mzuriCh ETH Library

Algebras and combinators

Report

Author(s):
Emgeler, Erwin

Publication date:
1979

Permanent link:
https://doi.org/10.3929/ethz-a-005363190

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
ETH Zirich, Institut fir Informatik 32

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-005363190
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

ETH

Eidgendssische Technische Hochschule
Ziirich

Institut fur Informatik

Erwin Engeler
ALGEBRAS AND COMBINATORS

June 1979 32

?o&.,ﬂ-

ETH

EIDGENGSSISCHE TECHNISCHE HOCHSCHULE
ZURICH

INSTITUT FUR INFORMATIK

ERWIN ENGELER

ALGEBRAS AND COMBINATORS

June 1979

Mawgy

32

Address of the author:

Institut fiir Informatik
ETH-Zentrum
CH-~8092 Ziirich

(:) 1979 Institut fiir Informatik der ETH Ziirich

ALGEBRAS AND COMBINATORS

Erwin Engeler

§1 A general representation theorem

We shall prove our representation theorem for the case of
algebras with one binary operation only; the generalization
to arbitrary algebraic structures is sketched at the end of
this section.

Let A be non-empty. Let B be a set of "formulas"
defined as the smallest set = A which contains the formula

(o + b) whenever a is a non-empty finite subset of B and
b € B.

Definition. For M,NSB let M:N = {b:3c €S N. oo + b € M}.
A 2-algebra over A is a collection of subsets of B closed

under - .

THEOREM. Every algebra A = <A,:> with one binary opera-

tion is isomorphic to a 2-algebra over A.

Proof. Construct the set of formulas B as above,
starting with the carrier set A of the given algebraic
structure A . Then define a map f of A into the power-
set of B recursively by

f(a) = Uifi(a) '

where

fo(a)

fi+l(a) = fi(a

Note that f£(a)n A
(1) if f(a)

because then {a} =

remains to prove
(2) f(a+b) =
For this we compute

f(a) « £(b)

{y

= {y

{y

Because u € a € £(b

{a} ,

) U{a+y :3b € A. bEatC fi(b)

ANy E fi(a »b) A o finite} .

{a}. Hence

1]

f(b) then a =b ,

f(a) n A = f(b) n A = {b}. Thus, it

f(a) » £(b) .

as follows:

: 30 € f(b). o +y € f(a)}

i c - .

: 3q f(b)aminimali. o +~ y € fi+1(a)}
: 30 € £(b) 3i3u,v € A. au = v

Au€a € fi(u) Ay € fi(v)}.

) n fi(u) and u € A, we have u =>b>

and v = a-+b, using f(a) n A = {a} again. Hence

1t

f(a) - £(b) = {y

{y

Thus (2) holds, and

If the structure to

a ternary operation

: 30 € £(b)ai. b € o € fi(b) Ay € fi(a +b)}

:3i.y € £ (a *b)} = yf,(a-b) = fla-Db).
f is an isomorphic embedding as claimed. []

be represented has other operations, e.g.

o, we augment the definition of B

accordingly: A € B and if «,B are finite subsets of B
and ¢ € B then (a,B 3 c) € B as well as (o + c) € B.

Definition. For M,N,L.€ B let o(M,N,L) =
{c : 30 € N3B € L. (a,B 2 c) € B}. A 2-3-algebra over A is

a class of subsets of B «c¢losed under + and o.

THEOREM. Every algebraic structure A = <A, +,0> is

isomorphic to a 2-3-algebra.
Proof. Same as above with the map f redefined by setting

- N c
fi+l(a) = fi(a) U{ae+y :3b€A. b€ acCS fi(b)
Ay € fi(a *b) A a finite}
U {a,8 P ib,c € A. b € o € fi(b)
AceyE fi(c) Az € fi(o(a,b,c))

A o,B finite}. []

It is easy to extend the representation theorem to relational

structures.

§2 Combinatory algebras

A combinatory algebra is an algebraic structure A = <A,->

which is "combinatorially complete", i.e.

For every expression ¢(xl, ceny xn) built up from con-
stants (denoting elements of A) and variables Xir oeer X
by means of the operation symbol ":" there exists an ele-
ment £ in A such that for all al, feer an € A

(oo ((£ ‘al) -az)...- an) = ¢(al, [an).

The existence of non-trivial combinatory algebras follows
either from a Church-Rosser theorem as an algebra of equiva-
lence-classes of terms or by constructions such as Scott's
D, or Plotkin-Scott's Pw . Our general representation
theorem suggests that combinatory algebras be constructed
as 2-algebras., Indeed, all combinatory algebras are iso-
morphic to 2-algebras.

et A#@® and B be constructed as in the first part
of section 1. Then the 2-algebra of all subsets of B already
forms a combinatory algebra. Following Curry's remark that
combinatorial completeness follows from two of its instances,
it suffices to isolate two different subsets XK and S of
B such that for all M,N,L. € B we have

(1) KMN = M,
(2) SMNL ML (NL) .

The following definitions accomplish this.

Definition.

K := {0+ (p+s) : 06,0 B, s €a}

s := {{t » ({rl,...,rn} > s)} » ({cl~>rl,...,0n-*rn}-+(U-+s)):
nxl, ry,...,r €B, T U kJoi = ¢ € B} .

THEOREM. The 2-algebra of subsets of B is a combi-
natory algebra.

Proof. Clearly K # S, since ({a} » ({a} » a)) € K,
({a} ~ ({a} + a)) # S. The combinatorial laws follow by

straightforward verification:

KMN = {s : 3¢ € N3 € M. 8 - (a > s) € K}

{s : 3B E M. s € B} = M.

ML(NL) = {s : 3p € NL. p » s € ML}
- . c
= {s : 3An >1 Erl,...,rn € B Scl,...,cn L.
{rl,...,rn} > 8 €& ML A Oy > Tyseee,0 > € N}
= {s:an;1arl,...,rneBaol,...,cnSLargL.
T - ({rl,...,rn} > 8) EMA Ul*rl,...,on-»rneN}
SMNL = {s :30 €L3np € N3g EM. (¢ > (n> (cd ~s))) & s}

= {s : 30 €Lan >1 Erl,...,rn € B EI,Gl,...,O € B.

n

T - ({rl,...,rn} + 8) EMA Gy >Tqr-

Ao =TU chi}

..,0_~»r EN
n n

= {s :3an>1 Brl,...,rn € B 31,01,...,0n € L.
T > ({rl,...,rn} +8) EMA o, +1 ,...,0n+rn€N}

1771
= ML(NL). []

§3 Lambda calculi

Lambda calculi are based on binary algebraic structures
A = <A,+>; they enforce combinatorial completeness by pro-

viding a name
AX.M ,

for each expression M, to denote the element f € A for
which

where Mg stands for the expression obtained from M by

replacing the variable X everywhere by N.

The language of a lambda calculus consists of constant
symbols and variables X,Y,%Z,... and is provided with the
mechanisms of application (if M and N are A-terms then
so is MN) and abstraction (if M is a A-term and X 1is
a variable, then AX.M is a A-term).

We now present an interpretation of A-terms in the
2-algebra of all subsets of B which will make use of the
latter a model of the AB-calculus. To each variable X,Y,...
of the lambda calculus we associate an infinite set of new
symbols {xl,xz,...}, resp. {yl,yz,...},... Let C be the
smallest set =2 B such that both (a - b) and (a;b)

are in C whenever o is a finite subset of C and

b € C. Let C(X), C(X,Y), ... be defined the same way,
taking B U {xl,xz,...}, resp. B U {xl,xz...} U {yl,yz,...}
to start. Elements of C, C(X), C(X,Y¥), ... can be reduced

by replacing parts of expressions of the form a; (B + ¢) by
c if B8 € a.

LEMMA 1., For every w in C (resp. C(X), C(X,Y), ...)
there is a unique irreducible element w* of C (resp.
C(X), C(X,Y)) which can be obtained from w by repeated

applications of the reduction rule.

Proof. If w = ({al,...an} + b) then the unique w*
is clearly ({a{,...,a;} + b*)., If w = ({al,...,an};b)
and b can be reduced to ({cl,...,cm} -+ d), where each

c:.L is obtained from an a_. by (repeated) reductions,
then b* equals {cI,...,cﬁ} + d* by the previous case.
Thus w reduces uniquely to d*. If b cannot be so re-

duced, then the unique w* is ({a},...,a*};b*). M

To indicate the occurrence of a symbol x; or a set
of symbols £ € {x;,%x,,...} in an element of C(X), we
write it a(xi), respectively a(g). If b, respectively
B is substituted for X or respectively £, we write the

result as a(b), respectively af(B).

Let now [.] Dbe a map, which associates a subset of
B to every variable of the lambda calculus. We also con-

sider modified maps [.]X P [']xy ;... defined as follows:
[x]X = {xl,xz,...}, [Y]X = [Y] for all variables Y # X,
LX]XY={X11X21---}I [Y]xy = {yl,y2,...}, [Z]xy = [z] for
all 2 # X,Y. The maps [.], [']x’ ... are extended to
all lambda-terms by:

Definition.

[MN] = {(a;b)* : oo € [N], b € [M]},

[MN]x = {(a;b)* : a € [N]x ;, b€ [M]x}.

[AX.M] = {(t - a(t))* : T €B, al(f) € [M]X} /

[)\X.M]X = [AX.M],

[Ay.ml = {(t » a(g,1))* : T B, a(g,n) € [M]xy}, Y #X.

LEMMA 2. Let L be a lambda-term in which the variable
X does not occur free, and let Mi result from M by re-

placing X everywhere in M by L. Then
[MX] = {a(M)* : xS [L], a(g) € [M]x}-
If Y is also not free in L then
L

[MX]Y = {a(A,m* : x» € [L], a(g,n) € [M]xy}.

Proof. It suffices to prove the first statement, because

[L]y = [L]. The first statement is shown by induction on the
structure of M.

L

(a) [xg] = [L]

n

{a(A)* = &

i

[Ll, a(g) € [X], {xl,xz,...}}u

fa(n)*

>
n

1

L -
[y 1 = [Y] [Y1}.

(L], a(g) e [¥],

L L L. _ . . L L
T=IMNgT = {(a;b)* : o € [(NyI, b € (M1}

(b) [y

n

Ha)s bOL* = Ap,h, S IL], a(g)) € [N]_,

b(g,) € [M]X}

]

{e)* = X € [L], c(E) € [MN]X}.

(c) Assume, without loss of generality, that Y 1is

not free in L. Then
[OY.0F] = [AYME] = {(1 > a(1))* : 1 €B, a(m) ¢ [Mi]y}
= {t »b(h,1)* : T €B, » €[L], b(E,n) € [M]xy}
= {c)* : » € [L1, c(&) € [AY.M]X}-
Definition. |[M| = [M] n B.

IHEOREM. If M = N is provable in the lambda calculus,
then for all maps [.] we have |M| = |N]|.

Proof. For the only non-trivial axiom we have

[(AX.M)N| = [(AX.M)N] n B = {(a;b)* : a € [N], be [AX.M]} n B

{(ast » b(T))* : o € [N], T €B, b(£) € (MI} nB

{b(t)* : © € [N], b(E) € [M]x} n B, because for

reduction must have T € o € [N],

[Mﬂ] nB = |M§| by Lemma 2 and definition of |.| .

The verification of the rules of proof are all trivial,

except
M = N implies AX.M = XX.N .
Observe

[ax.M| = {1~ a(n)* : a(g) & [MI_} nB = Tkéé{w—»aT za € IMI(‘L‘)}

where [X] . ,=1, [¥] =0yl for all Y # X. Because]Mh¢)=|NkT)
for all T by assumption, we have therefore [AX.M| = [AX.N

'THEQOREM. |AX.X| # |AX.XX

1l

proof. [AX.X| = {t > a(n)* : v €B, a(f) € [X] = {x;,%,,...}}

n B={{a}+a : a € B}.

|Ax.xx| = {t » a(0)* : T B, a(§) € [XX]_ = {(a;b)* :aS[x]x,
-bE[X]x}r
= {1t + a(t)* : T €B, a(g) = ({x; ,.- rXy T x;)
1 n n+1l
for some n > 1} n B

{{al,...,a

n+l} - ({al,...,an}; an+l)* ta; € B} n B

{{al,...,an,({ail,...,aim} + b))} » b : a . b € B}

“th

| AX.X

. O

We thank H. Barendregt for pointing out some oversights in an

earlier version of this model.

- 10 -

§4 Continuity

In previous constructions of models of combinatory algebras,
continuity played an important réle. - For an appropriate
topology we can very easily prove here that the continuous
maps from the powerset of B to itself are exactly the

ones which are obtained by application.

Definition. Let A # ® and B be as before. The sets
{M : o €ME B} for finite o form the base of our topo-

logy.

Observe that in this topology a map f from the power-

set of B into itself is continuous iff

£(N) = kJ{f(a) : o €N, o finite}.
THEOREM. f is continuous iff 3M € BYN € B. f(N) = M+ N,
Proof. (a) Suppose f continuous. Define

M={a +x: x € £f(a), o« € B, o finite} .

Then M+N = {x : 30 €E N. o - x &€ M}

]

{x : 30 € N. x € f(a), o finite}

\Uif(a)

m

o € N, o finite}

il

£(N) by continuity .

(b) Suppose f is given by £(N) = M+ N. We have to show

continuity, i.e. £(N) =\J{f(a) : o €N, « finite}. The latter

set is, by definition equal to \U{M+a : o €N, o finite}.

- 11 -

Thus x € \UM+0 : o €N, o finite}

Q
n

iff 3o 3B E N. B+ x € MA o finite,

iff 3B E N. B~ XE M,

iff X € M*N,

iff x € f£(N).

- 12 -

§5 Applications

The simplicity of the combinatory algebras above facilitates
their use as models of computation. This will be elaborated in
a future paper; one example should suffice here.

Let T be a first-order theory with predicate symbol R
(binary) and function symbol £ (unary). The model of com-—
putation associated to T is a 2-algebra Al' over the first-
order language L of T, containing S and K (which makes

it a ~combinatory algebra) and the following constants:

For each formula ¢ in L let

[¢] :={perL: T, o).

For all variables x,y in L let

[y := £(x)] := {8 » Y(x,y) :T,0, y'=£(x), x'=xpy¢(x',y")}.

This model describes programmed computations on data and with
operations that are incompletely known (only to the extent
that T provides this knowledge) or whose description is
infinite. It has been implemented at the ETH by Th. Fehlmann
for the case where T 1is Peano arithmetic, and by P. Horak
for exact computations with reals and power series. Descrip-

tions of these implementations are forthcoming.

Berichte des Instituts fur Informatik

¥Nr. 1
*Nr. 2

Nr. 3

Nr. 4

¥Nr. 5

*Nr. 6

Nr. 7

Nr. 8

*Nr. 9

*Nr . 10

Nr.11

*Nr .12
*Nr .13
Nr .14
¥Nr .15
Nr.16
Nr .17

*¥Nr .18
*Nr .19

Nr .20

N.Wirth:
N.Wirth:
P.L#8uchli:
W.Gander,
A.Mazzario:
N.Wirth:

C.A.R.Hoare,
N.Wirth:

W.Gander,
A.Mazzario:

E.Engeler,
E.Wiedmer,
E.Zachos:
H.P.Frei:
K.V.Nori,
U.Ammann,
K.Jensen,
H.H.N8geli,
Ch.Jacobi:

G.I.Ugron,
F.R.L#thi:

N.Wirth:
U.Ammann:
K.Lieberherr:
E.Engeler:
W.Bucher:

N.Wirth:

N.Wirth:

N.Wirth:

E.Wiedmer:

The Programming Language PASCAL
Program development by step-wise refinement

Reduktion elektrischer Netzwerke und
Gauss'sche Elimination

Numerische Prozeduren I

The Programming Language PASCAL (Revised Report)

An Axiomatic Definition of the Language PASCAL
Numer ische Prozeduren II

Ein Einblick in die Theorie der Berechnungen

Computer Aided Instruction: The Author Language
and the System THALES

The PASCAL 'P' Compiler: Implementation Notes
(Revised Edition)

Das Informations-System ELSBETH

PASCAL-S: A subset and its Implementation

Code Generation in a PASCAL Compiler

Toward Feasible Solutions of NP-Complete Problems
Structural Relations between Programs and Problem
A contribution to solving large linear problems
Programming languages: what to demand and how to
access them and

Professor Cleverbyte's visit to heaven

MODULA: A language for modular multiprogramming

The use of MODULA and
Design and Implementation of MODULA

Exaktes Rechnen mit reellen Zahlen

¥Nr .21 J.Nievergelt, XS-0, a Self-explanatory School Computer

Nr .22
Nr.23
Nr .24

Nr .25

Nr .26

Nr .27

Nr.28

Nr .29

Nr .30

H.P.Frei,
et al.:

P.LBuchli:
K.Bucher:

E.Engeler:

U.Ammann:

E.Zachos:
N:Wirth:
J.Nievergelt,
J.Weydert:
A.C.Shaw:

B.Thurnherr,
C.A.Zehnder:

Nr.31 A.C.Shaw:

Nr.32 E. Engeler:

* out of print

Ein Problem der ganzzahligen Approximation
Automatisches Zeichnen von Diagrammen

Generalized Galois Theory and its Application to
Complexity

Error Recovery in Recursive Descent Parsers
Run-time Storage Organization

and

Kombinatorische Logik und S-Terme

MODULA-2

Sites, Modes and Trails: Telling the User of an
Interactive System where he is, what he can do,
and how to get to Places.

On the Specification of Graphic Command Languages
and their Processors

Global Data Base Aspects, Consequences for the
Relational Model and a Conceptual Schema Language

Software Specification Languages based on regular
Expressions

Algebras and Combinators

