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Abstract. We study the advice complexity and the random bit complexity of the online
knapsack problem: Given a knapsack of unit capacity, and n items that arrive in successive
time steps, an online algorithm has to decide for every item whether it gets packed into
the knapsack or not. The goal is to put as much valuable items as possible into it without
exceeding its capacity.
In the model of advice complexity of online problems, one asks how many bits of advice
about the unknown parts of the input are both necessary and sufficient to achieve a specific
competitive ratio.
It is well-known that even the unweighted online knapsack problem does not admit any
competitive deterministic online algorithm. We show that a single bit of advice helps a
deterministic algorithm to become 2-competitive, but that Ω (logn) advice bits are necessary
to further improve the deterministic competitive ratio. This is the first time that such a phase
transition for the number of advice bits has been observed for any problem. We also show
that, surprisingly, instead of an advice bit, a single random bit allows for a competitive ratio
of 2, and any further amount of randomness does not improve this. Moreover, we prove that,
in a resource augmentation model, i. e., when allowing a little overpacking of the knapsack,
a constant number of advice bits suffices to achieve a near-optimal competitive ratio. We
also study the weighted version of the problem proving that, with O (logn) bits of advice,
we can get arbitrarily close to an optimal solution and, using asymptotically fewer bits, we
are not competitive.

1 Introduction

Online problems are an important class of computing problems where the input is not known to
the algorithm in advance, but is revealed stepwise, and where, in each step, a piece of output has
to be produced irrevocably. The standard way to analyze the quality of an online algorithm is
via the so-called competitive analysis. Here, the quality of the solution as produced by the online
algorithm is compared to the quality of an offline algorithm that knows the complete input in
advance. An introduction to the theory and applications of competitive analysis can be found
in [3].

Comparing an algorithm having no knowledge about the forthcoming parts of the input with an
algorithm having full knowledge of the future might only give a rough estimate of the real quality
of an algorithm facing an online situation. To enable a more fine-grained analysis of the complexity
of online problems, the advice complexity of online problems has been recently introduced [2, 5, 6].
The idea behind this concept is to measure the amount of information about the forthcoming parts
of the input an online algorithm needs to be optimal or to achieve a certain competitive ratio.
More precisely, in this model, the online algorithm has access to some tape containing advice bits
produced by an oracle knowing the complete input, and its advice complexity is the number of
bits it reads from this advice tape, i. e., the amount of information about the yet unknown input
parts it needs to know for its computation. For a detailed introduction to the advice complexity of
online problems, see [2, 8]. More results on the advice complexity of specific problems can be found
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in [1, 6, 13], the relationship between advice complexity and randomized algorithms is discussed
in [1, 12].

In this paper, we deal with an online version of the well-known knapsack problem. Here, an
input consists of a set of items with specified weights and values, and a knapsack capacity. The
goal is to choose a set of items with maximum value such that their total sum does not exceed
the knapsack’s capacity. The knapsack problem is a very well-studied hard optimization problem,
for an introduction, see [7, 11]. In the online version of the knapsack problem, the items arrive one
by one and the algorithm has to decide for each item whether it will pack it into the knapsack
or not. These decisions may not be withdrawn at a later stage, i. e., no items can be removed
from the knapsack again. It is easy to see that no deterministic online algorithm can achieve
any bounded competitive ratio [14]. Thus, the existing literature on the online knapsack problem
mainly considers restricted variants of the problem [16] or an average-case analysis of randomized
algorithms [14].

We prove the following results in this paper: As already mentioned, it is not possible to achieve
any competitive ratio with a deterministic algorithm without advice. For the unweighted version
of the problem, we prove that, with a single advice bit, a competitive ratio of 2 is achievable.
Moreover, for an instance of n items, any number 2 < k < log (n− 1) of advice bits cannot improve
the competitive ratio. But, for every constant ε > 0, a competitive ratio of 1 + ε is achievable
using O (log n) advice bits. For computing an optimal solution, a linear number of advice bits is
necessary. At first glance, these results fit well into the picture as given by the advice complexity
results for other problems like paging, job shop scheduling, or disjoint path allocation [2]: Linear
advice is needed for optimality, logarithmic advice for beating the best randomized algorithm, and
very few bits suffice to beat a deterministic algorithm. But having a closer look, one sees that the
situation is pretty much different for the knapsack problem compared to the other above-mentioned
problems: This problem is the first one for which a sharp phase transition in the number of advice
bits can be shown in the following sense. Even log n− 2 advice bits are exactly as helpful as one
bit, but O (log n) bits already allow for an almost optimal solution.

A second line of research in this paper considers the random bit complexity of randomized
online algorithms (without advice) for the knapsack problem. Here, it turns out that, surprisingly,
a single random bit is as powerful as an advice bit, i. e., a single random bit can be used to achieve
an expected competitive ratio of 2. Moreover, we prove that an arbitrary amount of additional
randomness does not help at all, no randomized algorithm can achieve an expected competitive
ratio better than 2− ε, for any ε > 0.

We analyze the behaviour of online algorithms with advice that are allowed to overpack the
knapsack by some small constant amount of δ. In contrast to the original model, we show that,
in this case, a constant number of advice bits is already sufficient to achieve a near-optimal
competitive ratio.

In the last part of the paper, we study the general version of the problem. Obviously, all lower
bounds carry over immediately from the unweighted problem. We show that, with less than log n
advice bits, no online algorithm is competitive and that we can be arbitrarily close to the optimum
when using O (log n) advice bits.

The paper is organized as follows. In Section 2, we introduce our notations and present some
observations on deterministic online algorithms for the online knapsack problem. Section 3.1 is
devoted to the analysis of deterministic online algorithms with advice. In Section 3.2, we investigate
the random bit complexity of the online knapsack problem, and in Section 3.3, we deal with the
advice complexity of a resource augmentation variant of the problem. In Section 4, we consider the
general, weighted knapsack problem. We conclude the paper with some remarks on future work
in Section 5.

2 Preliminaries

In this section, we formally define the notions used in the following. All logarithms in this paper
are taken to be binary, unless stated otherwise.
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Definition 1 (Online Maximization Problem). An online maximization problem consists of
a set I of inputs and a cost function. Every input I ∈ I is a sequence of requests I = (x1, . . . , xn).
Furthermore, a set of feasible outputs (or solutions) is associated with every I; every output is a
sequence of answers O = (y1, . . . , yn). The cost function assigns a positive real value cost(I,O)
to every input I and any feasible output O. If the input is clear from the context, we omit I and
denote the cost of O as cost(O). For every input I, we call any output O that is feasible for I and
has largest possible cost an optimal solution of I, denoted by Opt(I).

We now formally define online algorithms with advice for online maximization problems, and
their competitive ratios.

Definition 2 (Online Algorithm with Advice). Consider an input I of an online maximiza-
tion problem. An online algorithm A with advice computes the output sequence Aφ = Aφ(I) =
(y1, . . . , yn) such that yi is computed from φ, x1, . . . , xi, where φ is the content of the advice tape,
i. e., an infinite binary sequence. We denote the costs of the computed output by cost(Aφ(I)). The
algorithm A is c-competitive with advice complexity s(n) if there exists a constant α such that,
for every n and for each I of length at most n, there exists some φ such that cost(Aφ(I)) ≥
1
c · cost(Opt(I))−α and at most the first s(n) bits of φ have been accessed during the computation
of Aφ(I). If A is c-competitive for α = 0, we call it strictly c-competitive.

A detailed introduction into the theory of advice complexity can be found in [8].

Definition 3 (Online Knapsack Problem). The online knapsack problem, Knapsack for
short, is the following maximization problem. The input consists of a sequence of n items that are
tuples of weights and values, i. e., S = {s1, . . . , sn}, si = (wi, vi), where 0 < wi ≤ 1 and vi > 0 for
i ∈ {1, . . . , n}. A feasible solution is any set of indices S′ ⊆ {1, . . . , n} such that

∑
i∈S′ wi ≤ 1;

the goal is to maximize
∑
i∈S′ vi. The items are given an online fashion. For each item, an online

algorithm A must specify whether this item is part of the solution or not as soon as it is offered.

In the simple version of Knapsack, denoted by SimpleKnapsack, each item has a value
smaller than 1 that is equal to its weight.

Since the value of an optimal solution for any instance of SimpleKnapsack is bounded by
the constant capacity 1 of the knapsack, we only consider strict competitiveness in this paper. For
simplicity, we subsequently abbreviate the term “strictly competitive” by “competitive”.

3 The Unweighted Case

Let us first look at purely deterministic online algorithms.

Theorem 1 (Marchetti-Spaccamela and Vercellis [14]). No deterministic online algorithm
for SimpleKnapsack (and thus Knapsack) without advice is competitive. ut

Let us now consider an online algorithm G that realizes a straightforward greedy approach.
This means that G takes any item while there is space left for it in the knapsack. Of course, this
strategy also fails in general (as the last theorem implies), but for a subset of the instances it
works quite well as the following observation states.

Observation 1 Let I denote any instance of SimpleKnapsack where every item has a weight
of ≤ β. Then G achieves a gain of at least 1− β or it is optimal.

Indeed, if the sum of all weights is less than one, G is optimal. However, if this is not the case,
the space that is not covered by A cannot be bigger than β.
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3.1 Online Algorithms with Advice

To enable online algorithms to achieve better results, we now equip these algorithms with an
advice tape as in Definition 2. At first, we study the information content of the problem, i. e., the
number of advice bits both sufficient and necessary to produce optimal output. Obviously, there
is a linear upper bound.

Theorem 2. There exists an optimal online algorithm A for SimpleKnapsack using n bits of
advice.

Proof. For each of the n items, one bit of advice tells the algorithm whether this item is part of
an arbitrary, but fixed, optimal solution or not. ut

It might surprise that this bound is indeed tight as the next theorem shows.

Theorem 3. Any online algorithm with advice for SimpleKnapsack needs at least n− 1 bits to
be optimal.

Proof. For any n, consider the input 1/2, 1/4, . . . , 1/2n−1, s, where the item s is defined as

s = 1−
n−1∑

i=1

bi2
−i,

for some vector b ∈ {0, 1}n−1. Consider the first n−1 items of the input. Any two different subsets
of these items have a different sum. From this, it directly follows that, for any distinct value of b,
there exists a unique optimal solution with gain 1. In other words: If s is “revealed” there was one
“correct” choice for the algorithm.

If any online algorithm uses strictly less than n−1 bits, it cannot (by the pigeonhole principle)
distinguish between all 2n−1 different inputs. Hence, it will output the same subset of the first
n − 1 items for two different input instances and thereby produces a sub-optimal solution for at
least one of them. ut

Next, let A be an online algorithm reading one bit of advice. This bit indicates whether there
exists an item s within the input that has size > 1/2. If this bit is zero, A acts greedily, if it is one,
A takes nothing until an item of size > 1/2 appears (and anything else afterwards).

Theorem 4. The online algorithm A for SimpleKnapsack is 2-competitive.

Proof. Suppose, there is no item with size > 1/2. In this case, the claim directly follows from
Observation 1. However, if there exists an item of size > 1/2, the proof of the claim is trivial. ut

This result seems counterintuitive. With merely one bit of advice and a straightforward ap-
proach we jump from an unbounded output quality to 2-competitiveness. However, any further
increase of the number of advice bits does not help until a logarithmic number is reached. The
above algorithm of Theorem 4 is therefore the best we can hope for when dealing with any constant
number of advice bits.

Theorem 5. Let b < blog(n−1)c and let ε > 0. No online algorithm for SimpleKnapsack using
b bits of advice is better than (2− ε)-competitive.

Proof. Let δ = ε/(4 − 2ε) and let A read b advice bits. Consider the class I of inputs Ij , for
1 ≤ j ≤ n− 1, of the form

1

2
+ δ,

1

2
+ δ2, . . . ,

1

2
+ δj ,

1

2
− δj , 1

2
+ δ, . . . ,

1

2
+ δ,

where the item 1
2 + δ appears n − j − 1 times at the end of the instance, for j ∈ {1, . . . , n − 1}.

Obviously, since |I| > 2b, there are more inputs than strategies to choose from and, thus, there
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are two different inputs for one advice string. In order to be optimal, A needs to take the j-th
and (j + 1)-th item for the instance Ij and, hence, this choice is unique for every input from I.
For any other choice of items on the instance Ij , A achieves a gain of at most 1

2 + δ, leading to a
competitive ratio of

1
1
2 + δ

= 2− ε

as we claimed. ut

The competitive ratio that is achievable with respect to the number of used advice bits now
makes a second jump as stated by the following theorem.

Theorem 6. Let ε > 0. There exists an online algorithm A with advice for SimpleKnapsack
that achieves a competitive ratio of 1 + ε reading

⌈
2ε+ 2

ε

⌉
· dlog ne+ 2 ·

⌈
log

2ε+ 2

ε

⌉
+ 2 · dlog dlog nee+ 1

bits of advice.

Proof. Let ε > 0 be arbitrary, but fixed, and let δ = ε/(2 + 2ε). Suppose there does not exist any
item within the input of size larger than δ which can be indicated using one bit at the beginning
of the advice tape. Then, A may safely take sets greedily which leads to a competitive ratio of

1

1− δ
= 1 +

δ

1− δ
= 1 +

ε

2 + ε
≤ 1 + ε.

Now assume the contrary, i. e., there exist some items of size > δ. The oracle inspects the optimal
solution which consists of two disjoint sets of items S1 and S2, where S1 denotes the set of i heavy
items of size > δ and S2 contains j light items of size ≤ δ. Let s1 [s2] be the sum of all weights of
the items in S1 [S2]. The indices of all heavy items are written onto the advice tape using i · dlog ne
bits (also, we need to communicate i which can be done using another dlog 1/δe bits). Since the
sum of all weights of any solution does not exceed 1, we clearly have i ≤ 1/δ, i. e., i is constant
with respect to n. For being able to decode the advice string, additionally the length dlog ne of
such an index has to be included in the advice in some self-delimiting form using 2dlog dlog nee
bits.3

Moreover, let the oracle encode a number k on the advice tape, where k is such that

kδ ≤ s2 < (k + 1)δ.

Since A knows ε and therefore δ, it computes kδ and thus obtains a lower bound on s2, i. e., the
part of the solution that is due to the light items. Every such light item is taken as long as their
sum is below kδ. It is immediate that k ≤ 1/δ, due to s2 ≤ 1. According to Observation 1, A packs
at least as many items from S2 such that their sum is not smaller than kδ−δ ≥ s2−2δ. Therefore,
we get a competitive ratio of

s1 + s2
s1 + s2 − 2δ

≤ 1

1− 2δ
= 1 +

2δ

1− 2δ
= 1 + ε.

Since k is an integer from the range 0 . . . 1/δ, it can be encoded using dlog (1/δ)e bits. The
total number of advice bits used by the algorithm is

1 + i · dlog ne+ 2 ·
⌈

log
1

δ

⌉
+ 2 · dlog dlog nee ≤ 1 +

1

δ
· dlog ne+ 2 ·

⌈
log

1

δ

⌉
+ 2 · dlog dlog nee

≤ 1 +

⌈
2ε+ 2

ε

⌉
· dlog ne+ 2 ·

⌈
log

2ε+ 2

ε

⌉
+ 2 · dlog dlog nee

as claimed, which concludes the proof. ut
3 For an example on how to construct such self-delimiting encodings, see, for example, the proof of

Theorem 5 in [1].
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3.2 Randomized Online Algorithms

In this section, we study the random bit complexity of the problem. At first, suppose we use the
same algorithm as in Theorem 4, but guess the advice bit. Obviously, this algorithm, which we
call B, is 2-competitive with probability 1/2 and not competitive with the same probability, that
is, 4-competitive in expectation. This bound is tight as the next theorem shows.

Theorem 7. The randomized online algorithm B for SimpleKnapsack cannot be better than
4-competitive in expectation.

Proof. Let ε < 1/6. Consider three items of sizes

1

2
− ε, 3ε, 1

2
− ε.

A greedy approach takes the first two items and therefore obtains a gain of 1/2 + 2ε, whereas the
algorithm that waits for an item of size ≥ 1/2 gains nothing. Thus, B is c-competitive only for

c ≥ 1− 2ε
1
2

(
1
2 + 2ε

)
+ 1

2 · 0
= 4 · 1− 2ε

1 + 4ε
.

Since ε can be arbitrarily small, no competitive ratio better than 4 can be reached. ut

It seems somehow intuitively clear that randomization (the average over good and bad) is
twice as bad as advice (always good). However, while this is right for this specific strategy, we get
the following: Remarkably, randomization and advice are equally powerful for SimpleKnapsack
when dealing with a small amount of either random or advice bits.

Theorem 8. There exists a randomized online algorithm R for SimpleKnapsack that achieves
an expected competitive ratio of 2 and that uses one random bit.

Proof. Consider the following deterministic online algorithms A1 and A2; A1 is the straightforward
greedy algorithm for SimpleKnapsack. A2 locally simulates A1 and does not take any item until
it realizes that an item just offered would not fit into A1’s solution anymore. A2 then acts greedily
starting from here. If the input consists of items that, in the sum, have a weight less than the
knapsack’s capacity, A1 is obviously optimal, while A2 might have gain zero. If, however, this is
not the case, the gain of A1 plus the gain of A2 is at least 1.

Let R choose between A1 and A2 uniformly at random. Obviously, one random bit suffices to
do that. We then immediately get that the expected gain of R is at least 1/2, and the competitive
ratio of R is thus at most 2. ut

Please note that the lower bound of 2 on the competitive ratio from algorithms with advice
(see Theorem 5) carries over immediately for the randomized case. Therefore, Theorem 8 is tight.
The above results imply that randomization and advice are equally powerful when we consider a
sub-logarithmic number of bits.

As we have seen before (see Theorem 6), logarithmic advice helps a lot. On the other hand,
we now show that this is not the case for randomization.

Theorem 9. No randomized online algorithm for SimpleKnapsack can be better than 2-competitive
(independent of the number of random bits the computation is based on).

Proof. Consider the following class of inputs. At first, an item of weight ε > 0 is offered. After
that, either nothing else is offered or an additional item of size 1.

Now consider any algorithm R that decides to use the first item with non-zero probability p
(else, its gain is obviously zero). If R takes the item, of course, it cannot use the second one if it is
offered. On the other hand, if R does not take the first item (with probability 1 − p), it does not
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︸ ︷︷ ︸
x1,...,xk ︸ ︷︷ ︸

g

x′
1,...,x

′
k︷ ︸︸ ︷

g+δ−kδ2︷ ︸︸ ︷

1︷ ︸︸ ︷

kδ2 δ

Fig. 1. The gains of both Opt and A

have any gain if there is no second item. Suppose the second item is offered. Algorithm R then has
competitive ratio

1

p · ε+ (1− p) · 1
,

and, if the second item is not offered, R has competitive ratio

ε

p · ε
.

By equalizing the ratios, we get

1

(ε− 1) · p+ 1
=

1

p
⇐⇒ p =

1

2− ε

and, thus R is no better than (2− ε)-competitive. ut

Let us summarize: With one random bit, we can achieve a (tight) bound of 2. However, any
additional bit does not help at all.

3.3 Resource Augmentation

In this subsection, we allow the online algorithms considered to use more powerful resources than
the optimal offline algorithm it is compared against. This model of resource augmentation was
used for the online knapsack problem in [9] as well as for many other online problems, see, e. g., [4,
10, 15]. More precisely, we allow an online algorithm A to overpack the knapsack by some δ > 0
whereas the optimal solution is merely allowed to fill it up to 1.

Theorem 10. Let 1/4 > δ > 0. There exists an online algorithm A for SimpleKnapsack that
achieves a competitive ratio of 1 + 3δ/(1− 4δ) in the δ-resource-augmented model, using at most

⌈
2 log

⌈
1

δ

⌉
+

1

δ
· log

⌈
1

δ2

⌉⌉
+ 1

advice bits.

Proof. Consider any instance I and let Opt = Opt(I) denote an optimal solution computed by an
optimal offline algorithm Opt. Suppose cost(Opt) ≤ 1/2. In this case, there is obviously no item
with size > 1/2 and a simple greedy strategy enables A to be optimal. We fix the first advice bit
to indicate whether Opt has size 1/2 or smaller and, in the further analysis, assume the contrary.

To this end, let Opt = {x1, . . . , xk}∪̇{y1, . . . , ym} denote an optimal solution computed by an
algorithm Opt where the items xi have weights ≥ δ and the items yj have weights < δ. Obviously,
we have k ≤ 1/δ. A knows δ and is designed such that it reads all the approximate sizes (computed
via an integer division by δ2) of all heavy items and the fraction of the knapsack that is filled using
light ones from the advice tape.

First, we show how the heavy items are encoded. To this end, let
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xi := j such that j · δ2 ≤ xi < (j + 1) · δ2,

for every heavy item xi. All xis are sequentially written onto the advice tape and read by A right
after the first offer. Thus, if A is offered any item x′, it checks whether the corresponding xi is part
of the advice, that is, if there exists xi such that δ2 · xi ≤ x′ < δ2 · (xi + 1). If so, x′ is taken into
the knapsack as an element x′i corresponding to xi; else it is neglected. In the former case, there
exists xi that is part of Opt and xi − δ2 < x′i < xi + δ2. Clearly, there are at most k different
xis (as many as there are corresponding heavy items) and each is at most of size 1/δ2; hence, to
communicate all of these values, we need no more than

k · log

⌈
1

δ2

⌉
≤
⌈

1

δ
· log

⌈
1

δ2

⌉⌉

advice bits, which is obviously constant with respect to n. However, to be able to decode the
advice, A needs to know k beforehand.4 The value of k can be written onto the advice tape in a
self-delimiting form using another 2dlog ke ≤ 2dlog 1/δe additional bits. The number of bits needed
to encode the elements xi can be calculated by A without any further knowledge.

Note that we have

−δ +

k∑

i=1

xi ≤
k∑

i=1

x′i ≤ k · δ2 +

k∑

i=1

xi ≤ δ +

k∑

i=1

xi,

which means that, for every heavy item, A chooses an item such that the algorithm uses at most
δ2 more space within the knapsack. Thus, the sum of the chosen heavy items uses at most δ more
space than the heavy items in Opt.

We now distinguish two cases regarding the size of an optimal solution.

Case 1. Suppose that cost(Opt) < 1− δ. This directly implies that all light items are part of the
optimal solution, because, otherwise, Opt would not be optimal. Algorithm A uses at most δ
more space for the heavy items as Opt, hence it takes all light items as well. On the other
hand, the sum of weights of the heavy items chosen by A is at least −δ+

∑k
i=1 xi, hence A has

gain at least cost(Opt)− δ. Thus,

comp(A(I)) ≤ cost(Opt)
cost(Opt)− δ

≤ 1 +
δ

cost(Opt)− δ
≤ 1 +

2δ

1− 2δ
,

where the last inequality follows from the fact that cost(Opt) ≥ 1/2.
Case 2. Suppose that 1 − δ ≤ cost(Opt) ≤ 1. Let us now consider the light items. To this end,

let g := 1 −
∑k
i=1 xi denote the space Opt is left with after packing all heavy items into the

knapsack (see Fig. 1); A does not know g but calculates the approximate value

g′ := 1−
k∑

i=1

(xi + 1)δ2.

It follows that g − δ ≤ g′ ≤ g. Note that both A and Opt have all light items available. Now,
for z ∈ {g, g′}, consider the instance I(z) shrunk to a knapsack capacity of z and light items
only and let Opt(z) denote the corresponding optimal solution for this instance. Since A acts
greedily on I(g′), by Observation 1 it follows that A is either optimal or has a gain of at
least g′ − δ ≥ g − 2δ ≥ cost(Opt(g)) − 2δ. On the other hand, Opt obtains a gain of exactly
cost(Opt(g)) on I(g). Thus,

comp(A(I)) =
cost(Opt)
cost(A(I))

≤ cost(Opt)
∑k
i=1 x

′
i + g′ − δ

≤ cost(Opt)
∑k
i=1 xi + g − 2δ

≤ cost(Opt)
∑k
i=1 xi + cost(Opt(g))− 3δ

=
cost(Opt)

cost(Opt)− 3δ
≤ 1 +

3δ

1− 4δ
,

which finishes the claim. ut
4 Recall that the length of the advice is not known to A, but A reads the advice from an infinite tape.
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4 The Weighted Case

We now consider the general knapsack problem, Knapsack, from Definition 3 where every item
has both a weight and a value. However, our results only hold if we restrict ourselves to instances
where the costs and weights can be represented within polynomial space. More formally, for any
item x, let w(x) be the weight of x, c(x) be the cost of x and r(x) := c(x)/w(x) be the ratio of
its cost and weight. We assume that, for every x, c(x) and w(x) are rational numbers, and their
numerators and denominators are bounded by 2p(n) for some fixed polynomial p(n).

First of all, we note that the lower bounds for SimpleKnapsack from the previous section
carry over immediately, since we are now dealing with a generalization of the above problem.
Second, Theorem 2 obviously also applies for the general knapsack problem.

Theorem 11. No online algorithm for Knapsack using strictly less than log n bits of advice is
competitive.

Proof. Suppose that A reads k < log n advice bits which allows it to distinguish at most 2k

different inputs. We construct a set I of n different instances as follows. Let α := 2n and let Is be
the instance determined by the items

(1, α), (1, α2), . . . , (1, αs), (1, 1), . . . , (1, 1), (1, 1),

for s ∈ {1, . . . , n} and I = {Is | 1 ≤ s ≤ n}. Obviously, since |I| > 2k, there are more inputs
than strategies to choose from and, thus, there are two different inputs for one advice string. Let
these two instances be Ii and Ij and assume i > j. The unique optimal solution for Ii [Ij ] fills the
knapsack with the i-th [j-th] item yielding a gain of αi [αj ].

Clearly, if A does not choose the j-th item when given the instance Ij , its gain is at least a
factor of α away from Opt. But this means that, since in the first j time steps, A cannot distinguish
between Ii and Ij (and it is given the same fixed advice string), that A also takes the j-th item
which results in a competitive ratio is at least αi/αj ≥ α finishing the proof. ut

In the following, we show how to solve the general knapsack problem almost optimally when
using logarithmic advice. This implies that the bound from Theorem 11 is asymptotically tight.

Theorem 12. Let ε > 0. There exists an online algorithm A with advice for Knapsack that
achieves a competitive ratio of 1 + ε using at most O (log n) bits of advice.

Proof. Let δ =
√

1 + ε− 1. Consider any optimal solution Opt and let

c′ := (1 + δ)blog1+δ (cost(Opt))c,

i. e., c′ is an approximation of cost(Opt) such that

cost(Opt)/(1 + δ) < c′ ≤ cost(Opt).

Next, let x1, . . . , xk be all items in Opt with cost at least δ ·c′. Since there are at most cost(Opt)/(δ ·
c′) such items, we immediately get k ≤ (1 + δ)/δ.

Let S1 be an (offline) solution constructed as follows. At first, all “expensive” items x1, . . . , xk
are taken; then, the rest of the knapsack is filled using items that have costs less than δ ·c′ greedily
by the ratio of their cost and weight in descending order.

Consider S1 plus the item x that is the first one that did not fit in the greedy phase of S1’s
construction. S1 ∪ {x} has higher cost than Opt. Since c(x) ≤ δ · c′ ≤ δ · cost(Opt), we get that

cost(S1) ≥ (1− δ)cost(Opt).

Let y1, . . . , yl denote the items of S1 added in the greedy phase. Without loss of generality, assume
that r(y1) ≥ r(y2) ≥ . . . ≥ r(yl) and let

r′ := (1 + δ)dlog1+δ(r(yl))e,

9



i. e., r′ is an approximation of r(yl) such that

r(yl) ≤ r′ < r(yl) · (1 + δ).

Let m be the largest number such that r(ym) ≥ r′, that is, the items r(y1), . . . , r(ym) have
ratios of at least r′ and all other items have ratios between r′ and r′/(1 + δ). Let v be the space
not occupied by x1, . . . , xk, y1, . . . , ym in S1, i. e.,

v := 1−
k∑

i=1

w(xi)−
m∑

i=1

w(yi).

Intuitively speaking, if we consider the part of the solution S1 that consists of the items yi, for
i > m, we see that this is a solution of an “almost-unweighted” knapsack instance with knapsack
capacity v. Therefore, we can approximate it by a solution for the unweighted knapsack problem
without much harm.

To this end, let
v′ := (1 + δ)blog1+δ vc,

i. e., v′ is an approximation of v such that

v/(1 + δ) < v′ ≤ v.

Furthermore, let

{z1, . . . , zj} = S := {yi | yi ∈ {ym+1, . . . , yl}, w(yi) ≥ δ · v′},

that is, z1, . . . , zj are all items from S1 that have a ratio of roughly r′ and whose weights are at
least a δ-fraction of v′. Since v′ > v/(1 + δ), there are at most (1 + δ)/δ such items.

Again, we consider an (offline) solution S2, which is constructed as follows. At first, all items

x1, . . . , xk, y1, . . . , ym, z1, . . . , zj

are taken. After that, we use all remaining items of weight less than δ · v′ and a ratio of at least
r′/(1 + δ); each of these items is greedily added to S2 if it fits. We now show that

cost(S2) ≥ (1 + δ)2

1− δ
cost(S1). (1)

To this end, consider two cases. If the greedy construction of S2 takes all possible items, S2
contains all items included in S1, and Inequality (1) follows trivially. Therefore, we may assume
the contrary.

Obviously, the cost of S1 is at most

k∑

i=1

c(xk) +

m∑

i=1

c(yi) +

j∑

i=1

c(zi) + v · r′ ≤
k∑

i=1

c(xk) +

m∑

i=1

c(yi) +

j∑

i=1

c(zi) + v′ · (1 + δ) · r′.

On the other hand, the cost of S2 is at least

k∑

i=1

c(xk) +

m∑

i=1

c(yi) +

j∑

i=1

c(zi) + v′ · (1− δ) · r′/(1 + δ),

because the greedy step packed items of total weight of at least (1− δ) · v′ with a ratio of at least
r′/(1 + δ). It follows that Inequality (1) holds.

Putting all together, we finally get

cost(S2) ≥ (1 + δ)2

1− δ
cost(S1) ≥ (1 + δ)2cost(Opt) = (1 + ε)Opt

10



as claimed.
Let us now look at the number of bits necessary to be communicated to A. At first, O needs to

encode n and k which can be done using no more than 2dlog dlog nee+ 2dlog ne bits. Furthermore,
since A knows δ, it suffices to read at most

⌈
log blog1+δ 2p(n)c

⌉
≤ log

(
log 2p(n)

log (1 + δ)

)
+ 1 ∈ O

(
log nd

)

advice bits to communicate c′, where d is the degree of the polynomial p(n). We immediately see
that, to encode r′ and v′, we also need no more than O

(
log nd

)
bits. The indices of the items xi

can be specified using kdlog ne ≤ (1 + δ)/δ log n + 1 additional bits. Similarly, the indices of the
items zi can be communicated using jdlog ne ≤ (1 + δ)/δ log n+ 1 bits.

We conclude that at most O
(
log nd

)
= O (log n) bits are needed in total. Finally, the online

algorithm A works as follows to construct S2 using the advice as specified above.

Algorithm A

1. for any x do
2. if x = xi for some i, use;
3. else if c(x) ≥ δ · c′, discard;
4. else if r(x) ≥ r′, use;
5. else if x = zi for some i, use;
6. else if r(t) < r′/(1 + δ) or w(t) ≥ δ · v′, discard;
7. else if total weight of all items taken at line 7 ≤ v′, use;
8. else discard;
9. end

This finishes our proof. ut

5 Conclusion

We have analyzed the advice complexity and the random bit complexity of the online knapsack
problem. For the unweighted case, the advice complexity exhibits a very interesting phase tran-
sition: Less than log (n− 1) advice bits do not improve over a single bit of advice, but O (log n)
advice bits already allow for an almost optimal competitive ratio. A similar phenomenon can be
observed for the random bit complexity. Here, a single random bit achieves a competitive ratio of
2 and no additional randomness can improve this result. We have also seen that, when allowing
online algorithms to overpack the knapsack a little bit, a constant number of advice bits suf-
fices to produce an output that is arbitrarily close to the optimum. Finally, we have shown that
O (log n) bits are also sufficient to get arbitrarily close to an optimal solution for the weighted
online knapsack problem. Here, the O-notation hides a larger constant as for the unweighted case.

For further research, it would be interesting to see how randomized online algorithms with
advice behave on this problem, i. e., whether some of the O (log n) advice bits in the proof of
Theorem 6 can be substituted by some amount of random bits.
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