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ABSTRACT1
Traditional route assignment approaches in agent-based models often rely on least-cost path al-2
gorithms, which may not accurately reflect the complex decision-making processes of cyclists.3
This research addresses these limitations by incorporating probabilistic elements into the routing4
model, thus accommodating the variability in route choices observed in real-world scenarios. The5
proposed model integrates a Recursive Logit framework to account for the influence of various6
factors such as gradient, surface quality, traffic conditions, and dedicated cycling infrastructure on7
cyclists’ route selection. A case study using a detailed Zurich scenario demonstrates the model’s8
application and effectiveness. Results show that the probabilistic routing model not only aligns9
more closely with observed cyclist behavior but also offers a robust tool for urban planning and10
policy evaluation aimed at promoting sustainable and active transportation modes.11

12
Keywords: cycling, route-choice, agent-based, MATSim13
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INTRODUCTION1
The transport research community is increasingly interested in agent-based simulations to study ac-2
tive mobility. On the one hand, this interest is driven by a shift of perspective towards more sustain-3
able, healthy, and livable urban environments. On the other hand, micro-/mesoscopic agent-based4
frameworks are specifically well-suited to model active mobility as they allow for high spatio-5
temporal granularity and inter-dependencies. The representation of route choices, that is the traffic6
assignment of any such framework, typically has to capture high levels of heterogeneity when mod-7
eling active modes. The routing behaviour of motorized travel can arguably be well reproduced8
through known routing algorithms, with time and/or distance being minimized under different as-9
signment schemes. However, when considering active modes, the existing literature reports many10
more factors that determine route choices and systematic deviations from shortest routes (1, 2).11
Cyclists, for instance, consider gradient, surface, traffic flow, continuity, intersection design, and12
dedicated cycling infrastructure (3).13

The current standard practice for routing within agent-based simulations relies on generat-14
ing least-cost paths. Cost functions, which are minimized, can be defined using various attributes15
other than just time and distance. The parameters of these cost functions are typically derived16
from empirical results or manually fitted to observed data. However, this approach (referred to as17
all-or-nothing assignment) comes with notable drawbacks, one of them being the exploration of18
the solution space, where the achieved equilibrium does not include different, behaviorally con-19
sistent routes for the same origin-destination (OD) pair. A realistic assignment ideally considers:20
(1) dynamic network effects (see dynamic user equilibrium), i.e., that the route choice depends21
on network attributes that dynamically change, and (2) stochastic agent behavior (see stochastic22
user equilibrium), which accounts for non-deterministic behavior of individuals. The former can23
be accounted for through cost functions that include network attributes that dynamically change24
throughout different simulation stages. The latter requires introducing some sort of stochasticity,25
as e.g. proposed by Nagel et al., Ziemke et al. (4, 5). These high-level approaches are used in26
all open-source agent-based transport simulation frameworks (e.g., MATSim (6), SUMO (7), PO-27
LARIS (8), METROPOLIS (9)). The remaining drawback relates to the underlying core principle28
of generating routes based on cost-minimization algorithms; the interpretation of the generated29
behavior is limited as the results are not based on actual behavioral models.30

This paper presents the integration of explicit discrete route choice models into the agent-31
based framework MATSim. It represents an obvious research direction, which, to the best of the32
authors’ knowledge, has not yet been presented for any other agent-based transport simulation33
framework. Discrete route choice models, estimated from stated- or revealed preference data, are34
backed by years of research and can be effectively used for prediction. They allow to realistically35
model behavioral heterogeneity using econometric theory and typically allow for faster simulation36
convergence towards user equilibria (10). We describe the technical integration of such a model37
into MATSim and demonstrate the results using a case study for the city of Zurich. In the first step,38
we implement the route choice model only for cycling but stress that our method is applicable to39
any mode given a respective model.40

BACKGROUND41
Discrete route choice models42
Discrete route choice models come in two conceptually different types. Path-based approaches43
estimate model parameters by comparing complete routes with each other. Link-based approaches44
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model the choice process sequentially at each link.1
Path-based models rely on two fundamental steps. The first is to derive a set of candidate2

routes - the choice set. The second is to choose one route based on a decision model, typically3
a Logit formulation. The derivation of choice sets is anything but trivial and substantially affects4
estimated model parameters. Most used methods are deterministic and based on some sort of5
repeated shortest path calculations paired with labeling, link elimination, or induced stochasticity6
(see Ton et al. (11) for a detailed review). The decision model is estimated based on observed7
routes for which individual choice sets are created and compared to. The most widely used are8
so-called correction-terms models that adjust the choice probabilities to account for correlation9
across routes, i.e., the Path Size- and C-Logit (12, 13).10

Link-based models were specifically designed to circumvent the choice set generation.11
They decompose the route choice into a problem of sequential link choices. Specifically, decision-12
makers choose at each link, choosing which link to take in the next step until they reach the des-13
tination. The choice set for each decision is explicitly given through the network. Doing so, the14
approach allows for an unbiased estimation of model parameters. In the context of integrating any15
such models in large-scale simulation software, the link-based models has a substantial advantage16
w.r.t. the required computational efforts as, once estimated, one only needs to compute a closed-17
form probability function. The most widely used models are the Recursive Logit (RL) (14), as well18
as its nested version (15) that allows for correlated error terms.19

Route choices in agent-based transport simulations20
Route choices are implemented in different ways across agent-based transport simulation frame-21
works. Nguyen et al. (16) provides an overview of the most relevant agent-based simulation frame-22
works currently used by the research community and how those model route choice decisions. We23
restrict our review to those that best compare to MATSim, i.e., micro-/mesoscopic traffic simu-24
lators which model mid-term decisions (mode, route and destination choice), applied to demand25
modeling on large-scale networks with several hundred thousand agents. Throughout all frame-26
works, a given OD pair is routed using the well-known A* or Dijkstra algorithms based on a given27
cost function.28

Frameworks like POLARIS and METROPOLIS model the routing behaviour solely using29
the above-mentioned routing algorithms. They account for dynamic network effects (e.g., live30
traffic information) by allowing agents to re-route during the actual simulation on the network.31
In METROPOLIS, the agents’ route choices are revised during the simulation on the network at32
every intersection based on currently measured and historical travel times. Similarly, POLARIS33
models route choice in two ways. One is a general re-routing between iterations if the gap between34
experienced and predicted travel times surpasses a specified threshold or is based on live informa-35
tion about the network using a bounded rationality en-route switching model. Both frameworks36
do not generate an actual choice set, and the traffic assignment depends on repeated least-cost path37
calculations under changing network conditions. Neither use an explicit discrete choice model or38
routing with stochasticity, i.e., for a set of given network conditions, they produce an all-or-nothing39
assignment.40

In SUMO, agents are routed based on generalized travel costs for which weights can be41
specified. Each agent’s choice set consists of the last n iterations’ least-cost routes. The choice42
of routes is performed using probabilistic models, including different Logit formulations and the43
C-Logit. MATSim has a similar approach, where agents build a choice set throughout the iterative44
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simulation process. Each agent has a predefined daily activity chain for which it can decide on1
departure time, mode, and route choice. The resulting plan is routed using least-cost paths and2
scored using a global scoring function, which considers all choice dimensions through dedicated3
parameters. At each iteration, agents can change their plan, including re-routing, and select from4
the k plans kept in memory using choice mechanisms. Among others, these include an MNL as5
well as a Path Size Logit. MATSim also supports re-routing during an iteration to incorporate6
dynamic decision-making.7

While SUMO and MATSim are often referred to as using discrete choice models for (route)8
choices, the formulations do not include proper additive utility functions with estimated parame-9
ters. SUMO only uses the generalized costs originating from the routing, and MATSim uses the10
score from the scoring function. The parameters of these cost/score functions are derived from11
the literature and/or manually fitted. Both frameworks also do not build an actual choice set for12
each iteration but rely on enumerated past choices throughout the simulation and are solely based13
on changing network conditions relevant to routing (mostly time). No behaviorally consistent14
stochastic agent behavior can be incorporated. A notable extension of MATSim includes the Bi-15
cycleModule from Ziemke et al. (5). The authors included several cycling relevant attributes in16
the routing cost functions and additional random parameters, however not using explicit discrete17
choice models.18

METHODS19
Conceptual integration20
Discrete choice models have already been paired with MATSim to model mode choice decisions21
(10). In that case, the choice relevant variables like travel times and costs, are calculated for each22
possible mode of a trip (or complete tours), based on the aforementioned routing methods. An23
agent then chooses the mode(s) based on an MNL model formulation. For the integration of the24
route choice models, we follow the same hierarchical structure of choice decision; that is, the route25
is computed individually for each mode before the actual mode is selected, see Figure 1.26

FIGURE 1 Conceptual integration of a discrete route choice model into the MATSim loop.

Different route choice models were evaluated in a preliminary comparative study (17) that27
covers the same scenario used later in this paper. The main evaluation criteria were the compu-28
tational burden and accuracy when predicting the model fit, as well as the behavioural validity29
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of the obtained model parameters. The results showed that, while link- and path-based models1
allow for a similar behavioural interpretation (i.e., parameter signs and relative effect sizes), the2
path-based models are highly sensitive to the choice set generation. These findings are aligned3
with growing consensus within the research community that, if possible, choice set generation4
methods should generally be avoided to increase reproducibility and comparability and decrease5
related biases across different studies. The computational burden for predicting is another practi-6
cal argument for choosing the RL over path-based methods. The fact that trips need to be routed7
independently of which mode is ultimately assigned to them results in a potentially high number8
of required OD pair predictions. Furthermore, these predictions potentially need to be repeated9
throughout different iterations to allow for dynamic network effects.10

Technical integration11
The following presents the relevant technical aspects required to integrate an RL model within the12
MATSim environment. We use the regular RL for demonstration purposes; however, the same13
methodology applies to the nested version. A decision maker at link k will choose the next link a14
from the set of outgoing links A(k) that maximizes the sum of the instantaneous utility u(a|k) and15
the expected downstream utility V d(a), where d is the destination link. The next-link probability16
from link k to link a is given in equation (1):17

Pd(a|k) = e
1
µ
(v(a|k)+V d(a))

∑a′∈A(k) e
1
µ
(v(a′|k)+V d(a′))

(1)18

The expected downstream utility is given by the continuation of this link choice process based on19
the Bellman equation (18), shown in equation (2):20
V d(k) = E[ max

a∈A(k)
(v(a|k)+µε(a)+V d(a))] ∀k ∈ A (2)21

where d is the destination link and u(a|k) = v(a|k)+ε(a) the instantaneous utility. We note22
that the downstream utility of the destination link V d(d) = 0, and the second equality holds when23
the random error ε(a) is assumed to be IID with extreme value type I. The random error term has24
a scale parameter µ , which is fixed for estimation. We do not include the link-size attribute that25
can be used to account for correlated routes (14), due to the commonly reported large additional26
computational burden (19, 20).27

Using the model for prediction involves calculating the downstream utility V d for all links28
towards a given destination d, and then successively applying equation (1) from the origin until d29
is reached. Given estimated parameters for the instantaneous utility u, V d can be calculated in a30
straightforward way by propagating backward through the network starting from d (similar to the31
"backward-pass" in the assignment model of Dial (21)) until all links are processed. While this32
appears to be a suited problem for applying well-known shortest-path (SP) algorithms like Dijkstra33
(i.e., calculating the least-cost path from the destination node to every potential origin node), the34
models applied in this study are estimated on bi-directional graphs and include a u-turn parameter.35
Hence, one has to consider each link’s cost depending on its previous downstream link toward36
the destination. We consequently implement a more general breadth-first graph search procedure37
that ultimately processes all link/incoming-link combinations in the graph. While this leads to an38
additional computational burden, it must be noted that simplifying the model, i.e., neglecting the39
directional dependency of the downstream utility, showed to have a notable impact on generated40
routes, especially given that the networks typically used in MATSim applications (and in this study)41
are almost fully bi-directional and have a considerable amount of dead-ends. Especially w.r.t. the42
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latter, omitting the u-turn penalties leads to unrealistic exploration of dead-ends along the path.1
The pseudo-code of the developed procedure is defined in Algorithm 1.2

Algorithm 1: Adapted BFS
Data: Graph G(n,l), destination node nd, origin node no, links l
Result: Map DU(l) with maximum downstream utility ∀l ∈ G
Initialize queue Q with initial node-link pair p(nd,null)
Initialize empty list V of visited pairs
Initialize map DU(l) = -Inf for ∀l ∈ G
while Q not empty do

Current pair pcur(ncur, lprev) = top entry in Q, remove top entry from Q
if pcur ∈V then

continue
end
for All combinations of incoming link lcur from ncur and lprev do

calculate utility = DU(lprev) + instantaneous utility IU(lprev)
if lcur = reversed lprev then

utility += u-turn penalty
end
if utility > DU(lcur) then

DU(lcur) = cost
end
add p(nnext , lcur) to Q with nnext origin node of lcur

end
add pcur to V

end

The algorithm starts from the destination node nd , evaluates and stores its incoming links’3
downstream utility (which are zero, DU(null) = IU(null) = 0) and adds the incoming links’ origin4
nodes (i.e., the neighbors of nd) to a queue. The queue uses a pair object to keep track of each5
node’s preceding link, e.g., the links connecting the neighbors at depth 1 to nd in the second itera-6
tion. This allows identifying potential u-turns in the evaluated trajectories. The downstream utility7
of any link is defined by the sum of the downstream- and instantaneous utility of the preceding8
link, plus an additional u-turn penalty if detected. The map DU keeps track of the largest known9
utility for any given link and ensures optimality. Every node/link pair is only evaluated once, and10
it is not dependent on which order these are processed. In practice, the computational burden of11
the developed BFS can be reduced by, e.g., restricting the search space to only relevant parts of the12
network, which is the reason for designing the procedure as breadth-first as opposed to depth-first13
search (see Section 4.1).14

Zurich scenario15
The following presents the Zurich MATSim scenario used to evaluate the RL integration while16
only focusing on the cycling-relevant aspects. The supply side, i.e., the network, is based on17
OpenStreetMap (OSM), generated using the SNMAN package (22). The network is filtered such18
that it only includes cycling-relevant edges, i.e., highways are excluded based on the OSM high-19
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way tags motorway, motorway_link, trunk, trunk_link . The cycling infrastructure attributes1
are derived from the relevant OSM tags. Bike paths are physically separated from the motorized2
infrastructure. Bike lanes consist of painted markings / lanes on motorized streets. They are not3
physically separated from motorized traffic. The speed limit information is sourced from OSM,4
with most streets having a 50 kmlimit. Information about gradients is derived from the Google5
Elevation API. Traffic levels are derived from the national aggregated transport model (23) and6
represented through annual average daily traffic (AADT) counts. The demand side, i.e., the syn-7
thetic population and its travel patterns, is sourced from the existing MATSim scenario developed8
based on the eqasim framework (24) and adapted to Switzerland (25). We only consider the static9
cycling demand from the relaxed scenario within the network boundaries. For the 100% scenario,10
this includes around 200,000 cycling trips from 80,000 agents. The agents are attributed with an11
e-bike ownership indicator based on the latest national household travel survey (26).12

The RL model was estimated for four different subgroups, differentiating between regular13
and e-bikes, as well as between males and females. The data for the estimation come from the14
EBIS study (27) that collected GPS tracking information of cyclists in Switzerland. For the Zurich15
region, the data includes around 36,000 successfully map-matched cycling trips from 2022 and16
2023. Around 20,000 are used to estimate the four models (with around 5,000 observations per17
model), and the rest is used for validation. Table 1 shows four different sets of parameters and their18
respective distance-equivalents (DE, sometimes called Value-of-Distance, or VoD, indicators). A19
DE-value of e.g. -0.1 means that a cyclist perceives the distance 10% shorter if the respective20
attribute is present. The estimation results align with previous studies conducted in this area (17,21
28). In particular, bike lanes are perceived to be more favorable than separated bike paths, which22
is due to the high share of lanes over paths in the study area (forced choices). Furthermore, streets23
with higher average traffic loads are perceived as more favorable than those with less traffic. This24
is because cyclists, as well as motorized traffic, tend to follow the main corridors through the city25
(and especially the bottlenecks within the network).26

TABLE 1 RL model estimates and distance-equivalents (DE) for different population sub-
groups.

group male female
bike e-bike bike e-bike

est. DE est. DE est. DE est. DE
length [m] -0.0236 1 -0.0230 1 -0.0240 1 -0.0232 1
bike path [m] 0.0017 -0.07 0.0020 -0.09 0.0018 -0.08 0.0023 -0.10
bike lane [m] 0.0032 -0.13 0.0026 -0.11 0.0030 -0.12 0.0026 -0.11
speed 30kmh [m] 0.0013 -0.05 0.0009 -0.04 0.0015 -0.06 0.0013 -0.05
slope 2-6% [m] 0.0007 -0.03 0.0021 -0.09 0.0014 -0.05 0.0011 -0.05
slope 6-10% [m] -0.0012 0.05 0.0032 -0.14 -0.0004 0.02 -0.0010 0.04
slope >10% [m] -0.0177 0.75 -0.0129 0.56 -0.0072 0.30 -0.0152 0.65
AADT >10k [m] 0.0026 -0.11 0.0020 -0.09 0.0013 -0.05 0.0027 -0.11
u-turn [-] -1.5369 - -1.7132 - -1.4425 - -1.6339 -
Note: all parameters, except the one for slope 6-10% for female regular bike riders,
are significant at the 1% level.

The ability to generate accurate predictions can be evaluated by applying the models to27
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their respective validation sets. Considering the current routing methods in MATSim, comparing1
the RL with SP-based routing is obviously interesting. We further consider a stochastic SP router2
(SSP, see Section 5.3), as this allows us to mimic the probabilistic nature of generated routes while3
avoiding the efforts related to the RL from a user perspective (model estimation and computational4
overhead at runtime when used for prediction). The SP and SPP routing are performed for the un-5
weighted graph, as well as for a DE-weighted version. We compare these three routing strategies6
by computing the first preference recovery (FPR) (see Meister et al. (28)) for each route in the7
validation set. The FPR represents the share of routes in the validation set for which the model8
makes a correct prediction. In a route-choice context, the FPR is typically computed and plotted9
for different threshold values, i.e., how much share of a certain route needs to be predicted for10
the prediction to be considered successful. To account for the probabilistic/stochastic behavior11
of the RL/SSP, we generate 100 routes for each validation OD pair and compute the respective12
average FPR. The resulting curves are shown in Figure 2. One can see that the RL outperforms the13
other SP-based routing strategies and that the SP-based routing performs slightly better on the DE-14
weighted graph than the unweighted one. The results are, again, similar to previously conducted15
studies for this area (17, 28). Compared to the literature, the obtained values are on the lower range16
which is mostly due to the comparably high network density.17

FIGURE 2 FPR-curves for the three considered routing strategies.

RESULTS18
Computational efficiency19
The following evaluates the computational efficiency of the different routing strategies. We re-20
port the average computation times for 10,000 random OD pairs for various SP routing algorithms21
available in the MATSim environment, the SSP and the RL, for three network sizes. It should be22
noted that both newly developed routers (SSP and RL) are not specifically optimized for compu-23
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tational performance. The following analysis is meant to provide ball-park numbers and justify1
further research on the algorithmic efficiency. The considered MATSim routers include Dijkstra,2
Speedy-Dijkstra (improved through bi-directional, as opposed to uni-directional, network struc-3
ture), AStarLandmarks router (same concept as Dijkstra but avoiding processing all nodes in the4
graph using destination-directed heuristics), as well as SpeedyALT, an data-structure optimized5
version of AStarLandmarks. The SSP is implemented based on the Speedy-Dijkstra class. All6
computations are performed single-threaded on a personal computer with an Intel Core i7 2GHz7
CPU. The results are shown in Table 2 below. One can see that the SpeedyALT and AStarLand-8
marks routers are substantially faster than both other SP routers, especially for larger networks.9
The introduction of stochasticity in the SPP only slightly increases the computation times over the10
Speedy-Dijkstra.11

TABLE 2 Computational efficiency for random OD pairs and different network sizes.
Dummy Zurich Zurich agglo.

network links [n] 1,738 47,100 266,631
extent [km2] 4.1 351.7 3837.7

SpeedyALT [ms] 0.11 0.98 3.77
AStarLandmarks [ms] 0.19 1.59 6.61
Speedy-Dijkstra [ms] 0.56 10.98 51.68
Dijkstra [ms] 0.59 14.01 69.74
SSP [ms] 0.61 11.27 54.22
RL [ms] 1.65 40.92 215.36
RLearlystop [ms] 1.25 33.49 187.44

Even though theoretically having a smaller time complexity, the RL router is about 3-412
times slower than the (Speedy-)Dijkstra router and about 10-15 times slower than the AStarLand-13
marks ones. The computation for the RL router includes two components, i.e., calculating the14
downstream utility and looping through the network while applying the decision rule (see equation15
(1)) at every link. The latter component represents a negligible share of the overall computation16
time. Potential optimization strategies must hence address the developed BFS procedure, e.g. by17
exploiting more efficient data-structures or parallelizing the search, both of which we leave open18
for future research. Another obvious way to reduce the computational burden of the search is to19
restrict it only to the relevant parts of the networks. We do this by stopping the search after a spec-20
ified number of additional iterations once the origin node has been found. Given the breadth-first21
principle (as opposed to depth-first), this can substantially reduce the search space, especially for22
short OD pairs relative to the network size. The respective computation times for the evaluated23
networks (RLearlystop) can be reduced by about 15%. It should be noted that this introduces an ad-24
ditional parameter, the number of additional iterations after the origin has been found, that needs25
to be calibrated given a certain network and model structure. As mentioned in Section 3.2, the26
models for our use case include a u-turn parameter. Models estimated without such parameters27
would allow to apply a reversed SP algorithm from the destination towards all possible origins,28
which would lead to computation times much closer to the actual SP-routers.29
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Probabilistic behavior and parameter sensitivity1
In the following, we demonstrate the probabilistic behavior of the RL router and comment on its2
sensitivity to estimated parameters and utility function specifications. Figure 3 shows the heat3
maps of two sets of 100 generated routes for the same OD pair. The destination is at the eastern4
end and the shortest path is highlighted in white. The routes in the top figure are generated using5
a model that only includes the length parameter in its utility function and the ones in the bottom6
figure have a full utility function specification according to the parameters shown in Table 1. One7
can see that both sets of routes have a certain overlap with the shortest path. For the full model at8
the bottom, one clearly sees the effects of the slope parameters on the uphill part, east of the river,9
towards the destination. One can further observe that the routing generally gets more directed10
towards the destination the closer the destination is to the current link.11

Figure 4 again shows the heat maps of two sets of 100 generated routes for the same OD12
pair, this time only using the length parameter in the utility function but with variations of the13
random error scale parameter µ (see equation (2)). Changing the error scale during prediction,14
while it was fixed during estimation, is not behaviorally consistent. It is, however, still interesting15
to show how the route generation can be controlled, e.g., for calibration (analog to often performed16
scaling of utility constants in a mode choice context). The routes in the bottom figure are generated17
using µ = 2

3 , while the ones in the top are generated using µ = 3
2 . One can see that scaling the error18

down leads to more deterministic routes and vice-versa. The introduced variation is the strongest19
the further away the destination is. It should be noted that for our use case, using, e.g., a value of20
µ = 5 results in infinite looping, i.e., fully random behavior.21

Comparison to stochastic shortest path22
The evaluation in the previous sections showed a substantial computational overhead when using23
the RL, especially in large networks. Considering the desired heterogeneity in generated routes24
(and neglecting the behavioral interpretability), an obvious alternative is to apply a stochastic SP25
(SSP) router, i.e., one that has some sort of randomness included to generate different routes for26
the same OD pair. This idea has already been proposed by Nagel et al., Ziemke et al. (4, 5) in a27
(cycling) route choice context and is based on the concept of changing the SP weighting parameters28
by drawing from either normal or log-normal distributions. We use the same concept by applying29
a random factor (1+ |X |) with X ∼ N (0,σ2) to the cost of each link. Applying the random30
factor to the cost of links instead of the SP parameters is a more general formulation that also31
works when using unweighted graphs (e.g., only length as a parameter). The resulting variation in32
generated routes can be controlled by choosing σ . For our case, we manually calibrate to σ = 0.2,33
which, relative to the RL, provides the most comparable results w.r.t. aggregated route attributes34
as well as overlap with the respective shortest path (analog to the FPR metric presented in Section35
4.3). Table 3 shows the average attribute distributions for 10,000 routed OD pairs on the Zurich36
network. The RL only uses a length parameter, the SSP is using the un-weighted graph. One can37
see that the sets of routes are very similar, except for the general overlap (i.e., correlation, analog38
to path-size metric) being slightly higher for the RL. These aggregated metrics do not consider the39
spatial distribution of routes. Still, they generally show that the SSP router can be considered a40
valid alternative depending on the analysis use case.41
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FIGURE 3 Two sets of 100 routes with different utility function specifications for the same
OD pair. The top figure shows the results only using length; the bottom one shows results
using the full set of available parameters.
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FIGURE 4 Two sets of 100 routes for the same OD pair with different random error scale
parameter. Bottom using µ = 2

3 , top using µ = 3
2 .
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TABLE 3 Comparison of route characteristics for the SP, SSP, and RL router. For both latter,
we show average values based on 100 routes for each OD pair.

SP SSP RL
links, med. [n] 79 83 86
length, med. [km] 10.3 10.9 10.7
length, std. [km] 4.9 5.0 5.1
length, 25th/75th [km] 7.0/13.7 6.3/14.5 6.9/14.2
bike path, avg. [%] 3.8 3.2 3.5
bike lane, avg. [%] 24.9 21.6 21.9
speed 30kmh, avg. [%] 24.9 24.8 26.8
slope 2-6%, avg. [%] 13.7 13.7 13.8
slope 6-10%, avg. [%] 5.2 5.4 5.0
slope >10%, avg. [%] 1.4 1.8 1.7
AADT >10k, avg. [%] 4.3 4.4 3.4
SP overlap, avg. [%] - 73.5 74.7
overlap, avg. [%] - 66.1 78.4

Cycling counts comparison1
As introduced in Section 3.3, we use a Zurich scenario to assess to what extent the different2
routing strategies succeed in reproducing real observed cycling counts. Count observations are3
available for the city of Zurich (not the metropolitan area) from 26 counters, typically loop de-4
tectors, recorded at 15-minute intervals throughout the year. The count observations for 2023 are5
temporally aggregated into an average day. They are further spatially aggregated given the local6
network representation (e.g., at consolidated intersections or merged parallel edges). This results7
in 17 count stations that are used for the evaluation, see Figure 5. The demand is derived from8
the relaxed scenario. For this study, we consider it to be static, i.e., we do not model any route-9
dependency of the mode-choice decisions (the currently available mode-choice model does not10
consider route characteristics for the cycling mode). The scenario covers an average day that in-11
cludes around 200,000 cycling trips. The supply is considered static as well, specifically we use12
average annual daily traffic as variable for the RL, not the actual routed car traffic from the simula-13
tion. The average computation time per OD pair is around 10ms, as these are substantially shorter14
than the random OD pairs used for evaluating the computational efficiency in Section 4.1.15

Table 4 shows the difference between simulated and observed counts of the different routing16
methods. For the sake of simplicity, we do not consider intra-day or directional dependencies. For17
the RL/SSP, we generate 100 routes for each OD pair and weight them accordingly. The sum18
of observed counts for the average day add up to around 31,500 observations. The RL generates19
around 19,000 simulated counts, while the SP-based routers only generate around 10,000 simulated20
counts. Assuming that the synthetic demand is the true demand, the difference in the total sum of21
counts can be attributed to the actual routing, which in turn would indicate that the RL is better22
at reproducing observed flows. When looking at the spatial distribution of these counts, one can23
see that the SP-based routing under-estimates the counts for all but station 9 and fails to route any24
trips through station 16. For most of the stations, the DE-weighted cost function produces better25
results than just using length as a parameter. The stochasticity in the SP routers does seem to26
bring a clear advantage over their deterministic counterparts. The absolute differences between the27
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FIGURE 5 Spatial distribution of available count stations. The legend represents the range
of observed counts for an average day.

different SP-based routers are comparably small. The results do not allow us to make a general1
statement as to which of the SP-based routers is actually superior in reproducing real counts. The2
RL generates considerably different flows. It generally also underestimates the counts; however, it3
slightly overestimates them for five stations. One can see that it outperforms the SP-based routing4
for all but count station 10, and the relative differences are quite substantial for stations 2, 3, 4, 7,5
8, 11, 13, 14, 15, and 17. From these, stations 2, 11, 13 and 17 represent important bottlenecks in6
the Zurich network (around the lake and across rivers or the main rail aisle).7

CONCLUSION8
This paper presents the integration of an explicit discrete route choice model into the agent-based9
framework MATSim. To the best of the authors’ knowledge, this has, to date, not been presented10
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TABLE 4 Observed and simulated counts for the three routing strategies. For the RL and
SSP, we show average values based on 100 routes for each OD pair.

count station observed SP SSP SPweighted SSPweighted RL
1 3,879 2,009 1,973 1,610 1,760 2,384
2 1,542 160 236 148 204 419
3 2,418 680 502 731 590 1,145
4 749 61 46 0 16 158
5 1,527 121 178 326 319 427
6 1,557 124 64 174 123 208
7 1,076 99 146 94 124 694
8 871 439 421 598 644 1,078
9 1,437 1,485 1,471 1,592 1,577 1,592
10 1,109 263 222 349 285 291
11 326 12 27 11 42 347
12 652 760 609 665 665 515
13 2,059 404 421 253 191 2,291
14 1,921 382 434 508 487 759
15 1,622 966 814 1,012 926 1,931
16 1,256 0 0 0 0 38
17 7,702 2,808 2,726 2,763 2,753 4,597
sum 31,710 10,773 10,290 10,834 10,706 18,874

for any of the comparable simulation frameworks. Using explicit discrete route choice models1
in large-scale micro-/mesoscopic agent-based simulators enables modelers to properly represent2
heterogeneity in route choices, i.e., to study dynamic and behaviorally consistent stochastic user3
equilibria. The paper provides technical details of the route choice model, its integration within4
the MATSim environment, and the developed procedures required to operationalize it (i.e., an5
adapted BFS algorithm to calculate the downstream utilities across a network). It further evaluates6
its computational efficiency (being the major requirements from a user perspective) and parameter7
sensitivity.8

The integration is demonstrated using a case study for the city of Zurich. For this case9
study, the paper presents the route choice model estimation using around 36,000 map-matched10
GPS trajectories from the 2023 EBIS study in Zurich (27), as well as the model validation on11
a hold-out sample, compared to (stochastic) shortest-path (SP) routing methods. The estimated12
models are then applied to a synthetic demand from the existing Zurich MATSim scenario and13
evaluated against local count data from 2023, again compared to SP routers. Doing so, this paper14
ultimately answers the question of whether the efforts related to integrating and using an explicit15
discrete route choice model are justified, i.e., provide better results. Our results show that the16
RL indeed provides better results. Independent of the integration into the MATSim environment,17
the out-of-sample validation shows that the RL is better at reproducing observed routes than the18
currently available SP routers. The same holds true when applying the model to the synthetic19
MATSim demand, where the RL generates considerably different network flows that better align20
with real count observations. Specifically, the RL generates flows in certain network areas, which21
the SP routers fail to do completely.22
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However, using the RL comes with a trade-off w.r.t. computational efficiency. The (current)1
average computation time for random OD pairs on the scenario network is about 10-15 times larger2
than for the A* Landmarks algorithm. For demonstration purposes, we implemented a stochastic3
SP router that mimics the heterogeneity in generated routes, for which the additional computational4
burden is negligible. While we could show that such a stochastic router can generate the same5
distribution of aggregated route attributes as those coming from the RL, the application onto the6
synthetic demand showed that the resulting flows are still very similar to the deterministic SP7
router, as are the shortfalls w.r.t. the count data evaluation. However, the authors still consider8
this a valuable analysis, as such a router might still be more useful for certain modelling use cases.9
Finally, the RL is fully probabilistic, meaning that unrealistic infinite looping behavior is possible10
per design (even though this was not a concern for our case study). The probabilistic nature of the11
router also comes with additional memory considerations, as it is potentially desirable to reproduce12
the same routes for certain conditions, which in turn requires memorizing seeds used throughout13
the iterations.14

The main limitation of this paper lies in the synthetic demand used for evaluating the count15
data. The extent to which the synthetic demand actually matches the real demand can be ques-16
tioned. The development of the scenario did not specifically focus on cycling mode shares, and17
those have substantially changed in Zurich since the scenario development. Furthermore, the ef-18
forts related to the integration and the obtained computational performances are heavily tailored19
to the MATSim environment. Other comparable simulation frameworks might be more or less20
suited for such a model integration, and the learnings might only partly be transferable. Generally,21
this paper should be considered as providing the basis and justification for future research efforts.22
Specifically, those should include:23

• Synthetic demand: As just mentioned, it would be desirable to re-evaluate the simulated24
counts using an updated demand model. Such a model should specifically consider the25
latest behavioral changes observed for cycling (a mode-calibrated mode choice model26
that considers cycling-relevant attributes). The related work is currently conducted within27
our research group.28

• Full scenario optimization: We used the relaxed demand from the existing Zurich MAT-29
Sim scenario. Given an updated demand model, it would be desirable to run a complete30
MATSim optimization run that includes all available modes. This would allow us to31
analyze dynamic effects on the route choice and examine their respective convergence32
behavior.33

• Computational performance: The RL’s computational burden mostly relates to calcu-34
lating the downstream utilities using the adapted BFS. This procedure can potentially be35
made more efficient, e.g., by using efficient search-space restriction methods (analog to36
A* Landmarks) or parallelizing the procedure.37
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