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Abstract

We ported the computer algebra system Maple V to the Intel

Paragon� a massively parallel� distributed memory machine� In or�

der to take advantage of the parallel architecture� we extended the

Maple kernel with a set of message passing primitives based on the

Paragon�s native message passing library� Using these primitives�

we implemented a parallel version of Karatsuba multiplication for

univariate polynomials overZp� Our speedup timings illustrate the

practicability of our approach�

On top of the message passing primitives we have implemented

a higher level model of parallel processing based on the manager�

worker scheme� a managing Maple process on one node of the paral�

lel machine submits processing requests to Maple processes residing

on di�erent nodes� then asynchronously collects the results� This

model proves to be convenient for interactive usage of a distributed

memory machine�

� Introduction

The Intel Paragon ��� is a massively parallel� distributed memory machine� Each
node contains up to � processors �Intel i	
�XP running at �� Mhz� The machine is
scalable and contains up to several thousands of nodes� The Paragon at ETH Z�urich
operates with �
� nodes dedicated to computations� each equipped with 
�MB of
memory and � processors �one of which is a dedicated message passing processor�

The processors within a node can cooperate using a thread library� Communi�
cation between the nodes is handled by a fast proprietary message passing library�
NX� Other message passing APIs �PVM� MPI have been implemented on top of
the NX library�

Our goal was to port Maple ��� to this machine� so that it could take advantage of
the whole computational power of the distributed memory architecture� This e�ort
is comparable to the Sugarbush system ��� which uses a combination of Maple and
a C library and allows distributed applications on a network of workstations�
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� The Message Passing Primitives

We have implemented basic primitives for using the NX library ��� from within
the Maple user level� This means that by using the message passing model of
parallel programming� code written in Maple�s programming language can take full
advantage of all the nodes of the Paragon� Consider the example from �gure ��
usually referred to as a �ring�� where a message is passed on from one node to the
next until it again reaches the originating node�

me �� nxcall�mynode����

n �� nxcall�numnodes����

m �� ����

if me�� then

data �� nxcall�crecv���	

nxcall�csend��
data
me�� mod n��	

else

data �� �seq�i
i��m��	

nxcall�csend��
data
���	

back �� nxcall�crecv���	

if sent��back then printf��transmission error�nn�� fi	

fi�

Figure �� Ring Code

Note that all the calls to the NX library are wrapped by a new Maple function�
nxcall� This function then parses the function name given to it as an argument�
does some necessary conversions and calls the appropriate function from the NX
library� The primitives that we implemented are�

mynode�� which returns the node number of the executing node�

numnodes�� which returns the total number of nodes accesible to the current process�

csend�type
data
node� which sends data to the node with number node� tagged with an arbitrary
���bit integer type�

crecv�type
node� which receives data from node node tagged with type� Both type and node

are optional� If they are either missing or equal to ��� a message from any node
and of any type is received�

lastnode�� returns the last node from which a message was received�

An arbitrary Maple structure can be sent from one node to another� As a Maple
structure is internally a directed acyclic graph �DAG� these structures have to be
linearized before they can be sent over a sequential channel and the DAG has to
be reconstructed after receiving such an encoded message� For this transmission we
use the same format that Maple uses for saving its structures to a �le in a compact
form �called the dot�m format� Although this encoding is not optimal in terms of
space� it is easy to use and reasonably e�cient to convert to and from�

In order to get an idea of the overhead of encoding Maple data structures
when sending over a fast channel from one node to another we ran the above ring
test for varying message sizes �m����������������� and di�erent number of nodes
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���	��
����
����	� Figure � summarizes our timing results� �� entries represent
times that are too small to be measured reliably� The remaining �gures are times
in milliseconds� averaged over �ve runs and divided by the number of nodes in use�
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Figure �� Ring Timings

We see that the time needed for a message roundtrip increases linearly with the
number of nodes as expected� We also see that the overhead of packing and un�
packing a Maple data structure grows linearly with its size� For large messages this
overhead dominates the transmission times� However� the ratio between communi�
cation and encoding overhead is still reasonable and justi�es the use of a massively
parallel machine over using a network of workstations where the transmission cost
would be an order of magnitude larger�

For zero�length messages we get an overhead that is a lot larger than the message
passing latency of the Paragon itself which is around ��s� This is due to the
overhead of a procedure call in the Maple language interpreter�

� An Application� Multiplication of Polynomials

In this section we will present an application of the message passing model of dis�
tributed programming� Our goal is to multiply two univariate polynomials modulo
a large prime� The Maple code in �gure � speci�es the problem of multiplying
two random dense polynomials of degree n modulo an n�bit prime� These kinds of
computations arise for example in univariate factorization �
��

n �� ���	 � or� n �� ����

p �� nextprime�trunc�evalf���n�Pi
n���	

a �� modp��Randpoly�n�
p�	

b �� modp��Randpoly�n�
p�	

r �� modp��Multiply�a
b�
p�	

Figure �� Multiply two polynomials modulo a prime

We use Karatsuba multiplication ��� for polynomials down to degree ��� Given
enough nodes we distribute two of the three multiplications needed after every sub�
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division to di�erent processing nodes� Figure � shows our timing results in wallclock
seconds for n � ��� and n � ���� and for �� �� �� �� and 	� nodes� The speedup

is computed as Time on one node
Time on k nodes and the e�ciency is

Speedup
Number of nodes ���� We

also give the time taken on a SparcStation ����� as a reference value�

n���� n�����
� of Nodes Time �s Speedup E�ciency Time�s Speedup E�ciency

� �� ��� ��� � ��� ��� ��� �
� �� ��	 �� � ��� ��� �� �
� �� ��� �	 � ��� ��� 	� �
�� � ���� �	 � �� �	�� 
	 �
	� 	 ���� �� � �� �	�� �� �

Sparc �� �	�

Figure �� Karatsuba Timings

We can see that for this particular application� the Paragon outperforms a state�
of�the�art workstation already using � nodes� Note however the poor performance of
the n � ��� problem when using 	� nodes The original polynomials of degree ���
are subdivided into pieces of degree ��� For degrees as small as this the overhead of
the data transmission becomes too large� This is to be expected especially because
at degree �� the sequential Karatsuba algorithm also becomes ine�ective for ����bit
coe�cients�

� An Interactive Parallel Server Model

Given the message passing primitives described in section �� we could implement a
manager�worker based model of distributed computation using only Maple�s user�
level language� This implementation basically provides two commands�

h �� submit����	 asynchronously submits a string containing arbitrary Maple instructions to
any node and returns a handle� h� for futur reference to this job�

r �� result�h�	 retrieves the result of the computation referenced by the handle � This function
blocks until the result is available� If h is omitted� the result of the �rst
computation that becomes available is returned�

This pair of routines provides a nice way of interactively using a massively parallel
machine from within a computer algebra system� When a job is submitted� any idle
node is selected and sent the request� If no node is available� the request is queued�
Whenever the result of a computation is successfully retrieved from a node� the �rst
entry in this queue is submitted to that node�

This model can also be used in parallel programs� However its usefulness is
reduced to a restricted class of problems because the computation can only be
subdivided once at the toplevel as the worker nodes can not act as managing nodes
themselves� For most parallel programs it is therefore more e�cient to use the
message passing primitives directly�

The worker nodes run the small piece of Maple code from �gure ��
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do

got �� nxcall�crecv���	

if got��quit� then break fi	

result �� parse�got�	

nxcall�csend��
result
���	

od

Figure �� Worker Code

The manager node maintains a list with the status of all its worker nodes� The
submit command queries that list to �nd an idle node� sends the string containing
the Maple commands to execute to the remote node and stores the reference number
for this job in the node list before returning it� If no node is avaliable the command
string is appended to the list of pending jobs� The code for the submit command
is detailed in �gure 
�

submit �� proc�s��string� global nodes
 jnr
 pending	 local i	

for i from � to nops� nodes� do

if nodes�i�� � then

if not nxcall�csend��
s
i�� then

ERROR��Could not submit job��	

else

jnr �� jnr!�	
nodes�i� �� jnr	

RETURN� jnr�	

fi	

fi	

od	

jnr �� jnr!�	
pending �� �op� pending�
 �s
 jnr��	

RETURN� jnr�	

end�

Figure 
� Submit Code

The result function can take a job reference as an argument� In this case�
the manager node tries to retrieve the result of the computation corresponding to
this reference� If this computation has not yet been started and is still in the list
of queued jobs� an error is issued� If� on the other hand� the computation is in
progress on some worker node� the manager node is blocked until the computation
is completed� If the worker node is done� the result of the computation is returned�

The reference argument to the result function can also be omitted� In this case
the result of any node that has already completed its job is returned� If no such node
exists� the manager blocks until the �rst worker node completes its computation�

A simpli�ed version of the result function �missing some of the error handling
is given in �gure ��
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result �� proc�� global nodes
 pending	 local res
n	

if nargs�� then

res �� nxcall�crecv�����	
nodes�nxcall�lastnode���� �� �	

RETURN�res�	

else

n �� args���	

fi	

for i from i to nops� nodes� do

if nodes�i��n then

res �� nxcall�crecv���
i��	
if nops� pending��� then

nodes�i� �� �	

else

j �� pending���	

nxcall�csend��
j���
nxcall�lastnode�����	

pending �� pending�����	

nodes�nxcall�lastnode���� �� j���	

fi	

RETURN�res�	

fi	

od	

ERROR��illegal handle��	

end�

Figure �� Result Code

� Porting Problems

The Maple kernel is started simultaneously on all the participating nodes of the
Paragon� For this step we used the support functions of the NX library� Because
of this we had to identify one node which would handle interactive user input to
avoid having the nodes compete over lines from stdin� Our choice was to have only
the node number zero output the Maple logo and handle interactive user input�
Commands meant to be executed by all the Maple processes on all the nodes have
to be put into a �le whose name is given as a command line option when Maple is
started� Once the commands from this �le are exhausted the Maple process on node
zero waits for user input while the processes on the other nodes are terminated�

� Conclusions and Future Work

We have presented our results from porting the computer algebra system Maple to
the Intel Paragon� We have seen that we could extend the Maple kernel with a small
number of basic message passing primitives and achieve reasonable performance�
On top of these primitives� parallel programs can now be written entirely using
Maple�s user level programming language� We have proven the practicability of this
approach by parallelizing a standard operation� polynomial multiplication using
these primitives� For polynomials of degree ���� we saw that our approach scales






to at least 	� nodes of computation�

We have also provided Maple code for implementing a simple interactive server
for driving distributed computations� This server can also be used by Maple pro�
grams� for applications that favour a manager�worker approach to parallelism� A
subject of further work is to enable the worker nodes to act themselves as managing
nodes� This extension will make our server useful for a wider class of applications�

Note that our Maple port does not take advantage of the second CPU available
on each node� Changing this would mean converting the Maple kernel into a mul�
tithreaded application� This seems to be a non�trivial task an will be the subject
of further research�

Another area of improvement is the encoding that is being used for transmitting
Maple data structures over a sequential channel� The OpenMath project ��� might
produce an encoding that is more compact and that allows faster parsing�

We also plan to use MPI instead of NX in the future� This will allow us to be
independent of the Paragon and use Maple on� for example� workstation networks�
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