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Predicative Scheduling :
Integration of Locking and Optimistic Methods

Richard P. Bragger (*) and Manuel Reimer (= ,#)

Abstract

Database programming languages provide powerful relational
structures and operators based on, for example, first order predicate
calculus. Language constructs for database programming, including a
transaction concept, require therefore a predicate-oriented approach to
concurrency control. First of all, a predicative optimistic concurrency
contro! is presented that attacks problems inherent in predicate locking.
Only these conflicts that actually occurred between transactions are
detected, and well-known query evaluation algorithms are applied
instead of algorithms testing the disjcintness of certain restricted
classes of predicates.

For environments where the optimistic assumption of a low probability
for conflicts between concurrent transactions is not met, an integration
of selected locking concepts into the predicative optimistic concurrency
control is proposed. Finally, predicative scheduling fully integrates
tocking and optimistic methods. The predicative scheduler decides
upon the appropriate concurrency control policy for each database
access of transactions. This decision is based on information collected
about the frequence of certain accesses or on measuring the selectivity
of access predicates.
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1 Introduction

A very common probiem in database programming is the conditional
branching to different program parts. This is due to the fact that
preconditions must be checked before actions manipulating a database
may be executed. If preconditions are not fulfilled, operations are
executed alternatively that indicate some exceptional situation. The
following conditional statement sketches this programming situation:

IF (= precondition =)
THEN (=*= database action =)
ELSE (= exception =)

The semantics of this conditional statement are precisely defined in
sequential programming (cf. e.g.,, [GrieB1]). The database action
guarded by the precondition is executed if and only if the precondition is
fulfilled; otherwise, the exception is perfermed. However, if objects are
shared by concurrent programs, additional semantic issues have to be
considered. Before or during execution of a guarded command (i.e.,
database action or exception), the values of shared objects that
determine the value of the precondition may be subject to changes by
programs running in parallel. Obviously, the value of the precondition
may be changed as a consequence, and database actions may have
manipulated a database that would not be executed if the precondition
would be reevaluated. Therefore, it must be required that the value of
the precondition remains stable during the execution of the conditional
statement. This requirement must be met if nothing is known in advance
about the programs running in paraliel [Casa81]. This scenario is
assumed throughout the whole paper.

The semantic definition of the conditional statement must capture also
the very common precondition testing the existence (respectively the
non-existence) of objects in a shared database. Subsequently, the
relational approach will be used for data and transaction modelling.
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With this approach, the precondition may be a membership
{(non-membership) test for some relation element (tuple). The following
example will illustrate this kind of precondition. The example is based on
a small university administration database containing information about
the schedule of courses held by lecturers. An additional lecture may be
scheduled by the subsequent conditional statement. {The programming
notation adopts concepts of the database programming language
Modula/R [Koch83] as introduced in Chapter 3.)
IF (=* precondition =)
NOT SOME s IN schedule
((s.lecturer = lecture.lecturer) AND
(s.datetime = lecture.datetime))
THEN (= database action #)
schedule :+ { lecture }
ELSE (=* exception =)
WritelLn ("Lecturer busy at the given time")
END

If two of the above statements are executed concurrently concerning
the same lecturer and the same time, the scheduler may select first the
preconditions to be tested. Both tests are fulfilled if the lecturer is not
busy at the beginning. Then, both conditional statements execute their
database action. But, the final database state is inconsistent. This
inconsistency resulting from concurrent insertions has been observed
as the phantom problem [Eswa76]. Therefore, the requirement for a
stable precondition must also capture the case of concurrent
insertions.

Database programs are perceived subsequently as transactions
[Gray81]. To solve conflicts raised by the concurrent execution of
transactions, accesses to shared objects must be synchronized.
Execution models are proposed that guarantee the semantic definition
of transactions by means of some concurrency control method. A
method that solves the consistency problems including the phantom
problem is predicate locking [Eswa76].
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This paper proposes a different concurrency control method, called
predicative optimistic concurrency control. It is based on the optimistic
approach of [Kung81]. Chapter 2 reviews the original optimistic method.
Chapter 3 presents the idea of the predicative optimistic concurrency
control and discusses the database programming language Modula/R
and its requirements on a predicative concurrency control. The data
structures and algorithms required for the predicative optimistic
concurrency control are presented in Chapter 4.

Chapter 5 proposes several ideas about the integration of selected
locking concepts into the predicative optimistic concurrency control.
Preference to read-only transactions by introducing read locks, and
avoidance of data handling overhead by means of write locks are two of
these methods.

Finally, Chapter 6 presents predicative scheduling that fully integrates
locking and optimistic methods. The predicative scheduler decides
upon the appropriate concurrency control policy for each database
access of transactions. Related data structures and algorithms are
discussed.

Preliminary investigations in the direction of this paper have been
published in [Brag82] and [Reim82]. The predicative optimistic
concurrency control is presented also in [Reim83].



2  The Optimistic Approach to Concurrency Control

Concurrency control is needed to preserve the integrity of shared data.
Most current approaches to solve this problem use some kind of locking
(e.g. [Gray78)). But, there are some serious disadvantages with the
locking method:

(1) Locking is necessary only in the case, when transactions are really
in conflict. It is assumed that conflicts will be frequent. This is called
the pessimistic assumption of locking.

(2) Each lock request of transactions requires a comparison with the
already set locks on compatibility. Accesses to the global data
structure containing the lock information must be synchronized
between transactions running in parallel. This may heavily reduce the
degree of concurrency, even if conflicts do not occur.

(3) All tocks must be held until the end of the transaction to enable an
independent backup of transactions.

(4) Due to incrementally requesting locks, deadlocks may occur. i
deadlocks are prevented by preclaiming locks, concurrency is heavily
reduced.

In [Kung81], a database model is presented where each database object
is a node in a tree. In this environment, many transactions fulfill the
optimistic assumptions:

the number of nodes in the tree is large compared to the number of
nodes accessed by all running transactions, and

an often used node is rarely modified.

Whenever these assumptions are met conflicts between concurrently
running transactions will occur rather seldom. The idea of the optimistic
method to concurrency control introduced by [Kung81] can be
summarized as follows.



9

Each transaction is divided into three phases as illustrated by Figure 2.1.
During the read phase, the operations of a transaction are executed.
Objects of the database can be read unrestricted, but writes are
performed on local copies. In the validation phase, it is tested if the
integrity of the database will not be damaged in writing the local copies.
If validation succeeds, these copies are made global during the write
phase. Otherwise, the transaction is aborted and restarted.

read phase va;i::;ieo " write phase
| I — i
L 4
time

Figure 2.1: Three Phases of a Transaction

Read Phase

The database model used in [Kung81] assigns a unique name to each
database object. The concurrency control component manages for
each transaction a read set containing the names of all objects read,
and a write set containing the names of all objects written by the
transaction. At the first write access to a database object, a copy local to
the transaction is made and all further read and write operations are
directed to this copy. This means that writes to the global database do
not occur during the read phase.
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Validation Phase

To verify the correct execution of concurrent transactions, the criterion
of serializability is generally accepted [Eswa76]. Serializability is
achieved by assigning unique numbers to transactions and
guaranteeing that whenever i < j, then transaction T(i) comes betore
transaction T(j) in the equivalent serial schedule. The transaction
numbers are assigned at the end of the write phase.

Transactions T(i) can be divided with respect to transaction T(j) with
i # jinto three classes:

(1) each T(i) that finishes before T(j) starts;

(2) each T(i) that finishes when T(j) is in its read phase;

(8) each T(i) that finishes after T(j) has finished its read phase
and T(i) started its validation phase before T(j).

Transactions T(i) that started their validation phase after T(j) must not be
considered, only the role of T(i) and T(j) has to be changed.

Transactions of class (1) cannot conflict with T(j), so validation against
such transactions is not necessary. For class (2), it must be confirmed
that the objects written by T(i) have not been read by T(j). This is
checked by testing each write set of T(i) against the read set of T(j) on
disjointness. For class (3), it is additionally necessary that the objects
written by T(i) will not be written by T() in parallel. Therefore, each write
set of T(i) must be disjoint from the read set and from the write set of
T(j). If the validation of transaction T(j) fails, T(j) is aborted and restarted
from its beginning.

Two different algorithms for the validation phase are presented in
[Kung81]. In the serial validation algorithm, the class (3) is empty and
must not be considered since at most one transaction is in its validation
phase or in its write phase. In the parallel validation algorithm, validation
phases and write phases are executed in parallel. Therefore,
transactions of class (3) must also be considered. The parallel validation
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algorithm is reviewed in Figure 2.2.

valid := TRUE;
FOR EACH t IN class (2) DO
IF ( write set of transaction t intersects
read set ) THEN
valid := FALSE
END
END;
FOR EACH t IN class (3) DO
IF ( write set of transaction t intersects
read set or write set ) THEN
valid := FALSE
END
END;

Figure 2.2: Parallel Validation Algorithm of [Kung81]

Write Phase

if validation succeeds, all local copies are transfered to the database.
These operations are very fast in the special database model of
[Kung81] as only pointers must be exchanged.

Some remarks on the parallel validation algorithm:

The two sets representing class (2) and class (3) can be constructed
by means of the transaction numbers (details in [Kung81]).

The write set of a transaction must be maintained until all concurrently
running transactions have finished their validation phase. But, the
concurrency control component may manage only a finite number of
write sets. For that reason, a transaction may also be invalidated if it
needs an unavailable write set.

The problem of starving transactions, where validation repeatedly
fails, can be solved by locking the entire database (a better solution is
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presented in [Prad82] and in Chapters 5 and 6).

A transaction of class (3) may invalidate the validating transaction
even though it becomes invalid itself. A solution to this problem is
developed in Chapter 3.

Compared to the disadvantages of locking, the optimistic method gains
the following advantages (cf. [Bada79}, [Kung81]):

(1) With the optimistic assumption of a iow probability for conflicts,
aborting a transaction is necessary only in the worst case.

(2) Only the write sets must be known to all transactions. They must be
contained in a global data structure, but the read sets, which are
much larger than the write sets in the average, can be kept locally.
Each write set is observed only once during the validation, and not
with each lock request. These two improvements are resulting in fewer
accesses to global data structures, thus increasing the degree of
concurrency.

(3) Any object may be accessed at any time; the optimistic method
does not have a notion of exclusiveness as compared to exclusive
locks.

(4) No transaction is ever waiting, so deadlocks cannot occur. There is
only the problem of repeatedly aborted transactions in heavily loaded
systems.
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3 Predicative Optimistic Concurrency Control

Database programming languages provide powerful relational operators
(e.g. predicate calculus) for database programming. The semantic
definition of language constructs including a transaction concept
requires therefore a predicate-oriented approach to concurrency
control. This chapter proposes an extension of the optimistic approach
towards a predicative optimistic method.

3.1 Database Programming Language Modula/R

The database programming language Modula/R [Koch83] integrates
the programming language Modula-2 [Wirt82] and concepts of the
relational database model [Codd70]. The origin of Modula/R is the
database programming language Pascal/R which extends Pascal by
means of very similar concepts ([Schm77], [Schm80]).

Relations are integrated into Modula/R as a new data type that can be
perceived as a set of elements of type record. A key of a relation
specifies certain fields of the relation element and enforces uniqueness
of these fields over all elements of a relation.

The following example illustrates the definition of relation types and the
declaration of relation variables in Modula/R. It consists of a small
university database.

TYPE
EmployeeRec = RECORD
persNr : CARDINAL;
name : STRING20;
status : (student, assistant,
professor);
salary : CARDINAL
END;

EmployeeRel RELATION persNr OF EmployeeRec;
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CourseRec = RECORD
courseNr : CARDINAL;
title . STRING50
END;
CourseRel - RELATION courseNr OF CourseRel;
ScheduleRec = RECORD

courseNr : CARDINAL;
persir . CARDINAL;

time : [0815..1930];
day : (mon,tue,wed,thu,fri);
room : STRING4
END;

SchedutleRel - RELATION courseNr, persNr OF

ScheduleRec;
VAR
employees : EmployeeRel;
courses : CourseRel;

schedule : ScheduleRel;

In practice, transactions do not operate on entire database relations.
Subsequently, the notion of so-called selected relation variables
([Mal183], [Schm83a)) is used to restrict access to selected parts of
relations. A selected relation is part of an entire relation variable defined
by the restriction that its elements have to fuffill the given selection
predicate. To define a specific selection, the notation of a selector is
used that introduces a selector name (sp), binds the selector to a
relation type (RelType), provides a selection predicate (p), and, in
addition, may be parameterized:

SELECTOR sp (...) FOR frel: RelType;

BEGIN

EACH r IN frel: p(r,...)
END sp;

A selected part of a relation, rel, is denoted by relfsp(...)]. Since selected
relations are relation variables, each operation defined on relations is
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applicable to selected relations, as well. Through a selected relation
defined by a certain selection predicate, only that part of a database

relation can be accessed and modified whose elements fulfill the
predicate.

Example: All employees which are professor.

Selector Definition

SELECTOR prof FOR erel: EmployeeRel;
BEGIN

EACH e IN erel: e.status = professor
END prof;

Selected Relation
employees{prof]

Example: All lectures given at the same day at the same time as the
lecture, lect.

Selector Definition

SELECTOR concurrent (se: ScheduleRec)

FOR srel: ScheduleRel;
BEGIN

EACH s IN srel: [s.time, s.day] = [se.time, se.day]
END concurrent;

Selected Relation
schedule[concurrent(lect)]

To manipulate database relations, transactions must be used. All
selected relations that will be manipulated have to be imported in read,
readwrite, or write mode. The following example shows the insertion of a
new schedule.
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TRANSACTION InsertSchedule (srec: ScheduleRec);
IMPORT
lecturer = employees[prof][srec.persNr] READ,
course = courses[srec.courseNr] READ,
parallellectures
= schedule[concurrent(srec)] READ,
slecture = schedule[srec.courseNr,
srec.persNr] WRITE;

0

BEGIN
WITH srec DO
IF lecturer = VOID THEN
Writeln('unknown lecturer')
ELSIF course = VOID THEN
WritelLn('unknown course')
ELSIF SOME 1 IN parallellectures
(1.room = room) THEN
WriteLn('room occupied’)
ELSIF SOME 1 IN parallellectures
(1.persNr = persNr) THEN
Writeln('lecturer busy')
ELSE slecture := srec
END
END
END InsertSchedule;

Where are database accesses in this example? In Modula/R, a read
access occurs if an imported variable appears in an expression. In the
transaction InsertSchedule, each if (elsif)-condition contains a read
access, for example "lecturer = VOID" or "SOME | IN parallellectures
(L.Lroom = room)". In the first expression, the element of employees with
the specified persNr and status = professor is read. The second
predicate tests if a lecture in parallellectures exists that takes place in
the same room at the same time as the lecture srec. Each alteration of
an imported selected relation must be interpreted as a write access.
Such alterations are the operations insert, delete, replace, and
assignment with relational operands (e.g., the assignment "slecture : =
srec").
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3.2 Read Set and Write Set for Selected Relations

The read sets and write sets have been introduced to detect conflicts in
the validation phase. These sets are maintained by the concurrency
control component. Before each database access in the read phase, an
entry is inserted into the suitable set. The read sets and write sets can
be defined as relations. An entry describes an imported selected relation
(e.g., Irel = rel[sp(..)]) through its local name (Irel), its relation name
(rel), and its selector with the actual parameters (sp(...)).

TYPE
SetEntry = RECORD
TocName : RelationName;
relName : RelationName;
selector : SelectorDescriptor
END;

SetRelation = RELATION locName OF SetEntry;

The Phantom Problem

As observed by [Eswa76], phantoms might occur in a physical locking
environment. Physical locking means to lock all elements of a selected
relation satisfying the predicate of the selector. But, if existent elements
are considered only, another transaction might insert new elements that
also fulfill the predicate. These elements are called phantoms. To avoid
inconsistencies, it is necessary to lock also the non-existent elements.
For that reason, predicate locks must be set ([Eswa76], [Bern81],
[Kiug83)). In the optimistic method, the entries of read sets and write
sets correspond to locks (see Chapter 5). Analogously, predicates are
used as set entries to avoid phantoms.
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Deciding the Conflict between Transactions

The detection of a conflict between two transactions might be based on
testing the disjointness of the selected relations imported by the
transactions. Therefore, the predicates defining the selected relations
must be tested on disjointness. Unfortunately, this is a hard algorithmic
problem, decidable only for certain classes of first-order predicate
calculus (cf. e.g. [Eswa76], {Hunt79], [Munz79], [Rose80)). in general,
arbitrary selection predicates must be generalized to simpler predicates
fitting into some common class of decidable predicates. This may
increase the granularity and, consequently, may reduce the degree of
concurrency.

A serious problem arises through a certain property of the disjointness
test, namely, that it is based on the intension of database operation.
Conflicts are detected that may occur in principle, but independent from
their occurrence in reality. For that reason, the reachable degree of
concurrency may be severely restricted.

The following example will illustrate this problem and will suggest a
solution. The relation, employees, and three different transactions are
used.

Relation employees

persNr | name | status | salary

10 | Miller | assistant | 35000

20 | Smith | student | 5000

30 | Brown | assistant | 42000
| I I

assistant
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Transaction T1: All assistants get an additional pay of 10 percent.

Transaction T2: Mr. Smith (persiNr = 20) is employed as assistant.

Transaction T3: Mr. Jones (persNr

40) gets professor.

The read sets and write sets corresponding to these transactions
consist of the following predicates.

Read Sets and Write Sets
Transaction T1: Transaction T2: Transaction T3:
"status = assistant” "persNr = 207 "persNr = 40"

Consider a concurrent schedule with transaction T1 followed by
transaction T2 in the equivalent serial schedule. In the validation phase
of T2, the read set of T2 and the write set of T1 must be compared. But,
it is not decidable by inspecting the predicates if they are disjoint. For
that reason, transaction T2 must be aborted, although this situation is
serializable. Transaction T2 only read the tuple with persNr = 20 and
with status = student. Since the status will be changed not before
termination of T1, T2 did not affect the values read by T1. So the two
transactions ran without conflict and backup is not necessary.

To detect such situations, the form of the set entries should be changed.
After the read phase, each transaction holds not only the predicates, but
also the local copies of the written selected relations. Because these
copies will not be changed afterwards, they can be used for tests by
other transactions. In the validation phase, it is necessary to test
whether the reads were affected by writes of earlier transactions. The
comparison of predicates is replaced by the test, whether there are
values in the local copies of earlier transactions that fulfill the read
predicates. To demonstrate this test, the same sample schedule as
above is used. Transaction T1 has terminated. lts copy of the selected
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relation is:
ittt bttt +
| 10 | Miller | assistant | 38500 |
| 30 | Brown | assistant | 46200 |
| 40 | Jones | assistant | 44000 |
oot et +

Transaction T2 has started during the write phase of T1. In its validation
phase, it is tested whether there exists an element with persNr = 20
(read predicate) in the local copies of T1. This query retumns a negative
result, and so T2 can start its write phase.

Another sample schedule will show that not all conflicts can be detected
by means of this test. Transactions T3 and T1 are executed in parallel
whereby T3 finishes first (T3 < T1). The local copy of this transaction
consists of only one element (changed version):

The test in the validation phase of T1 (i.e., "are there tuples with
status = assistant in a copy?") produces a negative result, meaning that
the concurrent execution is correct. But this is wrong. Transaction T1
made its copy before T3 changed the status of Mr. Jones, and therefore
gets the status value assistant. Then also the element with persNr = 40
is included in the local copy of T1. To detect such situations, the old
values of the local copies must also be examined (cf. [Eswa76}: "Locks
must cover both the old and new values.”).
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Consequently, the write set entry can be redefined as follows:

TYPE
WriteSetEntry = RECORD
TocName : RelationName;
reliName : RelationName;

oldvValues : Relation;
newValues : Relation
END;

Selected relations can be imported in mode read, readwrite, or write. if
an import has mode write, a local copy of the selected relation must be
made as with mode readwrite. For that reason, a read access occurs
with the write predicate which becomes therefore automatically a
readwrite predicate. Thus, all predicates can be collected in one set
named predicate set. In an additional attribute it is specified whether it is
aread or a readwrite predicate (see Section 4.2).

The proposed predicative optimistic method has the following
advantages.

(1) The access intension of a transaction is not tested against other
intensions, but against the objects actually manipulated by other
transactions. Thereby, only real conflicts are detected, and fewer
transactions are serialized.

(2) Predicates must not be tested on disjointness. The test, predicate
versus local copy of a selected relation, is performed. In other words,
the intension is tested against extensions. For this test, well-known
algorithms can be used that perform an evaluation of first-order
predicates. These query evaluation algorithms are obviously available
in every relational database system. Therefore, any predicate may be
used for the definition of selected relations specifying the accesses of
transactions. Neither restricted classes of predicates, nor
generalizations of predicates must be introduced as with predicate
locking.
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3.3 Validation Phase

Two different algorithms for validation are discussed in [Kung81], a
serial and a parallel one. With the relational model, the write phase may
last longer than with the model of [Kung81]. For that reason, it is not
advisable to perform it serially. Subsequently, the parallel algorithm is
examined only.

In this section, the algorithm is improved furtherly. Firstly, concurrent
transactions are classified. Then, the necessary tests are evaluated, and
finally, timestamps are introduced for validation.

Classification of Concurrent Transactions

In Chapter 2, three classes of concurrent transactions are introduced.
Subsequently, this classification is discussed in more detail. For the
following, take a transaction T. The beginning of the validation phase of
T is chosen to divide the others transactions T’ {with T # T’) into three
groups: transactions that are finished already, transactions that finished
their read phase, and all others. These three groups are further divided
into six classes as follows and illustrated by Figure 3.1.

T finished read phase of read phase of
T finished T not finished

(1) before startof T (3 Tinits (5) Tinits
write phase read phase

(2) after start of T (4) Tinits (6) T notyet
validation phase started

Class (1): These transactions did not affect T because they ran before
T. They must not be considered during validation of T.

Class (2): These transactions changed selected relations while T was
reading, therefore conflicts are possible. This class corresponds with
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Figure 3.1: Classes of Concurrent Transactions at Beginning of
the Validation Phase

class (2) of Chapter 2.

Class (3): These transactions are valid, but are still writing. This class is
a part of class (3) of Chapter 2.

Class (4): These transactions started their validation phase before T, but
it is possible, that they get invalid later and are aborted. This class is
also a part of class(3) of Chapter 2.

Classes (5), (6): These transactions cannot affect T, because in their
validation phase conflicts with T are detected by them.

Each transaction has an identification number. These numbers are used
to build the classes. Three sets are managed by the concurrency contro!
component: readers, validaters, and writers. These sets collect the
numbers of transactions that are in the corresponding phase.
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Timestamps

The parallel validation algorithm causes abortions which are not
necessary. Consider the example illustrated by Figure 3.2.

Write Access
l, End of Transaction
]
QS
) |
T | i

Read Access

Figure 3.2: Example of Conflicting Transactions

In the validation phase of T, a conflict between T and T is signaled,
although this case is obviously serializable ( T" < T ). In [Laus82], a
method is presented to avoid such abortions. Whenever an object is
read, the highest transaction number currently assigned is stored in the
read set. In the validation phase of T, it is possible to decide if this object
was read after the termination of the conflicting transaction T°, because
in this case the transaction number of T' is smaller than the number
stored in the read set. In this case, a conflict is not signaled. Otherwise,
T must be aborted.

Using a clock, this method can be improved furtherly as presented in
Figure 3.3.

The current time of the first read access or of the last write access for
each selected relation is saved. Thereby, it is decidable if the read
access took place really before the write access. This improvement will
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Write Acc
° ¢ess End of Transaction
_____ |
T I i

Read Access

Figure 3.3: Conflict Detection Using a Clock

be described in detail in Section 4.2.

Conditions for Finished Transactions (class (2))

All transactions T of class (2) are collected in a local set. When
transaction T starts its validation phase, the transactions T are yet
terminated correctly and cannot be aborted anymore. Therefore,
conflicts between T and T can only be solved by setting back
transaction T. Conflicts can be detected by intersecting the read set of T
and the write set of T".

rw-Test

(1) sets are disjoint

(2) all read times are greater

(3) all read times are smaller

(4) smaller and greater read times
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Transaction T may have read something that transaction T will change
(for further discussion see Section 4.2). This requires that T comes
always before T in the equivalent serial schedule. Therefore, cases (3)
and (4) cannot be serialized, and T must be aborted. Cases (1) and (2)
do not signal a conflict, so T becomes valid.

Conditions for Writing Transactions (class (3))

Transactions of class (3) have finished their validation phase and will not
be aborted anymore. It is necessary to test, whether T and T operated
on overlapping selected relations during in the read phase of T (rw-test),
and also whether they will conflict during the write phase of T (ww-test).
The following cases must be considered.

rw-Test ww-Test

(1) sets are disjoint (5) sets are disjoint

(2) all read times are greater (6) all write times are greater
(3) ali read times are smaller (7) all write times are equal
(4) smaller and greater read times (= default time)

(Note: Not all selected relations are yet written by T'. Therefore, no time
is available for such relations. For these relations, a default time which is
greater than the time of all other entries is used in the test.)

In case (1), transaction T does not conflict with T. it directly implies
case (5). Also case (2) is consistent, but T' < T is required here. The
ww-test would have consequences only in case (7). But this case is
impossible here because all write predicates are also read predicates.
For that reason, T' must have already written the overlapping selected
relation and therefore case (7) is not possible. Case (4) is obviously not
serializable, independent of the ww-test; T must be set back.

Case (3) is a bit more complicated. T must come before T in the
equivalent serial schedule. If the write sets are disjoint (5), it could be
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possible. But it is not known if transaction T' read something which
transaction T will update later. This cannot be detected in the validation
phase of T". Since a correct serialization may not be found, T must be
restarted.

Conditions for Validating Transactions (class (4))

The difference between class (4) and class (3) is that transactions T’ of
class (4) can still become invalid. Both the rw-test and the ww-test are
necessary. Because none of these transactions has written yet, the
timestamps cannot be considered.

rw-Test ww-Test Solution

sets disjoint sets disjoint any serialization possible
sets disjoint sets overlap not possible

sets overlap sets disjoint T< T necessary

sets overlap sets overlap backup if T becomes valid

If the read set of T and the write set of T' are disjoint then any
serialization is possible. Each write predicate is also a read predicate
and therefore the write set is a subset of the read set. For that reason,
the write sets cannot overlap if the read set of T and the write set of 7
are disjoint.

In the second case, it is not possible to guarantee that T < T'. Again T
may have read something which T changes afterwards. Thus, T T is
required. But, T’ is still in its validation and can become invalid. In this
case, T becomes valid and can starts its write phase. Therefore, T waits
for the end of the validation phase of T and restarts only if T" becomes
valid. Cyclic waiting cannot occur because transactions are waiting only
for transactions that previously started their validation phase.
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Conditions for Classes (5) and (6)

Transactions T* of classes (5) and (6) start their validation phase after T.
For that reason, T will be included in classes (1), (2), (3), or (4) of T and
the necessary tests are performed in the validation phase of T.

Serialization Order

In [Kung81], a transaction number is assigned at the end of the write
phase. This number is used to verify the serialization. The end of the
write phase determines the serialization order. The various conditions
that have to be checked in the validation phase showed that for all
transactions T, that started their validation phase before T, T" < T is
required (if the extended parallel algorithm is used). Therefore, the point
of serialization is the beginning of the validation phase. Consequently,
explicit transaction numbers are not necessary any more. Only
transaction identifiers are assigned at the start of a transaction.

Integration of Dynamic Aspects

When a transaction T starts its validation phase, it determines the
concurrent transactions and classifies them. Since validation phases
are executed in parallel, transactions may change their state (i.e., a
writing transaction may finish or a validating may begin writing). In the
validation phase, these changes are computed after each validation step
and a step is repeated until no more changes have occurred.
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4  Data Structures and Algorithms for
Predicative Optimistic Concurrency Control

This chapter describes all types, variables, and procedures of the
concurrency control using the predicative optimistic method. The
proposed solution is not directed towards a particular system.
Therefore, some types will not be specified in detail. Their meaning can
be derived from their name (e.g., Transldent or RelationName). The
notation for the algorithms adopts concepts of the database
programming language Modula/R.

4.1 Global Data Structures

Objects that must be accessible to all transactions are collected in a
global module. All write sets are saved in the global write set, and a
counter for the transaction identifiers and a clock are necessary. The
running transactions are maintained in three sets, actives, validaters,
and writers.

TYPE

GlobWSEntry = RECORD
transld : Transldent;
locName,
relName : RelationName;
oldValues,
newValues : Relation;
time : TimeType

END;

G1obWSRel = RELATION transId, locName OF

GlobWSEntry;

TransidSet = SET OF Transldent;
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VAR
globalWriteSet : GlobWSRel;(* all write sets of
transactions that have
finished their
read phase *)

cTime : TimeType; (* current time #*)

cTransId : TransIdent; (* the last assigned
identifier =)

actives, (» all running trans. #)

validaters, (+ all Ids of validaters=)

writers . TransIdSet; (= all Ids of writers =)

4.2 Local Concurrency Control

Two sets are needed for the validation of a transaction. A predicate set,
where the predicates of the imported selected relations are collected,
and a write set consisting of all created local copies. An imported
selected relation is represented by an import entry.

TYPE
PredSetEntry = RECORD
TocName,
relName : RelationName;
pred : Predicate;
time : TimeType
END;
PredSetRel = RELATION locName OF PredSetEntry;
WriteSetEntry = RECORD
TocName,
relName : RelationName;
oldvalues,
newValues : Relation
END;

WriteSetRel = RELATION locName OF WriteSetEntry;
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ImportEntry = RECORD

lTocName,

relName : RelationName;

pred : Predicate;

mode : (READ, WRITE, READWRITE)
END;

VAR

predicates: PredSetRel; (# all used predicates )

writeSet : WriteSetRel;(® local write set with
copies #=)

ownTransId: TransIdent; (* transaction identifier =)

beginSet : TransIdSet; (= all running transactions
at start of transaction#)

Procedures

Essentially, the concurrency control component consists of four
procedures: RequestRead, RequestWrite, BeginTransaction, and
EndTransaction. In the following, these procedures are described in
detail. The procedure BeginTransaction is executed at the beginning of
a transaction. if a read access is performed by a transaction, the
procedure RequestRead is invoked. Respectively, RequestWrite is
called for write accesses. The procedure EndTransaction performs the
validation phase, and also the write phase if validation succeeds.

BeginTransaction

The procedure BeginTransaction initiates the required sets and local
variables. It must not be interrupted by concurrent transactions.
Therefore, its operations are guarded by a critical section (denoted by
<£....>>). All running transactions are collected in beginSet. A
transaction identifier is assigned and the transaction is specified to be
active.
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PROCEDURE BeginTransaction;

BEGIN
<< beginSet := actives;
cTransld := cTransld + 1;
ownTransld := cTransld;

actives :+ {ownTransId}; >>
predicates := {};
writeSet := {}
END BeginTransaction;

RequestRead

The procedure RequestRead controls the read accesses of a
transaction. The concerned selected relation is delivered as parameter.
The predicate is inserted into the predicate set and the current time is
remarked. If the predicate contains a quantifier ranging over some
relation then also the range relation must be inserted into the predicate
set with a modified predicate (cf. [Kiug83] for predicate locking).

No read access occurs in this procedure. The subsequent read
operation is performed on the database, with the exception that the
selected relation is already member of the write set. In this case, the
read operation is executed on the new values contained in the write set
entry.

PROCEDURE RequestRead (impEntry: ImportEntry);
BEGIN
IF NOT SOME p in predicates
(p.locName = jmpEntry.locName) THEN
( insert impEntry into predicates
and remark cTime )
END
END RequestRead;



RequestWrite

The procedure RequestWrite manages the write accesses. The
concerned selected relation is inserted into the predicate set and the
local copies oldValues and newValues are created. The question
whether the access mode of the selected relation permits a write
operation can already be treated during the compilation of the
transaction. Therefore no such test is made in RequestWrite.
Subsequent write operations are directed to the new values of the
corresponding write set entry.

PROCEDURE RequestWrite (impEntry: ImportEntry);
BEGIN
IF NOT SOME w in writeSet
(w.locName = impEntry.locName) THEN
RequestRead(impEntry);
( create local copies );
( insert impEntry into writeSet )
END
END RequestWrite;

EndTransaction

The concurrency control of the optimistic method is the validation. The
procedure EndTransaction manages the necessary tests and also the
write phase if the transaction becomes valid. Firstly, the local write set is
transfered to the global write set. Because this is not the real write
operation to the database, a default time (i.e. the greatest representable
time) is remarked. Afterwards, the concurrent transactions are
evaluated and two classes are formed. The finished or writing
transactions are collected in finished and the validating transactions in
validating.
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PROCEDURE EndTransaction;
VAR
finished, validating, waitSet: TransIdSet;
valid, empty: BOOLEAN;
BEGIN
< ( insert writeSet into globalWriteSet and
remark default time );

validating := validaters;

validaters :+ {ownTransld};

beginSet .+ {ownTransId+1,.... ,cTransId};
finished .= beginSet - actives + writers; >>

The transactions that started after the validating transaction, but are
already finished, are detected by means of cTransld. Furthermore, two
selectors are introduced.

The selector PartOf is used to obtain all entries of the global write set
belonging to a set of transactions.

SELECTOR PartOf (t: TransIdSet) FOR gWS: GlobWSRel;
BEGIN

EACH w IN gWS: w.transId IN t
END PartOf;

By means of the selector Intersect, all entries of the global write set that
intersect with a given predicate are selected. The remarked access
times are also considered.

SELECTOR Intersect (pse: PredSetEntry)
FOR gWS : GTobWSRel;
BEGIN
EACH w IN gWS:
(w.relName = pse.relName) AND
(w.time > pse.time) AND
(SOME e IN w.oldValues (pse.pred(e)) OR
SOME e IN w.newValues (pse.pred(e)))
END Intersect;

The validation against finished or writing transactions (i.e. classes (2)
and (3) of Section 3.3) can be formulated by means of the selector
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introduced above. The test is executed in a loop. After each test, a new
set of finished transactions is computed. The transactions of set
validating, which are now finished or started writing, are transfered to
set finished. Finally, when no more changes happened, one set,
validating, remains. :

valid := TRUE;
WHILE valid AND (finished # {}) DO
valid := ALL p in predicates
(g]oba]WriteSet[PartOf(finished)]

[Intersect(p)] = {});
<< finished := validating - validaters; >>
validating :- finished

END;

Validation against validating transactions must be performed for each
transaction separately, because it is possible that the transaction T must
await the end of a concurrent transactions T°. If the test detects an
intersection then transaction T becomes invalid only if T becomes valid.
Therefore the end of the validation phase of T" must be awaited.

waitSet := {}:
IF valid THEN
FOR EACH t IN validating : TRUE DO
empty := ALL p IN predicates
(g]obalWriteSet[PartOf({t})]
[Intersect(p)] = {}):
IF NOT empty THEN waitSet :+ {t} END
END
END;

This test is not repeated because transactions starting their validation
phase after T are not checked. After this last test, transaction T has to
wait eventually for the end of some transactions. If the transaction
becomes valid then the write phase follows.
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IF waitSet # {} THEN WaitValid(valid, waitSet) END;

IF valid THEN
SendValid(ownTransId);
<< validaters :- {ownTransId};
writers :+ {ownTransId}; >>

(= write phase =)
FOR EACH w IN writeSet : TRUE DO
( write w.newValues to relation w.relName );
globalWriteSet[ownTransld,
w.locName].time := cTime
END;
<< actives :- {ownTransId};
writers :- {ownTransId} >>

ELSE (= abortion =)
SendNonValid(ownTransId);
<< globalWriteSet[PartOf({ownTransId})] := {};
validaters :- {ownTransId};
actives :- {ownTransld}; >>

( restart transaction )
END

END EndTransaction;

Some Remarks

The procedures WaitValid, SendValid, and SendNonValid will not be
described in detail. Calling WaitValid, the transaction T waits until the
transactions in waitSet finish their validation phase. If all transactions
become invalid, T can start its write phase. But if at least one transaction
becomes valid, T must be restarted. The procedures SendValid and
SendNonValid are delivering the corresponding information to the
procedure WaitValid.

It is not necessary that the predicates in the local predicates set must be
deleted if the transaction is restarted. Only the access time must be
adjusted.
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5 Integration of Selected Locking Concepts

It may seem that the optimistic method, which was transfered to the
relational model in Chapter 3, is a rather new approach to concurrency
control. Subsequently, the predicative optimistic method is compared to
predicative locking. Both approaches use selected relations and the
predicates defining the selectors as granules of concurrency control.
Therefore, it is reasonable to observe the entries of read sets or write
sets as the same concept as locks of predicate locking. This view eases
the integration of the optimistic method and locking.

5.1 The Optimistic Method in Locking Terminology

With the locking method, each transaction must set locks on selected
relations before accessing them. This can take place freely during
execution of the transaction supposed the locks are held until the end of
the transaction. The idea of the optimistic method is to collect these
locks and to set them altogether. For that reason, three phases are
introduced for transactions.

During the read phase, only read accesses to the database are
occurring, the writes are performed on local copies. I a read occurs, a
read lock is created by inserting the read predicate into the read set.
But, all other running transactions must not take notice of the read
locks. Therefore, the read set is maintained locally. )

The changes must be written to the database after terminating the read
phase. Then, all needed write locks are known and can be set
altogether. Before that, all read locks must be set with retroactive effect
as if they were all set at the start of the transaction. Consequently, it is
possible that write locks of other transaction set during the read phase
are in conflict with the read locks. This is detected in the validation
phase, and perhaps the transaction must be aborted and restarted. If the
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test succeeds, the transaction tries to set the write locks. if a conflict
with an already set write lock appears, the transaction is also aborted.
Otherwise, the write phase is executed and all locks are returned
afterwards. The optimistic method is therefore only a special view of
locking.

Also, the improvements presented in Chapter 3 can be explained by
means of this terminology. it is not necessary that the read locks have
retroactive effect since beginning of the transaction. A read lock
required for the first read access is remark by means of a timestamp in
the optimistic method.

The advantages of the optimistic method compared to locking can now
be discussed in locking terms.

All necessary comparisons of locks can be performed locally by the
transaction. No critical section must be used. This is possible because
all needed locks are collected during the read phase. The write locks
are inserted into the global write set at start of the validation phase and
afterwards, the locks are compared. This is equivalent to preclaiming
and consequently deadlocks cannot occur. The tests can be performed
in paralle! achieving a greater performance if the optimistic assumptions
hold.

The read locks can be returned after the test in the validation phase.
They must not be kept until the end of the transaction. Using
timestamps, the write locks can also be returned just after the end of the
write access.

In case of a system error, recovery is very easy. Only transactions
interrupted during their write phase have to be considered. All others
must only be restarted. Writers have already changed database objects.
Recovery must restart their write phase. This imposes that the write set
entries must be saved to disk at the beginning of the write phase.
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The optimistic method controls concurrency by restarting transactions
whereas locking is based on waiting. The following sections are
discussing the integration of concepts of predicate locking and of the
predicative optimistic method. Basically, the moment of setting locks is
investigated. With the basic optimistic method, locks are set altogether
at the beginning of the validation phase. The following sections propose
some relaxations towards the introduction of read or write locks during
the read phase of transactions.

5.2 Preference for Read Transactions

In [Schig1], an extension of the optimistic method is proposed to give
preference to read-only transactions in applications where the majority
of transactions are queries. The reason for the preference (i.e.,
query-dominant applications) seems not very sound, since the number
of write sets is small in such environments. Therefore, validation of
readers can be performed efficiently.

A severe reason to give nevertheless preference to readers is the
duration of read-only transactions. They consist in general of complex
predicative queries. These queries must be optimized and evaluated by
algorithms taking a rather long time. But with increasing duration of a
transaction, the probability of a conflict increases. An abortion and
restart would make the already performed optimizations and evaluations
worthless. For that reason, read-only transactions should be preferred.

The idea is that read-only transactions are setting read locks during
their read phase [Reim82]. Consequently, they must not be validated
and become always valid; readers are never aborted and restarted.

Conflicts must be detected during validation of writing transactions. It
must be tested whether the write locks are in conflict with the read locks
of concurrent readers. This is determined by testing the disjointness of
the read predicate of the reader and the local copies of the writer (i.e.,
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testing intension vs. extension). In case of conflict, the writer must await
the end of the reader for the release of the required lock.

During observation of a reader's predicate set by a concurrent writer,
the reader must not insert a new entry into its predicate set (i.e., must
not set a lock). This can be guaranteed by delaying the lock request.

5.3 Update in Place

The optimistic method operates with local copies. This may be a
disadvantage for large selected relations. A write operation causes
always three copy operations. In the read phase, two local copies are
prepared, one to save the old values and one for writing. These two
copies are needed in any case (i.e., for locking also). if a transaction or
system error occurs, they are necessary to recover the database. But, in
the optimistic method, a change is performed firstly on the local copy,
and in the write phase these values must be copied back to the
database. This copy operation may be very costly.

The first idea presented to reduce the expenditure of double writing
takes the following transaction model:

transactions operate directly on the database for read and write
operations, no local copies are maintained;

read sets and write sets are used;

the system maintains an undo-log to recover the database if a backup
occurs;

each transaction is executed in two phases, an update phase and a
validation phase.
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Update Phase

Reads are executed as with the basic optimistic method. All predicates
are collected in a predicate set. Because write operations are also
performed directly on the database, no local copies are made. The
concurrency control component maintains an undo-log. This undo-log
guarantees that all updates can be undone if a transaction is aborted.

Validation Phase

The validation phase is the same as with the basic optimistic method.
Only finished and validating transactions must be checked. If a
transaction becomes valid, its entries in the undo-log must be deleted.
Otherwise all changes of the aborted transaction must be undone.
These undo operations must not be performed concurrently to other
write or read operations. Transactions having read changed objects of
invalid transactions are also invalid and must be restarted.

Discussion

The update in place method avoids double writing. But, the cascading
abortion of transactions caused by one invalid transaction excludes this
method from application in any realistic environment.

5.4 Write Lock Method

if concurrent transactions may change the same object a
non-serializable schedule is resulting in almost every case. Then the
effort to restore a consistent database state causes a high expense.

A possible solution is to introduce write locks into the predicative
optimistic method. Reads are controlled by means of read sets and a
validation phase, writes are controlled applying locks. The same
transaction model as in Section 5.3 is used. Instead of write sets, write
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locks are maintained.

Timestamps

In Section 3.3, timestamps are introduced to distinguish between
necessary and unnecessary backups. Writes could occur only once in
the write phase. So the end time is required. With the introduction of
locks, multiple write operations on the same selected relation are
possible. For that reason, the first and the last time when a write access
has occurred is remarked. The same access times are remarked for read
accesses. These times are used in the validation phase.

Update Phase

Read accesses are treated the same way as with the basic optimistic
method. Only write operations are influenced by the concepts of
two-phase-locking. Before each write access, a lock must be set. All set
write locks are collected in a global write set. It contains predicates,
before and after images of the selected relations, and the performed
operation. It is necessary to save all changes and not cnly the old and
new values, because each selected relation can be changed more than
once during one transaction. To test whether two locks conflict, the
before and after images cannot be considered, but the predicates must
be tested on disjointness. The locks must be kept until the end of the
validation phase. Only if a transaction is already in its validation phase,
the before and after images can be considered in the test whether two
locks conflict. These tests are performed by the procedure Disjoint. If a
transaction finishes valid, all its global write set entries are set to be
inactive, that means the locks are returned. Possibly, the entries are still
needed by concurrently running transactions and therefore cannot be
deleted.



PROCEDURE RequestWrite (impEntry: ImportEntry):
BOOLEAN;
BEGIN
WITH impEntry DO
IF NOT SOME w IN globalWriteSet
((w.transId = ownTransId) AND
(w.locName = TocName)) THEN
(* insert impEntry as new lock =)
IF NOT ALL w IN globalWriteSet
({w.transId = ownTransId) OR
w.inactive OR
Disjoint(w, pred) THEN
( Deadlock detection );
IF deadlock THEN RETURN FALSE END;
( wait until lock grantable)
END;
( insert impEntry into globalWriteSet );
( remark cTime );
( create before image of the old values )
END
END;
RETURN TRUE
END RequestWrite;

Valldation Phase

Write accesses are serialized, only read operations have to be checked
in the validation phase. The point of serialization of transactions is the
beginning of the validation phase. Subsequently, two variants of a
validation algorithm are discussed for different kinds of transaction
environments.

Variant 1

Concurrent transactions are classified as in Chapter 3. One class is
formed by all finished transactions, one by all validating, and one by all
other transactions. Finished transactions T require for conflicting
database accesses that the first read access of T is greater than the last
write access of T'. The test for validating transactions must guarantes
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that T comes after T' in the equivalent serial schedule. if T has read
anything of T", T becomes valid only if T* becomes valid too. Therefore,
T has to wait for the end of T°. Running transactions T must come after
T in the equivalent serial schedule. For that reason, the last read times
of T must be smaller than the first write times of T'. Changes of the write
locks of transaction T’ are not dangerous because the above condition
is aiways fulfilled in this case.

To formulate the necessary tests in the validation phase the selector
Intersect is introduced. It selects all elements of the global write set
intersecting a given predicate. The serialization of the compared
transactions T and T’ can be passed through the parameter before.

SELECTOR Intersect (pse: PredSetEntry;
before: (T'beforeT, TbeforeT'))
FOR gWS: GlobWSRel;
BEGIN
EACH w IN gWS:
(w.relName = pse.relName) AND
((before = T'beforeT) OR
(w.firstTime < pse.lastTime)) AND
((before = TbeforeT') OR
(w.lastTime > pse.firstTime)) AND
(SOME e IN w.beforeImage (pse.pred(e)) OR
SOME e IN w.afterImage (pse.pred(e)))
END Intersect;

Using this selector, the tests of the validation phase can be expressed
as follows.



(# all invalid transactions =)
valid := ALL p IN predicates
(globalWriteSet[PartOf(invalid)]
[Intersect(p,TbeforeT')] = {});

(* all finished transactions *)
valid := valid AND ALL p IN predicates
(globalWriteSet[PartOf(finished)]
[Intersect(p,T'beforeT)] = {}):

waitSet := {};:
(= all validating transactions =)
FOR EACH t IN validating : TRUE DO
IF valid THEN
valid := valid AND ALL p IN predicates
(globalWriteSet[Part0Of({t})]
[Intersect(p,T'beforeT)] = {}):

delay := valid AND
SOME p IN predicates
SOME w IN globalWriteSet[PartOf({t})]
((w.relName = p.relName) AND
SOME e IN w.afterImage (p.pred(e)));

IF delay THEN waitSet :+ {t} END;
END
END;

(» all active transactions *)
valid := valid AND ALL p IN predicates
(g]obalWriteSet[PartOf(actives)]
[Intersect(p,TbeforeT')] = {});

If validation of transaction T succeeds, T releases all write locks by
inactivating the own write set entries. The entries are still needed in the
validation phase of concurrent transactions, but the concerned selected
relations must not be locked anymore. ¥ T becomes invalid, all
transactions that read objects changed by T are caused to become also
invalid and must be aborted. In Variant 1, these affected transactions
are not aborted immediately. Instead, a test against invalid transactions
is executed in the validation phase, and possible conflicts are detected
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by means of the write set entries of aborted transactions identified by
the set invalid.

IF valid AND (waitSet # {}) THEN
Waitvalid(valid,waitSet)
END;
IF valid THEN
Sendvalid(ownTransId);
( set g1oba1WriteSet[PartOf({ownTransId})]
to inactive )
ELSE
SendNonValid(ownTransId);
invalid :+ {ownTransld};
( set g]oba]WriteSet[PartOf({ownTransId})]
to inactive );
( undo transaction by means of before images
of g1oba]WriteSet[PartOf({ownTransId})] )
( restart transaction )
END;

Variant 1 relies on the optimistic assumption of a low probability of
conflict. Then the cascading abortion of transactions should occur
rarely. If conflicts are frequent, transactions conflicting with invalid ones
should be aborted immediately to reduce the cascading dependence of
transactions. Therefore, a more pessimistic Variant 2 is introduced as
follows.

Variant 2

Variant 2 aborts immediately all transactions T' that conflict with an
invalid transaction T. The read predicates are accessible already during
the update phase to other transactions. Iif transaction T becomes
invalid, it is set back by undoing its changes in the database. Afterwards,
all running transactions are evaluated by means of their read predicates
to determine the conflicting transactions T* with respect to the invalid
transaction T. These transactions T° must be set invalid and are set
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back. Since all read predicates of running transactions are globally
available, the validation phase must be changed. Only two classes of
concurrent transactions, validating and updating are maintained. Two
tests are necessary for both classes, the own read predicates must be
compared with the write locks of other transactions and vice versa. To
avoid double testing, a set checked collecting all executed comparisons
is introduced. The write set entries can be deleted after validation.

(= all updating transactions =)
FOR EACH t IN updating : TRUE DO
IF checked[t,ownTransId] = VOID THEN

v := ALL r IN globalReadSet
[PartOfRS({ownTransId})]
(globalWriteSet[PartOfWS({t})]
[Intersect(r,TbeforeT’)] = {});
valid[ownTransId] := valid[ownTransId] AND v;

v := ALL r IN globalReadSet[PartOfRS({t})]
(g1obalWriteSet[PartOfWS({ownTransId})
[Intersect(r,T'beforeT)] = {}
valid[t] := valid[t] AND v;
checked :+ {[ownTransId,t]}
END
END;

s

]
)

(* all validating transactions =)
FOR EACH t IN validating : TRUE DO
IF checked[t,ownTransId] = VOID THEN

v := ALL r IN globalReadSet
[PartOfRS({ownTransId})]
(globalWriteSet[PartOfWS({t})]
[Intersect(r,T'beforeT)] = {});
valid[ownTransld] := valid[ownTransID] AND v;

v := ALL r IN g]oba1ReadSet[PartOfRS({t})]
(g]oba1WriteSet[PartOfWS({ownTransId})
[Intersect(r,TbeforeT')] = {}
valid[t] := valid[t] AND v;
checked :+ {[ownTransld,t]}
END;

]
).
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delay := valid[ownTransId] AND
SOME r IN globalReadSet
[PartOfRS({ownTransId})]
SOME w IN globalWriteSet
[PartOfWS({t})]
({(w.relName = r.relName) AND
SOME e IN w.afterImage
, (r.pred(e)));
IF delay THEN waitSet :+ {t} END
END;

IF valid[ownTransId] AND (waitSet # {}) THEN
Waitvalid(valid[ownTransId],waitSet)

END;

IF valid[ownTransId] THEN
SendValid(ownTransId);
globalWriteSet[PartOfWS({ownTransId})] := {
globalReadSet[PartOfRS({ownTransId})] := {}

ELSE
SendNonValid(ownTransId);

( undo transaction by means of before images
of globalWriteSet[PartOfWS({ownTransId})] );
globalWriteSet[PartOfWS({ownTransId})] := {};
globalReadSet[PartOfRS({ownTransId})] := {};
( restart transaction )
END;

}

Comparing the two variants, it can be observed that the second relies on
a more pessimistic assumption. Invalid transactions are aborted
immediately, to avoid long chains of cascading abortion of transactions.
A disadvantage of Variant 2 is that the read predicates must be kept
globally, but changes of the global predicate set by updating
transactions after beginning of the validation phase must not be
considered. For that reason, updating transactions must not be delayed
from inserting new entries into the predicate set.
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6 Predicative Scheduling

Predicative scheduling fully integrates locking and optimistic methods.
Section 6.1 introduces predicative scheduling, and Section 6.2
describes the data structures and algorithms required for this approach
to concurrency control. Section 6.2 is similary structured as Chapter 4
for the predicative optimistic concurrency control.

8.1 Introduction

in [Kung81], the following conclusion is made:

~Consider the case of a database system, where transaction conflict is
rare, but not rare enough to justify the use of any of the optimistic
approaches. Some type of generalized concurrency control is needed
that provides just the right amount of locking versus backup.”

A first approach in this direction is made in [Laus82]. Transactions using
locks and obeying a two-phase-locking protocol are introduced into the
optimistic method (so-called /-type transactions). To simplify the
method, these transactions work aiso on local copies and require
therefore a write phase; but, it is provided that their validation becomes
always correct. The serial validation algorithm of [Kung81] is extended.
For that reason, the writes to the global database are executed
exclusively. Additionally, it must be guaranteed in the validation that the
read locks of I-type transactions do not conflict with write set entries of
concurrent transactions. i a conflict is detected, the validating
transaction is aborted and restarted. in the second epproach of
[Laus82], transactions that only lock parts of their accessed database
objects are introduced towards an attempt of an integration of locking
and optimistic methods. This approach is transfered to the predicative
concurrency control in the next section. It will be developed furtherly
resulting in a deep integration called predicative scheduling.
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in systems where long lasting transactions are to be executed
concurrently with short transactions, predicative scheduling may reduce
the number of transaction backups. Long transactions should set locks,
and therefore, the probability of a restart is decreased. If a transaction
accesses an often changed object, the probability of a conflict is high.
Setting a lock can also help in this case. The concurrency control
component should keep information of such critical objects in the data
dictionary, and should generate locks automatically.

6.2 Data Structures and Algorithms

Transaction Phases

The transaction concept of [Mall83] with import of selected relations is
used as for the predicative optimistic concurrency control introduced in
Chapter 3. Transactions are divided into three phases: the operation
phase, the validation phase, and the write phase. Transactions that only
read or lock all imported selected relations do not have a write phase.

Locks for imported selected relations are set implicitly by the
concurrency control component depending on information contained in
a data dictionary. For this decision, the result procedure Locking is
introduced returmning whether the specified selected relation is to be
locked or not.

Non-locked selected relations are treated as in the predicative optimistic
method (cf. Chapter 3). Local copies are created for them if they are
imported with readwrite or write mode. Modifications of locked selected
relations are executed directly (i.e., no local copies are made). The
necessary undo and redo information is collected in the log set. The
different lock modes are treated as introduced in [Reim81] using S-locks
for selected relations that are only read, and A-locks and X-locks for the
others. if such a selected relation is read, an A-lock is set which is
converted to an X-lock at the first write access. To control the write
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accesses for non-locked selected relations during the write phase,
X-locks are set for all write set entries after the test of the validation
phase. The compatibility of the different lock modes is explained in
Figure 6.1.

lock request lock already set
non S A X
S + + + -
A + + — —-
X + — - —_
conversion A —> X + - = &

— : lock request grantable
+ : lock request not grantable
« : this case cannot occur

Figure 6.1: The Compatibility of the Three Lock Modes

To guarantee serializability, two concepts must be integrated. With ths
two-phase-locking protocol, conflicting transactions are serialized using
locks: the first transaction sets a lock and the later must wait. Since
transactions can be aborted with predicative scheduling during the
validation phase, all write locks must be held until the end of the
validation phase. The read locks can be retumed at the end of the
operation phase because no further changes based on these read
objects are executed in the other phases. In the optimistic method of
Chapter 3, the beginning of the validation phase is used as point of
serialization. Conflicts are solved by restarting an invalid transaction.
With predicative scheduling, both concepts must be combined. The
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beginning of the validation phase must be taken as serialization point
since all locks are held at this moment. The end of the validation phase
cannot be taken because the read locks are already returned.

Data Structures

The following global data structures must be maintained for predicative
scheduling.

TYPE
AccessType = (S,A,X); (* different lock modes =)
GlobWSEntry = RECORD
transld : TranslIdent;
TocName,
relName : RelationName;
oldValues,
newValues : Relation;
lastTime : TimeType
END;
GlobWSRe1l = RELATION transId, locName OF
GlobWSEntry;
LockSetEntry = RECORD
transld : TranslIdent;
TocName,
relName : RelationName;
pred : Predicate;
mode : AccessType;
TockTime,
unlockTime: TimeType
END;
LockSetRel = RELATION transld, locName OF

LockSetEntry;



LogSetEntry = RECORD
transld : TransIdent;
TocName : RelationName;
opNumber : CARDINAL;
operation : (ins, del, upd);
beforelmage,
afterImage : RelElementType

END;

LogSetRel = RELATION transId, locName, opNumber
OF LogSetEntry;

TransIdSet = SET OF Transldent;

VAR

globalWriteSet: GlobWSRel; (= all write sets of

lockSet : LockSetRel; (=
logSet : LogSetRel; (=
cTime : TimeType; (=
cTransId : Transldent; (=

actives, (=

valwriters : TransIdSet; (=

transactions that have
finished their
operation phase =)
all locked objects =)
the redo and undo log =)

current time =)
the last assigned
identifier =)

all running
transactions =)

all transIds of writers
and validaters =)

The following data structures are required locally to each transaction.

TYPE

PredSetEntry = RECORD
TocName,
relName
pred
firstTime :

END;
PredSetRel =

- RelationName;
: Predicate;
TimeType

RELATION locName OF PredSetEntry;
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WriteSetEntry = RECORD
TocName,
relName : RelationName;
oldvalues,
newValues : Relation
END;
WriteSetRel = RELATION locName OF WriteSetEntry;
ImportEntry = RECORD
locName,
relName : RelationName;
pred : Predicate;
mode : (READ,WRITE,READWRITE)
END;
VAR
predicates : PredSetRel; (* all used predicates =)
writeSet : WriteSetRel; (= local write set with
copies ®)
ownTransId : TransIdent; (* transaction number #)
beginSet : TransIdSet; (* all running

transactions at start
of transaction =)

Operation Phase

Transactions start with a call of BeginTransaction. As in Chapter 4,
BeginTransaction initialized the required variables. it must not be
interrupted by concurrent transactions and is therefore guarded by a
critical section. A transaction number is assigned and the transaction is
specified as being active.
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PROCEDURE BeginTransaction;

BEGIN
<< beginSet := actives;
cTransId := cTransId + 1;
ownTransId := cTransld;

actives :+ {ownTransId}; >
predicates := {};
writeSet := {}
END BeginTransaction;

Accesses to selected relations imported from the database are
controlled using the procedures RequestRead and RequestWrite (cf.
Chapters 4 and 5). To detect conflicting transactions, the following data
structures must be maintained: a predicate set containing read
predicates of non-locked selected relations, a local write set collecting
the old and new values of non-locked selected relations imported with
write or readwrite mode, a global write set used in the validation phase,
a global lock set containing the information about locked selected
relations, and a log set used as undo-log and redo-log for locked
selected relations. Since local copies are created for non-locked
selected relations, the operation phase is equivalent to a transaction
executed in a two-phase-locking environment. Accesses to non-locked
selected relations are treated as local operations and not as database
manipulations.
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The procedure RequestRead controls the read accesses of a
transaction. The concerned selected relation is passed as parameter.
Read predicates may be inserted already either in the lock set or in the
predicate set. If a new entry is necessary then the procedure Locking is
called that decides whether a lock should be set or not. This procedure
will not be described in detail. To detect conflicting locks, the selector
LockContlict is introduced. The parameter a is used to test either still
active locks or all defined locks. Furtherly, two procedures are used.
The procedure Overlapping tests two predicates on disjointness.
Conflicting examines if two modes are compatible (cf. Figure 6.1).

SELECTOR LockConflict (t: TransIdent; r: RelationName;
p: Predicate; m: AccessType;
a: (allLocks, activelocks))
FOR 1s: LockSetRel;
BEGIN
EACH 1 IN 1s : (1.transld # t) AND (1.relName = r)
AND Overlapping(1.pred,p)
AND Conflicting(1.mode,m)
AND ((a = alllocks) OR
(cTime < 1.unlockTime))
END LockConflict;

The procedure RequestRead is defined as Boolean result procedure.
The value FALSE is returned if a deadlock was detected. This can be
used during the operation phase to abort a transaction. Read accesses
do not occur in this procedure. The subsequent read operations are
performed as in Chapter 4.
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PROCEDURE RequestRead (impEntry: ImportEntry):
‘ BOOLEAN;
VAR
lockEntry : LockSetEntry;
predEntry : PredSetEntry;

BEGIN
WITH impEntry DO
(* check if already inserted =)
IF (lockSet[ownTransld, locName] = VOID) AND
(predicates[locName] = VOID)
THEN
IF Locking(ownTransId,impEntry) THEN

( assignment of impEntry to lockEntry );

IF mode = READ THEN lockEntry.mode := S

ELSE TockEntry.mode := A

END;

IF lockSet[LockConflict{ownTransId, relName,
pred, lockEntry.mode,
activelocks)] # {}

THEN

(= conflicting lock already set =)
( Deadlock detection );

IF deadlock THEN RETURN FALSE END;
( wait until lock grantable)

END;

TockEntry.lockTime := cTime;

TockEntry.unlockTime := defaultTime;

lockSet :+ {lockEntry}

ELSE

(* optimistic handling =)

( assignment of impEntry to predEntry );

predEntry.firstTime := cTime;

predEntry.mode := S;

predicates :+ {predEntry}

END
END
END;
RETURN TRUE
END RequestRead;
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The procedure RequestWrite manages the write accesses. Firstly, it
checks if the specified selected relation is already locked. In that case, it
is possible that the mode must be changed to X. But, such a conversion
cannot cause a deadlock. Therefore, deadlock detection is not
necessary. The second test (writeSetflocName] = VOID) is necessary to
decide if an optimistic entry exists already. if an entry does not exist, the
procedure Locking is called to decide whether locking or non-locking
should be applied. in the validation phase, the unlock time is necessary.
Consequently, a default time is assigned now (i.e., the greatest
representable time). In case of optimistic handling, each write predicate
must also be a read predicate. For that reason, an entry of the predicate
set is generated additionally.

PROCEDURE RequestWrite (impEntry: ImportEntry):
BOOLEAN;
VAR
TockEntry : LockSetEntry;
predEntry : PredSetEntry;
writekEntry : WriteSetEntry;

BEGIN
WITH impEntry DO
IF lockSet[ownTransId, TocName] # VOID THEN
(* Tock already set =)
lockEntry := lockSet[ownTransId, locName];
IF lockEntry.mode = A THEN
lockEntry.mode := X;
IF lockSet[LockConflict(ownTransId, relName,
pred, X, activelocks)] # {}

THEN
( wait until lock conversion grantable )
END;
lockSet :& {lockEntry}
END

ELSE
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IF writeSet[TocName] = VOID THEN
(* impEntry neither set as lock
nor as optimistic write set entry =)
IF Locking(ownTransId,impEntry) THEN
(= new X-lock =)
( assignment of impEntry to lockEntry );
IF lockSet[LockConflict(ownTransId, reiName,
pred, X, activelocks)] # {}
THEN
( deadlock detection );
IF deadlock THEN RETURN FALSE END;
( wait until Tock grantable )
END;
lTockEntry.lockTime := cTime;
lockEntry.unlockTime := defaultTime;
lockSet :+ {lockEntry}
ELSE
(* optimistic handling &)
IF predicates[locName] = VOID THEN
(* insert impEntry as read predicate =)
( assignment of impEntry to predEntry );
predEntry.firstTime := cTime;
predicates :+ {predEntry}
END;
predicates[locName].mode := X;
( assignment of impEntry to writeEntry );
( create local copies );
writeSet :+ {writeEntry}
END
END
END
END;
RETURN TRUE
END RequestWrite;

Validation Phase

The procedure EndTransaction performs the validation and also the
write phase if the transaction becomes valid. Firstly, the local write set is
transfered to the global write set. Because this is not the real write
operation to the database, a default time (i.e., the greatest representable
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time) is remarked. The set read locks can be retumned immediately.
Because the entries are still needed by other transactions, only the
unlock time is remarked, but no deletion is made. If a transaction
becomes valid, the already set write locks can be returned at the end of
the validation phase. But, the proper moment of releasing is the
beginning of the validation phase. Therefore, the time of the start of the
validation phase is saved and can be used later.

Transactions running in parallel are classified with respect to the
moment of serialization (i.e., beginning of the validation phase). The
classification of Chapters 3 and 5 are combined. Two different classes
can be distinguished: all finished, writing, or checking transactions are
collected in befores, and all transactions in their read phase in afters.

PROCEDURE EndTransaction;

VAR
lTockEntry : LockSetEntry;
befores, (* all transactions T'<T =)
afters : TransIdSet; (* all transactions T'>T =)

begValTime: TimeType; (* time at start of
validation #)
BEGIN
<< ( insert writeSet into globalWriteSet and
remark default time );

begValTime := cTime;

afters := actives - valwriters;
valwriters :+ {ownTranslId};

beginSet :+ {ownTransId+1,....,cTransId};
befores := beginSet - afters; >>

(* unlock read locks #)
FOR EACH 1 IN lockSet :
(1.transId = ownTransId) AND (1.mode # X) DO
1.unlockTime := begValTime;
lockSet :& {1}
END;
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To give an overview of the necessary tests, the two sets befores and
afters of transactions T are divided furtherly. All entries of the predicate
set and the write set must be tested on disjointness with the entries of
concurrently running transactions T. Because all set locks are
respected by other transactions, locked selected relations must not be
considered in the validation phase.

As in Chapter 4, selectors are used to simplify the tests. The selector
PartOfWS is used to obtain all entries of the global write set belonging to
a set of transactions. The selector PartOfLS does the same for the lock
set.

SELECTOR PartOfWS (t: TransIdSet) FOR gWS: GlobWSRel;
BEGIN

EACH w IN gWS: w.transId IN t
END PartOfWsS;

SELECTOR PartOfLS (t: TransIdSet) FOR 1s: LockSetRel;
BEGIN

EACH 1 IN 1s: 1.transId IN t
END PartOfLS;

By means of the selector IntersectWS, all entries of the global write set
intersecting a given predicate are selected. The remarked access times
are also considered. The selector InfersectLS delivers all lock set entries
intersecting a given predicate. The log set entries are also considered,
because they correspond to the old and new values.

SELECTOR IntersectWS (pse: PredSetEntry)
FOR gWS: GlobWSRel;
BEGIN
EACH w IN gWS:

(w.relName = pse.reiName) AND

(w.lastTime > pse.firstTime) AND

( SOME e IN w.oldValues (pse.pred(e)) OR

SOME e IN w.newValues (pse.pred(e)) )

END IntersectWS;
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SELECTOR IntersectlLS (pse: PredSetEntry)
FOR 1s: LockSetRel;
BEGIN
EACH 1 IN 1s:
(1.relName = pse.relName) AND
(1.mode = X) AND
(1.unlockTime > pse.firstTime) AND
SOME w IN logSet
((w.transId = 1.transId) AND
(w.locName = 1.locName) AND
(pse.pred(w.beforeImage) OR
pse.pred(w.afterImage)))
END IntersectlS;

Finished transactions T’ of set befores: For these transactions, T after T’
in the equivalent serial schedule is required. They are already finished
when T starts its validation phase. Therefore, it must be guaranteed that
the write operations of T did not affect the reads of T that were
non-locked. Therefore, the write set and the write entries of the lock set
of T" must be disjoint from the read set of T. Since all changed values
(i.e., old values and new values) of the transactions T" are known, the
same test as in Chapter 4 can be applied.

Writing transactions T' of set befores: Again, T after T" is required. But
now, T is still writing when T starts its validation phase. Since the write
set is a subset of the read set, the same test as for finished transactions
satisfies.

Validating transactions T’ of set befores: Since the start of the validation
phase is used as serialization point, T after T is required. The case
where T overwrites locked read objects of T* (read locks are returned at
the start of the validation phase) is therefore undangerous and does not
have to be considered. The contrary case cannot occur, because T
would have to await the end of the read phase of T and therefore would
not be in this transaction class. Two different tests are necessary.
Firstly, the read set entries of T and the write set entries of T' must not
overlap, otherwise T must be restarted. The test, write locks of T" against
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read set entries of T could be the same as in Chapter 5. Here, the
possibility to await the correct end of the validation phase of T in case
of an intersection is not considered furtherly. In such a case, T is also
restarted immediately.

Validation against transactions of befores can be expressed using the
previously defined selectors.

valid := ALL p IN predicates
((globalWriteSet[PartOfWS(befores)]
[IntersectWS(p)] = {})
AND (lockSet[PartOfLS(befores)]
[IntersectLS(p)] = {}));

Active transactions in set afters: Now, T before T" in the equivalent serial
schedule is required. The test, write locks of T against read set entries of
T, is made by T in its validation phase. Since T can already have
locked something, the read set of T must be compared with these locks.
If an intersection results, T must be restarted. Modifications of the
database during the write phase and write operations during the read or
write phases of concurrent transactions are executed in parallel. To
prevent conflicts of such operations, write accesses in the write phase
require locks. For that reason, it is checked whether a X-lock can be set
for a write predicate. If this lock request cannot be granted, T must be
restarted. To prevent that active transactions are setting new conflicting
locks, these actions must not be affected and, consequently, must be
executed in a critical section.
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(* validation against 'after' transactions =)
FOR EACH p IN predicates : TRUE DO
IF valid THEN
<< IF (lockSet[PartOfLS(afters)]
[LockConflict(ownTransId, p.relName,
p.pred, p.mode, alllLocks)] = {})
AND
((p.mode # X)
OR

(LockSet[PartOfLS(actives - afters)]
[LockConflict(ownTransId, p.relName,
p.pred, p.mode, activelocks)] = {}))
THEN

(*= valid, set X-lock for write set entry =)

( assignment of p to lockEntry );

lockEntry.mode := X;

lockEntry.lockTime := cTime;

lockEntry.unlockTime := defaultTime;

lockSet :+ {lockEntry}

ELSE
valid := FALSE
END >>
END
END;

Before T starts its write phase, the write locks set during the read phase
can be returned. This is done by assigning begValTime to the unlock
time of each entry.

IF valid THEN
(* clear all X-locks set during read phase =)
FOR EACH 1 IN lockSet[PartOfLS({ownTransId})] :
(1.mode = X) AND (1.lockTime < begValTime) DO
1.unlockTime := begValTime;
lockSet :& {1}
END
END;



Write Phase

The write phase is only executed if T becomes valid. The elements of
newValues are written to the corresponding database relation. Just after
each access, the X-lock can be retummed. i the transaction becomes
invalid, it is aborted and restarted. All changes made during the read
phase are undone using the log set entries. At the end, all sets are
updated.

IF valid THEN
(* write phase =)
(* all write set entries already set as X-locks =)
FOR EACH w In writeSet : TRUE DO
( write w.newValues to relation w.relName );
globalWriteSet[ownTransId,w.locName].lastTime :=
cTime;
TockSet[ownTransId,w.locName].unlockTime := cTime
END
ELSE
(* backup #)
FOR EACH 1 IN lockSet[PartOfLS({ownTransId})] :
(1.mode = X) AND (1.lockTime < begValTime) DO
( undo transaction by means of beforeImage of
logSet[ownTransId,1.locName,1] )
END;
lockSet[PartOfLS({ownTransId})] := {};:
globalWriteSet[PartOfWS({ownTransId})] := {}
END;
(* update of transaction sets =)
<< actives :- {ownTransId};
valwriters :- {ownTransld}; >>
IF NOT valid THEN ( restart transaction ) END

END EndTransaction;



7 Conclusions

The methods to concurrency control proposed in this paper are tailored
to various application environments. The predicative optimistic
concurrency control presented in Chapters 3 and 4 relies on the
optimistic assumption of a rather low probability for conflicts between
transactions. This assumption should hold for large databases and
transactions modifying only small parts of a database. In particular, this
method should be well suited for query-dominant applications.

The integration of selected locking concepts discussed in Chapter 5 is
directed towards environments with special requirements. if read-only
transactions are taking a rather long time due to evaluation of complex
queries, they should be preferred by introducing read locks. On the
other hand, data handling overhead due to transactions modifying
larger database parts can be reduced by means of write locks.

In applications with varying transaction profiles, predicative scheduling
should be applied as presented in Chapter 6. Transactions should be
scheduled with just the right amount of locking as opposed to validation.
Selected relations frequently accessed are locked, but other selected
relations for which the probability of conflict is low are validated. The
scheduler may decide upon the right strategy by information collected
about the frequence of access to specific selected relations or by
measuring the predicted selectivity of the selection predicates.

Research must be done for qualitative and quantitative measures to
determine the right policy for a specific application and its set of
transactions. This will be an object of our further research. Only very few
comparisons of different concurrency control strategies are published
yet (e.g. [Mena82]).
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The predicative optimistic concurrency control and the integration of
read locks have been implemented at the University of Hamburg in a
multi-user database system supporting the impiementation of database
programming languages (DBPL Project, [Schm83b], [Reim82]). The
system is written in the programming language Modula-2 [Wirt82] and is
running on a VAX-11 computer. An implementation of predicative
scheduling is under development at the ETH Zurich. It will be part of an
extension of the personal database system LIDAS [Rebs83] towards a
database system operating on a network of personal computers.
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