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THE STABLE PARALLEL SOLUTION OF GENERAL NARROW
BANDED LINEAR SYSTEMS

PETER ARBENZ AND MARKUS HEGLAND

Abstract� We propose a stable algorithm for the parallel solution of banded and
periodically banded linear systems� While most of the known parallel algorithms
are stable only for symmetric positive de�nite or diagonally dominant systems� the
new algorithm incorporates pivoting without sacri�cing e�ciency� The principle
ingredient of the algorithm is a bidiagonal cyclic reduction that admits pivoting�

We report on numerical experiments conducted on various multiprocessor com�
puters�

�� Introduction

Methods will be discussed for the solution of linear systems

Ax � b�����

with n unknowns and a banded matrix A� The system matrix A has upper band�
width ku if �ij � � for j � i� ku and lower bandwidth kl if �ij � � for i � j� kl� If
ku � kl is small compared to n then A is said to be narrow banded� This is the case
which shall be considered here� Frequently occurring problems include bidiagonal
systems �ku � kl � ��	 tridiagonal systems �ku � kl � 
� and systems obtained from
the discretization of 
�dimensional partial di�erential equations �ku � kl �

p
n��

In addition to the ordinary banded cases the algorithms discussed here also apply
to matrices which have additional nonzero elements �ij when i � j � n � kl or
j � i � n � ku� These matrices are periodically banded� For example	 the nonzero
structure of a periodically tridiagonal matrix is

A �

�
��������

� � �
� � �

� � � � � � � � �
� � � � � � � � �

� � �
� � �

�
��������
����
�

Most of the research on parallel solvers for narrow banded systems has been
concentrating on the two cases where A is either symmetric positive de�nite or
diagonally dominant 


	 
�	 
�	 ��	 ��	 
��� In these cases Gaussian elimination
is stable without pivoting� If pivoting has been included e�ciency was lost 
�	 �
��
An alternative to Gaussian elimination with pivoting is QR factorization 

	 
���
Further articles can be found on the closely related block tridiagonal systems 
���

In the case of a wide band	 straightforward �block� Gaussian elimination adapted
to the band structure is to preferred over the algorithm presented here� In 

�	 ���	
this situation is considered for the cases where no pivoting is needed�

�
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The paper is organized as follows� In Section 
 the basic stable solution methods
for linear systems are reviewed	 in particular with respect to rounding errors and
breakdown� In Section � techniques are introduced which enhance the parallelism
and their potential danger for Gaussian elimination is discussed� The algorithms
suggested for the factorization of banded linear systems are Gaussian elimination
with partial pivoting applied to a permuted matrix� Thus they do not	 like some
other algorithms	 relax the pivoting� In Section � the basic step of the parallel
algorithms which is interpreted as a block elimination is discussed� In Section �
we review the classical cyclic �CR� reduction algorithm for tridiagonal diagonally
dominant linear systems� Section � discusses the simpler case of cyclic reduction for
bidiagonal linear systems but includes partial pivoting� �Note that partial pivoting
cannot be included into CR for the tridiagonal linear system without substantially
modifying the algorithm�� In Sections � and � the new algorithm is developed for
parallel banded Gaussian elimination with partial pivoting� It consists of two steps�
A �rst step	 which is discussed in Section � reduces the large banded matrix to a
smaller block bidiagonal system� This step does not involve any communication�
The second step implements a block bidiagonal elimination CR algorithm with par�
tial pivoting� In Section � the parallel speedup of this algorithm compared to the
corresponding one�processor LAPACK subroutine is discussed�


� Basic Methods for the solution of linear systems of equations

Two main methods for the direct solution of general linear systems are imple�
mented in modern software packages like LAPACK 
��� The �rst method is Gauss�
ian elimination with partial pivoting and the second is based on QR factorization�
Other algorithms are used if the matrix A has special properties� Examples are
Cholesky factorization for symmetric positive A and the Bunch�Kaufmann�Parlett
algorithm for symmetric inde�nite matrices� See 
��� for a comprehensive overview
on the direct solution of linear systems of equations� In the following sections the
case of banded linear systems will be considered� The corresponding algorithms use
the fact that many elements of banded matrices are zero and thus do not need to be
neither stored nor processed� The algorithms which will be discussed can be viewed
as special cases of algorithms used to solve general sparse linear systems 
����

In the course of Gaussian elimination with partial pivoting a permutation matrix
P 	 a unit upper triangular matrix L and a lower triangular matrix U are computed
such that

PA � LU��
���

where A is the system matrix� Given this factorization the linear system Ax � b is
solved in two steps� First Ly � Pb is solved by forward elimination and then Ux � y
is solved by back�substitution using the fact that both L and U are triangular�

All the computations are assumed to be done in �oating point arithmetic� Thus
rounding errors have to be taken into account� The precision of the computations
is in�uenced by

� the condition of the matrix A and
� the stability of the algorithm used�

While for a given problem one has no in�uence on the condition of A the choice of a
stable algorithm is essential� For example	 if no pivoting is used very large rounding



STABLE PARALLEL SOLUTION OF NARROW BANDED SYSTEMS �

errors can occur and	 in some cases	 the LU factorization does not even exist	 a
fact which is termed break�down� Breakdown can happen for perfectly conditioned
matrices and is by no means unusual� An example of a matrix which does not have
an LU�factorization is

A �

�
� �
� �

�
��
�
�

The e�ect of rounding shall now be discussed in more detail� First	 assume the case
of �ideal arithmetic�	 i�e�	 all the computations can be done with no rounding errors
but the initial data A and b are rounded� Thus	 the data used in the computations
is A � E and b � e where the elements of E and e are all of size of the machine
precision � times the exact values� As a consequence	 �near�by� equations

�A� E��x � b� e�
���

are solved in place of Ax � b� Now if E and e are �small enough� then one gets 
��	
p����

k�x� xk
kxk � ��A�

	kek
kbk �

kEk
kAk



�O�����
���

for the relative error� Here k � k denotes any vector norm and ��A� � kAkkA��k is
the corresponding condition number of A�

The e�ect of rounding on the elimination process is analyzed by backward error

analysis� It can be seen 
��� that the computed solution �x of Ax � b using Gaussian
elimination with partial pivoting and �oating point arithmetic satis�es in exact
arithmetic the equation

�A� E��x � b�
���

where E is bounded by

kEk� � n��kAk� � �nk �Uk�� �O������
���

A commonly used bound which does not involve �U explicitly is

kEk� � �n��kAk� ��O�����
���

where the growth factor � may depend on A �and n�� Using this bound and esti�
mate �
��� one gets

k�x� xk
kxk � ���A��n�� � �O������
���

It is known that � � 
n� Wilkinson 
��� has given an example of a matrixA where
� � 
n occurs but it is often thought that this example is contrived and fast growth
of � is not seen in practice� However	 it will be shown later that there are classes of
practically relevant problems which do show an exponential growth of �	 in particular
for parallel algorithms� Thus	 if Gaussian elimination with partial pivoting is used	
the size of the elements of U should be monitored during factorization as it could be
necessary to abandon the computations because of problems with rounding errors�

An alternative to Gaussian elimination is based on QR factorization and uses
Householder re�ectors� It involves computation of an orthogonal matrixQ �possibly
in factorized form� and an upper triangular matrix R such that

A � QR�
���
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holds� Given this factorization the solution of Ax � b is obtained from the system

Rx � QTb�
����

which is solved by back�substitution� It is shown in 

�	 p��
� that if the factorization
is done in �oating point arithmetic with precision � the so obtained solution �x solves
the equation

�A� E��x � b� e��
����

and the matrix E and the vector e are bounded by

kEkF � ��n� � ��n�kAkF ��O������
��
�

kek � ��n� � ��n�kbk ��O������
����

Instead of the maximum norm the Frobenius norm k � kF is used here� While the
Frobenius norm can be much larger than the maximumnorm these bounds only have
a factor n� and	 more importantly	 they do not involve a �potentially exponentially
increasing� growth factor �� This is why QR factorization is thought to be much
more stable than Gaussian elimination even if partial pivoting is used� The trade�o�
are the higher factorization costs�

With the earlier bound in �
��� one gets from this an estimate for the error of the
�oating point solution in the 
�norm�

k�x� xk�
kxk� � ���A���n� � ��n��� �

kAkF
kAk� � ��O������
����

This bound and	 in fact	 this algorithm is only useful for well conditioned systems�
In the case of ill�conditioned systems and	 in particular	 singular systems	 column
pivoting has to be used 
����

These methods have been implemented in parallel if the bandwidth of A is large
enough �see	 e�g�	 
���� However	 in this paper narrow banded matrices are consid�
ered� For narrow banded matrices the amount of parallelism of both LU factorization
and QR factorization is too small for massively parallel computers and both the LU
factorization and QR factorization are essentially recursive� Many alternatives have
been suggested to solve banded linear systems in parallel	 see 
�� for a review of some
of them� However	 the applicability of these parallel solvers is usually restricted to
the case of positive de�nite and diagonally dominant matrices� In particular	 they
can su�er from breakdown if applied to a general linear system� It is probably less
well known that they may also show some severe instabilities relating to exponential
growth of the elements of the factor matrices even for practically relevant problems
�see Section ��� This is in contrast to the methods in LAPACK which do not break
down and in the case of Gaussian elimination rarely are unstable	 in the case of QR
factorization never are unstable�

Alternative algorithms with similar stability properties as ours have been sug�
gested by 
��	 ��	 �
	 �
��

�� Factorizations of permuted systems

In the following new methods will be described which have the same basic prop�
erties as the methods implemented in LAPACK but in addition allow an e�cient
implementation on MIMD distributed memory parallel computers� The key idea of
all these methods is to modify the order of elimination �i�e�	 the numbering of the
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unknowns� in order to increase parallelism� Thus	 instead of solving Ax � b	 an
equivalent system A�x� � b� is solved such that Gaussian elimination with partial
pivoting or QR factorization displays a high degree of parallelism� The choices of
the equivalent system involves permutations and typically

A� � AS� b� � b������

where S is a permutation matrix� In the following suggestions how to choose S
will be made� But �rst	 the e�ect of permutations on the factorization methods is
discussed�

Thus	 for the parallel algorithms	 the following factorization replaces the ordinary
LU factorization of equation �
����

PAS � LU����
�

This corresponds to Gaussian elimination with partial pivoting where P�L and U
are as before� Factorizations of this kind have earlier been used to decrease �ll�in
for sparse factorization 
���� Another instance of this kind of factorization occurs
with complete pivoting� Application of complete pivoting can reduce the growth
factor substantially� So	 in a sense	 the freedom one has in choosing S can either be
used to get faster algorithms as in the case of �ll�reducing and parallelism�increasing
reorderings or to enhance stability as in the case of complete pivoting� These two
goals seem to contradict each other	 however	 compromises are feasible� Using the
above factorization the solution of Ax � b is obtained in three steps� First Lu � b
is solved by forward elimination	 then Uz � y is solved by back�substitution and
�nally the permutation x � Sz is performed�

The permutation does not change the conditioning of the problem	 i�e�	 the system
A�x� � b� has the same condition as Ax � b if A� � AS� However	 and this might be
less well�known	 it can have a large e�ect on the growth factor � even for practically
important problems� An example can be derived from an example given in 
��� and
shall be discussed in the following�

Assume that one wishes to solve the initial value problem

y��t� � My�t�� y��� � y�� M �

���	� �
� ��	�

�
������

One way of solving this is with multiple shooting 

��� If an exact integrator is used
on each of the subintervals one obtains a linear system Ax � b with a matrix A of
the form

A �

�
�����

I
�eMh I

�eMh I
� � � � � �

�eMh I

�
����� ������

Of course	 in practice	 the integrator on the subintervals would not be exact� How�
ever	 the matrix elements would be arbitrarily close to the ones in the example
above	 with eMh replaced by a rational approximation�
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In multistep methods h is chosen to be small� In particular	 assume that h is such
that

eMh � I �Mh�O�h�� �

�
�� h	� h

h � � h	�

�
�O�h�������

has only elements which are less than �� Then the application of Gaussian elimina�
tion with partial pivoting yields P � I	 L � A and U � I�

Now chose S such that the �rst block column is moved to the end� �The per�
mutations chosen for the parallel algorithms are very similar and typically move
intermediate blocks to the end�� Then

AS �

�
�����

� I
I � �eMh

�eMh I �
� � � � � � � � �

�eMh I �

�
����� ������

Because of the restrictions on h one gets P � ST in this case for Gaussian elimination
with partial pivoting and so

STAS �

�
�����

I �eMh

�eMh I
� � � � � �

�eMh I
� I

�
�����

�

�
�����

I
�eMh I

� � � � � �

�eMh I
� I

�
�����

�
�����
I �eMh

I �e�Mh

� � �
���

I �e�n���Mh

I

�
����� � LU�

While h can be very small	 n can be very large independently of h� Thus	 the
factor U and	 by consequence	 the rounding errors can be arbitrarily large� The
growth factor will be of the order of en��h where 
� is the largest eigenvalue of M �
While in the case of parallel execution the growth factor is some root of this it
can still be extremely large	 in particular for a small number of processors� So	 in
this case	 it is advisable to use a more stable method and Wright 
��� suggests to
use QR factorization� As this is usually at least twice as expensive	 it is suggested
that typically LU factorization with partial pivoting should be tried and the growth
factor should be monitored� If this factor turns out to be too large then one should
switch to QR factorization�

The QR factorization related to the permuted problem is

AS � QR������

Once this factorization is established	 Ax � b is solved by �rst solving Rz � QTb and
then permuting such that x � STz� Note that for QR factorization the permutation
S does have no in�uence on the error bounds in equation �
����� Further note that
this method is not suitable for singular or ill�conditioned A as in this case column
pivoting is required� This would interfere with the permutation S and might destroy
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parallelism� For singular matrices di�erent methods are required� in contrast	 QR
factorization is suggested here as a very stable method for parallel solvers for very
well conditioned systems�

�� Block elimination schemes

Given factorizations ���
� and ����� the linear system Ax � b is readily solved
using permutations and solvers for triangular and orthogonal systems� Of course
the factorizations have to be such that not only can they be computed in parallel
but also the permutations and solution of triangular and orthogonal systems need to
be computed in parallel as well	 and	 in particular	 scalability has to be guaranteed�
Note that the choice of S is not unique	 and	 in fact	 by varying S di�erent algorithms
are obtained� In the previous section it was discussed what e�ect such permutations
can have on the stability of the overall algorithm�

In practice	 the permutations S are given as a sequence of simple permutations
�like the odd�even sort permutation�� Thus

S � S�S� � � �St������

Corresponding to this representation of S the algorithm proceeds in t parallel steps�
Each of these steps eliminates a consecutive set of unknowns� An elimination step
which corresponds to the elimination of a set of unknowns will be called block elim�

ination� It has also been called reduction earlier�
Consider block elimination relating to Gaussian elimination with partial pivoting�

This generates a factorization of the form

PAS �

�
L
F I

� �
U E

A���

�
����
�

This is the part of the LU factorization corresponding to the elimination of a �rst
set of unknowns� The matrix L is unit lower triangular	 U is upper triangular	 I
is the identity and E and F are general rectangular matrices� The matrix A��� is
often called Schur complement or matrix of the reduced system� As before	 P is the
permutation matrix which is required for partial pivoting and S is the permutation
matrix used to increase the amount of parallelism�

A block elimination step using QR factorization corresponds to the factorization

AS � Q�

�
R� G�

A�

�
������

In this case Q� is orthogonal	 R� is upper triangular and G� is a general matrix� The
matrix A� is in general not the same as the matrix A��� of the Gaussian elimination
case�

Similar ideas are used in the case of Cholesky factorization and LU factorization
for diagonally dominant linear systems� In the case of Cholesky factorization one
gets

STAS �

�
UT

ET I

� �
U E

A���

�
�����

and in the case of LU factorization

STAS �

�
L
F I

� �
U E

A���

�
������
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Algorithms based on these factorizations include divide and conquer but also cyclic
reduction and generalizations thereof� The main di�erence between the new algo�
rithms for LU with partial pivoting and QR factorization and the older ones for
Cholesky and LU factorization without pivoting is that the older algorithms use
symmetric permutations of the form A �� STAS to gain more parallelism whereas
the new algorithms use one�sided permutations of the form A �� AS�

In the next two sections the simplest cases of banded linear systems are discussed�

�� Cyclic reduction for tridiagonal diagonally dominant systems

This section gives a review on a historic idea and is intended as a motivation
for the following� Cyclic reduction �CR� has been introduced ���� by Hockney in
collaboration with Golub 
��	 �� and by Buneman 
��� Many authors have discussed
variations and implementations of it	 mainly in connection with fast Poisson solvers�

CR has been used to solve systems with column diagonally dominant tridiagonal
matrices

A �

�
�����
�� ��
�� �� ��

� � � � � � � � �

�n�� �n�� �n��
�n�� �n��

�
������ where j�kj 	 j�k��j� j�k��j������

The block elimination steps of cyclic reduction eliminate �rst half of all the un�
knowns	 then half of the remaining unknowns etc� The permutation S used for one
block elimination step is the odd�even sort permutation	 with the property



�� 
�� 
�� 
�� � � � �S � 

�� 
�� � � � j 
�� 
�� � � � ����
�

for any vector 

�� 
�� 
�� 
�� � � � ��
The symmetrically permuted matrix thus has the form

STAS �

�
���������

��

��

� � �

��
�� ��

� � � � � �

�� ��

��
� � �
� � �

��

��

� � �

�
���������
������

The two diagonal blocks of STAS are diagonal	 the two o��diagonal blocks are
bidiagonal matrices�

From this a partial LU factorization is obtained as

STAS �

�
���������

�
� � �

�

�
� � �

�

� ��


�
� � �
� � �

�
� � �

�

�
���������

�
���������

��

��

� � �

��
�� ��

� � � � � �

�
� � �

�

�
���
� �

���
�

�
���
� �

���
�

� � �
� � � � � �

�
���������
������
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This is a block LU factorization as the upper left block of the left factor is equal
to I� Furthermore	 the Schur complement of this block is again tridiagonal� The
factorization generalizes to block tridiagonal and banded systems� However existence
of all these factorizations is not guaranteed in general� only for special cases like
symmetric positive de�nite or diagonally dominant matrices they are known to exist�

The components of these factors are computed as


�i�� � ��i��	��i�
��i�� � ��i��	��i���

�
���
i � ���i����i���
�
���
i � �
�i����i�

�
���
i � ��i�� � 
�i����i � ��i����i���

�����

�����

i � �� � � � � bn
�
c��������

These formulas are directly obtained from the factorization� Consequently	 �n �
O��� operations are required to complete the factorization� Note that in ����� the
computations for di�erent indices i are independent of each other� To store the
factorization computed by CR �n memory locations are needed� Here	 we assume
that 
i and �i overwrite �i and �i	 respectively�

The LU factorization of the unpermuted matrix A � LU is given by

�� � ���

i � �i	�i���
�i � �i � 
i�i���

�
i � �� � � � � n���

Here	 only ��n� �� operations are required� However	 this is essentially a recursion�
With �i and 
i overwriting �i and �i	 respectively	 the LU factorization needs only
�n memory locations�

The factorization by cyclic reduction requires about 
�� times as many operations
as the ordinary LU factorization� It is said that cyclic reduction has a redundancy

of 
�� 
���� The number of �oating point operations however is a poor measure
of performance for parallel computers as the level of parallelism is not taken into
account� Cyclic reduction in particular was introduced in order to increase the level
of parallelism to achieve better performance on parallel computers� The parallel

complexity topt of an algorithm is the minimal time it takes to run this algorithm
on a parallel computer with an arbitrary number of processors 
���� No matter how
many processors are available	 the algorithm will never run in a shorter time than
topt� The ratio of topt and the complexity of the �best� sequential algorithm is called
parallel speedup sopt�

For the analysis of cyclic reduction it will be assumed that n and the number
of processors p are powers of 
 and that all the four �oating point operations take
the same amount of time tF� First	 the parallel speedup shall be estimated with�
out taking communication cost into account	 i�e�	 for shared memory computers�
The bound which is obtained in this way is fundamental� Speedups beyond it are
impossible�

It can be seen from ����� that in one sweep of CR �rst all the n	
 divisions and
then all 
n multiplications can be done in parallel� Finally	 two time units are
needed for twice n	
 synchronous subtractions� Thus	 if 
n processors are available	
the parallel complexity of CR is

topt � � log��n�tF������
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Comparing with LU factorization	 the best sequential algorithm	 the parallel speedup
becomes

sopt � �n	� log��n�������

So	 on an arbitrary large parallel computer a problem of size n � ��
� cannot be
solved more than ���� times faster than on a single processor of this computer� The
optimal speedup is achieved with 
��� processors� While the parallel speedup is the
optimum with respect to the number of processors it does depend on the problem
size� If	 for example	 n � 
�� � �� ���� ��� then the parallel speedup is almost
��	����

In practice	 most parallel computers with a large number of processors have dis�
tributed memories� The time to access n non�local data items is commonly modelled
in the form � � �n where � is the communication startup time and � is the recip�
rocal of the bandwidth of the communication network� We set � � �tF where �
on a typical multicomputer is at least ����� As � is much smaller than �tF the
communication of short messages is completely dominated by the startup time�

If communication is taken into account the execution time of cyclic reduction does
not decrease monotonically with the number p of processors� There is a number p
which yields the lowest parallel complexity and thus highest speedup� If p processors
are available then the �rst log��n	p� steps of CR do not require any communication�
The time for these steps is approximately ��n � p�	p tF� The last log��p� steps do
require communication� If we assume that communication completely dominates
the computation the time for these steps is approximately � log��p� tF� Thus	 the
total time is

t 
 ���n � p�	p � � log��p�� tF������

t attains its minimum at p � � log�
�n	� 
 ���n	�� Thus	 the parallel complexity
is

topt 
 ��	log�
���� � log�� log�
�n	���tF 
 ���� � log�����n	��� �tF������

Therefore	 the parallel speedup for distributed memory computers becomes

sopt 
 �n	������ � log�����n	���� �������

In the case of � � ���� and n � ��
� one obtains a parallel �speedup� sopt 
 ����
with p � �� The high latency prohibits a speedup for such a small problem size� In
the case of n � 
�� the upper bound for speedup	 i�e� the parallel speedup	 is around


�� It is obtained with ���
 processors� So	 the parallel speedup drops by about
a factor of ��� when moving from a shared memory multiprocessor to a distributed
memory multicomputer�

Thus	 it can be concluded that parallel processing has some hard limitations	
in particular if communication is involved� Nevertheless	 it is possible to achieve
good speedups	 i�e� speedups close to the number of processors divided by the
redundancy	 if the problem size is large enough and the number of processors is
not too large� This adaptation of problem size to processor number is related to
scalability� Algorithms are called scalable	 if for any number of processors there are
problem sizes permitting good speedups� In other words	 algorithms are scalable if
the ration between speedup and processor number �e�ciency� can be held �xed as
the processor number increases if only the problem size grows su�ciently quickly 
����
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For example	 equation ����� implies that the speedup s � ��ntF�	t obtained when
solving a problem of size n � 
�� with p � �� processors is very close to �p	� � �	 the
limit given by the redundancy� Because of the increasing in�uence of communication	
for p � �
� one only gets a speedup of 
� which is half of �p	�� So	 a problem of
size n � 
�� has to be considered small for a computer with �
� processors�

Similar remarks hold for Cholesky factorization vs� symmetric CR� It will be
shown that a speci�c variant of cyclic reduction can be developed for tridiagonal
systems and Gaussian elimination with partial pivoting or QR factorization� As
the factorizations are not as straight�forward as in the case of LU or Cholesky
factorization the simpler case of bidiagonal systems will be treated �rst�

�� Cyclic reduction for bidiagonal systems using LU factorization

with partial pivoting

In the following a parallel algorithm for the factorization of lower bidiagonal sys�
tems with periodic nonzero structure is established� The same algorithm can be
used to solve ordinary lower bidiagonal systems and	 with a minor modi�cation	 to
solve upper bidiagonal systems� A review of parallel solvers for bidiagonal systems
can be found in 

���

Ordinary bidiagonal systems are just linear recursions which could be solved by
substitution� This has two disadvantages� First	 the recursion could be unstable
and lead to incorrect results	 and second	 the recursive nature does inhibit parallel
execution� The instability of the recursion is addressed by partial pivoting� As in the
case of tridiagonal systems column permutations are used to enhance parallelism�

The matrix to be factored is of the form

A �

�
���
�� ��
�� ��

� � � � � �
�n�� �n��

�
��� ������

The permutation S used for the cyclic reduction algorithm is the same as in the
tridiagonal case	 i�e�	 odd�even sort� Applying S to A from the right	 one gets

AS �

�
�������

��

��
��

��
��

� � �

��
��

��
��

��
� � �

�
�������
����
�

This permutation causes the even unknowns to be eliminated �rst� In this case
the pivoting of the �rst block elimination step is described by exponents �k � f�� �g
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in the factorization

����� ST

�
������

�
� �
� �

���
�
� �
� �

���
� � �

�
������AS �

�
��������

�
� � �

�

�
� � �

�

�


�
� � �

�
� � �

�

�
��������

�
���������

��
��

� � �

�� ��
�� ��

� � � � � �

�
� � �

�

�
���
� �

���
�

�
���
� �

���
�
� � � � � �

�
���������
�

All the components of this factorization are obtained from the n	
 independent
order 
 problems� Each problem corresponds to a factorization of a 
 � � matrix
using Gaussian elimination with partial pivoting��

� �
� �

��i � ��i � ��i
��i�� ��i�� �

�
�

�
� �

i �

� �
�i �i �i
� �

���
i �

���
i

�
� � � i � n	
������

From this the formulas for the coe�cients are easily obtained� The actual operations
depend on the exponent �i	 i�e�	 on the pivoting� In any case	 computation is only

required for the 
i	 the �
���
i and the �

���
i � In the case without row interchanges

��i � �� a division is needed for 
i	 no operation for �
���
i 	 and a multiplication for

�
���
i � In the case of �i � �	 i�e� when rows are interchanged	 
i requires a division	 �

���
i

a multiplication while ����
i is free� So	 irrespective of pivoting	 the factorization �����

costs n	
 multiplications and n	
 divisions� Note that the Schur complement A���

is an n	
 by n	
 �periodic� bidiagonal matrix and so the scheme can be applied
recursively� The overall complexity is thus 
n �oating point operations�

The LU factorization of the unpermuted A in ����� costs the same number of
�oating point operations as the last column �lls up	 unless �� � �� Thus	 there are
no redundant computations and the sequential execution of both algorithms lasts

t � 
ntF ������

Both	 the sequential and parallel algorithm uses �n memory locations to store the
factorization�

The parallel complexity is obtained by a similar analysis as in the previous section�
While all the order 
 factorizations can be executed simultaneously	 
i has to be

computed before �
���
i or �

���
i � Therefore	 under the same simplifying assumptions as

earlier	 the parallel complexity is

topt � log��n�
tF�����

at the expense of only n	
 processors� The parallel speedup is

sopt � n	 log��n�������
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This is up to a factor �	� the same as for tridiagonal CR	 cf� ������ Thus	 similar
remarks hold� However	 only a quarter of the processors is needed to get the same
speedup�

If the cost of communication is included in the considerations we have

t 
 �
�n� p�	p �m log��p��tF ������

The minimum is in p � 
 log�
�n	m 
 ���n	m and so the parallel complexity is

topt � m���� � log�����n	m��tF�����

and the parallel speedup is

sopt � 
n	�m�� � log��
n	m����������

In the case of n � ��
� and m � ���� one gets a parallel speedup sopt � ���� with 

processors� In the case n � 
�� on gets sopt 
 ����� with p � 
�
�� This is less than
for the tridiagonal CR because of the higher ratio of communication to computation
volume�

The scalability is very similar to the case of CR for tridiagonal systems� For
example	 if p � �� and n � 
�� one gets a speedup very close to p�

Very similar formulas can be obtained if in ����� QR factorization with Givens
rotations is used instead of Gaussian elimination� In this case one gets a parallel
factorization of the form

AS �

�
�����

�
�� ��

��� ��

�
�

�� ��
��� ��

�
� � �

�
�����S

�
���������

��
��

� � �

��
�� ��

� � �
� � �

�
� � �

�

�
���
� �

���
�

�
���
� �

���
�
� � � � � �

�
���������
�

������

The components are again computed from n	
 independent problems	

�
��i � ��i
��i�� ��i�� �

�
�

�
�i ��i
�i �i

� �
�i �i �i
� �

���
i �

���
i

�
� i � �� � � � � n	
 � ��

����
�

The �rst factor on the right�hand side is orthogonal and so one has

��i � ��i � ��

Similar remarks as before apply� In particular	 the reduced system is again periodi�
cally lower bidiagonal� The overall complexity of this QR factorization is �n �ops	
i�e� ��� times as much as Gaussian elimination�

These factorizations are generalized to block bidiagonal systems� Note that by
applying a right shift every banded matrix is transformed into a periodically lower
banded matrix� If this matrix is partitioned one automatically obtains a block
bidiagonal matrix such that the block bidiagonal cyclic reduction idea can be applied
to this matrix�
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Figure ���� Partitioning of a banded matrix A

�� The first block elimination step for parallel band solvers

The parallel band solver discussed in the sequel consists of a succession of steps
which can be interpreted as LU factorizations of the form de�ned in ���
�� While
the second and later steps all factorize block bidiagonal matrices the �rst step is
di�erent in that it takes into account the banded structure �which is lost in the later
steps��

The parallel factorizations are largely simpli�ed if A is in standard form which
shall mean that ku � �	 i�e�	 that A is a lower banded matrix� For any periodically
banded matrix a circular shift S� is found such that S�A �or	 equivalently	 AS�� is in
standard form� As a consequence	 for every banded matrix there is a permutation
S� such that S�A and AS� are in standard form� Note that the standard form is not
uniquely de�ned� For an ordinary tridiagonal matrix	 e�g�	 it can be�

��������

� � �
� �
� � �

� � � � � � � � �
� � � � � � � � �

� � �

�
��������
� S�A

or �
��������

� �
� � �
� � �

� � � � � � � � �
� � � � � � �

� � �

�
��������
� AS��

In general	 if A is in standard form then so is STAS for any cyclic shift S� In the
following it will be assumed that the banded matrix is in standard form with lower
bandwidth k� This is the standard form best suited for both LU factorization with
partial pivoting and QR factorization�
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active columns

AS  = 

Figure ���� Permutation AS of matrix A from Figure ���

The permutation S and the block elimination are chosen based on a distribution
of the rows of A to p processors of a MIMD computer with distributed memory�
Assume	 for simplicity of illustration	 that n � pm� Then the set of rows is parti�
tioned into p equally sized sets� The columns in turn are partitioned in blocks of
size �m � k� k�m� k� k�m� k� � � � �� In the case p�� this leads to a blocking of A
as displayed in Fig� ����

In general the partitioned matrix has the following basic structure	

A �

�
�����
A�� A�� A�p

A�� A�� A��

A�� A�� A��

� � �
Ap�p�� App Ap�p��

�
�����������

Note in particular that this is not a periodic block tridiagonal structure� The blocks
Ai�i�� and Ai�i�� are both m by k matrices and the blocks Ai�i are m by m�k
matrices� The block columns of width k are called separators� Here	 the width of
the separators equals the bandwidth k� In the case of banded diagonally dominant or
symmetric positive de�nite matrices it su�ces to chose the width of the separators
equal to the larger of the half�bandwidths kl and ku 

�	 ��� As the bandwidth
is often twice the half�bandwidth	 our approach is called double�width separator
approach 
�	 
���

The block elimination scheme will eliminate the unknowns corresponding to the
columns in the blocks of size m by m � k� In the case p � � this corresponds to
a permutation S the e�ect of which is displayed in Fig� ��
	 see also ���
�� The
active columns are the columns corresponding to the unknowns eliminated in the
block elimination step� The important point to note here is that all columns in
the active set have nonzero elements only in one partition	 i�e�	 on one processor�
Furthermore all the rows corresponding to these nonzero elements are on the same
processor as well as the partitioning is row�based� Thus	 the block elimination step
corresponding to the active set consists of p independent block eliminations	 one for
each processor� This holds for both Gaussian elimination with partial pivoting and
QR factorization�
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In the �rst step of Gaussian elimination the diagonal m by m�k blocks are
factorized as

PiAii �

	
Li �
Fi Ik�k


	
Ui

�



�

	
Li

Fi



Ui� i � �� � � � � p����
�

where Ui and Li are triangular m�k by m�k matrices and Fi is a k by m�k matrix�
The o��diagonal blocks are then multiplied with Pi and the inverse of the �L�factor�
of Aii to get	

Ei�i��

A
���
i�i��



��

	
Li

Fi I



��

PiAi�i�� �

	
L��i

�FiL
��
i I



PiAi�i��������

	
Ei�i

A
���
i�i



��

	
Li

Fi I



��

PiAi�i�� �

	
L��i

�FiL
��
i I



PiAi�i��������

From this	 the matrices P 	 L	 F and U of equation ���
� are block diagonal matrices
with diagonal blocks Pi	 Li	 Fi	 and Ui	 respectively� The other two matrices in
equation ���
� are

E �

�
���
E�� E�p

E�� E��

� � � � � �
Ep�p�� Epp

�
��������

and

A��� �

�
����
A
���
�� A

���
�p

A
���
�� A

���
��
� � � � � �

A
���
p�p�� A

���
pp

�
���������

Corresponding formulas are valid for the QR factorization where
�
Li

Fi I

�
is replaced

by an orthogonal matrix Qi�
In a problem of order n � pm	 the size of the active set of columns is p�m�k�

whereas the size of the inactive set of columns is pk� The algorithm runs on p
processors in parallel� Thus	 p � n	m is large if m is chosen small� However	 the
number pk of inactive columns must be smaller than n in order that there is work
to do at all� So	 one has the constraint

m � k������

Thus	 for this algorithm the maximal number of processors which can be exploited
occurs for m � k � �	 i�e�	 the maximal amount of parallelism is

pmax �
n

k � �
������

If the parallelism is maximal	 there are only p � pmax columns in the active set	 one
for each processor� For bidiagonal systems we have pmax � n	
 which corresponds
to the cyclic reduction algorithm of section �� One could generalize the de�nition
of cyclic reduction to say that it is the method which exploits the maximal amount
of parallelism at each step� Note	 however	 that for tridiagonal systems pmax � n	��
This is less than pmax � n	
 which is obtained for Cholesky factorization but this is
the price to be paid for the increased stability by pivoting�
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Figure ���� Matrices involved in a block elimination step

In each step of Gaussian elimination up to k nonzero o��diagonal elements of A are
zeroed� This leads to up to k nonzero o��diagonal elements in each column of Li and
thus in L� While these nonzero elements are located in consecutive rows when they
are generated	 permutations required in later elimination steps can totally destroy
this pattern and nothing can be said in general about the position of the k nonzero
elements of any column of Li� A similar remark holds for Fi�

In the case of QR factorization the factors Qi will in general have a dense upper
triangular part and a nonzero band of width k below the diagonal� Usually Li or
Qi	 respectively	 are stored in factored form� The nonzero structure of Li is stored
implicitly in the permutations 
���

The nonzero structure of the other factors is more �predictable�� After permuta�
tion with S and Gaussian elimination with partial pivoting one obtains a factoriza�
tion of the form given in ���
�� The �U�factor� is of the form

�
U E

A���

�
�����

An upper bound for the nonzero structure of U 	 E and A��� is given in Fig� ��� for
the case p � �� In particular	 A��� is periodic block bidiagonal with k by k blocks�
Thus	 after the �rst block elimination step of the banded solver one has to use a
block bidiagonal solver for the remaining blocks elimination steps� Note that the
upper bounds for the nonzero structure is just the nonzero structure of the matrices
which appear in the QR factorization�

Because the amount of partial pivoting in not known a priori	 only bounds on
the number of �oating point operations are obtainable in general in advance of the
actual numerical computations� In the unlikely event where no pivoting is required
the factorization of the blocks Aii may not need any �oating point operations at
all� In the worst case the frontal matrix is always �up to the few last elimination
steps� of size k by k� Therefore at most m�
k � ���k � �� �oating point operations
are needed for the factorization of Aii� An upper bound for the operations required
to compute the o��diagonal blocks of E is again m�
k � ���k � ��� Thus	 an upper
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bound for the parallel complexity of this step is given by

tpar � 
m�
k � ���k � ��tF �������

Notice that there is no redundancy introduced by solving the periodically banded
linear system in parallel as the last k columns �ll up in the serial algorithm as well�
As there is no communication required the speedup of this part can be seen to be
p� The parallel bottleneck is in the second and later steps which will be discussed
in the next section� However	 for large enough matrices the main portion of the
�oating point operations is done in the �rst step�

The memory requirements of the serial as well as the parallel algorithm are 
kn
memory locations�

Remark� In this section we presented a parallel band solver suitable for period�
ically banded matrices� Ordinary banded matrices	 i�e� matrices without nonzeros
elements in the upper�right and lower�left corner	 are forced into this form� It may
appear that unnecessary work is introduced in this way� This is however not the case
as pivoting is chasing the nonzero elements down the separator again� A slightly
di�erent algorithm is obtained	 if it is taken into account that the separator doesn�t
�ll up� Essentially the right�most separator is omitted 
��� So	 the last processor has
less operations to perform� As the work of the other processors stays the same	 there
is no gain in the parallel execution time� In the sequential algorithm however	 the
work is halved� Therefore	 the double width separator algorithm has redundancy 

if applied to ordinary banded matrices�

�� The parallel block bidiagonal solver

During the elimination step discussed in the previous section	 the block�bidiagonal
matrix

A��� �

�
�����
A
���
��� A

���
��p

A
���
���

� � �
� � � � � �

A
���
p�p�� A

���
p�p

�
����������

was produced �see Figure ����� The square blocksA���
i�j all have order k	 where k is the

bandwidth of A� This �rst block elimination step did not involve any communication
between processors� In the remaining steps	 however	 communication is required in
order to further reduce the matrix�

The parallel block bidiagonal elimination to solve the reduced system A���x��� �
y��� proceeds similarly as the scalar algorithm described in section �� We discuss an
implementation of the blocked algorithm that is scalable with respect to memory
requirements� For simplicity of presentation we assume that p � 
q�

After the �rst block elimination step	 the i�th block row of A��� and the corre�
sponding section of the right hand side y��� reside in the memory of processor i� To
start with the parallel block bidiagonal elimination processors i�� and i	 i even	
exchange their data� Both	 processor i�� and i	 form the matrix�

A
���
i���i�� � A

���
i���i�� y

���
i��

A
���
i�i�� A

���
i�i � y

���
i

�
� i � 
� �� � � � � p����
�
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and perform k steps of Gaussian elimination with partial pivoting�	

P
���
i��

�
A
���
i���i�� � A

���
i���i�� y

���
i��

A
���
i�i�� A

���
i�i � y

���
i

�

�

�
L
���
i�� �

F
���
i�� Ik

� �
U
���
i�� D

���
i�� E

���
i�� z

���
i��

� A
���
i���i�� A

���
i���i���� y

���
i��

�
�

�����

We proceed similarly if there are several right hand sides� In the sequel	 processors
i�� and i play di�erent roles� Processor i continues to participate at the forward

elimination with the matrices A���
i���i�� and A

���
i���i���� and the updated right hand side

y
���
i��� Processor i�� waits until it receives the two sections xi and xi�� of the solution

vector from processor i which enables it to calculate xi��� Here	 we tacitly identify
x� with xp�

This procedure is executed recursively until	 after q � � � log��p� � � steps	 only
the two processors p	
 and p are left to solve the 
k � 
k system�

A
�q�
��� A

�q�
���

A
�q�
��� A

�q�
���

� �
xp��
xp

�
�

�
y
�q�
�

y
�q�
�

�
�����

by Gaussian elimination with partial pivoting� We write the factorization of the
matrix in ����� as

P
�q�
�

�
A
�q�
��� A

�q�
���

A
�q�
��� A

�q�
���

�
� L

�q�
� U

�q�
� ������

The complete block cyclic reduction is given in Algorithm � on page 
�� The last loop
in this algorithm is necessary to guarantee that all processors have the information
needed to continue with the local backward substitution� Although there are p	
l��

processors working on level l	 the degree of parallelism is only p	
l as always two
processors work redundantly� Notice that all information of the factorization is still
available to solve the block�bidiagonal system with further right hand sides�

After the parallel solution of the periodically block�bidiagonal system	 processor
i has xi and xi�� stored in its memory� These are the components corresponding
to the E�blocks in the i�th block row of the overall system which are precisely the
information needed to perform the backward substitution with the matrix U in ������
There is no communication during this backward substitution�

The number of �oating point operations required by Algorithm � depends on
the pivoting� Again	 we bound this number from above� The �parallel� complex�
ity of each of the l�th elimination step	 l � q	 is at most �k�	
 � O�k� divisions	

�k�	��O�k�� multiplications	 and 
�k�	��O�k�� additions� On the top level there
are at most 
k� �O�k� divisions	 �k�	� �O�k�� multiplications	 and �k�	� �O�k��
additions needed� Backward substitution requires �k� � k additions	 as many mul�
tiplications	 and 
k divisions on the top level� On the lower levels the number is
k�k � ��	
 additions and multiplications	 respectively	 and k divisions� Thus	 the

�For simplicity of presentation we assume here and in the sequel that indices smaller than � and
larger than p are mapped onto ��� � � � � p	 by adding or subtracting an appropriate multiple of p�

In 
���
� e�g�� A���
i���i�� for i�� means A

���
��p�



�
 PETER ARBENZ AND MARKUS HEGLAND

Algorithm � �Parallel block�bidiagonal cyclic reduction�� This algorithm

performs forward elimination and backward substitution with one right hand side�

Input� On processor i	 �� i� p	 matrices A���
i�i 	 A

���
i��i���mod p�� and right hand side

y
���
i �

Output� On processor i	 i �� p	
� p	 xi	 x�i���mod p�� as well as P
�r���
i��r 	 L�r���

i��r 	

F
�r���
i��r 	 U

�r���
i��r 	 D

�r���
i��r and E

�r���
i��r � Here	 r 	 � is the largest integer such that 
r

divides i�
On processor i � p	
� p	 xi	 xi�� and P

�q�
� 	 L�q�

� 	 U �q�
� �

for l from � to q�� do
for i from 
l by 
l to p do

processors i�
l�� and i exchange their data and form matrix�
A
�l�
g���g�� � A

�l�
g��g���mod s�� y

�l�
g��

A
�l�
g�g�� A

�l�
g�g � y

�l�
g

�
�

g �� i	
l���
s �� p	
l���

processors i and i�
l�� both factor this matrix according to �����

P
�l�
g��

�
A
�l�
g���g�� � A

�l�
g��g���mod s�� y

�l�
g��

A
�l�
g�g�� A

�l�
g�g � y

�l�
g

�

�

�
L
�l�
g �

F
�l�
g I

��
U
�l�
g D

�l�
g E

�l�
g z

�l�
g

� A
�l���
g���g�� A

�l���
g����g�����mod �s����� y

�l���
g��

�
�

endfor
endfor
processors p	
 and p exchange their data� form�

A
�q�
��� A

�q�
��� y

�q�
�

A
�q�
��� A

�q�
��� y

�q�
�

�

and solve the system ����� according to �����
for l from q�� by �� to � do
for i from 
l�� by 
l to p� 
l�� do

processor i receives xi��l�� and xi��l�� from processor i�
l��

and computes xi satisfying

U
�l�
g��xi � z

�l�
g �D

�l�
g xi��l�� � E

�l�
g xi��l��� g �� i	
l���

endfor
endfor
for i from 
 by 
 to p do

processor i receives xi�� from processor i���
endfor

parallel complexity of the block CR algorithm is approximately

t �

�

�
log��p�k

�tF ������

if communication is not taken into account� This bound slightly overestimates the
execution time as the top level only requires around ��k�	� operations instead of
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�	�k� but for the purposes of analysis of parallel performance this bound is good
enough� On one processor the execution time of the algorithm is

t 
 
�

�
pk�tF ������

As there is no redundant work done in the parallel implementation	 the parallel
speedup for solving a system of order p�k � �� becomes

S � p	 log��p�������

So	 with ��
� processors a speedup of S 
 ��
 could be achieved� Here	 we have
compared CR with the serial algorithm to solve the block�bidiagonal system�

Combining ������ and �����	 the solution of the overall banded linear system on p
processors has a time complexity

t�p� �
�


n

p
�
k � ���k � �� �


�

�
log��p�k

� �O�k��
�
tF ������

Omitting lower order terms	 we obtain a speedup

S�p� �
t���

t�p�

 p

� � 
�k
�
n p log��p�

�������

Note that the speedup does not increase monotonically with p	 as the denomina�
tor in ������ grows faster than the numerator� In fact	 S�p� grows until popt �
��
 log�
�	
���n	k� 
 n	��k� at which point the highest possible speedup is

Sopt � S�popt� 
 n

�k
� �

� � log�
�
n
�k

��
In our actual implementation	 we store the block rows including the respective

right hand�s� side as indicated in ���
� in a work array� When sending data in
the forward elimination phase we simultaneously send and receive complete block
rows of the work array� These are single long messages� The disadvantage of this
proceeding is that k� zero values are sent� This is justi�ed as the communication
startup cost is the dominant factor when sending short messages� If the work array
is stored properly	 the message does not even have to be composed in a message
bu�er� In the backward substitution phase the messages have length 
k� As before	
we model the communication time for transferring a message of length n data items
by � � �n � �� � �n�tF � We do not neglect � �or �� here	 as the message volume
�k� can be considerable� In the back�substitution phase the message lengths are
negligible� With communication the execution time of the band solver becomes

t�p� 

�


n

p
�
k � ���k � �� �

�
�
�
k� � 
� � �k��

�
log��p�

�
tF �������

This implies the speedup

S�p� 
 p

� �
�

�k
�
n � �


nk�
� ��

�n

�
p log��p�

�����
�

The importance of the communication startup time relative to the communication
bandwidth becomes small if k increases� In order to get respectable speedups the
matrix order must be large compared to the bandwidth� If n � ������	 k � ��	
� � ����	 � � � the speedup for �
� processors is ���� with communication taken
into account and ���� without�
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�� Performance

The algorithm presented in sections � and � has been implemented using Fortran
�� and MPI� It has been tested on the Fujitsu AP���� with �
� processors at the
ANU in Canberra	 on the Intel Paragon with ��� processors at the ETH in Zurich	
and on the SGI Power Challenge with �� processors in Canberra� The AP���� and
the Paragon are distributed memory machines	 while the Power Challenge has a
shared memory�

Three di�erent problem sizes were considered�

�� A small problem with dimension n � 
���� and upper and lower bandwidth
��	 such that k � 
��


� An intermediate problem with dimension n � ���� ��� and the same bandwidth
as in ��	 i�e�	 k � 
��

�� A large problem with dimension n � ���� ��� and upper and lower bandwidth
��	 i�e�	 k � ����

The matrices generated were diagonally dominant Toeplitz matrices� Note that the
algorithm cannot exploit diagonal dominance� In fact	 we see from the structure of
the permuted matrix AS	 cf� Fig� ��
	 that partial column pivoting forces swapping
rows in every elimination step� As the largest element in a column is �k � ��	

elements away from the diagonal the bandwidth of U will be �k	
� We therefore
believe that the algorithm performs about as in the average� While the algorithm
can deal with periodically banded matrices only �ordinary� banded matrices where
used in the tests� As the work on a single processor is now reduced by a factor two	
also the speedup in ����
� is reduced by that factor�

On one processor the LAPACK routines �DGBTF
� and �DGBTRS� were used to
factorize and solve the banded linear system 
��� It is assumed that these LAPACK
routines are very e�cient on one node and in all cases they are using specially
optimized BLAS routines�
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Figure ���� Speedup of parallel solvers compared to LAPACK
routines� o� small problem	 �� intermediate problem and �� large
problem� The dash�dotted line indicates ideal speedup�
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In Figure ��� the speedups on the AP���� are displayed� The AP���� has �
�
SPARC processors� On two processors the parallel code takes longer than the serial
code due to redundancy� After that the speedup is fairly linear but deteriorates	
especially for small problem sizes� This is clear as in small problems the �rst block
elimination step is relatively cheap compared with the block cyclic reduction of the
reduced system the order of which depends linearly on p but not on n� Clearly	
speedup increases with n if p and k is �xed� Looking at the two larger problems	
the speedup is larger for the wider banded problem for p � ��� This indicates a
large in�uence of � in ����
�	 i�e�	 that the communication latency is dominated
by the startup time� � is small� So	 the interprocessor communication bandwidth
is high compared with the performance of the CPU�s �oating point unit� For the
intermediate and the large problem size the times on one processor were extrapolated
from the one�processor performance of a smaller problem with equal bandwidth k
using the assumption that the time is proportional to nk�� These problems are too
large to be solved on one processor due to memory size limitations�
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Figure ���� Speedup of parallel solvers compared to LAPACK
routines� o� small problem	 �� intermediate problem� The dash�
dotted line indicates ideal speedup�

In Figure ��
 the speedup on the Power Challenge of Silicon Graphics is displayed�
Only �� �non�dedicated� processors were available	 but in that range both the small
and the intermediate problem showed speedups linear in the number of processors�
The e�ciency S�p�	p is close to constant in the processor range depicted� This
indicates that the communication latency is small� Evidently	 MPI is implemented
such that it can make use of the shared memory� The intermediate sized problem was
too big to �t in the memory of one processor� So	 the time to solve the intermediate
problem on one processor was extrapolated from a smaller problem� The largest
problem could not even be computed on �� processors� On the Power Challenge
the e�ect of the redundancy appears to be lower than on the AP����� We explain
this by the fact that the observed MFlop�s rates are higher for the forward and
backward substitution than for the LU factorization� The redundant �oating point
operations for computing the matrix E in ����� are spent in forward and backward
substitution�
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Figure ���� Speedup of parallel solvers compared to LAPACK
routines� �� intermediate problem	 �� large problem� The dash�
dotted line indicates ideal speedup�

In Figure ��� the speedup on the Intel Paragon using up to ��� processors is dis�
played� Only the intermediate and the large problem sizes were considered� While
the speedup for the larger problem size is substantially higher for small processor
numbers	 it does deteriorate more rapidly from the curve of ideal speedup as p
increases� This is due to much larger reduced system� Again the expensive commu�
nication startup is noticeable by the higher speedups of the larger problems with
smaller processor numbers� The one�processor execution time has again be esti�
mated� As with the Power Challenge	 the redundancy is less than what might be
expected�

��� Conclusions

We have shown that distributed memory parallel band solvers implementing
Gaussian elimination with partial pivoting are feasible and produce speedups which
are comparable to the ones obtained from LU without pivoting or Cholesky factor�
ization 
�	 ��� Of course the execution times are shorter for the latter algorithms�
Speedup is a�ected �rst of all by redundancy introduced in the parallelization of
the algorithm� If the processor number grows while the problem size remains �xed
speedup deteriorates due to increasing communication costs� However	 the complex�
ity analysis indicates that if the problem size is increased like p log�p�	 the e�ciency
is independent on the processor number p�

Portable software has been developed using message passing and tests were run
on the Intel Paragon	 Silicon Graphics Power Challenge and Fujitsu AP����� The
tests con�rm the analysis and show good scalability�
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