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Multilevel preconditioners for solving
eigenvalue problems occuring in the design of
resonant cavities

Peter Arbenz * and Roman Geus

Institute of Scientific Computing, Swiss Federal Institute of Technology,
CH-8092 Zurich, Switzerland

Abstract

We investigate eigensolvers for computing a few of the smallest eigenvalues of a
generalized eigenvalue problem resulting from the finite element discretization of
the time independent Maxwell equation. Various multilevel preconditioners are
employed to improve the convergence and memory consumption of the Jacobi-
Davidson algorithm and of the locally optimal block preconditioned conjugate gra-
dient (LOBPCG) method. We present numerical results of very large eigenvalue
problems originating from the design of resonant cavities of particle accelerators.

Key words: Maxwell equation, generalized eigenvalue problem, Jacobi-Davidson,
LOBPCG, smoothed aggregation AMG preconditioner
PACS: 02.60.Dc, 02.70.Dh, 42.60.Da

1 Introduction

Many applications in electromagnetics require the computation of some of the
eigenpairs of the curl-curl operator,

curl i, 'curle(x) — k7 ¢, e(x) = 0, dive(x) =0, xe, (L.1)

in the bounded three-dimensional domain €2 with homogeneous boundary con-
ditions e x n = 0. Here, ¢, and p, are the relative permittivity and perme-
ability, respectively. Equations (1.1) are obtained from the Maxwell equations
after separation of the time and space variables and after elimination of the
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magnetic field intensity. While ¢, and p, are complex numbers in problems
from waveguide or laser design, in simulation of accelerator cavities the mate-
rials can be assumed to be loss-free, thus admitting real ¢, and p,., whence all
eigenvalues are real. In fact, we will assume ¢, = p,, = 1. Thus, the discretiza-
tion of (1.1) by finite elements leads to a real symmetric generalized matrix
eigenvalue problem

Ax = A\Mx, CTx =0, (1.2)

where A is positive semidefinite and M is positive definite. In this paper we
consider eigensolvers for computing a few, i.e., five to ten of the smallest eigen-
values and corresponding eigenvectors of (1.2) as efficiently as possible with
regard to execution time and consumption of memory space. In earlier stud-
ies [1,2] we found the Jacobi-Davidson algorithm [24] and the locally optimal
block preconditioned conjugate gradient (LOBPCG) method [17] to be the
most effective solvers for this task. We now have incorporated a sophisticated
multilevel preconditioner that is the combination of a hierarchical basis [3]
and a smoothed aggregation AMG preconditioner [26,22]. We review eigen-
solvers and preconditioners and tell how we employ them in sections 3 to 4.
In section 5 we report on experiments that we conducted by means of prob-
lems originating in the design of the RF cavity of the 590 MeV ring cyclotron
installed at the Paul Scherrer Institute (PSI) in Villigen, Switzerland. These
experiments indicate that the implemented multilevel preconditioner is indeed
optimal in that the number of iteration steps until convergence only slightly
depends on the problem size.

2 The application: the cavity eigenvalue problem

The finite element discretization is based on the weak formulation of (1.1) as
suggested in [16].

Find (An, en,pn) € R X N, x Ly, such that e, # 0 and
() (curle,, curl ) + (grad py, @) = Mlen, ), V¥, €N, (21)
(b) (ehv grad qh) =0, th € Ly

where Nj, C Ho(curl; Q) = {v € L*(Q)? | curl v € L*(Q)?,v X n = 0 on 9O}
and L, C H}(Q). In order to avoid spurious modes we choose the subspaces
N, and Ly, respectively, to be the Nédélec (or edge) elements [13,23] and the
Lagrange (or node-based) finite elements [5] both of matching degree, in our
implementation of degree 2. Let {®;}" | be a basis of Nj, and {¢;}", be a



basis of Lj. Then (2.1) defines the matrix eigenvalue problem

A C| [x M O| [x
=\ , (2.2)
cT ol \y O 0| \y

respectively, where A and M are n-by-n and C' is n-by-m with elements
a;; = (curl ®;, curl ®;), m,; = (®;,®;), ¢, = (P;,grady,).

(2.2) can equivalently be written in the form (1.2). The reason for approxi-
mating the electric field e by Nédélec elements and the Lagrange multipliers
by Lagrange finite elements is that [13, §5.3]

grad L, = {v;, € N, | curl v, = 0}. (2.3)

By (2.1)(b), ey, is in the orthogonal complement of grad Lj. On this subspace
Ain (2.2) is positive definite. Notice that ey, is divergence-free only in a discrete
sense. Because of (2.3) we can write grad ¢; = >-7_; ®;y;, whence

n

(®;,grad ¢;) = Z(‘i’z’, D)y, or C=MyY, (2.4)

7=1
where Y = ((y;1)) € R™™. Similarly one obtains
H =0Ty =YT My, hi = (grad o, grad ¢;). (2.5)

Notice that Y is very sparse. Its rows contain at most two nonzero entries
that are 1 or -1. H is the system matrix that is obtained when solving the
Poisson equation with the Lagrange finite elements Lj,. From (2.4) we see that
CTx = 0 is equivalent to requiring x to be M-orthogonal to the eigenspace
N(A) = R(Y) corresponding to the eigenvalue 0. Thus, the solutions of (2.2)
are precisely the eigenpairs of

A’N‘(CT)X = /\M’N‘(CT)X. (26)

We enforce the constraint by applying the M-orthogonal projector Py (cry =
I —YH'CT onto N(CT) whenever a vector is not in this subspace.

It may seem possible to simply neglect the restrictions in (2.6). This is in prin-
ciple feasible if the eigenvalue problem is solved by the Lanczos algorithm with
the shift-and-invert spectral transformation and the systems (A —oM)x =y
are solved directly, provided that the initial subspace satisfies the constraint.
If a preconditioned iterative solver is applied the approximate solutions do not
satisfy the constraints anymore.



3 Solving the matrix eigenvalue problem

Factorization-free methods are the most promising for effectively solving very
large eigenvalue problems

Ax = A\Mx. (3.1)

The factorization of A or M or a linear combination of them which is needed
if a spectral transformation like shift-and-invert is applied requires far too
much memory. If the shift-and-invert spectral transformation in a Lanczos
type method is solved iteratively then high accuracy is required to establish
the three-term recurrence. This is very time-consuming even if the conjugate
gradient method is applied with a good preconditioner. In most of our ex-
periments the Jacobi-Davidson algorithm was much more effective than the
implicitly restarted Lanczos algorithm as implemented in ARPACK [18] for
solving the cavity problem and other eigenvalue problems [1,2].

In this paper we investigate the two probably most powerful factorization-
free algorithms for solving (3.1), the symmetric Jacobi-Davidson algorithm
(JDSYM) and the locally optimal block PCG method (LOBPCG). In this sec-

tion we give details on our actual implementation.

3.1  The symmetric Jacobi-Davidson algorithm

The Jacobi-Davidson has been introduced by Sleijpen and van der Vorst [24].
There are variants for all types of eigenvalue problems. Here, we use a variant
adapted to the generalized symmetric eigenvalue problem (1.2) as described
in [1,12].

The Rayleigh quotient corresponding to the matrix pencil (A, M) of (1.2) is

defined as .
x' Ax
p(x) = Tx CTx =0.
Let us assume that in an intermediate step of the algorithm we have available
a search space R(V;) C N(CT) with V}, = [vy,...,v,] and that (p,q) with p =
p(q) is the Ritz pair in R(V}) that best approximates the searched eigenpair.
In general, R(V}) is not a Krylov subspace. As the eigenpairs of Ax = AMx
are the stationary values of the Rayleigh quotient, it is straightforward to

apply Newton’s method to

grad p(x) = XT?WX (A—p(x)M)x =0, (3.2)

to improve the approximation q. The Newton correction t at q is determined



(1)  Choose vy with ||v1||apr = 1. Choose target T. Set @ = []. k := 1.

( ) V1 = ([ - YHilcT)Vl.

(8) Vir=lvil a=vii pi=p@; r=AG-pMEG Q=[d.
(4)  while rank(Q) < p do

(5) Choose shift: either n := 7 or ng := p.

(6) Solve approximately for t (Correction equation)
{(I = MQQ")(A—mM)(I -QQ™M)t = —r, Q"Mt=0.}

(7) t=(I-YH'C").

(8) Vi = (I — VkaTM)tQ Vig1 = Vit / [Vl o

9) k:=k+1.

(10) Vi :=[Vi_1,vi]; Hp=VIAV,. (Subspace expansion)
(11) Compute H S, = Sp\y (Spectral decomposition)

where St = ST and Ay = diag(\", .., AM)
with MY — 7| < DWW — 7], 1<k

) repeat (Convergence test)
) p=M" q=Vis;; ri=Aq-pMa.

) found := [|r||s < € and k>1;

) if found then

) Q:=[Q.al; Vi1 :=Vi[sa, ... sp;

) Aoy = diagOP oAy S =T ki=k—1;
) end if

) until not(found)

) Q= [Q,d];

) if kK = jmax then (Restart)
) ‘/}min = ‘/k[sla s 7Sjm,'n]; k= jmin;

) end if

) end while

Algorithm 1. JDSYM: The symmetric Jacobi-Davidson algorithm

by the correction equation

(I — MQQT)(A—pM)(I —QQTM)t = —r,

- (3.3)
QTMt =0, cTt =0, QR =1Q.q]

where r = Aq — p Mq is called the residual at q and () contains the already
computed M-orthonormalized eigenvectors as its columns. Instead of updating
q by q + t as in Newton’s method the correction t is made orthogonal to
Vi, ..., Vg and, after normalization, becomes v, . V} is expanded by v to
become V1. This procedure is related to Rayleigh quotient iteration [20],
whence a local cubic converge rate can be deduced [24].

However, with large problems, the Rayleigh quotient iteration is not feasi-
ble, as it requires the factorization of a matrix in each iteration step. In fact,



away from convergence, it is much more effective to solve the correction equa-
tion to very low accuracy with p replaced by a fixed target value 7. Close to
convergence, higher (but not very high) accuracy is needed to have a decent
convergence rate. Therefore it is natural to solve the correction equation (3.3)
iteratively by a Krylov subspace method. We found that the divergence-free
condition CTt = 0 needs not be enforced during the iteration [2]. Because of
the way we derived this finding we called the method simplified augmented
system (SAUG) approach. Only at the end of the iteration the approximate
solution is projected onto N (CT).

For the Krylov subspace method to be efficient a preconditioner is a prereq-
uisite. Following Fokkema et al. [10] we use preconditioners of the form

(I = MQQT)K(I - QQ"M), (3.4)

where K is a symmetric preconditioner of A — pM. For efficiency reasons we
compute K only once for a fixed shift o such that K ~ A— oM. Often we
choose o = 7, the target value. In each preconditioning step an equation of
the form

(I—MQQ")Kec=b and Q"Mc=0 (3.5)

has to be solved. The solution c¢ is [12]

c=(I-K'MQQ"TMK'MQ)'Q"M)K'b. (3.6)

In summary, the Krylov subspace method is invoked with the following argu-
ments.

system matrix: (I — MQQT)(A— M)
preconditioner: (I — K'"MQ(QTMK-TMQ)"'\Q" M)K ! 57)
right hand side: —(I = MQQ )r
initial vector: 0

Both the system matrix and the preconditioner are symmetric. However, be-
cause of the dynamic shift p they can become indefinite. For this reason, the
QMRS iterative solver [11] is suited particularly well. We discuss in the Sec-
tion 4 how we chose the preconditioner K.

3.2 The locally optimal block preconditioned conjugate gradient algorithm

The locally optimal block preconditioned conjugate gradient (LOBPCG) al-
gorithm has been introduced by Knyazev [17]. It is an improvement over the



oose random matrix Xg € , o =0, wit o=1,.
1 Ch d ix Xog € R4, CTX, O, with XOTMX I,

Set @ == [].
(2)  Compute (X AX()Sy = SO, (Spectral decomposition)
where SISy =1,, ©g = diag(ty,...,9,), V1 <...<9,.

) X() = X(]So; Ro = AX() - MXo@o, Pg = H, k:=0.

) while rank(Q) < p do

) Solve the preconditioned linear system K Hy = Ry,

) Hy := H, — QQTMH,); Hy:= (I -YH'C")H,.

) 4/22 [Xk,Hk,Pk]TA[Xk,Hk,Pk]

) M = [Xk,Hk7Pk]TM[Xk,Hk,Pk]

) Compute AS, = M5S0, (Spectral decomposition)
where STMS), = I,, Oy, = diag(vy,...,03,), ¥ < ... < s,

(10) Sy = Skler,...ey, © = diag(ty,...,7,).

(11) Pt = [Hy, Pi] Sk2; X1 := XSk + Prgr.

(12) Rpy1 = AXpy1 — M X310y

(13) k:=k+1.

(14) fori=1,...,qdo (Convergence test)
(15) if | Rre;|| < e then

(16) Q :=[Q, Xrei]; Xype; :=t, witht a random vector.
(17) M -orthonormalize the columns of Xj.

(18) end if

(19) end for

(20)  end while

Algorithm 2. LOBPCG: The locally-optimal block preconditioned conjugate gra-
dient method

(block) preconditioned conjugate gradient algorithm [14,19,21,9] for eigenvalue
problems at the expense of a somewhat higher memory consumption.

In the block preconditioned conjugate gradient algorithm for solving symmet-
ric eigenvalue problems, at step k a set of ¢ Ritz vectors X and a set of
q search directions P, are available with CTX, = CTP, = O. The X}, sat-
isfy X¥MX* = I and X*AX* = ©, where the diagonal matrix ©; has the
Ritz values on its diagonal. The P, are determined as a linear combination
of the preconditioned residual Hy (projected onto N (CT)) and the previous
search direction P,_; such that PkT AP,_1 = O. Here, the block residual is
Ry = AXy, — M X, 0,. The algorithm proceeds by defining the next approxi-
mations X1 to be the Ritz vectors of (3.1) projected onto R([ Xy, Fx|).

In the LOBPCG algorithm the X, are defined to be Ritz vectors of (3.1)
projected onto R([ X, Hy, Py_1]), see Algorithm 2. The search directions Pj
are defined only after the solution of the Ritz problem. If d; = [d7}, d;, d3;]",
d;; € R? is the eigenvector corresponding to the j-th eigenvalue of (3.1)
restricted to R([X, Hg, Px—1]), then the j-th column of Xy, is the corre-



sponding Ritz vector
Xpy1€; = [ Xy, Hy, Pyq] dj = Xpdyj + Pre;j, (3.8)

with
Pkej = degj + Pk_ldgj.

Notice that P, is an empty matrix such that the eigenvalue problem in step (9)
of LOBPCG, displayed in Algorithm 2, has order 2¢ for k = 0.

4 The preconditioners

The eigensolvers that we have introduced in the previous section require a
good preconditioner K in order to converge rapidly. In JDSYM the precon-
ditioner appears in the solution of the correction equation. In LOBPCG the
preconditioned residuals are computed in step (5) of the algorithm. To be
a good preconditioner K has to satisfy two conditions. First, K must ap-
proximate well A — oM where o is close to the eigenvalues that we want to
compute. Second, systems involving K must be solvable much more quickly
than systems with A.

Our preconditioner is a combination of a hierarchical basis preconditioner and
an algebraic multigrid (AMG) preconditioner.

We first consider the hierarchical basis preconditioner as we used it in [2]. We
recall that our finite element spaces consist of Nédélec and Lagrange finite
elements of degree 2 and that we use hierarchical bases [27]. Numbering the
linear before the qadratic degrees of freedom the matrices A and M in (1.2)
and (2.2) have a 2-by-2 block structure,

Al A My, M
A= 11 /112 7 M= 11 12 7 (41>
A21 A22 M21 M22

where the (1, 1)-blocks correspond to the bilinear forms involving linear basis
functions in N},.

The hierarchical basis preconditioners as discussed by Bank [3] are stationary
iteration methods for solving

A7 AL | [x b
1 12 ! = ! s A;Tj = Al] - O'MZ] (42)

that respect the 2-by-2 block structure of A and M.



If the underlying stationary method is block Jacobi iteration then
(4.3)

whence

If the underlying stationary method is the symmetric block Gauss-Seidel iter-

ation then ) )
Xy = (A7) by,

xs 1= (A%) " (by — A X)), (4.4)
x1 := (A7) (by — Af,xy),
which in matrix notation is

-1

A7 A7 A7, AS
r_ |7 ) 11 . 11 ~12
Agy Ag, ASy Agy

The approximation 2132 of A7, again represents a stationary iteration method.
With weighted Jacobi iteration we have

12132 = ]./WDQQ (45)
and with SSOR iteration
AgQ = (D22 + (,()LQQ)D;; (D22 + Wng) (46)

Here, Dy is the diagonal and Loy is the strictly lower triangle of A%,. For
w=1 SSOR becomes symmetric Gauss-Seidel iteration which is the approach
that we took in our experiments. Notice that the block methods and the inner
methods can be combined arbitrarily.

In [2] we solved systems involving the (1,1) block A, of K by the direct solver
SuperLU [6,7]. These systems appear in the first equation in (4.3) and in the
first and third equation in (4.4). We also used SuperLU to solve with the
Poisson matrix H of (2.5) that occurs in the projector I — Y HCT.

For very large problems the direct solve with A{, and H becomes inefficient
and in particular consumes far too much memory due to fill-in. In order to
reduce the memory requirements of the two-level hierarchical basis precondi-
tioner but at the same time not lose its optimality with respect to iteration
count we replaced the direct solves by one of two ways.

(1) The direct solution with A¢; or H is replaced by the highly accurate
solution with a Krylov subspace method, QMRS or PCG, precondition by



one V-cycle of an algebraic multigrid (AMG) solver. Notice that systems
involving H actually have to be solved to high accuracy as they are part
of the application of a projector.

(2) The direct solution with AJ; is replaced by a single V-cycle of the same
AMG preconditioner. This makes the preconditioner a true multilevel
preconditioner. The two finest levels are defined by means of the two
levels of the hierarchical basis. The coarser levels are obtained by a plain
AMG approach.

We found ML 2.0 [15] the AMG solver of choice as it can handle unstruc-
tured systems that originate from the Maxwell equation discretized by lin-
ear Nédélec finite elements. ML implements a smoothed aggregation AMG
method [26] that extends the non-smoothed aggregation approach of Reitzin-
ger and Schoberl [22]. In the latter paper it is shown how the prolongation from
one level to the next finer has to be constructed in order that discrete gradients
of the coarser level are transfered to discrete gradients of the finer level. This
implies in particular that the null space of the coarser level is mapped into the
null space of the next finer level such that an equation corresponding to (2.3)
holds on all levels. The construction of a smooth aggregation that respects
these properties is discussed in [4]. The latter is implemented in ML 2.0 [15].

5 Numerical experiments

We conduct our numerical experiments in two steps. First we compare the
previous preconditioners for solving the system (4.1) that represents up to the
projections the correction equation of the JDSYM algorithm. These precondi-
tioners are used ‘stand-alone’ in the LOBPCG algorithm. The preconditioners
include combinations of the symmetric Gauss-Seidel variant of the hierarchi-
cal basis preconditioner combined with various solvers for the (1,1) block of
A — oM. We execute similar experiments for the Poisson equation (2.5). Sec-
ond we compare JDSYM and LOBPCG using the best preconditioner of the
first step.

5.1 A comparison of the preconditioners by means of relevant systems of
equations

We compare the quality of various methods and preconditioners for solving
the linear systems of equations occurring in Algorithm 1,

(A—oM)x=Db (5.1)

10



and the discrete Poisson equation
Hs = t. (5.2)

A and M are the matrices obtained from FE-discretization of (2.1) using
Nédélec elements as indicated in Section 2. H is the Poisson matrix defined
in (2.5). For the following experiments we construct these matrices from two
series of grids with increasing fineness as indicated in Tab. 1 in which orders
n and numbers of stored non-zeros nnz of both the shifted operator A — o M
and the discrete Laplacian H are listed.

grid NA—oM NNZA_oM ny nnzg
box10k 63514 1197326 | 12243 280999
box60k 355738 7058180 | 71331 1798827
box170k | 1030518 20767052 | 209741 5447883
box300k | 1826874 36969839 | 374003 9795657

copl0k 50144 991995 9683 220085
cop40k 231668 4811786 | 46288 1163834
cop300k | 1822854 39298588 | 373990 10098456

Table 1
Matrices used for numerical experiments

The symmetric indefinite system (5.1) is solved by the QMRS iteration method
using the block symmetric Gauss-Seidel variant (4.4) of the two-level hierar-
chical basis preconditioner. Ay, in (4.4) is defined by (4.6) with w = 1. The
iteration is stopped as soon as the residual norm has been reduced by a factor
of 107%. For solving with the (1,1)-block of the preconditioner we investigate
four variants:

e 2lev(Iu): Systems with the (1,1)-block are solved exactly by the direct solver
SuperLU [7]. To reduce fill-in the matrix is reordered with the symmetric
minimum degree algorithm.

e 2lev(qmrs,ml): Systems with the (1,1)-block are solved to high accuracy
(residual norm smaller than 1071%) using the QMRS iteration method, pre-
conditioned by AMG V-cycles.

e 2lev(ml): Solving with the (1,1)-block is replaced by a single AMG V-cycle.

e 2lev(sgs): Solving with the (1,1)-block is replaced by a single symmetric
Gauss-Seidel (SGS) step.

The results are summarized in Tab. 2. The systems are solved to an accuracy of
£=107° using the QMRS iteration method. The 2lev(Iu) preconditioner could
not be computed for the two largest systems due to memory restrictions. ¢,

11



preconditioner box10k box60k box170k box300k coplOk cop40k cop300k

2lev(lu) tinit 15.9 1133.7 11573.1 7.8 2715
tsolv 10.8  136.2 534.4 7.4 71.4
Nit 19 21 20 20 22
c 33.4 92.6 142.2 25.6 57.2

2lev(qmrs,ml) ¢y 1.0 5.0 16.2 30.2 0.6 3.3 54.6
tsolv| 360.6 1767.7 6041.0 11664.2 234.3 1582.5 26592.6

nit 19 21 20 18 20 22 24
2lev(ml) tinit 10 50 162 302 06 33 546
teory| 204 894 3048 6281 147 101.7 1354.1
nit 40 33 38 43 42 54 55
2lev(sgs) teor| 54.2 6403 27985 63124 584 609.3 >13320
nit 233 454 708 899 322 573 >1000

Table 2
Solving the indefinite system (5.1) using four variations of the two-level hierarchical
basis preconditioner. Execution times are in seconds.

is the time for constructing the preconditioner or the LU-factorization, re-
spectively. For some methods t;,;; is omitted, indicating that the setup time
is much smaller than ty,,, the time needed for solving one linear system (not
including the setup time). ny is the number of iterations executed until con-
vergence. ¢ is the operator complexity [25] of the LU-factorization, meaning
that the LU-factors require ¢ times as much memory as the system matrix.
The execution times are reported in seconds.

Inside our eigensolvers the linear system solvers will be called many times,
while there is only one setup phase. Therefore, a linear system solver (or
more precisely a preconditioner) suits our needs if solution times and memory
consumption are low. The numbers indicate, that 2lev(lu) is the best method
for the three smallest systems. However, as the matrices get larger, the fill-in
produced by the LU factorization grows much faster than the matrix order
and so do the memory consumption and the execution times.

For the more relevant larger problem sizes 2lev(ml) is clearly the fastest. This
is a true multilevel preconditioner. Solving the (1,1)-block to higher accuracy
using more than one V-cycle as it is done in 2lev(qmrs,ml) is much slower.
This reduces the number of outer iterations ny to the level of 2lev(lu). So,
2lev(qmrs,ml) is in fact a 2-level method. On the other hand, replacing the
V-cycle of 2lev(ml) by a simple SGS step is evidently not enough to get an
optimal preconditioner. The iteration count ny grows considerably as h goes

12



method grid | box10k box60k box170k box300k coplOk cop40k cop300k

lu tmie | 21.9 13432 12.4  557.4
teolv 0.2 3.3 0.1 1.6
c 12.8 332 10.7  25.6
cg, ml tinit 1.0 9.8 36.3 731 09 69 1339
toolv 41 213 714 1399 2.8 129 2189
it 27 29 30 33 26 28 35
cg,5gs tsolv 1.0 7.8 30.3 679 0.7 54 1241
it 41 44 59 69 40 48 81

cg,2lev,lu tinit 0.1 9.9 139.8 640.5 0.1 3.0 492.1
tsolv 1.5 16.5 77.2 182.9 1.0 8.9 178.7
Nit 38 38 39 39 36 39 40

cg,2lev(cg,ml) tso1y 6.5  34.6 96.6  177.1 7.0 215 2104
Nit 38 38 39 39 36 39 40

cg2lev(ml)  teoly 24 120 35.3 63.7 2.1 7.5 86.3
Nit 38 39 40 40 37 39 41

Table 3
Solving the Poisson equation (5.2) to high accuracy using various methods. Execu-
tion times are given in seconds.

to zero.

The AMG method used for the 2lev(ml) and 2lev(qmrs,ml) preconditioners
exhibits only a modest operator complexity which is less than 1.4 for all in-
vestigated grids. The number of generated multigrid levels ranges from 2 to 3.

Next, we compare methods for solving the symmetric positive definite Poisson
equation (5.2) that is generated by Lagrange finite elements of degree two. The
bases are again hierarchical such that we can again use two-level approaches
as before. Here, however, the system matrix is symmetric positive definite
such that the preconditioned conjugate gradient method can be applied in the
iterative solves.

We investigate six solvers:
e [u: The system is solved by SuperLLU. To reduce fill-in, symmetric minimum
degree matrix reordering is applied.

e cg,ml: The system is solved using the conjugate gradient method precon-
ditioned by a V-cycle of the smoothed aggregation AMG preconditioner

13



provided by ML.

e cg,sgs: The system is solved using the conjugate gradient method precondi-
tioned with a symmetric Gauss-Seidel (SGS) step.

e cg,2lev(lu): The system is solved using the conjugate gradient method with
the symmetric Gauss-Seidel variant of the two-level hierarchical basis pre-
conditioner. The (1,1)-block is solved exactly using the SuperLU direct
solver. To reduce the fill-in, symmetric minimum degree matrix reordering
is used.

e cg,2lev(cg,ml): The system is solved using the conjugate gradient method
with the two-level preconditioner. The (1,1)-block is solved to high accuracy
(residual norm smaller than 107'*) using the conjugate gradient method,
preconditioned by AMG V-cycles.

e cg,2lev(ml): The system is solved using the conjugate gradient method with
the two-level preconditioner. Solving with the (1,1)-block is replaced by a
single AMG V-cycle.

The results are summarized in Tab. 3. The systems are solved either directly
or using the CG iterative method to an accuracy of e=10"14.

As in the previous example, the direct solution (Iu) is the best method for
solving small problems. However, as the matrices get larger, the fill-in pro-
duced by the LU factorization grows much faster than the matrix order and
so do the memory consumption and the execution times. The LU factorization
of H could not even be computed for the three largest systems due to memory
restrictions.

The preconditioned conjugate gradient method is better suited for solving the
large systems. Surprisingly, the cheap SGS preconditioner is very efficient and
the corresponding iteration numbers only grow moderately as the problem
size increases. The SGS preconditioner is the most efficient except for the two
largest problems where it is beat by cg,2lev(ml). cg,sgs and cg,2lev(ml) are
quite close for medium sized problems. The SGS preconditioner is more than
twice as fast as the AMG preconditioner cg,ml for all grids except for cop300k
for which it is still considerably faster.

The three variants of the two-level hierarchical preconditioner are all opti-
mal in the sense that n;; does not depend on the problem size. However
cg,2lev(lu) and cg,2lev(cg,ml) are both not competitive since their compu-
tational cost is too high. The former consumes memory excessively, too. In-
terestingly, cg,2lev(ml) needs just as many iterations as cg,2lev(cg,ml).

The AMG method used for cg,ml, cg,2lev(ml), cg,2lev(cg,ml) exhibits only a
modest operator complexity which is below 1.8 for all investigated grids. The
number of generated multigrid levels ranges from 2 to 4.
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5.2 Figenvalue computations with JD and LOBPCG

Finally, we present results for computing a few of the smallest eigenvalues and
corresponding eigenvectors using both the JDSYM and LOBPCG eigenvalue
solvers. For the following experiments we choose the 2lev(ml) preconditioners,
which turned out to be the best choice for large problem sizes for solving
both the symmetric indefinite problem (5.1) and the Poisson equation (5.2)
as shown in Section 5.1.

box10k box60k box170k box300k coplOk cop40k cop300k
jdsym | Zeig 376.2 2237.8 7223.1 14153.9 258.1 1853.2 25823.3

p= Tout 33 33 34 35 32 35 34
Nin 13.1 14.8 16.2 17.4 12.5 18.1 19.7

lobpcg | teig 580.8 3463.6 11652.2 22676.1 549.6 2584.9 38207.1
P=95 |Nout 33 40 42 45 40 45 58

jdsym | teig 852.6 5150.8 15960.2 30785.9 559.2 3794.5 48283.0
p = 10| nout 67 68 70 70 65 70 70
Nin 14.0 15.81 16.8 18.0 13.1 17.5 19.0

lobpeg | teig | 1175.9 7311.2 22476.4 48159.2 955.2 5019.2 60719.7

p =10 | nout 41 46 47 61 38 48 54

Table 4
Computing some of the smallest positive eigenvalues of (1.2) using JDSYM and
LOBPCG. The execution times are reported in seconds.

The results for computing the p=>5 and p =10 smallest eigenvalues of (1.2)
using JDSYM and LOBPCG are given in Tab. 4. The residual norms of the
computed eigenvectors were required to be below e = 107°%. ¢, is the total
time spent for solving the eigenvalue problem. Matrix assemblies and setup of
the preconditioner are not included. ngy,; is the number of JDSYM iterations
taken, or the number of LOBPCG block iterations, respectively. ny, is the
average number of inner iterations per outer iteration. The total number of
matrix-vector multiplications and applications of the preconditioner is Nyt - Min
for JDSYM and approximately (p-+1)nq,: because the block size in LOBPCG
was ¢ = p+1. This number is approximate as we shrink the block size when
eigenpairs are found. In JDSYM we set jui, = p+1 and jpa.e = p+10.

In JDSYM n4y is almost constant. ny, grows only slightly with the problem
size indicating that the 2lev(ml) preconditioner is effective also in the con-
text of the JDSYM eigenvalue solver. In analogy, for LOBPCG ngy; grows
moderately with the problem size.
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The number of applications of the operator and of the preconditioner is con-
siderably smaller for LOBPCG than for JDSYM. Nevertheless, JDSYM is
the faster method for all investigated problems no matter whether five or ten
eigenpairs were computed. The main reason is that JDSYM applies the pro-
jector Pycry =1 —YH™'C" only once per outer iteration, while LOBPCG
applies it p + 1 times in each block iteration. Applying the projector essen-
tially amounts to solving a Poisson equation. Also notice that the sizes of
the problems considered are reasonably large such that the blocks that are
employed by LOBPCG cannot be kept in cache. But still many of the oper-
ations in LOBPCG can be executed by level-2 or level-3 BLAS [8]. However
the smoothed aggregation AMG preconditioner of ML 2.0 can only deal with
one vector at a time.

During these experiments JDSYM also proved to be the more stable method.
On several occasions LOBPCG suffered from breakdowns which could only be
cured by complete restarts using random vectors.

6 Conclusions

We have presented efficient algorithms for computing a few of the lowest eigen-
pairs of a Maxwell eigenvalue problem that occurs in the design of particle
accelerator cavities. The large sparse unstructured matrix eigenvalue problem
that is obtained by discretization using a combination of Nédélec and Lagrange
finite elements has been solved by the symmetric Jacobi-Davidson algorithm
and by the LOBPCG method. We have investigated various preconditioners
to enhance the rate of convergence of these algorithms. The preconditioners
are extensions of a two-level hierarchical basis preconditioner presented in ear-
lier papers. As the sizes of our problems increased the direct solution of the
coarse grid system became infeasible due to memory limitations. It turned
out that the most effective method results when replacing the direct coarse
grid solver by a single V-cycle of an AMG preconditioner, in our case the ML
smoothed aggregation AMG preconditioner. In this way we obtain eigensolvers
that are scalable with respect to operation count and memory consumption.
For solving our Maxwell eigenvalue problem the symmetric Jacobi-Davidson
algorithm is superior to LOBPCG. The latter requires many more applications
of the projector that forces the approximations into the subspace of (discrete)
divergence free finite element functions.

LOBPCG offers some opportunities for improving the cache-efficiency that
have not been not considered in our current implementation of the algorithm.
In particular the sparse matrix-vector products in step (12) of Algorithm 2
are computed in a non-blocked fashion. Blocked versions of the matrix-vector
products and of the AMG preconditioner should improve the performance of
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our LOBPCG implementation considerably.

We have solved problems with several millions degrees of freedom. These prob-
lems are however too large to be included in a comparative study. Their so-
lution took many hours even with our most efficient version of the Jacobi-
Davidson algorithm. The next step in our code development will therefore be
concerned with its parallelization. The dense and sparse matrix-vector prod-
ucts in Algorithms 1 and 2 offer a good degree of parallelism. A parallel version
of the AMG preconditioner provided by the ML library is also available.
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