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ALGEBRAS AND COMBINATORS

Erwin Engeler

§1 A general representation theorem

We shall prove our representation theorem for the case of
algebras with one binary operation only; the generalization
to arbitrary algebraic structures is sketched at the end of
this section.

Let A be non-empty. Let B be a set of "formulas"
defined as the smallest set = A which contains the formula

(o + b) whenever a is a non-empty finite subset of B and
b € B.

Definition. For M,NSB let M:N = {b:3c €S N. oo + b € M}.
A 2-algebra over A is a collection of subsets of B closed

under - .

THEOREM. Every algebra A = <A,:> with one binary opera-

tion is isomorphic to a 2-algebra over A.

Proof. Construct the set of formulas B as above,
starting with the carrier set A of the given algebraic
structure A . Then define a map f of A into the power-
set of B recursively by

f(a) = Uifi(a) '

where



fo(a)

fi+l(a) = fi(a

Note that f£(a)n A
(1) if f(a)

because then {a} =

remains to prove
(2) f(a+b) =
For this we compute

f(a) « £(b)

{y

= {y

{y

Because u € a € £(b

{a} ,

) U{a+y :3b € A. bEatC fi(b)

ANy E fi(a »b) A o finite} .

{a}. Hence

1]

f(b) then a =b ,

f(a) n A = f(b) n A = {b}. Thus, it

f(a) » £(b) .

as follows:

: 30 € f(b). o +y € f(a)}

i c - .

: 3q f(b)aminimali. o +~ y € fi+1(a)}
: 30 € £(b) 3i3u,v € A. au = v

Au€a € fi(u) Ay € fi(v)}.

) n fi(u) and u € A, we have u =>b>

and v = a-+b, using f(a) n A = {a} again. Hence

1t

f(a) - £(b) = {y

{y

Thus (2) holds, and

If the structure to

a ternary operation

: 30 € £(b)ai. b € o € fi(b) Ay € fi(a +b)}

:3i.y € £ (a *b)} = yf,(a-b) = fla-Db).
f is an isomorphic embedding as claimed. [ ]

be represented has other operations, e.g.

o, we augment the definition of B



accordingly: A € B and if «,B are finite subsets of B
and ¢ € B then (a,B 3 c) € B as well as (o + c) € B.

Definition. For M,N,L.€ B let o(M,N,L) =
{c : 30 € N3B € L. (a,B 2 c) € B}. A 2-3-algebra over A is

a class of subsets of B «c¢losed under + and o.

THEOREM. Every algebraic structure A = <A, +,0> is

isomorphic to a 2-3-algebra.
Proof. Same as above with the map f redefined by setting

- N c
fi+l(a) = fi(a) U{ae+y :3b€A. b€ acCS fi(b)
Ay € fi(a *b) A a finite}
U {a,8 P ib,c € A. b € o € fi(b)
AceyE fi(c) Az € fi(o(a,b,c))

A o,B finite}. [ ]

It is easy to extend the representation theorem to relational

structures.

§2 Combinatory algebras

A combinatory algebra is an algebraic structure A = <A,->

which is "combinatorially complete", i.e.

For every expression ¢(xl, ceny xn) built up from con-
stants (denoting elements of A) and variables Xir oeer X
by means of the operation symbol ":" there exists an ele-
ment £ in A such that for all al, feer an € A

(oo ((£ ‘al) -az)...- an) = ¢(al, [ an).



The existence of non-trivial combinatory algebras follows
either from a Church-Rosser theorem as an algebra of equiva-
lence-classes of terms or by constructions such as Scott's
D, or Plotkin-Scott's Pw . Our general representation
theorem suggests that combinatory algebras be constructed
as 2-algebras., Indeed, all combinatory algebras are iso-
morphic to 2-algebras.

et A#@® and B be constructed as in the first part
of section 1. Then the 2-algebra of all subsets of B already
forms a combinatory algebra. Following Curry's remark that
combinatorial completeness follows from two of its instances,
it suffices to isolate two different subsets XK and S of
B such that for all M,N,L. € B we have

(1) KMN = M,
(2) SMNL ML (NL) .

The following definitions accomplish this.

Definition.

K := {0+ (p+s) : 06,0 B, s €a}

s := {{t » ({rl,...,rn} > s)} » ({cl~>rl,...,0n-*rn}-+(U-+s)):
nxl, ry,...,r €B, T U kJoi = ¢ € B} .

THEOREM. The 2-algebra of subsets of B is a combi-
natory algebra.

Proof. Clearly K # S, since ({a} » ({a} » a)) € K,
({a} ~ ({a} + a)) # S. The combinatorial laws follow by

straightforward verification:

KMN = {s : 3¢ € N3 € M. 8 - (a > s) € K}

{s : 3B E M. s € B} = M.



ML(NL) = {s : 3p € NL. p » s € ML}
- . c
= {s : 3An >1 Erl,...,rn € B Scl,...,cn L.
{rl,...,rn} > 8 €& ML A Oy > Tyseee,0 > € N}
= {s:an;1arl,...,rneBaol,...,cnSLargL.
T - ({rl,...,rn} > 8) EMA Ul*rl,...,on-»rneN}
SMNL = {s :30 €L3np € N3g EM. (¢ > (n> (cd ~s))) & s}

= {s : 30 €Lan >1 Erl,...,rn € B EI,Gl,...,O € B.

n

T - ({rl,...,rn} + 8) EMA Gy >Tqr-

Ao =TU chi}

..,0_~»r EN
n n

= {s :3an>1 Brl,...,rn € B 31,01,...,0n € L.
T > ({rl,...,rn} +8) EMA o, +1 ,...,0n+rn€N}

1771
= ML(NL). []

§3 Lambda calculi

Lambda calculi are based on binary algebraic structures
A = <A,+>; they enforce combinatorial completeness by pro-

viding a name
AX.M ,

for each expression M, to denote the element f € A for
which

where Mg stands for the expression obtained from M by

replacing the variable X everywhere by N.




The language of a lambda calculus consists of constant
symbols and variables X,Y,%Z,... and is provided with the
mechanisms of application (if M and N are A-terms then
so is MN) and abstraction (if M is a A-term and X 1is
a variable, then AX.M is a A-term).

We now present an interpretation of A-terms in the
2-algebra of all subsets of B which will make use of the
latter a model of the AB-calculus. To each variable X,Y,...
of the lambda calculus we associate an infinite set of new
symbols {xl,xz,...}, resp. {yl,yz,...},... Let C be the
smallest set =2 B such that both (a - b) and (a;b)

are in C whenever o is a finite subset of C and

b € C. Let C(X), C(X,Y), ... be defined the same way,
taking B U {xl,xz,...}, resp. B U {xl,xz...} U {yl,yz,...}
to start. Elements of C, C(X), C(X,Y¥), ... can be reduced

by replacing parts of expressions of the form a; (B + ¢) by
c if B8 € a.

LEMMA 1., For every w in C (resp. C(X), C(X,Y), ...)
there is a unique irreducible element w* of C (resp.
C(X), C(X,Y)) which can be obtained from w by repeated

applications of the reduction rule.

Proof. If w = ({al,...an} + b) then the unique w*
is clearly ({a{,...,a;} + b*)., If w = ({al,...,an};b)
and b can be reduced to ({cl,...,cm} -+ d), where each

c:.L is obtained from an a_. by (repeated) reductions,
then b* equals {cI,...,cﬁ} + d* by the previous case.
Thus w reduces uniquely to d*. If b cannot be so re-

duced, then the unique w* is ({a},...,a*};b*). M

To indicate the occurrence of a symbol x; or a set
of symbols £ € {x;,%x,,...} in an element of C(X), we
write it a(xi), respectively a(g). If b, respectively
B is substituted for X or respectively £, we write the

result as a(b), respectively af(B).



Let now [.] Dbe a map, which associates a subset of
B to every variable of the lambda calculus. We also con-

sider modified maps [.]X P [']xy ;... defined as follows:
[x]X = {xl,xz,...}, [Y]X = [Y] for all variables Y # X,
LX]XY={X11X21---}I [Y]xy = {yl,y2,...}, [Z]xy = [z] for
all 2 # X,Y. The maps [.], [']x’ ... are extended to
all lambda-terms by:

Definition.

[MN] = {(a;b)* : oo € [N], b € [M]},

[MN]x = {(a;b)* : a € [N]x ;, b€ [M]x}.

[AX.M] = {(t - a(t))* : T €B, al(f) € [M]X} /

[)\X.M]X = [AX.M],

[Ay.ml = {(t » a(g,1))* : T B, a(g,n) € [M]xy}, Y #X.

LEMMA 2. Let L be a lambda-term in which the variable
X does not occur free, and let Mi result from M by re-

placing X everywhere in M by L. Then
[MX] = {a(M)* : xS [L], a(g) € [M]x}-
If Y is also not free in L then
L

[MX]Y = {a(A,m* : x» € [L], a(g,n) € [M]xy}.

Proof. It suffices to prove the first statement, because

[L]y = [L]. The first statement is shown by induction on the
structure of M.

L

(a) [xg] = [L]

n

{a(A)* = &

i

[Ll, a(g) € [X], {xl,xz,...}}u

fa(n)*

>
n

1

L -
[y 1 = [Y] [Y1}.

(L], a(g) e [¥],



L L L. _ . . L L
T=IMNgT = {(a;b)* : o € [(NyI, b € (M1}

(b) [y

n

Ha)s bOL* = Ap,h, S IL], a(g)) € [N]_,

b(g,) € [M]X}

]

{e)* = X € [L], c(E) € [MN]X}.

(c) Assume, without loss of generality, that Y 1is

not free in L. Then
[OY.0F] = [AYME] = {(1 > a(1))* : 1 €B, a(m) ¢ [Mi]y}
= {t »b(h,1)* : T €B, » €[L], b(E,n) € [M]xy}
= {c)* : » € [L1, c(&) € [AY.M]X}-
Definition. |[M| = [M] n B.

IHEOREM. If M = N is provable in the lambda calculus,
then for all maps [.] we have |M| = |N]|.

Proof. For the only non-trivial axiom we have

[(AX.M)N| = [(AX.M)N] n B = {(a;b)* : a € [N], be [AX.M]} n B

{(ast » b(T))* : o € [N], T €B, b(£) € (MI} nB

{b(t)* : © € [N], b(E) € [M]x} n B, because for

reduction must have T € o € [N],

[Mﬂ] nB = |M§| by Lemma 2 and definition of |.| .



The verification of the rules of proof are all trivial,

except
M = N implies AX.M = XX.N .
Observe

[ax.M| = {1~ a(n)* : a(g) & [MI_} nB = Tkéé{w—»aT za € IMI(‘L‘)}

where [X] . ,=1, [¥] =0yl for all Y # X. Because ]Mh¢)=|NkT)
for all T by assumption, we have therefore [AX.M| = [AX.N

'THEQOREM. |AX.X| # |AX.XX

1l

proof. [AX.X| = {t > a(n)* : v €B, a(f) € [X] = {x;,%,,...}}

n B={{a}+a : a € B}.

|Ax.xx| = {t » a(0)* : T B, a(§) € [XX]_ = {(a;b)* :aS[x]x,
-bE[X]x}r
= {1t + a(t)* : T €B, a(g) = ({x; ,.- rXy T x; )
1 n n+1l
for some n > 1} n B

{{al,...,a

n+l} - ({al,...,an}; an+l)* ta; € B} n B

{{al,...,an,({ail,...,aim} + b))} » b : a . b € B}

“th

| AX.X

. O

We thank H. Barendregt for pointing out some oversights in an

earlier version of this model.
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§4 Continuity

In previous constructions of models of combinatory algebras,
continuity played an important réle. - For an appropriate
topology we can very easily prove here that the continuous
maps from the powerset of B to itself are exactly the

ones which are obtained by application.

Definition. Let A # ® and B be as before. The sets
{M : o €ME B} for finite o form the base of our topo-

logy.

Observe that in this topology a map f from the power-

set of B into itself is continuous iff

£(N) = kJ{f(a) : o €N, o finite}.
THEOREM. f is continuous iff 3M € BYN € B. f(N) = M+ N,
Proof. (a) Suppose f continuous. Define

M={a +x: x € £f(a), o« € B, o finite} .

Then M+N = {x : 30 €E N. o - x &€ M}

]

{x : 30 € N. x € f(a), o finite}

\Uif(a)

m

o € N, o finite}

il

£(N) by continuity .

(b) Suppose f is given by £(N) = M+ N. We have to show

continuity, i.e. £(N) =\J{f(a) : o €N, « finite}. The latter

set is, by definition equal to \U{M+a : o €N, o finite}.
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Thus x € \UM+0 : o €N, o finite}

Q
n

iff 3o 3B E N. B+ x € MA o finite,

iff 3B E N. B~ XE M,

iff X € M*N,

iff x € f£(N).
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§5 Applications

The simplicity of the combinatory algebras above facilitates
their use as models of computation. This will be elaborated in
a future paper; one example should suffice here.

Let T be a first-order theory with predicate symbol R
(binary) and function symbol £ (unary). The model of com-—
putation associated to T is a 2-algebra Al' over the first-
order language L of T, containing S and K (which makes

it a ~combinatory algebra) and the following constants:

For each formula ¢ in L let

[¢] :={perL: T, o).

For all variables x,y in L let

[y := £(x)] := {8 » Y(x,y) :T,0, y'=£(x), x'=xpy¢(x',y")}.

This model describes programmed computations on data and with
operations that are incompletely known (only to the extent
that T provides this knowledge) or whose description is
infinite. It has been implemented at the ETH by Th. Fehlmann
for the case where T 1is Peano arithmetic, and by P. Horak
for exact computations with reals and power series. Descrip-

tions of these implementations are forthcoming.
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