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Balanced Partitions of Trees and Applications ∗

Andreas Emil Feldmann† Luca Foschini‡

Abstract

We study the k-BALANCED PARTITIONING problem in which the vertices of a graph are to be
partitioned into k sets of size at most dn/ke while minimising the cut-size, which is the number
of edges connecting vertices in different sets.

The problem is well studied for general graphs, for which it cannot be approximated within
any finite factor in polynomial time. However, little is known about restricted graph classes.
We show that for trees k-BALANCED PARTITIONING remains surprisingly hard. In particular,
approximating the cut-size is APX-hard even if the maximum degree of the tree is constant.
If instead the diameter of the tree is bounded by a constant, we show that it is NP-hard to
approximate the cut-size within nc, for any constant c < 1.

In the face of the hardness results, we show that allowing near-balanced solutions, in which
there are at most (1+ε)dn/ke vertices in any of the k sets, admits a PTAS for trees. Remarkably,
the computed cut-size is no larger than that of an optimal balanced solution. In the final section
of our paper, we harness results on embedding graph metrics into tree metrics to extend our
PTAS for trees to general graphs. In addition to being conceptually simpler and easier to analyse,
our scheme improves the best factor known on the cut-size of near-balanced solutions from
O(log1.5 n/ε2) [Andreev and Räcke TCS 2006] to O(log n), for weighted graphs. This also settles
a question posed by Andreev and Räcke of whether an algorithm with approximation guarantees
on the cut-size independent from ε exists.

∗The first author is supported by the Swiss National Science Foundation under grant 200021 125201/1. The second
author is supported by the National Science Foundation grant IIS 0904501.
†Institute of Theoretical Computer Science, ETH Zürich, Switzerland
‡Department of Computer Science, U.C. Santa Barbara, Santa Barbara, USA



1 Introduction

In this paper we study the k-BALANCED PARTITIONING problem, which asks for a partition of the n
vertices of a graph into k sets of size at most dn/ke each, such that the number of edges connecting
vertices in different sets, called the cut-size, is minimised. The problem has numerous applications
of which one of the most prominent is in the field of parallel computing. There, it is crucial to
evenly distribute n tasks (vertices) among k processors (sets) while minimising the inter-processor
communication (edges between different sets), which constitutes a bottleneck. Other applications
can be found in the design of electronic circuits and sparse linear solvers. However, despite the
broad applicability, k-BALANCED PARTITIONING is a notoriously hard problem. The special case
of k = 2, commonly known as the BISECTION problem, is already NP-complete. For this reason,
approximation algorithms that find a balanced partition with a cut-size larger than optimal have
been developed. We follow the convention of denoting the approximation ratio on the cut-size by α.

Unfortunately, when k is not constant even finding an approximation of the minimum balanced
cut still remains infeasible, as it is known that no finite approximation for the cut-size can be
computed in polynomial time, unless P=NP [3]. In order to overcome this obstacle, relaxing the
balance constraints has proven beneficial. By that we mean that the sets of the partitions are
allowed to be of size at most (1 + ε)dn/ke for some factor ε ≥ 0. Along these lines, bicriteria
approximation algorithms have been proposed, which approximate both the balance and the cut-size
of the optimal solution. That is, the computed cut-size is compared to the optimal cut-size of a
perfectly balanced partition in which ε = 0.

The k-BALANCED PARTITIONING problem has received some attention for the case ε ≥ 1, that is
when the size of the vertex sets is allowed to be off by a factor of two from the perfectly balanced
solution. For this case, the best result is by Krauthgamer et al. [16] who give an algorithm with
approximation factor α ∈ O(

√
log n log k). However, it is not hard to imagine how the slack on the

balance can be detrimental in practical applications. In parallel computing, for instance, a factor of
two on the balance in the workload assigned to each machine can result in a factor of two slowdown,
since the completion time would be solely determined by the overloaded machines.

Therefore, the case of ε < 1, that is when near-balanced partitions are allowed, is of greater
practical interest. No progress has been made on near-balanced partitions since Andreev and
Räcke [3] gave an algorithm with α ∈ O(log1.5 n/ε2)—a significantly worse bound than the one
for ε ≥ 1. This is not surprising since, as argued in [3], as ε approaches 0 and the constraint on
the balance becomes more stringent the k-BALANCED PARTITIONING problem starts bearing more
resemblance to a packing problem than to a partitioning problem. One direct side effect is that the
spreading metric relaxations developed for ε ≥ 1 [6, 16] do not extend to near balanced partitions.
This is because such strategies aim at breaking the graph into components of size less than n/k
while minimizing the cut, only to later rely on the fact that pieces of that size can be packed into
k partitions such that no partition exceeds 2n/k vertices. However, when near-balanced solutions
are required, the partition phase can no longer be oblivious of the packing. So it is necessary to
combine the partition step with an algorithm to pack the pieces into near-balanced partitions.

Our Contribution. As argued above, the restriction to near-balanced partitions poses a major
challenge in understanding the structure of k-BALANCED PARTITIONING. For this reason, we consider
the simplest non-trivial instance class of the problem, namely connected trees. Figure 1 gives an
example of how balanced partitions exhibit a counter-intuitive behaviour even on perfect binary
trees, as increasing k does not necessarily entail a larger cut-size. Our results confirm this intuition
when a perfectly balanced solution is required: adapting an argument by Andreev and Räcke [3], we
show that it is NP-hard to approximate the cut-size within any factor better than α = nc for any
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Figure 1: Two optimally partitioned binary trees. For the tree on the left k = 8 (with a cut-size of 10)
whereas k = 9 (with a cut-size of 8) for the tree on the right. The numbers in the vertices indicate the set
they belong to and the cut-set is represented by the dashed edges.

constant c < 1. This is asymptotically tight, since a trivial approximation algorithm can achieve a
ratio of n by cutting all edges of the tree. Interestingly, the lower bound remains true even if the
diameter of the tree (i.e. the length of the longest path between any two leaves) is restricted to be
at most 4, while instances of diameter at most 3 are polynomially solvable.

By a substantially different argument, we show that a similar dichotomy arises when parametrizing
the complexity with respect to the maximum degree ∆. For trees with ∆ = 2 (i.e. paths) k-BALANCED
PARTITIONING is trivial. However, if ∆ = 5 the problem becomes NP-hard and with ∆ = 7 we
show it is APX-hard. Finding where exactly the dichotomy arises, i.e. the 2 < ∆ < 5 at which
k-BALANCED PARTITIONING becomes hard, is an interesting open problem. These results should be
contrasted with a greedy algorithm by MacGregor [18] to find tree bisections that can be extended
to find perfectly balanced partitions for k sets with α ∈ O(log(n/k)), for trees of constant degrees.

On the positive side, we show that when near-balanced solutions are allowed, trees behave
substantially better than general graphs. We present an algorithm that computes a near-balanced
partition for any constant ε > 0 in polynomial time, achieving a cut-size no larger than the optimal
for a perfectly balanced partition, i.e. α = 1. In addition, our PTAS can be shown to yield an
optimal perfectly balanced solution for trees if k ∈ Θ(n), while on general graphs the problem is
NP-hard for these values of k [14].

In the last section of our paper we capitalise on the PTAS for trees to tackle the k-BALANCED
PARTITIONING problem on general, weighted graphs. By embedding a graph into a collection of
trees with a cut distortion of O(log n) we can use our PTAS for trees to get a solution for graphs.
Since the PTAS has approximation factor α = 1, the total approximation factor paid for the
general graphs is due only to the distortion of the embedding, that is α ∈ O(log n). Note that since
the graph is decomposed into trees as a preliminary step, the decomposition is oblivious of the
balance constraints related to solving k-BALANCED PARTITIONING on the individual trees, hence
the distortion does not depend on ε. This is sufficient to simultaneously improve on the previous
best result known [3] of α ∈ O(log1.5 n/ε2), and answers an open question posed in the same paper
whether an algorithm with no dependence on ε in the ratio α exists. In addition, our analysis is
significantly simpler than the one in [3]: the ad-hoc approach of [3] must deal directly with the
complications introduced by considering general graphs. We are able to minimise those by relying
on the powerful tool of tree decompositions.

Related Work. Our paper directly extends the results in [3], where it is shown that for general
graphs approximating the cut-size of the k-BALANCED PARTITIONING problem is NP-hard for any
finite factor α, if perfectly balanced partitions are needed. In [3] the authors also give a bicriteria
approximation algorithm with α ∈ O(log1.5 n/ε2) when solutions are allowed to be near-balanced.
If more unbalance is allowed, for ε ≥ 1 Even et al. [6] present an algorithm with α ∈ O(log n)
using spreading metrics techniques. Later Krauthgamer et al. [16] improved the result to α ∈
O(
√

log n log k) using a semidefinite relaxation which combines l2 metrics with spreading metrics.
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To the best of our knowledge, the only result on restricted graph classes is for graphs with excluded
minors (such as planar graphs). By applying a spreading metrics relaxation and the results in [15]1

it is possible to compute near-balanced solutions with α ∈ O(1).
The special case when k = 2, commonly known as the BISECTION problem, has been well studied.

It is NP-hard in the general case [11] but polynomial time approximations on the cut-size are known.
For instance Räcke [22] gives an algorithm with approximation ratio α ∈ O(log n) (and ε = 0). For
near-balanced partitions Leighton and Rao [17] show how to compute a solution using min-ratio
cuts. In this solution the cut-size is approximated within α ∈ O(γ/ε), where γ is the approximation
factor of computing a min-ratio cut. In [17] it was shown that γ ∈ O(log n), and this result was
improved by Arora et al. [4] to γ ∈ O(

√
log n). For planar graphs it is possible to achieve a constant

min-ratio approximation [20]. If a perfectly balanced solution is required for planar graphs, Dı̀az et
al. show how to obtain a PTAS. Even though it is known that the BISECTION problem is weakly
NP-hard on planar graphs with vertex weights [20], whether it is NP-hard on these graphs in the
unweighted case is unknown. For other special graph classes the problem can be solved optimally
in polynomial time [5]. For instance an O(n4) algorithm for grid graphs without holes has been
found [7], while for trees an O(n2) algorithm [12, 18] exists. Substantial work on graph partitioning
has leveraged spectral methods. Alon and Milman [1] presented a linear time algorithm for the
sparsest cut problem with approximation ratio depending on the conductance (which could be
Ω(n) in the worst case). Spielman and Teng ([23] and followup [2]) extended the approach of [1] to
find balanced separators, however, the dependence on the conductance both for the runtime and
approximation ratio remains.

In addition to the case k = 2, some results are known for other extreme values of k. For
trees the above mentioned bisection algorithm by MacGregor [18] is easily generalised to solve the
k-BALANCED PARTITIONING problem for any constant k in polynomial time. However the runtime
will then be exponential in k. At the other end of the spectrum, i.e. when k ∈ Θ(n), it is known that
the problem is NP-hard [14] for any k ≤ n/3. Feo and Khellaf [9] give a α = n/k approximation
algorithm for the cut-size which was improved [8] to α = 2 in case k equals n/3 or n/4. Figure 2
summarises the related work and the results presented here.

We complete the review of related work by discussing the literature on tree decompositions,
which we leverage in our algorithm for general graphs. Informally a tree decomposition of a graph
G is a set of trees for which the leaves correspond to the vertices of G, and for which the structure
of their cuts approximate the cuts in G. Tree decompositions have been studied in the context of
oblivious routing schemes (see [19] for a survey). In [22], Räcke introduces an optimal decomposition
with factor O(log n), which we employ in the present work. In a recent work, Madry [19] shows
that it is possible to generalise Räcke’s insights so that any cut based problem (see [19] for more
details) is solvable on graphs by computing solutions on tree decompositions of the input graph.

2 The Hardness of Computing Perfectly Balanced Partitions

We now consider the problem of finding a perfectly balanced partition of a tree with minimum
cut-size. We prove hardness results in the case where either the diameter or the maximum degree
are restricted to be constant. All reductions are from MAX-3-PARTITION, defined as follows.

Definition 1 (MAX-3-PARTITION). Given 3k integers a1, . . . , a3k and a threshold s, such that
s/4 < ai < s/2 and

∑3k
i=1 ai = ks, find the maximum number of disjoint triples of a1 to a3k such

that each triple sums up to exactly s.

1We thank an anonymous reviewer for pointing out this folklore result.
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Figure 2: Illustrations of best approximation factor α known vs k and ε, for general graphs (left) and
trees (right). The plane (α, k) represents the case of perfectly balanced solutions (ε = 0) and shows that
the restriction to trees does not significantly change the asymptotic behaviour. However, when the balance
constraints are relaxed (ε > 0) a much better (bi-criteria) approximations can be devised for trees. This
remarkable behavior can be partially transplanted to general graphs, via tree decompositions, allowing us to
reduce the gap between the case ε < 1 and ε ≥ 1 visible in the plot on the left.

The MAX-3-PARTITION problem is APX-hard, i.e. for some constant ρ it is NP-hard to decide
whether all k integers or at most k/ρ of them can be partitioned into triples that sum up to
exactly s. This is true even if all integers are polynomially bounded in k, which can be shown
using the standard reduction for the corresponding decision problem in [10] and the results on the
3D-MATCHING problem by Petrank [21] 2.

We begin by showing that an approximation algorithm with factors α = nc and ε = 0, for any
constant c < 1, for k-BALANCED PARTITIONING could be used to find the optimal solution to an
instance of MAX-3-PARTITION. We do not rely on the APX-hardness of the latter for the proof,
but only on the NP-hardness of the corresponding decision problem. The idea for the reduction is
similar to the one used by Andreev and Räcke [3] for general graphs. The result holds even if the
diameter of the tree is bounded by a constant.

Theorem 2. The k-BALANCED PARTITIONING problem on trees has no polynomial time approxima-
tion algorithm with approximation factors α = nc and ε = 0, for any constant c < 1, even if the
diameter is at most 4, unless P=NP.

Proof. We call an instance to the MAX-3-PARTITION problem a NO instance if less than k triples of
the integers can be found that sum up to s and a YES instance otherwise.

The construction used in the proof is shown in Figure 3. Let m = 3knc for some constant
c < 1. For each ai of a given instance I of the MAX-3-PARTITION problem, define a corresponding
gadget Ti as a star on aim vertices. Construct a tree T where the centres of all Ti for i ≥ 2 are
connected to the centre of T1, as shown in Figure 3. The number of vertices of the resulting tree is

n =
∑3k

i=1 aim = 3k2snc. Solving this equation for n gives n = (3k2s)
1

1−c . Since c is constant and
s can be assumed to be polynomially bounded in k, the tree T can be constructed in polynomial
time. We now argue that an optimal perfectly balanced partition has cut-size at most 3k − 1 if and
only if I is a YES instance and it requires at least m = 3knc cuts otherwise. This would allow an

2We thank Nikhil Bansal for pointing out the connection between the reductions in [10] and the results by
Petrank [21]
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T1 T2 T3 T3k

. . .

Figure 3: Construction for the reduction of Theorem 2. Thin grey edges link star centres, darkened edges
connect centres to leaves.

approximation algorithm with approximation factor at most nc to decide between a YES and a NO
instance of the MAX-3-PARTITION problem. Since the latter is NP-hard this proves the theorem.

It is easy to see that if I is a YES instance then cutting at most the 3k − 1 edges that connect
the Tis suffices. Suppose now that I is a NO instance and that the cut-set C∗ of minimum size that
partitions T into {V1, . . . , Vk}, where |Vi| = ms, has size strictly less than m. The set C∗ can be
expressed as A ∪B, where A contains only edges that link Ti centres, and B contains only edges
separating a Ti’s centre from one of its leaves. By the assumption on the cut-size it follows that
|A| < m and |B| < m. Also |B| > 0 as cutting only edges from A would separate complete Tis, thus
implying a solution to I, and contradicting the fact that I is a NO instance.

Let Vl be a set of the partition induced by C∗ that contains at least one isolated leaf v, which
always exists since |B| > 0. Assume that Vl contains an incomplete Ti, that is, Vl contains the
centre of such a Ti but not one of its leaves w. Then w must be contained in some other Vj , where
j 6= l. Thus swapping v and w allows putting both w and the incomplete Ti in Vl, rendering the cut
that separate them superfluous. This contradicts the assumption that C∗ is a cut-set of minimum
size, hence Vl can contain only a (possibly empty) set of complete Tis in addition to one or more
isolated leaves.

The proof is completed by noticing that the number of vertices of a set of complete Tis is a
multiple of m. Therefore at least m additional isolated leaves are required for |Vl| to be a multiple
of m, contradicting the assumption that |B| < m and establishing the result.

The reduction in the proof of the above theorem relies on the fact that the degree of the tree
is unbounded. Hence a natural question arising is what the complexity of bounded degree trees
is. As we will show next the problem remains surprisingly hard when bounding the degree. We
are able to prove two hardness results for this case. First we show that the problem of finding a
perfectly balanced partition of a tree is APX-hard even if the maximum degree of the tree is at most
7. To prove this result we use a gap-preserving reduction from MAX-3-PARTITION. In particular this
means that a substantially different technique (and quite more involved) than the one used to prove
Theorem 2 has to be employed: rather than relying on the fact that many edges have to be cut in a
gadget consisting of a high degree star, we need to construct gadgets with structural properties
that guarantee more edges to be cut the less integers can be put into triples in a MAX-3-PARTITION

instance.

Theorem 3. Unless P=NP, there exists a constant ρ such that the minimum cut-size of a perfectly
balanced partition on trees with maximum degree ∆ cannot be approximated in polynomial time
within α = 1 + (1− ρ−1)/24 and ε = 0 even if ∆ is at most 7.

Proof. Given an instance of MAX-3-PARTITION with polynomially bounded integers a′i, consider
the instance I where ai = 12a′i. Obviously all hardness properties are preserved by this step. As
a consequence all integers are divisible by 4 and s > 20, which will become important later in
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Figure 4: Construction for Theorem 3. Each gadget Ti is composed by an ai-path connected to the root of
an s-tree through an edge from A (straight grey). Each s-tree branches into four paths of (almost) the same
length. Two adjacent gadgets in a path are connected through the roots of their s-trees with an edge from B
(wiggled grey).

the proof. For each ai in I, construct a gadget Ti composed by a path on ai vertices (hereinafter,
ai-path) connected to the root of a tree on s vertices (hereinafter, s-tree). The root of the s-tree
branches into four paths, three of them with s/4 vertices each, and one with s/4− 1 vertices. The
construction is completed by connecting the roots of the s-trees in a path, as shown in Figure 4.
We call B the set of edges connecting different Tis and A the set of edges connecting an ai-path
with the corresponding s-tree in each Ti.

At a high level, we set out to prove that if all k integers in I can be partitioned into triples that
sum up to exactly s, then T can be split into a 4k-balanced partition with cut-size 6k−1. If however
at most a ρ fraction of the integers can be partitioned in this way, T requires at least (1− ρ−1)k/4
additional cut edges. This means that a polynomial time algorithm computing an approximate

4k-balanced partition for T within factor 6k−1+(1−ρ−1)k/4
6k−1 ≥ 1+(1−ρ−1)/24 of the optimum cut-size

could approximate the MAX-3-PARTITION problem within the ratio ρ in polynomial time. Hence the
theorem follows.

It is easy to see that if all k integers of I can be partitioned into triples of size exactly s, cutting
exactly the 6k − 1 edges in A and B suffices to create a valid 4k-balanced partition.

It remains to be shown that (1− ρ−1)k/4 additional edges are required in the other case. Let
C∗ be an optimal cut-set of a 4k-balanced partition in T when at most k/ρ many integers can be
partitioned into triples of size exactly s in I. We argue that by incrementally repositioning cut edges
from the set C := C∗ \ (A ∪B) to edges in (A ∪B) \ C∗, eventually all the edges in A ∪B will be
cut. However, the following lemma implies that a constant fraction of the edges initially in C will
not be moved. We will then argue that the more triples of I can not be packed into triples of size s,
the more edges are left in C. Thus the more edges must additionally have been in C compared to
those in A ∪B. We rely on the following lemma.

Lemma 4. If s > 20 then |C| ≥ 2|(A ∪B) \ C∗|.

Proof. The crucial observation leading to the claim is that in any 4k-balanced partition of T , after
removing the cut-set C∗ every connected component has size at most s. We distinguish two cases.
First consider an edge e ∈ A \ C∗ adjacent only to cut edges in B ∩ C∗. Let Ti be the gadget in
which e is contained. The tree Ti has a total size of s+ ai. Since ai > s/4 and each branch of the
s-tree in Ti has at most s/4 vertices, there must be at least two edges from C in Ti in order to cut
away ai vertices.

Otherwise consider a connected component W that contains uncut edges from (A ∪ B) \ C∗.
Let A′ and B′ denote the edges in W from A and B, respectively. Notice that |B′| ≥ 1 since
the other case was considered above. Let T ′ be the subtree of T that results by extending W
with all the ai-paths incident to an edge in A′ and all the s-trees incident to an edge in B′ (see

6



Figure 5). Each branch of an s-tree and each ai-path in T ′ has at least s/4 − 1 vertices. Hence
if at least 5 branches of s-trees or ai-paths were fully included in W this connected component
would contain more than s vertices, as s > 20—a contradiction. Therefore there are at most 4 such
included branches. Since T ′ contains at least 4(|B′| + 1) s-tree branches and |A′| ai-paths in T ′,
we can hence conclude that the number of edges from C in T ′ is at least |A′|+ 4|B′|. Notice that
|B′| ≥ |A′| − 1 since otherwise W would be disconnected. Using the fact that |B′| ≥ 1 we then
obtain |A′|+ 4|B′| ≥ 2|A′| − 1 + 3|B′| ≥ 2|A′ ∪B′|, which proves our claim for the tree T ′. Since
the gadgets in any possible T ′ and the gadgets considered in the first case are pairwise disjoint, this
concludes the proof.

Consider the following algorithm A to reposition cut edges from a 4k-balanced partition into an
approximate solution to MAX-3-PARTITION. As long as there is an uncut edge e ∈ A∪B, A removes
a cut edge in C and cuts e instead. At the end of the process, when only edges in A ∪B are cut, A
removes the set of cut edges left in C denoted by C ′. Then |C ′| is the number of additional edges
cut in the case at most a ρ fraction of the integers can be partitioned into triples of size exactly
s. When repositioning a cut edge from C to A ∪B, or when removing a cut from C ′, the sizes of
the sets in the partition induced by the cut-set are modified and the balance might be lost. In
particular, when a cut edge is removed by A, two connected components induced by the cut-set are
joined to form a single component and moved to an arbitrary one of the sets that contained the
two components. This changes the sizes of at most two sets in the partition. When a new cut is
introduced, a component is split into two and the two newly created components are retained in the
same set, thus no set size is changed.

By Lemma 4 there are at least as many edges in C ′, as there are edges that are repositioned
from C to A ∪ B. Since each edge from C repositioned by A causes at most two changes in set
sizes, the total number of set size changes performed by A amortized on the removed edges in C ′ is
therefore at most 4|C ′|.

WhenA terminates only edges from A∪B are cut. Therefore the remaining connected components
correspond to the 3k integers ai of I in addition to 3k integers equal to s. Since at most a ρ fraction
of the k integers in I can be partitioned into triples of size exactly s, and the elements of size s
can be ignored, at least (1 − ρ−1)k of the sets of the resulting partition do not have size exactly
s. This means that A must have changed the size of at least (1− ρ−1)k sets, since it converted a
4k-balanced partition into a solution to MAX-3-PARTITION with at least (1− ρ−1)k unbalanced sets.
This finally implies that 4|C ′| ≥ (1− ρ−1)k, which concludes the proof since |C ′| is the number of
additional cuts required.

Using a similar argument as in the above proof, if we restrict the degree to be at most 5 we
can still show that the problem remains NP-hard. For this we use a slightly different construction
than the one shown in Figure 4: instead of connecting the s-trees through their roots, the B edges

a3

T3

a4

T4

a5

T5

. . .. . .
W

T ′

Figure 5: Part of the construction of Theorem 3 with components W and T ′ highlighted
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connect the leaves of the shortest branches of the s-trees. It is then possible to show that exactly the
6k − 1 edges in A and B are cut if all k integers in I can be partitioned into triples of size exactly
s, while otherwise at least 6k edges are cut. Since the MAX-3-PARTITION problem is NP-hard this
suffices to establish the following result. We defer the detailed proof to the full version of this paper.

Theorem 5. The k-BALANCED PARTITIONING problem on trees has no polynomial time algorithm
even if the maximum degree is at most 5, unless P=NP.

3 Computing Near-Balanced Partitions

The previous section shows that approximating the cut-size of k-BALANCED PARTITIONING is hard
if perfectly balanced partitions are desired. We showed that for the general case when the degree
is unbounded there is no hope for a polynomial time algorithm with non-trivial approximation.
Therefore, in this section we study the complexity of the problem when allowing the partitions
to deviate from being perfectly balanced. In contrast to the negative results presented so far, we
prove the existence of a PTAS for k-BALANCED PARTITIONING on trees that computes near-balanced
partitions but returns a cut-size no larger than the optimum of a perfectly balanced partition.

Conceptually one could find a perfectly balanced partition of a tree T with minimum cut-size
in two steps. First all the possible ways of cutting T into connected components are grouped into
equivalence classes based on the sizes of their components. That is, the sets of connected components
S and S ′ belong to the same equivalence class if they contain the same number of components of
size x for all x ∈ {1, . . . , dn/ke}. In a first step the set of connected components that achieves the cut
of minimum size for each class is computed and set to be the representative of the class. In a second
stage only the equivalence classes whose elements can be packed into k sets of size at most dn/ke
are considered, and among those the representative of the class with minimum cut-size is returned.
Clearly such an algorithm finds the optimal solution to the k-BALANCED PARTITIONING problem,
but the runtime is exponential in n as the total number of equivalence classes is exponential. The
idea of our algorithm is instead to group sets of connected components into coarser equivalence
classes, defined as follows. The coarser definition allows reducing the total number of classes at the
expense of introducing an approximation error in the balance of the solution.

Definition 6. Let S be a set of disjoint connected components of the vertices of T , and ε > 0. A
vector ~g = (g0, . . . , gt), where t = dlog1+ε(1/ε)e+ 1, is called the signature of S if in S there are g0

components of size in [1, εdn/ke) and gi components of size in [(1 + ε)i−1 · εdn/ke, (1 + ε)i · εdn/ke),
for each i ∈ {1, . . . , t}.

The first stage of our algorithm uses a dynamic programming scheme to find a set of connected
components of minimum cut-size among those with signature ~g, for any possible ~g. Let S denote the
set containing each of these optimal sets that cover all vertices of the tree, as computed by the first
stage. In the second stage the algorithm attempts to distribute the connected components in each
set S ∈ S into k bins, where each bin has a capacity of (1 + ε)dn/ke vertices. This is done using a
scheme originally proposed by Hochbaum and Shmoys [13, 24] for the BIN PACKING problem. The
final output of our algorithm is the partition of the vertices of the given tree that corresponds to
a packing of a set S̃ ∈ S that uses at most k bins and has minimum cut-size. Both stages of the
algorithm have a runtime exponential in t. Hence the runtime is polynomial if ε is a constant.

3.1 The First Stage

We now describe the dynamic programming scheme to compute the set of connected components
of minimum cut-size among those whose signature is ~g, for every possible ~g. We fix a root r ∈ V
among the vertices of T , and an ordering of the children of every vertex in V . We define the
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Figure 6: A part of a tree in which
a vertex v, its rightmost child u, its
predecessor w, the set of vertices Lv, and
the m covered vertices by some lower
frontier with signature ~g are indicated.

leftmost and the rightmost among the children of a vertex,
the siblings left of a vertex, and the predecessor of a vertex
among its siblings according to this order in the natural way.
The idea is to recursively construct a set of disjoint connected
components for every vertex v 6= r by using the optimal
solutions of the subtrees rooted at the children of v and the
subtrees rooted at the siblings left of v. More formally, let for
a vertex v 6= r the set Lv ⊂ V contain all the vertices of the
subtrees rooted at those siblings of v that are left of v and at
v itself (Figure 6). We refer to a set F of disjoint connected
components as a lower frontier of Lv if all components in
F are contained in Lv and the vertices in V not covered by
F form a connected component containing the root r. For
every vertex v and every signature ~g, the algorithm recursively finds a lower frontier F of Lv with
signature ~g. Finally, a set of connected components with signature ~g covering all vertices of the tree
can be computed using the solutions of the rightmost child of the root. The algorithm selects a set
having minimum cut-size in each recursion step. Let Cv(~g,m), for any vertex v 6= r and any integer
m, denote the optimal cut-size over those lower frontiers of Lv with signature ~g that cover a total of
m vertices with their connected components. If no such set exists let Cv(~g,m) =∞. Additionally,
we define µ := (1 + ε)dn/ke, and ~e(x) for any integer x < µ to be the signature of a set containing
only one connected component of size x. We now show that the function Cv(~g,m) can be computed
using a dynamic program.

Let F∗ denote an optimal lower frontier associated with Cv(~g,m). First consider the case when
v is a leaf and the leftmost among its siblings. Then Lv = {v} and hence the set F∗ either contains
{v} as a component or is empty. In the latter case the cut-size is 0 and in the former it is 1 since
the leaf has to be cut from the tree. Thus Cv((0, . . . , 0), 0) = 0 and Cv(~e(1), 1) = 1 while all other
function values equal infinity. Now consider the case when v is neither a leaf nor the leftmost among
its siblings, and let w be the predecessor and u the rightmost child of v. The set Lv contains the
vertices of the subtrees rooted at v’s siblings that are left of v and at v itself. The lower frontier
F∗ can either be one in which the edge from v to its parent is cut or not. In the latter case the
m vertices that are covered by F∗ do not contain v and hence are distributed among those in Lw
and Lu since Lv = Lw ∪ Lu ∪ {v}. If x of the vertices in Lu are covered by F∗ then m − x must
be covered by F∗ in Lw. The vector ~g must be the sum of two signatures ~gu and ~gw such that
the lower frontier of Lu (respectively Lw) has minimum cut-size among those having signature
~gu (respectively ~gw) and covering x (respectively m − x) vertices. If this were not the case the
lower frontier in Lu (respectively Lw) could be exchanged with an according one having a smaller
cut-size—a contradiction to the optimality of F∗. Hence in case v is a non-leftmost internal vertex
and the edge to its parent is not cut, Cv(~g,m) equals

min
{
Cw(~gw,m− x) + Cu(~gu, x) | 0 ≤ x ≤ m ∧ ~gw + ~gu = ~g

}
. (1)

If the edge connecting v to its parent is cut in F∗, then all nv vertices in the subtree rooted at v
are covered by F∗. Hence the other m−nv vertices covered by F∗ must be included in Lw. Let x be
the size of the component S ∈ F∗ that includes v. Analogous to the case before, the lower frontier
F∗ \ {S} of Lu ∪ Lw with signature ~gu + ~gw must have minimum cut-size. Hence the vector ~g must
be the sum of ~gu, ~gw, and ~e(x). Therefore in case the edge to v’s parent is cut, Cv(~g,m) equals

1 + min
{
Cw(~gw,m− nv) + Cu(~gu, nv − x) | 1 ≤ x < µ ∧ ~gw + ~gu + ~e(x) = ~g

}
. (2)
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Taking the minimum value of the formulas in (1) and (2) thus correctly computes the value
for Cv(~g,m) for the case in which v is neither a leaf nor the leftmost among its siblings. In the
two remaining cases when v is either a leaf or a leftmost sibling, either the vertex u or w does not
exist. Therefore for these cases the recursive definitions of Cv can easily be derived from formulas
(1) and (2) by letting all function values Cu(~g, x) and Cw(~g, x) of a non-existent vertex u or w be 0
if ~g = (0, . . . , 0) and x = 0, and ∞ otherwise.

The above recursive definitions for Cv give a framework for a dynamic programming scheme
that computes the wanted solution set S in polynomial-time if ε is a constant, as the next theorem
shows.
Theorem 7. For any tree T and any constant ε > 0 there is an algorithm that computes S in
polynomial time.

Proof. If the tree contains only one vertex the theorem obviously holds. Otherwise the optimum
solution from S that has signature ~g must contain a connected component that includes r and has
some size x. Clearly x is at least 1 and at most µ. If q denotes the rightmost child of the root r the
cut-size of the optimal solution for ~g can thus be computed in linear time using the formula

C(~g) = min{Cq(~g − ~e(x), n− x) | 1 ≤ x < µ}. (3)

An optimal set of connected components with signature ~g can be computed using the dynamic
program given by the above equation together with the recursive definition of Cv by keeping track
of the set of connected components used in each recursion step.

To analyse the runtime let us first bound the number of signatures ~g that have to be considered
for a vertex v in the dynamic program. Let Nv = |Lv| denote the number of vertices in the subtrees
rooted at the siblings left of v and at v itself. There are Nv vertices that can be distributed into
connected components of different sizes to form a lower frontier S of Lv. Each entry gi of ~g counts
components of size at least the lowest value of the i-th interval as specified in Definition 6. Hence
each gi is upper bounded by Nv/((1 + ε)i−1 · εn/k) ≤ k/((1 + ε)i−1 · ε) if i ∈ {1, . . . , t}, and Nv if
i = 0. Therefore the total number of signatures ~g considered for a vertex v is upper bounded by

Nv ·
t∏
i=1

k

(1 + ε)i−1 · ε
= Nv

(
k

ε

)t
·
(

1

1 + ε

) (t−1)t
2

≤ Nv

(
k√
ε

)t
,

where the inequality holds since t − 1 = dlog1+ε(1/ε)e. Because the latter value can be upper
bounded by d1/ε · log(1/ε)e if ε ≤ 1, since then 1 + ε ≥ 2ε, we can conclude that the number of

signatures is γNv, where γ ∈ O((k/
√
ε)1+d 1

ε
log( 1

ε
)e).

We bound the runtime as follows. For each vertex v we calculate the number of steps Tv that
are needed to compute all entries Cv′(~g,m) for all v′ ∈ Lv. We claim that Tv ≤ 3

2γ
2N4

v for any
vertex v. According to the formulas in (1) and (2), in addition to the number of steps Tu and Tw to
compute the tables for Lu and Lw, for each m and ~g the minimum value over two options is found
by going through all possible x, ~gu, and ~gw. For any fixed x there are at most γNu · γNw many
possibilities to combine vectors ~gu and ~gw to form a signature ~g. Since m and x are both upper
bounded by Nv and Nu +Nw ≤ Nv we get

Tv ≤ Tu + Tw + 2γ2NuNwN
2
v ≤

3

2
γ2N2

v

(
N2
u +N2

w + 2NuNw

)
≤ 3

2
γ2N4

v .

Since the time to compute formula (3) for each signature is O(γn), we conclude that the total
runtime is O(γ2n4), which is polynomial if ε is constant.
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3.2 The Second Stage

The second stage of the algorithm attempts to pack each set of connected components S ∈ S into
k bins of capacity (1 + ε)dn/ke. This means solving the well known BIN PACKING problem, which
is NP-hard in general. However we are able to solve it in polynomial time for constant ε using a
method developed by Hochbaum and Schmoys [13], which we briefly describe as presented in [24].

Let S ∈ S be a set of connected components with signature ~g = (g0, . . . , gt). First the algorithm
constructs an instance I of the BIN PACKING problem comprising only the components of S larger
than εdn/ke. In particular, the bin capacity is set to be dn/ke and for every entry 1 ≤ i ≤ t of ~g,
gi elements of size (1 + ε)i−1 · εdn/ke are introduced in I. That is, the size of each component is
converted to the lower endpoint of the interval which contains it according to Definition 6. The
number of elements in I is

∑
i≥1 gi ≤ n/(εdn/ke) ≤ k/ε since there are n vertices in V and the

smallest size of an element in I is εdn/ke. An optimal bin packing for I can be found in time
O((k/ε)2t), i.e. it is exponential in the number t of different sizes of the elements (for more details
see [13, 24]). A packing of I into the minimum number of bins of capacity dn/ke translates into a
packing of the components larger than εdn/ke of S into bins of capacity (1 + ε)dn/ke, since each
element in I underestimates the size of the component in S that it represents by a factor of at most
1 + ε.

To complete the packing of S the algorithm distributes the remaining components of size less
than εdn/ke by greedily putting them into bins without exceeding the capacity of (1 + ε)dn/ke. A
new bin is created if placing a component in any bin would exceed the capacity. Distributing the
remaining components can be performed in O(n) time. Let ϕ(S) denote the number of bins that
this algorithm needs to pack S. Note that for two sets of components having the same signature
the components larger than εdn/ke will always be distributed in the same way by the algorithm.
However the greedy distribution of the remaining small components may create more bins for one
of the sets. We show next that if a set of components computed by the first stage has the same
signature ~g∗ as the set of components induced by an optimal perfectly balanced partition, then the
second stage of the algorithm packs it into at most k bins with capacity (1 + ε)dn/ke.

Lemma 8. Let S∗ having signature ~g∗ be the set of connected components in an optimal perfectly
balanced partition. For the set S ∈ S with signature ~g∗ it holds that ϕ(S) ≤ k.

Proof. We distinguish two cases for the greedy distribution of the components of S that have size
less than εdn/ke depending on whether or not new bins are created. If no new bins are created then
ϕ(S) is solely determined by the output of the bin packing algorithm, run with capacities dn/ke
on the instance I. Since S∗ has the same signature ~g∗ as S, all elements ei ∈ I can be mapped to
distinct components Si ∈ S∗ such that ei ≤ |Si|. Hence any packing of S∗ into bins of capacity
dn/ke requires at least ϕ(S) many bins which is optimal for I. Since S∗ requires at most k optimally
packed bins by definition, this proves the claim in the case no new bins are opened. If new bins
are created by the greedy step, then at least the first ϕ(S)− 1 bins of the final solution are filled
beyond the extent of dn/ke. Otherwise small components of size at most εdn/ke could have been fit
without requiring the creation of the last bin. Therefore the total number of vertices in S strictly
exceeds (ϕ(S) − 1)dn/ke. Since the total number of vertices contained in S∗ equals that of S it
follows that at least ϕ(S) bins are required to pack S∗ into bins of capacity dn/ke, which proves the
claim in the case new bins were created by the greedy step.

The final step of the algorithm is to output the packing of a set S ∈ S of minimum cut-size
among those with ϕ(S) ≤ k. The next theorem proves correctness and bounds the runtime of the
algorithm.
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Theorem 9. For any tree T , k ∈ {1, . . . , n}, and ε > 0 there is an algorithm that computes a
partition of T ’s vertices into k sets such that each set has size at most (1 + ε)dn/ke and its cut-size
is at most that of an optimal perfectly balanced partition of the tree. Furthermore the runtime is
polynomial if ε is a constant.

Proof. Let S̃ ∈ S be the set of connected components returned by the algorithm, i.e. if C(~g) denotes
the cut-size of the set S ∈ S with signature ~g, then

S̃ = argS∈S min{C(~g) | S has signature ~g ∧ ϕ(S) ≤ k}. (4)

By Lemma 8 we know that if S ∈ S has signature ~g∗ then ϕ(S) ≤ k. Thus the minimisation
of (4) ensures that the cut-size of S̃ is at most that of a set of components S ∈ S with signature
~g∗. Since S retains the set of components with minimum cut-size among all those having the same
signature, it follows that the cut-size of S̃ is at most that of S∗, which concludes the proof of
correctness.

To bound the runtime of the second stage, recall that the total number of considered signatures

~g is γn, where γ ∈ O((k/
√
ε)1+d 1ε log( 1

ε
)e). By Theorem 7 the set S , whose size is at most γn, can

be computed in time O(n4γ2). Each of the sets of components of S requires at most O((k/ε)2t + n)
time to be packed in the second stage of the algorithm. Hence the second stage can be performed in
O(γn((k/ε)2t + n)) total time, which concludes the proof.

4 Extension to Unrestricted Weighted Graphs

In this section we present an algorithm that employs the PTAS given in Section 3 to find a near-
balanced partition of a graph G with weighted edges. The (weighted) cut-size computed has a
capacity of at most α ∈ O(log n) times that of an optimal perfectly balanced partition of G. The
algorithm relies on using our PTAS to compute near-balanced partitions of a set of decomposition
trees that well approximate the cuts in G. This set can be found using the results by Räcke [22]. The
reason why this process yields a O(log n) approximation of the cut-size depends on the properties
of the decomposition, which we now detail, after introducing a few definitions. A cut W ⊆ V of
the vertices of a graph G = (V,E, u), with capacity function u : E → R+, is to be computed. The
quality of the cut is measured using the cut-size C(W ), which is the sum of the capacities of the
edges connecting vertices in W and V \W . A decomposition tree of a graph G = (V,E, u) is a
tree T = (VT , ET , uT ), with capacity function uT : ET → R+, for which the leaves L ⊂ VT of T
correspond to the vertices in G. More precisely there is a mapping mG : VT → V of all tree vertices
to vertices in G such that mG induces a bijection between L and V . Let mT : V → L denote the
inverse function of this bijection. Accordingly we also define a leaf cut K ⊆ L of a tree. The cut-size
C(K) of a leaf cut K is the minimum sum over the capacities of those edges in ET that are necessary
to disconnect K from L \K. We make use of the following result which can be found in [19, 22].

Theorem 10. For any graph G = (V,E, u), a family of decomposition trees {Ti}i of G and positive
real numbers {λi}i with

∑
i λi = 1 can be found in polynomial time, such that for any cut W

of G and corresponding leaf cuts Ki = mTi(W ), C(Ki) ≥ C(W ) for each i (lower bound), and∑
i λiC(Ki) ≤ O(log n) · C(W ) (upper bound).

Since
∑

i λi = 1 the above theorem implies that for at least one tree Ti it holds that C(Ki) ≤
O(log n) · C(W ). As we will see, this allows for a fast approximation of cuts in graphs using a
modified version of the PTAS given in Section 3. We adapt the PTAS to compute near-balanced
leaf partitions of each Ti. That is, it computes a partition L = {L1, . . . , Lk} of the leaves L of a
tree T into k sets of size at most (1 + ε)dn/ke each. The cut-size C(L) in this case is the minimum
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sum of the capacities of those edges that are necessary to disconnect each Li ∈ L from all other
leaves. The PTAS given in Section 3 can be adapted to compute near-balanced leaf partitions in a
natural way: edge counts are replaced with sum of edge capacities, in Equation 2. Moreover, we
need to keep track of the number lv of leaves at a subtree of a vertex v instead of the number nv of
vertices in Equations 1 and 2. This yields the following result.

Corollary 11. For any tree T , ε > 0, and k ∈ {1, . . . , n}, there is an algorithm that computes a
partition of T ’s leaves into k sets such that each set includes at most (1 + ε)dn/ke leaves and its
cut-size is at most that of an optimal perfectly balanced leaf partition. Furthermore the runtime is
polynomial if ε is constant.

Using the above results we show that near-balanced partitions that deviate by only a logarithmic
factor from the optimal cut-size can be computed for graphs in polynomial time.

Theorem 12. Let G = (V,E, u) be a graph, ε > 0 be a constant, and k ∈ {0, . . . , n}. Also let V∗
be an optimal perfectly balanced partition of G. There is an algorithm that computes in polynomial
time a partition of V into k sets such that each set has size at most (1 + ε)dn/ke and its cut-size is
at most O(log n) · C(V∗).

Proof. We use Theorem 10 to compute a family of decomposition trees with the properties listed
therein. This family has a polynomial number of trees since the runtime is polynomial. For each such
tree we compute a partition of its leaves into k sets of size at most (1 + ε)dn/ke using Corollary 11.
We select the computed leaf partition L∗ of the decomposition tree T ∗ having the smallest cut-size
when applied to G. That is, L∗ minimises the quantity C(mG(L)) among all computed leaf partitions,
where for a leaf partition L = {L1, . . . , Lk} we define mG(L) = {mG(L1), . . . ,mG(Lk)}. The output
of the algorithm is then the vertex partition mG(L∗) of G.

By Theorem 10, for some decomposition tree T ′ and the corresponding leaf partition mT ′(V∗) =
{mT ′(V

∗
1 ), . . . ,mT ′(V

∗
k )} of the optimal perfectly balanced partition V∗ = {V ∗1 , . . . , V ∗k }, we get

the upper bound C(mT ′(V∗)) ≤ O(log n) · C(V∗). By Corollary 11, we know that the cut-size
of the computed leaf partition L′ in T ′ is at most the cut-size of the optimal perfectly balanced
leaf partition in T ′, hence C(L′) ≤ C(mT ′(V∗)). From the lower bound in Theorem 10, using
the observation that for any partition X = {X1, . . . , Xk} it holds that C(X ) = 1

2

∑k
j=1C(Xj),

we can conclude that C(mG(L′)) ≤ C(L′). Finally, since we chose L∗ to minimise the quantity
C(mG(L)) among all computed leaf partitions, we get C(mG(L∗)) ≤ C(mG(L′)). This implies
C(mG(L∗)) ≤ O(log n) · C(V∗), and concludes the proof.

5 Conclusion

In this paper, we demonstrate the benefits of studying the k-BALANCED PARTITIONING on restricted
graph instances, in this particular case trees. When a perfectly balanced solution is required, we
show that even when either the diameter or the degree of the tree is constant the k-BALANCED
PARTITIONING problem remains hard to approximate. In this sense, trees represent the simplest
unit that capture the full complexity of the problem.

On the other hand, if one settles for near-balanced solutions, trees prove to be “easy” instances
which admit a PTAS with approximation α = 1, the best possible in the bicriteria sense. This
crucial fact enables our PTAS for trees to be extended into an algorithm for general graphs with
approximation factor α ∈ O(log n), improving on the best previous [3] bound of α ∈ O(log1.5 n/ε2).
Hence, remarkably, the same approximation guarantee can be attained on the cut-size for the
k-BALANCED PARTITIONING problem in case k = 2 (the BISECTION problem) and for unrestricted
k, if we settle for near balanced solution in the latter case. This is in contrast to the strong
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inapproximability results for both general graphs and trees when the solutions are to be perfectly
balanced.

hardness

2 5 7
P NP

APX

arbitrary

NP-hard for

Figure 7: A plot of the hardness of partitioning trees
versus their maximum degree ∆: the three hardness
results from Section 2 (big dots) indicate that the
hardness grows with ∆ (dotted line). On the positive
side a modification of MacGregor’s [18] algorithm
yields an approximation factor of O(∆ log∆(n/k))
(continuous line). In particular this means there is a
gap of size O(log(n/k)) between the lower and upper
complexity bounds in case ∆ is constant.

Open Problems. For perfectly balanced par-
titions of trees it remains open to generalise our
results to show a tighter dependency of the hard-
ness on the degree (Figure 7). In addition, the
possibility of an approximation algorithm for per-
fectly balanced partitions with a better ratio than
α ∈ O(∆ log∆(n/k)), as provided by the greedy
scheme by MacGregor [18], remains open. In
particular, Theorem 3 does not rule out an algo-
rithm that approximates the cut-size by the factor
α = 25/24 if ∆ ≤ 7.

For general graphs and near-balanced parti-
tions, the main challenge we see is to resolve
the discrepancy in complexity between the case
ε ≥ 1 and the case ε < 1, studied in this pa-
per (recall Figure 2). For the case ε ≥ 1 the
algorithm by Krauthgamer et al. [16] achieves fac-
tor α ∈ O(

√
log n log k) and in the same paper it

is shown that a dependency of α on k is unavoid-
able. Proving similar results for the case ε < 1 seems difficult to achieve, as the spreading metric
techniques generally used for ε ≥ 1 do not extend to ε < 1. Furthermore, the tree embedding
results we used to achieve an O(log n) approximation do not seem amenable to leading to algorithms
with o(log n) approximation factor. Therefore it is likely that radically new techniques need to be
developed to resolve the discrepancy.
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