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ABSTRACT1
This study provides a comprehensive analysis of cycling speeds in Zurich, the largest Swiss city,2
focusing on the impact of various factors such as bike type, gradients, infrastructure, age, gender,3
and weather conditions. Utilizing GPS data from 351 cyclists’ smartphones, the study examines4
detailed speed profiles across the three common European bike types: conventional bicycles, e-5
bikes, and s-pedelecs. The results show significant differences in cycling speeds w.r.t. age, gender,6
Body Mass Index, bicycle types, street types, topology and precipitation. The speeds on network7
edges are modeled using a random forest model, which reveals that the most influential factors are8
gradients, BMI, age and bicycle type.9
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INTRODUCTION1
Interest in sustainable transportation, specifically cycling, is growing globally (1, 2). This interest2
is driven by the urge to decarbonize urban transport and to create more vital and healthy urban3
environments. The life-cycle emissions of bicycles are substantially lower than those of other4
forms of urban transport, i.e. public or individual motorized transport (3, 4). Furthermore, they are5
more space efficient (5–7), and have proven to have a positive impact on physical and mental health6
(2, 7–10). Since the last decade, the transport research community has consequently started looking7
into the various aspects required to effectively measure, model and simulate cycling behavior.8
One of these is to comprehensively understand cycling speeds. Cycling speeds are required for a9
wide range of planning applications, ranging from micro- and mesoscopic (agent-based) simulation10
models, over route and mode choice models, to the actual design of cycling infrastructure.11

The current empirical evidence about cycling speed profiles is limited and more detailed12
analyses are required. Exisiting studies are often methodologically tied to specific modeling use13
cases. Previous studies have e.g. used fixed-point speed measurements (11, 12), average trip14
speeds (13), trip segment speeds (14–17) or momentary speeds recorded at various tracking points15
(18–20); or combinations and variations of these (21, 22). Furthermore, cycling speeds depent on16
environmental conditions (terrain, built environment) which differ greatly between regions (e.g.17
(13) vs. (14)). The emergence of electric bicycles further increased the need for differentiated18
analysis, as they are regulated and classified differently between regions (23). Finally, socio-19
demographic indicators, especially those related to physical conditions, also impact the speed of20
cyclists (14, 16).21

The following paper provides a comprehensive analysis of cycling speed profiles for the22
largest Swiss city. We used the EBIS (24) dataset, which includes GPS-traces of over 3,000 partic-23
ipants recorded across Switzerland in 2022/2023. The dataset differentiates between the three com-24
monly used bicycle types in Europe, i.e. regular bicycles, electric bicycles (e-bike) with assistance25
up to 25 km/h, as well as speed-pedelecs (s-pedelec) with assistance up to 45 km/h. The dataset26
includes socio-demographic indicators such as age, gender and the Body Mass Index (BMI). In27
addition, it covers a wide range of terrain conditions that are typically not present in other studies.28
After map-matching the raw GPS traces to an Open-Street-Network (OSM) network, we provide29
door-to-door mean speeds as well as segment speeds on network edges. We differentiate the re-30
sulting speed profiles by all factors mentioned above, as well as commonly used OSM attributes.31
Finally, we use a machine learning model to model cycling speeds and intersection delays, as well32
as to explore the most important factor explaining observed heterogeneity. To our knowledge, this33
study represents the largest and most granular GPS-based examination of cycling speeds across all34
three common European bicycle types (bicycles, e-bike, and s-pedelec).35

RELATED WORK36
Based on Hassanpour and Bigazzi (12), methods to derive cycling speeds are categorized into37
Eulerian (e) and Lagrangian (λ ) approaches. Eulerian methods involve stationary observations38
at fixed points, while Lagrangian methods involve measurements taken directly from the bicycle,39
allowing the tracking of individual cyclists’ speeds over time and space.40

GPS-based methods fall into the former category. They have the advantage of easily col-41
lecting large sample sizes during the ride, hence reducing sampling bias and providing more robust42
estimates. However, they can be limited by battery life, signal loss in urban canyons, and the need43
for participants to carry additional devices. Smartphone GPS can be a compromise, offering a con-44
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venient and accessible way to collect individual speed data while mitigating some of the challenges1
associated with dedicated GPS devices. On the other hand, stationary methods like radar guns and2
inductive loops can continuously monitor speeds without requiring individual participation, but3
they may miss variations in individual travel patterns and are constrained to specific locations.4

GPS-based studies are prevalent in analyzing cyclists’ speed behavior, allowing the deter-5
mination of various speed types like trip mean speed, edge mean speed, and tracking point speed6
(19). Each method provides unique insights, contributing to a comprehensive understanding of7
speed behavior. Yan et al. (19) identified three sources of speed variation: between cyclists, be-8
tween trips of the same cyclist, and within a single trip. Trip mean speed (option a) focuses on9
differences between cyclists, edge mean speed (option b) analyzes trip segments, and the tracking10
point approach (option c) provides the most granular analysis by calculating speed at individual11
tracking points (TP).12

Table 1 provides an overview of existing studies examining cycling speeds. The table13
differentiates between the data collection method (on-site instrumentation, standalone GPS, and14
smartphone-based or integrated sensor packages (both including GPS)) and analysis or modeling15
focus (trip mean, edge mean, tracking-point or observation-based). It further provides the sample16
size as stated in the respective publications (where possible, observations in the unit of analysis17
are provided). The former Swiss classification was used to distinguish between various bicycles,18
including e-bikes, as it aligns with European regulations, though it differs from US and Chinese19
standards. According to Swiss Law (VTS) (25), a normal bicycle (Fahrrad) cannot have electric20
support (Art. 24). An e-bike (Leicht-Motorfahrrad) has a maximum power output Pmax of 0.50 kW21
and a maximum assisted speed vmax,supported of 25 km/h (Art. 18b). An s-pedelec (Motorfahrrad)22
has a Pmax of 1.00 kW and a vmax,supported of 45 km/h (Art. 18a).23

One can see that the reported speeds for conventional bicycles or undifferentiated bicycles24
range from roughly 15 to 20 km/h. For e-bikes, speeds between 17.4 and 22.5 km/h are reported.25
Only two studies from Schleinitz et al., Twisk et al. (13, 22) report speeds for s-pedelecs which26
are 24.5 and 28.8 km/h respectively. It is difficult to see effects on speed due to the different data27
collection methods. However, comparing Schleinitz et al. (13) with Twisk et al. (22), it appears28
that trip mean speeds are slower than edge mean speeds as expected. Gradient effects could be seen29
in various previous studies (11, 13, 14), however mostly only for uphill and with the anticipated30
effects. Gender differences, i.e. women typically cycling slower than men, can be seen in several31
studies (e.g (14, 22)). The most relevant comparative work for our study w.r.t. the raw data used is32
Flügel et al. (14) since they use a similar collection and analysis method. The most relevant w.r.t.33
results and insights is Schleinitz et al. (13), as they report speeds for all bicycle types and provide34
valuable analysis on different factors such as infrastructure or demographics.35

DATA AND METHODS36
Initial data37
We use the EBIS (24) dataset, which includes the GPS traces of over 3,000 participants that were38
tracked over multiple weeks in 2022/2023 in Switzerland. Participants used the Catch-my-Day39
app to passively record their movements. The app segments the stream of signals into individual40
trips and performs machine learning based mode detection on those. The obtained chains of trips41
are visualized within the app, and participants were encouraged to validate those. In addition,42
participants also responded to a web-based introduction survey. This survey collected information43
about socio-demographic and physical indicators, as well as about mobility tool ownership and44
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Method Sample Size Reported speeds [km/h]
Study Type Collection Analysis Model N. Obs. N. Part. Bicycle E-bike S-pedelec

Eriksson et al.
(11), 2019

e on-site instru-
mentation

observation-
based

- 4,604 unk. ≈ 15 - -

Schleinitz
et al. (13),
2017

λ integrated
sensor pack-
age

trip mean - 4,327 trips 85 15.3 17.4 24.5

Flügel et al.
(14), 2019

λ smartphone-
based

edge mean weighted lin-
ear regression
model with
log transfor-
mation

< 50,000 721 16.3 17.7 -

El-Geneidy
et al. (15),
2007

λ standalone
GPS

edge mean least squares
regression
model

315 8 ≈ 16 - -

Huertas-
Leyva et al.
(20), 2018

λ integrated
sensor pack-
age

tracking-point - 61h 6 16.7 20.4 -

Mohamed and
Bigazzi (21),
2019

λ smartphone-
based

tracking-point
& trip mean

- 1,451 trips 260 17.3 22.5 -

Twisk et al.
(22), 2021

λ integrated
sensor pack-
age

tracking-point
& edge mean

multilevel lin-
ear model

832 trips 46 17.6 21.0 28.8

Hassanpour
and Bigazzi
(12), 2024

e on-site in-
strumentation
(26)

observation-
based

mixed-effects
regression
model

25,053 unk. 18.9 22.4 -

Clarry et al.
(16), 2019

λ smartphone-
based

edge mean multilevel
linear mixed
models

3,511,527 obs. 518 19.7 - -

Arnesen et al.
(18), 2019

λ smartphone-
based

tracking-point forward
Markov
model

544,000 15 ≈ 20 - -

Strauss and
Miranda-
Moreno (17),
2017

λ smartphone-
based

edge mean linear regres-
sion model

> 10,000 trips < 1000 ≈ 20 - -

Yan et al. (19),
2024

λ standalone
GPS

tracking-point multilevel
linear mixed-
effects models

255,228 TP 64 - - -

TABLE 1: Comparison of previous studies.

aggregated usage patterns.1
For this study, we limit ourselves to the Zurich metropolitan area (approx. 360km2), as a2

highly enriched network is available from previous work, and the area covers all relevant combi-3
nations of terrain and build environment conditions. The raw GPS traces were map-matched to the4
network using the methodology presented in (27). For said area, a total of 22,626 trips from 8635
respondents were analyzed, covering 85,340km and resulting in 2,135,556 network edges (avg.6
94.35 edges per trip). A mutually exclusive assignment of bicycle type was necessary because7
the app could only auto-detect bicycles and validate e-bikes, while the introduction survey also8
included the options to report s-pedelecs ownership and usage. Participants confirmed their mode9
of transportation as either electrically supported or not, which was insufficient to determine the10
specific bicycle type. Therefore, a more restrictive selection was implemented: bicycle riders that11
did not own any type of electric bicycle, e-bike riders which did not have access to an s-pedelec12
and confirmed their mode as e-bike, and analogue for s-pedelec. This resulted in 1,052,040 valid13
observations which could mutually exclusively be assigned to one bicycle type.14
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Edge mean speed calculation methods1
Calculating the edge mean speed requires averaging speed over edge lengths. Calculated speeds of2
less than 1 km/h and more than 100 km/h were eliminated, similar to Strauss and Miranda-Moreno3
(17) which used a filter of 1-30 km/h for trip mean speeds. We chose different values due to the4
diverse terrain allowing high downhill speeds. GPS accuracy in urban environments varies, with5
shorter edges being less accurate due to fewer data points, as noted by Modsching et al. (28). We6
hence tested a threshold value for the minimal length for edges to be considered in the analysis7
(10, 50, 100 m). This was done due to the general noise and varying sampling frequencies of the8
data at hand.9

This work employs two speed calculation methods: (a) trip mean speeds and (b) edge10
mean speeds. Trip mean speed are calculated using the timestamps and the total map-matched11
trip length. To calculate edge mean speed, the most appropriate start and end points on each edge12
must be identified, for which we tested different methods. We tested a naive approach that only13
considered the closest point to the edges’ start- and end-node, as well as more sophisticated ones14
that excludes intersection-related delays. A brief analysis and manual inspection of resulting edge15
speeds confirmed that the more sophisticated method combined with an edge threshold length of16
100 meters does indeed provide substantially more plausible and less noisy results. Said method17
is depicted in Figure 1, showing three trajectories along the same edge. It uses a 20-meter buffer18
around intersections to exclude any GPS points that could potentially be attributed to slowing-19
down or waiting in front of an intersection. The GPS points outside this buffer but within 3020
meters are identified, and the closest to the segment’s end node is selected. To correctly identify21
cyclists travelling towards the other end of the intersection, considering the direction of GPS points22
around intersections was necessary. For an observation to be valid, the closest GPS point must be23
near the opposite end of the road segment and face the direction of travel, ensuring it corresponds24
to a cyclist moving towards the target segment after passing the intersection. A valid result (a)25
in Figure 1 shows a trajectory with some waiting time that is excluded for the calculation. An26
invalid result (b) represents a trajectory with e.g. a low sampling frequency, therefore not having27
enough data points in the range of the edge length/the respective buffer zones. Subfigure (c) shows28
a trip for which no observation can be derived due to obvious noise in the trajectory. Given valid29
results, i.e. observations, the resulting edge mean speed is calculated using the euclidean and30
temporal distance between the identified start- and end-point. Compared to the naive approach, the31
developed method generates valid observation only for a fraction of the map-matched edges, i.e.32
24.2%. Only considering edges with a minimum length of 100 meters further reduced the sample33
by 92.97 %, which resulted in a final sample size of 17,891 observations.34

Filtered dataset35
From the initial 2,135,556 observations, the various filtering and processing steps described above36
lead to a final sample size of 17,891 valid observations. The observations lie in the period between37
28.09.2022 and 01.08.2023. They come from a total of 351 participants, with an average of 50.9738
observations per participant. Only 2 participants riding conventional bicycles reported their gender39
to be "Other". Due to the small size of this category, further specific analysis was not performed40
for it, however, their recordings were included into the data. The average number of observations41
per edge is 6.69. It was therefore not possible to calculate any type of intra-person- or intra-42
trip-variation as e.g. performed by Yan et al. (19). The participants of the resulting sample are43
roughly representative in terms of age and BMI distribution when compared to national statistics,44
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(a) Valid result. (b) Invalid result. (c) No result.

FIGURE 1: Identification of start- and end-points for a given network edge.

but skewed towards being more male (29–31). The resulting sample composition w.r.t. the relevant1
attributes is shown in Table 2.2

category Bicycle E-Bike S-Pedelec ALL
gender f m o ∑ f m o ∑ f m o ∑ f m o ∑

age [years]
below 40 45 56 1 102 9 10 0 19 0 8 0 8 54 74 1 129
40 to 60 24 75 1 100 28 15 0 43 7 24 0 31 59 114 1 174
above 60 4 21 0 25 6 12 0 18 1 4 0 5 11 37 0 48
BMI [kg/m2]
<20 13 12 0 25 4 1 0 5 1 0 0 1 18 13 0 31
20-25 49 105 2 156 28 19 0 47 6 17 0 23 83 141 2 226
25-30 8 32 0 40 10 14 0 24 1 17 0 18 19 63 0 82
30-35 2 3 0 5 1 3 0 4 0 1 0 1 3 7 0 10
>35 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
no data 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1
All 73 152 2 227 43 37 0 80 8 36 0 44 124 225 2 351

TABLE 2: Age and BMI by gender of the participants among the filtered dataset.

DESCRIPTIVE RESULTS3
Figure 2 shows the mean trip speed distributions (i.e. those over the whole matched trajectory) for4
the different bicycle types. One can see that e-bikes have a slightly higher average mean trip speed5
(18.55 km/h) than regular bicycles (17.62 km/h), while s-pedelecs are nearly 5 km/h faster than e-6
bikes (23.24 km/h). The distributions show that bicycles and e-bikes generally have similar ranges7
of observed speeds, more so than intuitively expected. S-pedelecs consistently reach higher speeds8
than both. Statistical t-tests further highlight these differences; bicycles vs. e-bikes with t = -6.70,9
bicycles vs. s-pedelecs with t = -25.25, and e-bikes vs. s-pedelecs with t = -19.04 (p « 0.01 for all10
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comparisons) confirm that the observed speed differences are statistically significant. The obtained1
values are comparable to those reported in Schleinitz et al. (13), i.e. 15.3 for bicycles, 17.4 for e-2
bikes and 24.5 km/h for s-pedelecs. The slightly lower mean trip speeds for s-pedelecs in our study3
may be due to Zurichs’ terrain conditions which are much more varying than in Schleinitz et al.4
(13). When comparing with overseas data, mean trip speeds align with Mohamed and Bigazzi (21)5
(15.7 km/h for bicycles and 21.7 km/h for e-bikes), however, direct comparison is challenging due6
to differing bicycle type categories in North America and Europe (23).7

FIGURE 2: Trip mean speeds in km/h.

Socio-demographic effects8
Table 3 provides an overview of edge mean speeds in km/h categorized by age, gender, BMI and9
bike type. For regular bicycles, males have a mean speed of 20.33 km/h, intuitively higher than10
females at 18.11 km/h. For e-bikes, males ride at a mean speed of 21.48 km/h, while females ride11
slightly faster at 22.13 km/h, which is less intuitive. The male e-bike riders in our sample have a12
higher average BMI, 25.07 compared to 23.32 for females, which might explain this effect. For13
s-pedelecs, males reach the highest edge mean speed of 28.63 km/h, while females only reach an14
edge mean speed of 26.25 km/h. Previous studies by Flügel et al. (14) and Twisk et al. (22) show15
persistent gender differences in cycling speeds, including e-bikes. Flügel et al. (14) report a 13%16
difference between men and women for bicycles, closely matching this study’s 11% difference.17
However, the larger differences reported by Twisk et al. (22) are not observed here, likely due to18
the small sample size of female s-pedelec riders in our data.19

The effects of age onto cycle speeds are additionally shown in Figure 3. The age-related20
decline in cycling speed is evident across all bike types. For bicycles and e-bikes, younger riders21
(20-40 years) have higher average edge mean speeds (21.04 km/h, 23.65 km/h resp.) than those22
aged 40-60 (19.82 km/h, 22.69 km/h resp.) and 60-80 (15.21 km/h, 19.05 km/h resp.), with a23
gradual decrease in speed. The spread of edge mean speeds is more variable among younger24
riders. S-pedelecs show the strongest decline in average edge mean speeds with age, with younger25
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riders having much higher speeds than older riders (29.14 km/h vs 17.61 km/h). This could be due1
to more risky behaviour among younger cyclists, as it can be seen in Wang et al. (32). Generally,2
s-pedelecs show the largest variability w.r.t. age, which is unexpected given that these bicycles3
provide the highest possible level of electric assistance.4

Regarding the BMI, effects on speed are present, but rather small. On bicycles, speeds5
range from 12.34 km/h for BMI 30-35 to the fastest speeds at 21.48 for 25-30 BMI. These results6
align with the effects on e-bikes (14.50 to 23.67 km/h), which show the same speed behaviour7
depending on BMI. S-pedelecs show a decrease in speed with a larger BMI (29.21 km/h for BMI8
<20 to 26.23 km/h for BMI 25-30), however the influence is minimal, which might be due to the9
high motorization of s-pedelecs which do not require a lot of physical effort. In total, BMI effects10
seem to be small or even counter-intuitive as speeds can be higher with a larger BMI. Our data can11
therefore not confirm the results presented in e.g. Rauner et al. (33), which implicate a correlation12
between BMI/physical fitness and cycling performance.13

FIGURE 3: Edge mean speed distributions for different bicycle types and age groups in km/h.

Terrain effects14
The effect of gradients is shown in Figure 4. One can see that conventional bicycles reach their15
highest edge speed of 26.90 km/h on moderate downhill slopes (-10% to -2%), but the edge speed16
drops to 18.56 km/h on steeper slopes (< -10%), probably due to safety concern of riders. On flat17
terrain (-2% to 2%), the speed averages 20.85 km/h, while uphill gradients (2% to 10%) reduce18
speed to 13.83 km/h. E-bikes show a similar trend with peak edge speeds of 27.58 km/h on19
moderate downhills and 17.61 km/h on steep uphills. For slopes steeper than -10% one can observe20
the same effect as for regular bikes, i.e. riders tend to specifically slow down if streets get too steep.21
S-pedelecs reach 28.83 km/h downhill and 23.07 km/h uphill, reflecting their enhanced electric22
support. Differences between bike types have been t-tested and are all statistically significant on23
flat and uphill terrains (p < 0.01, each type compared to both the other types individually), likely24
due to motorization differences. There is no significant difference between bicycles and e-bikes on25
downhill slopes (p > 0.1), which is intuitive as e-bikes are limited to 25 km/h.26

Flügel et al. (14) find the highest speeds in downhills of -5 to -6%, which confirms the27
theory of a possible speed reduction on larger downhill gradients. All bike types’ obtained speeds28
when riding on flat surfaces (-2% to 2%) are significantly higher than the average speed for all29
bike types. This confirms the findings of Clarry et al. (16) that show that the time loss for cycling30
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Criterium Bicycle E-Bike S-Pedelec All bike types
Mean SD N Mean SD N Mean SD N Mean SD N

gender
male 20.33∗∗∗ 9.00 9195 21.48∗ 8.62 1461 28.63∗ 9.75 1346 21.40∗ 9.41 12002
female 18.11∗∗∗ 7.67 2460 22.13 8.21 2665 26.25∗∗∗ 10.11 525 20.76∗∗∗ 8.58 5650
other 21.68∗∗∗ 10.33 239 nan nan 0 nan nan 0 21.68 10.33 239

age [years]
below 40 21.04∗∗∗ 9.14 4818 23.65∗∗∗ 8.34 401 29.14∗∗ 9.37 318 21.69∗∗∗ 9.30 5537
between 40 and 60 19.82 8.50 5530 22.69∗∗∗ 8.60 2810 29.00∗∗∗ 10.04 1178 21.80∗∗∗ 9.23 9518
above 60 15.21∗∗∗ 8.57 860 19.05∗∗∗ 6.41 751 17.61∗∗∗ 8.48 43 17.01∗∗∗ 7.89 1654
unknown 18.37∗∗∗ 6.98 686 17.12∗∗∗ 7.61 164 24.49∗∗∗ 8.47 332 19.92∗∗∗ 8.04 1182

BMI [kg/m2]
<20 18.87∗∗ 6.99 397 22.41 7.03 34 29.21 6.25 5 19.26∗∗∗ 7.12 436
20-25 19.37∗∗∗ 8.60 6945 21.22∗∗∗ 8.22 2211 28.59∗ 9.98 1415 20.99∗ 9.25 10571
25-30 21.48∗∗∗ 9.06 4208 23.67∗∗∗ 8.02 1679 26.23∗∗∗ 9.28 438 22.39∗∗∗ 8.92 6325
30-35 12.34∗∗∗ 6.48 342 14.50∗∗∗ 7.86 202 17.20∗∗∗ 12.48 11 13.22∗∗∗ 7.24 555
other 10.30 1.28 2 nan nan 0 17.61 9.97 2 13.95 7.17 4

overall 19.90 8.82 11894 21.90 8.36 4126 27.96 9.91 1871 21.20 9.17 17891

TABLE 3: Edge mean speeds in km/h by sociodemographic criteria (gender, age, BMI).
Note: ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1. Values from Welch’s t-tests when comparing the respective category to all other values of the bike type.

uphill is not compensated when riding downhill. These findings can also be confirmed for electric1
bicycles. Our findings are also generally aligned with Schleinitz et al. (13), i.e. uphill is around 52
km/h slower than downhill. The comparison is, however, not easy due to the noticeable differences3
in terrain, data collection method and sample size.4

FIGURE 4: Edge mean speed distributions for different gradient levels in km/h.

Infrastructure effects5
Table 4 shows the effects of infrastructural features as described through commonly used OSM6
tags. When looking at the road type ("highway" tag), all bicycle types generally achieve the highest7
speeds on primary, secondary, and tertiary roads as opposed to all other "highway" tags. For these8
three road types, regular bicycles have a rather constant speed of around 22 km/h, while e-bikes9
and s-pedelecs ride slightly faster (around 10%) on secondary/primary (26.2 km/h and 33.6 km/h)10
roads respectively. Residential and living streets tend to produce below-average speeds across all11
bicycle types. Twisk et al. (22) distinguished urban from rural areas and find slower speeds in12
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urban areas with more residential roads.1
Speed limits show a clear pattern, where higher speed limits generate higher speeds across2

all bicycle types in an almost linear way. It can be seen that s-pedelecs exceed the speed limit on3
roads limited to 20 km/h (edge mean speed of 23.9 km/h). Considering that the obtained values are4
mean edge speeds one has to assume that they also frequently exceed the speed limit in 30 km/h5
limited streets (edge mean speed of 26.2 km/h). These findings are similar to Twisk et al. (22), that6
reported high speeding rates among s-pedelec riders in the Netherlands, with 90% exceeding the7
local 25 km/h limit.8

The surface types have the expected impacts on observed speeds. Asphalt intuitively gen-9
erates the highest speeds; s-pedelecs average at 29.09 km/h, e-bikes at 22.66 km/h, and regular10
bicycles at 20.44 km/h. Gravel surfaces tend to generate the lowest speeds, especially for regular11
bicycles (12.06 km/h) and e-bikes (19.43 km/h). The high values for s-pedelecs on gravel are prob-12
ably due to measurement noise (31.60 km/h). These results align with Ahmed et al. (34) showing13
that speeds are highest on asphalt and lowest on gravel.14

Finally, the presence of cycling infrastructure also affects observed speeds. Switzerland15
currently has two main types of dedicated infrastructure, one being painted lanes on motorized16
streets, the other being paths that are separated from motorized traffic. The highest speeds are17
observed on lanes across all bicycle types; regular bicycles average at 21.18 km/h, e-bikes at 25.2918
km/h, and s-pedelecs at 31.09 km/h. While this seems counter-intuitive, it should be noted that on19
the one hand, cycle paths, especially in the city of Zurich, are often shared with pedestrians, hence20
naturally slowing down cyclists. On the other hand, one could argue that cyclists try to increase21
their speed when being in mixed traffic conditions, i.e. sharing the road with faster cars. These22
findings are contrary to those from Flügel et al. (14), El-Geneidy et al. (15) and Clarry et al. (16),23
but can be explained by the different types and implementations of cycling infrastructure.24

Weather effects25
Table 5 shows the effects of precipitation onto observed cycling speeds. The weather data is26
sourced from Zurich’s Open Data platform (35) and includes variables like air pressure, precipita-27
tion, temperature, relative humidity, and global radiation. Wind data is not available at an adequate28
scale for it to be effectively used for analysis (only 3 measurement stations within the study area).29
The rain intensity was classified into four categories: heavy rain (precipitation >30 minutes during30
the hour of the recorded trip), medium rain (10-30 minutes), light rain (0-10 minutes), and no rain.31
One can observe a rough dependency of speed and rain intensity across all bicycle types. Regular32
bicycle riders under no rain have a mean speed of 19.83 km/h. This increases slightly higher under33
light rain (20.11 km/h) and heavy rain (21.19 km/h). E-bike riders show significant speed increases34
in heavy rain (23.57 km/h) compared to no rain (21.67 km/h). S-pedelec speeds range from 27.6935
km/h in no rain to a maximum mean of 29.25 km/h under light rain conditions. The speed slightly36
decreases with higher rain intensity, potentially due to s-pedelec riders’ safety concerns at higher37
speeds in heavy rain. One a general note, Yan et al. (19) found similar trends, noting increased38
speeds in light to medium rain, but did not observe the significant increase under heavy rain as39
partly observed in our study.40
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Attribute Bicycle E-Bike S-Pedelec All bike types
Mean SD N Mean SD N Mean SD N Mean SD N

road type
path 20.20 7.47 1074 21.56 7.37 304 29.58∗∗ 7.59 106 21.14 7.83 1484
primary 22.32∗∗∗ 8.50 1261 23.21∗∗∗ 7.84 321 33.63∗∗∗ 10.39 162 23.53∗∗∗ 9.17 1744
secondary 21.61∗∗∗ 8.62 1159 26.19∗∗∗ 9.04 502 30.97∗∗∗ 10.34 210 23.89∗∗∗ 9.50 1871
tertiary 22.20∗∗∗ 9.72 2654 23.55∗∗∗ 8.36 942 30.91∗∗∗ 9.00 392 23.37∗∗∗ 9.69 3988
residential 18.61∗∗∗ 7.90 2903 20.74∗∗∗ 7.36 1056 26.63∗∗∗ 9.09 496 20.01∗∗∗ 8.31 4455
living street 19.56 6.97 281 13.21∗∗∗ 8.45 28 24.57∗ 7.75 19 19.31∗∗∗ 7.46 328
unclassified 16.98∗∗∗ 7.65 714 20.28∗∗∗ 7.01 209 25.87∗∗ 10.67 107 18.58∗∗∗ 8.37 1030
service 18.57∗∗∗ 9.54 633 20.41∗∗ 7.44 164 22.16∗∗∗ 8.62 149 19.45∗∗∗ 9.16 946
track 15.44∗∗∗ 8.44 969 17.52∗∗∗ 8.73 457 23.00∗∗∗ 9.03 198 16.95∗∗∗ 8.93 1624

speed limit
20 km/h 19.22 7.90 249 12.99∗∗∗ 7.37 22 23.95∗∗ 7.61 21 19.09∗∗∗ 8.10 292
30 km/h 18.96∗∗∗ 7.91 3160 21.08∗∗∗ 7.61 1119 26.23∗∗∗ 8.88 511 20.23∗∗∗ 8.26 4790
50 km/h 20.58∗∗∗ 9.15 4589 23.45∗∗∗ 8.51 1480 30.42∗∗∗ 10.08 750 22.28∗∗∗ 9.63 6819
60 km/h 25.10∗∗∗ 7.39 506 23.71∗∗ 9.13 134 31.63∗∗∗ 11.05 100 25.73∗∗∗ 8.62 740
80 km/h 27.89∗∗∗ 10.27 343 26.30∗∗∗ 7.55 207 30.94 9.94 23 27.44∗∗∗ 9.41 573

surface type
asphalt 20.44∗∗∗ 8.61 10676 22.66∗∗∗ 8.04 3665 29.09∗∗∗ 9.64 1592 21.82∗∗∗ 8.97 15933
compacted 14.02∗∗∗ 7.50 365 14.07∗∗∗ 7.28 139 25.87∗∗ 8.04 64 15.37∗∗∗ 8.38 568
fine gravel 12.06∗∗∗ 9.62 158 19.43∗ 7.50 28 31.60 13.93 6 13.75∗∗∗ 10.30 192
gravel 13.03∗∗∗ 7.62 83 12.38∗∗∗ 8.52 84 18.37∗∗∗ 6.81 76 14.48∗∗∗ 8.12 243

cycling infr.
path 19.96 8.11 2856 20.89∗∗∗ 7.58 843 29.75∗∗∗ 8.58 417 21.14 8.56 4116
lane 21.18∗∗∗ 7.62 982 25.29∗∗∗ 7.96 306 31.09∗∗∗ 8.89 182 23.26∗∗∗ 8.54 1470
none 19.72∗∗∗ 9.18 8056 21.84 8.53 2977 26.93∗∗∗ 10.27 1272 20.97∗∗∗ 9.41 12305

overall 19.90 8.82 11894 21.90 8.36 4126 27.96 9.91 1871 21.20 9.17 17891

TABLE 4: Edge mean speeds in km/h by OSM attributes.
Note: ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1. Values from Welch’s t-tests when comparing the respective category to all other values of the bike type.

Criterium Bicycle E-Bike S-Pedelec All bicycle types
Mean SD N Mean SD N Mean SD N Mean SD N

heavy rain 21.19∗∗∗ 9.53 689 23.57∗∗∗ 9.26 212 28.67 9.30 114 22.52∗∗∗ 9.73 1015
medium rain 19.16∗ 7.57 352 25.27∗∗∗ 8.19 165 28.85 10.23 108 22.44∗∗∗ 9.12 625
light rain 20.11 8.70 834 21.36 8.44 369 29.25∗ 9.67 176 21.61∗ 9.24 1379
no rain 19.83∗ 8.82 9943 21.67∗∗∗ 8.27 3360 27.69∗∗ 9.98 1452 21.02∗∗∗ 9.12 14755

overall 19.90 8.82 11894 21.90 8.36 4126 27.96 9.91 1871 21.20 9.17 17891

TABLE 5: Edge mean speeds in km/h by rain intensity.
Note: ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1. Values from Welch’s t-tests when comparing the respective category to all other values of the bicycle
type.
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MODELING RESULTS1
Edge speeds2
The following presents the estimation and application of a model used to predict the edge speeds3
given certain conditions (edges, individual, weather). The modeling of speeds is not the primary4
focus of this paper. It is however still of interest to understand how the different factors impact5
observed edge mean speeds relative to each other. The literature that estimates statistical models6
to describe the speed on links/edges is scarce. From the studies listed in Table 1, several of them7
estimated models (12, 14–19, 22). Clarry et al., Yan et al., Twisk et al. (16, 19, 22) used multilevel8
approaches to better identify patterns on road segments or individual performance. Hassanpour9
and Bigazzi, Flügel et al., El-Geneidy et al., Strauss and Miranda-Moreno (12, 14, 15, 17) all10
use different types of regression models. Only Arnesen et al. (18) employ a completely different11
approach with their implementation of a forward Markov model. Flügel et al. (14) used a linear12
regression model and included link- and trip-based characteristics, in particular they also used13
horizontal curvature, type of crossing at the start or end of the link and edge length. Strauss14
and Miranda-Moreno (17) used a linear regression model with aggregated speeds over segments,15
Clarry et al. (16) presented a model that looks at intra-trip and intra-person effects. Twisk et al.16
(22) included factors such as "risk-taking" and "sensation-seeking".17

We only focused on methods available through the SKLEARN Python package, due to the18
simplicity of estimating and comparing a wide range of models. These include various linear19
regression models as well as commonly known supervised machine learning techniques, espe-20
cially tree-based methods. We cross-validated these methods based on the Mean Squared Error21
(MSE) using a 80/20 train/test split. Hyperparameter optimization was performed using random-22
ized search. An overview about the considered model variables is shown in Table 6. Categorical23
features were hot-encoded, and missing numerical values were imputed or dropped. We tested the24
different available models on three sets of variables; one using all of them, one excluding weather25
data (infrastructure and socio-demographics only), and one using only infrastructure related vari-26
ables. We also tested estimating individual models for each bicycle type, similar to Flügel et al.27
(14), which estimated an individual model for e-bikes. The best performing model resulted to28
be the ExtraTrees Regressor using the full set of variables and using the bicycle type as an input29
variable, with a resulting MSE of 37.605 (km/h)2 and Root Mean Squared Error (RMSE) of 6.13230
km/h. The ExtraTrees models are similar to the popular Random Forest models, and also have a31
built-in derivation of impurity-based feature importance.32

The respective results are shown on the right-hand side of Table 6. The, by far, most33
important variable turns out to be the gradient which is intuitive and expected given the setting34
of our study area. The second most important variable is the BMI. This is, again, very intuitive35
as the BMI can be considered as a proxy for how fit individuals are and consequently how much36
power they can transmit through the pedals. The age of individuals is the third most important37
feature. It can also serve as proxy for the fitness of participants or the risk-taking behaviour of the38
cyclists. The fourth/fifth most important feature is the bicycle/street type. Rain only shows small39
influence which reflects the findings from the descriptive results. Interestingly, the bicycle type has40
only a small feature importance. However, when using the model for predictions, one can clearly41
see the large influence of the bicycle type on the predicted speed, especially on uphill sections.42
Hassanpour and Bigazzi (12)’s model shows a larger decrease in speed when increasing grade for43
bicycles than for motorized vehicles. In Figure 4, similar effects can be seen as well as when using44
our model for specific speed predictions. Other factors that were not included in our model could45
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Parameter Data type Range of values Unit Importance

age continuous 17 to 78 a 0.1031
BMI continuous 18.25 to 35.49 kg/m2 0.1125
gender category Female, Male, Other 0.0299

bicycle type category Bicycle, E-Bike, S-Pedelec 0.0752

gradient continuous -44.9 to 44.9 % 0.3130
road type (OSM highway) category cycleway, living street, path, primary, primary link, residential, sec-

ondary, secondary link, service, tertiary, tertiary link, track, unclassified
0.0718

maxspeed category 10, 20, 30, 50, 60, 80, nan km/h 0.0677
bike infrastructure category lane, none, path 0.0299
surface category asphalt, compacted, concrete, dirt, fine gravel, grass, gravel, ground,

nan, paved, paving stones, pebblestone, sett, unpaved, woodchips
0.0361

pedestrian infrastructure category designated, nan, no, use sidepath, yes 0.0453
lanes category 1, 2, 3, 4, 5, nan 0.0638

rain duration continuous 0.0 to 60.0 min/h 0.0457

TABLE 6: Feature importances and parameter characteristics.

be influential on the speeds. Especially cyclist behaviour could play a role, as it has been seen1
in other studies (22). Flügel et al. (14) reports a speed reducing effect of curvature, but none of2
different type of crossings at the start or end of the edge.3

Intersection delays4
Given the estimated model, we calculated the predicted travel times for all trips that constituted5
to the dataset of 17,981 observed edges, and compared those to the observed trip travel times.6
This allows to derive intersection delays, which can be of specific relevance when e.g. calibrating7
agent-based simulations. Similarly to the literature on speed models mentioned above, the one8
on cyclists’ intersection delay times is scarce. We derived the intersection delays by taking the9
difference of predicted over observed trip travel times, and dividing this by the number of inter-10
sections along each respective trip. We only consider signalized intersection as described by the11
"highway" tag for OSM nodes. The resulting intersection delays are shown in Figure 5. Negative12
values reflect cases where cyclists travel faster than predicted. The mean waiting time is the highest13
for e-bikes (14.10 seconds), followed by s-pedelecs (13.53 seconds), and bicycles (9.23 seconds).14
T-tests showed significant differences in waiting times between regular bicycles and e-bike (t =15
-14.67, p < 0.01) and s-pedelecs (t = -9.37, p < 0.01), but not between e-bikes and s-pedelec (t16
= 1.09, p = 0.28). The shorter delay for regular bicycles are probably a result of the given street17
network layout in combination with the respective design of the traffic signal system and its cycle18
times. We do not think that these findings generally hold across different study areas.19

The existing literature, such as Poliziani et al. (36), generally report shorter waiting times at20
traffic lights of around 5 seconds, possibly due to the consideration of other intersection types like21
pedestrian crossings. Strauss and Miranda-Moreno (17) show intersection delays of mostly below22
6 seconds. Isenschmid (37) reports a larger waiting time of more than 15 seconds. Our reported23
waiting times are therefore within the range of the literature. No exisiting study previously reported24
waiting times differentiated by bicycle types.25

CONCLUSION26
This study provides an empirical analysis of cycling speeds in Zurich, Switzerland. The GPS traces27
of 351 participants from the EBIS study (24) were map-matched to an OSM network, allowing to28
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FIGURE 5: Intersection delays differentiated by bicycle type.

derive descriptive statistics on trip mean speeds, but more interestingly on edge mean speeds in1
dependence of various factors. These include the three commonly used bicycle types in Europe,2
highway OSM tags, socio-demographic indicators, as well as gradients and precipitation levels.3
Doing so, this study provides, to the best of our knowledge, the most comprehensive analysis on4
GPS-based cycling speeds to date.5

We find mean trip speeds of 17.6 km/h for regular bicycles, 18.5 km/h for e-bikes (assis-6
tance up to 25 km/h), as well as 23.2 km/h for s-pedelecs (assistance up to 45 km/h). The mean7
edge speeds are slightly higher at 19.9 km/h for regular bicycles, 21.9 km/h for e-bikes, and 27,98
km/h for s-pedelecs. The socio-demographic effects are intuitive, i.e. they generally reveal that9
women, older individuals, and those with higher BMI tend to reach slower speeds than their re-10
spective counterpart. Gradients have anticipated effects, i.e. cyclists achieve smaller speeds when11
driving uphill, the more the less electrical assistance the bicycle provides. For steep downhill sec-12
tions (depending on bicycle type, starting at around -6%), cyclist across all bicycle types tend to13
slow down, potentially due to safety concerns. We found that the street design/layout, characterized14
through OSM tags, mostly influence cycling speeds as expected. Residential and living streets tend15
to have smaller, while primary and secondary streets tend to have higher speeds. Higher speed lim-16
its lead to higher speeds, while it is notable that s-pedelecs riders tend to cycle faster than allowed17
in 20/30 km/h limited zones. Gravel tends to generate slower speeds than asphalt surfaces. The18
dominant type of cycling infrastructure in Zurich consists of painted lanes on motorized streets,19
for which we observed higher speeds than without lanes or as on separated cycling paths. The lat-20
ter are however typically shared with pedestrians. Finally, rainy conditions lead to higher speeds,21
especially for regular bicycles and e-bikes. Generally, the effects found in this study mostly align22
with those from the existing literature. Certain selected effects are counter intuitive, probably due23
to measurement noise and/or small numbers of observations.24

Apart from the descriptive analysis this study also includes the result of a supervised ma-25
chine learning model to predict mean edge speeds. The model reveals that the most important26
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variables explaining speeds are gradients, BMI, age, the type of bicycle, and the type of street.1
The model was further used to predict the travel times for complete trips and to derive intersection2
delays by comparing the predicted speeds over whole trips to the actual trip durations. The results3
show that electrified bicycles tend to have larger waiting times at intersections.4

The most practical application of our results is their consideration for the design of cycling5
infrastructure. One of the main criteria when designing (multi-modal) infrastructure is the dif-6
ference in speeds across the respective participants. Our results help to explain the heterogeneity7
across different bicycle types, individuals and infrastructural components.8

There are two notable limitations to this study. On the one hand, the noise within the GPS9
data makes it difficult to leverage the complete dataset. Accurately identifying start- and end-10
points for each map-matched edge is challenging, and our method was specifically designed to11
maximize the confidence in the obtained results, consequently only using a small fraction of the12
overall available data. On the other hand, the results are not easily transferable to other regions,13
mainly due to differences in the bicycle type regulations and the design of local infrastructure.14
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