

Algebras and combinators

Report

Author(s):

Emgeler, Erwin

Publication date:

1979

Permanent link:

https://doi.org/10.3929/ethz-a-005363190

Rights / license:

In Copyright - Non-Commercial Use Permitted

Originally published in:

ETH Zürich, Institut für Informatik 32

Eidgenössische Technische Hochschule Zürich

Institut für Informatik

Erwin Engeler ALGEBRAS AND COMBINATORS

ETH

EIDGENÖSSISCHE TECHNISCHE HOCHSCHULE ZÜRICH

INSTITUT FÜR INFORMATIK

ERWIN ENGELER
ALGEBRAS AND COMBINATORS

Address of the author: Institut für Informatik ETH-Zentrum CH-8092 Zürich

ALGEBRAS AND COMBINATORS

Erwin Engeler

§1 A general representation theorem

We shall prove our representation theorem for the case of algebras with one binary operation only; the generalization to arbitrary algebraic structures is sketched at the end of this section.

Let A be non-empty. Let B be a set of "formulas" defined as the smallest set \supseteq A which contains the formula $(\alpha \Rightarrow b)$ whenever α is a non-empty finite subset of B and b \in B.

<u>Definition.</u> For M,N \subseteq B let M \cdot N = {b: $\exists \alpha \subseteq$ N. $\alpha \rightarrow$ b \in M}. A 2-algebra over A is a collection of subsets of B closed under \cdot .

<u>THEOREM.</u> Every algebra $\underline{A} = \langle A, \cdot \rangle$ with one binary operation is isomorphic to a 2-algebra over A.

<u>Proof.</u> Construct the set of formulas B as above, starting with the carrier set A of the given algebraic structure \underline{A} . Then define a map f of A into the powerset of B recursively by

$$f(a) = \bigcup_{i} f_{i}(a) ,$$

where

$$f_0(a) = \{a\},$$

$$f_{i+1}(a) = f_i(a) \cup \{\alpha \rightarrow y : \exists b \in A. \ b \in \alpha \subseteq f_i(b) \land y \in f_i(a \cdot b) \land \alpha \text{ finite}\}.$$

Note that $f(a) \cap A = \{a\}$. Hence

(1) if
$$f(a) = f(b)$$
 then $a = b$,

because then $\{a\} = f(a) \cap A = f(b) \cap A = \{b\}$. Thus, it remains to prove

(2)
$$f(a \cdot b) = f(a) \cdot f(b)$$
.

For this we compute as follows:

$$f(a) \cdot f(b) = \{y : \exists \alpha \subseteq f(b). \alpha \rightarrow y \in f(a)\}$$

$$= \{y : \exists \alpha \subseteq f(b) \exists \min \{a \in A\} : \exists \alpha \neq y \in f_{i+1}(a)\}$$

$$= \{y : \exists \alpha \subseteq f(b) \exists i \exists u, v \in A. au = v \}$$

$$\land u \in \alpha \subseteq f_{i}(u) \land y \in f_{i}(v)\}.$$

Because $u \in \alpha \subseteq f(b) \cap f_i(u)$ and $u \in A$, we have u = b and $v = a \cdot b$, using $f(a) \cap A = \{a\}$ again. Hence

$$\begin{split} f(a) \cdot f(b) &= \{ y : \exists \alpha \subseteq f(b) \exists i. \ b \in \alpha \subseteq f_i(b) \land \ y \in f_i(a \cdot b) \} \\ &= \{ y : \exists i. \ y \in f_i(a \cdot b) \} = \bigcup_i f_i(a \cdot b) = f(a \cdot b) \,. \end{split}$$

Thus (2) holds, and f is an isomorphic embedding as claimed.

If the structure to be represented has other operations, e.g. a ternary operation \circ , we augment the definition of B

accordingly: $A \subseteq B$ and if α, β are finite subsets of B and $c \in B$ then $(\alpha, \beta \xrightarrow{\cdot} c) \in B$ as well as $(\alpha \rightarrow c) \in B$.

Definition. For M,N,L, \subseteq B let o(M,N,L) = {c : $\exists \alpha \subseteq N \exists \beta \subseteq L$. $(\alpha,\beta \xrightarrow{} c) \in B$ }. A 2-3-algebra over A is a class of subsets of B closed under • and o.

<u>THEOREM.</u> Every algebraic structure $\underline{A} = \langle \underline{A}, \cdot, o \rangle$ is isomorphic to a 2-3-algebra.

Proof. Same as above with the map f redefined by setting

$$\begin{split} f_{i+1}(a) &= f_{i}(a) \cup \{\alpha \rightarrow y : \exists b \in A. \ b \in \alpha \subseteq f_{i}(b) \\ & \land y \in f_{i}(a \cdot b) \land \alpha \text{ finite} \} \\ & \cup \{\alpha,\beta \xrightarrow{} z : \exists b,c \in A. \ b \in \alpha \subseteq f_{i}(b) \\ & \land c \in y \subseteq f_{i}(c) \land z \in f_{i}(o(a,b,c)) \\ & \land \alpha,\beta \text{ finite} \}. \end{split}$$

It is easy to extend the representation theorem to relational structures.

§2 Combinatory algebras

A combinatory algebra is an algebraic structure $\underline{A} = \langle A, \cdot \rangle$ which is "combinatorially complete", i.e.

For every expression $\phi(x_1, \ldots, x_n)$ built up from constants (denoting elements of A) and variables x_1, \ldots, x_n by means of the operation symbol "•" there exists an element f in A such that for all $a_1, \ldots, a_n \in A$

$$(...((f \cdot a_1) \cdot a_2)... \cdot a_n) = \phi(a_1, ..., a_n).$$

The existence of non-trivial combinatory algebras follows either from a Church-Rosser theorem as an algebra of equivalence-classes of terms or by constructions such as Scott's D_{∞} or Plotkin-Scott's $P\omega$. Our general representation theorem suggests that combinatory algebras be constructed as 2-algebras. Indeed, all combinatory algebras are isomorphic to 2-algebras.

Let $A \neq \emptyset$ and B be constructed as in the first part of section 1. Then the 2-algebra of all subsets of B already forms a combinatory algebra. Following Curry's remark that combinatorial completeness follows from two of its instances, it suffices to isolate two different subsets K and S of B such that for all M,N,L \subseteq B we have

- (1) KMN = M,
- (2) SMNL = ML(NL).

The following definitions accomplish this.

Definition.

$$\begin{split} \mathtt{K} &:= \{\sigma \to (\rho \to \mathbf{s}) \ : \ \sigma, \rho \subseteq \mathtt{B}, \quad \mathtt{s} \in \sigma \} \\ \mathtt{S} &:= \big\{ \{\tau \to (\{\mathtt{r}_1, \ldots, \mathtt{r}_n\} \to \mathbf{s})\} \to (\{\sigma_1 \to \mathtt{r}_1, \ldots, \sigma_n \to \mathtt{r}_n\} \to (\sigma \to \mathbf{s})) : \\ &\quad n \geq 1, \ \mathtt{r}_1, \ldots, \mathtt{r}_n \in \mathtt{B}, \ \tau \cup \bigcup \sigma_1 = \sigma \subseteq \mathtt{B} \big\} \; . \end{split}$$

THEOREM. The 2-algebra of subsets of B is a combinatory algebra.

<u>Proof.</u> Clearly $K \neq S$, since $(\{a\} \rightarrow (\{a\} \rightarrow a)) \in K$, $(\{a\} \rightarrow (\{a\} \rightarrow a)) \notin S$. The combinatorial laws follow by straightforward verification:

KMN = {s:
$$\exists \alpha \subseteq N \exists \beta \subseteq M$$
, $\beta \rightarrow (\alpha \rightarrow s) \in K$ }
= {s: $\exists \beta \subseteq M$, $s \in \beta$ } = M.

$$\begin{aligned} \text{ML}(\text{NL}) &= & \{s: \exists \rho \subseteq \text{NL}. \ \rho + s \in \text{ML}\} \\ &= & \{s: \exists n \geq 1 \ \exists r_1, \dots, r_n \in \text{B} \ \exists \sigma_1, \dots, \sigma_n \subseteq \text{L}. \\ & \{r_1, \dots, r_n\} + s \in \text{ML} \land \sigma_1 + r_1, \dots, \sigma_n + r_n \in \text{N}\} \\ &= & \{s: \exists n \geq 1 \ \exists r_1, \dots, r_n \in \text{B} \ \exists \sigma_1, \dots, \sigma_n \subseteq \text{L} \ \exists \tau \subseteq \text{L}. \\ & \tau + (\{r_1, \dots, r_n\} + s) \in \text{M} \land \sigma_1 + r_1, \dots, \sigma_n + r_n \in \text{N}\} \\ &= & \{s: \exists \sigma \subseteq \text{L} \ \exists \eta \subseteq \text{N} \ \exists \varepsilon \subseteq \text{M}. \ (\varepsilon + (\eta + (\sigma + s))) \in \text{S}\} \\ &= & \{s: \exists \sigma \subseteq \text{L} \ \exists n \geq 1 \ \exists r_1, \dots, r_n \in \text{B} \ \exists \tau, \sigma_1, \dots, \sigma_n \subseteq \text{B}. \\ & \tau + (\{r_1, \dots, r_n\} + s) \in \text{M} \land \sigma_1 + r_1, \dots, \sigma_n + r_n \in \text{N}\} \\ &= & \{s: \exists n \geq 1 \ \exists r_1, \dots, r_n \in \text{B} \ \exists \tau, \sigma_1, \dots, \sigma_n \subseteq \text{L}. \\ & \tau + (\{r_1, \dots, r_n\} + s) \in \text{M} \land \sigma_1 + r_1, \dots, \sigma_n + r_n \in \text{N}\} \\ &= & \text{ML}(\text{NL}). \ \ \, \end{aligned}$$

§3 Lambda calculi

Lambda calculi are based on binary algebraic structures $\underline{A} = \langle A, \cdot \rangle$; they enforce combinatorial completeness by providing a name

$$\lambda X.M$$
,

for each expression $\, \, \text{M} \,$, to denote the element $\, \, \text{f e A} \,$ for which

$$f \cdot N = M_X^N$$

where \textbf{M}_{X}^{N} stands for the expression obtained from M by replacing the variable X everywhere by N .

The language of a lambda calculus consists of constant symbols and variables X,Y,Z,... and is provided with the mechanisms of application (if M and N are λ -terms then so is MN) and abstraction (if M is a λ -term and X is a variable, then $\lambda X.M$ is a λ -term).

We now present an interpretation of λ -terms in the 2-algebra of all subsets of B which will make use of the latter a model of the $\lambda\beta$ -calculus. To each variable X,Y,... of the lambda calculus we associate an infinite set of new symbols $\{x_1, x_2, \ldots\}$, resp. $\{y_1, y_2, \ldots\}$,... Let C be the smallest set \supseteq B such that both $(\alpha \rightarrow b)$ and $(\alpha; b)$ are in C whenever α is a finite subset of C and b \in C. Let C(X), C(X,Y), ... be defined the same way, taking B \cup $\{x_1, x_2, \ldots\}$, resp. B \cup $\{x_1, x_2, \ldots\}$ \cup $\{y_1, y_2, \ldots\}$ to start. Elements of C, C(X), C(X,Y), ... can be reduced by replacing parts of expressions of the form α ; $(\beta \rightarrow c)$ by c if $\beta \subseteq \alpha$.

<u>LEMMA 1.</u> For every w in C (resp. C(X), C(X,Y), ...) there is a unique irreducible element w^* of C (resp. C(X), C(X,Y)) which can be obtained from w by repeated applications of the reduction rule.

<u>Proof.</u> If $w = (\{a_1, \ldots a_n\} + b)$ then the unique w^* is clearly $(\{a_1^*, \ldots, a_n^*\} + b^*)$. If $w = (\{a_1, \ldots, a_n\}; b)$ and b can be reduced to $(\{c_1, \ldots, c_m\} + d)$, where each c_i is obtained from an a_j by (repeated) reductions, then b^* equals $\{c_1^*, \ldots, c_m^*\} + d^*$ by the previous case. Thus w reduces uniquely to d^* . If b cannot be so reduced, then the unique w^* is $(\{a_1^*, \ldots, a_n^*\}; b^*)$.

To indicate the occurrence of a symbol x_i or a set of symbols $\xi \subseteq \{x_1, x_2, \ldots\}$ in an element of C(X), we write it $a(x_i)$, respectively $a(\xi)$. If b, respectively β is substituted for x_i , respectively ξ , we write the result as a(b), respectively $a(\beta)$.

Let now [.] be a map, which associates a subset of B to every variable of the lambda calculus. We also consider modified maps $[.]_x$, $[.]_{xy}$, ... defined as follows: $[X]_x = \{x_1, x_2, \ldots\}$, $[Y]_x = [Y]$ for all variables $Y \neq X$, $[X]_{xy} = \{x_1, x_2, \ldots\}$, $[Y]_{xy} = \{y_1, y_2, \ldots\}$, $[Z]_{xy} = [Z]$ for all $Z \neq X, Y$. The maps [.], $[.]_x$, ... are extended to all lambda-terms by:

Definition.

$$[MN] = \{ (\alpha; b)^* : \alpha \subseteq [N], b \in [M] \},$$

$$[MN]_{X} = \{ (\alpha; b)^* : \alpha \subseteq [N]_{X}, b \in [M]_{X} \},$$

$$[\lambda X.M] = \{ (\tau \to a(\tau))^* : \tau \subseteq B, a(\xi) \in [M]_{X} \},$$

$$[\lambda X.M]_{X} = [\lambda X.M],$$

$$[\lambda Y.M]_{Y} = \{ (\tau \to a(\xi, \tau))^* : \tau \subseteq B, a(\xi, \eta) \in [M]_{YY} \}, Y \neq X.$$

LEMMA 2. Let L be a lambda-term in which the variable X does not occur free, and let $M_{\rm X}^{\rm L}$ result from M by replacing X everywhere in M by L. Then

$$[M_X^L] = \{a(\lambda)^* : \lambda \subseteq [L], a(\xi) \in [M]_X\}.$$

If Y is also not free in L then

$$[M_X^L]_y = \{a(\lambda,\eta)*: \lambda \subseteq [L], a(\xi,\eta) \in [M]_{xy}\}.$$

<u>Proof.</u> It suffices to prove the first statement, because $[L]_y = [L]$. The first statement is shown by induction on the structure of M.

(a)
$$[X_X^L] = [L] = \{a(\lambda)^* : \lambda \subseteq [L], a(\xi) \in [X]_X = \{x_1, x_2, ...\}\},$$

 $[Y_X^L] = [Y] = \{a(\lambda)^* : \lambda \subseteq [L], a(\xi) \in [Y]_X = [Y]\}.$

(b)
$$[(MN)_X^L] = [M_X^L N_X^L] = \{(\alpha; b) * : \alpha \subseteq [N_X^L], b \in [M_X^L]\}$$

 $= \{(\alpha(\lambda_1); b(\lambda_2)) * : \lambda_1, \lambda_2 \subseteq [L], \alpha(\xi_1) \subseteq [N]_X,$
 $b(\xi_2) \in [M]_X\}$

- = $\{c(\lambda)^* : \lambda \subseteq [L], c(\xi) \in [MN]_{\mathfrak{p}}\}.$
- (c) Assume, without loss of generality, that Y is not free in L. Then

$$\begin{split} & [\ (\lambda Y.M)_{X}^{L}] \ = \ [\lambda Y.M_{X}^{L}] \ = \ \{ \ (\tau \to a(\tau)) \, * \ : \ \tau \subseteq B, \ a(\eta) \in [M_{X}^{L}]_{Y} \} \\ & = \ \{\tau \to b(\lambda,\tau) \, * \ : \ \tau \subseteq B, \ \lambda \subseteq [L], \ b(\xi,\eta) \in [M]_{XY} \} \\ & = \ \{c(\lambda) \, * \ : \ \lambda \subseteq [L], \ c(\xi) \in [\lambda Y.M]_{Y} \}. \end{split}$$

<u>Definition</u>. $|M| = [M] \cap B$.

<u>THEOREM.</u> If M=N is provable in the lambda calculus, then for all maps [.] we have |M|=|N|.

 $\underline{\mathtt{Proof.}}$ For the only non-trivial axiom we have

$$|(\lambda X.M)N| = [(\lambda X.M)N] \cap B = \{(\alpha;b)*: \alpha \subseteq [N], b \in [\lambda X.M]\} \cap B$$

- = $\{(\alpha; \tau \rightarrow b(\tau)) * : \alpha \subseteq [N], \tau \subseteq B, b(\xi) \in [M]_{v}\} \cap B$
- = $\{b(\tau)^* : \tau \subseteq [N], b(\xi) \in [M]_X\}$ \cap B, because for reduction must have $\tau \subseteq \alpha \subseteq [N]$,
- = [M_X^N] \cap B = |M_X^N| by Lemma 2 and definition of |.|.

The verification of the rules of proof are all trivial, except

M = N implies $\lambda X.M = \lambda^{\circ} X.N$.

Observe

$$\left| \, \lambda \, X \, . \, M \, \right| \; = \; \left\{ \, \tau \; \rightarrow \; a \left(\tau \right) \, \ast \; : \; a \left(\xi \right) \; \in \; \left[\, M \, \right]_{\, X} \right\} \; \cap \; B \; = \; \bigcup_{\tau \subseteq B} \left\{ \, \tau \, \rightarrow \, a_{\tau} \; : \; a_{\tau} \; \in \; \left| \, M \, \right|_{\, \left(\tau \right)} \, \right\}$$

where $[X]_{(\tau)} = \tau$, $[Y]_{(\tau)} = [Y]$ for all $Y \neq X$. Because $|M|_{(\tau)} = |N|_{(\tau)}$ for all τ by assumption, we have therefore $|\lambda X.M| = |\lambda X.N|$.

<u>THEOREM.</u> $|\lambda X.X| \neq |\lambda X.XX|$.

Proof.
$$|\lambda X.X| = \{\tau \to a(\tau)^* : \tau \subseteq B, a(\xi) \in [X]_X = \{x_1, x_2, ...\}\}$$

 $\cap B = \{\{a\} \to a : a \in B\}.$

$$|\lambda X.XX| = \{\tau \rightarrow a(\tau)^* : \tau \subseteq B, a(\xi) \in [XX]_X = \{(\alpha;b)^* : \alpha \subseteq [X]_X, b \in [X]_X\}$$

$$= \{\tau \to a(\tau)^* : \tau \subseteq B, \ a(\xi) = (\{x_{i_1}, \dots, x_{i_n}\}; \ x_{i_{n+1}})$$
 for some $n \ge 1\} \cap B$

=
$$\{\{a_1, \dots, a_{n+1}\} \rightarrow (\{a_1, \dots, a_n\}; a_{n+1})^* : a_i \in B\} \cap B$$

= $\{\{a_1, \dots, a_n, (\{a_{i_1}, \dots, a_{i_m}\} \rightarrow b)\} \rightarrow b : a_i, b \in B\}$
 $\neq |\lambda X. X|$.

We thank H. Barendregt for pointing out some oversights in an earlier version of this model.

§4 Continuity

In previous constructions of models of combinatory algebras, continuity played an important rôle. - For an appropriate topology we can very easily prove here that the continuous maps from the powerset of B to itself are exactly the ones which are obtained by application.

<u>Definition.</u> Let $A \neq \emptyset$ and B be as before. The sets $\{M: \alpha \subseteq M \subseteq B\}$ for finite α form the base of our topology.

Observe that in this topology a map f from the power-set of B into itself is continuous iff $f(N) = \bigcup \{f(\alpha) : \alpha \subseteq N, \alpha \text{ finite}\}.$

THEOREM. f is continuous iff $\exists M \subseteq B \forall N \subseteq B$. $f(N) = M \cdot N$.

Proof. (a) Suppose f continuous. Define

 $M = \{\alpha \rightarrow x : x \in f(\alpha), \alpha \subseteq B, \alpha \text{ finite}\}$.

Then $M \cdot N = \{x : \exists \alpha \subseteq N . \alpha \rightarrow x \in M\}$

= $\{x : \exists \alpha \subseteq N. x \in f(\alpha), \alpha \text{ finite}\}\$

= $\bigcup \{f(\alpha) : \alpha \subseteq N, \alpha \text{ finite}\}\$

= f(N) by continuity .

(b) Suppose f is given by $f(N) = M \cdot N$. We have to show continuity, i.e. $f(N) = \bigcup \{f(\alpha) : \alpha \subseteq N, \alpha \text{ finite}\}$. The latter set is, by definition equal to $\bigcup \{M \cdot \alpha : \alpha \subseteq N, \alpha \text{ finite}\}$.

Thus $x \in \bigcup \{M \cdot \alpha : \alpha \subseteq N, \alpha \text{ finite}\}\$

iff $\exists \alpha \exists \beta \subseteq \alpha \subseteq N. \beta \rightarrow x \in M \land \alpha$ finite,

iff $\exists \beta \subseteq N. \beta \rightarrow x \in M$,

iff $x \in M \cdot N$,

iff $x \in f(N)$.

§5 Applications

The simplicity of the combinatory algebras above facilitates their use as models of computation. This will be elaborated in a future paper; one example should suffice here.

Let Γ be a first-order theory with predicate symbol R (binary) and function symbol f (unary). The model of computation associated to Γ is a 2-algebra $\underline{\lambda}\underline{\Gamma}$ over the first-order language L of Γ , containing S and K (which makes it a combinatory algebra) and the following constants:

For each formula ϕ in L let $[\phi] := \{ \psi \in L : \Gamma, \phi \vdash \psi \}$.

For all variables x,y in L let $[y:=f(x)]:=\{\Delta \rightarrow \psi(x,y):\Gamma,\Delta,\;y'=f(x),\;x'=x \vdash \psi(x',y')\}\;.$

This model describes programmed computations on data and with operations that are incompletely known (only to the extent that Γ provides this knowledge) or whose description is infinite. It has been implemented at the ETH by Th. Fehlmann for the case where Γ is Peano arithmetic, and by P. Horak for exact computations with reals and power series. Descriptions of these implementations are forthcoming.

Berichte des Instituts für Informatik

*Nr. 1 N.Wirth: The Programming Language PASCAL

*Nr. 2 N.Wirth: Program development by step-wise refinement

Nr. 3 P.Läuchli: Reduktion elektrischer Netzwerke und

Gauss'sche Elimination

Nr. 4 W.Gander, Numerische Prozeduren I

*Nr. 5 N.Wirth: The Programming Language PASCAL (Revised Report)

*Nr. 6 C.A.R.Hoare, An Axiomatic Definition of the Language PASCAL N.Wirth:

Nr. 7 W.Gander, Numerische Prozeduren II

A.Mazzario:

Nr. 8 E.Engeler, Ein Einblick in die Theorie der Berechnungen

E.Wiedmer, E.Zachos:

*Nr. 9 H.P.Frei: Computer Aided Instruction: The Author Language and the System THALES

*Nr.10 K.V.Nori, The PASCAL 'P' Compiler: Implementation Notes U.Ammann. (Revised Edition)

K.Jensen, H.H.Nägeli, Ch.Jacobi:

Nr.11 G.I.Ugron, Das Informations-System ELSBETH F.R.Lüthi:

*Nr.12 N.Wirth: PASCAL-S: A subset and its Implementation

*Nr.13 U.Ammann: Code Generation in a PASCAL Compiler

Nr.14 K.Lieberherr: Toward Feasible Solutions of NP-Complete Problems

*Nr.15 E.Engeler: Structural Relations between Programs and Problem

Nr.16 W.Bucher: A contribution to solving large linear problems

Nr.17 N.Wirth: Programming languages: what to demand and how to access them and

Professor Cleverbyte's visit to heaven

*Nr.18 N.Wirth: MODULA: A language for modular multiprogramming

*Nr.19 N.Wirth: The use of MODULA and
Design and Implementation of MODULA

Nr.20 E.Wiedmer: Exaktes Rechnen mit reellen Zahlen

*Nr.21 J.Nievergelt, XS-0, a Self-explanatory School Computer H.P.Frei.

et al.:

Nr.22 P.Läuchli: Ein Problem der ganzzahligen Approximation

Nr.23 K.Bucher: Automatisches Zeichnen von Diagrammen

Nr.24 E.Engeler: Generalized Galois Theory and its Application to

Complexity

Nr.25 U. Ammann: Error Recovery in Recursive Descent Parsers

Run-time Storage Organization

Nr.26 E.Zachos: Kombinatorische Logik und S-Terme

Nr.27 N.Wirth: MODULA -2

Sites, Modes and Trails: Telling the User of an Interactive System where he is, what he can do, Nr.28 J.Nievergelt, J.Weydert:

and how to get to Places.

Nr.29 A.C.Shaw: On the Specification of Graphic Command Languages

and their Processors

Nr.30 B. Thurnherr, Global Data Base Aspects, Consequences for the C.A.Zehnder: Relational Model and a Conceptual Schema Language

Nr.31 A.C.Shaw: Software Specification Languages based on regular

Expressions

Nr.32 E. Engeler: Algebras and Combinators

^{*} out of print