mzuriCh ETH Library

Partition repositories for partition
cloning

OS Independent Software Maintenance in Large
Clusters of PCs

Report

Author(s):
Rauch, Felix; Kurmann, Christian; Stricker, Thomas M.

Publication date:
2000

Permanent link:
https://doi.org/10.3929/ethz-a-006654216

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
CS technical report 354

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-006654216
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Eidgendssische Ecole polytechnique fédérale de Zurich
Technische Hochschule Politecnico federale di Zurigo
Ztirich Swiss Federal Institute of Technology Zurich

Departement of Computer Science Laboratory for Computer Systems

Partition Repositories for Partition Cloning —

OS Independent Software Maintenance in Large Clusters of PCs

1

Felix Rauch, Christian Kurmann and Thomas M. Stricker

Laboratory for Computer Systems
Swiss Federal Institute of Technology (ETH)
CH-8092 4irich, Switzerland
{rauch,kurmann,tomst@inf.ethz.ch
http://www.inf.ethz.ch/
CS Technical Report #354

Abstract

As a novel approach to software maintenance in large clusters of PCs requiring multiple OS installations we
implemented partition cloning and partition repositories as well as a set of OS independent tools for software
maintenance using entire partitions, thus providing a clean abstraction of all operating system configuration state.
We identify the evolution of software installations (different releases) and the customization of installed systems
(different machines) as two orthogonal axes. Using this analysis we devise partition repositories as an efficient,
incremental storage scheme to maintain all necessary partition images for versatile, large clusters of PCs.

We evaluate our approach with a release history of sample images used in the Patagonia multi-purpose clusters
at ETH Zirich including several Linux, Windows NT and Oberon images. The study includes quantitative data
that shows the viability of the OS independent approach of working with entire partitions and investigates some
relevant tradeoffs: e.g., between difference granularity and compression block size. For a 2 GByte Windows
NT partition our repository system enables the storage of nearly a dozen generational images or several dozens
of customized images within the storage budget of twice the image size. The partitions can be replicated and
transferred to a large number of PCs with our Dolly cloning tool. At present, our system is a modular university
prototype based entirely on open source software, and most parts of it are in daily use to maintain our CoPs and
Patagonia clusters at ETH.

Introduction

Clusters of PCs are an emerging low cost hardware platform for a variety of applications that require supercom-
puting performance in the amount of computation involved as well as in the amount of data to be communicated
between the multiple nodes of a distributed system. In our attempt to broaden the use of PC clusters from scientific
to corporate computing we identify three types of operation for such clusters: (1) A first kind of cluster of PCs

is used for research and development in science or engineering. Those clusters are built from up to hundreds of
rack-mounted PCs, typically stored in a cooled machine room and interconnected with a high speed system area

network (SAN). (2) A second kind of “cluster” could comprise hundreds of PCs that large corporations dispatch to
their employees’ desks to give them personal computing power and access to all important information needed to
do business. Such installations are not yet widely viewed as a PC cluster or high performance computing facility
since the resources in a fleet of PCs are not centrally managed. Future applications will certainly tie large numbers
of PCs together to deliver the power of supercomputers. Possible applications include multimedia support for col-
laboration (e.g. presentation cast, virtual worlds and teleconferencing) or distributed data mining. (3) A third kind
of clusters is installed in all training and education environments. Those classroom PCs are used as workstations
for college education and corporate training.

Together all three kind of “clusters” have broad requirements for installed software, maintenance concept and
usage modes. Normally those requirements cannot be satisfied with a single operating system (OS) type or single
OS configuration. In the Patagonia multi-purpose cluster computing project at ETH we learned that the desired
flexibility can be achieved with multi-boot, involving several bootable OS installations (i.e. Windows NT, Linux
and System Oberon) all requiring different file systems, security settings and software maintenance modes ([4]).
This paper deals with the resulting software maintenance problem, proposes a systematic view of OS configuration
state and a solution for maintenance based on cloning and partition repositories.

1.1 The Problem of Software Maintenance

The different usage modes (production, training, experimentation) and the different operating systems (Linux, NT,
Oberon) in some PC clusters greatly complicate software maintenance. Typically software maintenance for large
cluster of PCs or a corporate fleet of PCs is done with OS specific tools, e.g. a variety of utilities specifically written
for Windows NT. The three different OSes in our cluster run on three different release schedules. The compatibility
of OS dependent tools with future releases would be extremely hard to guarantee resulting in a unstable system.
Furthermore we have to deal with increasingly error-prone software and complicated installation processes that
can in fact have unexpected influence on so-called preference settings or on other parts of software configuration
state. De-installation of software is even worse and some systems can never be brought back to their initial state
without a re-installation from the beginning.

To overcome the drawbacks and deficiencies of highly specialized and complex maintenance tools on the
market, we raise some fundamental questions and require that our maintenance tools remain completely OS inde-
pendent. Such a viewpoint will mandate and enforce that there are clean abstractions of a partition with an installed
software system in terms of bootable partition, visible partitions and configuration state of a partition. All main-
tenance operations such as archive, restore, upgrade or replication of releases and personalization or localization
(i.e. single licence installations or custom drivers) must be achievable without knowledge of the file systems or
the configuration files of the system software installation. Last but not least the method of storing and archiving
software installations should be as efficient as possible, i.e. there can be no waste of storage space in a partition
archive.

For the improved cluster maintenance mechanisms investigated in this paper we use a minimal Linux ([3])
installation on all the cluster nodes to control all setup operations. This maintenance OS can be booted remotely
for maintenance tasks. While the concepts of our approach by themselves are remarkably simple, the viability
is determined entirely by performance aspects of software replication and the storage efficiency of keeping a fair
number of incremental OS images in our partition repository and fast replication across the network. The optimal
setup and the performance of software replication (cloning) in large clusters of PCs has been discussed in [5].

Partitions are distributed out of our repository by a simple tool cédlletly, comprising a small server and
a very thin client of roughly 1000 lines of code. The client permits any chosen distribution method (full image,
compressed image, incremental to the data) for the bulk of data. Dolly links the machines together in a virtual TCP
multi-drop chain and is able to distribute data to all disks in the cluster in a short time over Classic, Fast or Gigabit
Ethernet independent of the number of nodes. This gives us full control over how the partitions are distributed and
installed on a cluster.

While the archiving of all recently installed OS images offers the advantage of going back in time and being
able to correct errors made during an installation processes, it could require a tremendous amount of storage
space to store the images, if done naively. Therefore we creatgition repositoriesa technique to archive and
restore software installations as partitions with a full base image and incremental changes. Most commercial tools
can replicate partition images by ignoring the specifics of the different OSes or store configured OS installations
incrementally using the different file systems of the target OS, but so far we have not encountered one that can

do both with reasonable efficiency. The partition repository proposed and implemented works in an incremental
and completely OS independent manner and can store the different steps of a system installation efficiently. In
the evaluation section we present empirical evidence that this approach is fully usable and we quantify the size
of the different partition images and their incremental changes based on the example installations encountered in
our Patagonia Cluster at ETHUAch. The partition repository maintenance system runs with Linux and does not
depend on any proprietary knowledge of the target operating system or file system. It is simple and built completely
from open source software, which makes it perfectly suited for a distribution under an open source license itself.

The rest of this paper is organized as follows: In Section 2 we discuss related work, in Section 3 we introduce
the notions of temporal- and spacial-differences in software maintenance. Section 4 describes the implementa-
tion details of the partition repository. In Section 5 we quantitatively evaluate our novel approach to software
maintenance and in Section 6 we conclude about its significance to large clusters of PCs.

2 Related Work and Limitation of Commercial Products

One of the major challenges for educational system administrators and managers of corporate PC fleets is the
constant need to maintain consistency in their distributed system installation, as users or students are continuously
changing configurations or adding programs. As educational clusters often comprise a large number of identical
machines, disk cloning of a master machine has been used for years but was always used in conjuction with OS
specific tools. The brute force method of disk cloning is gaining more and more acceptance in the business world as
a technique for software distribution and maintenance. The principle remaining problem with cloning maintenance
is the large amount of data required to store the different OS installations and incremental versions, especially once
multiple operating systems are used on the same set of machines in a cluster. This problem is addressed in our
paper.

A previous study in this area by Hutchinson et. al. [2] compares the speed of physical vs. logical backups
of secondary storage devices to tertiary storage. The authors use a different terminology and misleadingly denote
logical backups (i.e. filewise backups) as operating system independent, because the files could be restored on any
operating system. Our naming is different: We call physical backups (i.e. blockwise backups) operating system
independent, as no knowledge of the underlying file system structure is needed to process backup and restore
operations. In contrast to logical backups, physical backups therefore work for any file system and any OS image
installed in that partition.

The basic idea of disk or partition cloning is not new and in fact there are already a few successful products
available such aNlorton Ghost ([1]), ImageCast or DrivelmagePrc®. All these tools are capable of replicating
a whole disk or individual partitions and of generating compressed image files to store the partition data. Unfortu-
nately those commercial tools are largely operating system and file system dependent. They use knowledge of the
installed operating systems and file systems to provide additional services such as resizing partitions, installing in-
dividual software packages and performing post-clone customizations such as e.g., the change of TCP/IP settings.
Their operation is therefore limited to the OS versions supported by the tool. Some of the tools do include some
functionality of blind disk copy operation, but those are unable to work with efficient storage techniques.

Other tools developed and used by system administrators use similar techniques: The tools described in [6]
and [10] use full partition images alump files for backup and restore. The approach wdtimp uses less
storage space as it just stores files, while the partition image superfluously comprises unused parts of the partitions.
Localizations are performed with shell scripts or by copying modified files from a second local hard disk drive. A
more advanced approach presented in [8] uses a revision control system for file systegndt(stores changed
files for each revision of the system installation in a file tree. This approach also saves disk space but requires
knowledge about the underlying file system to access the files.

To the best of our knowledge our approach with cloning installations out of an incremental partition repository
remains the only solution that tsuly operating system independent by working with raw disk partition instal-
lations. Images are stored in a block repository, where compressed raw disk blocks are administered. Modern
operating systems can be setup for automatic installation and customization, e.g. network settings can be initial-
ized by DHCP based on the unique address in the Ethernet adapter. Further post cloning configurations (as e.g.

INorton Ghos®), Symantechttp://www.symantec.com/
2ImageCasb), Innovative Software Ltd.,
http://www.innovativesoftware.com/

3DrivelmagePr@®), PowerQuesthttp://www.powerquest.com/

setting a new SID for Windows NT or individual license keys for application software) can be performed by scripts
at startups.

2.1 Partition Cloning for Efficient Distribution

This section contains the most important details about the cloning system that is closely related to our experimental
investigation of partition repositories. An analytic model predicting cloning performance as well as performance
measurements on the implemented system is described in [5].

First we need to define the terminology more precisely: The process of storing the contents of a disk or partition
to an image file is called backup The action in reverse, writing an image to a partition is calledstore In
our definition, a restore includes the installation on a previously empty, unused or broken partition, as well as the
upgrade of an image on an existing installation. The process of backing up an image from one machine and then
(later or at the same time) restoring to one or many other machines is clltgdg

A somewhat simplistic approach relies on a standard networked file system (e.g. NFS) to backup a whole disk or
partitior. The machine with the partition to be backed up simply copies its content to an NFS file system exported
from a server holding the collection of images. The image can be compressed on the client side to save some
storage space. For a restore, all the clients involved will read the (compressed) partition-image simultaneously
over the network from the NFS server, possibly uncompress it and write the data to the local disk. This approach
is simple, highly robust and most operating systems include all software functions needed. The method has the
disadvantages that it does not scale beyond very few clients and that it does not have much room for improvements
as each image is stored in one file and served from 1 serverlients.

In a more sophisticated approach, the backup process can be done exactly as in the first approach or alternatively
the master machine to be cloned can also be used directly as server to the clients. The second step is different:
The distribution of the partition image for the restore operation is accomplished using a virtual TCP multi-drop
chain with the dedicated client. The advantages of this approach are scalability and flexibility: The overall system
performance is limited solely by the performance of a client, not the server, and therefore scales perfectly even for
a large number of clients.

In the basidolly partition cloning framework the partitions are best transfered as a sequence of uncompressed
consecutive blocks. In the next section, we argue that it is worthwhile to change this to a sequence of (not neces-
sarily consecutive) blocks and a paired array of disk block numbers and image blocks. With some more advanced
schemes, we manage to transfer only unique blocks, saving much storage space and work in incremental installa-
tions. During the search for the best data representation we discovered that there is a systematic structure to the
various partition images that are used to maintain a cluster installation. The next section analyzes this structure.

3 The Characteristics of OS Installations and Maintenance

Software installations anmeot done in one single, atomic step without ever changing them again. The installation
and maintenance of an OS remains an evolutionary and rather incremental process. Because of the changing
nature and complexity of todays OS installations, it would be desirable to have some sort of version control for the
incremental steps as this is the case with software development. For software development it is a common practice
that developers check out a stable part of the software being developed from a repository, improve or change it and
check it back into the repository. If at a later time a bug is found, all old versions are still available, as every single
version can be fully retrieved from the repository as a snapshot. Since there can be a potentially large number
of incremental steps in the lifetime of a software development project, it is not efficient to save all full revisions

of the software in the repository. The repository therefore stondgthe differencebetween each version. As

we will show, the same can be done with software installations in hard disk partitions. In Figure 1 we depict the
typical structural relationships of an OS partition image. We explain that a cluster software installation experiences
changes (due to version upgrades) along a temporal axis during its lifetime as well as changes along a spacial axis
when replicated into a large number of PCs in a cluster and adapted to different clients and their hardware.

4The termsdisk andpartition can be used interchangeably in this context. While this is not strictly technically correct, they are handled in
exactly the same way in our system. Therefore we will use the pemtition from now on.

3.1 Installations and Upgrades: Temporal Differences

A common first step in OS installation and maintenance is to install the basic OS including the kernel and only
the most common programs needed to run the system. In further steps more patches, service packs and additional
software packages are installed. Later in the life cycle new patches need to be applied or users demand the
installation of new or the upgrading of existing software packages. This process is error-prone: Software-parts
might be installed in an incorrect order or might not fit together, or a configuration option might be badly chosen.
For such cases it is extremely helpful if single installation steps can be completely reversed by reverting back to
the last working version of the installation without having to start from the beginning again.

Sometimes software is only temporarily installed on a cluster, e.g. for special classes, courses, experiments
or tests, and removed soon after installation. Most packages provide de-installing options, but often these are not
capable of inverting every change done to the system during the installation of the package. These small remaining
changes result in a so-calledftware rotwhich makes the system as a whole unstable and increasingly difficult to
maintain.

The OS installation is therefore changing (and hopefully improving in quality and security) all the time, but
only to the price of high complexity.

Initial OS
) installation
Time i
Service pack /
patch
Temporgry Loc_alizgd I
installation replication
Addition of new (;(;D Localized .
software packages replication replication
T

Space ———» ;

Figure 1: Diagram showing the evolutionary steps of a typical software installation. As software is added, changed
or patched, the installation evolves over time (downwards). Localized and personalized replications of the instal-
lation on different machines are separated horizontally. An OS installation and maintenance tool should capture
changes in both directions.

3.2 Replication and Local Configuration: Spacial Differences

Some software packages also require local changes or adaptions on the machines, such as license keys for commer-
cial software or changes to the local configuration files or the Microsoft Registry Database. These are only small
changes between the installations, but it might nevertheless be worthwhile to store those spacial differences: When
a hard disk fails, the exact images for the partitions of that machine can be restored and no further configuration is
required.

Since the original OS image and its copies on the disks are bit-wise identical, some localizing configuration
steps must be taken to make them operational. In most cases a freshly cloned OS cannot be brought to life with a
simple booting process but requires some customization. We use a DHCP server on the same Ethernet segment to
assign IP addresses and machine names based on the unique Ethernet MAC address built into the primary network
interface of each PC. Additional scripts are performed at boot time to initialize further settings such as setting a
unique SID, logging onto a domain controller for Windows NT or selecting the correct driver for the graphics card
installed.

Another possibility for machine specific changes would be tosgsipted installs With this approach, a script
does the local configurations and software installations automatically after the initial OS is installed. Scripted in-
stalls have some disadvantages however: (1) They are OS dependent as the OS must support scripting languages
and be configurable by scripts. (2) They are slow since the file system must be used. ([2] describes how the direct
physical access of the disk is much faster than using the logical file system, while [5] shows that fast network-based
installations on clusters are in fact possible with raw disk accesses). (3) The removal of software packages with
a script is not as clean as restoring exactly the same installation. Most OS manufacturers recommend scripted
installs from an original CD ROM distribution and force the user to become OS dependent. Our techniques are
truly OS independent and will therefore work for future releases of Linux and Windows. Once some form of
auto-configuration at startup time can be worked out a replication to hundreds of PCs is easily possible. However,
auto-configuration and fully floating licenses are not always possible. With future operating systems it is well
conceivable that a fully automatic configuration can still not be worked out and manual intervention becomes nec-
essary. Therefore the partition repository technique allows the storage of fully localized images for each machine,
and due to their efficient management of differences, can do so without exceeding the storage budget. Since par-
tition repositories are oblivious to the file system it does not matter if the application stores its customized license
key in a file, in the executable or in an entry of the central Microsoft Registry Database. The disk block based
incremental imaging techniques will correctly apply any changes upon a restore.

Abstraction of the installation state and a strict OS independence seems to be the only viable approach to this
maintenance problem since it is very hard to obtain proper documentation about the configuration state of OSes
and application programs.

4 Partition Repositories for Incremental Maintenance

The advantages of working with partitions in an OS independent way have been outlined in the previous sections.
Archiving localized and fully configured images and entire maintenance histories of a large cluster of PCs as raw
image files requires a lot of storage space. Therefore most commercial tools revert to incremental storage in a file
system or other dependent schemes for image maintenances.

We implemented a much different scheme for the storage of all information required to do software installation
in a cluster. The implementation required many tradeoffs and design decisions, and therefore we need to quantify
the storage requirement and the savings of optimized storage techniques such as the deletion of zeroed blocks,
image compression and an incremental storage method qadigition repositorywith a few typical example
installations.

4.1 Implementation of Partition Repositories

Partition repositories work with partition images exclusively (no knowledge of the different file systems is desired

or required) and therefore the method is completely OS independent. Our software maintenance system will work
with any future OS version and any file system that is or will be used on our cluster of PCs. The system works
at partition level and at disk device level. At disk device level there are no restrictions on the data layout of a
disk and even non-standard formats, such as Oracle data disks, can be replicated. At the partition level the system
works with the standard partitioning system of the cluster platform (i.e. the partition structure of the Intel, Sun or
PowerPC platform). Our system relies on the partition access facilities provided by the Linux maintenance OS.

4.1.1 Optimized Storage of Full Partition Images

The most simple and obvious approach to manage different versions of installations is to store the partition image
of each new or upgraded OS installation in a file on a server. To save valuable disk space, the images can be
compressed with a generic data compression algorithm such as Huffman or Lempel Ziv encoding — our tool uses
GNU zip According to our experience, partition images of moderately filled partitions can be compressed to
roughly 50% of their original size, depending on the kind of data installed and the amount of free space in the
partition. We occasionally use various file system dependent tools to “wipe” free space or to fill empty blocks with
zeros after a complex installation. Such tools help to achieve better compression. As there is exactly one image-file
per installation, archives and restores are simple to manage. On the other hand, a lot of disk space is wasted as
most of the information in two incremental installations is identical.

4.1.2 Storing Partition Increments (difference, blockwise)

A better and more advanced approach to capture at least some of the similarities between two software installation
images is to store the full base image in a file for the first installation. Subsequent installations are then generated
by comparing the updated partition on a block-by-block basis. Only blocks which actually differ from previous
reference images are stored in a so caflédfile. With this approach, the unchanged blocks are not stored twice.
Small changes in an installation can thus be archived quite efficiently.

The generation of the diff-files is simple: The old image file and the upgraded partition are both read sequen-
tially and each block is compared with the block at the same position of the other input stream. When two blocks
differ, the block is written to the diff-file. When the two blocks are identical, only the number of the block in the
original image-file is written to the diff-file, thus saving the space of an entire block.

There are some cases that are not handled very well by this simple method: For some operating systems, the
removal and re-installation (probably with a partial update) of software-packages is a common operation. In this
case, the program itself, some configuration files as well as shared libraries, are frequently moved to other locations
in the partition, but not necessarily changed. For some file systems it is a common operation to defragment the
stored files, which results primarily in moving data blocks around. Only some block and directory structures on
the disk need actually to be changed. Another case are modern log-structured file systems (see e.qg. [7, 9]) in which
even unchanged blocks are frequently moved around by the cleaner to regain space in new empty segments. These
changes in location rather than content are not detected properly by the block-by-block compare.

4.1.3 Storage of a Partition Image in a Block Repository

Our most sophisticated solution, the partition block repositories, overcomes the limitation of the two previous
solutions and is fully enabled to detect the relocation of unchanged data during the difference calculation. It works
by comparing all blocks of the base image and incremental changes with each other and by storing only the unique
blocks in ablock repository The result is that blocks are not stored again in the block repository if they were
just moved around during an upgrade or defragmenting process by a system administrator or the cleaning process
of a log-structured file system. An new differential image only contains pointers to the blocks to be found in the
repository. Changed blocks not yet in the repository are stored and a pointer to them is inserted in the corresponding
archive file. This approach has the additional advantage that identical blocks in the same image (such as zeroed
blocks or common identical font files, libraries, graphics or dictionaries found in may software packages) will also
be stored only once, resulting in improved storage efficiency.

The downside of this most advanced approach of storing software installations is that comparison of all blocks
is an expensive operation, as each block of an image has to be compared with each block of the other image.
However, there are some possibilities to speed up the process. Instead of cross-comparing all the blocks, we speed
up the process by generating hash tables over the contents of the blocks at runtime when comparing compressed
images. We then compare the hash-values in memory only. For colliding hash values, the blocks have to be
compared in a second comparison pass, but the comparison of images is nevertheless much faster than it would be
with a naive approach. The comparison of two uncompressed Windows NT patrtitions of 2 GByte each takes about
7 minutes on a high end PC and requires a few hundred MB of memory. The same comparison with compressed
images took less than 9 minutes.

This operation is done only once for each archived installation step and is not required for the more frequent
restores. Furthermore, it is still much smaller compared to the time it usually takes to apply and test a system
installation or upgrade, and it can easily be done as a background process during the night, which makes it a
reasonable effort.

5 Experimental Evaluation

For evaluating the different storage schemes we study a few partition image series of real OS installations on our
Patagonia cluster of PCs. The images studied are taken from our server which runs the software maintenance
system as described in Section 4.1.1. Figure 2 shows the evolutionary steps of the installations and the replications
to multiple PCs in our cluster.

\ Boot part.\ \ Maint. OS\ \ Linux }—— Localization Oberon
for diff. hardware

Upgrade Upgrade Uparade Localization Small upgrade
l for diff. room
Time
— ™ Space Service pack inst. Localization

WinNT 2 for diff. clusters

Figure 2: Evolutionary steps of the installations in Table 1 showing the temporal and spacial changes.

Installation Full images Blockwise diff Blockwise repository
Base| Increment| Total | Base| Increment| Total || Base| Increment| Total
Boot partition 16 16| 32| 16| (18kB)| 16| 14| (18kB)| 14
Maintenance OS| 205 205| 410 205 0.3 205 195 0.3 195
Linux 945 945 | 1890 945 12 957 844 6 850
Oberon 106 106 + 106| 318 106 25+22| 153 28 10+ 2 40
WINNT 1 2048 | 2048 + 2048| 6144 | 2048 | 35+430| 2516 1893 | 22+ 280 2195
WINNT 2 2048 2048 | 4096 || 2048 29| 2077 | 1804 17 | 1821

Table 1: Comparison of the three presented approaches of storing incremental installations for different production
images in use on the Patagonia cluster at ETiH&i. All numbers are in MByte except where otherwise noted.

Table 1 lists the relevant storage requirements for a comparison of the different methods of storage and for an
estimate of storage requirements to maintain all system software in a large and diverse cluster of PCs or a fleet of
corporate PCs.

In Table 1 the different storage methods as described in Section 4 are compared. For some installations we
have a base installation and one incremental version available; other tests are done with two increments. With the
blockwise diff approach, the base image size is equal to the partition size of the installation, while the blockwise
repository base is slightly smaller due to the detection of identical disk blocks. The listed diffs are calculated
between the first version and the second version of the installation or from the second version to the third one
respectively. The listed installations have the following characteristics: The first two installations are a very small
boot partition, where only a minor change was applied, and a maintenance OS (Linux in our case) which was
slightly upgraded. The series of two subsequent Linux installations differ in a few configuration and kernel changes
for slightly different hardware (amount of memory, processors, graphic and network cards), resulting in a few
changed and a few relocated blocks. Oberon uses only a small portion of its partition which results in a quite
small partition repository. The second upgrade is the installation of nearly the same system for slightly different
hardware, resulting in mostly the same information at different locations on the disk. The fifth example is a series
of Windows NT installations starting with a baseline Windows NT installation followed by service pack installs.
The second Windows NT installation is for two nearly identical PC clusters where only a few default settings (such
as printers and boot scripts) have been changed.

In Figure 3 the different storage techniques for Windows NT and the Linux maintenance software installation
series is examined in more detail. The above methods are combined with compression of the base archive as
well as the increments. The incremental archive approaches show a great potential in saving disk space without
knowledge of the underlying file system.

We then compare the storage requirements of our disk block repository when installing the same software
package on different OSes with different file systems. The software package used for this experiment is Sun
Microsystems’ StarOffice 5.1 which is available for both Microsoft Windows NT and Linux. The results shown
in Table 2 and Figure 4 show that the diskblock repository technique works comparably well on both OSes and
file systems. According to the installation documentation of the software, the package requires 110-140 MByte
of permanent disk space and around an additional 20 MByte during the installation. The numbers in the table
are higher because our tool also captures changed entries in the directory and block handling structures of the file
system.

2400
1 Windows NT
2000
1600
@ i
2]
(0]
N
» 800
400 I
O% T | s | T |—||_| T T |_| T |—||_|
Full Images Blockwise Block Compressed Compressed Compressed
Diffs Repositories Images Diffs Repository
Method of storage
. Base Install |:| Increment 1 |:| Increment 2
250
1 Linux maintenance OS
200]
g‘]
< 150
M
2
_g 100
n]
50} I
o m] el e Em
Full Images Blockwise Block Compressed Compressed Compressed
Diffs Repositories Images Diffs Repository

Method of storage

. Base Install |:| Increment

Figure 3: Storage required for a successive Windows NT and Linux update path. Three different generations of
installation steps from a base install to a fully updated image are examined for Windows NT and two generations for
the Linux maintenance OS respectively. The three presented methods of archival are shown, without compression
applied in the left three cases and combined with compression in the right three. The blocksize used for the diffs
and the repository is 1 KB.

Another common operation in software installation maintenance is upgrading or patching the base OS or kernel
respectively. We thus measure typical patch operations for Windows NT and Linux. On Windows NT we upgrade
from Service Pack 4 to Service Pack 5, while on Linux we patch the kernel source tree on the machine from 2.2.14
to 2.2.15, recompile and install the kernel. These two operations are not directly comparable but show typical
software maintenance tasks for both OSes used in our clusters. The results are depicted in Table 3 and Figure 4.

2000+
1600-}
g |
< 1200
-]
2]
& 8007
)]
400
o] 1 -

Original Repository Increase after Increase after

StarOffice Service Patch/

Installation Kernel Upgrade

. Windows NT l:‘ Linux

Figure 4: Storage requirements in the repository for an incremental software update, i.e. installing the same new
office packagé&tarOffice 5.5and for upgrading or patching the base OS or kernel respectively on both Windows NT
and Linux. The original images are 2 GB large.

(O] Part. Repository size

Installation Size || Orig. img. | Incr. after inst.
Windows NT || 2048 1791 203
Linux 2048 1535 209

Table 2: Storage requirements in the repository for installing the same office paSkagaffice 5.1on both
Windows NT and Linux. The numbers are in MByte.

In our next experiment we compare the installations on two identical machines which have been localized,
again both for Windows NT and Linux. The Windows NT system was cloned, self-configured during the first
bootup, and rebooted eventually as the new localized machine. For Linux there is no need for such a configuration
step in our installation, as completely identical images can be used (we use DHCP for setting the IP-numbers and
hostnames, we do not have software with local licenses and we use scripts to detect and select the right graphic
card driver during bootup). The Linux numbers are derived by comparing two identical machines after they were
only in light use for a few weeks. The results are shown in Table 4. The table’s last column shows the number
of localized partition images that can be inserted into the repository before the repository is twice as big as the
uncompressed partition. This means that we can store 75 localized Windows NT installations in a repository that
has only twice the size of the partition.

Repository size
oS Part. Incr. after patch
Installation Size || Orig. img. | Abs. | Perc.
Windows NT || 2048 1791| 106 5.9%
Linux 2048 1535| 50 3.2%

Table 3: Storage requirements in the repository for upgrading or patching the base OS or kernel respectively. The
numbers are again in MByte.

10

Repository size
oS Partition Increase after localization # of inst.
Installation Size || Original Image| Absolute | Relative || to double
Windows NT 2048 1791 27 1.5% 75
Linux 2048 1535 9 0.5% 227

Table 4: Storage requirements in the disk block repository for localized replications. The numbers are in MB
except in the last column, which lists the number of localized replications that can be inserted in the repository
before its size is twice as big as the uncompressed partition.

300 ~90 0’
T] I
2] —80(_(g
°] =
o 602
< 1\ %
£ 2007 rQQ\ﬂ" R -U0F S
)] F 'g‘
@]] r =
3 150 40 ©
2 30 c
<] 1 F i)
5 100+ 20 3
I] F10 &
'c% 1 g 10 g

50 T T T T T T 0 O
512 1K 2K 4K 8K 16K 24K
Block Size [Byte]
Raw Image Size Compressed Size
(200MB-192MB) (113MB to 66 MB)
___ Compressed ratio
(59% to 30%)
30 ~90®’

F N

F n

\ §8O<—g
e |0

F60.2

F o

50,

N
6]

Size of repository/image [MByte]
= N
ol o
N
o
SS

[Eny
o

T T T T T T -
512 1K 2K 4K 8K 16K 24K
Block Size [Byte]

Diff Image Size Compressed Size
° (21MB-25MB) - (18MB to 12MB)

___ Compressed ratio
(86% to 49%)

Figure 5: Comparison of disk space requirements depending on different block sizes for the comparison (diff)
and compression algorithm. The 205 MByte Linux maintenance partition is inserted alone in the upper figure,
while in the lower figure, the first update is also inserted. In the upper case the absolute sizes of the uncompressed
and compressed repositories are compared and the compression ratio is shown. The lower figure shows the same
characteristics for an incremental partition image of 25 MByte as an uncompressed and compressed repository
after inserting the updated patrtition.

11

A shortcoming of the blockwise repository storage technique is that the fragmentation into blocks adversely
affects the compression rate since compression is now blockwise (instead of the whole image at once) so that
individual blocks can later be accessed directly without first uncompressing the whole repository-file. We exam-
ined the rate in more detail by comparing the raw size as well as the increase (diff size) of the uncompressed and
compressed repository, after inserting a base installation as well as an updated partition. We store the 205 MByte
large maintenance Linux base partition as well as its 25 MByte incremental updated image in the repository and
use varying block sizes for the gzip compression algorithm to compare (diff) and compress the blocks. The results
in Figure 5 show that for increasing block sizes the uncompressed repository size increases due to the coarser
granularity of difference detection because, for small changes, a larger block needs to be inserted into the repos-
itory. The compression algorithm, on the other hand, works better for larger block sizes, thereby improving the
compression factor. The results indicate that one might reduce the disk space requirements considerably by us-
ing 16 KByte blocks and by optimally combining blockwise repositories to whole image compression techniques.
16 KByte seems to be optimal for the incremental image, since the compression algorithm shows little additional
gains beyond 16 KByte and is offset by the loss in the accuracy of difference processing.

6 Conclusions

In our study we analyzed the problem of software maintenance in large clusters of PCs. We think that our work ap-
plies to traditional clusters for scientific computing, novel clusters for multimedial collaboration or even computers

in a corporate fleet of PCs. Versatility in the use of clusters and the rapid release schedule of different operating
systems in the commodity software market require a cluster maintenance tool to use simple and clean abstractions
of the state comprised of system installation.

Therefore, we propose to build a software maintenance system for clusters based on the storage and the dis-
tribution of entire partition images. The system thus does not depend on any operating system or file system. In
previous work we proposed to use our cloning tBallly for high speed partition cloning and data distribution
across the high speed network of large clusters of PCs. In this paper we investigated blockwise partition reposito-
ries to address the storage problems associated with the partition maintenance approach in large clusters of PCs.
We clearly identify two reasons for a replicated storage of partitions: the temporal evolution of an OS installation
following the release schedule for updates and the installations of additional middleware or application packages,
the individual configuration of images for heterogeneous hardware environment or for network or license key
configurations.

The implementation of a block-based difference scheme demonstrates that we can reduce the storage needs for
keeping a full software history based on partition images drastically by storing increments of 1% up to 20% of the
space that would be required to store a full partition. A comparison between a release history of Windows NT and
Linux partition on our dual boot cluster does not reveal any fundamental difference between the two most popular
cluster operating systems and shows that our partition repositories work for both operating systems in the same
way.

We also demonstrate that storing fully customized images for the different nodes in a large cluster is relatively
cheap. Since our Linux system offers complete network autoconfiguration and none of the Linux Software pack-
ages relies on individual license keys the capability for localized replication is not as important for Linux as it is
for Windows NT. For Windows NT our method can store up to 75 incremental customizations in the space required
by a typical 2 GB operating system installation. We hope that all future operating systems will eventually migrate
to full networked autoconfiguration, but we still appreciate a maintenance system that offers a fallback solution.
In our evaluation we carefully consider the interaction between difference processing that works best at a fine
granularity and data compression that works best at large granularity. It appears that the best block size for block
partition repositories would be around 16 KByte.

Our software maintenance system based on high speed patrtition cloning across the network and highly efficient
storage in partition repositories is at the stage of a highly modular university prototype, and some parts of the
system are already in daily use by our system administrators. It is based on simple ideas, and all software involved
is available under open source.

12

References

[1]

(2]

(3]

[4]

[5]

[6]

[7]

(8]

[9]

Symantec Corporation. Norton Ghost: Disk Cloning Technology for the Overburdened IS Professional, 1998.
http://www.symantec.com/sabu/ghost.

Norman C. Hutchinson, Stephen Manley, Mike Federwisch, Guy Harris, Dave Hitz, Steven Kleiman, and
Sean O Malley. Logical vs. Physical File System BackugRdoceedings of the 3rd Symposium on Operating
Systems Design and Implementation, New Orleans, Louisjgages 239-249. The USENIX Association,
February 1999.

Linux Online. Linux online information. WWW site, 1999.
http://iwww.linux.org/

Felix Rauch, Christian Kurmann, Blanca MariauNEr-Lagunez, and Thomas M. Stricker. Patagonia — A
Dual Use Cluster of PCs for Computation and Education2.IkVorkshop Cluster Computing, Karlsryhe
pages 65-75, March 1999.

Felix Rauch, Christian Kurmann, and Thomas M. Stricker. Partition Cast — Modelling and Optimizing
the Distribution of Large Data Sets on PC Clusters. In Arndt Bode, Thomas Ludwig, Wolfgang Karl, and
Roland Wisnuller, editors,Lecture Notes in Computer Science 1900, Euro-Par 2000 Parallel Processing,
6th International Euro-Par Conference Munidiunich, Germany, August 2000. Springer. Also available as
Technical Report 343, Department of Computer Science, E@ilitH, http://www.inf.ethz.ch/

Paul Riddle. Automated Upgrades in a Lab Environmen®ioceedings of the Eighth Systems Administra-
tion Conference: (LISA Vll|)pages 33—-36. USENIX Association, September 1994.

Mendel Rosenblum and John K. Ousterhout. The Design and Implementation of a Log-Structured File
System.ACM SIGOPS Operating Systems Reyi2i(5):1-15, 1991.

Gottfried Rudorfer. Managing PC Operating Systems with a Revision Control SystéProdeedings of the
Eleventh Systems Administration Conference (LISA 18&Qes 79-84. USENIX Association, October 1997.

Margo Seltzer, Keith Bostic, Marshall Kirk McKusick, and Carl Staelin. An Implementation of a Log-
Structured File System for UNIX. IRroceedings of the Winter 1993 USENIX Conferempeges 307-326.
The USENIX Association, 1993.

[10] Michael E. Shaddock, Michael C. Mitchell, and Helen E. Harrison. How to Upgrade 1500 Workstations on

Saturday, and Still Have Time to Mow the Yard on SundayPioceedings of the Ninth Systems Administra-
tion Conference: (LISA IXpages 59-65. USENIX Association, September 1995.

13

