
ETH Library

Maple on the Intel Paragon

Report

Author(s):
Bernardin, Laurent

Publication date:
1996

Permanent link:
https://doi.org/10.3929/ethz-a-006651673

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Internal report / Swiss Federal Institute of Technology, Computer Science Departement 251

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-006651673
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Maple on the Intel Paragon

Laurent Bernardin

Institut f�ur Wissenschaftliches Rechnen

ETH Z�urich� Switzerland

bernardin�inf�ethz�ch

October ��� ���	

Abstract

We ported the computer algebra system Maple V to the Intel

Paragon� a massively parallel� distributed memory machine� In or�

der to take advantage of the parallel architecture� we extended the

Maple kernel with a set of message passing primitives based on the

Paragon�s native message passing library� Using these primitives�

we implemented a parallel version of Karatsuba multiplication for

univariate polynomials overZp� Our speedup timings illustrate the

practicability of our approach�

On top of the message passing primitives we have implemented

a higher level model of parallel processing based on the manager�

worker scheme� a managing Maple process on one node of the paral�

lel machine submits processing requests to Maple processes residing

on di�erent nodes� then asynchronously collects the results� This

model proves to be convenient for interactive usage of a distributed

memory machine�

� Introduction

The Intel Paragon ��� is a massively parallel� distributed memory machine� Each
node contains up to � processors �Intel i	
�XP running at �� Mhz� The machine is
scalable and contains up to several thousands of nodes� The Paragon at ETH Z�urich
operates with �
� nodes dedicated to computations� each equipped with 
�MB of
memory and � processors �one of which is a dedicated message passing processor�

The processors within a node can cooperate using a thread library� Communi�
cation between the nodes is handled by a fast proprietary message passing library�
NX� Other message passing APIs �PVM� MPI have been implemented on top of
the NX library�

Our goal was to port Maple ��� to this machine� so that it could take advantage of
the whole computational power of the distributed memory architecture� This e�ort
is comparable to the Sugarbush system ��� which uses a combination of Maple and
a C library and allows distributed applications on a network of workstations�

�



� The Message Passing Primitives

We have implemented basic primitives for using the NX library ��� from within
the Maple user level� This means that by using the message passing model of
parallel programming� code written in Maple�s programming language can take full
advantage of all the nodes of the Paragon� Consider the example from �gure ��
usually referred to as a �ring�� where a message is passed on from one node to the
next until it again reaches the originating node�

me �� nxcall�mynode����

n �� nxcall�numnodes����

m �� ����

if me�� then

data �� nxcall�crecv���	

nxcall�csend��
data
me�� mod n��	

else

data �� �seq�i
i��m��	

nxcall�csend��
data
���	

back �� nxcall�crecv���	

if sent��back then printf��transmission error�nn�� fi	

fi�

Figure �� Ring Code

Note that all the calls to the NX library are wrapped by a new Maple function�
nxcall� This function then parses the function name given to it as an argument�
does some necessary conversions and calls the appropriate function from the NX
library� The primitives that we implemented are�

mynode�� which returns the node number of the executing node�

numnodes�� which returns the total number of nodes accesible to the current process�

csend�type
data
node� which sends data to the node with number node� tagged with an arbitrary
���bit integer type�

crecv�type
node� which receives data from node node tagged with type� Both type and node

are optional� If they are either missing or equal to ��� a message from any node
and of any type is received�

lastnode�� returns the last node from which a message was received�

An arbitrary Maple structure can be sent from one node to another� As a Maple
structure is internally a directed acyclic graph �DAG� these structures have to be
linearized before they can be sent over a sequential channel and the DAG has to
be reconstructed after receiving such an encoded message� For this transmission we
use the same format that Maple uses for saving its structures to a �le in a compact
form �called the dot�m format� Although this encoding is not optimal in terms of
space� it is easy to use and reasonably e�cient to convert to and from�

In order to get an idea of the overhead of encoding Maple data structures
when sending over a fast channel from one node to another we ran the above ring
test for varying message sizes �m����������������� and di�erent number of nodes

�



���	��
����
����	� Figure � summarizes our timing results� �� entries represent
times that are too small to be measured reliably� The remaining �gures are times
in milliseconds� averaged over �ve runs and divided by the number of nodes in use�

� 	 �
 �� 
� ��	
� �� �� 

 	� ��� ��	

��� �� �� �	 ��� ��
 ��� total
���� 		 ��
 ��� ��� ��� ���
����� 	�� �
� ��
 ��� 	�� 	��

� �� �� ��� ��� ��� ���
��� �� �� 
 
 
 

���� �� �� �� �� �� �� pack�unpack
����� �� �� 
�� 
�� 
�	 
��

� �� �� � � � �
��� �� �� 
� �� ��� ���
���� �� �� � � � �� transmission
����� �� �� � � �� ��

Figure �� Ring Timings

We see that the time needed for a message roundtrip increases linearly with the
number of nodes as expected� We also see that the overhead of packing and un�
packing a Maple data structure grows linearly with its size� For large messages this
overhead dominates the transmission times� However� the ratio between communi�
cation and encoding overhead is still reasonable and justi�es the use of a massively
parallel machine over using a network of workstations where the transmission cost
would be an order of magnitude larger�

For zero�length messages we get an overhead that is a lot larger than the message
passing latency of the Paragon itself which is around ��s� This is due to the
overhead of a procedure call in the Maple language interpreter�

� An Application� Multiplication of Polynomials

In this section we will present an application of the message passing model of dis�
tributed programming� Our goal is to multiply two univariate polynomials modulo
a large prime� The Maple code in �gure � speci�es the problem of multiplying
two random dense polynomials of degree n modulo an n�bit prime� These kinds of
computations arise for example in univariate factorization �
��

n �� ���	 � or� n �� ����

p �� nextprime�trunc�evalf���n�Pi
n���	

a �� modp��Randpoly�n�
p�	

b �� modp��Randpoly�n�
p�	

r �� modp��Multiply�a
b�
p�	

Figure �� Multiply two polynomials modulo a prime

We use Karatsuba multiplication ��� for polynomials down to degree ��� Given
enough nodes we distribute two of the three multiplications needed after every sub�

�



division to di�erent processing nodes� Figure � shows our timing results in wallclock
seconds for n � ��� and n � ���� and for �� �� �� �� and 	� nodes� The speedup

is computed as Time on one node
Time on k nodes and the e�ciency is

Speedup
Number of nodes ���� We

also give the time taken on a SparcStation ����� as a reference value�

n���� n�����
� of Nodes Time �s Speedup E�ciency Time�s Speedup E�ciency

� �� ��� ��� � ��� ��� ��� �
� �� ��	 �� � ��� ��� �� �
� �� ��� �	 � ��� ��� 	� �
�� � ���� �	 � �� �	�� 
	 �
	� 	 ���� �� � �� �	�� �� �

Sparc �� �	�

Figure �� Karatsuba Timings

We can see that for this particular application� the Paragon outperforms a state�
of�the�art workstation already using � nodes� Note however the poor performance of
the n � ��� problem when using 	� nodes The original polynomials of degree ���
are subdivided into pieces of degree ��� For degrees as small as this the overhead of
the data transmission becomes too large� This is to be expected especially because
at degree �� the sequential Karatsuba algorithm also becomes ine�ective for ����bit
coe�cients�

� An Interactive Parallel Server Model

Given the message passing primitives described in section �� we could implement a
manager�worker based model of distributed computation using only Maple�s user�
level language� This implementation basically provides two commands�

h �� submit����	 asynchronously submits a string containing arbitrary Maple instructions to
any node and returns a handle� h� for futur reference to this job�

r �� result�h�	 retrieves the result of the computation referenced by the handle � This function
blocks until the result is available� If h is omitted� the result of the �rst
computation that becomes available is returned�

This pair of routines provides a nice way of interactively using a massively parallel
machine from within a computer algebra system� When a job is submitted� any idle
node is selected and sent the request� If no node is available� the request is queued�
Whenever the result of a computation is successfully retrieved from a node� the �rst
entry in this queue is submitted to that node�

This model can also be used in parallel programs� However its usefulness is
reduced to a restricted class of problems because the computation can only be
subdivided once at the toplevel as the worker nodes can not act as managing nodes
themselves� For most parallel programs it is therefore more e�cient to use the
message passing primitives directly�

The worker nodes run the small piece of Maple code from �gure ��

�



do

got �� nxcall�crecv���	

if got��quit� then break fi	

result �� parse�got�	

nxcall�csend��
result
���	

od

Figure �� Worker Code

The manager node maintains a list with the status of all its worker nodes� The
submit command queries that list to �nd an idle node� sends the string containing
the Maple commands to execute to the remote node and stores the reference number
for this job in the node list before returning it� If no node is avaliable the command
string is appended to the list of pending jobs� The code for the submit command
is detailed in �gure 
�

submit �� proc�s��string� global nodes
 jnr
 pending	 local i	

for i from � to nops� nodes� do

if nodes�i�� � then

if not nxcall�csend��
s
i�� then

ERROR��Could not submit job��	

else

jnr �� jnr!�	
nodes�i� �� jnr	

RETURN� jnr�	

fi	

fi	

od	

jnr �� jnr!�	
pending �� �op� pending�
 �s
 jnr��	

RETURN� jnr�	

end�

Figure 
� Submit Code

The result function can take a job reference as an argument� In this case�
the manager node tries to retrieve the result of the computation corresponding to
this reference� If this computation has not yet been started and is still in the list
of queued jobs� an error is issued� If� on the other hand� the computation is in
progress on some worker node� the manager node is blocked until the computation
is completed� If the worker node is done� the result of the computation is returned�

The reference argument to the result function can also be omitted� In this case
the result of any node that has already completed its job is returned� If no such node
exists� the manager blocks until the �rst worker node completes its computation�

A simpli�ed version of the result function �missing some of the error handling
is given in �gure ��

�



result �� proc�� global nodes
 pending	 local res
n	

if nargs�� then

res �� nxcall�crecv�����	
nodes�nxcall�lastnode���� �� �	

RETURN�res�	

else

n �� args���	

fi	

for i from i to nops� nodes� do

if nodes�i��n then

res �� nxcall�crecv���
i��	
if nops� pending��� then

nodes�i� �� �	

else

j �� pending���	

nxcall�csend��
j���
nxcall�lastnode�����	

pending �� pending�����	

nodes�nxcall�lastnode���� �� j���	

fi	

RETURN�res�	

fi	

od	

ERROR��illegal handle��	

end�

Figure �� Result Code

� Porting Problems

The Maple kernel is started simultaneously on all the participating nodes of the
Paragon� For this step we used the support functions of the NX library� Because
of this we had to identify one node which would handle interactive user input to
avoid having the nodes compete over lines from stdin� Our choice was to have only
the node number zero output the Maple logo and handle interactive user input�
Commands meant to be executed by all the Maple processes on all the nodes have
to be put into a �le whose name is given as a command line option when Maple is
started� Once the commands from this �le are exhausted the Maple process on node
zero waits for user input while the processes on the other nodes are terminated�

� Conclusions and Future Work

We have presented our results from porting the computer algebra system Maple to
the Intel Paragon� We have seen that we could extend the Maple kernel with a small
number of basic message passing primitives and achieve reasonable performance�
On top of these primitives� parallel programs can now be written entirely using
Maple�s user level programming language� We have proven the practicability of this
approach by parallelizing a standard operation� polynomial multiplication using
these primitives� For polynomials of degree ���� we saw that our approach scales






to at least 	� nodes of computation�

We have also provided Maple code for implementing a simple interactive server
for driving distributed computations� This server can also be used by Maple pro�
grams� for applications that favour a manager�worker approach to parallelism� A
subject of further work is to enable the worker nodes to act themselves as managing
nodes� This extension will make our server useful for a wider class of applications�

Note that our Maple port does not take advantage of the second CPU available
on each node� Changing this would mean converting the Maple kernel into a mul�
tithreaded application� This seems to be a non�trivial task an will be the subject
of further research�

Another area of improvement is the encoding that is being used for transmitting
Maple data structures over a sequential channel� The OpenMath project ��� might
produce an encoding that is more compact and that allows faster parsing�

We also plan to use MPI instead of NX in the future� This will allow us to be
independent of the Paragon and use Maple on� for example� workstation networks�

References

��� Abbot� J�� van Leeuwen� A�� and Strotmann� A� Objectives of Open�
Math� Technical Report ��� RIACA� June ���
�

��� Char� B� W� Progress report on a system for general�purpose parallel sym�
bolic algebraic computation� In ISSAC ���� Proceedings of the international

symposium on symbolic and algebraic computation ������ S� Watanabe and
M� Nagata� Eds�

��� Char� B� W�� Geddes� K� O�� Gonnet� G� H�� Leong� B� L�� Monagan�

M� B�� and Watt� S� M� Maple V Language Reference Manual� Springer�
Verlag� �����

��� Intel Corporation� Paragon System User�s Guide� Apr� ���
�

��� Knuth� D� E� Seminumerical Algorithms� vol� � of The Art of Computer Pro�

gramming� Addison Wesley� ��	��

�
� von zur Gathen� J� A polynomial factorization challenge� SIGSAM Bulletin

��� � ������ ��"���

�


