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Abstract

In this report a sequent calculus with restricted weakening rules is in-
vestigated. (Weakening rules admit adding new formulas to derivable
sequents.) This calculus produces the fragment of classical logic, which
is "robust against loss of information”. Thus, the proposed logic could
be helpful in the field of databases.

The interpretation of the calculus is very simple: The calculus is sound
and complete with respect to a three-valued semantics, where the third
truth-value has the intention "neutral”. Furthermore, this semantics
corresponds to a special case of Girard’s phase semantics (for linear
logic) and is related to the semantics of RMj, the strongest logic in
the family of relevance logics.

Zusammenfassung

In diesem Bericht wird ein Sequenzenkalkiill mit eingeschrankten Ab-
schwichungsregeln untersucht. (Die Abschwichungsregeln erlauben
es, zu einer herleitbaren Sequenz neue Formeln hinzuzufiigen.) Der
Kalkiil erzeugt genau dasjenige Fragment der klassischen Logik, wel-
ches "robust ist gegeniiber Informationsverlust”. Somit kann diese Lo-
gik anch im Gebiet der Datenbanken sehr niitzlich sein.

Die Interpretation des Kalkiils ist sehr einfach: Der Kalkiil ist korrekt
und vollstindig beziiglich einer 5-wertigen Semantik, wobei der dritte
Wahrheitswert die Bedeutung "neutral” hat. Ferner entspricht diese
Semantik einem Spezialfall der Phasensemantik von Girards linearen
Logik und es besteht auch eine Beziehung zur Semantik von RMs, der
strengsten Logik in der Familie der Relevanzlogiken.
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1 Motivation

In recent years, some variations of Gentzen’s sequent calculus [Ta87]
have been investigated; in particular, by restricting the structural
rules. Sequent calculi without contraction rules (these rules reduce
two occurrences of a formula into one occurrence) were studied by
[Gr82], [KW84] and [Me92]. Girard’s linear logic {Gi87] is also based
on a sequent calculus without contraction rules and without weak-
ening rules (these rules allow the addition of new formulas). The
weakening rules are the focus of this report.

The sequent calculus formalizes the concept of a proof. This means
that the sequent A, B D A expresses the fact that A is a logical
consequence of the specified knowledge A, B. Therefore, the weak-
ening rule on the left hand side (IW) is related to the monotonicity
of the logic, whereas the weakening rule on the right (rW) is related
to the paraconsistency of the logic. The most interesting case is a
sequent calculus where only the rule (rW) is missing. The family of
derivable sequents then becomes smaller than in classical logic since
it is impossible to weaken, or to water down, the consequence of a
specified knowledge. For example, the sequent A D A, B is no longer
derivable.

The derivable sequents can be described as follows:

A sequent v D 6 is derivable without the rule (rW) if and only if
every sequent v D &' which arises from v D § by discarding prime
formulas is derivable in classical logic.

This property could be helpful in the field of databases. For example,
if the basic information (prime formulas) together with some of the
conclusions obtained by the restricted calculus are stored, then these
conclusions remain correct even if some of the information is lost.

Furthermore, the interpretation of the calculus is very simple. The
calculus is sound and complete w.r.t. a three-valued semantics, where
the third truth-value has the intention neutral and where the values
true and neutral are distinguished. If the value of a formula A is
neutral then the value of A A B, as well as the value of AV B, is
the same as the value of the formula B. As usual the existential
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quantifier is interpreted as a (possibly infinite) disjunction and the
universal quantifier as a (possibly infinite) conjunction.

This three-valued semantics can be interpreted as a counterpart to
Botvar’s semantics (or to Kleene’s weak semantics, respectively).
It is also possible to transfer this semantics into the three-valued
semantics of Lukasiewicz. But the most interesting relation is the
following: The proposed three-valued semantics is a special case of
Girard’s phase semantics (for linear logic). Specifically, this three-
valued semantics can be obtained from the multiplicative connectives
by a suitable restriction. Moreover, Kleene’s strong semantics can
be obtained from the additive connectives by the same restriction.

Note that every logic can be made robust against loss of information
by forbidding the weakening of a logical consequence. For example,
placing such a restriction on Kleene’s strong 3-valued logic leads to a
four-valued logic, where the fourth value also has the intention neu-
tral (see [H093]). But in this paper, we concentrate on this restriction
applied to classical logic only. »




2 Calculus LCp

Let £ be an arbitrary first order language with free variables u,v,
u1,%1, . . ., bound variables z,y, 1,91, . . ., function and relation sym-
bols and —, A, V,3,V as logical connectives and quantifiers.

The terms r, 5,71, 51, ... and formulas A, B, C, Aj, By, ... are defined
as usual where the negation of a formula is defined by ——A := A,
-(AAB) := ~AV-B, =(AVB) := ~AA-B, ~(3zA(X)) = Yz A(z)
and ~(VzA(z)) := Jz—A(z).

Small Greek letters v, 8, 0, 7,71, 81,01, 71, ... denote finite sequences
of L-formulas, capital Greek letters T', A, X, I, T'y, Ay, 2, I, ... de-
note finite sets of L-formulas and expressions of the form v D 6 are
called L-sequents.

Defining a calculus without the weakening rule on the right side, we
have to prevent that the other rules imply weakening on the right
hand side or transfer the weakening from the left to the right hand
side. Therefore, the rules

¥yD6 D26 A , v D 6, A(s) v
7564 554vE "V 56,3040
which weaken the right side of a sequent as well as the rules

v ADE
D 6,—A

¥yD6A 0,ADT

- d
(r=) an v, 0 D6,

(cut)’

which could transfer the weakening from the left to the right side
are not allowed. On the other side, the discarding rules of LCg are
missing in Gentzen’s sequent calculus of classical logic [Ta87], but
yet they are sound with respect to classical semantics. These rules
enable a controlled exchange between both sides of a sequent and
they are necessary in order to reduce the right side of a sequent.
Note that the axiom in Gentzen’s sequent calculus is formulated as
A O A. Because we can not increase the right side of a sequent in
the restricted calculus, we have to replace the axiom by o D 0.



LCp denotes a Logic Calculus without weakening on the Right hand

side.

Definition 2.1 LCg is defined by the following aziom and rules:

Aziom:

Rules:
D8
AqDé

~7,A,B,926
- v,B,A,906

¥, A,AD
4,406

7,AD6  9,BD6
~¥,8,AVBD6

~,A,BD6
~,AABDS

v,A(r)Dé
v VzA(z)D6

7,A(u) D6
v,z A(z)Dé

4,mADS,A
¥D8,A

*: The free variable u must not occur in the conclusion.

ocDo0

(o : finite, non empty sequence of
negated or unnegated prime formulas)

Structural Rules

(w)

yD8,A,B,w

(LE) ~26,B,A,m

v28,A,A

(lC’) ~vD6,A

Logical Rules
¥26,A,B
) ¥55,AVE

¥26,A $om,B

(n) ~,926,w,AAB

v26,A(w) 9o, A(s)

) 7 v,926,mr Nz A(zx)

v28,3xA(x)
Discarding Rules

7,AD6,-A
(tD) v,AD6

Cut Rule

7,AD6  ¥9DA

yoss . (eu)

(rE)

(rC)

(rv)
(rA)
(rv)”

(r3)”

(rD)




Definition 2.2 A sequent v D § (6 # 0) is derivable in n steps if
either . '
-~ D 6 is.an aziom

- v D & 1is the conclusion of a structural rule and the premise v O &'
of this rule is derivable in n steps.

-y D & is the conclusion of a logical rule, a discarding rule or the
cut rule and every premise ; D &; of this rule is derivable in n; steps
and n > max; n;.

A sequent v D § is called derivable if there exists a natural number
n such that y D 8 is derivable in n steps.

Theorem 2.1 By adding the rule (rW) to LCgr, we obtain a sound
and complete sequent calculus of classical predicate logic.

Proof: Note that the modified rules (rV), (r3) and (cut) are sound
w.r.t. the classical semantics. To proof completeness, we confine to
show that the rule (r3)’ is derivable in the calculus LCgr + (rW):

v D 6,A(r) o)

v,=A(r) D 6, A(r) o)

v,—A(r) D 6, A(r), A(u) 3

~,-A(r) D 6, A(r), JzA(z) D)

v,=A(r) D 6,3z A(x) -

v, Yz-A(z) D 6,3zA(z) Dy
v D 6,3zA(z)

q.e.d.

The following lemma shows that the sequent v D 6, X, X is derivable
-if we can derive the sequent v D §, X.

Lemma 2.2 Ifv D § and m D o are derivable then v,m D 6,0 is
derivable, too.

Proof: The proof directly follows by induction on the sum of the
lengths of the derivations of v D § and 7 D 0.



Lemma 2.3 The sequent A D A is derivable for any formula A.

Proof: Recall that A D A is an axiom only if A is a negated or
unnegated prime formula. Thus, the lemma is proved by induction
on the structure of A:

A= BV C: By the induction hypothesis and lemma 2.2, the se-
quents B,~B D B,-B and C,-C D C,~C are derivable.

Hence:
B,-B D B,-B c,-C > C,-C
(D) (tD)
B > B,-B ¢ > C,-C
(iD) (iD)
> B,-B > C,-C i
(rn)
> B,C,~BA-C
(w)
BvC > B,C,mBA-C
(rD)
BvC > B,C
- (rv)
BvC D> Bv(C

A= BAC: analogous to BV C

A = VYzB(z): By the induction hypothesis, it follows that the se-
quent B(u) D B(u) is derivable. Hence:

B) > Bl B S B(u)
vzB(z) O B(u) VzB(z) D B(u)
VxB(z) D VzB(z)

()

(rv)

A = JzB(z): By the induction hypothesis and lemma 2.2, the se-
quents ~B(u) D —B(u) and B(v),~B(v) D B(v),~B(v) are
derivable. In virtue of the rule (ID), the sequent D B(v), ~B(v)
is derivable, too.
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Hence:

- “Bu) > ~BW)
D B(v),~B(v) Ve=B(z) D -B(u
Ve—B(z) D Vz-B(z),B(v) ™
Vz-B(z),3zB(z) D Vz-B(z),B(v) )
Ve-B(z),3eB(z) > B() )
Vz-B(z),3zB(z) > dzB(z) =)
dzB(z) D 3JzB(z) o)

g.e.d.

By virtue of the lemmata 2.2 and 2.3, the sequent v D v is derivable
for every finite sequence .
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3 Robust Semantics

We define a three-valued semantics where a third truth-value n is
added to t (true) and f (false). The third truth-value can be de-
scribed as neutral. If the truth-value of a formula A is n, then the
value of the formulas AA B and AV B corresponds to the truth-value
of B. The truth-value n never succeeds in presence of £ or f. Ie.
the value neutral is ”less important” than the values true or false.

A colloquial interpretation of the truth-values could be:

true &~ "to accept a proposal”, false = "to turn down a proposal”
‘and neutral = "an indifferent opinion, e.g. neither to accept nor to
turn down a proposal”.

Definition 3.1 A robust valuation for £ is a function V' which as-
signs a truth-value V(A) € {w, f,n} to all L-formulas A and satisfies
the following conditions:

t V(A =f
V(=A) =1 n ifV(4)=n
f otherwise
(¢ : fV(A) =torV(B)=t
V(AVB)=1( n ifV(A)=V(B)=n
f otherwise
' oo fV(A)=FforV(B)=f
V(AAB)=¢ n ifV(A)=V(B)=n
t otherwise '
t if V(A(s)) =t for some term s of L
V(EzA(z)) =< n if V(A(s)) =n for all terms s of L
f otherwise
f if V(A(s)) = f for some term s of L
V(VzA(z)) =< n f V(A(s)) = n for all terms s of L
t otherwise

12
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Examples: Let V(A(s)) =t and V(B(s)) = n.

Then V(A(s) A B(s)) =t and V(Vz(=A(z) A B(z))) = f.

For all robust valuations V holds:

V(Fz-A(z)) = V(~(VzA(z))) and V(-=AA=B) =V (=(4V B)).

Remark: In this semantics we can express that a formula A domi-
nates a formula B. We define this new connective as follows.

A4 B:=AV(AAB)

The truth-value of A <t B corresponds to the value of A if the value
of A is not neutral, else it corresponds to the value of B. Thus,
we can describe a hierarchy of formulas. In the above example, the
formula expresses that A can decide at first to accept or turn down
a proposal. Only if A has a indifferent opinion, then B can decide.

Definition 3.2 A non empty set of formulas A is called a robust
consequence of the set of formulas I' if for all robust valuations V'
holds: V(A) = f for some A inT' or V(B) =1t for some B in A
or V(B) =n for all B in A.
In this case we write I' =g A.

A formula A is called a robust tautology if F=r A holds.

Remark: For all I" and A holds:
T |=R A = T "_“cla.ssical A

Examples: For all formulas A, B holds
Vz(A(z) A B(z)) =g Yz A(z) AVzB(x)
VzA(z) AVzB(z) =g Vz(A(z) A B(z))
ErAV-A
But not every classical consequence is a robust consequence. E.g.
VzA(z) VVzB(z) R Vz(A(z) V B(z))

Let V(A(so)) = n, V(B(s0)) = f and V(A(s)) = V(B(s)) =t for all
terms s # so. Then V(VzA(z)) =t and V(Vz(A(z) vV B(z))) = f.
Note the formula A(so) is dominated by A(s) in the formula Vz A(z)
and by B(sg) in the formula Vz(A(z) V B(zx)).

13



4 Soundness and Completeness

We will prove that the calculus LCg is sound and complete with
respect to the robust semantics. The proof of the soundness is easy
in contrast to the proof of the completeness, where we need some
further properties of LCg. See the lemmata 4.2 - 4.7.

Definition 4.1 We define set(y) as the set of the components of +y.

Theorem 4.1 (Soundness) -
Ify D & is derivable, then set(8) is a robust consequence of set(y).

Proof: The proof follows by induction on the length of the deriva-
tion.

The following properties of LCp will be used in the proof of the
completeness:

Lemma 4.2 The sequent v, A,—~A, B,—B D § is derivable if one of
the following sequents is derivable:

al) v,A,—A,B,~B,AVBD§

a2) v,A,—A,B,~B,AVB>6-AAN~B
a8) v, A,—~A,B,~B D 6-AAN-B

b1) v,A,—A,B,mB,AANBD§

b2) v,A,—A,B,~B,ANBD>§-AV-B
b3) v, A,~A,B,~B D> 6,-AV -B

Proof: We modify the calculus LCg by replacing the axiom by a
new axiom of the form A,—-A, B,—B,o0 D ¢. By virtue of the rules
(IW) and (IC), the sequent v, A,—A4, B,~B D § is derivable in LCg
if and only if this sequent is derivable in the modified calculus.

Now, the claims follow by simultaneous induction of the length of
the derivation in the modified calculus.

q.e.d.

14
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Lemma 4.3 If the sequent v, AV B,—A,B O § is derivable then
~, AV B,~A D6 is also derivable.

Proof: As we can see in the proof of lemma 2.3, AV B D A, B is
derivable. Thus, we can derive the sequent v, AV B,-A D B using
the rules (IW) and (rD). Now, obtain a proof as follows.

v, AVB,mA,B>6 +v,AVB,~ADB
v, AV B,-~AD§

(cut)

g.e.d.

Lemma 4.4 If the sequent v D 6,3xA(z), A(s) is derivable then
v D 8,3z A(z) is derivable, too.

Proof: Now, obtain a proof as follows.

v D 63zA(z), As) )
v,—A(s) D §,3zA(x), A(s) D)
v,mA(s) D 6,3xA(z) -
v,Vz-A(z) D 6,3zA(z ab)
v D §,3zA(x)

g.e.d.

Lemma 4.5 The sequent v,Vz—A(z),VzA(z) D 6 can be derived if
one of the following sequents is derivable:

a) v;,Vz-A(z),VeA(z), Iz A(z) D6
b) v,Vz-A(z),VzA(z), IcA(z) D 6,Yr-A(x)
¢) v, Vz-A(z),Vz A(x) D 6,Vz—A(z)

Proof: As before, it suffices to consider derivations which start with
an axiom of the form Vz—A(z),VzA(z),0c D o. By simultaneous
induction on the length of the derivation, the proposition is easy to
prove. For example:

15



a) If the last inference is

b)

g.e.d.

~,Vz-A(z), VzA(z), A(u) D 6 &)
v, Vz-A(z),VzA(z), IzA(z) D6

then the sequent v,Vz—A(z), Ve A(z), A(u) D & is derivable.
The proposition follows using the rules (V) and (1c).

If the last inference is
~, Vo-A(z), Yz A(z), JzA(z) D 6, Vz-A(
v, Vo—A(z),VzA(z), Iz A(z) D 6

then the induction hypothesis of b) yields the proposition.

Define o1 := v, Vz—A(z), VzA(z), 3zA(z)
and o9 := v, Vz-A(z), VZ A(z). '
Let 61,6 be such that 61,602 = 6. If the last inference is

(V)

%) (rD)

o1 D 61,-A(u) o1 D 6, —lA(S)
o1 D 6,Yz-A(z)

then the induction hypothesis of a) yields that oa D 61, ~A(u)
and og D 8, ~A(s) are derivable. By virtue of the rule (r3), we
can also derive the sequent o2 D 61, Iz—A(z). From lemma 2.2

. we obtain that oo D 6,3z A(z),—A(s) is derivable and from

lemma 4.4 o3 D 6 3x—A(z). Thus, the proposition follows
using the rule (rD).

If the last inference is
~,Yz—A(z),VzA(z), A(u) D 6,Vr-A(z) (13)
~,Vz-A(z),Va A(z), JzA(z) D 6,V A(x)
then the induction hypothesis of ¢) yields that the sequent

v,Vz-A(z), Yz A(z), A(u) D 6§ is derivable. The proposition
follows using the rules (Iv) and (IC).

Lemma 4.6 The sequent v,VzA(z) D 6 is derivable
if v,VzA(z),Vo-A(z), A(u) D & and v,VzA(z), A(u) D —~A(u) are

derivable
(where u is a free variable which does not occur in vy, Yz A(z) D 6).

16
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Proof: The sequent v,VzA(z) D Vz—-A(z) can be derived from
v,VzA(z), A(u) D ~A(u) using the rules (ID) and (rV).

The sequent v, VzA(z),Vz—A(z) D § can be derived from the se-
quent v, VzA(x), Vz—A(z), A(u) D § using the rule (V). Thus, the
proposition follows using the (cut).

q.e.d.

Lemma 4.7 The sequent v, IxA(z) D § is derivable

if v, 3z A(z),VaA(z), A(w) D § and v,3xA(z), A(u) D —A(u) are
derivable

(where w is a free variable which does not occur in v,3zA(z) D 6).

Proof: As we can see in the proof of lemma 2.3, the following se-
quent Vz—A(z), 3z A(z) D A(u) (where u is a free variable) is deriv-
able. Therefore, the sequent Yz—A(x), 3zA(z) D VzA(z) can also be
derived.

Furthermore, using the rule (IV) we obtain v,3zA(z),VzA(z) D> §
from the sequent v, 3z A(z),VrA(z), A(w) D 6.

Using the rule (D) we obtain v,3zA(z) D —=A(u) from the sequent
v, 3zA(z), A(u) D —A(u). Thus, the sequent 7,3z A(z) D Vr—A(z)
can be derived by the rules (ID) and (rV). Now, construct a proof
as follows.

v,3zA(z),VzA(z) D6  Vz-A(z), JzA(z) D VrA(z)

Vo—A(@), 3 A(@), 7 > 6 (cut)
v,3zA(z) D Vz-A(z) Vz-A(z),3cA(z),yD6 (cut
32A(@), 7D 6 cut)

q.e.d.

Theorem 4.8 (Completeness)
If set(6) is a robust consequence of set(y), then v D & is derivable.

Proof: Let v D 6§ a non derivable sequent. We prove that set(6) is
not a robust consequence of set(y). Note that the order and multi-
plicity of the formulas of v and § is insignificant, because the calcu-
lus LCg contains the rules (IE), (rE), (IC), (rC), (IW) and because
lemma 2.2 holds. ,

17



The proof is based on the concept of deduction chains and it is di-
vided in the following four steps:

1) Definition of a deduction chain

2) Introduction of a robust valuation V

3) Verification of some properties of the valuation V

4) Conclusions

1) Definition of a deduction chain

We define by induction on 4 an infinite sequence of sequents o D do,
1 O 61, ¥2 D b2, ... such that % D §; is not derivable for all 4 € IN.
This sequence is called deduction chain.

8o = 6 and g := v, =6 (—6 denotes the sequence -Aji, ...,mAg, where
6is A1, eeey Ak)

Since v D § is not derivable and since LOg contains the rule (ID),
the sequent 4o D & is not derivable, too.

Let uy,ug,... and 81,82, ... arbitrary enumerations of the free vari-

ables and the terms.
Let ; = Ai, ..., An;. Dependent on Aj, we define i1 O 841 as
follows.

A; =L where L is a negated or unnegated prime formula.

Yit1 = Az, ...,Ani,Al and 51.}.1 = 51'

A; = BAC We define
’7'2+1 = Az""aAm)B;Oa Ay (Dll)

By virtue of the rule (IA), the sequent ;1 D 6; is not derivable.

! L.
i1 = Yitr1s —',B v-C if =B, "10 € Set(’)’z{-i-l)
Vi1 : otherwise

bir1:= &
‘ (D.1.2)
The sequent ;41 D 8;+1 is not derivable. See lemma 4.2 al).

18



A; =BV C We define

Azy ey Apyy By Ay ¢ if Ay, Ay, By A D 6 s
Yig1 = not derivable
Az, ..., An,,C, A1 : otherwise

(D.2.1)
By virtue of the rule (IV), the sequent +;, ; O §; isnot derivable.

Define

Yi41,B,C: if =B, =C € set(v},1)
Y41, C ¢ if-Be set(viy1) and —C & set(viy)
Yo B ¢ I ~C € set(v}y;) and B & set(vly,)
Yiy1 : otherwise

" —
Yi41 T

(D.2.2)
By virtue of the lemma 4.3, the sequent v}, ; D §; is not deriv-
able.

Define
Y1, B A=C: if B,~B,C,~C € set(v!,,)
Yi+1 = " .
Vit1 : otherwise
Oir1 = 6
(D.2.3)

By virtue of lemma 4.2 b1), the sequent ;41 D ;41 is not
derivable.

A; = JzB(z) We define
77?—]—1 = A27 "')A’ni) B(Uk), Al (D?)].)

where k is the least number such that wy does not occur in
Yi O b;.
By virtue of the rule ({3), the sequent +j,; D &; is not derivable.
Define

Yitl = ’Y.:+1,V$U.B(.'L'), B(ul) and 6i+1 = 61:

or
Yit1 1= ’)’,,/;_l_l,B(ul) and 6;+1 = ~B(w) - (D.3.2)

19



where | is the least number such that u; does not occur in

Yip1 D bi ;
Note we can choose 7i+1,0i+1 such that vi41 D 8i+1 is not
derivable. (See lemma 4.7.) Furthermore, ¥i41 2 &; is not

derivable, too.

A; =VzB(z) We define

'72{-{—1 = A27 oeey A’ni’ B(Sk)a Al (D41)
where k is the least number such that B(sg) is not an element
of set(vi).

By virtue of the rule (IV), the sequent Y41 D 6; isnot derivable.
Define
', 3eB(z) : if Vz-B(z) € set(y] )
’Y;il.l = 'YH-I’ ,.’JZ (:)3) . iuve ‘ (SU) s€ (’Yz+1) (D42)
Vi1 : otherwise

‘By virtue of lemma 4.5, the sequent 7j}; D & is not derivable.

Define

Yir1 = Vi1, Vz=B(z), B(w) and biy1 =10

or

Yig1 = Yip, B(w) and Gy = ~B(w) (D.4.3)
where [ is the least number such that u; does not occur in
Vi1 2 b

Note we can choose 7jt1,0;+1 such that v;41 D 41 is not
derivable. (See lemma 4.6.) Furthermore, vi+1 D &; is not
derivable, too.

The definition of the deduction chain yields

Yk D &; is not derivable for all i < k. (%)
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2) Introduction of a robust valuation V

Let IT := U set(vi). Let P an-ary L-relation symbol and 810y 8
L-terms. We define V' as follows.

t f P(s1,...,80) € I and ~P(sy, ..., s,) ¢ 11
V(P(s1,..,8n)) =14 n :if P(sy, ey 8n), TP (81, o0y 8p) € 11

f otherwise

n

Thus, V' is well defined for all £-formulas. (See Definition 3.1)

3) Verification of the following two properties of the valuation V

If Aell, then V(A4) # f (V.1)
IfAcIland V(A) =n, then-A €Tl (V.2)

We prove the properties by simultaneous induction on the structure
of A.

A= P(s1,...,8,): The propositions immediately follow from the
definition of V.

A= —P(s1,...,5n): see above.

A= BAC: Since A is an element of II, it follows by (D.1.1) that
B as well as C' are elements of II.

(V.1): By the induction hypothesis of (V.1), V(B) and V(C) are
not false. Thus, the value of A is not false.

(V.2): Since V(A) = n, it holds V(B) = V(C) = n. By the
induction hypothesis of (V.2), =B and —~C are elements
of II. By (D.1.2), -4 €IL

A= BV C: Since A is an element of II, it follows by (D.2.1) that
B or C is an element of II. Let B € IL

(V.1): By the induction hypothesis of (V.1), V(B) # f. If
V(B) = t then V(A) # f. If V(B) = n then the in-
duction hypothesis of (V.2) yields that —B is an element
of TI. By (D.2.2), C € IL. By the induction hypothesis of
(V.1), V(C) # f. Thus, V(A) # f.
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(V.2):

Let V(A) = n. Thus V(B) = V(C) = n. The induction
hypothesis of (V.2) yields that =B is an element of II. By
(D.2.2), C € II. The induction hypothesis of (V.2) yields
that —C is an element of II. (D.2.3) implies —A € IL

A= 3zB(z): Since A € II, there exists a k € N such that holds
Y = A1y ey Any, and A = Ay By (D.3.1) and (D.3.2), it follows
B(u) € set(vgt1) for a free variable u and B (v) € set(vg+1) for
a free variable v. (D.3.2) implies that either V2B(z) € Vi1 or
bk+1 = ~B(v).

Let VzB(z) € set(Yk+1)-

(V.1):

(V.2):

Since VzB(z) € II and (D.4.1), B(s) € Il for all terms s.
The induction hypothesis of (V.1) yields V(B(s)) # f for
all terms s. Therefore V(A) # f.

Since V(4) = n, V(B(s)) = n for all terms s. Further-
more, there exists j € N such that j >k, v; = A,y Am
and A; = VzB(z). (D.4.3) implies that B(u') € set(v;+1)
for a free variable u' and either Vz—B(z) € set(7yj+1) or
6j+1 = _lB(’LLI).

If Vz—B(z) € II then the proposition holds.

Assume Vz—B(z) ¢ T1, then §;41 = ~B(u'). The prop-
erty (%) yields that 4 D 8541 is not derivable for all > j.
Thus ~B(v') ¢ II. Note that the sequent 7,C D C'is
derivable for any formulas C. But VzB(z) is an element
of II. This means that B(s) € II for all terms s, see
(D.4.1). Contradiction.

Let 6x41 = —B(v). The property (*) yields that v D Ok+1 i
not derivable for all [ > j. Thus —B(v) ¢ IL.

(V.1):

(V.2):

Since B(v) €I, it follows by the induction hypothesis of
(V.1) and (V.2) that V(B(v)) = t. Thus V(A4) # f.
Since V(A) = n, V(B(s)) = n for all terms s. By the
induction hypothesis of (V.2), it follows ~B(v) € II. Con-
tradiction.

A = VzB(z): Since A € Il and (D.4.1), B(s) € II for all terms s.
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(V.1):

(V.2):

By the induction hypothesis of (V.1), V(B(s)) # f for all
terms s. Thus V(4) # f.

Since V(A) = n, V(B(s)) = n for all terms s. From
(D.4.3), it follows either Vz—B(z) is an element of II or
there exists & € IN such that v, = 41,...,4, and 4, = A
and 8p+1 = —B(u) for a free variable u. -

Let Vz—B(z) € I1. By (D.4.2), 3z-B(z) € II. This means
that —A is an element of II.

Assume Vz—-B(z) ¢ II. Thus §g41 = —~B(u). The prop-
erty () yields that the sequent v D 841 is not deriv-
able for all I > k. Thus -B(u) ¢ II. But B(u) € II
and V(B(u)) = n. By the induction hypothesis of (V.2),
-B(u) € I. Contradiction.

4) Conclusions

1. If A € set(y), then A € II. Therefore, V(A) # f.

2. If A € set(8), then A € II. Thus, V(A) # w.

3. There exists a formula A € set(§) where V(A) # n.
Assume V(A) = n for all formulas A € set(6). Therefore, it
holds —A € set(y) for all A € set(6). The property (V.2)
yields that A is an element of II for all A € set(6). Since
set(y;) C set(7y;+1) for all £ € IN, there exists j € IN such that
A € set(y;) for all A € set(6). Note that 6, = § by definition.

The lemmata 2.2 and 2.3 yield 4; D §p is derivable. But the
property () yields ; D & is not derivable. Contradiction.

Thus, set(6) is not a robust consequence of set(7y).

q.e.d.
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5 Comparisons

The robust semantics differs from the well known 3-valued seman-
tics of Botvar, Kleene and Lukasiewicz (see [Av91], [Ep90], [Go89)
or [Ur86]), but there are some relations of course. We limit the
comparison to the propositional semantics.

We can interpret the robust semantics as a counterpart to Bocvar’s
semantics (or Kleene’s weak semantics, respectively). There, the in-
tention of the third truth-value is paradoz. Thus, this value always
succeeds in presence of true and false, in contrast to the robust se-
mantics, where the third truth-value never succeeds.

Furthermore, we can simulate the robust semantics in Lukasiewicz’s
ones. The value of a disjunction in the robust semantics is generated
by the following formula in Lukasiewicz’s semantics:

(AV (B — =B)) A (BV (4 — —A))

Note that negation is interpreted in the same way and that disjunc-
tion together with negation is a base of the connectives in the robust
semantics.

The strongest logic in the family of relevance logics, RMs [RM82]
[Du86], [Fu88], has also a three-valued semantics. Its interpretation
of the implication (A — B) exactly corresponds to the interpretation
of the formula =AV B in the robust logic. (But the interpretation of
conjunction and disjunction correspond to Kleene’s interpretations
of these connectives.) The weakening is also restricted in RMz, but
in different kind. Note the formula A — A A B is a tautology in
RMzs, but A — (B — A) is no tautology in RMs.

A more detailed analysis of these relations could be found in [Ho92].

The most interesting relation is the following: The robust seman-
tics is a special case of Girard’s phase semantics (for linear logic)
[Gi87], [Tr92]. In particular, it is obtained from the multiplicative
connectives by a suitable restriction and Kleene’s strong semantics
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is obtained from the additive connectives by the same restriction.
(The modalities will be discussed later.) In order to see the connec-

tion, we shortly repeat the most important definitions of the phase
semantics:

The language of the propositional linear logic contains the logical
connectives +, +, %, and LI where + corresponds to the multiplica-
tive disjunction, * to the multiplicative conjunction, 1 to the additive
conjunction and U to the additive disjunction.

A phase space P consists in a commutative monoid (P,-,1) and a
subset L of P. P=(P,-1,1)

If G is a subset of P, then its dual G+ is defined as
{peP|Yq(geG—p-qel)}

A fact of P is a subset G of P such that G+ =G.
The following sets are facts: L, 1:= L+, T :=0+, 0:=T+.

We define: G-H:={p-q|p€Gandqec H}
G+ H := (G- -HYH)*
GxH:=(G-H)*t
GNH:=GnNH
GUH = (GUH)

A phase structure S consists in a phase space P and, for each propo-
sitional variable B, a fact S(B) of P. With each formula A we asso-

ciate its interpretation S(A) in a completely straightforward way.
S=(L,S5) ‘

A is walid in S when 1 € S(4).

A is a linear tautology when A is valid in any phase structure S.

Now, we restrict the phase semantics defining L as {1}. We only in-
vestigate phase spaces of the form (P,-,1,{1}). Hence, L =1= {1},
T = P and 0= (. Furthermore, we restrict the range of S as the
set {T,1,0}. Thus, 1 corresponds to the truth-value "neutral”, T
to "true” and 0 to "false”, where true and neutral have to be dis-
tinguished, because 1 is an element of T and L. The connective
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+ corresponds to our "or”, * to our "and” and M corresponds to
Kleene’s ”and”, U to Kleene’s or”.
Hence:

Corollary 5.1 If A is a linear tautology and does not contain addi-
tive connectives, then A is a robust tautology.

Remark: From the same restriction of the phase spaces we also
obtain a three-valued interpretation of the modalities ! and ? (of
linear logic). The truth-value of A4 is defined as neutral if the value
of A is not false, else it is defined as false. The truth-value of 74
exactly corresponds to the value of —!-A.

Note the value of a formula ? A is never false. Hence, 74 is a tautology
for all formulas A. (The colloquial interpretation of 74 is ”A is
possible”. This means that every proposition is possible.)

The following formulas are robust tautologies: !A — A and 1A —!1A
whereas the formula 7!A — A is no tautology.

If A is a tautology, then !A is also a tautology.

A detailed analysis of this extended 3-valued semantics can be found
in [Ho93].
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6 Cut Rule

Note the cut rule is used in the completeness proof. Indeed, the
calculus LCg without the cut rule is not complete w.r.t. the robust
semantics. This means that the cut can not be eliminated. But it is
possible to replace the cut by the following three rules.
vyD-A ~,AVB,BD§
¥, AVBD>6
v D Vax-A(x) v,YzA(z),IzA(z) D6
v,3zA(z) D §
v D dz-A(x)  7,Vr-A(z),VzA(z) D6
v,V A(z) D6
Note that these rules satisfy a "modified” subformula-property and

that there only exists a finite number of premises to a given conclu-
sion.

(DV)

(D3)

(DV)

Lemma 6.1 The cut can not be eliminated in LCg.

Proof: At first, we show that A,-A,-B,AV(BAC) D A,-A,B
is derivable in LCgr. As we can see in lemma 2.3, 4,4 D 4,4 is
derivable. We can derive the sequent A,—A, AV (BAC) D 4,-4
using the rule (IW). 4
Furthermore, every sequent of the form D A, —A can be derived using
the rule (ID). Therefore, by lemma 2.2, the sequent A, B D A,—A, B
is also derivable. Using the rules (W) and (IA) we obtain the sequent
A BANC D A,-A,B. The followmg derivation yields the claimed
proposition:

SBAC,-BV-C  A-AAV(BAC)D A, —~A

(rA)
A-A AV (BAC) D A,'ﬂA,B/\C’,ﬂA/\(‘!BV*‘IC’)‘ (D)
A,~A,AV(BAC) D A,-A,BAC o)

,,
A-A AV (BAC) D =ABAC

(rD)
A,-A, AV (BAC)

D BAC
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A,—~A,AV(BAC)DBAC A BACDA,-A,B
A,-A, AV (BAC)D A -AB
A,—A,-B,AV(BAC)DA,-AB

Assume the sequent is derivable in LCg without the cut rule. By
induction on the length of the derivation we can show that this as-
sumption leads to a contradiction.

q.e.d.

(cut)
aw)

Theorem 6.2 Let LC, the calculus LCR, where the cut is replaced
by the rules (DV), (D3) and (DY). Then LC'y is equivalent to LChg.

Proof: We show that LC, is sound and complete w.r.t. the robust
semantics.

It is easy to prove the new rules are sound.

In order to show that LC/, is complete we modify the completeness
proof of LCg. Note that the lemmata 2.2, 4.2 and 4.5 were proved by
induction on the length of the derivation. To proof these lemmata in
LCY% is simple. The cut rule was used in the proofs of the lemmata
4.3, 4.6 and 4.7. We will see that we need the rule (DV) for lemma,
4.3, the rule (D3) for lemma 4.6 and (DV) for lemma 4.7.

Lemma 4.3: If the sequent v,AV B,-A,B D § is derivable then
¥, AV B,—-A D § is derivable, too.

Proof: The proposition immediately follows from the derivability of
7, AV B,=A D A, the hypothesis and the rule (DV).

Lemma 4.6: The sequent v,VzA(z) D 6 is derivable

if v,VzA(z),Vz-A(z), A(u) O & and v,VzA(z), A(u) D ~A(u) are
derivable, where u is a free variable which does not occur in the
sequent -, Yz A(z) D 6. '

Proof: Construct a proof as follows.

v, Ve A(z), A(u) D —A(u)

1, Ved(2) YauA(e) Aw) D 6 1 VeA@) > A o)
v, VzA(z),Vz-A(z) O 6 v, VzA(z) O Jz-A(z) =)
YV A@) S5 (o)
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Lemma 4.7: The sequent -y, 3zA(z) D § is derivable

if y,3zA(z),VzA(z), A(u) D § and ~, dzA(z), A(u) D —A(u) are
derivable, where u is a free variable which does not occur in the
sequent vy, dzA(z) D 4.

Proof: Construct a proof as follows.

7, 3zA(x), A(u) D —A(u)

v,32A(z),VzA(z), A(u) D § ™ v, 3xA(z) O —Alu) UD)O
v, JcA(z),VzA(z) D 6§ 7, 3zA(z) O Vr-A(r) )
v,3zA(z) D6 (&) ,

°: It is easy to see that the sequent v O §,VzA(z) is derivable if
¥ D 6, A(u) (where the free variable u does not occur in y > ) is
derivable, too.

By virtue of these lemmata the completeness proof of LC% exactly
corresponds to the proof of LCp.
qg.e.d.
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