
ETH Library

Exact arithmetic at low cost
a case study in linear programming

Report

Author(s):
Gärtner, Bernd

Publication date:
1998

Permanent link:
https://doi.org/10.3929/ethz-a-006652240

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Technische Berichte / ETH Zürich, Departement Informatik 283

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-006652240
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Exact Arithmetic at Low Cost � a Case Study in Linear Programming �

Bernd G�artnery

Abstract

We describe a new exact�arithmetic approach to linear programming when the number
of variables n is much larger than the number of constraints m �or vice versa�� The algo�
rithm is an implementation of the simplex method which combines exact �multiple precision�
arithmetic with inexact ��oating point� arithmetic� where the number of exact arithmetic
operations is small and usually bounded by a function of min�n�m�� Combining this with a
�partial pricing	 scheme �based on a result by Clarkson
��� which is particularly tuned for
the problems under consideration� we obtain a correct and practically e
cient algorithm that
even competes with the inexact state�of�the�art solver CPLEX� for small values of min�n�m�
and and is far superior to methods that use exact arithmetic in any operation� The main
applications lie in computational geometry�

� Introduction

Linear Programming �LP� � the problem of maximizing a linear objective function in n variables
subject to m linear �in�equality constraints � is the most prominent optimization problem� and
e�cient methods have been devised to solve such problems in practice� The values of n and m
for which solutions can nowadays be computed� range up to several millions for max�n�m� and
several thousands for min�n�m�� The simplex method� invented by G� Dantzig �	 years ago
�	��
is still among the most practical methods to solve linear programs� and state
of
the art solvers
like CPLEX implement variants of it�
While the simplex method in its theoretical description smoothly works for any values of n

and m� the typical values of these parameters encountered in an application greatly in�uence the
way it is implemented best�
The scenario in which we work here is that min�n�m� is a small constant� at most �	� say� while

max�n�m� can get very large� This is not the scenario usually encountered in operations research�
The NETLIB collection� a popular set of benchmark LPs �see http���www�netlib�org�lp�data��
only features a few problems with min�n�m� � �		� most of them also having max�n�m� relatively
small�
However� in computational geometry �CG�� our scenario is more common� and the applications

we present below come from this area� Usually� problems arising in CG have to do with large
point sets �or sets of other simple objects� in small
dimensional space and lead to small values of
min�n�m� whenever they can be formulated as linear �or more general� optimization problems�
Two examples �which don�t look like LP at �rst glance� illustrate this�

�supported by the ESPRIT IV LTR project No� ����� �CGAL	 and by the Swiss Science Foundation �SNF	

project No� �����
������ A preliminary version of this paper appears in the Proceedings of the �th Annual ACM
Symposium on Discrete Algorithms �SODA	 ����
 San Francisco

yInstitut f�ur Theoretische Informatik
 ETH Z�urich
 ETH�Zentrum
 CH����� Z�urich
 Switzerland �
gaertner�inf�ethz�ch	

�trademark of CPLEX Optimization Inc�

�

Figure �� Smallest enclosing annulus

Figure �� Largest disk in kernel

Problem ��� �Smallest enclosing annulus�

Given n points in the plane� �nd the annulus of smallest area covering all the points �see
Figure ���

This annulus is a device for testing �roundness� of the point set� The problem can be formulated
as LP in � variables and �n constraints� A suitable generalization to dimension d leads to an LP
in d � � variables and �n constraints � we come back to this problem in the last section where
we use it as our major test problem�

Problem ��� �Largest disk in kernel�

Given a simple n�vertex polygon in the plane� �nd the largest disk in its kernel� that is the
region of the polygon from which all vertices are visible �see Figure 	��

This problem is LP with � variables and n constraints� By solving it� one can in particular
test the polygon for being starshaped� and if so� obtain a �central� point of its kernel�
A major issue any serious LP solver must deal with is numerical accuracy� for two reasons�

First� the program must not crash due to numerical problems� and second� the computed result
should be correct� While the �rst reason is indisputable� the second one needs further consider

ation� Namely� what correctness means� as well as what the best way is to achieve correctness�
depends on the application�
If� for example� the input values are already approximations of true values obtained by mea

surements� it may su�ce if the output satis�es certain tolerances� On the other hand� if the
objective is to test whether a certain point lies inside a given 	
�
polytope �a problem which
can be formulated as LP�� a wrong answer to this decision problem might have disastrous ef

fects in an ambient algorithm� or lead to theoretical �insights� which are none� This also applies

�

if the LP under consideration is a relaxation of a more di�cult integer linear program �ILP��
supposed to yield an upper bound for the optimal solution of the latter� Here� solution values
of ������ and ���		� make a tremendous di�erence� In general� if combinatorial rather than just
numerical information has to be extracted from the input� there is a need for exact computa

tions� Good examples are vertex
 or facet
enumeration algorithms � they typically o�er exact
arithmetic
�� �� ����

Also� in choosing the means of achieving correct results� properties of the input are important�
For example� if we know the problem to be nondegenerate� with intermediate solutions well
separated �as it is typically the case in randomly generated problems�� numerical stability becomes
much less an issue�

The point is that a general purpose LP solver must be able to handle any problem but may
take advantage of inputs it typically expects to be confronted with� It seems that existing solvers
either ignore the �may� part �we call their strategy
expecting the worst�� or neglect the �must�
part �in which case they follow the paradigm
hoping for the best���

Expecting the worst� This strategy avoids numerical errors altogether by performing all
computations in rational arithmetic over an exact multiprecision number type� If both n and
m are small� this is certainly the method of choice� and for max�n�m� not too large� one can
still obtain solutions in reasonable time �see our tests below�� The strategy is implemented� for
example� in the LP solvers that are part of the vertex
enumeration codes
�� ��� mentioned above�

However� the approach is in no case competitive with solvers like CPLEX � it is too pessimistic
in the sense that �oating point operations are assumed to go wrong all the time� where in practice�
they work �ne most of the time�

Hoping for the best� This strategy � used e�g� by CPLEX � tries do do as well as possible�
purely with �oating point arithmetic� Although this is fast and will in most cases compute
the correct optimal solution� it will fail on some problems� Checking the result with exact
arithmetic is possible� of course� but really helps only if the result is actually correct� Otherwise�
a postoptimization phase has to be started �which is not an obvious task if the computed solution
is neither primal nor dual feasible��

The approach is too optimistic in the sense that all problems are assumed to be well
behaved
�with respect to the numerical techniques that are applied�� where in practice� only most of them
are�

Summarizing� expecting the worst is always correct but also always slow� while hoping for the
best is always fast and usually correct� For our particular scenario� we propose a mixed strategy�
combining �oating point and exact arithmetic� which will always be correct and usually fast�

Our solver accepts �oating point input� and most arithmetic operations are done in fast �oat

ing point arithmetic� Assuming m � n� in most cases only O�m�� out of the ��nm� arithmetic
operations performed in a single iteration of the simplex method� need to be done exactly� Find

ing a pivot is done completely in �oating point� verifying �or rejecting� it requires the additional
evaluation of a simple semi
static error bound �and O�m� exact computations if the bound does
not su�ce�� performing the actual update step takes O�m�� exact operations� Since the number
of iterations required to solve an LP by the simplex method usually depends only on m� the
overhead we get for exact arithmetic is then just an additive constant depending on m� As our
tests show� this constant is very reasonable for small values of m�

�

In �bad� cases� many pivots might get rejected under exact arithmetic� before a suitable can

didate is found� and a single iteration might require ��nm� exact operations� In such situations�
however� pure �oating point implementations are more likely to fail� either �our tests below
demonstrate this��

The idea of combining �oating point with exact arithmetic is not new� and �oating point �lters
have successfully been applied in computational geometry before
���� Although the motivation
is similar �avoid exact arithmetic whenever �oating point computations su�ce�� our approach is
di�erent in two respects�

Classical �lter techniques apply interval arithmetic� i�e� they maintain for each �oating point
value computed during the algorithm an interval which is guaranteed to contain it� In any
arithmetic operation� the result�s interval is computed from the intervals of the operands� Exact
comparisons of two values can then be done fast if their intervals do not overlap�

First of all� this approach already leads to a constant
factor slowdown� even if the problem is
of the most well
behaved kind �N�aher and Mehlhorn report a �oating point �lter operation to be
about four times slower than the underlying �oating point operation
����� Our approach incurs
only an additive overhead in this case�

Second� interval arithmetic works only for expressions of low arithmetic degree� Already
in the process of solving an m � m linear system �a routine similar to this appears in any
simplex implementation�� the error bounds obtained from interval arithmetic are typically a
gross overestimate� making them too large to be useful� even for small values of m� However�
Br�onnimann et al�
�� have recently described a technique to obtain good error bounds for the
solution of a linear system� using a posteriori error analysis of an approximate ��oating point�
inverse of the matrix de�ning the linear system� The intuition is that if this inverse is a good
approximation of the real inverse �as one expects in most practical cases�� the error in the solution
will be small� In this situation� the semi
static error bounds necessary to verify the chosen pivot
will still work well under this small additional error� Empirical evidence for the e�ciency of this
scheme does not yet exist�

The rest of the paper is organized as follows� In Section � we give a brief description of the
simplex method and sketch the main ideas of our implementation� Section � contains the more
technical part describing details of the implementation� In Section � we give test results�

� Linear Programs and the Simplex Method

We consider problems of maximizing a linear function in n variables subject to m linear equality
constraints� where the variables must assume nonnegative values� Such problems can be written
as

�LP� maximize cTx
subject to Ax b�

x � 	�
���

where c is an n
vectors� A an m� n
matrix� b an m
vector� and x an n
vector of variables�

If a vector x� �x�
�
� � � � � x�n� exists that satis�es all the constraints� the problem is called

feasible� otherwise infeasible� In the former case x� is a feasible solution �FS�� If the objective
function z cTx is bounded from above on the set of feasible solutions x�� the problem is called
bounded� otherwise unbounded�

The restriction to equality constraints is no loss of generality� because slack variables can be
introduced to turn inequalities into equalities� Moreover� the simplex method �and our code� can

�

handle explicit bounds lj � xj � uj on the variables� However� for ease of exposition� we restrict
attention to the standard form as given by ����

Tableaus and basic feasible solutions� For an ordered subset J fj�� � � � � jkg �
n�� let
xJ denote the k
vector �xj� � � � � � xjk�� If n � m� a tableau for ��� is a set of equations

xB � � !xN
z z� � �TxN �

���

B�N �
n�� jBj m� jN j n�m�B �N
n�� ! an m� �n�m�
matrix� � an �n�m�
vector�
� an m
vector� z� a number� such that the equations above the solid line are equivalent to the
system Ax b� expressing the m
vector xB of basic variables in terms of the �n �m�
vector of
nonbasic variables xN � The last row stores the objective function value z as a �linear� function
of the nonbasic variables� A feasible solution x� arises from the tableau by assigning nonnegative
values to the nonbasic variables xN in such a way that the implied values of xB are nonnegative
as well� x� is a basic feasible solution �BFS� if any nonbasic variable assumes the value 	�

If the matrix A of ��� does not have full �row� rank� there is no tableau for ���� so even if the
problem is feasible� it need not have a BFS� However� if it has a BFS at all� then it must have a
BFS which is an optimal FS for ���� unless the problem is unbounded�

Let AB resp� AN collect the columns of A corresponding to the basic resp� nonbasic variables
�cB and cN are de�ned similarly�� Then the tableau is uniquely determined via

� A��
B b�

! A��
B AN �

z� cTBA
��
B b�

�T cTN � cTBA
��
B AN �

���

We refer to AB as the basis matrix� ! is the tableau matrix� � the vector of reduced costs� B
the basis and N the nonbasis�

A BFS is therefore uniquely speci�ed by the basis B� In particular� there are only �nitely
many BFS� For proofs and further details we refer to Chv"atal�s book
���

The Simplex Method�

The simplex method consists of two phases� commonly called phase I and phase II� Phase I takes
as input the initial LP ��� and either reports that the problem is infeasible� or generates an
equivalent problem �with n � m�� along with a tableau and a BFS x� associated with it� This is
done by solving an auxiliary problem for which an initial tableau is easily constructed
���

Given a tableau and associated BFS x�� an iteration of phase II either asserts that x� is
optimal for ���� reports that the problem is unbounded� or constructs a new tableau with a
corresponding BFS y� satisfying cT y� � cTx�� In the latter case� the process is repeated� Since
there are only �nitely many BFS� phase II �nally terminates� unless a sequence of tableaus repeats
itself forever� This phenomenon � known as cycling � can occur but there are techniques to avoid
it
��� In any case� it can happen that although the basis changes� the BFS x� remains the same
for several iterations� Such iterations are called degenerate�

Contrary to the standard simplex method� the revised simplex method does not explicitly
maintain the tableau ��� but retrieves all necessary information from the implicit representation
given by ���� the key quantity being the basis matrix AB �

�

An iteration� also known as a pivot step consists of three main parts� the pricing� the ratio
test and the update� In the following we assume n � m�

Pricing� From the tablau ���� we can immediately deduce that if the reduced cost vector
� satis�es � � 	� then the associated BFS x� is optimal� Namely� xN � 	 then implies z
z� � �TxN � z�� where z� is the objective function value associated with x�� The pricing step
evaluates the vector � and eiter certi�es � � 	 or delivers an index j with �j � 	� According to
���� the computational primitives in the pricing step are the following�

�i� computation of vT � cTBA
��
B �

�ii� evaluation of reduced cost values cj � vTAj� j � N �

Assuming that A��
B is available� �i� can be done in time O�m��� while �ii� costs O�nm�� if all

�j are examined� In case of n � m� �ii� dominates the runtime of the pricing step and should
therefore be done fast� Our strategy will be to compute vT in exact arithmetic but evaluate the
inner products vTAj in �oating point arithmetic� using a �oating point approximation #v of v�
However� we make sure that the index j that is �nally returned truly satis�es �j � 	� In this
case� xj is called the entering variable�
Another important ingredient of our pricing scheme will be partial pricing� where we only

search for the index j among a small subset S � N � Only if no candidate is found among S�
we enlarge S according to a certain rule� The larger the ratio n�m is� the more e�ective partial
pricing becomes� Section � contains the details�

Ratio Test� Given a variable xj with �j � 	� it is clear from ��� that increasing its value
by t � 	 increases the objective function value by �jt and gives rise to a solution x��t�� where
x�j�t� t and

x�B�t� x�B � t!j�

!j the tableau column corresponding to the variable xj � The ratio test consists of �nding the
largest value of t such that x��t� is still feasible� equivalently� x�B�t� � 	� If no such value exists�
the problem is obviously unbounded� Otherwise� let t� denote this maximum value� Then there
is i � B such that x�i �t�� 	� xi is called the leaving variable� Solving the i
th tableau equation
for xj and substituting the resulting expression for xj into the other tableau equations� we obtain
a new tableau in which xj is basic and xi nonbasic� If t� � 	� the objective function value has
increased� otherwise we have performed a degenerate iteration� The computational primitives in
the ratio test are

�i� computation of the pivot colum !j A��
B Aj�

�ii� solution of linear equations x�i �t� 	� for all i � B�

The cost of the ratio test only depends on m� and we completely do it in exact arithmetic� As in
the pricing� �i� can be done in O�m�� time if A��

B is available� �ii� in O�m��

Update� In the revised simplex method� we do not explicitly perform the tableau update
mentioned in the ratio test� Rather� we just replace B with B� � B � fjg n fig� and by ����
this would su�ce to have all necessary information available in the next iteration� However� it is
crucial that the computations of cTBA

��
B and A��

B Aj are done e�ciently� and this requires some

�

preprocessing to bring AB into a suitable format� Many formats are possible� but the chosen
one should at least be easy to update when AB changes to AB� � the update being substantially
cheaper than preprocessing AB� from scratch� As already suggested above� we explicitly keep the
exact inverse of A��

B � As we show in Section �� this basis inverse is easily updated in time O�m
���

In standard inexact solvers dealing with large sparse problems� one rather stores some fac

torization of AB � because if AB is sparse� there is a chance that also a sparse factorization is
found� even if A��

B is dense� Moreover� this factorization usually has better numerical properties
than the inverse� Because we deal with relatively small values of m� sparsity is not an issue
�but consider the remark on this in the conclusion�� and because we compute exactly� numerical
stability need not be taken into account� either� But then the simplicity of the update routine is
in favor of the explicit inverse�

� An Exact Implementation of the Simplex Method

In the previous section we have roughly indicated which computations are to be done exactly and
which ones in �oating point arithmetic� Before we go any further� let us specify the requirements
for the exact number type T � assuming that the �oating point arithmetic is done in a �oating
point type F �

First of all� because our solver accepts �oating point input� T must contain F as a subset
�where over�ows and exceptional values need not be considered�� Apart from that� T is a subset
of the real numbers and must form a ring� so addition� subtraction and multiplication must be
de�ned� Moreover� we assume division to be available for operands whose quotient is an element
of T again� In Section � we present a type that ful�lls these requirements�

Now we can describe our concrete realizations of the pricing and update step �the ratio test
is straightforward and works over T � as described above�� Let us start with the representation
format for A��

B and its update if column i of AB is replaced with a new column Aj�

Maintaining the Basis Inverse�

If M AB contains entries from T � Cramer�s rule states that the entries of M�� are rational
numbers over T � with common denominator det�M�� so that M�� can also be stored as a matrix
over T � keeping the denominator separately�

Now assume that the i
th column of M is replaced by a new column Aj � the resulting matrix
being #M AB� � De�ning 	 � M��Aj � we have

#M M

�
BBBBBBB�

� 	�
� � �

���
	i
���

� � �

	m �

�
CCCCCCCA
� ���

where 	k can be written as 	k 	�k�det�M�� 	
�
k of type T � for k � � � � m� It follows that

�

#M��
�

	�i

�
BBBBBBB�

	�i �	�
�

� � �
���

det�M�
���

� � �

�	�m 	�i

�
CCCCCCCA
M���

so the entries of #M�� can be written as rational numbers over T with common denominator
	�i det�M�� and performing the matrix multiplication gives the corresponding numerators ak��

#M��
k�

ak�
	�i det�M�

�

Note that the values 	�k are readily available� because 	 M��Aj is nothing else than the pivot
column !j already computed in the ratio test prior to this update �see previous section��
On the other hand� we know that the entries of #M�� have a rational representation

#M��
k�

bk�

det� #M�
�

which is the one we are actually interested in� From ��� we get det� #M � det�M�	i 	�i�
Consequently�

bk�
ak� det� #M �

	�i det�M�

ak�
det�M�

�

and the divsion must be without remainder over T �
The whole update step can be performed in time O�m�� �for technical reasons� we always

keep the absolute value jdet�AB�j as the denominator�� This technique of updating the basis
inverse has been discovered before by J� Edmonds and termed �Q
pivoting�
���� It has been
implemented� for example� by D� Avis in his vertex enumeration algorithm lrs
���

Pricing�

In the process of �nding the entering variable� i�e� an index j with reduced cost �j � 	� we
almost exclusively apply �oating point arithmetic� Pricing is the most �exible step in the simplex
method� because typically many indices j qualify� in which case we are free to choose� The actual
choice is then made according to a pivot rule� We start �without referring to arithmetic� by
specifying the rule we use� called partial reduced cost pricing� This rule accesses and manipulates
a global subset S � N of active indices� initially chosen to be relatively small �see below��
For an ordered index set I � N � de�ne max�I� as the �rst index j � I with �j maxf�k� k �

Ig�

Algorithm ��� �partial reduced cost pricing�

�$ returns j with �j � 	 or optimal $�
j � max�S�
IF �j � 	 THEN

RETURN j
ELSE

�

V � fk � N n S j �k � 	g
IF V 	 THEN

RETURN optimal

ELSE

S � S � V
RETURN max�V �

END

END

If subsequently the basis B is updated to B� B � fjg n fig� S is set to S � fig n fjg in the
next iteration�
The choice of max�I� �resp� max�V �� as return index is Dantzig�s rule� The idea is that

variables with large reduced cost values will lead to a fast increase in objective function value
when chosen as entering variable�
The intuition behind the partial pricing scheme is that S and V are always small and that

S is augmented only a few times� In this case� most iterations are cheap� because they operate
on a small index set� while only a few ones run through the whole nonbasis N to �nd the set V �
Exactly this intuition lies also behind Clarkson�s LP algorithm
�� that works in a dual setting
�few variables� many constraints� and can easily be formulated as a dual simplex method� The
interpretation of Clarkson�s algorithm as a dual partial pricing scheme has already been suggested
by Adler and Shamir
��� A related technique known in operations research is �column generation�
which is typically used to solve large problems that do not �t into main memory� Applying a
technique quite similar to partial reduced cost pricing� Bixby et al� have been able to handle
very large
scale LP
���
To prove the above intuition rigorously� we need an assumption about the LP that is unfor

tunately not always satis�ed� While in theory� we would then abandon the rule� in practice� we
keep applying it and �nd that it still works well� The purpose of the theoretical result in this
case is not to supply a proof of e�ciency in a worst
case scenario but to give an idea how to
reach e�ciency in practice�

Lemma ��� �Clarkson �
��
If the LP is nondegenerate� the following holds in Algorithm ����

�i� If S is a random subset of N of size r� then the expected size of V is at most m�n�r���r����
�ii� If V
 	� V contains at least one element of any optimal basis B�

�ii� implies that S is augmented at most m times� while �i� yields an estimate of jV j� at least
when we enter the pricing step for the �rst time with a random subset S� For example� if we
choose jSj m

p
n� the expected size of V will be no more than

p
n� One can even prove that

V is that small in the subsequent augmentation steps
���� so that in total� no more than �m
p
n

indices are ever expected to appear in S� In our implemetation� we use m
p
n as the intial size of

S�

Arithmetic� The steps in Algorithm ��� that require arithmetic are the computations of
max�S� �and max�V � if necessary�� Thus� we need to compute the index j with largest value

�j cj � vTAj � v
T cBA

��
B �

�

Recall that we store the rational entries of A��
B only as their numerators and keep the denominator

D � jdet�AB�j separately� In this situation� the vector wT DcBA
��
B has entries in T � and we

are better o� considering

��k � D�k Dck � wTAk� k � S� ���

which is an expression over T � Now� instead of evaluating ��� exactly� we compute �oating point
approximations

#��k #D � ck � #wT �Ak� k � S� ���

where #D� #w are �oating point approximations ofD and w that are computed once in the beginning
of the pricing step� � and � the �oating point multiplication resp� dot product� The obvious
candidate for max�S� is then the index j with largest value #��j � �In case D or an entry of w
is larger than the largest representable �oating point number� both D and w are scaled by a
suitable power of two before computing the approximation��

Note that for the correctness of the method� it does not matter whether j max�S� really
holds� the important property is that �j is positive� This� however� can be checked with exact
arithmetic at cost O�m�� The bene�t of Dantzig�s rule in this context is that �j is actually very
likely to be positive� because it has been found to be largest under �oating point computations�

If the check succeeds� j is returned� Otherwise� we just proceed with the computation of V �
Note that we might have missed a candidate j � S with �j � 	 due to inexact computations� but
we ignore that in the hope of �nding another one later in N n S�
Only if also from N n S �which is handled as S before�� we cannot retrieve any candidate in

this way� we need to do more work �just declaring the whole problem as optimally solved� would
be a blunder� of course��

The straightforward solution would be to recompute all reduced costs again in exact arithmetic
to check whether a candidate for the entering variable has been missed� This� however� is not
necessary in most cases� We know that all inexact values #��k� k � N are nonpositive at this stage�
and a candidate has been missed if and only if some exact value ��k is still positive� The following
lemma develops an error bound on #��k that also lets us deduce �

�
k � 	 if #��k is su�ciently far below

zero� Only the indices k which can not be decided using the error bound� need to be handed over
to exact arithmetic� In typical cases� these are very few�

Lemma ��� Let

Ck � max�jckj� m
max
i��

j�Ak�ij�� k �
n��
Ri �

n
max
k��

j�Ak�ij� i �
m��
R� �

n
max
k��

jckj�

�The Ck and Ri are the column and row maxima of the LP�� Furthermore� de�ne

U � max

�
#D �R��

m
max
i��
�j #wij �Ri�

�

and

W � max

�
#D�

m
max
i��

j #wij
�
�

�	

If the �oating point type F has p bits of precision� then

j#��k � ��kj � min�U � q�W � q � Ck�� k � N�

where q �� � ������m � ���m� ����p�

It is important to note that this bound is an expression which can exactly be evaluated in
�oating point arithmetic� so that no errors occur in computing the error bound� The bound is
usually very good� because q is quite small� A typical value for p is ��� as in the C�� type double�

Proof� We �rst show the following general estimate� Let x� y be vectors of length
� � � ��p�
Then

j#x� y � xyj � �� � �����
�
 � ��� max
��i��

j#xi � yij� ���

We derive this from classical results of Forsythe and Moler
���� stating that

#xi xi�� � �i��

xi #xi�� �
i��

j�ij� j
ij � �� i � � � �
� and if
� � 	�	��

#x� y
�X

i��

#xiyi �� � ��	�
�i�� � j�ij � �� i � � � �
�

Hence we get

#x� y
�X

i��

xiyi �� � �i� �� � ��	�
�i�� �

This further gives

j#x� y � xyj j
�X

i��

xiyi���	�
�i�� �i � ��	�
�i�i��j

 j
�X

i��

#xiyi�� �
i����	�
�i�� �i � ��	�
�i�i��j

� j
�X

i��

#xiyij�� � �����	�
� � �� ��	�
���

�
max
i
j#xiyij�� � �����	�
� � �� ��	�
����

We want to transform this bound into a bound that depends on computable values� To this
end we note that
���

#xiyi #xi � yi�� � �i�� j�ij � �� i � � � �
�

Then we can further estimate

j#x� y � xyj � max
i
j#xi � yij�� � ������	�
���
�� ��	�
����

� max
i
j#xi � yij��	�
�
 � ����

��

for any practical value of
� if � ����� Finally� we would like to majorize the constant ��	� by a
constant that is exactly evaluated over the �oating point numbers� To this end we observe that

��	� �� � ������� � ��������
and the estimate ��� follows� There are two di�erent ways to upper bound the maximum� and
this �nally implies the lemma when we put xT � �D��wT �� yT � �ck� A

T
k �� Namely� on the one

hand we have
max
i
j#xi � yij � max

i
�j#xij �max

y
jyij��

y running over all vectors we consider during the pricing� On the other hand�

max
i
j#xi � yij � max

i
j#xij �max

i
jyij�

To apply the bound of the Lemma� we �rst check whether #��k is separated from zero by more
than U � q� This bound is independent from k and can therefore be computed once in the
beginning of the pricing step� If this bound does not su�ce to tell the sign of ��k� we apply the
second bound� which involves one extra multiplication for each k� If after applying both bounds�
the sign of ��k is still undecided� we resort to exact arithmetic�
With this scheme� we either �nd still one more index j satisfying �j � 	 �and return it�� or

we certify that V 	 in Algorithm ���� as claimed by the inexact computations� In this case�
returning the value optimal is correct�

� Test Results

We have tested our implementation on various instances of Problem ��� �smallest enclosing an

nulus� and its generalization to higher dimensions� We have compared its performance to that
of the primal simplex solver of CPLEX ��	��� and to a version of our code using exact arith

metic in any operation� We also have done tests on the three NETLIB problems with highest
variable
to
constraint ratio�
The program was written in C��� compiled with GNU�s g��� Version ������� �optimization

level �O�� and run on a SUN Ultra �� The �oating point type F is double� In a �rst version� we
have used the number type bigfloat from LEDA
��� as the exact number type T � A bigfloat

stores numbers of the form s
 �e� where s is a multiprecision LEDA integer and e an integer ex

ponent� However� since bigfloat is a true superset of double� also able to handle over�ows etc��
arithmetic operations have quite some overhead we do not want to spend� Moreover� bigfloat
does not o�er a division operator as we need it� Therefore� we have developed our own version of
the type� providing just the required functionality� �We have also experimented with GNU mul

tiprecision integers �see http���cpw�math�columbia�edu�online�gmp toc�html� instead of LEDA
integers but found the latter to be faster in our context��
Before we give the results� let us formally introduce the d
dimensional version of Problem ����

This is the problem of �nding the annulus �region between two concentric spheres� with minimal
di�erence between the squared radii� that covers an n
point set P fp�� � � � � png in d
space �for
d �� this is equivalent to minimizing the area��
If r� r denote the small and large radius of the annulus� c the annulus�s center� then the

objective is to minimize r� � r� subject to the constraints

r � kpi � ck � r� i � � � � n�

��

d partial full exact CPLEX

� ��� s ��� s ���� s ��� s

� ��� s ��� s ���� s ��� s

�	 ��	 s �	�� s ���� min ��� s

�� ���� s ���� s ���� min ���� s

�	 ���	 s ���� min ����	 min �	�� s

Table �� Runtimes on random annulus problems� n �	� 			

If pi �x
i
�
� � � � � xid�� c �c�� � � � � cd� we can equivalently write this as

r� � �xi� � c��
� �

� �xid � cd�

� � r�� i � � � � n�

De�ning
� � r� � c�

�
�

 � c�d� � � � r� � c�

�
�

 � c�d�

we can easily formulate the problem as an LP with �n constraints and d�� variables �� �� c�� � � � cd�
Its dual can be written as a problem in �n variables 	 � �	�� � � � � 	n�� � � ���� � � � � �n� and d��
constraints� as follows�

maximize
Pn

i����x
i
�
�� �

 � �xid����i

�Pn
i����x

i
�
�� �

� �xid���	i�

subject to
Pn

i�� 	i ��Pn
i����i ���Pn
i�� �x

i
�
	i �Pn

i�� �x
i
�
�i 	�

���Pn
i�� �x

i
d	i �

Pn
i�� �x

i
d�i 	�

	� � � 	�

���

This problem immediately �ts into the form of ���� and from an optimal solution for it� an optimal
solution to the primal problem and thus an optimal annulus can easily be reconstructed�
The �rst set of test problems consists of smallest enclosing annulus problems over n �	� 			

randomly generated ��
bit integer points in dimensions �� �� �	� �� and �	 �the machine reached
its memory limit at nm � �� 			� 			�� Table � gives the runtimes obtained by our method� with
partial pricing and full pricing �initial value of S N � see Section ��� compared with our method
�partial pricing version� using exact arithmetic for any operation ��exact��� and CPLEX�
In any case� the correct result was obtained by all solvers� As was to be expected for random

input� no candidate delivered from the pricing was ever rejected by the exact check of our method�
and the error bounds were in all cases su�cient to verify optimality in the �nal iteration�
It is remarkable that we still win against CPLEX in dimension �	� because of our partial

pricing scheme� In dimensions still higher� the exact arithmetic starts to contribute considerably
�although the contribution is still tolerable�� The full exact version is not as slow as one might
have expected� One reason is that� during the pricing� any exact multiplication has one operand
of small bitlength� namely an input number� In the basis inverse update� this is not the case�
Table � depicts the number of simplex iterations taken by the di�erent methods on the same

problems� Although partial pricing takes more iterations than full pricing� it is faster because
the individual iterations are cheaper ��exact� behaves like �partial� here��

��

d partial full CPLEX

� �� �� ��

� �	 �	 ��

�	 �� �� ��

�� ��� �� ��

�	 ��� ��� ���

Table �� Number of iterations on random annulus problems� n �	� 			

partial full CPLEX

�	�� s ���� s ����� s

Table �� Runtimes on random annulus problem� d �� n �		� 			

Here it is interesting to note that the number of CPLEX iterations is much smaller than even
the number of full pricing iterations in our method� This is due to the fact that Dantzig�s rule
is usually inferior to other pivot rules like DEVEX or steepest descent as applied by CPLEX�
We have used Dantzig�s rule mainly because it nicely works together with our inexact pricing
scheme� In the future� other rules will be tested as well�

Table � shows how our code performs for d �� n �		� 			 �because of memory limitations�
this was the largest n we could test�� CPLEX apparantly has problems with this input and is
outperformed by a factor of almost six��The full exact version is not of interest for us in this and
the subsequent tests��

In connection with the random problems� we observed an interesting phenomenon� When
generating random annulus problems with double entries from the random number generator
drand��� the runtime of our method is spectacularly good� even for large dimensions� The
mystery is solved when one observes that the numerators and the denominator jdet�AB�j stored
in the basis inverse A��

B � have very small encoding lengths in the format s�
e in this case� so that

exact arithmetic is fairly cheap� The reason for this is that matrices generated with drand�� �or
any other random number generator based on the linear congruential algorithm�� exhibit extreme
dependencies among the rows� In generating the random problems tested above� care was taken
that at least dependency patterns that lead to unusually small numbers were avoided�

It is also quite clear that the runtime of our method depends on the bitlengths of the input
point coordinates� Above� we have tested with ��
bit coordinates in order to make sure that
problem ��� can be set up in double format without rounding errors up to dimension d �	� If
��
bit coordinates are used �leading to an inexact internal representation of ����� the runtimes
are about the same up to dimension �	� �	% more in dimension �� and about twice as large in
dimension �	�

To test degenerate inputs� special �
dimensional annulus problems were generated that have
all points exactly on a circle� A �rst such example features �� ��� integer points on a common
circle with squared radius �� ���� �	�� ���� ���� ���� a value that can still be represented in double�
so ��� is set up without rounding errors� The �rst row of Table � gives the results for partial
pricing and CPLEX �full pricing makes basically no di�erence here and is not tested��

While our method needs � iterations �four in phase I and one in phase II� just to check
optimality�� CPLEX gets away with no iteration at all �it still does something� as the time

��

partial CPLEX

original 	�� s ���� s

perturbed 	��� s ���� s

Table �� Runtimes on small degenerate annulus problem� d �� n �� ���� original and perturbed

partial CPLEX

���� s ���� s

Table �� Runtimes on large degenerate annulus problem �rounded�� d �� n ��� ���

suggests�� Because all reduced cost values are zero in the �nal iteration� this time all of them
were processed with exact arithmetic by our method� Both solvers came up with the correct
optimal value 	�

The next test problem was generated by slightly perturbing the points so that they are no
longer cocircular� To do this� a random value in f��� �g was added to each coordinate� The
results are given in the second row of Table ��

Although our method now takes �� iterations� it has become faster� because the small per

turbation already su�ces to make the error bounds work e�ectively� no reduced cost value was
passed to exact arithmetic in the �nal iteration� CPLEX becomes slower and computes a solution
that deviates from the correct one in the �
th signi�cant digit�

The �nal annulus problem features ������ integer points on a common circle with squared
radius �� ���� �	�� �	�� ���� ���� ���� a value that no longer �ts into a double� It follows that in
setting up the LP ���� rounding errors are made� However� considering the rounded problem as
the correct input� we ran the solvers on it� Table � collects the results�

Our code takes �� iterations� but needs to check all reduced costs excatly in the �nal iteration
�although they are not zero� no single error bound su�ces�� The optimal solution is ���� CPLEX
comes up with the value �	� �note that this is not a large deviation� considering the size of the
input numbers��

Finally� we have tested our solver on standard benchmark problems from the NETLIB col

lection� choosing the three problems which are most suitable for our method in the sense that
they have relatively few constraints and relatively many variables� Table � gives the statistics
on these problem� Table � the runtimes we achieve� again distinguished between partial and full
pricing �in case of SCSD�� partial and full pricing coincide�� CPLEX was run for comparison�

It is clear that we cannot compete with CPLEX on these NETLIB problems� although they
are probably the ones from the collection on which we still do best� Note that for FIT�D� partial
pricing brings about no bene�t� If the number of variables is larger �as in FIT�D�� we again pro�t

Problem n m

FIT�D �	�� ��

FIT�D �	�		 ��

SCSD� ��	 ��

Table �� Statistics on NETLIB problems

��

Problem partial full CPLEX

FIT�D �� s �� s 	��� s

FIT�D ����� min ����� min ���� s

SCSD� ����� min ����� min 	�	� s

Table �� Runtimes on NETLIB problems

Problem partial full CPLEX

FIT�D ���� ���� ����

FIT�D ����� ����� �����

SCSD� ��� ��� �	�

Table �� Number of iterations on NETLIB problems

�a little� from our pricing scheme� Compared to the annulus problems before� a large number of
iterations is required� indicating that the problems here are more di�cult �see Table ��� SCSD� is
the worst example for our code but the best example for CPLEX� There are several reasons why
our code is much worse than CPLEX on the NETLIB problems� the most important one being
that these are sparse problems �unlike the annulus problems before�� In this case CPLEX pro�ts
from its very e�cient sparsity handling� while we completely ignore sparsity� In case of SCSD��
it is also the overhead for exact arithmetic �recall that m �� here� that becomes overwhelming�

We have included this statistics mainly in order not to create the impression that our method
is superior to CPLEX� It is particularly tuned for a class of problems �dense� few constraints��
for which CPLEX is not tuned� and our method makes full sense only on such problems�

� Conclusion

We have described a correct implementation of the simplex method with low overhead for ex

act computations� if the number of constraints or variables is small� The algorithm can in
some cases compete with CPLEX and beats the full exact solver by far� The applications
mostly lie in computational geometry� and it is planned to incorporate the solver into the Com�
putational Geometry Algorithms Library CGAL� a joint project of seven European sites �see
http���www�cs�ruu�nl�CGAL���

A more tuned implementation of exact arithmetic would be a natural next step� The scheme
based on interval arithmetic that was already mentioned in the introduction might lead to another
substantial speedup
��� Moreover� Br�onnimann et al�
�� have shown that modular arithmetic
can yield much faster computation of determinants� the technique might also apply to the ma

trix operations considered here� However� under such techniques� the simplicity of the current
implementation will probably not persist�

Another issue has already been addressed above� In explicitly maintaining the basis inverse�
we ignore sparsity of the matrix AB� This might seem justi�ed if we store the LP in dense
format anyway� However� we can pro�t from sparsity e�ects because of the exaxt arithmetic�
Namely� exact operations involving zero values are cheap �and neglegible in comparison with
other operations�� so that even without an explicit sparse format� we implicitly handle the matrix
operations as if the matrix was in sparse representation� It follows that it would pay o� to abandon

��

the format of the explicit inverse in favor of a factorization that respects sparsity of the input�

Finally� we would like to mention that the techniques introduced here are not restricted to
linear programming but can be applied to a variety of other optimization problems� In computa

tional geometry� important examples are the smallest enclosing ball of a point set� or the distance
between two polytopes� These are in particular quadratic programming problems� for which a
simplex
type solution method exists
���� More general� the abstract class of LP�type problems
as introduced by Sharir and Welzl
��� can � slightly modi�ed � be handled by our approach of
combining exact and �oating point computations� To illustrate the point� we brie�y recall the
basics�

An LP
type problem is a pair �H�w�� H a set of &constraints'� w an &objective function'
assigning to each subset G � H a value w�G� �the smallest solution subject to the subset of
constraints in G�� with the following properties�

� w�F � � w�G� for F � G �monotonicity�

� if F � G with w�F � w�G� and w�G� � w�G � fhg� for some h � H n G� then also
w�F � � w�F � fhg� �locality�

A basis of G � H is an inclusion
minimal subset B of G such that w�B� w�G�� The combina�
torial dimension of �H�w� is the maximum cardinality of any basis� To solve the problem means
to �nd w�H� and a basis of H� As an example� consider the problem of �nding the smallest
enclosing ball �SMB� of a set of points P � IRd� Because this ball is determined by at most d��
of the input points� the combinatorial dimension of SMB is d� ��

Sharir and Welzl�s randomized algorithm to solve LP
type problems needs two problem

speci�c primitives�

� violation test� for a basis B and h � H nB� decide whether w�B� � w�B � fhg� holds�

� basis computation� if w�B� � w�B � fhg�� compute a basis B� of B � fhg�

When we interpret the simplex method in terms of these primitives� the reduced cost compu

tations performed during the pricing step play the role of violation tests� while the ratio test
and update step together form the basis computation� The crucial point is that the reduced
cost computation in the simplex method is more than just a violation test� namely it computes
an amount of violation� Exactly the availability of such a quantitative violation test makes our
whole method work� In all known practical applications of the LP
type framework� one actually
has such a stronger violation test� where the amount of violation is �like in the simplex method�
not a �xed quantity but a value usually determined by some sensible heuristic� Summarizing�
the methods of this paper apply in principle to general LP
type problems for which the following
primitive exists�

� quantitative violation test� for a basis B and h � H n B� return an amount a�B� h� � IR of
violation which is positive exactly if w�B� � w�B � fhg��

What remains in a concrete application is to develop problem
speci�c error bounds which can
decide the sign of a�B� h� from a �oating point approximation of it in most cases�

��

Acknowledgment

Parts of the code come from a previous implementation of an inexact solver developed together
with Sven Sch�onherr� who in particular wrote the routine for reading �NETLIB� problems in
MPS
format� Torsten Thiele provided the �points
on
a
circle� examples� Komei Fukuda�s sugges

tions substantially improved the presentation� and his exact LP solver � part of the vertex�facet
enumeration algorithm cddr� � helped to verify the correctness of our code� Finally� many
discussions with Emo Welzl have contributed to this paper�

References

�� I� Adler and R� Shamir� A randomized scheme for speeding up algorithms for linear and
convex programming with high constraints
to
variable ratio� Math� Programming� ���������
�����

�� D� Avis� A C implementation of the reverse search vertex enumeration algorithm� URL�
ftp��� mutt�cs�mcgill�ca�pub�C��

�� D� Avis� K� Fukuda� A pivoting algorithm for convex hulls and vertex enumeration of
arrangements and polyhedra� Discr� Comput� Geom�� ���������� �����

�� R� E� Bixby� J� W� Gregory� I� J� Lustig� R� E� Marsten� and D� F� Shanno� Very large

scale linear programming� a case study in combining interior point and simplex methods�
Operations Research� �	������������ �����

�� H� Br�onnimann� C� Burnikel� S� Pion� Interval arithmetic yields e�cient arithmetic �lters
for computational geometry� Manuscript� �����

�� H� Br�onnimann� I� Z� Emiris� V� Y� Pan� S� Pion� Computing exact geometric predicates
using modular arithmetic with single precision� In Proc� ��th Annu� ACM Sympos� Comput�
Geom�� pages �������� �����

�� A� L�obel� T� Christof� Porta � polyhedron representation transformation algorithm� URL�
http���www�zib�de� Optimization�Software�Porta��

�� V� Chv"atal� Linear Programming� W� H� Freeman� New York� NY� �����

�� K� L� Clarkson� A Las Vegas algorithm for linear programming when the dimen sion is small�
J� ACM� �������������� �����

�	� G� B� Dantzig� Linear Programming and Extensions� Princeton University Press� Princeton�
NJ� �����

��� J� Edmonds and J�
F� Maurras� Note sur les Q
matrices d�Edmonds� Recherche
Op�erationnelle �RAIRO�� �������	���	�� �����

��� G� Forsythe and C� Moler� Computer Solutions of Linear Algebar Systems� Prentice Hall�
�����

��� S� Fortune and C� J� Van Wyk� E�cient exact arithmetic for computational geometry� In
Proc�
th Annu� ACM Sympos� Comput� Geom�� pages �������� �����

��

��� K� Fukuda� cdd� reference manual� URL� http���
www�ifor�math�ethz�ch�ifor�sta��fukuda�cddplus man�
cddman�html�

��� B� G�artner and E� Welzl� An analysis of Clarkson�s sampling lemma� Mansuscript� �����

��� J� Matou(sek� M� Sharir and E� Welzl� A subexponential bound for linear programming�
Algorithmica� ����������� �����

��� K� Mehlhorn and S� N�aher� LEDA� a library of e�cient data types and algorithms� Report
A 	����� Fachber� Inform�� Univ� Saarlandes� Saarbr�ucken� West Germany� �����

��� K� Mehlhorn and S� N�aher� LEDA� a platform for combinatorial and geometric computing�
Commun� ACM� �������	�� �����

��� P� Wolfe� The simplex method for quadratic programming� Econometrica� ����������� �����

��

