4}, k € N are nonpositive at this stage,
and a candidate has been missed if and only if some exact value v}, is still positive. The following
lemma develops an error bound on 7, that also lets us deduce y;, < 0 if ¥;, is sufficiently far below
zero. Only the indices £ which can not be decided using the error bound, need to be handed over
to exact arithmetic. In typical cases, these are very few.

Lemma 3.3 Let

Cr = max(|eg|, max |(Ag)il), k € [n],
R; = r}cliaiil(Ak)iH € [m],
Ry := max|c|

(The Cy and R; are the column and row mazima of the LP). Furthermore, define
U := max ([) ® Ry, miﬁfc(|wz-| ® Ri)>

and

W := max <l~),mnélx |1Z)Z|> .
1=

10



If the floating point type F' has p bits of precision, then
where g = (1 +1/64)(m + 1)(m + 2)27P.

It is important to note that this bound is an expression which can exactly be evaluated in
floating point arithmetic, so that no errors occur in computing the error bound. The bound is
usually very good, because ¢ is quite small. A typical value for p is 53, as in the C++ type double.
Proof. We first show the following general estimate. Let x,y be vectors of length ¢, y := 27P.
Then

7@y — ay] < (1+ 1/64)2(0 + ) max |71 © il (7)

We derive this from classical results of Forsythe and Moler [12], stating that

T = zi(l+6),
i = Zi(l+e),

|0i], |€i] < p,i=1...¢4, and if £u < 0.01,

l
FOy =) &y (l+1.0140;u), |6 <1i=1...¢
=1
Hence we get
l
Ty = zyi(l+6)(1+1.0L6Ou).
=1
This further gives
J4
Zoy—ayl = |Y_ zwi(1.01Ou + & + 1.01465;0;4)]
i=1
V4
= )" Zyi(l+€)(1.0140;1 + 6; + 1.016,0;) |
=1

l
< D Fi| (14 1) (1010 + g+ 1.016p7)
=1
< Cmax |Zyi| (14 ) (101 + p + 1.014u2).

We want to transform this bound into a bound that depends on computable values. To this
end we note that [12]
Tiyi = T; @ yi(L+mi), Inil < pi=1...L

Then we can further estimate

7Oy —zy| < max|F @yl (14 p)*(1.0142u + Ly + 1.017% 1)
(2

N

max |Z; ® y;|1.014(¢ + 1),
(3

11



for any practical value of £, if ;1 = 27°3. Finally, we would like to majorize the constant 1.01 by a
constant that is exactly evaluated over the floating point numbers. To this end we observe that

1.01 = (14 1/64)(1 — 9/1625),

and the estimate (7) follows. There are two different ways to upper bound the maximum, and
this finally implies the lemma when we put 27 := (D, —wT),yT := (¢, AT). Namely, on the one
hand we have

max |Z; @ yi| < mlax(|£i| ® max lvil),

y running over all vectors we consider during the pricing. On the other hand,

max |Z; ® y;| < max |Z;| ® max |y;|.
1 1 1

To apply the bound of the Lemma, we first check whether 4}, is separated from zero by more
than U ® ¢q. This bound is independent from k and can therefore be computed once in the
beginning of the pricing step. If this bound does not suffice to tell the sign of v}, we apply the
second bound, which involves one extra multiplication for each k. If after applying both bounds,
the sign of ;. is still undecided, we resort to exact arithmetic.

With this scheme, we either find still one more index j satisfying v; > 0 (and return it), or
we certify that V' = () in Algorithm 3.1, as claimed by the inexact computations. In this case,
returning the value optimal is correct.

4 Test Results

We have tested our implementation on various instances of Problem 1.1 (smallest enclosing an-
nulus) and its generalization to higher dimensions. We have compared its performance to that
of the primal simplex solver of CPLEX 4.0.9. and to a version of our code using exact arith-
metic in any operation. We also have done tests on the three NETLIB problems with highest
variable-to-constraint ratio.

The program was written in C++, compiled with GNU’s g++, Version 2.7.2.1 (optimization
level -03) and run on a SUN Ultra 1. The floating point type F is double. In a first version, we
have used the number type bigfloat from LEDA [18] as the exact number type 7. A bigfloat
stores numbers of the form s-2¢, where s is a multiprecision LEDA integer and e an integer ex-
ponent. However, since bigfloat is a true superset of double, also able to handle overflows etc.,
arithmetic operations have quite some overhead we do not want to spend. Moreover, bigfloat
does not offer a division operator as we need it. Therefore, we have developed our own version of
the type, providing just the required functionality. (We have also experimented with GNU mul-
tiprecision integers (see http://cpw.math.columbia.edu/online/gmp_toc.html) instead of LEDA
integers but found the latter to be faster in our context.)

Before we give the results, let us formally introduce the d-dimensional version of Problem 1.1.
This is the problem of finding the annulus (region between two concentric spheres) with minimal
difference between the squared radii, that covers an n-point set P = {p1,...,pp} in d-space (for
d = 2, this is equivalent to minimizing the area).

If r,7 denote the small and large radius of the annulus, ¢ the annulus’s center, then the
objective is to minimize 7 — r? subject to the constraints

r<lpi—c <mi=1...n.
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d | partial full exact | CPLEX
2 2.2s 3.2s 174 s 5.4 s
) 2.6 s 6.3 s 29.6 s 6.5 s
10 6.0 s 20.9 s | 1:53 min 9.2's
15| 25.2s 474 s 5:41 min 13.6 s
20 | 72.0s | 2:12 min | 13:30 min 20.4 s

Table 1: Runtimes on random annulus problems, n = 50,000

If p = (2%,...,2%), ¢ = (c1,...,cq) we can equivalently write this as
r?<(zh —e)? 4+ (2 — ) <Fi=1...n.
Defining
=G mdy, Pi=P
we can easily formulate the problem as an LP with 2n constraints and d+2 variables «, 8, ¢1, . .. ¢q4.
Its dual can be written as a problem in 2n variables A := (A1,..., Ap), 0 := (1, ..., pn) and d+2
constraints, as follows.
maximize Y (21)2 4+ - + ()
= X ((@1)? 4 -+ (2g)*) Ny
subject to >, A\ =1,
n
i=1 _,ul - ]-7 )
im1 221 A — 2oy 231 = 0, (8)

A p > 0.

This problem immediately fits into the form of (1), and from an optimal solution for it, an optimal
solution to the primal problem and thus an optimal annulus can easily be reconstructed.

The first set of test problems consists of smallest enclosing annulus problems over n = 50, 000
randomly generated 24-bit integer points in dimensions 2,5,10,15 and 20 (the machine reached
its memory limit at nm = 1,000, 000). Table 1 gives the runtimes obtained by our method, with
partial pricing and full pricing (initial value of S = N, see Section 3), compared with our method
(partial pricing version) using exact arithmetic for any operation (‘exact’), and CPLEX.

In any case, the correct result was obtained by all solvers. As was to be expected for random
input, no candidate delivered from the pricing was ever rejected by the exact check of our method,
and the error bounds were in all cases sufficient to verify optimality in the final iteration.

It is remarkable that we still win against CPLEX in dimension 10, because of our partial
pricing scheme. In dimensions still higher, the exact arithmetic starts to contribute considerably
(although the contribution is still tolerable). The full exact version is not as slow as one might
have expected. One reason is that, during the pricing, any exact multiplication has one operand
of small bitlength, namely an input number. In the basis inverse update, this is not the case.

Table 2 depicts the number of simplex iterations taken by the different methods on the same
problems. Although partial pricing takes more iterations than full pricing, it is faster because
the individual iterations are cheaper (‘exact’ behaves like ‘partial’ here).

13



d | partial | full | CPLEX
2 18| 11 11
5 40 | 20 14
10 82 | 61 35
15 185 | 98 83
20 242 | 184 163

Table 2: Number of iterations on random annulus problems, n = 50, 000

partial full | CPLEX
204s|296s| 116.9s

Table 3: Runtimes on random annulus problem, d = 2, n = 500, 000

Here it is interesting to note that the number of CPLEX iterations is much smaller than even
the number of full pricing iterations in our method. This is due to the fact that Dantzig’s rule
is usually inferior to other pivot rules like DEVEX or steepest descent as applied by CPLEX.
We have used Dantzig’s rule mainly because it nicely works together with our inexact pricing
scheme. In the future, other rules will be tested as well.

Table 3 shows how our code performs for d = 2,n = 500,000 (because of memory limitations,
this was the largest n we could test). CPLEX apparantly has problems with this input and is
outperformed by a factor of almost six.(The full exact version is not of interest for us in this and
the subsequent tests.)

In connection with the random problems, we observed an interesting phenomenon. When
generating random annulus problems with double entries from the random number generator
drand48, the runtime of our method is spectacularly good, even for large dimensions. The
mystery is solved when one observes that the numerators and the denominator |det(Ag)| stored
in the basis inverse Agl, have very small encoding lengths in the format s2¢ in this case, so that
exact arithmetic is fairly cheap. The reason for this is that matrices generated with drand48 (or
any other random number generator based on the linear congruential algorithm), exhibit extreme
dependencies among the rows. In generating the random problems tested above, care was taken
that at least dependency patterns that lead to unusually small numbers were avoided.

It is also quite clear that the runtime of our method depends on the bitlengths of the input
point coordinates. Above, we have tested with 24-bit coordinates in order to make sure that
problem (8) can be set up in double format without rounding errors up to dimension d = 20. If
48-bit coordinates are used (leading to an inexact internal representation of (8)), the runtimes
are about the same up to dimension 10, 50% more in dimension 15 and about twice as large in
dimension 20.

To test degenerate inputs, special 2-dimensional annulus problems were generated that have
all points exactly on a circle. A first such example features 6,144 integer points on a common
circle with squared radius 3, 728, 702, 916, 375, 125, a value that can still be represented in double,
so (8) is set up without rounding errors. The first row of Table 4 gives the results for partial
pricing and CPLEX (full pricing makes basically no difference here and is not tested).

While our method needs 5 iterations (four in phase I and one in phase II, just to check
optimality), CPLEX gets away with no iteration at all (it still does something, as the time
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partial | CPLEX
original 0.8 s 1.54 s
perturbed | 0.29 s 3.18 s

Table 4: Runtimes on small degenerate annulus problem, d = 2,n = 6, 144, original and perturbed

partial | CPLEX
1.95 s 3.14 s

Table 5: Runtimes on large degenerate annulus problem (rounded), d = 2,n = 13,824

suggests). Because all reduced cost values are zero in the final iteration, this time all of them
were processed with exact arithmetic by our method. Both solvers came up with the correct
optimal value 0.

The next test problem was generated by slightly perturbing the points so that they are no
longer cocircular. To do this, a random value in {—1,1} was added to each coordinate. The
results are given in the second row of Table 4.

Although our method now takes 24 iterations, it has become faster, because the small per-
turbation already suffices to make the error bounds work effectively: no reduced cost value was
passed to exact arithmetic in the final iteration. CPLEX becomes slower and computes a solution
that deviates from the correct one in the 9-th significant digit.

The final annulus problem features 13,824 integer points on a common circle with squared
radius 1,128,305, 502,495,112, 825, a value that no longer fits into a double. It follows that in
setting up the LP (8), rounding errors are made. However, considering the rounded problem as
the correct input, we ran the solvers on it. Table 5 collects the results.

Our code takes 13 iterations, but needs to check all reduced costs excatly in the final iteration
(although they are not zero, no single error bound suffices). The optimal solution is 128, CPLEX
comes up with the value 408 (note that this is not a large deviation, considering the size of the
input numbers).

Finally, we have tested our solver on standard benchmark problems from the NETLIB col-
lection, choosing the three problems which are most suitable for our method in the sense that
they have relatively few constraints and relatively many variables. Table 6 gives the statistics
on these problem, Table 7 the runtimes we achieve, again distinguished between partial and full
pricing (in case of SCSD1, partial and full pricing coincide). CPLEX was run for comparison.

It is clear that we cannot compete with CPLEX on these NETLIB problems, although they
are probably the ones from the collection on which we still do best. Note that for FIT1D, partial
pricing brings about no benefit. If the number of variables is larger (as in FIT2D), we again profit

Problem n| m
FIT1D | 1026 | 24
FIT2D | 10500 | 25
SCSD1 760 | 77

Table 6: Statistics on NETLIB problems
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Problem partial full | CPLEX
FIT1D 96 s 98 s 0.83 s
FIT2D | 19:59 min | 24:12 min 13.6 s
SCSD1 | 42:13 min | 42:13 min 0.07 s

Table 7: Runtimes on NETLIB problems

Problem | partial full | CPLEX
FIT1D 1734 | 1482 1137
FIT2D | 15549 | 13478 14168
SCSD1 499 499 201

Table 8: Number of iterations on NETLIB problems

(a little) from our pricing scheme. Compared to the annulus problems before, a large number of
iterations is required, indicating that the problems here are more difficult (see Table 8). SCSD1 is
the worst example for our code but the best example for CPLEX. There are several reasons why
our code is much worse than CPLEX on the NETLIB problems, the most important one being
that these are sparse problems (unlike the annulus problems before). In this case CPLEX profits
from its very efficient sparsity handling, while we completely ignore sparsity. In case of SCSD1,
it is also the overhead for exact arithmetic (recall that m = 77 here) that becomes overwhelming.

We have included this statistics mainly in order not to create the impression that our method
is superior to CPLEX. It is particularly tuned for a class of problems (dense, few constraints),
for which CPLEX is not tuned, and our method makes full sense only on such problems.

5 Conclusion

We have described a correct implementation of the simplex method with low overhead for ex-
act computations, if the number of constraints or variables is small. The algorithm can in
some cases compete with CPLEX and beats the full exact solver by far. The applications
mostly lie in computational geometry, and it is planned to incorporate the solver into the Com-
putational Geometry Algorithms Library CGAL, a joint project of seven European sites (see
http://www.cs.ruu.nl/CGAL/).

A more tuned implementation of exact arithmetic would be a natural next step. The scheme
based on interval arithmetic that was already mentioned in the introduction might lead to another
substantial speedup [5]. Moreover, Bronnimann et al. [6] have shown that modular arithmetic
can yield much faster computation of determinants; the technique might also apply to the ma-
trix operations considered here. However, under such techniques, the simplicity of the current
implementation will probably not persist.

Another issue has already been addressed above. In explicitly maintaining the basis inverse,
we ignore sparsity of the matrix Ap. This might seem justified if we store the LP in dense
format anyway. However, we can profit from sparsity effects because of the exaxt arithmetic.
Namely, exact operations involving zero values are cheap (and neglegible in comparison with
other operations), so that even without an explicit sparse format, we implicitly handle the matrix
operations as if the matrix was in sparse representation. It follows that it would pay off to abandon

16



the format of the explicit inverse in favor of a factorization that respects sparsity of the input.

Finally, we would like to mention that the techniques introduced here are not restricted to
linear programming but can be applied to a variety of other optimization problems. In computa-
tional geometry, important examples are the smallest enclosing ball of a point set, or the distance
between two polytopes. These are in particular quadratic programming problems, for which a
simplex-type solution method exists [19]. More general, the abstract class of LP-type problems
as introduced by Sharir and Welzl [16] can — slightly modified — be handled by our approach of
combining exact and floating point computations. To illustrate the point, we briefly recall the
basics.

An LP-type problem is a pair (H,w), H a set of “constraints”, w an “objective function”
assigning to each subset G C H a value w(G) (the smallest solution subject to the subset of
constraints in G), with the following properties.

e w(F) <w(Q) for F C G (monotonicity)

o if ¥ C G with w(F) = w(G) and w(G) < w(G U {h}) for some h € H \ G, then also
w(F) < w(F U{h}) (locality)

A basis of G C H is an inclusion-minimal subset B of G such that w(B) = w(G). The combina-
torial dimension of (H,w) is the maximum cardinality of any basis. To solve the problem means
to find w(H) and a basis of H. As an example, consider the problem of finding the smallest
enclosing ball (SMB) of a set of points P € IR?. Because this ball is determined by at most d+ 1
of the input points, the combinatorial dimension of SMB is d + 1.

Sharir and Welzl’s randomized algorithm to solve LP-type problems needs two problem-
specific primitives.

e violation test: for a basis B and h € H \ B, decide whether w(B) < w(B U {h}) holds.
e basis computation: if w(B) < w(BU{h}), compute a basis B’ of B U {h}.

When we interpret the simplex method in terms of these primitives, the reduced cost compu-
tations performed during the pricing step play the role of violation tests, while the ratio test
and update step together form the basis computation. The crucial point is that the reduced
cost computation in the simplex method is more than just a violation test, namely it computes
an amount of violation. Exactly the availability of such a quantitative violation test makes our
whole method work. In all known practical applications of the LP-type framework, one actually
has such a stronger violation test, where the amount of violation is (like in the simplex method)
not a fixed quantity but a value usually determined by some sensible heuristic. Summarizing,
the methods of this paper apply in principle to general LP-type problems for which the following
primitive exists.

e quantitative violation test: for a basis B and h € H \ B, return an amount a(B,h) € IR of
violation which is positive exactly if w(B) < w(B U {h}).

What remains in a concrete application is to develop problem-specific error bounds which can
decide the sign of a(B, h) from a floating point approximation of it in most cases.
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