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Abstract

The Quantum Optics laboratory is pioneering a unique "accordion lattice" in its new
experiment. Unlike already existing lattice experiments that implement an accordion
lattice using mechanically actuated mirrors, here acousto-optic deflectors will be used,
eliminating mechanical vibrations. It has already been shown that the optical aberrations
from off-the-shelve lenses for projecting the accordion lattice are not tolerable.

To address the challenge, we developped a workflow incorporating a Shack-Hartmann
wavefront sensor to characterize aberrations of optical components and the software
Zemax Optics Studio to optimize the positioning of these components. Furthermore,
mechanical precision mounts were designed for the objective. After the assembly, the
wavefront sensor can be used to verify the performance of the designed optical sys-
tem. The measurement of the aberrations of components comprising the optical system
using the wavefront sensor did not agree with the values supplied by Zemax for off-the-
shelve lenses. We attribute this discrepancy to the high sensitivity to misalignment of
the measurement setup, masking the intrinsic aberrations. Therefore, a more refined
measurement technique has to be developed to in order to measure aberrations more
precisely.

iii



Contents

Acknowledgements ii

Abstract iii

1 Aberration in an optical lattice setup 1
1.1 The new accordion lattice setup . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Optical aberration theory and Zernike expansion . . . . . . . . . . . . . . 2
1.3 Relating Ray and wave optics . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Simulating and optimizing an optical setup 7
2.1 Oslo and Zemax ray tracing softwares . . . . . . . . . . . . . . . . . . . . 7
2.2 Zernike polynomials and setup optimization . . . . . . . . . . . . . . . . . 8
2.3 FUSION 3D design and workflow . . . . . . . . . . . . . . . . . . . . . . . 9

3 Experimental realisation 11
3.1 The Shack-Hartmann wavefront sensor . . . . . . . . . . . . . . . . . . . . 11
3.2 A double pass experimental setup . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Experimental results and discrepancies with simulation . . . . . . . . . . . 14
3.4 Conclusion and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

iv



Chapter 1

Aberration in an optical lattice
setup

1.1 The new accordion lattice setup

The new lattice experiment currently being built in the Lattice team of the Quantum
Optics group relies on a new key ingredient developped in the master thesis work of
Simon Wili [1]: the accordion lattice setup. By using two laser beams whose interfering
angle we control via accoustico optical deflectors, we can effectively control the lattice
constant a.

Figure 1.1: To produce an accordion lattice, two laser beams interfere at a varying angle
θ resulting in different lattice constant a. Fig Taken from Ref.[1].

This new feature introduces an additional element of concern: the two laser beams in
the accordion lattice setup are focused using convex lenses that are struck at different
incidence angles. In Ref.[1], this situation was modelled using an accousto-optic deflec-
tor and the resulting variation in focal length has been observed. This showed that the
amount of induced variation for off the shelve lenses is not acceptable for the new setup.

In this work, we aim to expand upon these findings by developing a workflow for
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1 Aberration in an optical lattice setup

measuring the complete aberration profile of different optical objectives, constructing
custom-made optical objectives that limit targeted aberrations, and compare the simu-
lated and measured wavefronts. Our goal is to ensure that the setup allows for only a
specified amount of aberrations for a range of different incidence angles on both of the in-
terfering beams. By following this workflow, we hope to improve the overall performance
of the accordion lattice setup and reduce the impact of aberrations on this particular
system. The complete description of the effect of optical aberrations on the intensity
profile of the lattice is a different direction of the same project but it was not chosen due
to the time constraints of a semester thesis.

Though the motivation for the thesis is the accordion lattice, we aim at developping a
wokflow that would be general. In this manner, any optical system could make a use of
it in order to decrease optical aberrations.

Figure 1.2: The two convex lenses are hit at varying angles using Acousto optic deflectors.
Fig Taken from Ref.[1].

To better characterize optical aberrations in our system let us first describe how they
are defined and can be mathematically understood with the Zernike polynomials Theory.

1.2 Optical aberration theory and Zernike expansion

Optical aberrations are defined in Wolf and Born’s principles of optics as "deviations to
the gaussian theory" [2]. They can thus be understood as additional modifications to
the path of the beam that lead to non gaussian propagation terms. We can describe
optical aberrations in both Ray and Wave Optics by taking as the variable of interest
the deformed wavefront (Wave Optics) or the distance from the gaussian image point to
the real image point (Ray Optics) [2].

The Zernike treatment of aberrations relies on an orthonormal decomposition of the
wave front. The use of the Zernike polynomial basis allows to obtain mutually indepen-
dent coefficients that each correspond to a specific effect in the image plain. We consider
an optical field E(r, t) (r is the position vector) and develop its wavefront on the Zernike
basis :

E(r, t) = E0(r, t)e
iϕ(r)
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1.2 Optical aberration theory and Zernike expansion

Figure 1.3: In an aberrated setup the gaussian image point is distant from the real image
point. Fig taken from Ref.[2].

Figure 1.4: Optical aberrations can be explained in terms of ray or wave optics. The
distinction resides in looking at the difference between the ideal wavefront
and the real one or the ideal image point and the real one. Fig taken from
Ref.[2].

We now move polar coordinates: ρ denotes the distance to the optical axis, θ is the polar
angle with respect to that same optical axis and z is the direction of propagation of the
field.

E(r, t) = E0(r, t)e
iϕ0(z)eiϕ1(ρ,θ)

We can decompose ϕ1 into the Zernike basis (Zm
n )(m,n)∈N2 as it forms an orthonormal

basis of R2.
E(r, t) = E0(r, t)e

iϕ0(z)ei
∑

m,n am,nZm
n (ρ,θ)
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1 Aberration in an optical lattice setup

The Zm
n polynomials can further be decomposed into the product of a radial and angular

part [3].
E(r, t) = E0(r, t)e

iϕ0(z)ei
∑

m,n am,nRm
n (ρ)cos(mϕ)

To an aberrated wavefront, we can then relate a list of Zernike coefficients (am,n). Each
of the am,n coefficient describes the weight of the Zm,n polynomial in the decomposition.
In turn these Zm,n polynomials have different effects on the image plane as can be seen
on Fig.1.4 shows. Additionally, since those polynomials form an orthonormal basis, their
individual effect can be taken separately from the rest. We can for instance cite the sec-
ond and third Zernike polynomials polynomials, tilt X and tilt Y which displace the focal
point in the X and Y direction. Their wavefronts are drawn on Fig.1.5, they correspond
to a linear grating where the period is related to the amount of displacement.

Figure 1.5: Wavefronts of the 8 first Zernike polynomials and their corresponding optical
aberration. Fig taken from Ref.[4].

The ability to measure a Zernike wavefront can thus give hints on the effects of the
aberrations present on the optical system on the imaging plane. This is done by relating
Ray and wave optics for each coefficient to deduce its specific effect.

1.3 Relating Ray and wave optics

For the specific case of our system, the best description we would like is the effect on the
intensity potential which is non other than the image plane. A given Zernike polynomial
Zm,n can be related to an effect on the image plane by calculating what the wavefront
looks like.
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1.3 Relating Ray and wave optics

Figure 1.6: In the case of spherical aberration, rays that hit at varying angles of incidence
will have a different focal length different than that of the ideal lens. Fig taken
from Ref.[2].

We consider a radially symmetric TEM00 gaussian beam. Similar as before, ρ is the
distance to the optical axis, z is the coordinate in the direction of the optical axis.

E(ρ, z) = E0ux
ω0

ω(z)
exp(

−ρ2

ω(z)
)exp(−i(kz + k

ρ2

2R(z)
− ψ(z)))

If the beam is aberrated only by the Z0,2 (Z0,2 = a0,2(
√
3(2ρ2−1)) defocus aberrations

we obtain

E(ρ, z) = E0ux
ω0

ω(z)
exp(

−ρ2

ω(z)
)exp(−i(kz + k

ρ2

2R(z)
− ψ(z)))exp(ia0,2(

√
3(2ρ2 − 1))

E(ρ, z) = E0ux
ω0

ω(z)
exp(

−ρ2

ω(z)
)exp(−i(kz + kρ2(

1

2R(z)
−

√
32a0,2))− ψ1(z)))

This can be rewritten as

E(ρ, z) = E0ux
ω0

ω(z)
exp(

−ρ2

ω(z)
)exp(−i(kz + k

ρ2

2R0(z)
− ψ(z)))

Where the radius of curvature R has been shifted by −
√
32a0,2. This effectively trans-

lates into a shift of the focusing point of the beam to a new focal point.
We now consider the Z0,4 primary spherical component which was the main focus of

Ref.[1], we can write the following :

E(ρ, z) = E0ux
ω0

ω(z)
exp(

−ρ2

ω(z)
)exp(−i(kz + k

ρ2

2R(z)
− ψ(z)))exp(ia0,4(6ρ

4 − 6ρ2 + 1)

E(ρ, z) = E0ux
ω0

ω(z)
exp(

−ρ2

ω(z)
)exp(−i(kz + kρ2(

1

2R(z)
− 6a0,4ρ

2 + 6a0,4)− ψ1(z)))
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1 Aberration in an optical lattice setup

This can be reinterpreted as a radius of curvature R1(z) which depends on r.

R1(z, ρ) =
R(z)

1 + 6a0,4ρ2R(z)− 6a0,4R(z)

We note that as the value of r increases, there is a corresponding increase in the Radius
of curvature. We can thus infer that rays hitting the lens at higher height will converge
to a focal point closer to the lens as it can be seen on Fig.1.6. Similar derivations can be
found in Ref.[2] for the coma and astigmatism aberrations. The Coma aberration effect
is drawn on Fig.1.7.

Figure 1.7: The Coma aberration effect on the focal plane involves the angular position
of the intersect between ray and lens. Fig taken from Ref.[2].

This technique can be expanded by looking at the individual effects each of the Zernike
polynomials on the Gaussian beam propagation. A broader and more complete descrip-
tion would have to include a simulation tool to encompass all aberrations and calculate
their effect on the image plane by gaussian propagation methods. Ray tracing software
fill this objective to get a sense of the effect of different optical aberration, they are do
not simulate the full electro-magnetic field but instead trace many optical rays to deduce
the behavior of the entire beam.
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Chapter 2

Simulating and optimizing an
optical setup

2.1 Oslo and Zemax ray tracing softwares

Oslo [5] and Zemax [6] use ray tracing to simulate a beam passing through an optical
system. Their purpose in our project is to simulate the effect a given optical system has
on an incoming beam and optimize it according to an objective function. Most of the
simulations I did on Oslo has already been done in Ref.[1] and their was no additional
result obtained.

Zemax on the other hand was used for the first time during this project and allowed
for far more flexibility and different tools to work on. For instance the parameters on
which Zemax allows for optimization are far more diverse than that of Oslo. We can
tune the type of beam entering the setup, the thicknesses of the lenses and constitute
large systems of more than 3 lenses in a much larger library than Oslo’s.
Additionally, Zemax can plot reconstituted wavefront, use multiple wavelengths and
change the aperture of the incoming beam as well as the light source type.

Figure 2.1: A simulated wavefront obtained by Zemax Optics Studio for a 3 lens optical
system. The radial symmetry of the system is reflected on the shape of this
wavefront.
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2 Simulating and optimizing an optical setup

2.2 Zernike polynomials and setup optimization

For a given experimental setup, we can visualize the different Zernike polynomials and
optimize the setup for a targeted set of parameters. To do this, we input the variables
we are willing to modify in the setup and specify the parameter we wish to minimize. In
our case, we are targeting spherical aberration, so our parameter of interest is defined to
be SPHA (the primary spherical Zernike polynomial weight). To ensure that the focal
length of the combined system remains constant, we enforce this constraint by adding a
penalty term to the cost function.

Before beginning the optimization process, it is important to define the type of setup
we wish to build. After discussing with Marius and Samuel, we have decided to use
off-the-shelf lenses and only vary the distances between them. Our approach involves
combining concave and convex lenses, which have opposite contributions to spherical
aberration as can be seen in Ref.[1], and optimizing the distance between them.

After running several optimizations, we find that Zemax converges to the setup drawn
in Fig 2.2.

Figure 2.2: The optimized setup given by Zemax using off the shelves lenses from Thor-
labs.

To get a sense of why these setups are optimal we can also plot 2D colormaps of the
parameters we are studying. Ploting the SPHA contribution as a function of the distance
between two of the lenses we observe Fig. 2.3 .

Running the colourmaps on the distances between convex and concave and convex
and convex lenses while fixing as a constraint the focal length of the entire system shows
that the configuration shown in fig 2.2 is indeed the best. This however leads us to
consider how well we can create such a configuration as tilting one of the lenses a litlle
has heavy effects on the final aberration profile. In order to ensure that these distances
and orientation angles are well constrained, we designed handmade lens holders by using
another Ansys software : Fusion 360 [7].
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2.3 FUSION 3D design and workflow

Figure 2.3: Zemax can be used to observe dependencies of various parameters by plotting
2D colour maps. Here we plot the spherical aberration coefficient SPHA as
a function of two distances between lenses.

2.3 FUSION 3D design and workflow

If we agree with the simulations realized on Zemax, one way to build such system would
be to construct "lens holders" that would need to be more precise than the Thorlabs
lens ’cages’. We discussed a possible design which would consist of modular holders that
allow to hold in place a lens with very low movement, each element was designed using
the software Fusion 360 [7].

Figure 2.4: The Fusion 3D design comprises Lens Holders which are connected at fix
distances by tubes to ensure fixed distances between optical elements.

The holders are designed to be able to hold different focal lengths at high precision
(less than 0.1 mm movement range allowed). Their design was discussed with the ETH
engineers to maximize their stability.

With the description of the simulations, optimization and design of tailored optical
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2 Simulating and optimizing an optical setup

Figure 2.5: When assembled, the tubes and lens holders from a compact and robust
optical system. Several tubes can be combined with the double sided holders
to build more complex objectives.

objectives, we have all the elements of a potential workflow that could be used whenever
there is a need of an optical system. The pattern would be the following :

- The experimental constraints determine what aberrations we care about or want to
avoid.
- Zemax OpticStudio simulates an optical system comprising the elements we have in the
lab, an optimization sequence is performed to obtain the best possible arrangement of
the different elements for the considered objective function.
- The obtained configuration is tested accordingly using a Shack-Hartmann [3] sensor to
match simulation and experiment.
- The obtained optical objective is designed using Fusion 360 and built with the ETH
engineers.
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Chapter 3

Experimental realisation

3.1 The Shack-Hartmann wavefront sensor

The Shack-Hartmann sensor is a powerful tool used to measure the wavefront aberrations
in an optical system [3]. It operates by sampling the incoming wavefront with a lenslet
array, which divides the wavefront into a series of sub-apertures. Each lenslet focuses its
corresponding sub-aperture onto a detector, producing a spot pattern whose individual
position relate to the local slope of the wavefront at that location. By measuring the
positions of these spots relative to their ideal positions in the absence of aberrations, the
Shack-Hartmann sensor can determine the local gradients of the wavefront across the
entire aperture as can be seen on Fig.3.1.

Figure 3.1: A Shack-Hartmann Camera is usually composed of a beam expander and an
array of lenslets that sample the local derivatives of a wavefront. Postpro-
cessing of the positions of the different spots on the CCD array allows to
retrieve the incoming wavefront. Fig taken from Ref.[3].

∂W

∂xi
≈
xi − xi,ref
flenslet

∂W

∂yi
≈
yi − yi,ref
flenslet

We can then reconstruct the entire wavefront by integrating over these tilts :

W (x, y) =

∫
x,y

∂W

∂y
dy +

∂W

∂x
dx ≈

∑
xi,yi

∂W

∂xi
ax +

∂W

∂yi
ay
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3 Experimental realisation

This information is used to reconstruct the wavefront using mathematical algorithms,
such as Zernike polynomial decomposition or modal reconstruction.

Figure 3.2: A recomposed wavefront from our Thorlabs Shack-Hartmann Camera. [8]

To ensure accurate interpolation of Zernike polynomials, it’s crucial to have a suffi-
ciently large beam for the Shack-Hartmann sensor. In our case, we aim for a beam size
of a few millimeters, which aligns with the aperture of our sensor. The local derivatives
measured by the Shack-Hartmann sensor are more effective at fitting a wavefront that is
close to being flat. Therefore, it’s beneficial to collimate the beam before it reaches the
sensor, creating a wavefront reference which is flat.

Additionally, the Shack-Hartmann camera is an exceptional tool for beam collimation.
The defocus aberration, which is related to the beam’s curvature, is a direct indicator of
collimation. A positive curvature signifies a convergent beam, while a negative curvature
indicates a divergent beam. To collimate a beam, we can utilize the Shack-Hartmann
sensor to measure the defocus aberration and adjust the position of the collimating lens
accordingly until the Zernike coefficient for defocus is zero.

3.2 A double pass experimental setup

Our setup takes the form of a double pass experiment where an expander a reducer ensure
that a large part of the lens is sampled so that we can effectively see the effects of the
lens on the beam. Our setup is inspired from lens characterization setups [9, 10].

A quarter waveplate ensures the beam is deflected by the beam splitter after going
through the optical system two times. This setup can technically accomodate any optical
system as long as the focal point of the optical system matches the position of the mirror,
this presupposes there is enough space between the quarter waveplate and the mirror to
do so. The light comes from a 1064 nm diode laser coupled into a fiber. The model setup
is drawn in Fig.3.3 and the experimental setup can be seen on Fig.3.4.
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3.2 A double pass experimental setup

Figure 3.3: Schematic of the experimental realization of the measurement.

Figure 3.4: Experimental realization of the measurement, optical rails were used to ensure
the alignment on the optical table plane.

Alignments proved to be crucial to obtain the right Zernike polynomials caracteristics
of the lens of interest. Indeed Zemax simulation showed that angular deviation of 0.01
rad already showed dominant terms that were not the one expected for a perfectly aligned

13



3 Experimental realisation

beam. Similarily for position, only a deviation of 0.1 mm can be tolerated. In order to
align the beam I essentially used irises and optical rails but I retrospectively believe a
more sophisticated alignment method should have been employed.

3.3 Experimental results and discrepancies with simulation

The simulation to which we compare our system is a 4f system where the lenses are the
same as the lens of interest, this system is drawn on Fig.3.5. The Zemax Zernike analysis
shows only spherical aberration when collimated as one could expect from the radial
symetry of this system.

Figure 3.5: The simulation to which we compare our experimental setup is composed of
two lenses forming a 4f system. This is used to simulate the behavior of the
lens coupled to the mirror (at its focal point).

The measurements are done by taking the system without the lens of interest as a ref-
erence and then adding the lens of interest. The measurements of the different Zernike
polynomials I obtained on the Shack-Hartmann did not match with the Zemax simula-
tion. I observe other dominant Zernike polynomials which give a hint that misalignment
may have broken the radial symmetry. One small success I could obtain is that titling
the angle in a direction gives the variation I observe on Zemax.

I identified a few sources of errors that might explain this discrepancy. First the SH
sensor relies on the beam waist as the ’definition’ of its fit, the larger the beam the more
points are used to interpolate the coefficients. One possibility is that my beam was still
to small for the SH to sample correctly the Zernike polynomials. Secondly the alignment
of the lens with the incoming beam is absolutely crucial not to break the radial symmetry
this as mentioned should have been done with a better alignment method. Finally I used
a small focal length lens in the Reducer which was a bad idea since it means the curvature
of the lens is higher and small position deviations have more effect on the wavefront. This
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3.4 Conclusion and outlook

Figure 3.6: The final set of Zernike polynomials for the double pass setup obtained by
the Shack Hartman sensor. The primary spherical aberration (numbered 11
here) is clearly not dominating, in contrast with the simulation.

in turns can amplify a misalignment from the lens of interest.

3.4 Conclusion and outlook

In this study, we developed a comprehensive workflow to design optimal optical objec-
tives considering pre-defined constraints on optical aberrations. Using Zemax Optics
Studio, we simulated an optical objective composed of off-the-shelf lenses and predicted
its wavefront. The software enabled us to lower the optical aberration of the system by
adjusting the distances between lenses. Once a schematic design was achieved, we used
the mechanical design software Fusion 360 to create custom lens holders and tubes to
maintain constant distances between lenses.

We then compared the simulated optical objective with experimental measurements
using a Shack-Hartmann wavefront sensor. However, the measured values for the Zernike
Polynomial expansions did not match the Zemax predictions, further investigation in
Zemax suggested that misalignment in the measurement setup was the most likely cause
for this discrepancy.

To effectively apply the workflow established in this study, the first step is to find a
match between the simulated and measured optical objectives. Once this is accomplished,
the optimal objectives should be demonstrated to outperform non-optimized ones and
finally the optimized objectives can be integrated into the lattice setup using the custom
optical links and holders designed with Fusion 360.
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