
diss . eth no. 30215

F O R M A L A N D S TAT I S T I C A L C E RT I F I C AT I O N

O F R O B U S T N E S S A N D FA I R N E S S F O R A I

A thesis submitted to attain the degree of

doctor of sciences
(Dr. sc. ETH Zurich)

presented by

mislav balunović
MSc ETH CS, ETH Zurich

born on 15.08.1995

accepted on the recommendation of

Prof. Dr. Martin Vechev
Prof. Dr. Matt Fredrikson

Prof. Dr. Mario Fritz

2024

Mislav Balunović: Formal and Statistical Certification of Robustness and Fairness
for AI, © 2024

A B S T R A C T

As deep learning permeates domains such as computer vision and natural
language, and becomes more integrated with larger critical systems that
can affect humans, resolving the AI safety issues becomes one of the central
challenges in the field. In such important systems, the overarching goal is
no longer only to build the most accurate AI models, but to build those
AI models that are both highly accurate and provably safe at the same
time. This thesis considers two important aspects of AI safety: robustness
and fairness. Robustness requires that the model also performs well under
conditions where input distribution differs from the one encountered during
training. Fairness is a safety property that requires model predictions to be
fair across different individuals and groups.

In the first part of the thesis, we focus on robustness. We first propose
a novel certification method that can guarantee that models are robust to
input transformations, and in the second chapter we extend this to actually
train the models to be provably robust. These contributions are based on
novel techniques such as certification via optimization and sampling, as
well as training by finding adversarial examples inside of convex relaxations.
The second part of the thesis considers fairness where we develop novel
methods for learning fair representations that provably satisfy individual
or group fairness. We also make a connection between individual fairness
and robustness, enabling us to use the techniques from the first part of the
thesis to also address fairness.

The methods presented in this thesis can be applied broadly, e.g. robust-
ness methods can be applied to more complex input transformations, while
group fair representation learning can also be used to encode inputs into
more private representations. We believe that the methods presented in this
thesis improve our toolbox for provable AI safety, and could in the future
be applied in even more systems.

iii

Z U S A M M E N FA S S U N G

In dem Maße, in dem Deep Learning Bereiche wie Computer Vision und
natürliche Sprache durchdringt und zunehmend in größere kritische Syste-
me integriert wird, die Auswirkungen auf den Menschen haben können,
wird die Lösung von KI-Sicherheitsfragen zu einer der zentralen Heraus-
forderungen in diesem Bereich. Bei solch wichtigen Systemen besteht das
übergreifende Ziel nicht mehr nur darin, die genauesten KI-Modelle zu
entwickeln, sondern solche KI-Modelle zu bauen, die gleichzeitig hoch-
genau und nachweislich sicher sind. In dieser Arbeit werden zwei wichtige
Aspekte der KI-Sicherheit betrachtet: Robustheit und Fairness. Robustheit
setzt voraus, dass das Modell auch unter Bedingungen gut funktioniert,
bei denen die Eingabeverteilung von der beim Training angetroffenen ab-
weicht. Fairness ist eine Sicherheitseigenschaft, die voraussetzt, dass die
Modellvorhersagen für verschiedene Personen und Gruppen fair sind.

Im ersten Teil der Arbeit konzentrieren wir uns auf die Robustheit. Wir
schlagen zunächst eine neuartige Zertifizierungsmethode vor, die garantiert,
dass die Modelle gegenüber Eingabetransformationen robust sind, und im
zweiten Kapitel erweitern wir diese Methode, um die Modelle tatsächlich
so zu trainieren, dass sie nachweislich robust sind. Diese Beiträge basieren
auf neuartigen Techniken wie der Zertifizierung durch Optimierung und
Sampling sowie dem Training durch das Auffinden von Gegenbeispielen
innerhalb von konvexen Relaxationen. Der zweite Teil der Arbeit befasst
sich mit der Fairness, wobei wir neuartige Methoden zum Erlernen fairer
Repräsentationen entwickeln, die nachweislich individuelle oder gruppen-
bezogene Fairness erfüllen. Wir stellen auch eine Verbindung zwischen
individueller Fairness und Robustheit her, die es uns ermöglicht, die Tech-
niken aus dem ersten Teil der Arbeit für das Thema Fairness zu nutzen.

Die in dieser Arbeit vorgestellten Methoden können breit angewendet
werden, z.B. können Robustheitsmethoden auf komplexere Eingabetrans-
formationen angewendet werden, während gruppengerechtes Repräsen-
tationslernen auch dazu verwendet werden kann, Eingaben in privatere
Repräsentationen zu kodieren. Wir glauben, dass die in dieser Arbeit vorge-
stellten Methoden unseren Werkzeugkasten für nachweisbare KI-Sicherheit
verbessern und in Zukunft in noch mehr Systemen angewendet werden
könnten.

v

P U B L I C AT I O N S

This thesis is based on the following publications:

• Certifying Geometric Robustness of Neural Networks, NeurIPS 2019 [1]
Mislav Balunović, Maximilian Baader, Gagandeep Singh, Timon Gehr,
Martin Vechev.

• Adversarial Training and Provable Defenses: Bridging the Gap, ICLR
2020 [2]
Mislav Balunović, Martin Vechev.

• Learning Certified Individually Fair Representations, NeurIPS 2020 [3]
Anian Ruoss, Mislav Balunović, Marc Fischer, Martin Vechev.

• Fair Normalizing Flows, ICLR 2022 [4]
Mislav Balunović, Anian Ruoss, Martin Vechev.

The following publications were part of my Ph.D. research and contain
results that are supplemental to this work or build upon the results of this
thesis:

• Efficient Certification of Spatial Robustness, AAAI 2021 [5]
Anian Ruoss, Maximilian Baader, Mislav Balunović, Martin Vechev

• Certify or Predict: Boosting Certified Robustness with Compositional Archi-
tectures, ICLR 2021 [6]
Mark Niklas Müller, Mislav Balunović, Martin Vechev

• Scalable Polyhedral Verification of Recurrent Neural Networks, CAV 2021
[7]
Wonryong Ryou, Jiayu Chen, Mislav Balunović, Gagandeep Singh,
Andrei Dan, Martin Vechev

• Robustness Certification for Point Cloud Models, ICCV 2021 [8]
Tobias Lorenz, Anian Ruoss, Mislav Balunović, Gagandeep Singh,
Martin Vechev

• On the Paradox of Certified Training, TMLR 2022 [9]
Nikola Jovanović*, Mislav Balunović*, Maximilian Baader, Martin
Vechev

vii

• Latent Space Smoothing for Individually Fair Representations, ECCV 2022
[10]
Momchil Peychev, Anian Ruoss, Mislav Balunović, Maximilian Baader,
Martin Vechev

• FARE: Provably Fair Representation Learning with Practical Certificates,
NeurIPS 2023 [11]
Nikola Jovanović, Mislav Balunović, Dimitar I. Dimitrov, Martin
Vechev

• From Principle to Practice: Vertical Data Minimization for Machine Learn-
ing, IEEE S&P 2024 [11]
Robin Staab, Nikola Jovanović, Mislav Balunović, Martin Vechev

The following publications were part of my doctoral research but present
results outside the scope of this thesis:

• Bayesian Framework for Gradient Leakage, ICLR 2022 [12]
Mislav Balunović, Dimitar I. Dimitrov, Robin Staab, Martin Vechev

• Data Leakage in Federated Averaging, TMLR 2022 [13]
Dimitar I. Dimitrov, Mislav Balunović, Nikola Konstantinov, Martin
Vechev

• LAMP: Extracting Text from Gradients with Language Model Priors, NeurIPS
2022 [14]
Mislav Balunović*, Dimitar I. Dimitrov*, Nikola Jovanović, Martin
Vechev

• TabLeak: Tabular Data Leakage in Federated Learning, ICML 2023 [15]
Mark Vero, Mislav Balunović, Dimitar I. Dimitrov, Martin Vechev

viii

A C K N O W L E D G E M E N T S

First, I would like to thank my advisor Prof. Martin Vechev who gave me
the opportunity to be part of his research lab. Thank you for teaching me
how to be a researcher and demonstrating by example how much can be
achieved through personal commitment and dedication. I greatly enjoyed
my time in the SRI Lab, the atmosphere and the collaborative environment
there are what any PhD students should wish for. I would also like to thank
Prof. Matt Fredrikson and Prof. Mario Fritz for agreeing to serve on my
doctoral examination committee.

Most of the research I did during my PhD would not have been possible
without my collaborators. I would especially like to thank my co-authors
on papers that were part of this thesis: Anian Ruoss, Maximilian Baader,
Gagandeep Singh, Marc Fischer and Timon Gehr. Furthermore, I am also
grateful to my collaborators on all other papers I published during my PhD.
I learned a lot from all of you.

I was happy to be part of the SRI Lab, and I greatly enjoyed lunches and
dinners we had together, and thank you for the support while we were
working towards deadlines. I would also like to thank our administrative
assistant Fiorella Meyer who was always very helpful.

Throughout my educational journey I was supported by great number
of people. I especially want to thank Prof. Slavica Danilović in whose
informatics class I learned to program, and to ETH for providing me with
a scholarship for my Master studies.

I am grateful to all of my friends who were with me in both good and bad
moments: Ivan, Marko, Robert, Marko, Roko, Toni, Jurica, Jelena, Domagoj,
Toni, Ivica and others. I would especially like to thank my girlfriend Andrea
for always being here to listen and making me feel like I never left home.

Finally, my biggest thanks go to my family who have been with me all
the way: my parents Blažena and Zvonimir, and my sister Neda. Hvala vam
za podršku na cijelom putu!

ix

C O N T E N T S

1 Introduction 1
1.1 Chapter 3: Certifying Geometric Robustness 2
1.2 Chapter 4: Training provably robust networks 3
1.3 Chapter 5: Provably individually fair representations 3
1.4 Chapter 6: Provably group fair representations 4

2 Background 5
3 Certifying Geometric Robustness of Neural Networks 9

3.1 Related work 11
3.2 Background 13
3.3 Asymptotically optimal linear constraints 16
3.4 Experimental evaluation 21
3.5 Discussion 26

4 Adversarial Training and Provable Defenses: Bridging the Gap 27
4.1 Related work 29
4.2 Background 30
4.3 Provable Defense via Convex Layerwise Adversarial Train-

ing 32
4.4 Convex layerwise adversarial training using linear relax-

ations 35
4.5 Certification of neural networks 38
4.6 Experimental Evaluation 39
4.7 Discussion 43

5 Learning Certified Individually Fair Representations 45
5.1 Overview 46
5.2 Related Work 50
5.3 Learning Individually Fair Representations 51
5.4 Certifying Individual Fairness 53

5.4.1 Certifying Latent Similarity 54
5.4.2 Certifying Local Robustness 55

5.5 Experimental Evaluation 56
5.6 Discussion 59

6 Learning Certified Group Fair Representations 61
6.1 Related Work 63
6.2 Background 65
6.3 Motivation 66

xi

xii contents

6.4 Fair Normalizing Flows 68
6.5 Experimental Evaluation 72
6.6 Discussion 76

7 Conclusion and outlook 79

Bibliography 81

8 Curriculum Vitae 101

1
I N T R O D U C T I O N

Deep learning has achieved significant success over the last decade. The
models based on deep learning are now used in a variety of different
domains such as recommendation [16], computer vision [17, 18, 19], and
culminating in the general tasks involving natural language [20]. However,
the increase in capabilities of deep learning models has also raised sig-
nificant safety concerns, as these models are not used in isolation, but as
part of a larger system where their predictions could have downstream
consequences for humans. For example, a computer vision model can be
used as part of an autonomous vehicle to help it detect street signs, and its
predictions affect the safety of the passengers and other participants in the
traffic. A model for predicting a student’s GPA could be used as a part of
college admissions, meaning that the quality of its predictions can affect the
educational path of a person. This underlines the importance of studying
AI safety, and more concretely worst-case performance of these systems so
that we know they will behave correctly in as many situations as possible.

safe ai : robustness and fairness In this thesis, we focus on two
areas of safe AI: robustness and fairness. A machine learning model is robust
if it behaves correctly under changes to the input. These changes can be
performed by an adversary (e.g. someone intentionally adds noise to the
image) or occur naturally during inference (e.g. by shifting the camera
recording an image). Solving this problem is important in order to develop
machine learning systems that can function well even when the environment
changes. Fairness is another important topic in AI safety, which has gained
importance as machine learning models are often being trained on biased
data and consequently often start to exhibit such biased behavior themselves.
While there are many different fairness definitions, in this thesis we focus
on individual fairness, requiring that similar individuals receive similar
outcomes, and group fairness, requiring that average prediction across
two groups is similar. As machine learning is increasingly being used to
make important societal decisions, it is important to adequately address
the problem of fairness.

1

2 introduction

goal The main goal of this thesis is to advance the methods that can
guarantee robustness and fairness of machine learning models. To do this,
we use a combination of formal methods (e.g. abstract interpretation and
convex relaxations) and statistical approaches (e.g. finite-sample bounds).
Specifically, in Chapter 3 we introduce a method, based on the combination
of optimization and sampling, to certify that the machine learning model is
robust against geometric transformations. Then, in Chapter 4 we consider
not only certifying the model, but training the model itself to be provably
robust, using the novel concept of training with latent adversarial examples.
Chapter 5 for the first time tackles the problem of preprocessing the input
data so that individual fairness can be provably certified by the data con-
sumers. Finally, Chapter 6 introduces a new preprocessing method so that
transformed inputs provably cannot be used to infer sensitive attributes,
guaranteeing group fairness of any downstream classifier built on top of it.

In Table 1.1 we provide a summary of contributions in this thesis, where
each row corresponds to a single chapter: safety property considered in
the chapter, as well as the key method used for checking safety. We now
provide a high level overview of the contributions of this thesis, separated
into different chapters.

Safety property Method Chapter
Geometric robustness Optimization and sampling Chapter 3

Local robustness Latent adversarial examples Chapter 4
Individual fairness Logical and continuous constraints Chapter 5

Group fairness Encoding via normalizing flows Chapter 6

Table 1.1: Summary of the thesis contributions (each row corresponds to one
chapter).

1.1 Chapter 3 : certifying geometric robustness

Our first contribution is motivated by a practical scenario where the input
is first transformed with a geometric transformation before being passed
to the network. This could for example occur when the camera which
is recording the image is rotated or shifted. While the prior work has
approached this problem by applying interval bounds to each operation in
the transformation, the key insight of our work is that we can formulate an
optimization problem whose solutions are tightest possible linear bounds
for the entire sequence of transformations. We develop and implement

1.2 Chapter 4 : training provably robust networks 3

practical algorithms and show that they can certify robustness to wide
range of geometric transformations and their compositions (e.g. rotations,
translations, shearing, etc.) for significantly more images than prior work.

impact The techniques presented in Chapter 3 also have a broader
impact and were later applied more generally to also certify robustness to
spatial [5], point cloud [8] and audio [7] transformations. This increased
variety of specifications and domains for which we can successfully certify
robustness, enabling more safe applications of AI.

1.2 Chapter 4 : training provably robust networks

While in Chapter 3 the focus is on certifying the robust error of the model,
the goal of Chapter 4 is to train the model to be both provably highly robust
and have high standard accuracy. This is an important line of research as
models trained without such techniques typically cannot easily be certified
to be robust. Before our work presented in the chapter, it was difficult
to train networks that have high certified robustness and high accuracy,
especially at smaller levels of noise. The main insight in this chapter is to
use the approach of adversarial training not for searching for adversarial
inputs in the input region, but for searching in the convex regions produced
by propagating the original shape through the network. This allows a more
fine-grained trade-off between provable robustness and accuracy, ultimately
resulting in better models than prior work.

impact Our training method also had further impact, as most of the
latest methods for provable training [21, 22, 23] are based on similar observa-
tion as ours, namely that connecting heuristic and provable defenses allows
for training models with better trade-off between certified robustness and
accuracy. We also studied [9] theoretical questions raised in this chapter in
order to increase understanding of why certain convex relaxations perform
better in training.

1.3 Chapter 5 : provably individually fair representations

In Chapter 5 conceptually we switch from robustness to fairness. However,
at the technical level the whole idea presented in this chapter is based
on the fact that there is a connection between individual fairness and
robustness. More concretely, individual fairness requires similar individuals

4 introduction

to be classified similarly, the same as robustness considered in Chapter 3
and Chapter 4 requires the input and its neighbors to be classified similarly.
In this chapter we introduce a new method for pre-processing the data (or
representation learning) so that data consumers know any model they train
on such data will provably satisfy individual fairness.

impact We later extended this approach to individual fairness in com-
puter vision models [10], thus showing broader applicability of the frame-
work presented here to other domains. Other work has applied similar
approaches to other types of individual fairness guarantees for represen-
tations [24]. Overall, contributions in this chapter make training provably
individually fair representations significantly more practical.

1.4 Chapter 6 : provably group fair representations

In the final chapter, we continue with the concept of learning provably
fair representations, this time for group fairness definition of privacy (e.g.
demographic parity or equalized odds). Group fairness definitions are often
more widely used in practice as they are easier to define and evaluate than
the individual ones, and thus provably learning such fair representations is
of great practical importance. Prior work has shown equivalence between
satisfying group fairness and making sure that sensitive attributes cannot
be recovered from the representations. The key idea of our method (called
FNF) is to use statistical approach based on normalizing flows [25] to
compute probability densities of the representations in the latent space,
allowing us to compute an upper bound on the maximum accuracy any
adversarial classifier can have in predicting the sensitive attribute.

impact FNF also had impact on future work: in the follow-up paper we
proposed a novel method FARE [11] which addressed limitations of FNF
(requiring knowledge of the prior distribution). There has also been broader
impact in privacy where we investigated predicting sensitive attributes
from data [26, 27] which can be seen as representation learning methods.

2
B A C K G R O U N D

In this chapter we introduce the background and the key concepts which
are necessary to understand contributions of this thesis which follow in
other chapters. We also briefly discuss the most related work to the topics
considered here.

robust machine learning The first key concept is robust machine
learning and how it distinguishes itself from the traditional machine learn-
ing. Traditional machine learning focuses on learning model parameters
q which minimize the expected loss of the model hq when input-output
pairs (x, y) are sampled from the data distribution D. Formally the goal is
to find parameters q which minimize the expected error Err(hq):

Err(hq) = E(x,y)⇠DL(hq(x), y), (2.1)

where L(y0, y) = 1y0 6=y is so-called 0-1 error.
While this objective learns the parameters that perform well when inputs

are sampled from the distribution D, research has found that neural net-
works trained in such way are not robust to so-called adversarial examples [28,
29]. The goal of robust machine learning is to train a model for a case where
inputs are transformed before being fed into the network (e.g. with a per-
turbation or a geometric transformation). Let S0(x) = {t(x) |  2 H} be
the set of all inputs that can be obtained by passing the original input x
through a transformation t with a parameter  2 H. Formally, the robust
error of the model hq , denoted as Errrob(hq), is defined as the following
expected worst-case error:

Errrob(hq) = E(x,y)⇠D max
x02S0(x)

L(hq(x
0), y) (2.2)

Here, we are interested in the worst case loss on the input t(x) obtained
by transforming originally sampled input x from the data distribution
using worst case parameters  2 H. This changes the learning problem
from finding parameters q which minimize standard error Err(hq) to those
which minimize robust error Errrob(hq).

5

6 background

x

t

S0(x) ✓ Cin(x)

hq

Sout(x) ✓ Cout(x)

Figure 2.1: Convex shapes capturing the propagation of an input x through a
transformation t and a neural network hq . The exact, but poten-
tially non-convex, shape S0(x) containing all images that can be
obtained by transforming x with t is over-approximated by a convex
shape Cin(x). Final shapes, obtained after passing S0(x) and Cin(x)
through the network are S0(x) and Cout(x).

In practice, after the first introduction of adversarial examples [28, 29],
defense mechanisms to train robust neural networks were built based on
the inclusion of adversarial examples to the training set [30, 31]. Models
trained using adversarial training with projected gradient descent (PGD)
[32] were shown to be robust against the strongest known attacks [33]. This
is in contrast to other defense mechanisms which have been broken by
new attack techniques [34]. While models trained using adversarial training
achieve robustness against strong adversaries, there are no guarantees that
model is robust against new adversarial attacks which are constantly being
developed [35].

certification via convex relaxations The next concept concerns
the following question: how can we formally prove that the model is robust
for some input x? The general approach we take in this thesis, of certifying
using convex relaxations, is shown in Fig. 2.1. The main idea is to compute
a linear convex relaxation Cin(x) instead of the possibly non-convex shape
S0(x), such that S0(x) ✓ Cin(x) (soundness property) and Cin(x) is as tight
as possible. In Chapter 3 we will more formally define what it means for
a convex relaxation to be linear and sound. We can then propagate Cin(x)
through the model hq and obtain the final output shape Cout(x) for which
we can typically easily check if all contained outputs are classified correctly.

A wide range of methods have been proposed to certify robustness of
neural networks. Those methods are typically based on abstract interpre-
tation [36, 37], linear relaxation [38, 39, 40], duality [41], SMT solving [42,

background 7

43, 44], mixed integer programming [45], symbolic intervals [46], Lipschitz
optimization [47], semi-definite relaxations [48] and combining approxima-
tions with solvers [49, 50]. Certification procedures can also be extended
into end-to-end training of neural networks to be provably robust against
adversarial examples [51, 52]. Recent line of work [53, 54, 55] proposes to
construct a classifier based on the smoothed neural network which comes
with probabilistic guarantees on the robustness against L2 perturbations.
None of these works except [56] consider geometric transformations, while
[56] only verifies robustness against rotation. The work of [57] also gener-
ates linear relaxations of non-linear specifications, but they do not handle
geometric transformations. We remark that [58] considers a much more
restricted (discrete) setting leading to a finite number of images which
allows easier certification.

provable defense with convex relaxations Techniques for certi-
fying robustness can also be used during the training to train models which
are actually provably robust. This is achieved through minimizing an upper
bound to the robust error:

min
q

Errrob(hq) (2.3)

Here Errrob(hq) � Errrob(hq) can be computed using the certification
techniques introduced earlier.

There has been a considerable amount of work on methods to train clas-
sifiers with robustness guarantees. These approaches are typically based
on Lipschitz regularization [59], linear [60] or semidefinite [61, 62] relax-
ations, hybrid zonotope [63] or interval bound propagation [64]. While
these approaches obtain robustness guarantees, accuracy of these networks
is relatively small and limits practical use of these methods. Another line
of work proposes to replace neural networks with a randomized classifier
[55, 65, 66] which comes with probabilistic guarantees on its robustness.
While these approaches scale to larger datasets such as ImageNet (although
with probabilistic instead of exact guarantees), their bounds come from the
relationship between L2 robustness and Gaussian distribution. In this thesis,
we also consider general verification problem where input is not necessarily
limited to an Lp ball, but obtained through a general transformation t.

fair representations The paradigm of learning fair representations
has been established as an effective approach to obtain data representations
that preserve fairness while maintaining utility for a variety of downstream

8 background

x

fy

z

hq

p(y|z)

Figure 2.2: The concept of learning fair representations. The inputs x are first
encoded into a new representation z through an encoder fy. The
representation z is given as an input to the classifier hq and at the
output we obtain probability distribution over labels.

tasks [67, 68]. In this setting, illustrated in Fig. 2.2, a machine learning model
M is composed of two parts: an encoder fy, provided by the data producer,
and a classifier hq , provided by the data consumer. The key advantage of
this approach is that the data producer can encode the input data x into a
new representation z = fy(x), ensure that any classifier hq built on top of
this encoded data is fair (according to the chosen fairness definition), and
then send the encoded data z to the data consumer. Fair representations
can be learned with a variety of different approaches, including variational
autoencoders [69, 70], adversarial training [68, 71, 72, 73, 74, 75, 76, 77], and
disentanglement [78, 79].

individual and group fairness with guarantees In this thesis,
we propose new methods to learn fair representations that have provable
fairness guarantees, and we consider two fairness notions: individual and
group fairness. Individual fairness requires that two individuals x and x0

who are similar (according to some well-defined criterion) receive similar
classification outcomes hq(fy(x)) and hq(fy(x0)). Group fairness requires
average classification outcome to be the same for two different groups
(where groups are typically determined based on a sensitive attribute). We
discuss learning fair representations in the context of individual fairness
in Chapter 5, and group fairness in Chapter 6.

3
C E RT I F Y I N G G E O M E T R I C R O B U S T N E S S O F N E U R A L
N E T W O R K S

In Chapter 1 we introduced the setting of robust machine learning and
described what does it mean for a neural network to be provably robust.
Typically, most of the research has focused on creating more precise re-
laxations for the operations in the network [37, 80, 81] in order to certify
robustness to l• noise. However, Engstrom et al. [82] have shown that
neural networks are also not robust to geometric transformations such
as rotations or translations, which are arguably even more important in
practice as they can often naturally occur when camera recording the input
is rotated or shifted. This raises an important question: how to guarantee
that networks are robust against such geometric transformations?

key challenge for certifying geometric robustness The key
challenge in certifying geometric robustness is to compute as tight as
possible convex set Cin(x) which contains all possible inputs x0 = t(x)
obtainable by transforming the original input x through a geometric trans-
formation t parametrized by  (e.g. shifts dx and dy for translation). This
set can then be passed to one of the existing neural network verifiers to
obtain a certificate that the network is robust for the given input x.

prior work Certifying such geometric transformations can be per-
formed by overapproximating the input region with an interval shape [56].
Its key idea is summarized in Fig. 3.1: Here, the goal is to prove that any
image obtained by translating the original image by some dx, dy 2 [�4, 4] is
classified to label 3. To accomplish this task, Singh et al. [56] propagate the
image and the parameters dx, dy through every component of the transfor-
mation using interval bound propagation. The output region I is a convex
shape capturing all images that can be obtained by translating the original
image between�4 and 4 pixels. Finally, I is fed to a standard neural network
verifier which tries to prove that all images in I classify to the label 3. This
method can also be improved using tighter relaxation based on Polyhedra
[83]. Unfortunately, as we show later, bound propagation is not satisfactory.
The core issue is that any approach based on bound propagation inherently

9

10 certifying geometric robustness of neural networks

Convex relaxations of translation (dx , dy ,)
x

dx , dy 2 [�4, 4]

+dx

I

+dy
P

G

Interval [56] Polyhedra DeepG

Figure 3.1: End-to-end certification of geometric robustness using different con-
vex relaxations. Here, the original image x (left) goes through a
geometric transformation t which is translation parametrized by
 = [dx, dy]. Shapes on the right, produced by Interval, Polyhedra
and DeepG, are different candidates for the shape Cin(x) which over-
approximates all possible images that could be obtained through the
geometric transformation t.

accumulates loss for every intermediate result, often producing regions that
are too coarse to allow the neural network verification to succeed.

this chapter Instead of sequentially computing bounds for each in-
termediate operation, we propose a new method based on sampling and
optimization which computes a convex relaxation for the entire composition
of transformations. The key idea of our method is to sample the parameters
of the transformation (e.g., dx, dy), obtaining sampled points at the output
(red dots in Fig. 3.1), and to then compute sound and asymptotically opti-
mal linear constraints around these points (shape G). We implemented our
method in a system called DeepG and showed that it is significantly more
precise than bound propagation (using Interval or Polyhedra relaxation) on
a wide range of geometric transformations.

main contributions Our main contributions are:

• A novel method, combining sampling and optimization, to compute
asymptotically optimal linear constraints bounding the set of geomet-
rically transformed images. We demonstrate that these constraints
enable significantly more precise certification compared to prior work.

• A complete implementation of our certification in a system called
DeepG. Our results show substantial benefits over the state-of-the-art
across a range of geometric transformations. We make DeepG publicly
available at https://github.com/eth-sri/deepg/.

https://github.com/eth-sri/deepg/

3.1 related work 11

3.1 related work

We now discuss some of the closely related work in certification of the
neural networks and their robustness to geometric transformations.

certification of neural networks Recently, a wide range of meth-
ods have been proposed to certify robustness of neural networks against
adversarial examples. Those methods are typically based on abstract inter-
pretation [36, 37], linear relaxation [38, 39, 40], duality [41], SMT solving [42,
43, 44], mixed integer programming [45], symbolic intervals [46], Lipschitz
optimization [47], semi-definite relaxations [48] and combining approxima-
tions with solvers [49, 50]. Certification procedures can also be extended
into end-to-end training of neural networks to be provably robust against
adversarial examples [51, 52]. Recent line of work [53, 54, 55] proposes to
construct a classifier based on the smoothed neural network which comes
with probabilistic guarantees on the robustness against L2 perturbations.
None of these works except [56] consider geometric transformations, while
[56] only verifies robustness against rotation. The work of [57] also gener-
ates linear relaxations of non-linear specifications, but they do not handle
geometric transformations. We remark that [58] considers a much more
restricted (discrete) setting leading to a finite number of images. This means
that certification can be performed by brute-force enumeration of this finite
set of transformed images. In our setting, as we will see, this is not possible,
as we are dealing with an uncountable set of transformed images.

neural networks and geometric transformations There has
been considerable research in empirical quantification of geometric robust-
ness of neural networks [82, 84, 85, 86, 87, 88]. Another line of work focuses
on the design of architectures which possess an inherent ability to learn to
be more robust against such transformations [89, 90]. However, all of these
approaches offer only empirical evidence of robustness. Instead, our focus
is to provide formal guarantees.

certification of geometric transformations Prior work [56]
introduced a method for analyzing rotations using the interval propagation
and performed certification using the state-of-the-art verifier DeepPoly. It is
straightforward to generalize their interval approach to handle more com-
plex transformations beyond rotation. However, as we show experimentally,

12 certifying geometric robustness of neural networks

interval propagation loses precision which is why certification often does
not succeed.

To capture relationships between pixel values and transformations, one
would ideally use the Polyhedra relaxation [83] instead of intervals. While
Polyhedra offers higher precision, its worst-case running time is exponen-
tial in the number of variables [91]. Hence, it does not scale to geometric
transformations, where every pixel introduces a new variable. Thus, we
extended the recent DeepPoly relaxation [56] (a restricted Polyhedra) with
custom approximations for the operations used in several geometric trans-
formations (e.g., translation, scaling). Our experimental results show that
even though this approach significantly improves over intervals, it is not
precise enough to certify robustness of most images in our dataset. In turn,
this motivates the method introduced in this chapter.

heuristic adversarial defenses After the first introduction of
adversarial examples [28, 29], defense mechanisms to train robust neural
networks were built based on the inclusion of adversarial examples to
the training set [30, 31]. Models trained using adversarial training with
projected gradient descent (PGD) [32] were shown to be robust against the
strongest known attacks [33]. This is in contrast to other defense mecha-
nisms which have been broken by new attack techniques [34]. While models
trained using adversarial training achieve robustness against strong adver-
saries, there are no guarantees that model is robust against any kind of
adversarial attack under the threat model considered.

provable adversarial defenses There has also been considerable
amount of work on methods to train classifiers with robustness guarantees.
These approaches are typically based on Lipschitz regularization [59], linear
[60] or semidefinite [61, 62] relaxations, hybrid zonotope [63] or interval
bound propagation [64]. While these approaches obtain robustness guaran-
tees, accuracy of these networks is relatively small and limits practical use
of these methods.

There has also been recent work on certification of general neural net-
works, not necessarily trained in a special way. These methods are based on
SMT solvers [44], abstract interpretation [36], mixed-integer linear programs
[92], linear relaxations [38, 39, 80] or combinations of those [93, 94].

Another line of work proposes to replace neural networks with a ran-
domized classifier [55, 65, 66] which comes with probabilistic guarantees
on its robustness. While these approaches scale to larger datasets such as

3.2 background 13

ImageNet (although with probabilistic instead of exact guarantees), their
bounds come from the relationship between L2 robustness and Gaussian
distribution. In this chapter, we consider general verification problem where
input is not necessarily limited to an Lp ball, but arbitrary convex set, as
explained in Section 3.2.

3.2 background

Our goal is to certify the robustness of a neural network against adversarial
examples generated using parameterized geometric transformations. In
this section we formulate this problem statement, introduce the notation of
transformations and provide a running example which we use throughout
the chapter to illustrate key concepts.

geometric transformations We assume that t is a geometric
transformation parametrized by  2 Rk, transforming an input image
into another image. For example, if t is a rotation, then  is a single
element vector consisting of a rotation angle, and in the case of translation
it is two element vector consisting of vertical and horizontal offsets. More
formally, we consider t to be a composition of a geometric transformation
(determining movement of each pixel), interpolation (computing pixel
values on a grid) and single-pixel transformations (brightness and contrast).

linear convex relaxation Given an original image x, the goal
of our method is to produce a convex relaxation Cin(x) that contains all
images x0, for which there exists some  2 H such that the following linear
bounds hold:

Cin(x) = {x0 | 9 2 H,TW
(l)
ij + b(l)ij  x0ij  TW

(u)
ij + b(u)ij }, (3.1)

where W (l),W (u)
2 Rn⇥n⇥k and b(l), b(u) 2 Rn⇥n are linear coefficients

which determine the convex shape. We only consider sound convex relax-
ation where S0(x) ✓ Cin(x), or more precisely those for which

t(x) 2 Cin(x), 8(,x) 2 H⇥X (3.2)

This means that all images that could be obtained by transforming the
original image with some parameters  are certainly contained inside of
the relaxed shape Cin(x).

14 certifying geometric robustness of neural networks

geometric image transformations From now on in this chapter
we are going to assume that the input image x is fixed. Moreover, we will
decompose the geometric transformation t into the following components:

• A parameterized spatial transformation Tµ : R2
! R2, mapping pixel

coordinates to the new coordinates

• An interpolation I : R2
! R which maps pixel coordinates to the real

value and ensuring the result can be represented on a discrete pixel
grid

• Parameterized changes in brightness and contrast Pa,b : R ! R

which change the pixel value

Here, transformation parameters  are decomposed into spatial transfor-
mation parameters µ, and brightness and contrast parameters a and b. We
assume Tµ is a composition of bijective transformations such as rotation,
translation, shearing and scaling. While our approach also applies to other
interpolation methods, in this chapter we focus on the case where I is the
commonly-used bilinear interpolation.

To ease presentation, we assume the image (with integer coordinates)
consists of an even number of rows and columns, is centered around (0, 0),
and its coordinates are odd integers. We note that all results hold in the
general case (without the assumption).

interpolation The bilinear interpolation I : R2
! [0, 1] evaluated on

a coordinate (px, py) 2 R2 is a polynomial of degree 2 given by

I(px, py) :=
1
4 Â

di ,dj2{0,2}
xi+di ,j+dj(2� |i + di � px|)(2�

��j + dj � py
��). (3.3)

Here, (i, j) is the lower-left corner of an interpolation region Ai,j := [i, i + 2]⇥
[j, j + 2] which contains pixel (px, py). Matrix x consists of pixel values at
corresponding coordinates in the original image. The function I is continu-
ous on R2 and smooth on the interior of every interpolation region. These
interpolation regions are depicted with the blue horizontal and vertical
dotted lines in Fig. 3.2b.

The pixel value x̃px ,py of the transformed image can be obtained by (i)
calculating the preimage of the coordinate (px, py) under Tµ, (ii) interpolat-
ing the resulting coordinate using I to obtain a value x, and (iii) applying

3.2 background 15

(a) Original
image

3 5

1

3

A1,1

A1,3

A3,1

A3,3

A5,1

A5,3

(b) Interpolation (c) Rotated image

Figure 3.2: Image rotated by �p
4 degrees. Here, (a) shows the original image,

while (b) shows part of (a) with a focus on relevant interpolation
regions. Finally, (c) shows the resulting rotated image.

the changes in contrast and brightness via Pa,b(x) = ax + b, to obtain the
final pixel value x̃px ,py = Ia,b,µ(px, py). These three steps are captured by

Ia,b,µ(px, py) := Pa,b � I � T �1
µ (px, py). (3.4)

running example To illustrate key concepts introduced throughout
the chapter, we use the running example of an MNIST image [95] shown in
Fig. 3.2. On this image, we will apply a rotation Rf with an angle f. For
our running example, we set Pa,b to be the identity.

Consider the pixel p̃5,1 in the transformed image shown in Fig. 3.2c (the
pixel is marked with a red dot). The transformed image is obtained by
rotating the original image in Fig. 3.2a by an angle f = �p

4 . This results in
the pixel value

p̃5,1 = I � R�1
�

p
4
(5, 1) = I(2

p

2, 3
p

2) ⇡ 0.30

Here, the preimage of point (5, 1) under R� p
4

produces the point (2
p

2, 3
p

2)
with non-integer coordinates. This point belongs to the interpolation region
A1,3 and by applying I(2

p
2, 3
p

2) to the original image in Fig. 3.2a, we
obtain the final pixel value ⇡ 0.30 for pixel (5, 1) in the rotated image.

neural network certification To certify robustness of a neural
network with respect to a geometric transformation, we rely on the state-
of-the-art verifier DeepPoly [56]. For complex properties such as geometric
transformations, the verifier needs to receive a convex relaxation of all
possible inputs to the network. If this relaxation is too coarse, the verifier
will not be able to certify the property.

16 certifying geometric robustness of neural networks

problem statement To guarantee robustness, our goal is to compute
a convex relaxation of all possible images obtainable via the transformation
Ia,b,µ. This relaxation can then be provided as an input to a neural network
verifier (e.g., DeepPoly). If the verifier proves that the neural network
classification is correct for all images in this relaxation, then geometric
robustness is proven.

3.3 asymptotically optimal linear constraints

We now present our method for computing the optimal linear approxima-
tion (in terms of volume).

motivation As mentioned earlier, designing custom transformers for
every operation incurs precision loss at every step in the sequence of
transformations. Our key insight is to define an optimization problem in a
way where its solution is the optimal (in terms of volume) lower and upper
linear constraint for the entire sequence. To solve this optimization problem,
we propose a method based on sampling and linear programming. Our
method produces, for every pixel, asymptotically optimal lower and upper
linear constraints for the entire composition of transformations (including
interpolation). Such an optimization problem is generally difficult to solve,
however, we find that with geometric transformations, our approach is
scalable and contributes only a small portion to the entire end-to-end
certification running time.

optimization problem To compute linear constraints for every pixel
value, we split the hyperrectangle H representing the set of possible pa-
rameters into s splits {hk}k2[s]. To ease the notation, we consider a fixed
pixel (px, py) for which we want to compute lower and upper linear con-
straints and denote these as wl = W

(l)
px py and bl = b(l)px py , and analogously

for upper constraints wu and bu. Our goal will be to compute sound lower
and upper linear constraints for the pixel value I(px, py) for a given
pixel (px, py). Both of these constraints will be linear in the parameters
 = (a, b,µ) 2 hk. We define optimal and sound linear (lower and upper)
constraints for I(px, py) to be a pair of hyperplanes fulfilling

wT
l + bl  I(px, py) 8 2 hk (3.5)

wT
u+ bu � I(px, py) 8 2 hk, (3.6)

3.3 asymptotically optimal linear constraints 17

0 p
8

p
4

0

0.25

0.5

0.75

1

Angle f

Pixel value

Interval bounds
I � R�1

f (5,1)
Sound enclosure
Unsound enclosure
Random samples

Figure 3.3: Unsound (Step 1) and sound (Step 3) enclosures for I � R�1
f (5, 1),

with respect to random sampling from f 2 [0, p
4], in comparison to

the interval bounds from prior work [56]. Note that I � R�1
f (5, 1) is

not piecewise linear, because bilinear interpolation is a polynomial of
degree 2.

while minimizing

L(wl , bl) =
1
V

Z

2hk

⇣
I(px, py)� (bl +wT

l 
⌘
)d (3.7)

U(wu, bu) =
1
V

Z

2hk

⇣
(bu +wT

u)� I(px, py)
⌘

d. (3.8)

Here V denotes the normalization constant equal to the volume of hk.
Intuitively, the optimal constraints should result in a convex relaxation
of minimum volume. This formulation also allows independent compu-
tation for every pixel, facilitating parallelization across pixels. Next, we
describe how we obtain lower constraints (upper constraints are computed
analogously).

step 1 : compute a potentially unsound constraint To gen-
erate a reasonable but a potentially unsound linear constraint, we sample
parameters 1, . . . ,N from hk, approximate the integral in Eq. (3.7) by its

18 certifying geometric robustness of neural networks

Monte Carlo estimate LN and enforce the constraints only at the sampled
points:

min
(wl ,bl)2W

LN(wl , bl) = min
(wl ,bl)2W

1
N

N

Â
i=1

⇣
Ii (px, py)� (bl +wT

l i

⌘
),

bl +wT
l i  Ii (px, py) 8i 2 [N].

(3.9)

This problem can be solved exactly using linear programming (LP). The
solution is a potentially unsound constraint b0l +w0Tl  (it may violate the
constraint at non-sampled points). For our running example, the region
bounded by these potentially unsound lower and upper linear constraints
is shown as orange in Fig. 3.3.

step 2 : bounding the maximum violation Our next step is to com-
pute an upper bound on the violation of Eq. (3.5) induced by our potentially
unsound constraint from Step 1. This violation is equal to the maximum
of the function f () = b0l +w0Tl � I(px, py) over the hyperrectangle hk.
It can be shown that the function f is Lipschitz continuous which enables
application of standard global optimization techniques with guarantees [96].
We remark that such methods have already been applied for optimization
over inputs to neural network [47, 97].

We show a high level description of this optimization procedure in
Algorithm 1. Throughout the optimization, we maintain a partition of the
domain of function f into hyperrectangles h. The hyperrectangles are stored
in a priority queue q sorted by an upper bound f bound

h of the maximum
value the function can take inside of the hyperrectangle. At every step,
shown in Line 6, the hyperrectangle with the highest upper bound is further
refined into smaller hyperrectangles h01, . . . , h0k and their upper bounds are
recomputed. This procedure finishes when the difference between every
upper bound and the maximal value at one of the hyperrectangle centers is
at most e. Finally, maximum upper bound of the elements in the queue is
returned as a result of the optimization.

The two most important aspects of the algorithm, which determine the
speed of convergence, are (i) computation of an upper bound, and (ii)
choosing an edge along which to refine the hyperrectangle. To compute an
upper bound inside of a hyperrectangle spanned between points hl and hu,
we use:

f ()  f (h
u+hl

2) +
1
2

���rh f
���
T
(hu
� hl). (3.10)

3.3 asymptotically optimal linear constraints 19

Algorithm 1 Lipschitz Optimization with Bound Refinement
1: Input: f , h, k � 2
2: fmax := f (center(h))
3: f bound

h := f bound(h,r f)
4: q := [(h, f bound

h)]
5: repeat

6: pop (h0, f bound
h0) from q with maximum f bound

h0
7: h01, . . . , h0k := partition(h0,r f)
8: for i := 1 to k do

9: fmax := max(f (center(h0i)), fmax)
10: f bound

h0i
:= f bound(h0i,r f)

11: if f bound
h0i

> fmax + e then

12: add (h0i, f bound
h0i

) to q
13: end if

14: end for

15: until a maximal f bound
h0 in q is lower than fmax + e

16: return fmax + e

Here
��rh f

�� can be any upper bound on the true gradient which satisfies

|∂i f ()| 
���rh f

���
i

for every dimension i. To compute such a bound, we per-
form automatic differentiation of the function f using interval propagation.
As an added benefit, results of our analysis can be used for pruning of hy-
perrectangles. We reduce a hyperrectangle to one of its lower-dimensional
faces along dimensions for which analysis on gradients proves that the
respective partial derivative has a constant sign within the entire hyper-
rectangle. We also improve on standard refinement heuristics — instead
of refining along the largest edge, we additionally weight edge length by
an upper bound on the partial derivative of that dimension. In our ex-
periments, we find that these insights speed up convergence compared to
simply applying the method out of the box.

Let vl be the result of the above Lipschitz optimization algorithm. It is
then guaranteed that

vl  max
2hk

⇣
b0l +w0Tl � I(px, py)

⌘
 vl + e.

20 certifying geometric robustness of neural networks

step 3 : compute a sound linear constraint In the previous step
we obtained a bound on the maximum violation of Eq. (3.5). Using this
bound, in this step, we update our linear constraints bl = b0l � vl � e and
wl = w0l to obtain a sound lower linear constraint (it satisfies Eq. (3.5)). The
region bounded by the sound lower and upper linear constraints is shown
as green in Fig. 3.3. It is easy to check that our constraint is sound:

bl +wT
l  = b0l � vl � e +w0Tl   I(px, py) 8 2 hk.

running example As in Section 3.2, we focus on the pixel (5, 1), choose
s = 2 splits for [0, p

2], and focus our attention on the split [0, p
4]. In Step 1, we

sample random points {0.1, 0.2, 0.4, 0.5, 0.7} for our parameter f 2 [0, p
4] and

evaluate I � R�1
f (5, 1) on these points, obtaining {0.98, 0.97, 0.92, 0.79, 0.44}.

These points correspond to the blue dots in Fig. 3.3. Solving the LP
in Eq. (3.9) yields b0l = 1.07 and w0l = �0.90. Similarly, we compute a
potentially unsound upper constraint. Together, these two constraints form
the orange enclosure shown in Fig. 3.3. This enclosure is in fact unsound,
as some points on the blue line (those not sampled above) are not included
in the region.

In Step 2, using Lipschitz optimization for the function 1.07� 0.9f �
I � R�1

f with e = 0.02 over f 2 [0, p
4] we obtain vl = 0.08 resulting in the

sound linear lower constraint 0.97� 0.9f. This, together with the similarly
obtained sound upper constraint, forms the sound (green) enclosure in
Fig. 3.3. In the figure we also show the black dashed lines corresponding
to the interval bounds from prior work [56] which enclose much larger
volume than our linear constraints.

asymptotically optimal constraints While our constraints may
not be optimal, one can show they are asymptotically optimal as we increase
the number of samples:

Theorem 1. Let N be the number of points sampled in our algorithm and e the
tolerance used in the Lipschitz optimization. Let (wl , bl) be our lower constraint
and let (w⇤, b⇤) be the minimum of L. For every d > 0 there exists Nd such
that |L(wl , bl)� L(w⇤, b⇤)| < d + e for every N > Nd, with high probability.
Analogous result holds for upper constraint (wu, bu) and function U.

3.4 experimental evaluation 21

3.4 experimental evaluation

We implemented our certification method in a system called DeepG. First,
we demonstrate that DeepG can certify robustness to significantly more
complex transformations than both prior work and traditional bound prop-
agation approaches based on relational abstractions. Second, we experimen-
tally show that our method requires relatively small number of samples
to converge to the optimal linear constraints. Third, we investigate the
effectiveness of a variety of training methods to train a network provably
robust to geometric transformations. Finally, we demonstrate that DeepG
is scalable and can certify geometric robustness for large networks. We
provide networks and code to reproduce the experiments in this chapter at
https://github.com/eth-sri/deepg/.

experimental setup We evaluate on image recognition datasets:
MNIST [95], Fashion-MNIST [98] and CIFAR-10 [99]. For each dataset, we
randomly select 100 images from the test set to certify. Among these 100
images, we discard all images that are misclassified even without any trans-
formation. In all experiments for MNIST and Fashion-MNIST we evaluate
a 3-layer convolutional neural network with 9 618 neurons, while for the
more challenging CIFAR-10 dataset we consider a 4-layer convolutional
network with 45 216 neurons. We certify robustness to composition of trans-
formations such as rotation, translation, scaling, shearing and changes in
brightness and contrast. All experiments except the one with large networks
were performed on a desktop PC with 2 GeForce RTX 2080 Ti GPU-s and
16-core Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz.

comparison with prior work In the first set of experiments we
certify robustness to geometric transformations and compare our results
to prior work [56]. While they considered only rotations, we implemented
their approach for other transformations and their compositions. This gen-
eralization is shown as Interval in Table 3.1. For each dataset and geometric
transformation, we train a neural network using data augmentation with
the transformation that we are certifying. Additionally, we use PGD ad-
versarial training to obtain a network robust to noise which we later show
significantly increases verifiability of the network.

We first measure the success of a randomized attack which samples 100
transformed images uniformly at random [82]. Then, we generate linear
constraints using DeepG, as described in Section 3.3. Constraints produced

https://github.com/eth-sri/deepg/

22 certifying geometric robustness of neural networks

Accuracy (%) Attacked (%) Certified (%)

Interval [56] DeepG

MNIST

R(30) 99.1 0.0 7.1 87.8
T(2, 2) 99.1 1.0 0.0 77.0
Sc(5), R(5), B(5, 0.01) 99.3 0.0 0.0 34.0
Sh(2), R(2), Sc(2), B(2, 0.001) 99.2 0.0 1.0 72.0

Fashion-MNIST
Sc(20) 91.4 11.2 19.1 70.8
R(10), B(2, 0.01) 87.7 3.6 0.0 71.4
Sc(3), R(3), Sh(2) 87.2 3.5 3.5 56.6

CIFAR-10
R(10) 71.2 10.8 28.4 87.8
R(2), Sh(2) 68.5 5.6 0.0 54.2
Sc(1), R(1), B(1, 0.001) 73.2 3.8 0.0 54.4

Table 3.1: Comparison of DeepG which uses linear constraints with the baseline
based on interval bound propagation. Here, R(f) corresponds to ro-
tations with angles between ±f; T(x, y), to translations between ±x
pixels horizontally and between ±y pixels vertically; Sc(p), to scaling
the image between ±p%; Sh(m), to shearing with a shearing factor
between ±m%; and B(a, b), to changes in contrast between ±a% and
brightness between ±b.

Images certified (%)

Interval Polyhedra DeepG

T(0.25) 0 14 90
Sc(4) 0 23 75
Sh(10) 0 12 38

Table 3.2: Certification success rates of interval propagation [56], Polyhedra and
DeepG (for translation, shearing and scaling).

by both our method and the interval baseline are given as an input to
the state-of-the-art neural network verifier DeepPoly [56]. We invoke both
methods for every split separately, with the same set of splits. In order to
make results fully comparable, both methods are parallelized over pixels
in the same way and the refinement parameter k of interval propagation is
chosen such that its runtime is roughly equal to the one of DeepG. Table 3.1
shows the results of our evaluation.

While interval propagation used in prior work can prove robustness for
simpler transformations, it fails for more complex geometric transforma-
tions. For example, already for translation which has two parameters it
does not succeed at certifying a single image. This shows that, in order to
certify complex transformations, one has to capture relationships between

3.4 experimental evaluation 23

0
0

0.25

0.5

0.75

Translation transformation

Pixel value

Interval

Polyhedra

DeepG

Figure 3.4: Translation transformation approximated using interval propagation,
polyhedra and DeepG, for a representative pixel.

pixel values and transformation parameters using a relational abstraction.
Linear constraints computed by DeepG provide a significant increase in
certification precision, justifying the more involved method to compute the
constraints.

comparison with custom transformers To understand the ben-
efits of our method further, we decided to construct a more advanced
baseline than the interval propagation. In particular, we crafted specialized
transformers for DeepPoly [56], which is a restriction of Polyhedra, to
handle the operations used in geometric transformations. These kind of
transformers have brought significant benefits over the interval propagation
in certifying robustness to noise perturbations, and thus, we wanted to see
what the benefits would be in our setting of geometric transformations. Con-
cretely, we designed Polyhedra transformers for addition and multiplication
which enables handling of geometric operations. Fig. 3.4 shows that relax-
ation with these transformers is significantly tighter than intervals. This
also translates to higher certification rates compared to intervals, shown
in Table 3.2. However, this method still fails to certify many images on
which DeepG succeeds. This experiment shows that generating constraints
for the entire composition of transformations as in DeepG is (expectedly)

24 certifying geometric robustness of neural networks

n e Approximation error Certified(%) Runtime(s)

100 0.1 0.032 54.8 1.1
100 0.01 0.010 96.5 1.2
1000 0.001 0.006 97.8 4.9
10000 0.00001 0.005 98.2 46.1

Table 3.3: Speed of convergence of DeepG towards optimal linear bounds.

more effective than crafting transformers for individual operations of the
transformation.

convergence towards optimal bounds While Thm. 1 shows that
DeepG obtains optimal linear constraints in the limit, we also experimentally
check how quickly our method converges in practice. For this experiment,
we consider rotation between �2� and 2�, composed with scaling between
�5% and 5%. We run DeepG while varying the number of samples used
for the LP solver (n) and tolerance in Lipschitz optimization (e). In Table 3.3
we show the approximation error (average distance between lower and
upper linear constraint), certification rate and time taken to compute the
constraints. For instance, even with only 100 samples and e = 0.01 DeepG
can certify almost every image in 1.2 seconds. While higher number of
samples and smaller tolerance are necessary to obtain more precise bounds,
they do not bring significant increase in certification rates.

comparison of different training methods Naturally, we would
like to know how to train a neural network which is certifiably robust
against geometric transformations. In this experiment, we evaluate effec-
tiveness of a wide range of training methods to train a network certifiably
robust to the translation up to 2 pixels in both x and y direction. While
[82] train with adversarial examples and show that this leads to lower
empirical success of an adversary, we are interested in a different ques-
tion: can we train neural networks to be provably robust against geometric
transformations?

We first train the same MNIST network as before, in a standard fashion,
without any kind of defense. As expected, the resulting network shown
in the first row of Table 3.4 is not robust at all – random attack can find
many translations which cause misclassification of the network. To alleviate
this problem, we incorporate data augmentation into training by randomly
translating every image in a batch between -4 and 4 pixels before passing it

3.4 experimental evaluation 25

Accuracy (%) Attack success (%) Certified (%)

Interval [56] DeepG

MNIST

Standard 98.7 52.0 0.0 12.0
Augmented 99.0 4.0 0.0 46.5
L•-PGD 98.9 45.5 0.0 20.2
L•-DiffAI 98.4 51.0 1.0 17.0
L•-PGD + Augmented 99.1 1.0 0.0 77.0
L•-DiffAI + Augmented 98.0 6.0 42.0 66.0

Table 3.4: Certification using DeepG for neural networks trained using different
training techniques.

through the network. As a result, the network is significantly more robust
against the attack, however there are still many images that we fail to certify.
To make the network more amenable to certification, we consider two
additional techniques. They are both based on the observation that convex
relaxation of geometric transformations can be viewed as noise in the pixel
values. To train a network which is robust to noise we consider adversarial
training with projected gradient descent (PGD) [32] and provable defense
based on DiffAI [51]. We also consider combination of these techniques
with data augmentation.

Based on the results shown in Table 3.4, we conclude that training with
PGD coupled with data augmentation achieves both highest accuracy and
highest number of certified images. Training with DiffAI significantly
increases certification rate for interval bound propagation, but has the
drawback of significantly lower accuracy than other methods.

evaluation on large networks We evaluated whether DeepG can
certify robustness of large CIFAR-10 networks with residual connections.
We certified ResNet-Tiny and ResNet-18 from [100] with 312k and 558k
neurons, respectively. As certifying these networks is challenging, we con-
sider relatively small rotation between -2 and 2 degrees. As before, we
generated constraints using both DeepG and interval bound propagation.
This experiment was performed on a Tesla V100 GPU.

ResNet-Tiny was trained using PGD adversarial training and has standard
accuracy 83.8%. Using the constraints from DeepG, we certify 91.1% of
images while interval constraints allow us to certify only 1.3%. Average
time for the verifier to certify or report failure is 528 seconds per image.

ResNet-18 was trained using DiffAI [100] and has standard accuracy
40.2%. In this case, using constraints from DeepG, the verifier certifies 82.2%
of images. Similarly as before (see Table 3.4), training the network with

26 certifying geometric robustness of neural networks

DiffAI also enables a high certification rate of 77.8% even using interval
constraints. However, the drawback is that this network has low accuracy
of only 40.2% compared to ResNet-Tiny trained with PGD which has 83.8%
accuracy. On average, the verifier takes 1652 seconds per image. Here,
generating the constraints for both networks took 25 seconds on average.

3.5 discussion

In this chapter, we tackled the problem of certifying robustness of neural net-
works to geometric transformations. This is an important problem as such
class of transformations often appears naturally (e.g. with camera move-
ment). While prior work considered a simple baseline where the outcome
of the transformation is captured with interval constraints, our approach
results in more precise convex relaxation. We introduced a new method
for computing (optimal at the limit) linear constraints on geometric image
transformations combining Lipschitz optimization and linear programming.
We implemented the method in a system called DeepG and showed that
it leads to significantly better certification precision in proving robustness
against geometric perturbations than prior work, on both defended and
undefended networks.

impact Since the publication of our work on which this chapter is based,
there has been much of further research in the area. Several papers have con-
sidered certifying geometric transformations using convex relaxations [101]
or randomized smoothing [102, 103]. In our own work we also later showed
that the techniques developed in this chapter generalize and can be used
to obtain convex relaxations in other settings: spatial transformations [5],
audio transformations [7] and point cloud transformations [8], ultimately
leading to certifying robustness for a wider range of specifications.

4
A D V E R S A R I A L T R A I N I N G A N D P R O VA B L E D E F E N S E S :
B R I D G I N G T H E G A P

Ever since the discovery of adversarial examples [29, 31], training robust
neural networks has been one of the central challenges in machine learning.
The initial training methods were based on including these examples in
training, as part of so-called adversarial training [31, 32, 104]. Models trained
with adversarial training were shown to be empirically robust against
later developed attacks [35], but this is not fully satisfactory as we cannot
guarantee that the model is indeed robust against all future attacks. This has
motivated the development of provable defenses [60, 63] which provide such
guarantees, but come with the drawback of lower accuracy. In this chapter,
we address this problem by proposing a new provable defense based on the
insights from adversarial training which leads to training networks with
high accuracy and provable robustness.

key challenge The key challenge in this chapter is to carefully combine
advantages of adversarial and provable training to create a new method
for training highly accurate neural networks that are provably robust to
adversarial examples.

prior work Prior work has proposed two families of methods, adver-
sarial training and provable defenses. Adversarial training [30, 31] provides
a framework to augment the training procedure with adversarial inputs
produced by an adversarial attack. Madry et al. [32] instantiated adversarial
training using a strong iterative adversary and showed that their approach
can train models which are highly robust against the strongest known
adversarial attacks such as [33]. This method has also been able to train
robust ImageNet models [105]. While promising, the main drawback of the
method is that when instantiated in practice, via an approximation of an
otherwise intractable optimization problem, it provides no guarantees – it
does not produce a certificate that there are no possible adversarial attacks
which could potentially break the model. To address this lack of guarantees,
recent line of work on provable defenses [60, 61, 63] has proposed to train
neural networks that are certifiably robust to a specific attacker threat model.
However, these guarantees come at the cost of a significantly lower standard

27

28 adversarial training and provable defenses : bridging the gap

accuracy than models trained using adversarial training. This setting raises
a natural question: can we leverage ideas from both, adversarial training
techniques and provable defense methods, so to obtain models with high
accuracy and certified robustness?

this chapter : combining adversarial and provable defenses
In this chapter, we take a step towards addressing this challenge. We
show that it is possible to train more accurate and provably robust neu-
ral networks using the same convex relaxations as those used in existing,
state-of-the-art provable defense methods, but with a new, different op-
timization procedure inspired by adversarial training. Our optimization
works as follows: (i) to certify a property (e.g., robustness) of the network,
the verifier produces a convex relaxation of all possible intermediate vector
outputs in the neural network, then (ii) an adversary now searches over
this (intermediate) convex region in order to find, what we refer to as a
latent adversarial example – a concrete intermediate input contained in the
relaxation that when propagated through the network causes a misclas-
sification which prevents verification, and finally (iii) the resulting latent
adversarial examples are now incorporated into our training scheme using
adversarial training. Overall, we can see this method as bridging the gap
between adversarial training and provable defenses (it can conceptually be
instantiated with any convex relaxation). We experimentally show that the
method is promising and results in a neural network with state-of-the-art
78.4% accuracy and 60.5% certified robustness on the challenging CIFAR-10
dataset with 2/255 L• perturbation (the best known existing results are
71.5% accuracy and 54.0% certified robustness [106]).

main contributions Our key contributions are:

• A new method, which we refer to as convex layerwise adversarial train-
ing (COLT), that can train provably robust neural networks and con-
ceptually bridges the gap between adversarial training and existing
provable defense methods.

• Instantiation of convex layerwise adversarial training using linear
convex relaxations used in prior work (accomplished by introducing
a projection operator).

• Experimental results showing convex layerwise adversarial training
can train neural network models which achieve both, state-of-the-

4.1 related work 29

art accuracy and certified robustness on CIFAR-10 with 2/255 L•
perturbation.

• Complete implementation of our training and certification methods
in a system which we release at https://github.com/eth-sri/colt.

Overall, we believe the method presented in this chapter is a promising
step towards training models that enjoy both, higher accuracy and higher
certification guarantees. An interesting item for future work would be to
explore instantiations of the method with other convex relaxations than the
one considered here.

4.1 related work

We now discuss some of the closely related work on robustness of neural
networks.

heuristic adversarial defenses After the first introduction of
adversarial examples [28, 29], defense mechanisms to train robust neural
networks were built based on the inclusion of adversarial examples to
the training set [30, 31]. Models trained using adversarial training with
projected gradient descent (PGD) [32] were shown to be robust against the
strongest known attacks [33]. This is in contrast to other defense mecha-
nisms which have been broken by new attack techniques [34]. While models
trained using adversarial training achieve robustness against strong adver-
saries, there are no guarantees that model is robust against any kind of
adversarial attack under the threat model considered.

provable adversarial defenses There has also been considerable
amount of work on methods to train classifiers with robustness guarantees.
These approaches are typically based on Lipschitz regularization [59], linear
[60] or semidefinite [61, 62] relaxations, hybrid zonotope [63] or interval
bound propagation [64]. While these approaches obtain robustness guaran-
tees, accuracy of these networks is relatively small and limits practical use
of these methods.

There has also been recent work on certification of general neural net-
works, not necessarily trained in a special way. These methods are based on
SMT solvers [44], abstract interpretation [36], mixed-integer linear programs
[92], linear relaxations [38, 39, 80] or combinations of those [93, 94].

https://github.com/eth-sri/colt

30 adversarial training and provable defenses : bridging the gap

Another line of work proposes to replace neural networks with a ran-
domized classifier [55, 65, 66] which comes with probabilistic guarantees
on its robustness. While these approaches scale to larger datasets such as
ImageNet (although with probabilistic instead of exact guarantees), their
bounds come from the relationship between L2 robustness and Gaussian
distribution. In this chapter, we consider general verification problem where
input is not necessarily limited to an Lp ball, but arbitrary convex set, as
explained in Section 4.2.

4.2 background

In this section, we introduce the background for this chapter.

threat model While the method we propose in this chapter can be
applied to any transformation t, to be comparable with prior work, we
focus on the threat model with l• robustness. This threat model is instanti-
ated as x0 = t(x) where x0ij = xij + kij and each kij 2 [�e, e]. Clearly, the
resulting shape S0 is already defined with the linear constraints, as follows:

S0(x) = {x0 | 9 2 H, xij � kij  x0ij  xij + kij}, (4.1)

so we can set Cin(x) = S0(x).

provable defenses As explained in Chapter 2, the key idea to train
provably robust neural network is to replace the inner maximum in Eq. (2.2)
with an upper bound. This results in an optimization as follows:

min
q

E(x,y)⇠DL(x, y)

where max2H L(hq(t(x)), y)  L(x, y).
This family of methods to train certified neural networks is based on

the computation of an upper bound to the inner loss, as opposed to a
lower bound computed for adversarial training. These methods are typi-
cally referred to as provable defenses as they provide guarantees on the
robustness of the resulting network, under any kind of attack inside the
threat model. An upper bound is typically computed using linear relax-
ations [60], interval propagation [64] or methods combining interval bounds
and linear relaxations [63, 106]. However, these methods suffer from two
disadvantages.

4.2 background 31

First, due to the convex relaxations, an upper bound on the loss is
typically not tight and can be quite loose. However, we believe this is
less of an issue due to the fact that interval relaxations were shown to
experimentally be able to train more provably robust models than methods
based on linear relaxations (which usually produce tighter bounds than
intervals). For example, Mirman, Gehr, and Vechev [63] and Zhang et al.
[106] report ⇠ 28% robust accuracy using pure interval training on CIFAR-
10 with perturbation 8/255 while [107] achieve 21% using linear relaxations.

Second, the way these methods construct the loss makes the relationship
between the loss and the network parameters significantly more complex
than in standard training. We investigated this further in [9] and showed
that the complexity of the loss computation makes the objective function
discontinuous and sensitive, resulting in a difficult optimization problem
for training the network, meaning these training methods often converge to
a suboptimal solution. Our experimental results confirm this – we substan-
tially outperform existing methods both in terms of accuracy and certified
robustness using the same linear relaxation, but a different optimization
procedure.

certification via convex relaxations A neural network con-
sisting of k layers and parameters q is represented as a function hq where
hq = hk

q � hk�1
q · · · � h1

q and hi
q : Rdi�1 ! Rdi denotes a transformation ap-

plied at hidden layer i. We also denote the function representing part of the
neural network from layer i to the final layer k as hi:k

q = hk
q � hk�1

q · · · � hi
q .

Our goal will be to prove a property on the output of the neural network,
encoded via a linear constraint:

cThq(x
0) + d < 0, 8x0 2 S0(x) (4.2)

where c and d are property specific vector and scalar values, respectively.
This formulation is general enough to capture many interesting safety
properties [57, 108], including robustness to Lp perturbations. Note that in
this chapter we will sometimes denote C0(x) = Cin(x).

We now formally describe how provable defenses perform certification.
We denote the set of possible intermediate concrete vectors at layer i that
can be obtained by propagating vector x0 2 S0(x) through the network
as Si(x) = hi

q(Si�1(x)) ✓ Rdi . As it is difficult to explicitly compute the
set Si(x), a standard approach is to approximate it via a convex relaxation
Ci(x). As the input set is already convex, there is no need to introduce
a relaxation, and thus we set C0(x) = S0(x). Given a neural network

32 adversarial training and provable defenses : bridging the gap

layer hi
q which transforms one set of vectors into another, we represent

its corresponding convex relaxation transformer as gi
q . That is, gi

q will
transform one convex set into another convex set. More formally, for any
set D ✓ Rdi�1 , gi

q(D) is convex and hi
q(D) ✓ gi

q(D). Then, we recursively
define the effect of gi

q on a convex relaxation as Ci(x) = gi
q(Ci�1(x)) ✓ Rdi .

Finally, to certify robustness using the obtained convex relaxation, it is
enough to check whether all output vectors in Ck(x) satisfy the linear
constraint in Equation 4.2. If this is true, then all output vectors in Sk(x)
satisfy the constraint as well due to the fact that Sk(x) ✓ Ck(x).

4.3 provable defense via convex layerwise adversarial train-
ing

We now describe our convex layerwise adversarial training approach which
yields a provable defense that bridges the gap between standard adversarial
training and existing provable defenses.

motivation : latent adversarial examples Consider an already
trained neural network model hq which we would like to certify using
convex relaxations. A fundamental issue here is that certification methods
based on convex relaxations can struggle to prove the target property
(e.g., robustness) due to the iterative loss of precision introduced by the
relaxation. More precisely, assume the neural network actually satisfies the
property from Equation 4.2 for an input x, meaning that cThq(x

0) + d <
0, 8x0 2 S0(x). Naturally, this also implies that the neural network behaves
correctly in the latent space of its first hidden layer in the region S1(x).
Formally, this means that cTh2:k

q (x01) + d < 0, 8x01 2 S1(x). However, if one
would use a certification method which replaces the region S1(x) by its
convex relaxation C1(x), then it is possible that we would fail to certify
our desired property. This is due to the fact that there may exist an input
x01 2 C1(x) \ S1(x) such that cTh2:k

q (x01) + d � 0. Of course, we could
repeat the above thought experiment and possibly find more violating
latent inputs in the set Ci(x) \ Si(x) of any hidden layer i. The existence
of points found in the difference between a convex relaxation and the true
region is a fundamental reason for the failure of certification methods based
on convex relaxations. For convenience, we refer to such points as latent
adversarial examples. Next, we describe a method which trains the neural
network in a way that aims to minimize the number of latent adversarial
examples.

4.3 provable defense via convex layerwise adversarial training 33

C
on

v

C0(x)

x01 C
on

v

C1(x)

FC

C2(x) C3(x)

L(h2:k
q (x01), y)

Figure 4.1: An iteration of convex layerwise adversarial training. Latent adversar-
ial example x01 is found in the convex region C1(x) and propagated
through the rest of the layers in a forward pass, shown with the blue
line. During backward pass, gradients are propagated through the
same layers, shown with the red line. Note that the first convolutional
layer does not receive any gradients.

layerwise provable optimization via convex relaxations Our
key observation is that the two families of defense methods described earlier
are in fact different ends of the same spectrum: methods based on adversarial
training maximize the cross-entropy loss in the first convex region C0(x)
while provable defenses maximize the same loss, but in the last convex region
Ck(x). Both methods then backpropagate the loss through the network
and update the parameters using SGD. However, as explained previously,
certification methods may fail even before the last layer due to the presence
of latent adversarial examples in the difference of the regions Ci(x) and
Si(x). A natural question then is – can we leverage adversarial training so
to eliminate latent adversarial examples from hidden layers and obtain a
provable network?

To this end, we propose adversarial training in layerwise fashion. The
initial phase of training is equivalent to adversarial training as used by
Madry et al. [32]. In this phase in the inner loop we repeatedly find an
input in C0(x) which maximizes the cross-entropy loss and update the
parameters of the neural network so to minimize this loss using SGD. Note
that the outcome of this phase is a model which is highly robust against
strong multi-step adversaries. However, certification of this fact often fails
due to the previously mentioned loss of precision in the particular convex
relaxation being used, which then leads to the existence of latent adversarial
examples in the hidden layers.

The next step of our training method is visually illustrated in Figure 4.1.
Here, we propagate the initial convex region through the first layer of the

34 adversarial training and provable defenses : bridging the gap

Algorithm 2 Convex layerwise adversarial training via convex relaxations
1: Input: k-layer network hq , training set (X ,Y), learning rate h, step size

a, inner steps n
2: for l = 1 to k do

3: for i = 1 to nepochs do

4: Sample mini-batch {(x1, y1), (x2, y2), ..., (xb, yb)} ⇠ (X ,Y)
5: Compute convex relaxations Cl(x1), Cl(x2), ..., Cl(xb)
6: Initialize x01 ⇠ Cl(x1),x02 ⇠ Cl(x2), ...,x0b ⇠ Cl(xb)
7: for j = 1 to b do

8: for step = 1 to n do

9: x0j PCl(xj)(x
0

j + arx0j
L(hl+1:k

q (x0j), yj))

10: end for

11: end for

12: Update parameters q q � h ·
1
b Âb

j=1rqL(hl+1:k
q (x0j), yj)

13: end for

14: Freeze parameters ql+1 of layer function hl+1
q

15: end for

network and obtain the convex region C1(x). We then solve the optimization
problem to find a concrete point x01 inside of C1(x) which produces the
maximum loss when this point is propagated further through the network
(this forward pass is shown with the blue line). Finally, we backpropagate
the final loss (red line) and update the parameters of the network so to
minimize the loss. Critically, we do not backpropagate through the convex
relaxation in the first layer as standard provable defenses do [60, 63, 64]. We
instead freeze the first layer and stop backpropagation after the update of
the second layer. Because of this, our optimization problem is significantly
easier – the neural network only has to learn to behave well on the concrete
points that were found in the convex region Cl(x). This can be viewed as an
extension of the robust optimization method that Madry et al. [32] found to
work well in practice.

We then proceed with the above process for later layers. Formally, this
training process amounts to (approximately) solving the following min-max
optimization problem at the l-th step:

min
ql+1:k

E(x,y)⇠D max
x0l2Cl(x)

L(hl+1:k
q (x0l), y, q) (4.3)

4.4 convex layerwise adversarial training using linear relaxations 35

Note that for l = 0 this formulation is equivalent to the standard min-
max formulation from Chapter 2 because C0(x) = S0(x). Our approach
to solve this min-max optimization problem for every layer l is shown
in Algorithm 2. We initialize every batch by random sampling from the
corresponding convex region. Then, in every iteration we use projected
gradient descent (PGD) to maximize the inner loss in Equation 4.3. We first
update x0j in the direction of the gradient of the loss and then project it back
to Cl(xj) using the projection operator P. Note that this approach assumes
the existence of an efficient projection method to the particular convex
relaxation the method is instantiated with. In the next section, we show how
to instantiate the training algorithm described above to a particular convex
relaxation which is generally tighter than a hyperrectangle and where we
derive an efficient projection operation.

4.4 convex layerwise adversarial training using linear re-
laxations

So far we have described the general approach of convex layerwise adver-
sarial training. Now we show how to instantiate it for a particular convex
relaxation based on linear approximations. If instead one would use inter-
val approximation [63, 64] as the convex relaxation, then all regions Cl(x)
would be hyperrectangles and projection to these sets is fast and simple.
However, the interval relaxation provides a coarse approximation which
motivates the need to train with relaxations that provide tighter bounds.
Thus, we consider linear relaxations which are generally tighter than those
based on intervals.

In particular we leverage the same relaxation which was previously
proposed in Weng et al. [39], Wong and Kolter [60], and Singh et al. [109]
as an effective way to certify neural networks. Here, each convex region
is represented as a set Cl(x) = {al + Ale | e 2 [�1, 1]ml}. Vector al
represents the center of the set and the matrix Al represents the affine
transformation of the hypercube [�1, 1]ml . This representation is also known
as zonotope abstraction [110]. The initial convex region C0(x) is represented
using a0 = x and A0 = eId0 is a diagonal matrix. Propagation of these
convex regions through the network is out of the scope of this thesis
– a full description can be found in [60] or [109]. At a high level, the
convolutional and fully connected layers are handled by multiplying Al
and al by appropriate matrices. To handle the ReLU activation, we apply a
convex relaxation that amounts to multiplying Al and al by appropriately

36 adversarial training and provable defenses : bridging the gap

chosen diagonal matrices which depend on whether the ReLU is activated
or not. Using this relaxation of ReLU, we recursively obtain all convex
regions Cl(x). In practice, the term Ale can be computed without explicitly
constructing matrix Al because Ale = WlLl�1Wl�2 · · ·M0e. Due to the
associativity of matrix multiplication, we can compute Ale by performing
a chain of matrix-vector multiplications from right to left (instead of more
expensive chain of matrix-matrix multiplications from left to right) and
obtain vector Ale.

projection to linear convex regions To use our training method
we now need to instantiate Algorithm 2 with a suitable projection operator
PCl(x)

. The key insight here is that the vector x0 2 Cl(x) is uniquely
determined by auxiliary vector e 2 [�1, 1]ml where x0 = al +Ale. Then
instead of directly solving for x0 which requires projecting to Cl(x), we
can solve for e instead, which would uniquely determine x0. Crucially, the
domain of e is a hyperrectangle [�1, 1]ml which is easy to project to. To
visualize this further we provide an example in Figure 4.2. The goal is to
project the red point x0 in the right picture to the convex region Cl(x). To
project, we first perform change of variables to substitute x0 with e and
then project e to the square [�1, 1]⇥ [�1, 1] to obtain the blue point P(e)
on the left. Then, we again perform change of variables to obtain the blue
point P(x0) on the right, which is the projection of x0 we were looking for.

Based on these observations, we modify Line 7 of Algorithm 2 to first
update the coefficients ej using the following update rule: ej clip(ej +

aAT
l rx0j

L(x0j, yj),�1, 1). Here clip is function which thresholds its argu-
ment between -1 and 1, formally clip(t,�1, 1) = min(max(t,�1), 1). This
is followed by an update to x0j via x0j al +Alej, completing the update
step.

efficient computation of convex regions While our representa-
tion of convex regions with matrix Al and vector al has clean mathematical
properties, in practice, a possible issue is that the matrix Al can grow to
be quite large. Because of this, propagating it through the network can be
memory intensive and prohibit the use of larger batches. To overcome this
difficulty, we propose two methods.

First method is based on the observation that Al is quite sparse. We start
with a very sparse, diagonal matrix A0 at the input. After each convolution,
an element of matrix Al+1 is non-zero only if there is a non-zero element
inside of its convolutional kernel in matrix Al . We can leverage this obser-

4.4 convex layerwise adversarial training using linear relaxations 37

e1

e2

e

P(e)
Cl(x)

x01

x02

x0

P(x0)

x01 := 2e1 � e2

x02 := e1 + e2

Figure 4.2: Projection to a region based on linear relaxation using change of
variables.

vation to precompute positions of all non-zero elements in matrix Al+1 and
compute their values using matrix multiplication.

Second method is based on the idea from [107]. Their key insight is that
convex regions Cl(x) can be computed approximately during training. They
propose to use random projections from [111] to estimate lower and upper
bound for each neuron. While they operate in dual framework, we apply
the same approach in our primal view. In our experiments, we use this
method as it is more efficient than working with sparse representation. After
training, during certification, we compute regions Cl(x) exactly without
the estimation.

This optimization is critical to enabling training to take place altogether.
An interesting item for future work is further optimizing the current relax-
ation (via a specialized GPU implementation) or developing more memory
friendly relaxations, so to scale the training to larger networks.

regularization One issue with the method presented in Section 4.3
is that there is no explicit mechanism that tries to make convex relaxation
Cl(x) as close as possible to the exact region Sl(x) in order to avoid down-
stream loss of precision during later stages of the training, when layer l is
already frozen. To address this, we also incorporate additional regularizers
similar to [112]: L1 regularization and ReLU stability regularization. The
purpose of L1 regularization is to learn sparse weight matrices and the goal
of ReLU stability regularization is to have fewer crossing ReLU units, both
of which are beneficial for precision. Our ReLU stability is different from
[112] since we directly minimize the area induced by our linear convex
relaxation.

38 adversarial training and provable defenses : bridging the gap

4.5 certification of neural networks

After training a neural network via convex layerwise adversarial training,
our goal is to certify the target property (e.g., robustness). Here we leverage
several recent advances in certification techniques which are not fast enough
to be incorporated into the training procedure, but which can significantly
speed up the certification or increase its precision.

refinement of the linear approximation The linear relaxation
of ReLU, which we are using, is parameterized by slopes � of the linear
relaxation. Prior work which employed this relaxation [39, 60, 109] has cho-
sen these slopes greedily by minimizing the area of the relaxation. During
training we also choose � in the same way. However, during certification,
we can also optimize for the values of � that give rise to the convex region
inside of which the maximum loss is minimized. This optimization problem
can be written as:

min
�2[0,1]dl

max
x02Cl(x;�)

L(hl+1:k
q (x0), y)

Solving this is computationally too expensive inside the training loop, but
during certification it is feasible to approximate the solution. We solve for
� using the Adam optimizer and clipping the elements between 0 and 1
after each update. We remark that the idea of learning the slope is similar
to [108] who propose to optimize dual variables in a dual formulation,
however here we stay in the primal formulation.

convex relaxations and exact bound propagation During
convex layerwise adversarial training we essentially train the network to
be certified on all regions C0(x), ..., Ck(x). While computing exact regions
Sl(x) ✓ Cl(x) is not feasible during training, we can afford it to some
extent during certification. The idea is to first propagate the bounds using
convex relaxations until one of the hidden layers l and obtain a region Cl(x).
If training was successful, there should not exist a concrete point x0l 2 Cl(x)
which, if propagated through the network, violates the correctness property
in Equation 4.2. We can encode both, the property and the propagation of
the exact bounds Sl(x) using a Mixed-Integer Linear Programming (MILP)
solver. Note that we can achieve this because we represent the region Cl(x)
using a set of linear constraints, which may not be possible for general
convex shapes. We perform the MILP encoding using the formulation from

4.6 experimental evaluation 39

Tjeng, Xiao, and Tedrake [92]. It is usually possible to encode only the
last two layers using MILP due to the poor scalability of these solvers for
realistic network sizes. One further improvement we also include is to
tighten the convex regions Cl(x) using refinement via linear programming
as described in [93]. We remark that this combination of convex relaxation
and exact bound propagation does not fall under the convex barrier to
certification [81].

4.6 experimental evaluation

We now present an evaluation of our training method on the challenging
CIFAR-10 dataset. All of our code, datasets, trained models and scripts to
reproduce the experiments can be found at https://github.com/eth-sri/
colt.

experimental setup We perform all experiments on a desktop PC
using a single GeForce RTX 2080 Ti GPU and 16-core Intel(R) Core(TM)
i9-9900K CPU @ 3.60GHz. We implemented training and certification in
PyTorch [113] and used Gurobi 9.0 [114] as a MILP solver.

neural network architecture We evaluate on two architectures.
First architecture is a 4-layer convolutional network: first 3 layers are convo-
lutional layers with filter sizes 32, 32, 128, kernel sizes 3, 4, 4 and strides 1, 2,
2, respectively. Second architecture is a 3-layer convolutional network: first
2 layers are convolutional layers with filter sizes 32 and 128, kernel sizes
5 and 4, strides 2 and 2, respectively. In both architectures, convolutional
layers are followed by a fully connected layer consisting of 250 hidden units.
After each layer there is a ReLU activation. Final layer is a fully connected
layer with 10 output neurons.

training During layerwise training we start with e perturbation which
is higher than the one we certify, and then decrease it by a certain factor
when the training progresses to the next layer. In each stage of the training,
we train for 200 epochs, starting from the same loss as in the previous stage
and gradually annealing it to the loss of the current stage during first 60
epochs. We optimize using SGD with the initial learning rate 0.03 and after
the initial 60 epochs we multiply the learning rate by 0.5 every 10 epochs.
To find the best performing hyperparameters for training, we created a
validation set consisting of random 5000 images from the training set and

https://github.com/eth-sri/colt
https://github.com/eth-sri/colt

40 adversarial training and provable defenses : bridging the gap

Method Accuracy(%) Certified Robustness(%)

COLT (this chapter) 78.4 60.5
CROWN-IBP [106] 71.5 54.0
Wong et al. [107] 68.3 53.9
IBP [64] 70.2 50.0
StableReLU [112] 61.1 45.9
DiffAI [100] 62.3 45.5

Table 4.1: Evaluation on CIFAR-10 dataset with L• perturbation 2/255

used it to tune the hyperparameters with SigOpt [115]. We tuned batch size,
initial e, factor to decrease e after each layer, L1 regularization and ReLU
stability factors.

certification After training completes, we perform certification as
follows: for every image, we first try to certify it using only linear relaxations
(with the improvement of learned slopes, Section 4.5). If this fails, we encode
the last layer as MILP and try again. Finally, if this fails we encode the
ReLU activation after the last convolution using additional up to 50 binary
variables and the rest using the triangle formulation [116]. We consider an
image to be not certifiable if we fail to certify it using these methods. We
always certify the full test set of 10 000 images.

comparison to prior work We first train a robust network using
our method for the L• perturbation 2/255. In this experiment, we used
larger architecture with 3 convolutional and 1 fully connected layer. We
perform convex layerwise adversarial training in 4 stages, for 200 epochs per
stage, for a total of 800 epochs. The training takes 53, 164, 228, 250 seconds
per epoch in the four respective stages of the training. It takes roughly
2 days to certify 10 000 images on a single GPU. Results are shown in
Table 4.1. We always compare to the best reported and reproducible results
in the literature on any architecture. We do not compare to smoothing-based
approaches [55], as these provide probabilistic instead of exact guarantees.
Extensions to [55] such as [66] also use additional existing techniques such
as pre-training on ImageNet and unlabeled data which are orthogonal. We
also do not compare to using cascades from [107], as this improvement
is also orthogonal to the method here. Thus, we only consider their best
single network architecture (inline with prior work Zhang et al. [106] which
compares to a single architecture). We believe all methods listed in Table 4.1,

4.6 experimental evaluation 41

Method Accuracy(%) Certified Robustness(%)

COLT (this chapter) 51.7 27.5
CROWN-IBP [106] 54.5 30.5
DiffAI [100] 46.2 27.2
Wong et al. [107] 28.7 21.8
StableReLU [112] 40.5 20.3

Table 4.2: Evaluation on CIFAR-10 dataset with L• perturbation 8/255

including ours, would benefit from additional techniques such as cascades,
pre-training and leveraging unlabeled data. Experimentally, we find that
the neural network trained using our method substantially outperforms
all existing approaches, both in terms of standard accuracy and certified
robustness for 2/255. Note that here we are using the same linear relaxation
as Wong et al. [107], but our optimization procedure is different and shows
significant improvements over the one used in their work. We also remark
that concurrent work Zhang et al. [106] reports 59.7% robustness against
PGD which implies that even empirical robustness of their best model is
lower than certified robustness of our network.

We also run the same experiment for L• perturbation 8/255 and present
the results in Table 4.2. In this experiment, we used smaller architecture
with 2 convolutional and 1 fully connected layer. Here we perform convex
layerwise adversarial training in 3 stages, again for 200 epochs per stage, for
a total of 600 epochs. The training takes 20, 67, 87 seconds per epoch in the
three respective stages of the training. Here we do not include comparison
with Gowal et al. [64] as their results were found to be not reproducible [100,
117, 118], and the best reproducible results for this method can be found in
[106]. Here we substantially outperform all existing approaches except for
the concurrent work of [106] whose method is based on a combination of
interval and linear relaxation. We suspect that here the main issue is that
our 3-layer network lacks capacity to solve this task, and capacity was found
to be one of the key components necessary to obtain a robust classifier [32].
Due to promising results for 2/255, we believe achieving state-of-the-art
results for 8/255 is very likely an issue of instantiating our method with
a convex relaxation that is more memory efficient, which we believe is an
interesting item for future work.

analysis Next, we analyze the effect of our convex layerwise adversarial
training, also on CIFAR-10 with 2/255 and 8/255 L• perturbations. Recall

42 adversarial training and provable defenses : bridging the gap

0 1 2 3 4
0

20

40

60

80

Attacked layer

La
te

nt
ro

bu
st

ne
ss

(%
)

Stage 1
Stage 2
Stage 3
Stage 4

(a) CIFAR-10, 2/255

0 1 2 3
0

20

40

60

80

Attacked layer

La
te

nt
ro

bu
st

ne
ss

(%
)

Stage 1
Stage 2
Stage 3

(b) CIFAR-10, 8/255

Figure 4.3: Effect of proposed convex layerwise adversarial training. After each
stage of the training, we attack the model with a latent adversarial
attack on each of the layers. Note that layer 0 represents standard
PGD attack (attack in the input space).

that in the first stage, our training is equivalent to PGD [32] and in each
of the successive stages, we freeze the current layer and retrain the rest
of the network. In this experiment, we are interested in robustness of a
model against latent adversarial attacks during each stage of the training.
To perform this experiment, after each stage of the training we stored the
intermediate model and ran latent adversarial attack on these models, on
each of the layers. For latent adversarial attack, we perform PGD in the
latent space, with 150 steps and step size of 0.01. Note that final models
correspond to the models reported in Table 4.1 and Table 4.2.

The results are shown in Figure 4.3a and Figure 4.3b, for 2/255 and
8/255 perturbations, respectively. Each point represents success rate of
latent adversarial attack on a trained model, where each model is shown
in a different color. Red line shows the model trained after the first stage,
which is equivalent to PGD training from Madry et al. [32]. As expected,
this model is robust against the standard adversarial attack in the input
space which is denoted as attack on layer 0. However, this Stage 1 model
lacks robustness in the deeper layers which prevents us from certifying the
robustness using convex relaxations. Using convex layerwise adversarial
training, the model progressively becomes robust to perturbations in the
deeper layers. For example, Figure 4.3a shows that final model, after Stage 4,
has 41% robustness in layer 4 which is significant improvement over Stage
1 model which has only 18% robustness in layer 4. Note that this means

4.7 discussion 43

we can certify 41% using only linear relaxation, and 60.5% when learning
the slopes and encoding part of the network as MILP, which is explained
in Section 4.5. We observe similar results for 8/255 perturbation shown in
Figure 4.3b.

other datasets To further evaluate our method, we also experimented
with other datasets: Street House View Numbers (SVHN) and MNIST
Handwritten Digits. On SVHN with L• perturbation 0.01 we also achieve
state-of-the-art accuracy and certified robustness. On MNIST, we evaluated
with perturbations 0.1 and 0.3. With L• perturbation 0.1 we achieve results
comparable with best results from prior work, while with perturbation
0.3 our certified robustness is lower than the one achieved by approaches
based on interval bound propagation [106]. We believe that, because of
large perturbation of 0.3, random projections are imprecise and one would
need to use the exact bounds which introduces much higher cost at runtime.
This is also reflected in the poor performance of Wong et al. [107] on this
benchmark, as we use the same random projections as their work. We
believe that instantiating our method with a convex relaxation that is more
memory friendly than what we used would likely yield better results in
this experiment. These full results can be found in our paper [2].

4.7 discussion

In this chapter, we presented a new method to train certified neural net-
works. The key concept was to combine techniques from provable defenses
using convex relaxations with those of adversarial training. Our method,
named convex layerwise adversarial training (COLT), achieves state-of-the-
art 78.4% accuracy and 60.5% certified robustness on CIFAR-10 with a 2/255
L• perturbation, significantly outperforming prior work when considering
a single network (it also achieves competitive results on 8/255 L•). The
method is general and can be instantiated with any convex relaxation.

impact There has been plenty of follow-up work on certified training.
First, in Jovanović et al. [9] we closely investigated the underlying opti-
mization problem induced by different convex relaxations. We showed that
interval bounds, unlike more precise convex relaxations, induce continuous
and non-sensitive objective function, indeed resulting in easier optimization
problem. In another work [6] we showed that one can use similar techniques
as in this chapter to boost certified robustness of any other network, while

44 adversarial training and provable defenses : bridging the gap

losing only a small amount of accuracy. Since the publication of our work,
there has been significant progress in training methods with higher certified
and natural accuracy [21, 22, 23]. Many of these new ideas are based on
similar insights as this chapter, namely connecting heuristic and provable
defenses.

5
L E A R N I N G C E RT I F I E D I N D I V I D UA L LY FA I R
R E P R E S E N TAT I O N S

This chapter is based on an observation that individual fairness can be
phrased as a special form of robustness. Namely, individual fairness re-
quires that similar individuals are classified similarly which is technically
very related to robustness considered in Chapter 3 and Chapter 4. This is an
important problem as machine learning is often used in sensitive domains
(e.g., crime risk assessment [119], ad targeting [120], and credit scoring [121])
where making sure that models do not reinforce human bias, discriminate,
or lack fairness [122, 123, 124] is of utmost importance. Moreover, as fair-
ness appears in a variety of settings (typically split into pre-processing,
in-processing, post-processing), here we focus on fair representation learning
which allows pre-processing data into a new representation that can be
used for a variety of tasks.

key challenge Formally, we consider a fair representation learning set-
ting where machine learning model M : Rn

! Ro is composed of two parts:
an encoder fy : Rn

! Rk, provided by the data producer, and a classifier
hq : Rk

! Ro, provided by the data consumer, with Rk denoting the latent
space. A central challenge then is to enforce and prove individual fairness
in that setting. That is, to both learn an individually fair representation and
to certify that individual fairness is actually satisfied across the end-to-end
model M without compromising the independence of the data producer
and the data consumer.

this chapter In this chapter, we propose the first method for ad-
dressing the above challenge. At a high level, our approach is based on
the two key ingredients: (i) recent advances in training machine learning
models with logical constraints [125], (ii) new methods for proving that
constraints are satisfied [45], similar to the techniques presented in Chap-
ter 3 and Chapter 4. Together, these ideas open the possibility for learning
certified individually fair models.

Concretely, we identify a practical class of individual fairness definitions
captured via declarative fairness constraints. Such a fairness constraint is a
binary similarity function f : Rn

⇥Rn
! {0, 1}, where f(x,x0) evaluates to

45

46 learning certified individually fair representations

1 if and only if two individuals x and x0 are similar (e.g., if all their attributes
except for race are the same). By working with declarative constraints,
data regulators can now express interpretable, domain-specific notions
of similarity, a problem known to be challenging [67, 126, 127, 128, 129,
130]. Similarly as in robustness where we considered neighborhood S0(x),
here the neighborhood of all similar individuals is determined through the
constraint f and denoted as S

f
0 (x).

Given the fairness constraint f, we can now train an individually fair
representation and use it to obtain a certificate of individual fairness for
the end-to-end model. For training, the data producer can employ our
framework to learn an encoder fy with the goal that two individuals
satisfying f should be mapped close together in `•-distance in latent space.
As a consequence, individual fairness can then be certified for a data point
in two steps: first, the data producer computes a convex relaxation of
the latent set of similar individuals and passes it to the data consumer.
Second, the data consumer certifies individual fairness by proving local
robustness within the convex relaxation. Importantly, the data consumer
can now perform modular certification: it does not need to know the fairness
constraint f and the concrete data point x.

Our experimental evaluation on several datasets and fairness constraints
shows a substantial increase (up to 72.6%) of certified individuals (unseen
during training) when compared to standard representation learning.

main contributions Our key contributions are:

• A practical family of similarity notions for individual fairness defined
via interpretable logical constraints.

• A method to learn individually fair representations (defined in an
expressive logical fragment), which comes with provable certificates.

• An end-to-end implementation of our method in an open-source
tool called LCIFR, together with an extensive evaluation on several
datasets, constraints, and architectures. We make LCIFR publicly
available at https://github.com/eth-sri/lcifr.

5.1 overview

This section provides a high-level overview of our approach, with the
overall flow shown in Fig. 5.1.

https://github.com/eth-sri/lcifr

5.1 overview 47

Data Producer

x1

x2

S
f
0 (x)

x
R

eL
U

R
eL

U

FC
fy fy

⇣
S

f
0 (x)

⌘

✓ B• (z, e)

z2

z1

z

Data Consumer

z, e

z2

z1

B• (z, e)

z

R
eL

U

Si
gm

oi
d

hq hq (B• (z, e))

hq (z)

Figure 5.1: Conceptual overview of our framework. The left side shows the
component corresponding to the data producer who learns an encoder
fy which maps the entire set of individuals S

f
0 (x) that are similar to

individual x, according to the similarity notion f, to points near fy(x)
in the latent space. The data producer then computes an `•-bounding
box B• around the latent set of similar individuals fy(S

f
0 (x)) with

center z = fy(x) and radius e and passes it to the data consumer.
The data consumer receives the latent representation z and radius
e, trains a classifier hq , and certifies that the entire `•-ball centered
around z with radius e is classified the same (green color shows fair
output region).

As introduced earlier, our setting consists of three parties. The first party
is a data regulator who defines similarity measures for the input and
the output denoted as f and µ, respectively. The properties f and µ are
problem-specific and can be expressed in a rich logical fragment which we
describe later in §5.3. For example, for classification tasks µ could denote
equal classification (i.e. µ(M(x), M(x0)) = 1 () M(x) = M(x0)) or
classifying M(x) and M(x0) to the same label group; for regressions tasks
µ could evaluate to 1 if kM(x)�M(x0)k  0.1 and 0 otherwise. We focus
on equal classification in the classification setting for the remainder of this
chapter.

The goal of treating similar individuals as similarly as possible can then
be formulated as finding a classifier M which maximizes

Ex⇠D
⇥
8x0 2 Rn : f(x,x0) =) µ(M(x), M(x0))

⇤
, (5.1)

where D is the underlying data distribution (we assume a logical expression
evaluates to 1 if it is true and to 0 otherwise). As usual in machine learning,

48 learning certified individually fair representations

we approximate this quantity with the empirical risk, by computing the
percentage of individuals x from the test set for which we can certify that

8x0 2 S
f
0 (x) : µ(M(x), M(x0)), (5.2)

where S
f
0 (x) = {x0 2 Rn

| f(x,x0)} denotes the set of all points similar
to x. Note that S

f
0 (x) generally contains an infinite number of individuals.

In Fig. 5.1, S
f
0 (x) is represented as a brown shape, and x is shown as a

single point inside of S
f
0 (x).

The key idea of our approach is to train the encoder fy to map point
x and all points x0 2 S

f
0 (x) close to one another in the latent space with

respect to `•-distance, specified as

f
�
x,x0

�
=) || fy(x

0)� fy(x)||•  d, (5.3)

where d is a tunable parameter of the method, determined in agreement
between producer and consumer (we could also use another `p-norm). If the
encoder indeed satisfies Eq. (5.3), the data consumer, potentially indifferent
to the fairness constraint, can then train a classifier hy independently of
the similarity notion f. Namely, the data consumer only has to train hy to
be robust to perturbations up to d in `•-norm, which can be solved via
standard min-max optimization, discussed in §5.3.

We now explain our end-to-end inference with provable certificates for
encoder fy and classifier hq .

processing the producer model Given a data point x, we first
propagate both x and its set of similar points S

f
0 (x) through the encoder,

as shown in Fig. 5.1, to obtain the latent representations z = fy(x) and
fy(S

f
0 (x)). As Eq. (5.3) may not hold for the particular x and d due to the

stochastic nature of training, we compute the smallest `•-bounding box
of radius e such that fy(S

f
0 (x)) ✓ B•(z, e) := {z0 | kz � z0k•  e}. This

`•-bounding box with center z and radius e is shown as orange in Fig. 5.1.

processing the consumer model Next, we provide the latent rep-
resentation z and the radius e to the data consumer. The data consumer
then knows that all points similar to x are in the `•-ball of radius e, but
does not need to know the similarity constraint f nor the particular shape
fy(S

f
0 (x)). The key observation is the following: if the data consumer can

5.1 overview 49

prove its classifier hq is robust to `•-perturbations up to e around z, then
the end-to-end classifier M = hq � fy satisfies individual fairness at x with
respect to the similarity rule f imposed by the data regulator.

There are two central technical challenges we need to address. The first
challenge is how to train an encoder to satisfy Eq. (5.3), while not mak-
ing any domain-specific assumptions about the point x or the similarity
constraint f. The second challenge is how to provide a certificate of indi-
vidual fairness for x, which requires both computing the smallest radius e

such that fy(S
f
0 (x)) ✓ B•(z, e), as well as certifying `•-robustness of the

classifier hq .

To train an encoder, we build on DL2 [125], which provides a translation
from logical constraints f to a differentiable loss function. The training of
the encoder network can then be formulated as a min-max optimization
problem, which alternates between (i) searching for counterexamples x0 2

S
f
0 (x) that violate Eq. (5.3), and (ii) training fy on the counterexamples.

We employ gradient descent to minimize a joint objective composed of a
classification loss and the constraint loss obtained from translating Eq. (5.3).
Once no more counterexamples are found, we can conclude the encoder
empirically satisfies Eq. (5.3). We discuss the detailed procedure in §5.3.

We compute a certificate for individual fairness in two steps. First, to
provide guarantees on the latent representation generated by the encoder
fy, we solve the optimization problem

e = max
x02S

f
0 (x)

||z � fy(x
0)||•.

Recall that the set S
f
0 (x) generally contains an infinite number of individuals

x0, and thus this optimization problem cannot be solved by simple enu-
meration. In §5.4 we show how this optimization problem can be encoded
as a mixed-integer linear program (MILP) and solved using off-the-shelf
MILP solvers. After obtaining e, we certify local robustness of the classifier
hq around z = fy(x) by proving (using MILP) that for each z0 where
||z0 � z||  e, the classification results of hq(z

0) and hq(z) coincide. Al-
together, this implies the overall model M = hq � fy satisfies individual
fairness for x. Finally, note that since the bounding box B (z, e) is a convex
relaxation of the latent set of similar individuals fy(S

f
0 (x)), the number of

individuals for which we can obtain a certificate is generally lower than the
number of individuals that actually satisfy Eq. (5.2).

50 learning certified individually fair representations

5.2 related work

We now discuss additional related work that was not discussed in Chapter 2,
more specifically the works on learning individually fair representations
and individual fairness in other contexts.

learning individually fair representations Most work so far
focuses on learning representations that satisfy statistical notions of fair-
ness, but there has also been some recent work on learning individually
fair representations. These works learn fair representations with alterna-
tive definitions of individual fairness based on Wasserstein distance [77,
128], fairness graphs [127], or distance measures [126]. A different line of
work has investigated leaning the fairness metric from data [128, 129, 130,
131]. In contrast, we define individual fairness via interpretable logical
constraints. Finally, recent works [132, 133, 134] studied the task of learning
representations that are robust to (adversarial) perturbations, i.e., all similar
individuals in our case, however not in the context of fairness. Many of
the above methods for learning (individually) fair representations employ
nonlinear components [67, 126], graphs [127], or sampling [70, 78] and can
thus not be efficiently certified, unlike the neural networks that we consider
in our work.

individual fairness in other contexts While we focus on learn-
ing fair representations, other lines of work have investigated individual
fairness in the context of clustering [135, 136], causal inference [137, 138, 139,
140], composition of individually fair classifiers [141, 142], and differential
privacy (DP) [143, 144, 145]. The close relationship between individual fair-
ness and DP has been discussed in previous work (see, e.g., [143]). However,
DP crucially differs from our work in that it obtains a probabilistic fairness
guarantee, similar to McNamara, Ong, and Williamson [146] mentioned
above, whereas we compute absolute fairness guarantees for every data
point. The most natural way to employ DP for a representation learning
approach, like LCIFR, would be to make the data producer model fq dif-
ferentially private for a neighborhood that encodes Sf, by adding noise
inside the computation of fq . If one can achieve DP for the neighborhood
Sf (a non-trivial challenge), the data consumer model can then be seen as
a post-processing step, which with the right robustness certificate yields a
probabilistic guarantee of Eq. (5.2).

5.3 learning individually fair representations 51

5.3 learning individually fair representations

We now present our method for learning individually fair representations
with respect to the property f. To illustrate our method, we consider the
case where the regulator proposes the following similarity constraint:

f(x,x0) :=
^

i2Cat\{race}

(xi = x0i)
^

j2Num
|xj � x0j|  a.

According to f, individual x0 is considered similar to x if: (i) all categorical
attributes except for race are equal to those of x, and (ii) all numerical
attributes (e.g., income) of x and x0 differ by at most a. Thus, under f,
the similarity of individuals x and x0 does not depend on their respective
races. Note that, since f is binary, x and x0 are either considered similar
or not which is in line with the typical use-case in classification where
two individuals are either classified to the same label or not. Moreover,
such logical formulas (of reasonable size) are generally considered humanly
readable and are thus investigated in the interpretable machine learning
community (e.g., for decision trees [147]).

enforcing individual fairness To learn a representation that satis-
fies f, we build on the recent work DL2 [125]. Concretely, we aim to enforce
the following constraint on the encoder fy used by the data producer:

f(x,x0) =) k fy (x)� fy
�
x0
�
k•  d, (5.4)

where d is a tunable constant, determined in agreement between the data
producer and the data consumer. With DL2, this implication can be trans-
lated into a non-negative, differentiable loss L (f) such that L (f) (x,x0) =
0 if and only if the implication is satisfied. Here, we denote w (x,x0) :=
k fy (x)� fy (x0) k•  d and translate the constraint in Eq. (5.4) as

L (f =) w) = L (¬f _w) = L (¬f) · L (w) ,

where negations are propagated through constraints via standard logic.
Moreover, we have

L (w)
�
x,x0

�
= L

�
k fy (x)� fy

�
x0
�
k•  d

�

= max
�
k fy (x)� fy

�
x0
�
k• � d, 0

.

52 learning certified individually fair representations

Similarly, conjunctions L (f0 ^ f00) would be translated as L (f0) + L (f00),
and we refer interested readers to the original work [125] for further details
on the translation.

Using this differentiable loss, the data producer can now approximate
the problem of finding an encoder fy that maximizes the probability that
the constraint f =) w is satisfied for all individuals via the following
min-max optimization problem (defined in two steps): First, we find a
counterexample

x⇤ = arg min
x02S

f
0 (x)

L (¬ (f =) w))
�
x,x0

�
.

Recall that S
f
0 (x) = {x0 2 Rn

| f (x,x0)} denotes the set of all individuals
similar to x according to f. Then, in the second step, we find the parameters
y that minimize the constraint loss at x⇤:

arg min
y

Ex⇠D [L (f =) w) (x,x⇤)] .

Note that in the outer loop, we are finding parameters y that minimize the
loss of the original constraint from Eq. (5.4), while in the inner loop, we
are finding a counterexample x⇤ by minimizing the loss corresponding to
the negation of this constraint. We use Adam [148] for optimizing the outer
problem. For the inner minimization problem, Fischer et al. [125] further
refine the loss by excluding constraints that have closed-form analytical so-
lutions, e.g., max {kx� x0k• � d, 0} which can be minimized by projecting
x0 onto the `•-ball of radius d around x. The resulting objective is thus

x⇤ = arg min
x02C

L (r)
�
x,x0

�
,

where C is the convex set and r is ¬ (f =) w) without the respective
constraints. It has been shown [32] that such an objective can be efficiently
solved with Projected Gradient Descent (PGD).

DL2 does not provide a meaningful translation for categorical constraints,
which are essential to fairness, which we derive separately.

predictive utility of the representation Recall that our method
is modular in the sense that the data producer and the data consumer mod-
els are learned separately. Thus, the data producer needs to ensure that
the latent representation remains informative for downstream applications

5.4 certifying individual fairness 53

(represented by the data consumer model hq). To that end, the data pro-
ducer additionally trains a classifier q : Rk

! Ro that tries to predict the
target label y from the latent representation z = fy(x). Thus, the data
producer seeks to jointly train the encoder fy and classifier q to minimize
the combined objective

arg min
fy ,q

Ex,y
⇥
LC

�
q
�

fy (x)
�

, y
�
+ gLF

�
x, fy(x)

�⇤
, (5.5)

where LC is any suitable classification loss (e.g., cross-entropy), LF is
the fairness constraint loss obtained via DL2, and the hyperparameter g
balances the two objectives.

training robust classifier hq We assume the encoder fy has been
trained to maintain predictive utility and satisfy Eq. (5.4). Recall that, given
this assumption, the data consumer who wants to ensure classifier hq is
individually fair, only needs to ensure local robustness of the classifier for
perturbations up to d in l•-norm. This is a standard problem in robust ma-
chine learning [149] and can be solved via min-max optimization, recently
found to work well for neural network models [32]:

min
q

Ez⇠Dz

"
max

⇡2[±d]k
LC (hq(z + ⇡), y)

#
,

where Dz is the latent distribution obtained by sampling from D and
applying the encoder fy, and LC is a suitable classification loss. The opti-
mization alternates between: (i) trying to find ⇡ 2 [�d, d]k that maximizes
LC (hq(z + ⇡), y), and (ii) updating q to minimize LC (hq(z + ⇡), y) under
such worst-case perturbations ⇡.

5.4 certifying individual fairness

In this section we discuss how the data consumer can compute a certificate
of individual fairness for their model hq trained on the latent representation
(as described in §5.3 above). We split this process into two steps: (i) the
data producer propagates a data point x through the encoder to obtain
z = fy (x) and computes the radius e of the smallest `•-ball around z that
contains the latent representations of all similar individuals fy

⇣
S

f
0 (x)

⌘
,

i.e., fy

⇣
S

f
0 (x)

⌘
✓ B• (z, e), and (ii) the data consumer checks whether all

54 learning certified individually fair representations

points in the latent space that differ by at most e from z are classified to
the same label, i.e., hq (z) = hq (z

0) for all z0 2 B• (z, e). We now discuss
both of these steps.

5.4.1 Certifying Latent Similarity

To compute the minimum e which ensures that fy

⇣
S

f
0 (x)

⌘
✓ B• (z, e),

the data producer models the set of similar individuals S
f
0 (x) and the

encoder fy as a mixed-integer linear program (MILP).

modeling S
f
0 as milp We use an example to demonstrate the encoding

of logical constraints with MILP. Consider an individual x that has two cat-
egorical features x1 = [1, 0, . . . , 0] and x2 = [0, . . . , 0, 1] and one numerical
feature x3, with the following constraint for similarity:

f
�
x,x0

�
:=

�
x1 = x01

�
^
�
|x3 � x03|  a

�
.

Here x is an individual from the test dataset and can be treated as constant,
while x0 is encoded using mixed-integer variables. For every categorical
feature x0i we introduce k binary variables vl

i with l = 1, . . . , k, where k is
the number of distinct values this categorical feature can take. For the fixed
categorical feature x01, which is equal to x1, we add the constraints v1

1 = 1
and vl

1 = 0 for l = 2, . . . , k. To model the free categorical feature x02 we add
the constraint Âl vl

2 = 1 thereby enforcing it to take on exactly one of the
k potential values. Finally, the numerical attribute x03 can be modeled by
adding a corresponding variable v3 with the two constraints: v3 � x3 � a
and v3  x3 + a. It can be easily verified that our encoding of Sf is exact.

Consider now a fairness constraint including disjunctions, i.e., f :=
f1 _ f2. To model such a disjunction we introduce two auxiliary binary
variables v1 and v2 with the constraints vi = 1 () fi (x,x0) = 1 for
i = 1, 2 and v1 + v2 � 1. Note that the encodings demonstrated on these
two examples can be applied for general constraints f.

modeling f y as milp To model the encoder we employ the method
from Tjeng, Xiao, and Tedrake [45] which is exact for neural networks with
ReLU activations. We recall that a ReLU performs max {t, 0} for some input
t. Given an upper and lower bound on t, i.e., t 2 [l, u] we can encode the
output of ReLU exactly via case distinction: (i) if u  0 add a variable with
upper and lower bound 0 to MILP, (ii) if l � 0 add a variable with upper

5.4 certifying individual fairness 55

and lower bounds u and l respectively to MILP, and (iii) if l < 0 < u, add
a variable v and a binary indicator i to MILP in addition to the following
constraints:

0  v  t · i,
t  v  t� l · (1� i),

i = 1 () 0  t.

Finally, given the MILP formulation of S
f
0 and fy we can compute e by

solving the following k MILP instances (where k is the dimension of the
latent space):

êj = max
x02S

f
0 (x)

|
⇥

fy (x)
⇤

j �
⇥

fy
�
x0
�⇤

j|.

We compute the final result as e = max{ê1, ê2, . . . êk}.

5.4.2 Certifying Local Robustness

The data consumer obtains a point in latent space z and a radius e. To
obtain a fairness certificate, the data consumer certifies that all points in the
latent space at `•-distance at most e from z are mapped to the same label
as z. This amounts to solving the following MILP optimization problem for
each logit [hq(z

0)]y0 with label y0 different from the true label y:

max
z02B•(z,e)

[hq(z
0)]y0 � [hq(z

0)]y.

If the solution of the above optimization problem is less than zero for each
y0 6= y, then robustness of the classifier hq is provably established. Note
that, the data consumer can employ same methods as the data producer
to encode the classifier as MILP [45] and benefit from any corresponding
advancements in solving MILP instances in the context of neural network
certification, e.g., [150].

We now formalize our certificate, that allows the data consumer to prove
individual fairness of M, once given z and e by the data producer:

Theorem 2. (Individual fairness certificate) Suppose M = hq � fy with data
point x and similarity notion f. Furthermore, let z = fy(x) be encoded rep-

56 learning certified individually fair representations

resentation, S
f
0 (x) = {x0 2 Rn

| f(x,x0)} the set of similar points, and
e = max

x02S
f
0 (x)

||z � fy(x0)||• a given radius. If

max
z02B•(z,e)

[hq(z
0)]y0 � [hq(z

0)]y < 0

for all labels y0 different from the true label y, then for all x0 2 S
f
0 (x) we have

M(x) = M(x0).

5.5 experimental evaluation

We implement our method in a tool called LCIFR and present an exten-
sive experimental evaluation. We consider a variety of different datasets
— Adult [151], Compas [152], Crime [151], German [151], Health (https:
//www.kaggle.com/c/hhp), and Law School [153]. We perform the following
preprocessing on all datasets: (i) normalize numerical attributes to zero
mean and unit variance, (ii) one-hot encode categorical features, (iii) drop
rows and columns with missing values, and (iv) split into train, test and val-
idation sets. Although we only consider datasets with binary classification
tasks, we note that our method straightforwardly extends to the multiclass
case. We perform all experiments on a desktop PC using a single GeForce
RTX 2080 Ti GPU and 16-core Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz.
We make all code, datasets and preprocessing pipelines publicly available at
https://github.com/eth-sri/lcifr to ensure reproducibility of our results.

experiment setup We model the encoder fy as a neural network, and
we use logistic regression as a classifier hq . We perform a grid search over
model architectures and loss balancing factors g which we evaluate on the
validation set. As a result, we consider fy with 1 hidden layer of 20 neurons
(except for Law School where we do not have a hidden layer) and a latent
space of dimension 20. We fix g to 10 for Adult, Crime, and German, to 1
for Compas and Health, and to 0.1 for Law School.

fairness constraints We propose a range of different constraints for
which we apply our method. These constraints define the similarity between
two individuals based on their numerical attributes (Noise), categorical
attributes (Cat), or combinations thereof (Cat + Noise). Furthermore, we
consider more involved similarity notions based on disjunctions (Attribute)

https://www.kaggle.com/c/hhp
https://www.kaggle.com/c/hhp
https://github.com/eth-sri/lcifr

5.5 experimental evaluation 57

Accuracy (%) Certified (%)
Constraint Dataset Base LCIFR Base LCIFR

Noise

Adult 83.0 81.4 59.0 97.8
Compas 65.8 63.4 32.1 79.0
Crime 84.4 83.1 7.4 66.9

German 76.5 74.0 71.0 97.5
Health 80.8 81.1 75.4 97.8

Law School 84.4 84.6 57.9 69.2

Cat

Adult 83.3 83.1 79.9 100
Compas 65.6 66.3 90.9 100
Crime 84.4 83.9 78.3 100

German 76.0 75.5 88.5 100
Health 80.7 80.9 64.1 99.8

Law School 84.4 84.4 25.6 51.1

Cat + Noise

Adult 83.3 81.3 47.5 97.6
Compas 65.6 63.7 30.9 75.6
Crime 84.4 81.5 6.2 63.3

German 76.0 70.0 68.0 95.5
Health 80.7 80.7 24.7 97.3

Law School 84.4 84.5 11.6 28.9

Attribute
Adult 83.0 80.9 49.3 94.6

German 76.5 73.5 65.0 96.5
Law School 84.3 86.9 46.4 62.6

Quantiles Law School 84.2 84.2 56.5 76.9

Table 5.1: Accuracy and certified individual fairness. We compare the accuracy
and percentage of certified individuals with a baseline obtained from
setting the loss balancing factor g = 0. LCIFR produces a drastic
increase in certified individuals while only incurring minor decrease
in accuracy.

and quantiles of certain attributes to counter subordination between social
groups [127] (Quantiles).

applying our method in practice We assume that the data regu-
lator has defined the above constraints. First, we act as the data producer
and learn a representation that enforces the individual fairness constraints
using our method from §5.3. After training, we compute e for every indi-
vidual data point in the test set and pass it to the data consumer along
with the latent representation of the entire dataset as described in §5.4.1.
Second, we act as data consumer and use our method from §5.3 to learn
a locally-robust classifier from the latent representation. Finally, to obtain

58 learning certified individually fair representations

Task Label Accuracy (%) Certified (%)

Original charlson index 73.8 96.9

Transfer

msc2a3 73.7 86.1
metab3 75.4 93.6

arthspin 75.4 93.7
neument 73.8 97.1

respr4 72.4 98.4

Table 5.2: Accuracy and percentage of certified individuals for transferable rep-
resentation learning on Health dataset with Cat + Noise constraint.
The transfer labels are omitted during training and the data producer
objective is augmented with a reconstruction loss. This allows the data
consumer to achieve high accuracies and certification rates across a
variety of (potentially unknown) tasks.

a certificate of individual fairness, we use e to certify the classifier via our
method from §5.4.2.

In Table 5.1 we compare the accuracy and percentage of certified individ-
uals (i.e., the empirical approximation of a lower bound on Eq. (5.1)) with
a baseline encoder and classifier obtained from standard representation
learning (i.e., g = 0). We do not compare with other approaches for learn-
ing individually fair representations since they either consider a different
similarity metric or employ nonlinear components that cannot be efficiently
certified. It can be observed that LCIFR drastically increases the percentage
of certified individuals across all constraints and datasets. We would like to
highlight the relatively low (albeit still significantly higher than baseline)
certification rate for the Law School dataset. This is due to the relatively
small loss balancing factor g = 0.1 which only weakly enforces the indi-
vidual fairness constraint during training. Finally, we report the following
mean certification runtime per input, averaged over all constraints: 0.29s on
Adult, 0.35s on Compas, 1.23s on Crime, 0.28s on German, 0.68s on Health,
and 0.02s on Law School, showing that our method is computationally
efficient.

fair transfer learning We follow Madras et al. [68] to demonstrate
that our method is compatible with transferable representation learning.
We also consider the Health dataset, for which the original task is to predict
the Charlson Index. To demonstrate transferability, we omit the primary
condition group labels from the set of features, and try to predict them

5.6 discussion 59

from the latent representation without explicitly optimizing for the task.
To that end, the data producer additionally learns a decoder g (z), which
tries to predict the original attributes x from the latent representation,
thereby not only retaining task-specific information on the Charlson Index.
This amounts to adding a reconstruction loss LR

�
x, g

�
fy (x)

��
(e.g., `2)

to the objective in Eq. (5.5). Assuming that our representations are in fact
transferable, the data consumer is now free to choose any classification
objective. We note that our certification method straightforwardly extends
to all possible prediction tasks allowing the data consumer to obtain fairness
certificates regardless of the objective. Here, we let the data consumer train
classifiers for both the original task and to predict the 5 most common
primary condition group labels. We display the accuracy and percentage
of certified data points on all tasks in Table 5.2. The table shows that
our learned representation transfers well across tasks while additionally
providing provable individual fairness guarantees.

5.6 discussion

We introduced a novel end-to-end framework for learning representations
with provable certificates of individual fairness. We demonstrated that our
method is compatible with existing notions of fairness, such as transfer
learning. Our evaluation across different datasets and fairness constraints
demonstrates the practical effectiveness of our method.

impact There has been extensive follow-up work on learning represen-
tations with individual fairness guarantees [10, 24] as well as other types
of guarantees (e.g. group fairness). Recent work [154] certified different
notions of individual fairness and in Peychev et al. [10] we extended the
method for learning certified individually fair representations described in
this chapter to vision models where individual fairness is defined in the la-
tent space of a generative model. Another work [155] considered extending
the specification of individual similarity from hard-coded logical formulas
to those obtained via combination of language models and crowd-sourcing.

6
L E A R N I N G C E RT I F I E D G R O U P FA I R
R E P R E S E N TAT I O N S

As discussed in Chapter 5, fair representation learning has become one of
the most promising ways to encode data into new representations with high
fairness and utility. While in the previous chapter the fairness was defined
as individual fairness, in this chapter we focus on group fairness which
is more widely used in practice due to its computational simplicity. More
concretely, the goal is to ensure that representations have two properties: (i)
they are informative for various prediction tasks of interest, (ii) sensitive
attributes of the original data (e.g., race) cannot be recovered from the
representations (which implies group fairness). Perhaps the most prominent
approach for learning such fair representations is adversarial training [68,
71, 72, 73, 74], which jointly trains an encoder trying to transform data
into a fair representation with an adversary attempting to recover sensitive
attributes from the representation. However, several recent lines of work [69,
77, 156, 157, 158, 159] have noticed that these approaches do not produce
truly fair representations: stronger adversaries can in fact recover sensitive
attributes. Clearly, this could allow malicious or ignorant users to use the
provided representations to discriminate.

key challenge This raises the following question: Can we learn repre-
sentations which provably guarantee that sensitive attributes cannot be recovered?
More concretely, can we learn an encoder f that maps tuple of input and
attribute (x, a) to a new representation z such that any classifier h trained
to predict the sensitive attribute a from z provably (with high confidence)
has accuracy below some threshold?

this chapter Following prior work, we focus on tabular datasets used
for tasks such as loan or insurance assessment where fairness is of high
relevance. We assume that the original input data x comes from two proba-
bility distributions p0 and p1, representing groups with sensitive attributes
a = 0 and a = 1, respectively. In the cases where distributions p0 and p1
are known, we will obtain provable fairness guarantees, and otherwise
we perform density estimation and obtain guarantees with respect to the
estimated distribution. In our experimental evaluation we confirm that the

61

62 learning certified group fair representations

x

z

p0(x) p1(x)

pZ0(z)

pZ1(z)

x ⇠ pa

9h : P(y = h(x)) ⇡ 1

9g : P(a = g(x)) ⇡ 1

FNF

z ⇠ pZa

9h : P(y = h(z)) ⇡ 1

8g : P(a = g(z))  1+D
2 ⇡

1
2

z1 = f1(x)

z0 = f0(x)

x1 = f�1
1 (z)

x0 = f�1
0 (z)

Figure 6.1: Overview of Fair Normalizing Flows (FNF). There are two encoders,
f0 and f1, that transform the two input distributions p0 and p1 into
latent distributions pZ0 and pZ1 with a small statistical distance D ⇡
0. Without FNF, a strong adversary g can easily recover sensitive
attribute a from the original input x, but once inputs are passed
through FNF, we are guaranteed that any adversary that tries to guess
sensitive attributes from latent z cannot be significantly better than
random chance. At the same time, we can ensure that any benevolent
user h maintains high utility.

bounds computed on the estimated distribution in practice also bound ad-
versarial accuracy on the true distribution, meaning that density estimation
works well for the setting we consider.

To address the above challenges, we propose Fair Normalizing Flows
(FNF), a new method for learning fair representations with guarantees. In
contrast to other approaches where encoders are standard feed-forward
neural networks, we instead model the encoder as a normalizing flow [25].
Fig. 6.1 provides a high-level overview of FNF. As shown on the left in
Fig. 6.1, using raw inputs x allows us to train high-utility classifiers h,
but at the same time does not protect against the existence of a malicious
adversary g that can predict a sensitive attribute a from the features in x.
Our architecture consists of two flow-based encoders f0 and f1, where flow
fa transforms probability distribution pa(x) into pZa(z) by mapping x into
z = fa(x). The goal of the training procedure is to minimize the distance D
between the resulting distributions pZ0(z) and pZ1(z) so that an adversary
cannot distinguish between them. Intuitively, after training our encoder,
each latent representation z can be inverted into original inputs x0 = f�1

0 (z)

and x1 = f�1
1 (z) that should ideally have similar probability w.r.t. p0 and

p1, meaning that even the optimal adversary cannot distinguish which of
them actually produced latent z. Crucially, as normalizing flows enable us
to compute the exact likelihood in the latent space, for trained encoders we

6.1 related work 63

can upper bound the accuracy of any adversary with 1+D
2 , which should

be small if training was successful. Furthermore, the distance D provides a
tight upper bound [68] on common fairness notions such as demographic
parity [143] and equalized odds [160]. As shown on the right in Fig. 6.1,
we can still train high-utility classifiers h using our representations, but
now we can actually guarantee that no adversary g can recover sensitive
attributes better than chance.

We empirically demonstrate that FNF can substantially increase prov-
able fairness without significantly sacrificing accuracy on several common
datasets. Additionally, we show that the invertibility of FNF enables algo-
rithmic recourse, allowing us to examine how to reverse a negative decision
outcome.

main contributions Our key contributions are:

• A novel fair representation learning method, called Fair Normalizing
Flows (FNF), which guarantees that the sensitive attributes cannot
be recovered from the learned representations at the cost of a small
decrease in classification accuracy.

• Experimental evaluation demonstrating that FNF can provably remove
sensitive attributes from the representations, while keeping accuracy
for the prediction task sufficiently high.

• Extensive investigation of algorithmic recourse and applications of
FNF to transfer learning.

6.1 related work

In this chapter, we focus on group fairness, which requires certain clas-
sification statistics to be equal across different groups of the population.
Concretely, we consider demographic parity [143], equalized odds [160],
and equality of opportunity [160], which are widely studied in the litera-
ture [67, 68, 71]. Algorithms enforcing such fairness notions target various
stages of the machine learning pipeline: Pre-processing methods trans-
form sensitive data into an unbiased representation [67, 146], in-processing
methods modify training by incorporating fairness constraints [161, 162],
and post-processing methods change the predictions of a pre-trained clas-
sifier [160]. Here, we consider fair representation learning [67], which
computes data representations that hide sensitive information, e.g. group

64 learning certified group fair representations

membership, while maintaining utility for downstream tasks and allowing
transfer learning.

recovering sensitive attributes from representations Fair
representations can be learned with a variety of different approaches, in-
cluding variational autoencoders [69, 70], adversarial training [68, 71, 72, 73,
74, 75, 76, 77], and disentanglement [78, 79]. Adversarial training methods
minimize a lower bound on demographic parity, namely an adversary’s
accuracy for predicting the sensitive attributes from the latent representa-
tion. However, since these methods only empirically evaluate worst-case
unfairness, adversaries that are not considered during training can still
recover sensitive attributes from the learned representations [69, 77, 156,
157, 158, 159]. These findings illustrate the necessity of learning represen-
tations with provable guarantees on the maximum recovery of sensitive
information regardless of the adversary, which is precisely the goal of this
chapter. Prior work makes first steps in this direction: Gupta et al. [158]
upper bound a monotonically increasing function of demographic parity
with the mutual information between the latent representation and sensitive
attributes. However, the monotonic nature of this bound prevents comput-
ing guarantees on the reconstruction power of the optimal adversary. Feng
et al. [77] minimize the Wasserstein distance between latent distributions
of different protected groups, but only provide an upper bound on the
performance of any Lipschitz continuous adversary. However, as we will
show, the optimal adversary is generally discontinuous. Cerrato et al. [163]
also learn fair representations using normalizing flows, but different to us,
they do not use exact likelihood computation to provide theoretical fairness
guarantees.

provable group fairness guarantees The ongoing development
of guidelines on the fair usage of AI [164, 165, 166] has spurred inter-
est in provably fair algorithms. Unlike this chapter, the majority of these
efforts [146, 167, 168], including our approach in Chapter 5, focus on in-
dividual fairness. Individual fairness is also tightly linked to differential
privacy [143, 169], which guarantees that an attacker cannot infer whether
a given individual was present in the dataset or not, but these models can
still admit reconstruction of sensitive attributes by leveraging population-
level correlations [144]. Group fairness certification methods [170, 171, 172]
generally only focus on certification and, unlike this chapter, do not learn
representations that are provably fair.

6.2 background 65

6.2 background

We assume that the data (x, a) 2 Rd
⇥A comes from a probability distribu-

tion p, where x represents the features and a represents a sensitive attribute.
In this chapter, we focus on the case where the sensitive attribute is binary,
meaning A = {0, 1}. Given p, we can define the conditional probabilities
as p0(x) = P(x | a = 0) and p1(x) = P(x | a = 1). We are interested in
classifying each sample (x, a) to a label y 2 {0, 1}, which may or may not
be correlated with the sensitive attribute a. Our goal is to build a classifier
ŷ = h(x) that tries to predict y from the features x, while satisfying certain
notions of fairness. Next, we present several definitions of fairness relevant
for this chapter.

fairness criteria A classifier h satisfies demographic parity if it assigns
positive outcomes to both sensitive groups equally likely, i.e., P(h(x) = 1 |

a = 0) = P(h(x) = 1 | a = 1). If demographic parity cannot be satisfied,
we consider demographic parity distance, defined as |E [h(x) | a = 0] �
E [h(x) | a = 1]|. An issue with demographic parity occurs if the base rates
differ among the attributes, i.e., P(y = 1 | a = 0) 6= P(y = 1 | a = 1).
In that case, even the ground truth label y does not satisfy demographic
parity. Thus, Hardt, Price, and Srebro [160] introduced equalized odds, which
requires that P(h(x) = 1 | y = y0, a = 0) = P(h(x) = 1 | y = y0, a = 1) for
y0 2 {0, 1}.

fair representations Instead of directly predicting y from x, Zemel
et al. [67] introduced the idea of learning fair representations of data. The
idea is that a data producer preprocesses the original data x to obtain a
new representation z = f (x, a). Then, any data consumer, who is using
this data to solve a downstream task, can use z as an input to the classifier
instead of the original data x. Thus, if the data producer can ensure that
data representation is fair (w.r.t. some fairness notion), then all classifiers
employing this representation will automatically inherit the fairness prop-
erty. However, due to inherent biases of the dataset, this fairness increase
generally results in a small accuracy decrease.

normalizing flows Flow-based generative models [25, 173, 174, 175]
provide an attractive framework for transforming any probability distri-
bution q into another distribution q̄. Accordingly, they are often used to
estimate densities from data using the change of variables formula on a

66 learning certified group fair representations

sequence of invertible transformations, so-called normalizing flows [25].
In this chapter, however, we mainly leverage the fact that flow models
sample a latent variable z from a density q̄(z) and apply an invertible
function f✓ , parametrized by ✓, to obtain datapoint x = f�1

✓ (z). Given
a density q(x), the exact log-likelihood is then obtained by applying the
change of variables formula log q(x) = log q̄(z) + log|det(dz/dx)|. Thus,
for f✓ = f1 � f2 � . . . � fK with r0 = x, fi(ri�1) = ri, and rK = z, we have

log q(x) = log q̄(z) +
K

Â
i=1

log|det(dri/dri�1)|. (6.1)

An appropriate choice of transformations fi [25, 173, 174] makes the com-
putation of the log-determinant tractable, resulting in efficient training and
sampling. Alternative generative models cannot compute the exact log-
likelihood (e.g., VAEs [176], GANs [177]) or have inefficient sampling (e.g.,
autoregressive models). Our approach is also related to discrete flows [178,
179] and alignment flows [180, 181]. However, alignment flows jointly learn
the density and the transformation, unlike the fairness setting where these
are computed by different entities.

6.3 motivation

In this section, we motivate our approach by highlighting some key issues
with fair representation learning based on adversarial training. Consider
a distribution of samples x = (x1, x2) 2 R2 divided into two groups,
shown as blue and orange in Fig. 6.2. The first group with a sensitive
attribute a = 0 has a distribution (x1, x2) ⇠ p0, where p0 is a mixture of two
Gaussians N ([�3, 3], I) and N ([3, 3], I). The second group with a sensitive
attribute a = 1 has a distribution (x1, x2) ⇠ p1, where p1 is a mixture of two
Gaussians N ([�3,�3], I) and N ([3,�3], I). The label of a point (x1, x2) is
defined by y = 1 if sign(x1) = sign(x2) and y = 0 otherwise. Our goal
is to learn a data representation z = f (x, a) such that it is impossible to
recover a from z, but still possible to predict target y from z. Note that such
a representation exists for our task: simply setting z = f (x, a) = (�1)ax
makes it impossible to predict whether a particular z corresponds to a = 0
or a = 1, while still allowing us to train a classifier h with essentially perfect
accuracy (e.g., h(z) = 1{z1>0}).

6.3 motivation 67

Figure 6.3: Sensitive attribute recovery rates for adversarial training and fair
normalizing flows (FNF) with 100 different random seeds.

adversarial training for fair representations Adversarial
training [68, 71] is an approach that trains encoder f and classifier h jointly
with an adversary g trying to predict the sensitive attribute a. While the
adversary tries to minimize its loss Ladv, the encoder f and classifier h are
trying to maximize Ladv and minimize the classification loss Lcl f as

min
f ,h

max
g2G

E(x,a)⇠D

h
Lcl f (f (x, a), h)� gLadv(f (x, a), g)

i
, (6.2)

where G denotes the model family of adversaries, e.g., neural networks,
considered during training. Unfortunately, there are two key issues with ad-
versarial training. First, it yields a non-convex optimization problem, which
usually cannot be solved to optimality because of saddle points. Second, it
assumes that the adversary g comes from a fixed model family G, which
means that even if the optimal g 2 G cannot recover the sensitive attribute
a, adversaries from other model families can still do so as demonstrated
in recent work [69, 77, 156, 157, 158]. To investigate these issues, we apply
adversarial training to learn representations for our synthetic example, and
measure how often the sensitive attributes can be recovered from learned
representations. Our results, shown in Fig. 6.3, repeated 100 times with
different seeds, demonstrate that adversarial training is unstable and rarely
results in truly fair representations (where only 50% can be recovered). In
§6.5 we follow up on recent work and show that several adversarial fair
representation learning approaches do not work against adversaries from
a different model familiy (e.g., larger networks). In Fig. 6.3 we show that

68 learning certified group fair representations

our approach, introduced next, can reliably produce fair representations
without affecting the utility.

6.4 fair normalizing flows

Throughout this section we will assume knowledge of prior distributions
p0(x) and p1(x). At the end of the section, we discuss the required changes
if we only work with estimates. Let Z0 and Z1 denote conditional dis-
tributions of z = f (x, a) for a 2 {0, 1}, and let pZ0 and pZ1 denote their
respective densities. Madras et al. [68] have shown that bounding the statis-
tical distance D(pZ0 , pZ1) between Z0 and Z1 provides an upper bound on
the unfairness of any classifier h built on top of the representation encoded
by f . The statistical distance between Z0 and Z1 is defined similarly to
maximum mean discrepancy (MMD) [182] between the two distributions:

D(pZ0 , pZ1) , sup
µ2B

|Ez⇠Z0 [µ(z)]�Ez⇠Z1 [µ(z)]|, (6.3)

where µ : Rd
! {0, 1} is a function in a set of all binary classifiers B

trying to discriminate between Z0 and Z1. If we can train an encoder
to induce latent distributions Z0 and Z1 with statistical distance below
some threshold, then we can both upper bound the maximum adversarial
accuracy by (1 + D(pZ0 , pZ1))/2 and, using the bounds from Madras et al.
[68], obtain guarantees for demographic parity and equalized odds of any
downstream classifier h. Such guarantees are unattainble for adversarial
training, which minimizes a lower bound of D(pZ0 , pZ1). In contrast, we
learn fair representations that allow computing the optimal adversary µ⇤

attaining the supremum in Eq. (6.3) and thus enable exact evaluation of
D(pZ0 , pZ1).

optimal adversary In the following lemma we state the form of
an optimal adversary which attains the supremum in the definition of
statistical distance in Eq. (6.3). The full proof can be found in Balunović,
Ruoss, and Vechev [4].

Lemma 1. The adversary µ⇤ attaining the supremum in the definition of D(pZ0 , pZ1)
can be defined as µ⇤(z) = 1{pZ0 (z)pZ1 (z)}

, namely it evaluates to 1 if and only if
pZ0(z)  pZ1(z).

This intuitively makes sense – given some representation z, the adversary
computes likelihood under both distributions Z0 and Z1, and predicts the

6.4 fair normalizing flows 69

attribute with higher likelihood for that z. Liao et al. [75] also observed
that the optimal adversary can be phrased as arg maxa p(a|z). So far, prior
work mostly focused on mapping input x to the latent representation
z = fq(x, a) via standard neural networks. However, for such models, given
densities p0(x) and p1(x) over the input space, it is intractable to compute
the densities pZ0(z) and pZ1(z) in the latent space as many inputs x can be
mapped to the same latent z and we cannot use inverse function theorem.
Consequently, adversarial training methods cannot compute the optimal
adversary and thus resort to a lower bound.

encoding with normalizing flows Our approach, named Fair
Normalizing Flows (FNF), consists of two models, f0 and f1, that encode in-
puts from the groups with sensitive attributes a = 0 and a = 1, respectively.
We show a high-level overview of FNF in Fig. 6.1. Note that models f0 and
f1 are parameterized by q0 and q1, but we do not write this explicitly to ease
the notation. Given some input x0 ⇠ p0, it is encoded to z0 = f0(x0), induc-
ing a probability distribution Z0 with density pZ0(z) over all possible latent
representations z. Similarly, inputs x1 ⇠ p1 are encoded to z1 = f1(x1),
inducing the probability distribution Z1 with density pZ1(z). Clearly, if we
can train f0 and f1 so that the resulting distributions Z0 and Z1 have small
distance, then we can guarantee fairness of the representations using the
bounds from Madras et al. [68]. As evaluating the statistical distance is
intractable for most neural networks, we need a model family that allows
us to compute this quantity.

We propose to use bijective encoders f0 and f1 based on normalizing
flows [25] which allow us to compute the densities at z using the change of
variables formula

log pZa(z) = log pa(f�1
a (z)) + log

����det
∂ f�1

a (z)
∂z

���� (6.4)

for a 2 {0, 1}. Recall that Lemma 1 provides a form of the optimal adversary.
To compute the statistical distance it remains to evaluate the expectations
Ez⇠Z0 [µ

⇤(z)] and Ez⇠Z1 [µ
⇤(z)]. Sampling from Z0 and Z1 is straightfor-

ward – we can sample x0 ⇠ p0 and x1 ⇠ p1, and then pass the samples x0
and x1 through the respective encoders f0 and f1 to obtain z0 ⇠ Z0 and
z1 ⇠ Z1. Given that the outputs of µ⇤ are bounded between 0 and 1, we
can then use Hoeffding inequality to compute the confidence intervals for
our estimate using a finite number of samples.

70 learning certified group fair representations

Algorithm 3 Learning Fair Normalizing Flows
Input: N, B, g, p0, p1
Initialize h, f0, f1 with parameters qh, q0, q1
for i = 1 to N do

for j = 1 to B do

Sample x
j
0 ⇠ p0,xj

1 ⇠ p1

z
j
0 = f0(x

j
0)

z
j
1 = f1(x

j
1)

end for

L0 = 1
B ÂB

j=1(log pZ0(z
j
0)� log pZ1(z

j
0))

L1 = 1
B ÂB

j=1(log pZ1(z
j
1)� log pZ0(z

j
1))

L = g(L0 + L1) + (1� g)Lcl f
Update qa qa � arqaL, for a 2 {0, 1}
Update qh qh � arqhL

end for

Lemma 2. Given a finite number of samples x1
0,x2

0, ...,xn
0 ⇠ p0 and x1

1,x2
1, ...,xn

1 ⇠

p1, denote as zi
0 = f0(xi

0) and zi
1 = f1(xi

1) and let
D̂(pZ0 , pZ1) := |

1
n Ân

i=1 µ⇤(zi
0)�

1
n Ân

i=1 µ⇤(zi
1)| be an empirical estimate of the

statistical distance D(pZ0 , pZ1). Then, for n � �2 log
⇣

1�
p

1�d
2

⌘
/e2 we are

guaranteed that D(pZ0 , pZ1)  D̂(pZ0 , pZ1) + e with probability at least 1� d.

training flow-based encoders The next challenge is to design a
training procedure for our newly proposed architecture. The main issue is
that the statistical distance is not differentiable (as the classifier µ⇤ is binary),
so we replace it with a differentiable proxy based on the symmetrized KL
divergence, shown in Lemma 3 below (proof provided in Balunović, Ruoss,
and Vechev [4]. We show a high-level description of our training procedure
in Algorithm 3. In each step, we sample a batch of x0 and x1 from the
respective distributions and encode them to the representations z0 and z1.
We then estimate the symmetrized KL divergence between distributions
Z0 and Z1, denoted as L0 + L1, and combine it with a classification loss
Lcl f using tradeoff parameter g, and perform a gradient descent step to
minimize the joint loss. While we use a convex scalarization scheme to
obtain the joint loss in Algorithm 3, our approach is independent of the
concrete multi-objective optimization objective.

6.4 fair normalizing flows 71

Lemma 3. We can bound D(pZ0 , pZ1)
2


1
4 (KL(pZ0 , pZ1) + KL(pZ1 , pZ0)).

bijective encoders for categorical data Many fairness datasets
consist of categorical data, and often even continuous data is discretized
before training. In this case, we will show that the optimal bijective repre-
sentation can be easily computed. Consider the case of discrete samples
x coming from a probability distribution p(x) where each component xi
takes a value from a finite set {1, 2, . . . , di}. Similar to the continuous case,
our goal is to find bijections f0 and f1 that minimize the statistical distance
of the latent distributions. Intuitively, we want to pair together inputs that
have similar probabilities in both p0 and p1. In Lemma 4 we show that the
solution that minimizes the statistical distance is obtained by sorting the in-
puts according to their probabilities in p0 and p1, and then matching inputs
at the corresponding indices in these two sorted arrays. As this can result
in a bad classification accuracy when inputs with different target labels
get matched together, we can obtain another representation by splitting
inputs in two groups according to the predicted classification label and then
matching inputs in each group using Lemma 4. We can trade off accuracy
and fairness by randomly selecting one of the two mappings based on a
parameter g.

Lemma 4. Let X = {x1, ...,xm} and bijections f0, f1 : X ! X . Denote
i1, i2, ..., im and j1, ..., jm permutations of {1, 2, ..., m} such that
p0(xi1)  p0(xi2)  ...  p0(xim) and p1(xj1)  p1(xj2)  ...  p1(xjm).
The encoders defined by mapping f0(xk) = xk and f1(xjk) = xik are bijective
representations with the smallest possible statistical distance.

statistical distance of true estimated density In this chapter
we assume access to a density of the inputs for both groups and we provably
guarantee fairness with respect to this density. While it is sensible in the
cases where the density estimate can be trusted (e.g., if it was provided
by a regulatory agency), in many practical scenarios, and our experiments
in §6.5, we only have an estimate p̂0 and p̂1 of the true densities p0 and
p1. We now want to know how far off our guarantees are compared to
the ones for the true density. The following theorem provides a way to
theoretically bound the statistical distance between pZ0 and pZ1 using the
statistical distance between p̂Z0 and p̂Z1 .

Theorem 3. Let p̂0 and p̂1 be density estimates such that TV(p̂0, p0) < e/2
and TV(p̂1, p1) < e/2, where TV stands for the total variation between two

72 learning certified group fair representations

distributions. If we denote the latent distributions f0(p̂0) and f1(p̂1) as p̂Z0 and
p̂Z1 then D(pZ0 , pZ1)  D(p̂Z0 , p̂Z1) + e.

This theorem can be combined with Lemma 2 to obtain a high probability
upper bound on the statistical distance of the underlying true densities
using estimated densities and a finite number of samples. Computing exact
constants for the theorem is often not tractable, but as we will show experi-
mentally, in practice the bounds computed on the estimated distribution
in fact bound adversarial accuracy on the true distribution. Moreover, for
low-dimensional data relevant to fairness, obtaining good estimates can
be provably done for models such as Gaussian Mixture Models [183] and
Kernel Density Estimation [184]. We can thus leverage the rich literature on
density estimation [25, 174, 185, 186, 187] to estimate p̂0 and p̂1. Importantly,
FNF is agnostic to the density estimation method, and can benefit from
future advances in the field. Finally, we note that density estimation has al-
ready been applied in a variety of security-critical areas such as fairness [73],
adversarial robustness [188], and anomaly detection [189].

6.5 experimental evaluation

In this section, we evaluate Fair Normalizing Flows (FNF) on several stan-
dard datasets from the fairness literature. We consider UCI Adult and
Crime [151], Compas [152], Law School [153], and the Health Heritage
dataset. We preprocess Compas and Adult into categorical datasets by
discretizing continuous features, and we keep the other datasets as con-
tinuous. Moreover, we preprocess the datasets by dropping uninforma-
tive features, facilitating the learning of a good density estimate, while
keeping accuracy high. We make all of our code publicly available at
https://github.com/eth-sri/fnf.

evaluating fair normalizing flows We first evaluate FNF’s effec-
tiveness in learning fair representations by training different FNF models
with different values for the utility fairness tradeoff parameter g. We es-
timate input densities using RealNVP [174] for Health, MADE [190] for
Adult and Compas, and Gaussian Mixture Models (GMMs) for the rest
(we also experiment with other density estimation methods [4]). For contin-
uous datasets we use RealNVP as encoder, while for categorical datasets
we compute the optimal bijective representations using Lemma 4. Fig. 6.4
shows our results, each point representing a single model, with models
on the right focusing on classification accuracy, and models on the left

https://github.com/eth-sri/fnf

6.5 experimental evaluation 73

(a) Continuous datasets (b) Categorical datasets

Figure 6.4: Fair Normalizing Flows (FNF) on continuous and categorical data.
The points show different accuracy vs. statistical distance tradeoffs
(with 95% confidence intervals from varied random seeds), demon-
strating that FNF significantly reduces statistical distance while re-
taining high accuracy.

gradually increasing their fairness focus. The results in Fig. 6.4, averaged
over 5 random seeds, indicate that FNF successfully reduces the statistical
distance between representations of sensitive groups while maintaining
high accuracy. We observe that for some datasets (e.g., Law School) en-
forcing fairness only slightly degrades accuracy, while for others there is a
substantial drop (e.g., Crime). In such datasets where the label and sensitive
attribute are highly correlated we cannot achieve fairness and high accuracy
simultaneously [191, 192]. Overall, we see that FNF is generally insensi-
tive to the random seed and can reliably enforce fairness. Recall that we
have focused on minimizing statistical distance of learned representations
because, as mentioned earlier, Madras et al. [68] have shown that fairness
metrics such as demographic parity, equalized odds and equal opportunity
can all be bounded by statistical distance. For example, FNF reduces the
demographic parity distance of a classifier on Health from 0.39 to 0.08 with
an accuracy drop of 3.9% (we also show that FNF has good performance
for equalized odds and equality of opportunity [4]).

bounding adversarial accuracy Recall that the guarantees pro-
vided by FNF hold for estimated densities p̂0 and p̂1. Namely, the maximum
adversarial accuracy for predicting whether the latent representation z orig-
inates from distribution Ẑ0 or Ẑ1 is bounded by (1 + D(p̂Z0 , p̂Z1))/2. In
this experiment, we investigate how well these guarantees transfer to the
underlying distributions Z0 and Z1. In Fig. 6.5 we show our upper bound

74 learning certified group fair representations

Figure 6.5: Bounding adversarial accuracy.

Adv Acc

Acc g 2 G g 62 G Max Adv Acc

Adv Forgetting [76] 85.99 66.68 74.50 7
MaxEnt-ARL [74] 85.90 50.00 85.18 7
LAFTR [68] 86.09 72.05 84.58 7
FNF (our work) 84.43 N/A 59.56 61.12

Table 6.1: Adversarial fair representation learning methods are only fair w.r.t.
adversaries from a training family G while FNF provides a provable
upper bound on the maximum accuracy of any adversary.

on the adversarial accuracy computed from the statistical distance using
the estimated densities (diagonal dashed line), together with adversarial
accuracies obtained by training an adversary, a multilayer perceptron (MLP)
with two hidden layers of 50 neurons, for each model from Fig. 6.4. We also
show 95% confidence intervals obtained using the Hoeffding bound from
Lemma 2. We observe that our upper bound from the estimated densities
p̂0 and p̂1 provides a tight upper bound on the adversarial accuracy for the
true distributions Z0 and Z1. This demonstrates that, even though the exact
constants from Thm. 3 are intractable, our density estimate is good enough
in practice, and our bounds hold for adversaries on the true distribution.

comparison with adversarial training We now compare FNF
with adversarial fair representation learning methods on Adult dataset:
LAFTR-DP (g = 2) [68], MaxEnt-ARL (a = 10) [74], and Adversarial Forget-
ting (r = 0.001, d = 1, l = 0.1) [76]. We train with a family of adversaries G

trying to predict the sensitive attribute from the latent representation. Here,
the families G are MLPs with 1 hidden layer of 8 neurons for LAFTR-DP,

6.5 experimental evaluation 75

and 2 hidden layers with 64 neurons and 50 neurons for MaxEnt-ARL and
Adversarial Forgetting, respectively. In Table 6.1 we show that these meth-
ods generally prevent adversaries from G to predict the sensitive attributes.
However, we can still attack these representations using either larger MLPs
(3 layers of 200 neurons for LAFTR-DP) or simple preprocessing steps
(for MaxEnt-ARL and Adversarial Forgetting) as proposed by Gupta et al.
[158] (essentially reproducing their results). Our results confirm findings
from prior work [77, 157, 158]: adversarial training provides no guarantees
against adversaries outside G. In contrast, FNF computes a provable upper
bound on the accuracy of any adversary for the estimated input distribution,
and Table 6.1 shows that this extends to the true distribution. FNF thus
learns representations with significantly lower adversarial accuracy with
only minor decrease in task accuracy.

algorithmic recourse with fnf We next experiment with FNF’s
bijectivity to perform recourse, i.e., reverse an unfavorable outcome, which
is considered to be fundamental to explainable algorithmic decision-making
[193]. To that end, we apply FNF with g = 1 to the Law School dataset
with three features: LSAT score, GPA, and the college to which the student
applied (ordered decreasingly in admission rate). For all rejected applicants,
i.e., x such that h(fa(x)) = h(z) = 0, we compute the closest z̃ (corre-
sponding to a point x̃ from the dataset) w.r.t. the `2-distance in latent space
such that h(z̃) = 1. We then linearly interpolate between z and z̃ to find a
(potentially crude) approximation of the closest point to z in latent space
with positive prediction. Using the bijectivity of our encoders, we can com-
pute the corresponding average feature change in the original space that
would have caused a positive decision: increasing LSAT by 4.2 (non-whites)
and 7.7 (whites), and increasing GPA by 0.7 (non-whites) and 0.6 (whites),
where we only report recourse in the cases where the college does not
change since this may not be actionable advice for certain applicants [194,
195, 196].

flow architectures In the next experiment we compare the Real-
NVP encoder with an alternative encoder based on the Neural Spline Flows
architecture [197] for the Crime dataset. In Table 6.2 we show the statistical
distance and accuracy for models obtained using different values for the
tradeoff parameter g. We can observe that both flows offer similar perfor-
mance. Note that FNF will benefit from future advances in normalizing

76 learning certified group fair representations

RealNVP NSF

g D Acc D Acc

0.00 1.00 0.85 1.00 0.84
0.02 0.70 0.85 0.71 0.85
0.10 0.53 0.83 0.54 0.83
0.90 0.23 0.69 0.24 0.69

Table 6.2: FNF performance with different flow encoder architectures.

flows research, as it is orthogonal to the concrete flow architecture that is
used for training.

transfer learning Unlike prior work, transfer learning with FNF
requires no additional reconstruction loss since both encoders are invertible
and thus preserve all information about the input data. To demonstrate this,
we follow the setup from Madras et al. [68] and train a model to predict the
Charlson Index for the Health Heritage Prize dataset. We then transfer the
learned encoder and train a classifier for the task of predicting the primary
condition group. Our encoder reduces the statistical distance from 0.99 to
0.31 (this is independent of the label). For the primary condition group
MSC2a3 we retain the accuracy at 73.8%, while for METAB3 it slightly
decreases from 75.4% to 73.1%.

6.6 discussion

In this chapter, we introduced Fair Normalizing Flows (FNF), a method
for learning representations ensuring that no adversary can predict sensi-
tive attributes at the cost of a small accuracy decrease. This guarantee is
stronger than prior work which only considers adversaries from a restricted
model family. The key idea is to use an encoder based on normalizing
flows which allows computing the exact likelihood in the latent space,
given an estimate of the input density. Our experimental evaluation on
several datasets showed that FNF effectively enforces fairness without sig-
nificantly sacrificing utility, while simultaneously allowing interpretation of
the representations and transferring to unseen tasks.

impact The major step forward of FNF was the introduction of the con-
cept of high confidence fairness guarantees for any classifier trained on top
of the learned representations. The main drawback was that the guarantees

6.6 discussion 77

only hold when we know the input distribution, which is rarely the case
in practice. We successfully addressed this problem in our follow-up work
FARE [11] where the key insight was to restrict the representation space of
the encoder (using e.g. decision trees) which allows us to obtain high confi-
dence guarantees via sampling, independent of the actual input distribution.
There has also been other work [198] in this direction, further going into
the direction of obtaining representations with high-confidence guarantees.
Finally, the general problem of inferring sensitive attributes from processed
data has also been relevant in the context of privacy. In Staab et al. [26],
we developed a new method for minimizing the granularity of collected
data which can be seen as a form of representation learning. We also in-
vestigated [27] capabilities of large language models to infer such personal
attributes from text, and the question of learning new representations of
text which hide such information remains open.

7
C O N C L U S I O N A N D O U T L O O K

In this thesis we presented novel approach for achieving and certifying
robustness and fairness in the context of AI Safety using formal and sta-
tistical methods. The first part of the thesis deals with the problem of
certifying and training provably robust neural networks. In Chapter 3, our
contribution was a method for certifying robustness of neural networks to
geometric transformations using a method of sampling and optimization.
Then, in Chapter 4 we proposed a novel training algorithm that can train
highly accurate and certifiably robust neural networks. In the second part
of the thesis we switched to fairness. Chapter 5 and Chapter 6 proposed
new learning methods for representations which are fair with respect to
individual and group fairness notions, respectively. In each chapter, we
also outlined its impact on future work and possible next research steps.
As more and more tasks which were typically solved by different models,
are now being performed using a single foundation model, one major
research direction is to make sure that such foundation model is robust
and fair. Moreover, the scope of vulnerabilities of these foundation models
is far wider than the specifications described in this work. Instead of l•
or geometric transformations, we need to consider all possible input text
modifications, and fairness is often difficult to describe simply as individual
or group fairness. We believe that techniques described in this thesis can be
seen as valuable guidelines to tackle these novel frontier problems.

79

B I B L I O G R A P H Y

[1] Mislav Balunović, Maximilian Baader, Gagandeep Singh, Timon
Gehr, and Martin Vechev. “Certifying Geometric Robustness of Neu-
ral Networks”. In: Advances in Neural Information Processing Systems.
2019.

[2] Mislav Balunović and Martin T. Vechev. “Adversarial Training and
Provable Defenses: Bridging the Gap”. In: ICLR. OpenReview.net,
2020.

[3] Anian Ruoss, Mislav Balunović, Marc Fischer, and Martin T. Vechev.
“Learning Certified Individually Fair Representations”. In: Advances
in Neural Information Processing Systems 33. 2020.

[4] Mislav Balunović, Anian Ruoss, and Martin T. Vechev. “Fair Nor-
malizing Flows”. In: ICLR. OpenReview.net, 2022.

[5] Anian Ruoss, Maximilian Baader, Mislav Balunović, and Martin T.
Vechev. “Efficient Certification of Spatial Robustness”. In: AAAI.
AAAI Press, 2021, 2504.

[6] Mark Niklas Müller, Mislav Balunović, and Martin T. Vechev. “Cer-
tify or Predict: Boosting Certified Robustness with Compositional
Architectures”. In: ICLR. OpenReview.net, 2021.

[7] Wonryong Ryou, Jiayu Chen, Mislav Balunović, Gagandeep Singh,
Andrei Marian Dan, and Martin T. Vechev. “Scalable Polyhedral
Verification of Recurrent Neural Networks”. In: CAV (1). Vol. 12759.
Lecture Notes in Computer Science. Springer, 2021, 225.

[8] Tobias Lorenz, Anian Ruoss, Mislav Balunović, Gagandeep Singh,
and Martin T. Vechev. “Robustness Certification for Point Cloud
Models”. In: ICCV. IEEE, 2021, 7588.

[9] Nikola Jovanović, Mislav Balunović, Maximilian Baader, and Martin
T. Vechev. “On the Paradox of Certified Training”. In: Trans. Mach.
Learn. Res. 2022 (2022).

[10] Momchil Peychev, Anian Ruoss, Mislav Balunović, Maximilian
Baader, and Martin T. Vechev. “Latent Space Smoothing for Indi-
vidually Fair Representations”. In: ECCV (13). Vol. 13673. Lecture
Notes in Computer Science. Springer, 2022, 535.

81

82 bibliography

[11] Nikola Jovanovic, Mislav Balunović, Dimitar Iliev Dimitrov, and Mar-
tin T. Vechev. “FARE: Provably Fair Representation Learning with
Practical Certificates”. In: ICML. Vol. 202. Proceedings of Machine
Learning Research. PMLR, 2023, 15401.

[12] Mislav Balunović, Dimitar Iliev Dimitrov, Robin Staab, and Martin
T. Vechev. “Bayesian Framework for Gradient Leakage”. In: ICLR.
OpenReview.net, 2022.

[13] Dimitar Iliev Dimitrov, Mislav Balunović, Nikola Konstantinov, and
Martin T. Vechev. “Data Leakage in Federated Averaging”. In: Trans.
Mach. Learn. Res. 2022 (2022).

[14] Mislav Balunović, Dimitar I. Dimitrov, Nikola Jovanovic, and Martin
T. Vechev. “LAMP: Extracting Text from Gradients with Language
Model Priors”. In: NeurIPS. 2022.

[15] Mark Vero, Mislav Balunović, Dimitar Iliev Dimitrov, and Martin T.
Vechev. “TabLeak: Tabular Data Leakage in Federated Learning”. In:
ICML. Vol. 202. Proceedings of Machine Learning Research. PMLR,
2023, 35051.

[16] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L
Hamilton, and Jure Leskovec. “Graph convolutional neural networks
for web-scale recommender systems”. In: Proceedings of the 24th ACM
SIGKDD international conference on knowledge discovery & data mining.
2018, 974.

[17] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet
Classification with Deep Convolutional Neural Networks”. In: NIPS.
2012, 1106.

[18] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B. Girshick.
“Mask R-CNN”. In: ICCV. IEEE Computer Society, 2017, 2980.

[19] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali
Farhadi. “You Only Look Once: Unified, Real-Time Object Detection”.
In: CoRR abs/1506.02640 (2015).

[20] OpenAI. “GPT-4 Technical Report”. In: CoRR abs/2303.08774 (2023).
[21] Bohang Zhang, Du Jiang, Di He, and Liwei Wang. “Rethinking

Lipschitz Neural Networks and Certified Robustness: A Boolean
Function Perspective”. In: NeurIPS. 2022.

[22] Mark Niklas Müller, Franziska Eckert, Marc Fischer, and Martin T.
Vechev. “Certified Training: Small Boxes are All You Need”. In: ICLR.
OpenReview.net, 2023.

bibliography 83

[23] Yuhao Mao, Mark Niklas Müller, Marc Fischer, and Martin T. Vechev.
“TAPS: Connecting Certified and Adversarial Training”. In: CoRR
abs/2305.04574 (2023).

[24] Elias Benussi, Andrea Patanè, Matthew Wicker, Luca Laurenti, and
Marta Kwiatkowska. “Individual Fairness Guarantees for Neural
Networks”. In: IJCAI. ijcai.org, 2022, 651.

[25] Danilo Jimenez Rezende and Shakir Mohamed. “Variational Infer-
ence with Normalizing Flows”. In: Proceedings of the 32nd International
Conference on Machine Learning. 2015.

[26] Robin Staab, Nikola Jovanovic, Mislav Balunović, and Martin T.
Vechev. “From Principle to Practice: Vertical Data Minimization for
Machine Learning”. In: SP. IEEE, 2024.

[27] Robin Staab, Mark Vero, Mislav Balunović, and Martin T. Vechev.
“Beyond Memorization: Violating Privacy Via Inference with Large
Language Models”. In: CoRR abs/2310.07298 (2023).

[28] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna,
Dumitru Erhan, Ian J. Goodfellow, and Rob Fergus. “Intriguing prop-
erties of neural networks”. In: International Conference on Learning
Representations, (ICLR). 2014.

[29] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim
Srndic, Pavel Laskov, Giorgio Giacinto, and Fabio Roli. “Evasion
Attacks against Machine Learning at Test Time”. In: European Con-
ference on Machine Learning and Knowledge Discovery in Databases,
(ECML/PKDD). 2013.

[30] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. “Adversarial
machine learning at scale”. In: International Conference on Learning
Representations (2017).

[31] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. “Explain-
ing and Harnessing Adversarial Examples”. In: International Confer-
ence on Learning Representations. 2015.

[32] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dim-
itris Tsipras, and Adrian Vladu. “Towards Deep Learning Models
Resistant to Adversarial Attacks”. In: 6th International Conference on
Learning Representations. 2018.

[33] Nicholas Carlini and David Wagner. “Towards evaluating the robust-
ness of neural networks”. In: 2017 IEEE Symposium on Security and
Privacy (S&P). 2017.

84 bibliography

[34] Anish Athalye, Nicholas Carlini, and David A. Wagner. “Obfuscated
Gradients Give a False Sense of Security: Circumventing Defenses
to Adversarial Examples”. In: Proceedings of the 35th International
Conference on Machine Learning. 2018.

[35] Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Edoardo
Debenedetti, Nicolas Flammarion, Mung Chiang, Prateek Mittal, and
Matthias Hein. “RobustBench: a standardized adversarial robustness
benchmark”. In: NeurIPS Datasets and Benchmarks. 2021.

[36] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar
Tsankov, Swarat Chaudhuri, and Martin T. Vechev. “AI2: Safety
and Robustness Certification of Neural Networks with Abstract
Interpretation”. In: IEEE Symposium on Security and Privacy. 2018.

[37] Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel,
and Martin T. Vechev. “Fast and Effective Robustness Certification”.
In: Advances in Neural Information Processing Systems, (NeurIPS). 2018.

[38] Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca
Daniel. “Efficient Neural Network Robustness Certification with
General Activation Functions”. In: Advances in Neural Information
Processing Systems, (NeurIPS). 2018.

[39] Tsui-Wei Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui
Hsieh, Luca Daniel, Duane S. Boning, and Inderjit S. Dhillon. “To-
wards Fast Computation of Certified Robustness for ReLU Net-
works”. In: International Conference on Machine Learning, (ICML). 2018.

[40] Hadi Salman, Greg Yang, Huan Zhang, Cho-Jui Hsieh, and
Pengchuan Zhang. “A Convex Relaxation Barrier to Tight Ro-
bustness Verification of Neural Networks”. In: Advances in Neural
Information Processing Systems, (NeurIPS). 2019.

[41] Krishnamurthy Dvijotham, Robert Stanforth, Sven Gowal, Timothy
A. Mann, and Pushmeet Kohli. “A Dual Approach to Scalable Veri-
fication of Deep Networks”. In: Uncertainty in Artificial Intelligence,
(UAI). 2018.

[42] Rudy Bunel, Ilker Turkaslan, Philip H. S. Torr, Pushmeet Kohli, and
Pawan Kumar Mudigonda. “A Unified View of Piecewise Linear
Neural Network Verification”. In: Advances in Neural Information
Processing Systems, (NeurIPS). 2018.

bibliography 85

[43] Rüdiger Ehlers. “Formal Verification of Piece-Wise Linear Feed-
Forward Neural Networks”. In: Automated Technology for Verification
and Analysis, (ATVA). 2017.

[44] Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J.
Kochenderfer. “Reluplex: An Efficient SMT Solver for Verifying Deep
Neural Networks”. In: Computer Aided Verification - 29th International
Conference. 2017.

[45] Vincent Tjeng, Kai Y. Xiao, and Russ Tedrake. “Evaluating Robust-
ness of Neural Networks with Mixed Integer Programming”. In: 7th
International Conference on Learning Representations. 2019.

[46] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman
Jana. “Formal Security Analysis of Neural Networks using Symbolic
Intervals”. In: USENIX Security Symposium. 2018.

[47] Wenjie Ruan, Xiaowei Huang, and Marta Kwiatkowska. “Reachabil-
ity Analysis of Deep Neural Networks with Provable Guarantees”.
In: International Joint Conference on Artificial Intelligence, (IJCAI). 2018.

[48] Aditi Raghunathan, Jacob Steinhardt, and Percy S Liang. “Semidefi-
nite relaxations for certifying robustness to adversarial examples”.
In: Advances in Neural Information Processing Systems, (NeurIPS). 2018.

[49] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman
Jana. “Efficient Formal Safety Analysis of Neural Networks”. In:
Advances in Neural Information Processing Systems, (NeurIPS). 2018.

[50] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev.
“Boosting Robustness Certification of Neural Networks”. In: Interna-
tional Conference on Learning Representations, (ICLR). 2019.

[51] Matthew Mirman, Timon Gehr, and Martin T. Vechev. “Differen-
tiable Abstract Interpretation for Provably Robust Neural Networks”.
In: International Conference on Machine Learning, (ICML). 2018.

[52] Eric Wong and J. Zico Kolter. “Provable Defenses against Adver-
sarial Examples via the Convex Outer Adversarial Polytope”. In:
International Conference on Machine Learning, (ICML). 2018.

[53] Mathias Lécuyer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu,
and Suman Jana. “Certified Robustness to Adversarial Examples
with Differential Privacy”. In: IEEE Symposium on Security and Privacy,
(SP). 2019.

86 bibliography

[54] Bai Li, Changyou Chen, Wenlin Wang, and Lawrence Carin. “Second-
order adversarial attack and certifiable robustness”. In: arXiv preprint
arXiv:1809.03113 (2018).

[55] Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. “Certified Adver-
sarial Robustness via Randomized Smoothing”. In: Proceedings of the
36th International Conference on Machine Learning. 2019.

[56] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin T.
Vechev. “An abstract domain for certifying neural networks”. In:
Proc. ACM Program. Lang. (2019).

[57] Chongli Qin, Krishnamurthy (Dj) Dvijotham, Brendan O’Donoghue,
Rudy Bunel, Robert Stanforth, Sven Gowal, Jonathan Uesato, Grze-
gorz Swirszcz, and Pushmeet Kohli. “Verification of Non-Linear
Specifications for Neural Networks”. In: International Conference on
Learning Representations, (ICLR). 2019.

[58] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. “Towards
practical verification of machine learning: The case of computer
vision systems”. In: arXiv preprint arXiv:1712.01785 (2017).

[59] Matthias Hein and Maksym Andriushchenko. “Formal guarantees
on the robustness of a classifier against adversarial manipulation”.
In: Advances in Neural Information Processing Systems. 2017.

[60] Eric Wong and Zico Kolter. “Provable Defenses against Adversarial
Examples via the Convex Outer Adversarial Polytope”. In: Proceed-
ings of the 35th International Conference on Machine Learning. PMLR,
2018.

[61] Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. “Certified
Defenses against Adversarial Examples”. In: International Conference
on Learning Representations. 2018.

[62] Krishnamurthy Dvijotham, Sven Gowal, Robert Stanforth, Relja
Arandjelovic, Brendan O’Donoghue, Jonathan Uesato, and Pushmeet
Kohli. “Training verified learners with learned verifiers”. In: arXiv
preprint arXiv:1805.10265 (2018).

[63] Matthew Mirman, Timon Gehr, and Martin Vechev. “Differentiable
abstract interpretation for provably robust neural networks”. In:
International Conference on Machine Learning. 2018.

bibliography 87

[64] Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth, Rudy
Bunel, Chongli Qin, Jonathan Uesato, Timothy Mann, and Pushmeet
Kohli. “On the effectiveness of interval bound propagation for train-
ing verifiably robust models”. In: arXiv preprint arXiv:1810.12715
(2018).

[65] Mathias Lecuyer, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu,
and Suman Jana. “Certified Robustness to Adversarial Examples
with Differential Privacy”. In: 2019 IEEE Symposium on Security and
Privacy (S&P) (2018).

[66] Hadi Salman, Greg Yang, Jerry Li, Pengchuan Zhang, Huan Zhang,
Ilya Razenshteyn, and Sebastien Bubeck. “Provably Robust Deep
Learning via Adversarially Trained Smoothed Classifiers”. In: arXiv
preprint arXiv:1906.04584 (2019).

[67] Richard S. Zemel, Yu Wu, Kevin Swersky, Toniann Pitassi, and
Cynthia Dwork. “Learning Fair Representations”. In: Proceedings of
the 30th International Conference on Machine Learning. 2013.

[68] David Madras, Elliot Creager, Toniann Pitassi, and Richard S. Zemel.
“Learning Adversarially Fair and Transferable Representations”. In:
Proceedings of the 35th International Conference on Machine Learning.
2018.

[69] Daniel Moyer, Shuyang Gao, Rob Brekelmans, Aram Galstyan, and
Greg Ver Steeg. “Invariant Representations without Adversarial
Training”. In: Advances in Neural Information Processing Systems 31.
2018.

[70] Christos Louizos, Kevin Swersky, Yujia Li, Max Welling, and Richard
S. Zemel. “The Variational Fair Autoencoder”. In: 4th International
Conference on Learning Representations. 2016.

[71] Harrison Edwards and Amos J. Storkey. “Censoring Representa-
tions with an Adversary”. In: 4th International Conference on Learning
Representations. 2016.

[72] Qizhe Xie, Zihang Dai, Yulun Du, Eduard H. Hovy, and Graham
Neubig. “Controllable Invariance through Adversarial Feature Learn-
ing”. In: Advances in Neural Information Processing Systems 30. 2017.

[73] Jiaming Song, Pratyusha Kalluri, Aditya Grover, Shengjia Zhao, and
Stefano Ermon. “Learning Controllable Fair Representations”. In:
The 22nd International Conference on Artificial Intelligence and Statistics.
2019.

88 bibliography

[74] Proteek Chandan Roy and Vishnu Naresh Boddeti. “Mitigating In-
formation Leakage in Image Representations: A Maximum Entropy
Approach”. In: IEEE Conference on Computer Vision and Pattern Recog-
nition. 2019.

[75] Jiachun Liao, Chong Huang, Peter Kairouz, and Lalitha Sankar.
“Learning Generative Adversarial RePresentations (GAP) under Fair-
ness and Censoring Constraints”. In: CoRR abs/1910.00411 (2019).

[76] Ayush Jaiswal, Daniel Moyer, Greg Ver Steeg, Wael AbdAlmageed,
and Premkumar Natarajan. “Invariant Representations through Ad-
versarial Forgetting”. In: The Thirty-Fourth AAAI Conference on Artifi-
cial Intelligence. 2020.

[77] Rui Feng, Yang Yang, Yuehan Lyu, Chenhao Tan, Yizhou Sun, and
Chunping Wang. “Learning Fair Representations via an Adversarial
Framework”. In: CoRR abs/1904.13341 (2019).

[78] Elliot Creager, David Madras, Jörn-Henrik Jacobsen, Marissa A. Weis,
Kevin Swersky, Toniann Pitassi, and Richard S. Zemel. “Flexibly Fair
Representation Learning by Disentanglement”. In: Proceedings of the
36th International Conference on Machine Learning. 2019.

[79] Francesco Locatello, Gabriele Abbati, Thomas Rainforth, Stefan
Bauer, Bernhard Schölkopf, and Olivier Bachem. “On the Fairness
of Disentangled Representations”. In: Advances in Neural Information
Processing Systems 32. 2019.

[80] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev.
“An abstract domain for certifying neural networks”. In: Proceedings
of the ACM on Programming Languages (2019).

[81] Hadi Salman, Greg Yang, Huan Zhang, Cho-Jui Hsieh, and
Pengchuan Zhang. “A convex relaxation barrier to tight robust
verification of neural networks”. In: arXiv preprint arXiv:1902.08722
(2019).

[82] Logan Engstrom, Brandon Tran, Dimitris Tsipras, Ludwig Schmidt,
and Aleksander Madry. “Exploring the Landscape of Spatial Ro-
bustness”. In: International Conference on Machine Learning, (ICML).
2019.

[83] Patrick Cousot and Nicolas Halbwachs. “Automatic Discovery of
Linear Restraints Among Variables of a Program”. In: Symposium on
Principles of Programming Languages, (POPL). 1978.

bibliography 89

[84] Can Kanbak, Seyed Mohsen Moosavi Dezfooli, and Pascal Frossard.
“Geometric robustness of deep networks: analysis and improvement”.
In: IEEE Conference on Computer Vision and Pattern Recognition, (CVPR)
(2018).

[85] Ian Goodfellow, Honglak Lee, Quoc V Le, Andrew Saxe, and An-
drew Y Ng. “Measuring invariances in deep networks”. In: Advances
in Neural Information Processing Systems, (NeurIPS). 2009.

[86] Alhussein Fawzi, Seyed-Mohsen Moosavi-Dezfooli, and Pascal
Frossard. “The robustness of deep networks: A geometrical perspec-
tive”. In: IEEE Signal Processing Magazine (2017).

[87] Rima Alaifari, Giovanni S. Alberti, and Tandri Gauksson. “ADef:
an Iterative Algorithm to Construct Adversarial Deformations”. In:
International Conference on Learning Representations, (ICLR). 2019.

[88] Chaowei Xiao, Jun-Yan Zhu, Bo Li, Warren He, Mingyan Liu, and
Dawn Song. “Spatially Transformed Adversarial Examples”. In: In-
ternational Conference on Learning Representations, (ICLR). 2018.

[89] Geoffrey E. Hinton, Alex Krizhevsky, and Sida D. Wang. “Trans-
forming Auto-Encoders”. In: Artificial Neural Networks and Machine
Learning – ICANN 2011. 2011.

[90] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and Koray
Kavukcuoglu. “Spatial Transformer Networks”. In: Advances in Neu-
ral Information Processing Systems, NIPS. 2015.

[91] Gagandeep Singh, Markus Püschel, and Martin T. Vechev. “Fast
polyhedra abstract domain”. In: Symposium on Principles of Program-
ming Languages, (POPL). 2017.

[92] Vincent Tjeng, Kai Y. Xiao, and Russ Tedrake. “Evaluating Robust-
ness of Neural Networks with Mixed Integer Programming”. In:
International Conference on Learning Representations. 2019.

[93] Gagandeep Singh, Timon Gehr, Markus Puschel, and Martin Vechev.
“Boosting Robustness Certification of Neural Networks”. In: Interna-
tional Conference on Learning Representations. 2019.

[94] Gagandeep Singh, Rupanshu Ganvir, Markus Püschel, and Martin
T. Vechev. “Beyond the Single Neuron Convex Barrier for Neural
Network Certification”. In: Advances in Neural Information Processing
Systems 32. 2019.

90 bibliography

[95] Yann LeCun, Corinna Cortes, and CJ Burges. “MNIST handwritten
digit database”. In: AT&T Labs [Online]. Available: http://yann. lecun.
com/exdb/mnist (2010).

[96] Pierre Hansen and Brigitte Jaumard. “Lipschitz optimization”. In:
Handbook of global optimization. 1995.

[97] Elwin de Weerdt, Qiping Chu, and J. A. Mulder. “Neural Network
Output Optimization Using Interval Analysis”. In: IEEE Transactions
on Neural Networks (2009).

[98] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a Novel
Image Dataset for Benchmarking Machine Learning Algorithms. 2017.

[99] Alex Krizhevsky. Learning multiple layers of features from tiny images.
2009.

[100] Matthew Mirman, Gagandeep Singh, and Martin Vechev. “A Prov-
able Defense for Deep Residual Networks”. In: arXiv preprint
arXiv:1903.12519 (2019).

[101] Jeet Mohapatra, Tsui-Wei Weng, Pin-Yu Chen, Sijia Liu, and Luca
Daniel. “Towards Verifying Robustness of Neural Networks Against
A Family of Semantic Perturbations”. In: CVPR. Computer Vision
Foundation / IEEE, 2020, 241.

[102] Marc Fischer, Maximilian Baader, and Martin T. Vechev. “Certified
Defense to Image Transformations via Randomized Smoothing”. In:
NeurIPS. 2020.

[103] Motasem Alfarra, Adel Bibi, Naeemullah Khan, Philip H. S. Torr,
and Bernard Ghanem. “DeformRS: Certifying Input Deformations
with Randomized Smoothing”. In: AAAI. AAAI Press, 2022, 6001.

[104] Eric Wong, Leslie Rice, and J. Zico Kolter. “Fast is better than free:
Revisiting adversarial training”. In: ICLR. OpenReview.net, 2020.

[105] Cihang Xie, Yuxin Wu, Laurens van der Maaten, Alan L Yuille,
and Kaiming He. “Feature denoising for improving adversarial
robustness”. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 2019.

[106] Huan Zhang, Hongge Chen, Chaowei Xiao, Sven Gowal, Robert
Stanforth, Bo Li, Duane Boning, and Cho-Jui Hsieh. “Towards Stable
and Efficient Training of Verifiably Robust Neural Networks”. In:
International Conference on Learning Representations. 2020.

bibliography 91

[107] Eric Wong, Frank Schmidt, Jan Hendrik Metzen, and J. Zico Kolter.
“Scaling provable adversarial defenses”. In: Advances in Neural Infor-
mation Processing Systems 31. 2018.

[108] Krishnamurthy Dvijotham, Robert Stanforth, Sven Gowal, Timo-
thy A Mann, and Pushmeet Kohli. “A Dual Approach to Scalable
Verification of Deep Networks.” In: UAI. 2018.

[109] Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel,
and Martin T. Vechev. “Fast and Effective Robustness Certification”.
In: Advances in Neural Information Processing Systems 31. 2018.

[110] Khalil Ghorbal, Eric Goubault, and Sylvie Putot. “The Zonotope
Abstract Domain Taylor1+”. In: Computer Aided Verification, (CAV).
2009.

[111] Ping Li, Trevor J Hastie, and Kenneth W Church. “Nonlinear esti-
mators and tail bounds for dimension reduction in l1 using cauchy
random projections”. In: Journal of Machine Learning Research (2007).

[112] Kai Y. Xiao, Vincent Tjeng, Nur Muhammad (Mahi) Shafiullah, and
Aleksander Madry. “Training for Faster Adversarial Robustness
Verification via Inducing ReLU Stability”. In: International Conference
on Learning Representations. 2019.

[113] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala.
“PyTorch: An Imperative Style, High-Performance Deep Learning
Library”. In: Advances in Neural Information Processing Systems 32.
2019.

[114] LLC Gurobi Optimization. Gurobi Optimizer Reference Manual. 2018.

[115] Ruben Martinez-Cantin, Kevin Tee, and Michael McCourt. “Practical
Bayesian optimization in the presence of outliers”. In: Proceedings of
the Twenty-First International Conference on Artificial Intelligence and
Statistics. 2018.

[116] Rüdiger Ehlers. “Formal Verification of Piece-Wise Linear Feed-
Forward Neural Networks”. In: Automated Technology for Verification
and Analysis - 15th International Symposium. 2017.

92 bibliography

[117] Weilin Xu. “Reproducibility issue”. In: (2019). url: https://github.
com/deepmind/interval-bound-propagation/issues/1#issuecomment-

492552237.

[118] Huan Zhang, Hongge Chen, Chaowei Xiao, Bo Li, Duane Boning,
and Cho-Jui Hsieh. “Towards Stable and Efficient Training of Verifi-
ably Robust Neural Networks”. In: arXiv preprint arXiv:1906.06316
(2019).

[119] Tim Brennan, William Dieterich, and Beate Ehret. “Evaluating the
predictive validity of the COMPAS risk and needs assessment sys-
tem”. In: Criminal Justice and Behavior (2009).

[120] Amit Datta, Michael Carl Tschantz, and Anupam Datta. “Automated
Experiments on Ad Privacy Settings”. In: Proc. Priv. Enhancing Tech-
nol. (2015).

[121] Amir E Khandani, Adlar J Kim, and Andrew W Lo. “Consumer
credit-risk models via machine-learning algorithms”. In: Journal of
Banking & Finance (2010).

[122] Latanya Sweeney. “Discrimination in online ad delivery”. In: Com-
mun. ACM (2013).

[123] Tolga Bolukbasi, Kai-Wei Chang, James Y. Zou, Venkatesh Saligrama,
and Adam Tauman Kalai. “Man is to Computer Programmer as
Woman is to Homemaker? Debiasing Word Embeddings”. In: Ad-
vances in Neural Information Processing Systems 29. 2016.

[124] Solon Barocas and Andrew D. Selbst. “Big Data’s Disparate Impact”.
In: California Law Review (2016).

[125] Marc Fischer, Mislav Balunović, Dana Drachsler-Cohen, Timon Gehr,
Ce Zhang, and Martin T. Vechev. “DL2: Training and Querying
Neural Networks with Logic”. In: Proceedings of the 36th International
Conference on Machine Learning. 2019.

[126] Preethi Lahoti, Krishna P. Gummadi, and Gerhard Weikum. “iFair:
Learning Individually Fair Data Representations for Algorithmic
Decision Making”. In: 35th IEEE International Conference on Data
Engineering. 2019.

[127] Preethi Lahoti, Krishna P. Gummadi, and Gerhard Weikum. “Opera-
tionalizing Individual Fairness with Pairwise Fair Representations”.
In: Proc. VLDB Endow. (2019).

https://github.com/deepmind/interval-bound-propagation/issues/1#issuecomment-492552237
https://github.com/deepmind/interval-bound-propagation/issues/1#issuecomment-492552237
https://github.com/deepmind/interval-bound-propagation/issues/1#issuecomment-492552237

bibliography 93

[128] Mikhail Yurochkin, Amanda Bower, and Yuekai Sun. “Training
individually fair ML models with sensitive subspace robustness”. In:
8th International Conference on Learning Representations. 2020.

[129] Hanchen Wang, Nina Grgic-Hlaca, Preethi Lahoti, Krishna P. Gum-
madi, and Adrian Weller. “An Empirical Study on Learning Fairness
Metrics for COMPAS Data with Human Supervision”. In: CoRR
abs/1910.10255 (2019).

[130] Christina Ilvento. “Metric Learning for Individual Fairness”. In: 1st
Symposium on Foundations of Responsible Computing. 2020.

[131] Debarghya Mukherjee, Mikhail Yurochkin, Moulinath Banerjee, and
Yuekai Sun. “Two Simple Ways to Learn Individual Fairness Metrics
from Data”. In: arXiv preprint arXiv:2006.11439 (2020).

[132] Shivam Garg, Vatsal Sharan, Brian Hu Zhang, and Gregory Valiant.
“A Spectral View of Adversarially Robust Features”. In: Advances in
Neural Information Processing Systems 31. 2018.

[133] A. Pensia, V. Jog, and P. Loh. “Extracting Robust and Accurate
Features via a Robust Information Bottleneck”. In: IEEE Journal on
Selected Areas in Information Theory (2020).

[134] Sicheng Zhu, Xiao Zhang, and David Evans. “Learning Adversar-
ially Robust Representations via Worst-Case Mutual Information
Maximization”. In: arXiv preprint arXiv:2002.11798 (2020).

[135] Christopher Jung, Sampath Kannan, and Neil Lutz. “A Center in
Your Neighborhood: Fairness in Facility Location”. In: arXiv preprint
arXiv:1908.09041 (2019).

[136] Sepideh Mahabadi and Ali Vakilian. “Individual Fairness for k-
Clustering”. In: arXiv preprint arXiv:2002.06742 (2020).

[137] Matt J. Kusner, Joshua R. Loftus, Chris Russell, and Ricardo Silva.
“Counterfactual Fairness”. In: Advances in Neural Information Process-
ing Systems 30. 2017.

[138] Lu Zhang, Yongkai Wu, and Xintao Wu. “A Causal Framework
for Discovering and Removing Direct and Indirect Discrimination”.
In: Proceedings of the Twenty-Sixth International Joint Conference on
Artificial Intelligence. 2017.

[139] David Madras, Elliot Creager, Toniann Pitassi, and Richard S. Zemel.
“Fairness through Causal Awareness: Learning Causal Latent-
Variable Models for Biased Data”. In: Proceedings of the Conference on
Fairness, Accountability, and Transparency. 2019.

94 bibliography

[140] Yoichi Chikahara, Shinsaku Sakaue, Akinori Fujino, and Hisashi
Kashima. “Learning Individually Fair Classifier with Path-Specific
Causal-Effect Constraint”. In: arXiv preprint arXiv:2002.06746 (2020).

[141] Cynthia Dwork and Christina Ilvento. “Fairness Under Composi-
tion”. In: 10th Innovations in Theoretical Computer Science Conference.
2018.

[142] Cynthia Dwork, Christina Ilvento, and Meena Jagadeesan. “Indi-
vidual Fairness in Pipelines”. In: 1st Symposium on Foundations of
Responsible Computing. 2020.

[143] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and
Richard S. Zemel. “Fairness through awareness”. In: Innovations in
Theoretical Computer Science 2012. 2012.

[144] Matthew Jagielski, Michael J. Kearns, Jieming Mao, Alina Oprea,
Aaron Roth, Saeed Sharifi-Malvajerdi, and Jonathan R. Ullman. “Dif-
ferentially Private Fair Learning”. In: Proceedings of the 36th Interna-
tional Conference on Machine Learning. 2019.

[145] Depeng Xu, Shuhan Yuan, and Xintao Wu. “Achieving Differential
Privacy and Fairness in Logistic Regression”. In: Companion of The
2019 World Wide Web Conference. 2019.

[146] Daniel McNamara, Cheng Soon Ong, and Robert C. Williamson.
“Costs and Benefits of Fair Representation Learning”. In: Proceedings
of the 2019 AAAI/ACM Conference on AI, Ethics, and Society. 2019.

[147] Finale Doshi-Velez and Been Kim. “Considerations for Evaluation
and Generalization in Interpretable Machine Learning”. In: Explain-
able and Interpretable Models in Computer Vision and Machine Learning.
Springer International Publishing, 2018.

[148] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic
Optimization”. In: 3rd International Conference on Learning Representa-
tions. 2015.

[149] Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. Robust
optimization. Princeton University Press, 2009.

[150] Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin T.
Vechev. “Boosting Robustness Certification of Neural Networks”. In:
7th International Conference on Learning Representations. 2019.

[151] Dheeru Dua and Casey Graff. UCI Machine Learning Repository. 2017.

bibliography 95

[152] Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. Ma-
chine Bias. 2016.

[153] F. Linda Wightman. LSAC National Longitudinal Bar Passage Study.
2017.

[154] Matthew Robert Wicker, Vihari Piratla, and Adrian Weller. “Cer-
tification of Distributional Individual Fairness”. In: Thirty-seventh
Conference on Neural Information Processing Systems. 2023.

[155] Florian E. Dorner, Momchil Peychev, Nikola Konstantinov, Naman
Goel, Elliott Ash, and Martin T. Vechev. “Human-Guided Fair Clas-
sification for Natural Language Processing”. In: ICLR. OpenRe-
view.net, 2023.

[156] Yanai Elazar and Yoav Goldberg. “Adversarial Removal of Demo-
graphic Attributes from Text Data”. In: Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language Processing. 2018.

[157] Yilun Xu, Shengjia Zhao, Jiaming Song, Russell Stewart, and Stefano
Ermon. “A Theory of Usable Information under Computational Con-
straints”. In: 8th International Conference on Learning Representations.
2020.

[158] Umang Gupta, Aaron Ferber, Bistra Dilkina, and Greg Ver Steeg.
“Controllable Guarantees for Fair Outcomes via Contrastive Infor-
mation Estimation”. In: CoRR abs/2101.04108 (2021).

[159] Congzheng Song and Vitaly Shmatikov. “Overlearning Reveals Sen-
sitive Attributes”. In: 8th International Conference on Learning Repre-
sentations. 2020.

[160] Moritz Hardt, Eric Price, and Nati Srebro. “Equality of Opportunity
in Supervised Learning”. In: Advances in Neural Information Processing
Systems 29. 2016.

[161] Toshihiro Kamishima, Shotaro Akaho, and Jun Sakuma. “Fairness-
aware Learning through Regularization Approach”. In: Data Mining
Workshops (ICDMW). 2011.

[162] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez,
and Krishna P. Gummadi. “Fairness Constraints: Mechanisms for
Fair Classification”. In: Proceedings of the 20th International Conference
on Artificial Intelligence and Statistics. 2017.

[163] Mattia Cerrato, Marius Köppel, Alexander Segner, and Stefan
Kramer. “Fair Group-Shared Representations with Normalizing
Flows”. In: arXiv preprint arXiv:2201.06336 (2022).

96 bibliography

[164] Meredith Whittaker, Kate Crawford, Roel Dobbe, Genevieve Fried,
Elizabeth Kaziunas, Varoon Mathur, Sarah Mysers West, Rashida
Richardson, Jason Schultz, and Oscar Schwartz. AI now report 2018.
AI Now Institute at New York University New York, 2018.

[165] EU. Proposal for a Regulation laying down harmonised rules on artificial
intelligence. 2021.

[166] FTC. Aiming for truth, fairness, and equity in your company’s use of
AI. 2021. url: https://www.ftc.gov/news-events/blogs/business-
blog/2021/04/aiming-truth-fairness-equity-your-companys-use-

ai.
[167] Philips George John, Deepak Vijaykeerthy, and Diptikalyan Saha.

“Verifying Individual Fairness in Machine Learning Models”. In:
Proceedings of the Thirty-Sixth Conference on Uncertainty in Artificial
Intelligence. 2020.

[168] Caterina Urban, Maria Christakis, Valentin Wüstholz, and Fuyuan
Zhang. “Perfectly parallel fairness certification of neural networks”.
In: Proc. ACM Program. Lang. (2020).

[169] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith.
“Calibrating Noise to Sensitivity in Private Data Analysis”. In: Third
Theory of Cryptography Conference. 2006.

[170] Aws Albarghouthi, Loris D’Antoni, Samuel Drews, and Aditya V.
Nori. “FairSquare: probabilistic verification of program fairness”. In:
Proc. ACM Program. Lang. (2017).

[171] Osbert Bastani, Xin Zhang, and Armando Solar-Lezama. “Proba-
bilistic verification of fairness properties via concentration”. In: Proc.
ACM Program. Lang. (2019).

[172] Shahar Segal, Yossi Adi, Benny Pinkas, Carsten Baum, Chaya Ganesh,
and Joseph Keshet. “Fairness in the Eyes of the Data: Certifying
Machine-Learning Models”. In: CoRR abs/2009.01534 (2020).

[173] Laurent Dinh, David Krueger, and Yoshua Bengio. “NICE: Non-
linear Independent Components Estimation”. In: 3rd International
Conference on Learning Representations. 2015.

[174] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. “Density
estimation using Real NVP”. In: CoRR (2016).

[175] Diederik P. Kingma and Prafulla Dhariwal. “Glow: Generative Flow
with Invertible 1x1 Convolutions”. In: Advances in Neural Information
Processing Systems 31. 2018.

https://www.ftc.gov/news-events/blogs/business-blog/2021/04/aiming-truth-fairness-equity-your-companys-use-ai
https://www.ftc.gov/news-events/blogs/business-blog/2021/04/aiming-truth-fairness-equity-your-companys-use-ai
https://www.ftc.gov/news-events/blogs/business-blog/2021/04/aiming-truth-fairness-equity-your-companys-use-ai

bibliography 97

[176] Diederik P. Kingma and Max Welling. “Auto-Encoding Variational
Bayes”. In: 2nd International Conference on Learning Representations.
2014.

[177] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio.
“Generative Adversarial Nets”. In: Advances in Neural Information
Processing Systems 27. 2014.

[178] Dustin Tran, Keyon Vafa, Kumar Krishna Agrawal, Laurent Dinh,
and Ben Poole. “Discrete Flows: Invertible Generative Models of
Discrete Data”. In: NeurIPS. 2019, 14692.

[179] Emiel Hoogeboom, Jorn W. T. Peters, Rianne van den Berg, and
Max Welling. “Integer Discrete Flows and Lossless Compression”.
In: NeurIPS. 2019, 12134.

[180] Aditya Grover, Christopher Chute, Rui Shu, Zhangjie Cao, and Ste-
fano Ermon. “AlignFlow: Cycle Consistent Learning from Multiple
Domains via Normalizing Flows”. In: AAAI. AAAI Press, 2020, 4028.

[181] Ben Usman, Avneesh Sud, Nick Dufour, and Kate Saenko. “Log-
Likelihood Ratio Minimizing Flows: Towards Robust and Quantifi-
able Neural Distribution Alignment”. In: NeurIPS. 2020.

[182] Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard
Schölkopf, and Alexander J. Smola. “A Kernel Method for the Two-
Sample-Problem”. In: Advances in Neural Information Processing Sys-
tems 19. 2006.

[183] Moritz Hardt and Eric Price. “Tight Bounds for Learning a Mixture
of Two Gaussians”. In: Proceedings of the Forty-Seventh Annual ACM
on Symposium on Theory of Computing. Ed. by Rocco A. Servedio and
Ronitt Rubinfeld. 2015.

[184] Heinrich Jiang. “Uniform Convergence Rates for Kernel Density
Estimation”. In: Proceedings of the 34th International Conference on
Machine Learning. Ed. by Doina Precup and Yee Whye Teh. 2017.

[185] Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan,
Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew W. Senior,
and Koray Kavukcuoglu. “WaveNet: A Generative Model for Raw
Audio”. In: The 9th ISCA Speech Synthesis Workshop. 2016.

98 bibliography

[186] Aäron van den Oord, Nal Kalchbrenner, Lasse Espeholt, Koray
Kavukcuoglu, Oriol Vinyals, and Alex Graves. “Conditional Im-
age Generation with PixelCNN Decoders”. In: Advances in Neural
Information Processing Systems 29. 2016.

[187] Aäron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu.
“Pixel Recurrent Neural Networks”. In: Proceedings of the 33nd Inter-
national Conference on Machine Learning. 2016.

[188] Eric Wong and J. Zico Kolter. “Learning perturbation sets for robust
machine learning”. In: CoRR abs/2007.08450 (2020).

[189] Stanislav Pidhorskyi, Ranya Almohsen, and Gianfranco Doretto.
“Generative Probabilistic Novelty Detection with Adversarial Au-
toencoders”. In: Advances in Neural Information Processing Systems 31.
2018.

[190] Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle.
“MADE: Masked Autoencoder for Distribution Estimation”. In: Pro-
ceedings of the 32nd International Conference on Machine Learning. 2015.

[191] Aditya Krishna Menon and Robert C. Williamson. “The cost of fair-
ness in binary classification”. In: Conference on Fairness, Accountability
and Transparency. 2018.

[192] Han Zhao and Geoffrey J. Gordon. “Inherent Tradeoffs in Learning
Fair Representations”. In: Advances in Neural Information Processing
Systems 32. 2019.

[193] Suresh Venkatasubramanian and Mark Alfano. “The philosophical
basis of algorithmic recourse”. In: Conference on Fairness, Accountabil-
ity, and Transparency. 2020.

[194] Xin Zhang, Armando Solar-Lezama, and Rishabh Singh. “Interpret-
ing Neural Network Judgments via Minimal, Stable, and Symbolic
Corrections”. In: Advances in Neural Information Processing Systems 31.
2018.

[195] Berk Ustun, Alexander Spangher, and Yang Liu. “Actionable Re-
course in Linear Classification”. In: Proceedings of the Conference on
Fairness, Accountability, and Transparency. 2019.

[196] Rafael Poyiadzi, Kacper Sokol, Raúl Santos-Rodríguez, Tijl De Bie,
and Peter A. Flach. “FACE: Feasible and Actionable Counterfactual
Explanations”. In: AAAI/ACM Conference on AI, Ethics, and Society.
2020.

bibliography 99

[197] Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakar-
ios. “Neural spline flows”. In: Advances in Neural Information Process-
ing Systems (2019).

[198] Yuhong Luo, Austin Hoag, and Philip S. Thomas. “Learning Fair
Representations with High-Confidence Guarantees”. In: CoRR
abs/2310.15358 (2023).

