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Impacts and uncertainty of climate 
change on mountain hydrology and its 
extremes: An approach using high-
resolution stochastic climate 
simulations 

ABSTRACT 

This thesis delves into the hydrological responses of mountainous catchments in the Swiss 

Alps to climate change, with a particular emphasis on understanding and underscoring the 

importance of spatial variability, uncertainties in projections, and the impact of intensified 

extreme rainfall. Initially, the study explores the significant spatial variability in hydrological 

responses at the sub-catchment level, driven by changes in precipitation patterns, snowmelt, 

and evapotranspiration across different elevations. The analysis employs a high-resolution 

two-dimensional weather generator model alongside a distributed hydrological model, 

detecting notable shifts in streamflow patterns, particularly a winter increase and summer 

decrease projected towards the end of the 21st century under the RCP8.5 emission scenario. 

To address the inherent uncertainties in climate and hydrological projections, this thesis 

introduces a novel framework designed to quantify and partition the sources of uncertainty 

across different scales. The framework combines the use climate of model outputs, a high-

resolution weather generator, and a distributed hydrological model to produce large 

ensembles of future climate and hydrological variables at high resolution. Applying this 

approach to two representative mountainous catchments, the analysis underscores the 

dominant role of precipitation's natural variability in engendering uncertainty, alongside the 

identification of robust change signals in specific hydrological components like snowmelt and 

liquid precipitation, especially during warm seasons and at higher elevations. 

Further, to enhance the realism in simulating the intensification of extreme rainfall, an 

improved version of the weather generator model is introduced. This revised model 

successfully mimics the Clausius-Clapeyron relation, reflecting the observed scaling of heavy 

rainfall with temperature. By employing this enhanced model to assess future rainfall impacts 

on hydrological responses, a more accurate depiction of the potential intensification of short-

duration heavy rainfall in future climates is achieved, providing a more realistic assessment of 

future hydrological impacts even for short durations. 

Overall, this work provides an improved understanding of the complex interplay between 

climate change and hydrological processes in mountainous terrains, enhancing the predictive 

capacity regarding the hydrological behaviour of such regions in a warming climate. Through 

a detailed spatial analysis, rigorous uncertainty quantification, and an enhanced 

representation of extreme rainfall, this thesis contributes to deciphering the complex 

hydrological implications of climate change in mountainous environments. 
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Auswirkungen und Unsicherheiten 
des Klimawandels auf die 
Gebirgshydrologie und ihre Extreme: 
Ein Ansatz mit hochauflösenden 
stochastischen Klimasimulationen 

ZUSAMMENFASSUNG 

Diese Dissertation befasst sich mit den hydrologischen Reaktionen von 

Gebirgseinzugsgebieten in den Schweizer Alpen auf den Klimawandel. Besonderes 

Augenmerk liegt dabei auf dem Verständnis und der Betonung der Bedeutung der räumlichen 

Variabilität, den Unsicherheiten in den Prognosen und den Auswirkungen verstärkter extremer 

Niederschläge. Zunächst wird in der Studie die erhebliche räumliche Variabilität der 

hydrologischen Reaktionen auf der Ebene der Teileinzugsgebiete untersucht, die durch 

Veränderungen der Niederschlagsmuster, der Schneeschmelze und der Evapotranspiration 

in verschiedenen Höhenlagen bedingt sind. Bei der Analyse wird ein hochauflösendes 

zweidimensionales Wettergeneratormodell zusammen mit einem räumlich gegliederten 

hydrologischen Modell verwendet. Dabei werden bemerkenswerte Verschiebungen in den 

Abflussmustern der Flüsse festgestellt, insbesondere eine Zunahme im Winter und eine 

Abnahme im Sommer, die gegen Ende des 21. Jahrhunderts unter dem Emissionsszenario 

RCP8.5 prognostiziert werden. 

Um die inhärenten Unsicherheiten in den klimatischen und hydrologischen Prognosen 

anzugehen, wird in dieser Arbeit ein neuartiges System zur Quantifizierung und Aufteilung der 

Unsicherheitsquellen auf verschiedenen Ebenen eingeführt. Das System kombiniert die 

Verwendung der Klimamodellausgaben, des hochauflösenden Wettergenerators und des 

räumlich gegliederten hydrologischen Modells, um grosse Ensembles zukünftiger klimatischer 

und hydrologischer Variablen in hoher Auflösung zu erstellen. Durch die Anwendung dieses 

Ansatzes auf zwei repräsentative Gebirgseinzugsgebiete unterstreicht die Analyse die 

dominante Rolle der natürlichen Variabilität des Niederschlags bei der Entstehung von 

Unsicherheiten. Gleichzeitig werden robuste Veränderungssignale in spezifischen 

hydrologischen Komponenten wie Schneeschmelze und Flüssigniederschlag identifiziert, 

insbesondere während warmer Jahreszeiten und in höheren Lagen. 

Um die Intensivierung extremer Niederschläge realistischer zu simulieren, wird eine 

verbesserte Version des Wettergeneratormodells eingeführt. Dieses überarbeitete Modell 

ahmt erfolgreich die Clausius-Clapeyron-Beziehung nach und spiegelt die beobachtete 

Skalierung von Starkniederschlägen mit der Temperatur wider. Durch den Einsatz dieses 

verbesserten Modells wird eine genauere Darstellung der potenziellen Intensivierung 

kurzzeitiger Starkniederschläge in zukünftigen Klimaverhältnissen erreicht, was eine 

realistischere Bewertung künftiger hydrologischer Auswirkungen selbst für kurze Ereignisse 

ermöglicht. 

Insgesamt eröffnet diese Arbeit ein besseres Verständnis des komplexen Zusammenspiels 

zwischen Klimawandel und hydrologischen Prozessen in Gebirgsregionen und verbessert die 
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Vorhersagefähigkeit hinsichtlich des hydrologischen Verhaltens solcher Regionen in einem 

sich erwärmenden Klima. Durch eine detaillierte räumliche Analyse, eine rigorose 

Quantifizierung der Unsicherheiten und eine verbesserte Darstellung extremer Niederschläge 

trägt diese Dissertation dazu bei, die komplexen hydrologischen Auswirkungen des 

Klimawandels in Gebirgsregionen zu entschlüsseln. 
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1 INTRODUCTION 

1.1 MOTIVATION 

1.1.1 The importance of mountain hydrology  

Mountains and the rivers originating from them are fundamental to life as we know it. As a 

matter of fact, while mountainous areas represent around 20% of the global land surface (12–

24%, depending on the definition; Huddleston et al., 2003; Kapos et al., 2000; Körner et al., 

2011) and are inhabited by roughly 12% of the global population, these so-called water towers 

of the world (Immerzeel et al., 2020) provide an estimated 60–80% of the global available 

freshwater supply, used in 68% of the world’s irrigated land surface (Intergovernmental Panel 

on Climate Change (IPCC), 2023). For instance, the European Alps contribute 1.9 times more 

water to Europe's catchments than suggested by their surface area (Viviroli & Weingartner, 

2004; Weingartner et al., 2007). Furthermore, up to 60% of the sediments that flow into the 

oceans come from high-elevation mountains (Syvitski et al., 2005), and more than 50% of soil 

erosion occurs on slopes that are steeper than 10% (Larsen et al., 2014). Many economic 

sectors, including tourism, mining, agriculture, and energy, are highly dependent on the 

balance of mountain hydrological systems. For example, hydropower generation, which is 

primarily based in mountains, accounts for a sixth of the world's energy production and 70% 

of all renewable energy (World Energy Council, 2016). Additionally, mountainous catchments 

provide invaluable ecosystems that sustain up to a third of all known land-based biodiversity 

(Körner, 2004). In summary, the significance of comprehending mountainous hydrological 

systems cannot be overstated.  

Mountainous areas—including the European Alps—are especially vulnerable to the effects of 

climate change (Gobiet et al., 2014; Immerzeel et al., 2020). In recent decades, changes 

attributed to global warming have been observed in diminishing snow and glacier cover 

(Beniston et al., 2018; Huss et al., 2017; Jenicek et al., 2018), prolonged low-flow periods 

(Floriancic et al., 2020), intensification of extremes rainfalls (Ban et al., 2015; Bao et al., 2017; 

Barbero et al., 2017; Fischer & Knutti, 2016; Lenderink et al., 2017; Peleg et al., 2018; Westra 

et al., 2014), increasing, decreasing and shifting the timing of floods (Blöschl et al., 2017, 

2019), more frequent landslides and debris flows (Gariano & Guzzetti, 2016; Hirschberg et al., 

2020; Scheidl et al., 2020), changes in biomass and evapotranspiration (Mastrotheodoros et 

al., 2020), among others; all the while our dependence on mountain water resources is 

projected to increase (e.g., Viviroli et al., 2020), leading to potentially disastrous economic 

consequences (Savelsberg et al., 2018; Weingartner et al., 2013) 

Deepening our understanding of hydrological systems and attempting to project the responses 

of catchments to a changing climate becomes, therefore, indispensable. Yet, while projecting 

the responses of any natural system can be challenging, mountainous catchments pose a 

particularly interesting modelling problem. On the one hand, mountains are notorious for their 

diversity in soil, vegetation, land use, and topography, which demands a detailed 

characterization of their properties. On the other hand, their mere presence can generate 

especial atmospheric phenomena associated with intense precipitations over relatively small 

extents, such as the so-called orographic effect. This combination of highly heterogeneous 

modelling domains and rapidly-changing external inputs makes modelling of mountainous 

catchments especially challenging, not the least because it demands high-resolution 

representations of climate data for which the resolution of widely-available simulations is not 

sufficient.  
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1.1.2 Future climate and its extremes 

Driven by concerns about climate change, scientists and engineers have dedicated extensive 

efforts to understand global climate dynamics and their potential future trajectories. Among 

the main outcomes of this enterprise are complex computational models that seek to describe 

the energy and mass transfers in the oceans and atmosphere. These models, known as 

General Circulation Models (GCMs) or Global Climate Models (also Earth System Models), 

form the foundation of our understanding of global-scale climate changes resulting from 

human-generated greenhouse gas (GHG) emissions, including temperature and precipitation 

changes (Tokarska et al., 2020). Consequently, they are essential inputs for researchers and 

practitioners who aim to predict the Earth’s response to changing climate conditions, and thus 

provide vital information for stakeholders and policy makers (see, e.g., their prominence in the 

consequential IPCC reports, Intergovernmental Panel on Climate Change (IPCC), 2023).  

One of the most significant limitations of GCMs is their computational cost. They use complex 

mathematical algorithms to simulate the various processes involved in the Earth's climate 

system, which results in a high demand for memory and processing power. Despite access to 

some of the world's largest and most advanced computational infrastructure, the execution of 

long-term simulations can take months. Furthermore, the large amounts of data generated by 

these simulations require substantial storage capacity. These practical constraints have 

hindered progress in increasing the resolution of GCMs. As a result, most GCM outputs are 

limited to daily time steps, and relatively coarse grids (in the order of 0.5° to 2.2°). 

To mitigate the limitations presented by low model resolution, researchers frequently 

downscale GCM outputs before using them as inputs for climate impact studies. Regional 

Climate Models (RCMs) fill this gap by solving the atmospheric physics at higher spatial and 

temporal resolutions (e.g., Sørland et al., 2021) in what is commonly referred to as dynamical 

downscaling. Despite their high computational cost, modellers have vastly extended the 

coverage and resolution of RCMs in recent decades, now covering nearly the entire global 

landmass at resolutions of 11-44 km and daily time steps (Giorgi, 2019; Sørland et al., 2021; 

Tapiador et al., 2020).  

Some issues, however, require much finer climate representations. Mountainous regions 

exemplify this, with climates that can vary dramatically over short distances and timeframes. 

As a consequence, the coarse resolutions offered by GCMs or RCMs are inadequate to 

characterize the hydrology of these complex domains. This has ramifications for our 

comprehension of climate change impacts, particularly in regions like the Swiss Alps where 

the interplay of elevation, topography, and hydrology is complex (Smiatek & Kunstmann, 2019; 

Teutschbein & Seibert, 2012). Conversely, a high-resolution representation of climate 

variables, and of the hydrological response, is essential to improve our understanding of 

hydrological dynamics of these complex environments (Daly et al., 2017; He et al., 2019; Xu 

& Di Vittorio, 2021; Zhu et al., 2023), and can signify a step-change in the accuracy and 

meaningfulness of hydrological projections. 

A separate set of challenges is posed by attempting to represent extreme meteorological 

events—such as intense rainfall, prolonged droughts, or scorching heatwaves—which 

significantly impact hydrological responses. In statistical sciences, these rare events are 

usually studied through 'extreme value analysis' where the most extreme occurrences are 

extracted from long time series data are used to calibrate statistical models for reliable risk 

assessments (Coles, 2001). When only short time series are available, however, the results 

are highly uncertain and are therefore unsuitable to inform decisions. Moreover, the 

requirement for long time series considering climate change conflicts with a key assumption 

in extreme value analysis: stationarity of the underlying population distribution. In other words, 
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this means that the entire time series must be representative of a particular climate condition 

which, in the context of a rapidly changing climate, is untenable. In theory, this paradox could 

be resolved by simulating a large enough number of time series that represent the same 

climate conditions, starting from different but plausible initial conditions, which is what Single 

Model Initial-Condition Large Ensembles (SMILEs) aim to do (Deser et al., 2020; Lehner et 

al., 2020; Maher et al., 2021; Milinski et al., 2020; Wyser et al., 2021). These large ensembles 

could be used to extract numerous realizations of 20-30 years-long records, offering a 

pragmatic solution by assuming quasi-stationarity over these shorter periods and allowing for 

a robust statistical analysis of extremes. Notwithstanding, we do not yet have the capabilities 

to downscale these large ensembles (whose horizontal resolution range from ∼2.8 to ∼1°) to 

fine resolutions using dynamical climate models due to the large computational demands of 

RCMs, thus limiting their direct application on impact assessment studies.  

1.1.3 The uncertainty of change 

“The only constant is change” – Heraclitus 

The ancient wisdom of Heraclitus underscores the inherent unpredictability of our world, a 

sentiment that resonates deeply when discussing the uncertainties of climate change. 

Understanding the nature of uncertainty is crucial for making informed decisions, especially 

as we strive for science-informed climate change policies, . For instance, while quantifying the 

vast uncertainties in climate projections is a recognized challenge (Hoegh-Guldberg et al., 

2018), climate impact studies often fail to communicate uncertainty effectively (Kause et al., 

2021), or neglect it altogether. 

Three main factors drive the uncertainty of climate projections (Deser, 2020; Deser, et al., 

2012; Hawkins & Sutton, 2011; Fatichi et al., 2016): 

• Emission scenarios: We cannot precisely forecast future greenhouse gas emissions 

due to unpredictable technological and policy changes. 

• Climate model uncertainties: Climate models are not perfect and cannot perfectly 

simulate the complex real world, and each model attempts to represent complex 

physical processes using their own unique set of equations. 

• Stochastic uncertainty: It refers to the innate randomness, or 'internal climate 

variability,' within climate systems. Unlike deterministic processes, where outcomes 

can be precisely predicted, certain aspects of climate can only be understood as 

stochastic processes, which are inherently probabilistic and unpredictable. 

Quantifying the contribution of its sources is crucial to addressing the uncertainty of climate 

projections. This exercise, known as uncertainty partition (Fatichi et al., 2016; Hawkins & 

Sutton, 2011; Lehner et al., 2020), can inform researchers about which parts of the modelling 

chain introduce the most uncertainty into the projections. It can also help determine how much 

of the uncertainty is due to factors that we can improve, such as quantification of emissions 

and representativeness of climate models, and how much is due to irreducible stochastic 

uncertainty. However, uncertainty partitioning can be challenging due to the need for long 

records. Obtaining such data can be particularly difficult in regions or periods with limited 

observational records, which can lead to incomplete or biased assessments of climate 

patterns and future projections. Furthermore, quantifying the uncertainty around statistics for 

extreme events, which themselves require long and stationary records, is simply not possible 

without the aid of multiple realizations of robust climate models. And this is, as argued further 

above, not yet feasible. 
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1.1.4 Statistical downscaling of climate  

While dynamical downscaling models, such as RCMs, are indispensable for understanding 

regional-scale impacts of climate change, they may not fully address the challenges of 

enhancing the resolution of climate data and extending climate records and simulations. 

Statistical downscaling methods emerge as valuable tools in this context, utilizing statistical 

relationships between coarse atmospheric variables and local observations to interpolate and 

extrapolate climate data to a finer resolution. Unlike dynamical downscaling, which is 

grounded in the numerical modelling of physical processes, statistical downscaling is rooted 

in observed data patterns. Its primary goal is to interpolate and extrapolate climate data from 

coarse-resolution datasets to a finer resolution, making it especially valuable for 

heterogeneous terrains like mountains. Thus, statistical downscaling can either complement 

or serve as an alternative to dynamical downscaling methods, offering a tailored approach to 

predicting future climate at a high resolution (Maraun et al., 2010). However, statistical 

downscaling inherently relies on the assumption that historical climate relationships remain 

valid under future scenarios, a premise that may not hold due to the non-stationary nature of 

climate change. This limitation underscores the intrinsic challenges of representativeness in 

observation-based regression methods for future climates, as they may not accurately capture 

the dynamics of an evolving climate system. 

Broadly, statistical downscaling methods can be classified as: 

1. Regression Models: These models establish linear (or sometimes non-linear) 

statistical relationships between large-scale atmospheric predictors and local-scale 

climate variables. The foundation of regression models lies in the premise that local 

climate is influenced by broader atmospheric conditions, which can be captured 

through historical observations. By identifying and applying these statistical 

relationships, regression models can predict local climate conditions based on future 

projections or scenarios of large-scale atmospheric variables. However, one limitation 

is their assumption of stationarity in the relationship between large-scale drivers and 

local climate responses, which may not hold under changing climate conditions, 

potentially limiting their predictive accuracy in future scenarios. 

2. Weather Type Models: These models categorize weather into distinct types or 

patterns based on observed atmospheric conditions, such as pressure configurations 

or wind patterns. Each weather type is associated with specific local climate 

characteristics. By analysing historical data, WTMs identify the frequency and climatic 

conditions associated with each weather type. For future projections, these models 

estimate changes in the frequency or characteristics of weather types based on 

changes in large-scale atmospheric conditions predicted by climate models.  

1.1.5 Stochastic weather generators 

Central to our discussion on climate uncertainty, stochastic weather generators offer an 

alternative to statistical methods by reproducing not only the signal in climate processes, but 

also the climate variability in the form a stochastic noise. Unlike the deterministic dynamical 

and statistical models, stochastic models are capable of simulating multiple realizations of 

possible weather sequences, allowing us to quantify the magnitude of stochastic uncertainty. 

This offers a deeper insight into the unpredictable nature of climate events and makes them 

particularly relevant for understanding rare events. 

Additionally, Stochastic Weather Generators (WGs) are powerful tools to counteract the 

limitations set by scarce observational data and, by adapting their parameters, the 

assumptions of stationarity in extreme value analysis. Based on statistical methods, WGs can 

efficiently simulate random sequences of climate variables, most commonly precipitation, 
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which mimic the statistical properties and correlations of real-world observations. The 

generated data can then be used to extend the limited observational record, granting 

researchers the ability to conduct analyses and simulations that would otherwise be 

constrained by data availability. For instance, by means of proper reparameterization, WGs 

can generate long simulations that encapsulate the stochastic variability for different specific 

climate scenarios, allowing for a more comprehensive understanding of climate patterns and 

the potential impacts of changing climate conditions, and facilitating the statistical analysis of 

rare weather phenomena in future climates. 

Many different weather generators were developed over the years, each with its own unique 

spatial and temporal scope, modelling philosophy, and intended application (Fowler et al., 

2007; Wilks & Wilby, 1999). Given the already-stated importance of spatial resolution in 

hydrological impact analyses, let us introduce for now the three categories based on their 

spatial scope: 

1. Single-Site WG: Focused on individual locations, these models typically derive their 

data from a single weather station, simulating climate statistics for one or more cross-

correlated variables (e.g., Fatichi et al., 2011). 

2. Multi-Site WG: An extension of the single-site concept, these models emulate the 

records from a station network, simulating climate statistics across multiple, 

interrelated points. This approach acknowledges the inter-site correlations of climate 

variables over expansive regions (e.g., Sparks et al., 2018; Steinschneider et al., 2019; 

Verdin et al., 2018). 

3. Two-Dimensional WG: These models generate semi-continuous spatial fields, 

capturing the intricate spatial features of climate variables. Their design is particularly 

beneficial for scenarios where spatial variability plays a pivotal role. However, their 

intricate nature, combined with the need for extensive observational data, 

computational power, and storage, has led to fewer endeavours in their development. 

Notable models in this category include the STORM model (Singer et al., 2018) and 

AWE-GEN-2d (Peleg et al., 2017). 

Given the challenges highlighted earlier—namely, the resolution of climate models, the 

analysis of extreme values, and the quantification of uncertainty—WGs emerge as an 

appealing solution. Their ability to simulate high-resolution climate time series, especially 

through two-dimensional models, directly addresses the spatial and temporal resolution issue. 

Furthermore, by generating extensive synthetic records, WGs allow researchers to delve 

deeper into uncertainty quantification and provide a robust platform for analysing extreme 

weather events.  

1.1.6 Temperature and extreme precipitation 

An additional challenge in the study of climate change is the widely observed dependence 

between air temperature and extreme precipitation. Rooted in thermodynamics, the Clausius-

Clapeyron equation states that as air temperature increases, so does its water-holding 

capacity at a rate of approximately 7% per degree Celsius (e.g., O’Gorman & Schneider, 2009; 

Trenberth et al., 2003). This relationship has been widely observed in the increase of extreme 

precipitation, especially in areas prone to convective precipitation events (Ali et al., 2021a; Ali 

et al., 2021; Berg et al., 2013; Fischer & Knutti, 2016; Fowler et al., 2021; Molnar et al., 2015; 

Westra et al., 2014).  

GCMs and RCMs rely on adopting simplified parametrizations, which often result in 

compromised estimates of sub-daily extremes and an unsatisfactory simulation of the 

observed temperature-scaling seen in empirical records (Ban et al., 2014; Fischer et al., 2015). 

Moreover, their spatial resolution is insufficient to portray convective processes, which results 



6 
 

in an underestimation of the effects of the Clausius-Clapeyron rate on extreme precipitation 

(Ban et al., 2018; Pichelli et al., 2021). 

Conversely, dynamical convection-permitting models (CPMs) provide a solution to the 

limitations of traditional climate models by offering finer spatial resolutions (0.25–10 km2), 

which allows for more accurate simulations of short-duration, convection-driven rainfall spells 

(Prein et al., 2020). CPMs demonstrate that such intense rainfall often originate from 

convective processes and project that temperature-scaling rates are likely to persist in future 

global warming contexts (Ban et al., 2018; Kendon et al., 2017; Pichelli et al., 2021; Vergara-

Temprado et al., 2021), emphasizing the need to account for temperature-scaling in extreme 

rainfall projections. 

However, CPMs are constrained by hefty computational requirements as much as other 

dynamical models. This typically limits their outputs to short and singular simulations of few 

climate variables (Gutowski et al., 2020; Schär et al., 2020), thus hindering a comprehensive 

analysis of extreme events or evaluations of projection uncertainties. Recognizing this 

limitation, weather generators (WGs) are a valuable alternative to produce extensive climate 

records without the computational burden of CPMs and, ideally, can be formulated to account 

for the temperature dependence of precipitation. In such case, WGs would offer the best of 

both worlds: the ability to generate large, high-resolution ensembles of climate data while also 

capturing the main features of climate dynamics and how they relate to changes in 

temperature. However, as it stands, such a tool is yet to be developed. 

1.2 THESIS OBJECTIVE AND RESEARCH QUESTIONS 
This thesis was conceived within the framework of the Hydro-CH2018 project (National Centre 

for Climate Services NCCS, n.d.), an effort aimed to update the hydrological scenarios of 

Switzerland under climate change. This initiative is an attempt to bring together and develop 

state-of-the-art datasets, numerical models, and analysis techniques. Its goal is to enhance 

our hydrological understanding to inform effective climate change mitigation and adaptation 

strategies. In support of Hydro-CH2018’s objectives and motivated by the essential role of 

mountainous regions in global water cycles, I aim to enhance the estimation of climate 

change impacts on the hydrological responses of mountainous catchments.  

As underscored by the preceding sections, tackling this issue requires addressing multiple 

complexities and challenges. Notably, there is a need to improve the tools and methodologies 

currently in use to investigate climate change impacts, especially at relatively small 

hydrological scales. Consequently, I set out to address the following research gaps: 

I. High Resolution Climate Scenarios: High-resolution data is essential, particularly in 

areas with complex landscapes like mountainous regions. Climate effects vary at 

different scales and are highly sensitive to catchment elevation, so coarse datasets 

can miss details crucial for understanding climate impacts. 

II. Uncertainty in Hydrological Projections: While uncertainty is inherent to any climate 

projection, its propagation into the hydrological response and partition of its 

components has not been adequately addressed.  

III. Impacts of Rising Temperatures on Extreme Rainfall: There is a pressing need for 

modelling tools that can represent how rising temperatures influence extreme 

precipitation events based on physical relations, while capable of producing long, high-

resolution simulations.  

Specifically, this work focuses on an in-depth analysis of two mesoscale catchments located 

in the Swiss Alps: The Thur and the Kleine Emme, which are elaborated upon in Chapter 2. 
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These catchments were selected as they exemplify sites with complex topography and wide 

elevation ranges, making them prime candidates to advance knowledge about the hydrologic 

response of Alpine and pre-Alpine basins to climate change by means of novel downscaling 

techniques and high-resolution modelling. Moreover, the river networks in these catchments 

are mostly untouched. This makes them ideal case studies for undisturbed systems. Through 

these case studies, I look to answer the following research questions: 

RQ1. What will be the response of small-scale Alpine catchments to climate change? 

This question aims to elucidate the interplay between changing precipitation patterns, 

snowmelt processes, and evapotranspiration across different elevations and their 

cumulative impact on hydrological responses. To answer it, the thesis sets the 

following research objectives: 

• Develop and validate a framework that leverages the capabilities of an advanced 

weather generator to simulate large ensembles of high-resolution climate data. 

• Characterize the small-scale hydrological response of Alpine catchments to climate 

change.  

• Quantify the impact of climate change on extreme hydrological events in Alpine 

catchments.  

RQ2. What is the magnitude and the potential to narrow the uncertainty in climate and 

hydrological projections? This question seeks to refine our understanding and 

methods for dealing with the inherent uncertainties in climate modelling, aiming for a 

clearer distinction between reducible and stochastic uncertainties. In answering it, the 

following objectives are achieved:  

• Quantify the uncertainty in climate projections and their propagation into the 

hydrological response across mountainous catchments. 

• Estimate the contribution of internal climate variability to assess the potential for 

narrowing the uncertainty in hydrological projections.  

RQ3. How will the increase in temperature affect hydrological extremes in future 

climates? Through this question, the research investigates the implications of 

increased extreme rainfall events due to the Clausius-Clapeyron relation. on 

hydrological systems, especially considering the potential for more severe and 

frequent flooding events. The question relates to the following objectives:  

• Develop a new version of a stochastic weather generator capable of simulating 

realistic temperature-conditioned precipitation properties.  

• Measure the effect of increasing temperature on the intensification of extreme 

rainfall in the Alps. 

• Compare the hydrological impacts estimated with and without considering 

temperature-conditioned precipitation properties. 

1.3 OUTLINE 
To answer these questions, I present a novel methodology and improved numerical models 

that allow a comprehensive estimation of hydrological projections, thus directly contributing to 

the aims of Hydro-CH2018. First, I introduce a new modelling framework. It integrates outputs 

from multiple RCMs to account for the role of climate projection uncertainty on the impact of 

basin hydrology, a two-dimensional weather generator to account for intrinsic climate 

variability and its interplay with climate projections variability on basin hydrology impacts, and 

a physically based hydrological model to enable the separation of climate change impacts on 

precipitation-runoff transformation components and on their propagation and transformation 

across the basin. The modelling framework acts as a virtual laboratory that allows simulating 

large ensembles of high-resolution climate and hydrological data under a broad set of forcing 
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climate scenarios. This framework is detailed in Chapter 2—based on the published work by 

Moraga et al. (2021)—which shows how it is used to characterize the impact of climate change 

on the hydrology of the two study sites, thus answering RQ1. In Chapter 3—which presents 

the work published by Moraga et al. (2022)—the generated ensembles are used to quantify 

and partition the uncertainty of climate and hydrological projections in order to answer RQ2. 

Chapter 4 presents an article currently in review, in which an updated version of the AWE-

GEN-2d weather generator is developed and used to improve the characterization of extreme 

rainfall events. The performance of the new model is then showcased using the example of 

the Kleine Emme catchment, thereby answering RQ3. The concluding Chapter 5 summarizes 

the main results and highlights their relevance to the broader scientific field. 
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2 REVEALING THE IMPACTS OF CLIMATE CHANGE ON 

MOUNTAINOUS CATCHMENTS THROUGH HIGH-

RESOLUTION MODELLING 

Chapter based on the published article Moraga, J. S., Peleg, N., Fatichi, S., Molnar, 

P., & Burlando, P. (2021). Revealing the impacts of climate change on mountainous 

catchments through high-resolution modelling. Journal of Hydrology, 603, 126806. 

https://doi.org/10.1016/j.jhydrol.2021.126806 

ABSTRACT 
Mountainous catchments cover a broad range of elevations and their response to a warming 

climate is expected to vary significantly in space. Nevertheless, studies on climate change 

impacts typically examine the changes in flow statistics only at the catchment outlet. In this 

study, we instead demonstrate the high variability of the hydrological response to climate 

change at the sub-catchment scale, investigating in detail the contribution of all components 

of the hydrological cycle in two mountainous catchments (Thur and Kleine Emme) in the Swiss 

Alps. The analysis was conducted with a two-dimensional weather generator model that 

simulated gridded climate variables at an hourly and 2-km resolution until the end of the 21st 

century for the RCP8.5 emission scenario. The climate ensemble was used as input into a 

distributed hydrological model to estimate the changes in hydrological processes at 100-m 

and hourly resolutions. Climate models show that precipitation intensifies during winter but 

weakens during summer in the order of ±5–10% toward the end of the century. Temperature 

will rise by up to 4°C, leading to a 50% reduction in snowmelt, 10% increase in 

evapotranspiration, and shift in precipitation type from snowfall to rainfall. As a result, 

streamflow is projected to increase by 40% in winter but decrease by 20% to 40% during 

summer, with winter floods becoming more frequent. The changes to streamflow (mean and 

extreme low and high flows) at the sub-catchments show a strong dependency with elevation. 

In contrast to the small changes projected at the outlet of the catchments, streamflow shows 

a reduction at higher elevations (up to -20% change in mean streamflow for sub-catchments 

at elevations exceeding 1400 m) and an increase at lower elevations (up to +5% for Kleine 

Emme and +20% for the Thur at elevations below 600 m). These impacts are tied to the 

changes in precipitation, as well as changes in snowmelt (at high elevation) and 

evapotranspiration (at low elevation). The results reveal the causes and diversity of 

hydrological response to climate change, emphasizing the importance of investigating the 

distributed impacts of climate change in mountainous environments. 

2.1 INTRODUCTION 
Global warming is affecting hydrological processes in many regions and across various space-

time scales. Mountainous catchments are no exception: a diminishing snow cover and glacier 

retreat (Blanc and Schaedler, 2014; Beniston et al., 2018; Bultot et al., 1994; Etter et al., 2017; 

Jenicek et al., 2018; Jörg-Hess et al., 2015), and changes in intense meteorological events, 

such as prolonged droughts and intensification of extreme precipitation (Ban et al., 2015; Bao 

et al., 2017; Fischer et al., 2015; Lenderink et al., 2017; Peleg et al., 2018; Westra et al., 2014), 

suggest that their hydrological cycle could undergo significant alterations. Among the 

expected consequences are increased hazards such as floods, low flows, landslides, or debris 

flows (Brunner et al., 2019; Floriancic et al., 2020; Gariano and Guzzetti, 2016; Hirschberg et 

al., 2020; Kos et al., 2016; Scheidl et al., 2020), which in turn can lead to serious impacts on 

infrastructure, irrigation demand, hydropower production, and tourism, with significant 

https://doi.org/10.1016/j.jhydrol.2021.126806
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economic consequences (Abegg et al., 2007; Zubler et al., 2015; Savelsberg et al., 2018; 

Weingartner et al., 2013). Adapting to these changes and mitigating their effects requires 

modelling the hydrological response of mountainous catchments at scales appropriate for the 

involved hydrological processes and suitable to represent the highly heterogeneous 

mountainous topography. This implies spatial resolutions in the order of kilometers and time 

steps of hours or less (e.g., Mastrotheodoros et al., 2020). Achieving this level of detail is 

challenging, as modelling at these fine scales demands substantial computational resources 

and large amounts of high-resolution observations to calibrate and validate models. Moreover, 

a changing climate means that relations between hydro-meteorological variables in the past 

may no longer hold in the future, questioning the validity of data-driven relations in predicting 

future behavior (Milly et al., 2008). Hence, the appeal of physically based distributed models 

for estimating the hydrological response to a changing climate. 

Physically based (also known as process based) hydrological models are suited to estimate 

the hydrological response of catchments under changing climatic forcing (Fatichi et al., 2016). 

With little to no parameter calibration, they capture the dynamics of atmosphere-land 

interactions and reproduce them, in theory, for any catchment or climatic input. While spatially 

lumped hydrological models cannot reproduce the diversity of responses within the 

catchments, distributed models can provide a meaningful cause-and-effect association 

throughout the catchment (Mascaro et al., 2015). By forcing them with climate variables from 

climate models, physically based hydrological models can be used to compute the impact of 

global warming on other hydrological variables besides streamflow, such as soil moisture, 

snowmelt, and evapotranspiration (ET). This approach has provided valuable insights into, for 

example, the role of storm structure in runoff generation (Paschalis et al., 2014), the sensitivity 

of climate change response to the overall soil permeability of the catchment (Camici et al., 

2017), the relation between runoff and elevation and its meaning for future hydropower 

production (Fatichi et al., 2015), and the detailed understanding of the eco-hydrological 

response to changing climate conditions (Mastrotheodoros et al., 2020). 

The effects of global warming on individual climate variables are typically inferred from 

General Circulation Models (GCM) and Regional Climate Models (RCM), albeit at scales that 

make them unsuitable to study most hydrological processes, in particular at the scale that 

controls the response of mountainous catchments (Fatichi et al., 2013; Mateo et al., 2017). 

Therefore, downscaling of climate variables to suitable space-time scales is required (Smiatek 

and Kunstmann, 2019). This can be accomplished using stochastic weather generators (WG), 

as alternatives to other dynamic or statistical methods (see review papers by Fowler et al., 

2007; Maraun et al., 2010; Trzaska and Schnarr, 2014). Using historical observations and 

GCM/RCM outputs, WGs combine physical relationships among climatic variables and a 

stochastic approach to generate synthetic time series that reproduce the statistics of the 

observed data, and once suitably re-parameterized, simulate climate variables for future 

periods (e.g., Fatichi et al., 2011; Fowler et al., 2007; Peleg et al, 2017; Semenov & Barrow, 

1997; Wilks & Wilby, 1999; Wheater et al., 2005). Most WGs simulate climate variables at 

either the point scale (Fatichi et al., 2011; Parket al., 2018) or at multiple sites (Bordoy and 

Burlando, 2014; Keller et al., 2017, 2015). In recent years, two-dimensional WGs were 

developed, such as STORM (Singer et al., 2018; Singer and Michaelides, 2017) and AWE-

GEN-2d (Peleg et al., 2017), capable of downscaling gridded climate variables. Besides 

downscaling, the purpose of WGs is to produce climatic ensembles, i.e. multiple realizations 

characterizing the climate conditions, which allows probabilistic analysis of change and 

quantification of uncertainty.  

The present study aims to quantify the effects of climate change on hydrological processes in 

mountainous catchments and to assess how the hydrological response varies in space. We 
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hypothesize that the magnitude, and perhaps even the direction (signal), of change will be 

related to elevation, because some of the hydrological components that contribute to 

streamflow (e.g., evapotranspiration or snow accumulation and melt) are elevation-dependent. 

To that end, we combine a high-resolution gridded WG model (AWE-GEN-2d; Peleg et al., 

2017) with a distributed hydrological model (Topkapi-ETH; Fatichi et al., 2015) to quantify the 

impacts of climate change within two mountainous catchments that are exemplary of typical 

mesoscale catchments in the European Alps. We estimate the impact of climate change 

throughout the 21st century on a broad range of hydrological processes, such as streamflow, 

evapotranspiration, soil moisture, and snow water equivalent, to explore (a) the contribution 

of catchment-wide hydrological processes to annual and seasonal streamflow change at the 

outlet; (b) the propagation of changes in extreme rainfall to floods, and whether flood changes 

follow the climatic signal in extreme rainfall; and (c) the signal of streamflow change in many 

sub-catchments at different elevations, identifying the main hydrological causal components, 

and answering the question if the signal at the outlets reflects the spatial variability of changes 

across the catchments. 

2.2 METHODS  

2.2.1 Study area and data 

The Thur and Kleine Emme catchments, which represent typical mountainous sub-Alpine 

(non-glacierized) catchments, were chosen for this study (Figure A-1). The river regime of both 

catchments is close to natural. There are no reservoirs, artificial lakes or dams in either of the 

catchments, nor major withdrawals for irrigation or hydropower production. In addition, the 

catchments are glacier free. 

The Thur catchment is located in the northeastern part of Switzerland (47.4°N, 9.1°E). It is a 

tributary of the Rhine, with a total drainage area of 1,730 km2 and an elevation range between 

359 and 2,434 m. The average precipitation over the catchment for the present climate is 

1,350 mm y-1, the average annual temperature is 8.4 °C, with average streamflow at the outlet 

of 46.7 m3 s-1 (851 mm yr-1). The Kleine Emme catchment is located in central Switzerland 

(46.9°N, 8°E). It has a total drainage area of 477 km2 and an elevation range between 430 and 

2,330 m. The precipitation average over the catchment for the present climate is 1,650 mm y-

1, and the average streamflow at the outlet is 12.6 m3 s-1 (833 mm yr-1). Except for small 

cropland areas and villages, the catchments are covered mostly by natural vegetation and 

pastures. Both catchments have already been studied in the context of climate change impacts 

in the Alpine domain (Addor et al., 2014; Brunner et al., 2019, 2018; Hakala et al., 2019; Keller 

et al., 2019; Middelkoop et al., 2001; Muelchi et al., 2020; Rössler et al., 2019). 

Topographic information for both catchments was obtained by resampling a 25 m resolution 

digital elevation model (SwissTopo, 2002) to a 100 m x 100 m grid. Distributed land use 

information was obtained from the 100 m resolution Corine dataset (CLC, 2012) and soil 

information was extracted from the soil map of Switzerland (Bodeneignungskarte, 2012). 

Following Paschalis et al. (2014), the depths of the two top layers of soil for the hydrological 

model were set as part of the model parameterization, with the top of the groundwater layer 

set at a 2 m depth for zones nearby rivers and lakes, and at 5 m depth for the rest of the 

domain.  

Meteorological data used for calibration and validation of the WG and the hydrological model 

(precipitation, temperature and sunshine hours) were obtained from the MeteoSwiss ground 

station network (SwissMetNet) at hourly resolution (Table A-1). Information on the rainfall 

spatial structure was derived from the MeteoSwiss C-band weather radar system (data at 2 

km and 5 min, Germann et al., 2006). Hourly cloud cover data and geostrophic wind velocity 
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at 500 hPa were obtained from the MERRA-2 reanalysis dataset (Rienecker et al., 2011). 

Gridded datasets for temperature (TabsD) and precipitation (RhiresD) at 2 km and daily 

resolution were obtained from the MeteoSwiss archive (Wüest et al., 2009; MeteoSwiss 2016). 

Streamflow observations (Thur at Andelfingen and Kleine Emme at Emmen) were provided 

by the Swiss Federal Office for the Environment. 

Nine climate projections obtained from GCM-RCM model-chains from the EURO-CORDEX 

archive (Jacob et al., 2014; Kotlarski et al., 2014), pre-processed by MeteoSwiss (CH2018, 

2018), were used to compute Factors of Change (FC, see section 2.2.2) on a seasonal basis 

for 30-year moving windows every 10 years until the end of the century. They all follow the 

RCP8.5 emission scenario path and are available at a spatial resolution of 12.5 km x 12.5 km 

(Table A-2). 

2.2.2 Weather generator 

The AWE-GEN-2d model (Two-dimensional Advanced WEather GENerator; Peleg et al., 

2017) was used to generate multiple time series at high space-time resolution (e.g., 2 km and 

1 h) of the climate variables that are needed as inputs into the hydrological model. That 

includes precipitation, cloud cover, and near-surface air temperature at 2-m (referred to as 

temperature here). Based on ground observations of precipitation, the model reproduces the 

storm arrival (wet-dry durations) as an alternating-renewal process (Peleg and Morin, 2014). 

Precipitation and cloud fields are simulated jointly. During wet periods, areal statistics (wet 

area ratio, mean areal precipitation intensity, and cloud area ratio) are calibrated to replicate 

the storm structure observed by weather radars, while during dry periods the cloud area ratio 

is calibrated using satellite observations, which are also used to simulate the advection of 

clouds and precipitation. Near-surface air temperature is simulated for a reference elevation 

using estimated radiation that depends on the cloud cover generated in the previous step. 

This value is interpolated to the whole domain through a stochastic lapse rate calibrated by 

ground temperature observations. The model parameters, calibration and validation 

processes, and advantages and limitations of the approach are discussed by Peleg et al. 

(2017). The AWE-GEN-2d model was successfully applied to catchments of different sizes 

and for various climate regions (e.g., Nyman et al., 2021; Peleg et al., 2020; Skinner et al., 

2020), and its validation for the catchments used in this study is presented in Section 2.3.1.  

AWE-GEN-2d can be used to generate ensembles of present climate simulations, when 

calibrated with observed meteorological data. This enables us to represent the natural climate 

variability, which is a fundamental component to characterize hydrological uncertainties 

(Fatichi et al. 2014), especially for the extremes as presented in Molnar et al. (2020) and Ruiz-

Villanueva and Molnar (2020). To simulate climate variables for future periods, the model is 

re-parameterized based on data from RCMs and using the FC approach (e.g., Bordoy and 

Burlando, 2014; Fatichi et al., 2011). FC consist of the ratio or difference between climate 

statistics estimated from the future and present climate simulations and can be used to force 

the change signal in AWE-GEN-2d simulations representative of the future. This method has 

been previously applied in AWE-GEN-2d by Peleg et al. (2019) to produce high-resolution 

future climate ensembles in a nearby study area.  

2.2.3 Hydrological model 

The Topkapi-ETH model (Fatichi et al., 2015) was applied to quantify the hydrological 

response of the catchments to climate change. It is a fully distributed hydrological model that 

simulates hydrological processes in a physically explicit manner. Surface topography is 

represented as a regular square grid of hillslope and channel cells, while the subsurface is 

discretized in three layers simulating the process of infiltration and lateral flow. The top two 

layers represent shallow and deep soil horizons, where the lateral flow is modelled by the 
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kinematic-wave approximation dependent on soil moisture content and soil hydraulic 

properties in hillslope cells (subsurface flow), and surface roughness and water depth and 

slope in hillslope and channel cells (overland flow and channel flow). The third layer represents 

the groundwater system and is modelled as a linear reservoir for flow between cells. The 

model simulates the lateral surface and subsurface flow between cells while considering 

vertical fluxes such as infiltration, exfiltration, ET, and snow and ice melt over each grid cell. 

The grids are connected in the surface and subsurface according to topographic gradients.  

Topkapi-ETH was selected because it represents a reasonable compromise between a fully 

physically-based representation of hydrological processes and computational time for large 

domains (>1,000 km2), which allows long-term (several decades) high-resolution (sub-

kilometer grid cells, hourly time steps) distributed simulation (e.g., Battista et al., 2020a; Fatichi 

et al., 2015). It can preserve the effects of high-resolution topography, which is an important 

element of hydrological simulation in complex terrain that relies on representation of overland 

and channel flow (e.g., Battista et al., 2020). The model parameters, calibration and validation 

processes, as well as their advantages and limitations are discussed in detail by Fatichi et al. 

(2015). The model validation is presented in Section 2.3.2. 

2.2.4 Experimental design 

The numerical experiment performed in this study consisted of simulating large ensembles of 

climate data using AWE-GEN-2d, which were in turn used as inputs to Topkapi-ETH to obtain 

simulated present and future hydrological variables (Figure 2-1). As a first step, both models 

were calibrated independently to simulate the climate and hydrological variables for the current 

climate conditions. AWE-GEN-2d was calibrated and validated using climate observations 

obtained between 1982 and 2015, following the methodologies presented by Peleg et al. 

(2017). The simulated time series include hourly temperature (at a 100 m resolution), 

precipitation (at a 2 km resolution), and catchment-averaged cloud cover. The hydrological 

model was calibrated and validated with streamflow at the outlet of the catchments for the 

period between 2000 and 2009 using observed climate forcing, following the procedures 

presented by Pappas et al. (2015). 
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Figure 2-1: A schematic representation of the numerical experiment. Shown in parenthesis 
are numbers of the relevant sections describing a given component of the methodology. 

In a second step, FC were computed for temperature and precipitation using the outputs of 

the climate models’ simulations corresponding to their control (1976–2005) and future periods 

(2010–2089). Following Peleg et al. (2019), FC were used to re-parametrize AWE-GEN-2d to 

enable the simulations of continuous time series toward the end of the century. Two climate 

ensembles were simulated. The ensemble for the present climate consists of 15 realizations 

(replicates) of 30-years each. The ensemble for the future climate consists of 10 realizations 

of 80-years each, simulated for each of the nine climate model signals (90 trajectories in total). 

From this ensemble, the multi-model mean is computed as the average of the nine climate 

model trajectories and ten realizations. In total, the ensembles consist of 7,650 years of 

simulations for each catchment (30 x 15 + 80 x 9 x 10).  

Third, hydrological ensembles were computed to obtain gridded simulations (at hourly and 

100 m resolution) of streamflow, snow height, snowmelt, evapotranspiration (ET), and soil 

moisture, and point simulations of streamflow at the river network junctions for 97 and 145 

sub-catchments in the Kleine Emme and the Thur, respectively (Figure A-2). The selected 

sub-catchments correspond to river reaches of Strahler order 2 or higher (Strahler, 1957) and 

can be nested in each other. Last, the impacts of climate change on snow depth, ET, and soil 

moisture, as well as on the streamflow (mean, minimum and maximum) within the catchments 

and at the outlet were estimated by comparing the present and future hydrological ensembles.  
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2.3 VALIDATION OF MODELS 

2.3.1 AWE-GEN-2d 

The calibration of AWE-GEN-2d requires extensive datasets, thus often leaving few available 

observations for the validation process. A common assumption and procedure in the validation 

of WGs is that of using the same dataset necessary for the calibration, but looking at different 

statistics and scales (Entekhabi et al., 1989; Peleg et al., 2017). For example, comparing the 

simulated mean annual temperature to the gridded TabsD product on a cell-to-cell basis 

reveals that most grid cells in Kleine Emme (73%) show a difference between observed and 

simulated temperatures smaller than 1°C (Figure A-3, all figures related to the WG validation 

are presented as Supplementary Information). The same applies to the Thur catchment, 

except for the high-mountain region in the south-east where the underestimation of the 

temperature can reach up to 3°C (Figure A-3). We also directly compared ground observations 

with the corresponding simulated grid cell in the domain and found that the WG model 

captures the observed temperature satisfactorily (Figure A-4): 97% of the simulated months 

for the Kleine Emme stations are within 1°C of the observed mean, while in Thur the 

percentage drops to 67%, with the largest mean errors found in Ebnat-Kappel (EBK, 2.5 °C) 

and the mountain station of Säntis (SAE, 2 °C), which are however still within natural climate 

variability at those sites. Examining the diurnal cycle of temperature (Figure A-5), we find that 

the timing of the simulated maximum and minimum daily temperatures agrees well with the 

observed data at all stations, with the largest mean offsets in hourly temperature of 0.6 °C in 

Pilatus (PIL, Kleine Emme) and 1.9 °C in Ebnat-Kappel (EBK, Thur).  

The spatial distribution of precipitation (Figure A-6) is well captured in Kleine Emme. While 

there is a slight overestimation of the average precipitation in the WG model over the 

catchment in comparison to observations, the maximum overestimation is in the order of 4%, 

thus well within the typical measurement errors and the ~10% expected internal climate 

variability for annual precipitation in this region (Fatichi et al., 2016a). In the Thur catchment, 

the model slightly underestimates precipitation in the north (low elevation region) and 

overestimates precipitation in the southern (mountainous) part, with errors in the order of 3% 

and well within internal climate variability. On the one hand, the model successfully reproduces 

the seasonal dynamics in Luzern, Napf and Aadorf-Tänikon stations, while it shows 

discrepancies during the spring months in Ebnat-Kappel, although observations are still within 

the variability range of the ensemble simulations (Figure A-7). On the other hand, there are 

noticeable discrepancies for the stations Pilatus and Säntis where the model does not 

reproduce the recorded precipitation statistics well, although some discrepancy is expected 

due to the challenge of measuring precipitation in mountaintop stations. We also evaluated 

AWE-GEN-2d ability to reproduce extreme precipitation at the hourly scale (Figure A-8). The 

median extreme hourly precipitation computed from the simulation ensemble indicates that 

the model generally underestimates the extremes, but we note that (i) the observed line falls 

within the 5–95th ensemble range (for both Kleine Emme and Thur); and that (ii) there is 

considerable uncertainty in the estimates of observations as well. We also remark that AWE-

GEN-2d was not calibrated to simulate sub-daily precipitation explicitly, but only on daily 

precipitation amounts.  

2.3.2 Topkapi-ETH 

Topkapi-ETH was validated at the hourly and monthly scales using streamflow observations 

at the outlet of the catchments for the 2000–2009 period. The overall agreement of the 

observed and simulated time series was quantified using the Nash–Sutcliffe Efficiency (NSE) 

index at the hourly scale, yielding values of 0.64 for Kleine Emme and 0.60 for Thur (Figure 

A-9). In both catchments, the model tends to slightly underestimate the hourly peak flow values 
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(Figure A-10). A closer inspection of the simulations shows that the shapes of the hydrographs 

are reasonably similar, even if in some cases the simulation reaches the peak earlier than the 

observation. Notwithstanding, the reproduced peak values are within the uncertainty range of 

the flood series statistical model, especially for return periods lower than 30 years. At the 

monthly scale (Figure A-11), Topkapi-ETH reaches NSE values of 0.76 and 0.78 for the Kleine 

Emme and Thur catchments, respectively, even though it underestimates mean flows for 

October and November in the Thur catchment (up to 13.6 m3 s-1).  

While not perfect, we assess that the model characterizes the dynamics of streamflow 

correctly in terms of seasonality, the timing of the peaks, their magnitude, and hydrograph 

recessions. Furthermore, the NSE values are within the range obtained using other 

hydrological models such as HBV, PREVAH and WaSiM for the Thur catchment (0.86, 0.81, 

0.70, respectively; Addor et al., 2014), while at the same time achieving good performance at 

the hourly scale. For sake of consistency and to remove the biases that the weather generated 

forcing may introduce, the results presented in the following sections are based on the 

comparison of simulations using the climate ensembles (future vs. present) as input, rather 

than on a comparison with observed data (i.e. future vs. observed-calibrated model). This is 

the standard approach anytime WG forcing is used in climate change studies (e.g., Addor et 

al., 2014; Camici et al., 2017; Fatichi et al., 2015). 

2.4 RESULTS 
We begin by presenting the results of the changes in climate at the catchment scale and how 

these changes are affecting the hydrological budget in the catchment and the streamflow at 

the outlet of the catchment (Section 4.1). Then, the changes to the hydrological budget and 

streamflow at many sub-catchments, and their relation with elevation, are presented (Section 

4.2). All of the future climate statistics represent the multi-model mean, i.e., the combination 

of simulations using the nine future climate trajectories considered in this study (Table A-2). 

2.4.1 Catchment-wide impacts of climate change 

The changes in temperature and precipitation are presented in Figure 2-2. Temperature is 

projected to rise progressively throughout the century until reaching an increase in the order 

of 4° C in the period 2080-2089 in comparison to the present climate for both catchments. The 

increase in temperature affects all seasons with slightly higher increases in summer, and is 

relatively homogenous in space. 

In contrast, the changes in precipitation vary in space and time. Precipitation decreases over 

the mountainous regions (southern areas of the catchments) and increases in the relatively 

low areas toward the outlets (northwest in the Thur and northeast in the Kleine Emme, Figure 

2-2b, 2d). Winters are projected to be wetter, particularly in the Thur catchment, and summers 

are projected to be drier, especially in the Kleine Emme catchment. Overall, mean precipitation 

is expected to decrease by 6% in Kleine Emme and increase by 5% in Thur by the end of the 

century. 
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Figure 2-2: Changes in precipitation (ratio of future and present climate) and temperature 
(difference of future and present climate) in Kleine Emme (a–d) and Thur (e–h). Panels (a, e) 
and (c, g) show the monthly precipitation and temperature anomalies for each future period, 

respectively, whereas panels (b, f) and (d, h) show the spatial distribution of the mean 
annual changes of the climatic variables when comparing simulations of the present climate 

(1976–2005) with those of the end of the century (2080–2089). 

The changes in temperature and precipitation influence changes in streamflow. Comparing 

the end of the century (2080-2089) and the present period, both catchments experience an 

increase in winter flows at the outlets by up to 40%, while summer flows at the outlets are 

predicted to decrease by about 20% in the Kleine Emme and by 40% in the Thur (Figure 2-3c, 

d). The changes in streamflow at the outlet are largely following the changes in precipitation 

and snowmelt (Figure 2-3c, d). The mean annual snow water equivalent (SWE) in the Thur 

decreases from 23.9 mm to 5.5 mm leading to a 48% decrease in snowmelt contribution to 

streamflow at the outlet on an annual average. In the Kleine Emme, the SWE change is similar, 
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with a decrease in the mean from 29.9 mm to 5.1 mm and a 57% decrease in snowmelt 

contribution to streamflow (Figure A-12). The increase in streamflow at the outlet during winter 

(DJF, Figure 2-3c, d) is a result of both increase in total precipitation and a shift in precipitation 

type from snowfall to rainfall. The latter allows precipitation to reach streamflow sooner than 

in the present climate (i.e., during DJF instead of MAM), as a larger portion of precipitation is 

not stored in the snowpack and subsequently released as snowmelt. During spring (MAM), 

the loss in snowmelt offsets the small increase in precipitation in both catchments. At least at 

the outlet, the streamflow is not affected by the changes in snowmelt during summer (JJA) 

and autumn (SON). 

Likewise, the effect of climate change can be noticed on other hydrological components. For 

example, the average effective saturation of the top soil layer in the Thur remains nearly the 

same (25.5% to 25.7%, Figure 2-4d), while a small increase is detected in Kleine Emme from 

55% to 59% (Figure 2-4a). The mean annual ET is projected to increase by 8% (Thur) and 

10% (Kleine Emme) by the end of the century (Figure 2-4c, 4f). The changes to ET have minor 

effects on the streamflow at the outlet during spring and summer, and no effect during autumn 

and winter (Figure 2-3c, 3d). 

 

Figure 2-3: Monthly streamflow (thick black line) and its hydrological components at the 
outlet of the Kleine Emme (left) and Thur (right) river catchments for simulations of the 

present climate (1976–2005, a and b), of the end of the century (2080–2089, c and d), and 
their difference (e and f). The bars corresponding to evapotranspiration (blue) and an 
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increase in soil water volume (pink) are depicted as negative contributions to the water 
balance. 

 

 

Figure 2-4: Spatial distribution and histograms of the change (end-of-the-century minus 
present) in mean annual effective saturation (left column), snow water equivalent (middle) 

and evapotranspiration (right) for the Kleine Emme (a–c) and Thur (d–f) catchments.  

In addition to the changes in mean streamflow at the outlet, we also explored the changes to 

extreme flows and their main driving factor – the areal extreme precipitation intensity over the 

catchment. Extreme hourly and daily precipitation intensities (computed from annual maxima, 

fitted using Generalized Extreme Value (GEV) distribution) in both the Kleine Emme and the 

Thur catchments will not change considerably under climate change for the high-frequency 

extremes, but are projected to slightly intensify for less frequent events (up to 10% for T = 25y, 

Figure 2-5a–d). However, these changes are not statistically significant as the change in the 

median of the computed values is minor compared to the stochastic variability obtained from 

analyzing multiple realizations (Table A-3). In contrast, the magnitude of flood events (Figure 

2-5e–h) shows, with one exception, a statistically significant decrease at the Kleine Emme 

(with a 5% significance level using a Mann-Whitney-Wilcoxon test, Table A-3), and particularly 

for the more frequent, low return-period events, whereas the decrease is not statistically 

significant in the Thur. This apparent contradiction, i.e. an intensification (although of minor 

magnitude) in extreme precipitation intensities but a decrease in extreme streamflow, can be 

explained by changes in the antecedent soil conditions (Figure 2-4, Figure A-13), and is 

discussed in Section 5. Additionally, a shift in the timing of the flood events is also projected; 
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while summer will still be the season with most flood events, the frequency of floods is 

projected to decline during summertime and increase in the other seasons in the future (Figure 

2-6), following the foreseen changes in precipitation (Figure 2-2). 

  

Figure 2-5: Hourly and daily areal precipitation extremes (a–d) and streamflow extremes (e–
h) for given return periods under present (blue) and end-of-the-century (red) climate in the 
Kleine Emme and Thur catchment outlets. The central lines in the box plots represent the 

median value computed from the simulated ensembles fitted to a GEV distribution, while the 
boxes represent the 25–75th percentile range emerging from the climate ensemble.  

 

Figure 2-6: Monthly frequency of the time of occurrence of hourly (a, c) and daily (b, d) 
annual maximum streamflow at the outlet in the Kleine Emme (a–b) and Thur (c–d) 

catchments simulated for present (1976–2005, blue) and for end-of-the-century (2080–2089, 
red) climate conditions. 

2.4.2 Climate change impacts at the sub-catchment scale 

At the sub-catchment scale, the impacts of climate change on streamflow vary considerably 

in space. To show that, we explore the relationship between the elevation of the sub-

catchments and the change rate of the annual maximum hourly flow (simply termed ‘maximum’ 

from hereafter), mean annual flow (‘mean’), and the 7 days with the lowest flow every year 

(‘minimum’), computed as the difference between the future and the present streamflow 

divided by the present streamflow.  
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The changes in maximum (Figure 2-7a, b) and mean flows (Figure 2-7c, d) show a clear 

negative correlation with sub-catchment elevation: higher elevation sub-catchments show a 

decrease in mean and maximum streamflow, while the lower elevation sub-catchments show 

an increase, particularly for maximum flows, with increments up to +30% in the Thur and +10% 

in the Kleine Emme. Changes to the minimum flows, on the other hand, have no clear relation 

with elevation (Figure 2-7e, f). We did not find any significant correlation between the flow 

change rate and the size of the catchments or stream order (not shown). 
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Figure 2-7: Impacts on streamflow in 97 Kleine Emme river sub-catchments (a, c, e) and 140 
Thur river sub-catchments (b, d, f). The change rates between the present climate and the 

end-of-the-century are computed for the maximum hourly flow (a, b), mean flow (c, d) and 7-
day minimum flow (e, f). The markers in all plots are colored according to the mean specific 
streamflow (the ratio of streamflow to sub-catchment area) in the present climate, and the 

point corresponding to the outlet of the catchment is marked with a red border. 

Six sub-catchments within the Kleine Emme catchment (as defined in Figure A-14) that cover 

a range of elevations (low, mid, and high) and sizes (small and large) were selected for a 

further examination of the causality of the changes to the hydrological budget (Figure 2-8). We 

found that snowmelt is a significant contributor to streamflow in sub-catchments located in 

high elevations during spring for the present climate, and its decrease is the main cause of 

decreasing flows in spring months. Sub-catchments located at lower elevation are less 

sensitive to changes in snowmelt. The reduction in precipitation and streamflow during 

summer is more noticeable higher up in the river network. The ET contribution to changes in 

streamflow is relatively small in all sub-catchments; however, this contribution increases in the 

lower elevations where ET is higher. Overall, the expected impacts of climate changes on the 

streamflow of lower sub-catchments in Kleine Emme are almost negligible, not only at the 
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annual scale (Figure 2-7c) but at the seasonal scale as well (Figure 9b, 9d). For Thur (Figure 

A-15), however, changes are considerably larger at these lower elevations and mostly dictated 

by higher precipitation.  

 

Figure 2-8: Monthly streamflow (black line) and the hydrological components (bars) for six 
selected sub-catchments of the Kleine Emme river simulated under present climate 

conditions (left column), and their change towards the end of the century (right column). The 
bars corresponding to ET (blue) and increase in soil water volume (pink) are depicted as 

negative contributions to the water balance. 

Moreover, we computed the first and second most important hydrological component in terms 

of the total volume contributed to the sub-catchment streamflow in the Kleine Emme 

catchment in each season, for the present and end-of-the-century climates (Figure 2-9). In the 

present climate, rainfall is the most dominant component across all seasons, excluding low 

sub-catchments in DJF and high sub-catchments in MAM where snowmelt is the most 

important contributor to streamflow. With the decreasing snowmelt by the end of the century, 

however, even the streamflow in these sub-catchments will be dominated by liquid 

precipitation. Furthermore, for many of the sub-catchments where snowmelt is currently the 

second most important component, ET will replace it as a relatively larger contributor by the 

end of the century.In summer (JJA) and autumn (SON), rainfall will remain the most important 

contributor throughout the catchment as the ET increase in JJA drives a decrease in overall 

streamflow. In SON we note that very little variation in streamflow is expected. Similar results 

are found for the Thur catchment (Figure A-15). 
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Figure 2-9: First (a–d) and second (e–h) most important components contributing to the 
seasonal flow in the Kleine Emme river network under present (circles) and future (triangles) 

climate conditions. Mean seasonal specific flow is plotted as a function of sub-catchment 
elevation and colored by the components ET (evapotranspiration), Rain, Snowmelt, ∆Soil 

Volume (change in soil water volume).  

2.5 DISCUSSION 

2.5.1 Impacts of climate change on Swiss mountainous catchments 

Considering streamflow changes at the outlet for both catchments, the mean annual 

streamflow is projected to decrease by around 7–8% toward the end of the century (Figure 

2-3). For the Thur catchment, similar estimates of change were found by Jasper et al. (2004), 

Köplin et al. (2012), Addor et al. (2014) and Muelchi et al. (2020). These studies used different 

hydrological models (WaSiM-ETH; PREVAH; 3 hydrological models: HBV, PREVAH, and 

WaSiM; and PREVAH, respectively) and climate scenarios as inputs (GCMDAT; CH2011; 

CH2011; and CH2018, respectively). This points to a convergence in the estimate of the 

average magnitude of the change. Likewise, the above studies agree with the projected 

changes to streamflow at the seasonal scale, i.e. a decrease in summer streamflow and an 

increase in winter streamflow by the end 21st century (Figure 2-3). Similar degrees of change 

in mean annual and seasonal streamflow were reported in other European alpine catchments 
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(Bavay et al., 2013; Etter et al., 2017; Fatichi et al., 2015; Meißl et al., 2017; Ragettli et al., 

2019). 

In this study, we add a new perspective on elevation-dependent changes in the sign and 

magnitude of streamflow at sub-catchment scales (Figure 2-7). While at almost all elevations 

and in all seasons precipitation is found to be the key driver of the change (Figure 2-9), we 

show that snowmelt (for sub-catchments located at high elevation) and ET (at low elevations) 

can also become important contributors to the changes in streamflow in a warmer climate 

(Figure 2-8). As the changes in precipitation are a key driver, their uncertainties and impacts 

on the streamflow in mountainous catchments need to be better understood, and this should 

be investigated in more detail. For example, in our simulation of future precipitation, only the 

intensities were modified using FC, while the spatial and temporal structure of the precipitation 

process remained unchanged, i.e. we assumed the wet periods, the temporal intermittency, 

and the wet area ratio to follow the same statistics as of today. Modelling these parameters in 

a future climate requires precipitation data outputs from climate models at a sub-daily 

resolution that are not commonly available in current experiments. 

The projection of a decrease in snow water equivalent and its temporal shift in a future climate 

is in agreement with other studies in the region (Bavay et al., 2013; Etter et al., 2017; Frei et 

al., 2018; Jenicek et al., 2018), particularly at higher elevations (Figure 2-8). Bavay et al (2013) 

forecast a loss of between 1/3 and 2/3 of SWE by the end of the century depending on the 

driving climate model, which is in line with our results. Although results agree that winter flows 

will increase, they foresee increases in spring as well, albeit for a domain with overall higher 

elevations than the study sites analysed here. Frei et al. (2018) show that snowfall will 

decrease dramatically by the end of the century, except during the winter months for higher 

elevations (above 2000 m.a.s.l.). Likewise, our results show snowfall rates at around 70% of 

the present climate for the same months and elevations (Figure A-16). Jenicek et al. (2018) 

conclude that changing SWE availability will translate into a stark decrease of low flows in the 

lowest catchments, but not at higher elevations, whereas our results are more ambiguous 

(Figure 2-7). Lastly, it has to be mentioned that the presence of glaciers will certainly affect 

flow seasonality and especially low flow statistics in a future climate (Bavay et al., 2013), which 

is obviously not reflected in the results presented here for these two glacier-free catchments. 

The rising temperature will cause evapotranspiration to increase all over the study catchments 

(Figure 2-4). Mastrotheodoros et al. (2020) noted a clear correlation between ET increase and 

elevation simulated over the European Alps, which we observe for the Kleine Emme, but not 

for the Thur (Figure A-17).  

2.5.2 Changes to high and low flow extremes 

The changes in extreme precipitation are not significant as extreme rainfall remains the same 

for the high-frequency return periods and increases only slightly at low-frequencies (Figure 

2-5, top row), yet hourly and daily streamflow extremes in our analysis are projected to slightly 

decrease (Figure 2-5, bottom row). This apparent contradiction can largely be explained by 

drier antecedent soil wetness conditions prior to heavy rainfall events. Paschalis et al. (2014) 

used the same hydrological model (Topkapi-ETH) and catchment (Kleine Emme) in an event-

based analysis to show that drier pre-event soil moisture conditions lead to lower flood peaks 

on average. Indeed, in both catchments, we detect a deficit in the soil wetness before high-

flow events, when comparing the present and end-of-century periods (Figure A-13). This is 

caused by more intense drying of the soils by ET and soil water drainage during inter-storm 

periods in the warm season in a future climate. 

We found that the magnitudes of the annual maximum flows are projected to decrease slightly 

for almost all return periods at the outlets of the Thur and Kleine Emme catchments at the end 
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of the century (Figure 2-5). Our findings seem to contradict results from other studies in 

Switzerland, also using the CH2018 data but with other hydrological models and different 

parameterization, that report a projected increase in annual maximum daily streamflow toward 

the end-of-the-century (Brunner et al., 2019; Molnar et al., 2020; Ruiz-Villanueva and Molnar, 

2020), although it is worth noting that all the studies agree on the high uncertainty that 

accompanies such predictions. The discrepancy in the changes of the annual maximum flow 

magnitudes in these studies can be explained by the climatic input data used to run the 

hydrological models. Although the same data source was used (i.e. climate variables 

processed in the CH2018 project), here we further downscaled the precipitation and 

temperature data to obtain higher space-time resolution by the WG. While the space-time 

structure of precipitation is statistically similar to the native CH2018 data (the WG is calibrated 

to reproduce these statistics, see Peleg et al., 2017), it is not identical. In terms of timing, flood 

occurrence is foreseen to partly shift toward the cold season; nonetheless, warm-season 

extreme flow events, driven mostly by high-intensity rainfall events (Barton et al., 2020; 

Panziera et al., 2018, 2015), are projected to continue to be the most frequent extreme events 

also in the future (Figure 2-6). Another possible contributor to floods are rain-on-snow events 

(RoS), which may play an important role in alpine settings (Beniston & Stoffel, 2016). Although 

Topkapi-ETH does consider events of rainfall over snow-covered grid cells, it does so in a 

simplified way that does not fully account for interactions with the snowpack. A more 

sophisticated approach, including the distributed modelling of snowpack characteristics, could 

provide interesting insight into the occurrence of RoS-triggered events. 

2.5.3 Elevation dependence of the hydrological response to climate change 

The results of this study clearly show that the hydrological response to climate change in 

mountainous catchments at the sub-catchment scale is strongly dependent on elevation 

(Figure 2-7). For example, we show that annual mean streamflow is foreseen to decrease by 

-10% (-15%) in the upper sub-catchments of the Thur (Kleine Emme), while an increase of 

+15% (+5%) is projected in some of the lower-elevation reaches, and the estimated change 

at the outlet is -7% (-8%). Similarly, floods at the hourly scale are projected to decrease by up 

to -15% (-20%) in the upper sub-catchments, but increase up to +30% (+10%) in the lowest 

parts of the catchment, and change only -2% (-10%) at the outlet. Fatichi et al. (2015) also 

examined the changes to the streamflow response with elevation, using the same hydrological 

model but with different climate scenarios as inputs, for a much larger Alpine catchment – the 

upper Rhone in Switzerland. They reported a much higher variability in the hydrological 

response than found here, mostly related to a much larger variability in the projected rainfall 

patterns. Based on the two catchments explored here and the work of Fatichi et al. (2015), we 

conclude that the variability of the response with elevation is strongly related to the projected 

rainfall patterns and the catchment size and river network connectivity. 

Overall, the results highlight the need to analyze the hydrological response to climate change 

not only at the outlet of mountainous catchments but also within catchments. Settlements in 

these catchments are often located at the lower elevation, in valleys closer to the river outlet. 

The villages are located not only along the main river channel but also in the sub-catchments 

at lower elevations connected to it. Analyzing only the response at the outlet, the risk emerging 

from floods in future climate can be significantly underestimated (or even the direction of 

change may be misrepresented). For example, in the Thur River, no change is projected to 

the maximum streamflow at the outlet of the catchment, while the maximum streamflow in 

some of the sub-catchments near the outlet is projected to increase by more than 20% (Figure 

2-7). This type of information is critical for urban planners, civil and environmental engineers, 

and policymakers that aim at planning a flood-resilient environment. This shows how the 

methodological framework presented in this work leads to results that emphasize the 
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relevance of using high-resolution, distributed climatic and hydrological models for revealing 

important details of the hydrological response in such mountainous environments. 

2.6 CONCLUSIONS 
The impacts of climate change on mountainous catchments were studied using a high-

resolution weather generator and a fully-distributed hydrological model to analyze the 

spatially-explicit hydrological response within two mountainous catchments in the Swiss Alps. 

Changes in precipitation patterns and a strong reduction in snowfall and snowmelt drive 

noticeable changes in streamflow at the outlet of the catchments throughout the 21st century, 

with decreasing summer and increasing winter flows. In terms of streamflow extremes, we 

show that, despite no significant change in extreme precipitation magnitudes, maximum floods 

at the outlets of the catchments will decline slightly and shift in time towards the cold season. 

Most importantly, exploring the changes at the sub-catchment scale, we show that the mean 

and extreme streamflow at high-elevation sub-catchments is projected to decrease, whereas 

for the lower sub-catchments an increase in both mean and extreme streamflow is foreseen, 

in contrast with less significant changes at the catchment outlets. While rainfall was found to 

be the most critical component in driving the changes in streamflow, we show that snow-

related processes dominate the changes at the sub-catchments located at higher elevations, 

while changes in ET are relevant for the changes in streamflow only for lower elevation sub-

catchments. Overall, this study highlights the value of using high-resolution climatic and 

hydrological modelling to reveal the spatial heterogeneity of hydrological responses to a 

changing climate in mountainous catchments.  
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ABSTRACT 
A major challenge in assessing the impacts of climate change on hydrological processes lies 

in dealing with large degrees of uncertainty in the future climate projections. Part of the 

uncertainty is owed to the intrinsic randomness of climate phaenomena, which is considered 

irreducible. Additionally, modelling the response of hydrological processes to the changing 

climate requires the use of a chain of numerical models, each of which contributes some 

degree of uncertainty to the final outputs. As a result, hydrological projections, despite the 

progressive increase in the accuracy of the models along the chain, still display high levels of 

uncertainty, especially at small temporal and spatial scales. In this work, we present a 

framework to quantify and partition the uncertainty of hydrological processes emerging from 

climate models and internal variability, across a broad range of scales. Using the example of 

two mountainous catchments in Switzerland, we produced high-resolution ensembles of 

climate and hydrological data using a two-dimensional weather generator (AWE-GEN- 2d) 

and a distributed hydrological model (Topkapi-ETH). We quantified the uncertainty in 

hydrological projections towards the end of the century through the estimation of the values of 

signal-to-noise ratios (STNR). We found small STNR absolute values (<1) in the projection of 

annual streamflow for most sub-catchments in both study sites that are dominated by the large 

natural variability of precipitation (explains ~70% of total uncertainty). Furthermore, we 

investigated in detail specific hydrological components that are critical in the model chain. For 

example, snowmelt and liquid precipitation exhibit robust change signals, which translates into 

high STNR values for streamflow during warm seasons and at higher elevations, together with 

a larger contribution of climate model uncertainty. In contrast, projections of extreme high flows 

show low STNR values due to large internal climate variability across all elevations, which 

limits the potential for narrowing their estimation uncertainty. 

3.1 INTRODUCTION 
One of the main challenges in climate change impact studies is to quantify the large 

uncertainties associated with climate projections (IPCC, 2018) arising from three main sources 

(Deser, 2020; Deser, Knutti, et al., 2012; Deser, Phillips, et al., 2012; Fatichi et al., 2016; A. 

M. Fischer et al., 2012; E. M. Fischer et al., 2013): (i) anthropogenic greenhouse gases 

emission forcing (scenario uncertainty from here on), which reflects the unknowns regarding 

the policy and technological developments in the future; (ii) numerical climate models (model 

uncertainty), which are the result of imperfect understanding of climate dynamics, that leads 

to assumptions, simplification and parameterizations in the physics built into climate models; 

and (iii) natural internal climate variability (stochastic uncertainty), which is a measure of the 

inherent randomness of climate occurrences and is intrinsic to climate processes (Deser, 

2020). Unlike scenario and model uncertainty, stochastic uncertainty is considered irreducible 

(e.g., Fatichi et al, 2016), i.e., it will persist despite advances in scientific knowledge and 

prediction tools. In the case of hydrological projections, there are additional sources of 

https://doi.org/10.1002/hyp.14695
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uncertainties beyond the influence of climate variables. These include, for example, the 

difference among hydrological models (e.g., Addor et al., 2014), their parameterization (e.g., 

(Feng & Beighley, 2020)), or the hydrological effects induced by changes to land use and 

landscape (Chawla & Mujumdar, 2018) and other anthropogenic interventions (Magilligan and 

Nislow 2005).  

The relative contribution of each factor depends on spatial and temporal scales, the time 

horizon of the analysis, and the examined variable. For example, at local scale while 

stochasticity dominates the uncertainty in precipitation, temperature uncertainty is mostly 

driven by climate model and scenario uncertainties (Fatichi et al., 2015, 2016). In general, 

stochastic uncertainty is relatively larger when looking at the near future (a few decades), thus 

suggesting a limited potential for uncertainty reduction for shorter lead times (Hawkins & 

Sutton, 2011). Whereas its contribution increases with finer temporal and spatial resolution 

(Addor et al., 2014; Fatichi et al., 2014, 2016; Hawkins & Sutton, 2011; Peleg et al., 2019). In 

contrast, scenario uncertainty plays a dominant role in the projection of temperature changes 

for long-term horizons because of the large influence of greenhouse gases emissions on 

global temperatures (IPCC, 2018). 

These climate uncertainties propagate further down the model chain and affect response of 

catchments in future climate scenarios, as shown by numerous works that have studied the 

magnitude and partitioning of hydrological uncertainties, including the uncertainty introduced 

by the use of hydrological models (e.g., Chawla & Mujumdar, 2018; Chen et al., 2017; Clark 

et al., 2016; Feng & Beighley, 2020; Vetter et al., 2017). An important study of hydrological 

uncertainty estimation in mountain areas was presented by (Addor et al., 2014), who used a 

simulation ensembles approach to quantify and partition uncertainties of annual streamflow in 

six alpine catchments while comparing the outputs of three different hydrological models. They 

show that, as seen in larger-scale studies, most of the uncertainty in future streamflow 

prediction arises from climate models and natural climate variability, with only a small influence 

of scenario uncertainty or the choice of hydrological model for long-term horizons (end of the 

century).  

Quantifying the contribution of each of these uncertainty sources, known as uncertainty 

partitioning, is therefore fundamental for understanding the potential for making more accurate 

hydrological projections. A major challenge, however, is that large ensembles of simulations 

are required to explore the range of natural climate variability. Climatic modelling is based on 

General Circulation Models (GCMs), or Regional Climate Models (RCM), which solve 

physically-based equations that simulate the climate of the past and future. An important 

limitation is that, due to their large computational requirements, the product of GCMs or RCMs 

usually consists of a single or at most few realizations of future climate variables, which means 

that an assessment of natural (stochastic) climate variability is generally not straightforward 

(Hawkins & Sutton, 2009, 2011). The few existing exceptions (e.g., Deser, 2020; Deser, Knutti, 

et al., 2012; Lehner et al., 2020; Thompson et al., 2015) have produced results of coarse 

resolution, which are not suitable for hydrological modelling at a broad range of catchment 

scales (Fatichi et al., 2015).  

This deficiency can be overcome by simulating many possible realizations of a future climate 

at the right scale for hydrological modelling with stochastic weather generators (WG). By 

forcing a WG to follow the climate conditions estimated by GCMs or RCMs, it is possible not 

only to reproduce small-scale future climate variables but also to obtain an ensemble of 

simulations for uncertainty quantification. Using deterministic hydrological models forced by 

WG simulations allows to estimate future hydrological statistics, assess their variability, 

partition the different sources of uncertainties, and quantify the potential for narrowing the 
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uncertainty down. Some examples in using WGs to quantify sources of uncertainty include, 

among others, (Minville et al., 2008), who combined a WG with a hydrological model to 

partition the uncertainty of climate change impacts on a catchment in northern Canada and 

found that the choice of climate models has a larger effect on the assessed impacts than the 

selected emission scenario. (Fatichi et al., 2015) used multisite rainfall and temperature 

generators to study the hydrological response of the Upper Rhone basin, showing how the 

impact of uncertainty is reduced for heavily-regulated catchments and is highest for 

catchments fed predominantly by liquid precipitation. Likewise, (Camici et al., 2017) used a 

rainfall generator and hydrological model chain to examine hourly discharge extremes in the 

upper Tiber basin, in Italy, and highlighted the influence of catchment permeability on the 

response to climate change; also showing that natural variability is a much larger driver of 

uncertainty than climate models. In general, these and other studies agree that stochastic and 

climate model uncertainties are the two most relevant uncertainty sources for streamflow 

projections (Chawla & Mujumdar, 2018; Gao & Booij, 2020; Giuntoli et al., 2018; Shen et al., 

2018). Accordingly, this work focuses on analyzing those two uncertainty sources, omitting 

the effects of emission scenario and hydrological-model uncertainties.  

While the scale dependency and spatial and elevation variability of climate change impacts 

on hydrology have been previously studied, the uncertainty of those projections has not 

received the same level of attention. This study aims to address this knowledge gap and to do 

so at the seldom explored sub-catchment and hourly scales. Consequently, we address here 

three specific research goals: (i) to quantify the uncertainty of changes on distributed climatic 

and hydrological variables at sub-catchment scales, and determine their relation with 

elevation; (ii) to estimate the fraction of stochastic and climate model uncertainty in the future 

projections, and thus show the importance of natural variability when assessing climate 

impacts; and (iii) to assess the potential for narrowing down the uncertainty of streamflow 

extremes projections by estimating their signal-to-noise ratio and quantifying the magnitude of 

the irreducible stochastic uncertainty. 

To this effect, we present in the following sections an experimental framework based on the 

work presented in (Moraga et al., 2021), which consists of combining the use of a two-

dimensional stochastic weather generator, AWE-GEN-2d (Peleg et al., 2017, 2019), with a 

distributed hydrological model, Topkapi-ETH (Fatichi et al., 2015) to generate ensembles of 

climate and hydrological variables characterizing the present climate and, based on the 

outputs of nine GCM-RCM modelling chains, their response to climate change throughout the 

21st century. This framework allows us to go beyond previous studies as we quantify the 

contribution of stochastic uncertainty on an array of climate and hydrological variables –

including extreme events–, at considerably high resolution in space. Thus, we provide a 

reference for quantifying and partitioning uncertainty related to the effects of climate change 

on catchment hydrology.  

3.2 METHODS AND DATA 

3.2.1 Study area  

The numerical experiments are based on data from two Swiss mountainous catchments: 

Kleine Emme and Thur. The Kleine Emme is located in the northern Alpine region in central 

Switzerland and extends over an area of 478 km2. Its mean elevation is 1047 m, and highest 

elevation is 2330 m, and its outlet is at 438 m near the city of Lucerne. It receives mean annual 

precipitation of 1650 mm yr-1, has an average temperature of 7 °C and its outlet discharges 

on average 12.6 m3 s-1 (833 mm yr-1). The Thur river catchment, while part of the greater Alpine 

area, is mostly located in the Swiss plateau physiographic division in northeast Switzerland. It 
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has an area of 1,730 km2, a highest point of 2434 m, a mean elevation of 773 m, and a lowest 

point at 361 m in the town of Andelfingen. The mean annual precipitation over the Thur 

catchment is 1350 mm yr-1, an average temperature of 8.4 °C and the average streamflow at 

the outlet is 46.7 m3 s-1 (851 mm yr-1). A particular feature of these catchments is that they do 

not have major stream regulations, water extractions, or large urbanized surfaces, as the 

prevalent land cover is cropland and natural pasture. A summary of their location, elevation 

map, and elevation distribution is presented in Figure B-1. 

The topography of the catchments was characterized using a regular grid with a cell size of 

100 m x 100 m, based on topographic information obtained from a digital elevation model 

(SwissTopo, 2002). Soil properties, used to assign hydraulic soil parameters as well as soil 

depth, were determined from the soil map of Switzerland (Bodeneignungskarte, 2012). 

Likewise, the Corine dataset (CLC, 2012) was used to derive land cover classifications to 

determine surface roughness and evapotranspiration parameters. 

3.2.2 Models and data 

The two-dimensional weather generator AWE-GEN-2d (Peleg et al., 2017, 2019) was used to 

simulate gridded climate variable time series at a high spatial (2-km for precipitation, 100-m 

for the other variables) and temporal (5-minute for precipitation, hourly for the other variables) 

resolutions. Among its features, AWE-GEN-2d is capable of realistically modelling the arrival 

process of storms as well as their spatiotemporal evolution based on ground stations and 

weather radar observations. Satellite images are used to calibrate the cloud cover module 

(cross-correlated with the precipitation fields), which in turn controls the distributed incoming 

shortwave radiation. Furthermore, the advection of cloud and precipitation fields was 

estimated based on statistics of geostrophic wind velocities obtained from reanalysis data, 

with the cartesian components of convection modelled as a bivariate autoregressive process 

at a 5 min resolution. Near-surface air temperature is characterized as a stochastic process 

using modelled incoming long-wave radiation and the previous hour air temperature as inputs, 

and is distributed in space via a stochastic lapse rate, with the capability to reproduce thermal 

inversion events. AWE-GEN-2d was calibrated using a large dataset of climate observations 

and validated by analyzing statistics not used in the calibration process, as described in (Peleg 

et al., 2017), where a comprehensive description of the model structure is provided.  

The hydrological simulations were performed using Topkapi-ETH (Fatichi et al., 2015), a 

distributed hydrological model, suitable for characterizing surface and sub-surface processes 

at high resolutions (sub-kilometer grids) and efficient enough to use for long simulations in 

relatively large domains. As such, it has been employed successfully to model the hydrological 

response of a number of mountainous catchments (Battista, Molnar, et al., 2020; Battista, 

Schlunegger, et al., 2020; Fatichi et al., 2014; Pappas et al., 2015; Paschalis et al., 2014). 

With precipitation, temperature and cloud transmissivity as input, the model simulates a broad 

range of hydrological variables including streamflow, snowmelt, soil moisture, groundwater 

flows, and evapotranspiration. It models surface and subsurface flows through two soil layers 

plus a groundwater compartment by approximating lateral water transfer with the kinematic-

wave equation following topographic gradients (Liu & Todini, 2005). Infiltration capacity is 

explicitly computed at each grid cell and surface runoff may occur due to either infiltration 

excess or saturation of the upper soil layer. Additionally, potential evapotranspiration is 

calculated with the Priestley-Taylor equation (Priestley & Taylor, 1972) as a function of 

incoming shortwave radiation, albedo, and temperature.  

Climate observations from an array of sources were used as a model forcing and for 

calibration. As required by AWE-GEN-2d, point temperature, precipitation and radiation 

observations at hourly resolution were obtained from ground stations operated by 
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MeteoSwiss, who also provided the gridded daily datasets for temperature and precipitation 

at 2-km resolution, (Wüest et al., 2009), as well as C-band weather radar information used to 

characterize the spatial structure of rainfall (Germann et al., 2006). Geostrophic wind velocity, 

used to model the advection of storm cells, as well as cloud cover, were extracted from the 

MERRA-2 reanalysis dataset (Rienecker et al., 2011). The temperature and precipitation 

statistics from nine different GCM-RCM model chains, developed in the context of the EURO-

CORDEX initiative (Jacob et al., 2014; Kotlarski et al., 2014), and later post-processed by 

MeteoSwiss (CH2018, 2018), were used to re-calibrate AWE-GEN-2d parameters for future 

climate following the procedure described in Peleg et al. (2019).  

The calibration of Topkapi-ETH was based on hourly observations of streamflow at the outlet 

of the catchments, which were provided by the Swiss Federal Office for the Environment 

(FOEN). The model was manually calibrated by optimizing the Nash-Sutcliffe Efficiency 

statistic (NSE) at the catchments’ outlet at the hourly (NSE of 0.64 at the Kleine Emme and 

0.60 at the Thur) and monthly (0.76 and 0.78) scales for the 2000–2009 period, as detailed in 

(Moraga et al., 2021). 

3.2.3 Design of the Experiment  

The experiment aimed to generate a large enough dataset of simulated variables, representing 

different climate trajectories, to allow for the quantification of uncertainty in the resulting 

climate and hydrological variables. The numerical experiment consisted of three parts, 

schematized in Figure 3-1 and detailed in the following sub-sections: the generation of present 

and future climate ensembles following multiple climate trajectories, the simulation of high-

resolution hydrological variables, and the quantification of changes and associated 

uncertainties. The procedure to obtain the statistics for extreme events is also explained in 

Section 3.2.3.4. 

 

Figure 3-1: Schematic representation of the numerical experiment used to quantify and 

partition uncertainty. Nine climate model outputs, which follow an RCP 8.5 emission scenario, 

are stochastically downscaled to produce ensembles of climate variables, which in turn feed 

a deterministic hydrological model. The large array of climate and hydrological results are 

post-processed to quantify the uncertainty in the climate and hydrological projections and to 

compute the uncertainty partition. 
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3.2.3.1 Ensembles of climate variables 

AWE-GEN-2d was first used to simulate 15 realizations of 30-year-long time series (equivalent 

to 450 years) of variables that characterize the period 1976–2005 (present climate). To 

simulate the future climate variables, the climate change signals were obtained from the 

results of RCM transient simulations: nine different climate trajectories (Model chains) were 

used (Table B-1), all of which follow the RCP 8.5 emission scenario.  

The Factors of Change approach (Bordoy & Burlando, 2014; Fatichi et al., 2011; Peleg et al., 

2019) was used to re-parameterize the temperature and precipitation parameters until the end 

of the 21st century. Unlike direct forcing methods, the factors of change (also called delta-

change) approach does not deal with the issue of biases in the RCM outputs, as it implicitly 

assumes that any bias affects similarly both the control and future scenarios (Lenderink et al., 

2007; Rasmussen et al., 2012; Teutschbein & Seibert, 2012; van Roosmalen et al., 2011). 

The procedure consists, in the case of temperature, in obtaining the difference in monthly 

means between the control period and future climate RCM outputs and subsequently applying 

the additive factor to the temperature simulated by the WG. In the case of precipitation, the 

objective is to obtain the ratio between future and present daily precipitation mean and other 

statistics so as to follow not only the change in average precipitation, but also in higher order 

statistics (as in Fatichi et al., 2016; Peleg et al., 2019). To do this, the control and future RCM 

outputs are compared at the monthly level to extract the changes in mean, standard deviation, 

and kurtosis of daily precipitation using a moving average with a 30-year window and a 10-

year shift. These changes are then forced onto the present-climate statistics so as to ensure 

that they are reflected in the estimation of the new WG parameters and consequently on the 

future climate simulations. In total, ensembles consisting of ten realizations of 80 years (2010–

2089) for each of the nine climate trajectories were simulated, for a total of 7200 years of time 

series representing the future. 

3.2.3.2 Hydrological simulations 

The hydrological processes in the present and future for the Thur and Kleine Emme 

catchments were modelled using Topkapi-ETH. The climate inputs for the simulations were 

obtained from the previously described outputs of the weather generator. Specifically, 

ensembles of gridded time series of 2-km and hourly resolutions for precipitation, air 

temperature, and cloud transmissivity were fed to the model to perform multiple realizations 

of continuous hydrological simulations for the present and future climates.  

The hydrological outputs consisted of gridded datasets at 100-meter and hourly resolutions 

for variables that represent the main components of the hydrological budget: streamflow, 

rainfall, snowmelt, evapotranspiration, and change in soil water storage. We saved outputs 

not only at the entire catchment scale at the outlet of the river but also at the scale of small 

sub-catchments along the river networks: 97 virtual stations were selected in the Kleine Emme 

and 112 in the Thur catchments for this purpose. The selected variables, the number of sub-

catchments, and the size of the simulation ensembles represent a compromise between 

obtaining large and comprehensive enough datasets for the proposed uncertainty partition 

analysis and manageable size of data storage. 

3.2.3.3 Quantifying uncertainty 

The third part of the experiment refers to the processing of simulation results to quantify the 

uncertainty source in the simulated variables. Based on the concept of signal-to-noise ratio 

(STNR; (Fatichi et al., 2014; Hawkins & Sutton, 2009, 2011)), we summarize the magnitude 

of the uncertainty by means of a proposed STNR statistic, which we define as the ratio 

between the change in the median values of a given statistic for a given variable q (e.g., 

extreme streamflow, mean rainfall) between future and present climate (the signal) and the 
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spread measured by the average interquartile range IQR (the noise) around the median of the 

future and present simulation ensembles, computed considering only the stochastic variability, 

i.e.: 

STNR=
Signal

Noise
=

2*(q
50
fut-q

50

pres
)

IQRfut+IQRpres

 (Eq. 1) 

Absolute values of STNR larger than 1 indicate that the magnitude of the signal lies outside of 

the average natural variability of 50% of the sample (IQR is computed between the 25th and 

75th percentiles) and is assumed to represent a robust change in that statistic. Conversely, 

absolute STNR values smaller than 1 imply that the change is comparable or smaller than the 

natural variability represented by 50% of the sample. The sign of STNR is given by the 

direction of the signal, thus positive values indicate an increase of the analyzed variable in the 

future. 

The resulting variable uncertainty can be partitioned into two contributing factors (Hawkins & 

Sutton, 2011) namely, the internal climate variability and the climate model uncertainty. 

Internal climate variability represents stochastic uncertainty and is calculated as the mean of 

the interquartile ranges (IQR) from all climate trajectories (models) in the ensemble:  

UICV= 
∑ IQRn
N
1

N
= 
∑ (q

75n
-q

25n
)N

1

N
 (Eq. 2) 

where N is the total number of climate trajectories (equal to the number of climate model 

chains) in the ensemble. The climate model uncertainty was computed as the interquartile 

range of the means obtained for each climate trajectory, averaging the stochastic replicates:  

UCM = IQR({µ1
, µ

2
,…,µ

n
, … µ

N
 }) (Eq. 3) 

where n is the mean of the selected variable for trajectory n. As such, the relative importance 

P of uncertainty attributed to each contributing factor is obtained as: 

PICV= 
UICV 

(UCM + UICV) ⁄  ; PCM= 
UCM 

(UCM + UICV) ⁄  (Eq. 4) 

 

3.2.3.4 Estimation of hydrological extremes 

The analysis of extreme event statistics presented in Section 3.3.3 was performed by selecting 

the annual maximum streamflow (hourly or daily) for each of the 30 years of continuous 

simulations representing the present (1976–2005) and end-of-the-century (2060–2089) 

climate, and then fitting the annual maxima with a Generalized Extreme Values distribution 

(GEV, (Jenkinson, 1955).  

Return periods ranging from 2 to 25 years were computed for each of the 15 realizations 

simulated for the present climate and the 10 realizations simulated for each of the 9 future 

trajectories (see Section 2.3.1). These 15 and 9 x 10 estimated return periods compose the 

data sample from which the STNR and uncertainty partition were quantified as described in 

Section 3.2.3.3. 

3.3 RESULTS 
The proposed framework allows for the quantification of uncertainty and its partition not only 

for several variables of interest in hydrological practice, but also across spatial and temporal 

scales. First, the STNR and partition of stochastic and climate model uncertainties for 

distributed climate variables are presented in section 3.3.1. Then, section 3.3.2 is dedicated 

to the hydrological variables, including streamflow and the main components of the 
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hydrological budget in the various sub-catchments. Finally, section 3.3.3 shows the computed 

STNR and fraction of stochastic uncertainty for the changes in extreme high flows.  

3.3.1 Uncertainty in climate projections 

For both catchments, the expected values for each grid cell (ordered by elevation) in total 

precipitation (including liquid and solid phases) and near-surface air temperature are shown 

in Figure 3-2. Annual precipitation shows a non-trivial change pattern, as the higher parts of 

the catchments are expected to experience a decrease in precipitation in the Kleine Emme 

(Thur) of up to 11% (9%) whereas the drier, lower parts of the catchments will see an increase 

in projected precipitation by 10% (17%), for an overall change of -3.2% (+1.4%). Conversely, 

the projected changes in temperature are more homogeneous, with progressive catchment-

average increases that reach 4.2 °C at the Kleine Emme and 4.0 °C at the Thur catchments 

by the end of the century.  

In turn, the STNR and uncertainty partition of precipitation and temperature, computed using 

the end-of-century decade (2080–2089) and present climate simulations (1976–2005), show 

that, for both the Kleine Emme (Figure 3-3a) and Thur (Figure 3-3e), the signal of change in 

precipitation is weaker than the noise, as shown by the magnitude of STNR values with ranges 

between -0.56 and 0.57 in Kleine Emme, and between -0.51 and 0.89 in Thur. It is possible to 

observe clear spatial patterns that follow those of the overall change in precipitation predicted 

by the climate models (see Moraga et al., 2021), with negative values of STNR at higher 

elevations, in the southern part of the catchments, and positive values at lower elevations. 

Most of the uncertainty is explained by the stochastic uncertainty, with its share of the total 

uncertainty ranging between 53% and 79% for Kleine Emme (Figure 3-3b) and between 57% 

and 91% for Thur (Figure 3-3f). Moreover, there is a strong negative correlation between 

elevation and the share of uncertainty associated with stochastic variability in precipitation in 

the Kleine Emme (linear regression with R2 = 0.65), but not in the Thur catchment (R2 = 0.02). 

The large increase in average temperatures is reflected in the STNR, with values ranging 

between 3.98 and 4.85 in the Kleine Emme (Figure 3-3c) and between 2.81 and 6.05 in the 

Thur (Figure 3-3g), which confirm a robust change signal. Unlike for precipitation, the 

uncertainty is spatially uniform, with ranges narrower than 1% for both catchments, and is 

mostly explained by climate model uncertainty: 73% of the total in the Kleine Emme (Figure 

3-3d) and 65% in the Thur (Figure 3-3h). This becomes clearer in Figure B-2, as the stochastic 

uncertainty for each future climate trajectory is indeed very narrow, and the overall uncertainty 

observed in the multi-model mean is small compared to the expected temperature change in 

the order of 4 °C. 



51 
 

 

Figure 3-2: Temperature and precipitation values throughout the future climate simulations for 

each of the 160 grid cells in the Kleine Emme (a, b) and 497 in the Thur (c, d) river catchments. 

Each row represents a grid cell ordered from highest to the lowest elevation and the colors 

represent the decadal means. 

 

Figure 3-3: Signal-to-noise ratio (STNR) and uncertainty partition (share of stochastic 
uncertainty) of precipitation and temperature by the end of the century (2080–2089) in the 

Kleine Emme (a–d) and Thur (e–h) catchments. The coordinates are shown in 10^5 meters 
using the UTM 32N projection. 

3.3.2 Uncertainty in hydrological projections 

The total uncertainty attributed to natural climate variability (stochasticity) and climate models 

was computed for the hydrological components at the seasonal scale, following the procedure 
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detailed in section 3.2.3.3. Most of the uncertainty in streamflow projections (Figure 3-4a, 4c) 

is explained by stochastic uncertainty, although it can vary considerably across seasons from 

58 to 83% in the Kleine Emme and from 68 to 74% in the Thur, with the largest difference 

between the two catchments being spring flows, as 81% of the uncertainty is explained by 

stochasticity in the Thur and only 64% in the Kleine Emme. At the annual scale (not shown), 

stochasticity explains 56% of future streamflow uncertainty in Kleine Emme and 73% in Thur, 

mostly due to the high uncertainty in liquid precipitation. 

The uncertainty partition of specific components of the hydrological cycle are shown in Figure 

3-4b and 4d. Spring snowmelt, which is a process largely driven by temperature, is the most 

sensitive component to climate model uncertainty, which accounts for 50% of uncertainty in 

the Kleine Emme and 40% in the Thur. However, its contribution to the hydrological response 

is expected to decrease drastically by the end of the century, to the point that its uncertainty 

range becomes too small to influence streamflow considerably (on average, spring snowmelt 

will represent only 15% and 22% of total spring streamflow, respectively). In contrast, 

evapotranspiration plays an important role in the hydrological response, especially during 

summer (JJA) at the Thur catchment, with trimestral contributions of around 250 mm, but its 

uncertainty range is relatively narrow compared to that of liquid rainfall. Furthermore, its 

uncertainty partition indicates that it is also mostly driven by stochasticity, which suggests a 

large influence of summer precipitation rather than temperature on the total evapotranspiration 

fluxes. 

The evolution of the STNR and the fraction of stochastic uncertainty throughout the 21st 

century are shown in Figure 3-5. While the absolute values in the STNR of streamflow for both 

catchments remains relatively constant and low, the partition of the uncertainty shows different 

progressions. In the Kleine Emme, the fraction assigned to internal climate variability 

decreases from around 90% in the early 21st century to under 60% by the end of it, whereas 

in the Thur it remains constant at around 75%. The combination of low STNR values for the 

end-of-century streamflow projections, combined with a high contribution of stochastic 

uncertainty, clearly suggest that high uncertainties in streamflow projections will persist even 

if perfect climate models were available. 

The driving climate variables, temperature and precipitation, show similar behaviors in both 

catchments, with a clear decrease in the uncertainty related to internal climate variability, 

which shows the increasing importance of climate models with longer simulation times.  
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Figure 3-4: Future stochastic and climate model uncertainty for streamflow (a, c) and the main 

hydrological components (b, d): evapotranspiration (ET, presented as a negative value), 

rainfall, and snowmelt at the seasonal scales in the Kleine Emme (a, b) and Thur (c, d ) river 

catchments. The vertical axis represents the amount of water volume in mm over the season 

attributed to each hydrological component with corresponding uncertainty source and the 

percentages indicate the fraction of uncertainty attributed to internal climate variability 

(stochastic uncertainty). 
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Figure 3-5: Temporal evolution of the signal-to-noise ratio (solid lines) and partition of 

uncertainty attributed to stochasticity (shaded areas) for streamflow at the outlet of the 

catchments (a, b), mean temperature (c, d), and mean precipitation (e, f) throughout the 

simulation period for the Kleine Emme and the Thur river catchments. 

The distributed hydrological simulations allow extending the uncertainty analysis to the sub-

catchment scale by computing the STNR at multiple points throughout the catchments for key 

hydrological variables. Figure 3-6 shows the relation between sub-catchment elevation, the 

STNR of seasonal and annual hydrological statistics at the end-of-the-century, as well as the 

uncertainty partition. As reported by Moraga et al. (2021), the change in mean annual 

streamflow in a future climate exhibits an inverse correlation with elevation. However, the 

results here show that this change is not statistically strong, as the STNR is lower than one 

for virtually all sub-catchments, indicating a signal of change smaller than the noise (Figure 3-

6a and 6i), mostly due to stochastic uncertainty. Furthermore, both study sites exhibit a clear 

and similar negative correlation between sub-catchment elevation and the STNR value. 

The change signals for individual hydrological components are clearer than for the overall 

streamflow. The signal of rainfall, for example, is larger than the noise (and positive in sign) 

for all the sub-catchments in the Kleine Emme and for the highest ones in the Thur (Figure 3-

6b and 6j, respectively), also showing a clear positive correlation with elevation. The partition 

of stochastic uncertainty for rainfall is higher at the Thur (between 67% and 95%) than at the 

Kleine Emme (45%–79%), and the model uncertainty becomes more relevant at higher 

elevations. Likewise, the STNR for snowmelt reduction shows high absolute values (Figure 3-

6c and 6k). In Kleine Emme, values range between -2.2 and -1.6, and the fraction of stochastic 

uncertainty goes from 48% to 64%. In the Thur, STNR is negatively correlated with elevation 

and ranges between -2.9 and -1.1, and the stochastic uncertainty is between 49% to 80%, 

with the lowest values corresponding to the highest sub-catchments. For evapotranspiration, 

the partition of stochastic uncertainty fluctuates around 70% for all elevations (between 63% 

and 78% in Kleine Emme, and between 60% and 87% in Thur) with an overall weak positive 

STNR (< 1) for all the sub-catchments in Kleine Emme and for 85% of sub-catchments in Thur. 

Because of their different importance in the total response, the influence of these hydrological 

components on the overall uncertainty of streamflow needs to be weighted by their respective 

contribution to the hydrological budget. As seen in Figure 3-4, rainfall plays the largest role in 

the hydrological budget, thus suggesting that its large stochastic uncertainty is responsible for 

most of the uncertainty in streamflow, which explains the predominance of stochastic 

uncertainty over climate model uncertainty for streamflow projections. Snowmelt is, 

conversely, the hydrological component that is most sensitive to temperature and, therefore, 

to climate model uncertainty. Nonetheless, internal climate variability takes an equal or slightly 

larger share of its uncertainty partition (Figure 3-4i, 4j). This means that the amount of 

precipitation, driven mostly by stochastic uncertainty, is as relevant to the uncertainty of 

snowmelt as temperature, which is driven mostly by climate model uncertainty, likely due to 

the role played by precipitation on snow accumulation. 
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Figure 3-6: Signal-to-noise ratio (STNR) of key hydrological variables in the Kleine Emme (a–

h) and Thur (i–p) catchment. The subplots show the scatter plot between STNR (comparing 

end-of-the-century multi-model mean and present climate simulations) of the mean three-

month season flows and the elevation of the sub-catchment’s outlet. The outlined symbol is 

the outlet of the entire catchment. The colors in the markers show the fraction of uncertainty 

attributed to the natural climate variability. 

 In contrast with the weak STNR magnitudes of annual streamflow, the projections of seasonal 

flows show stronger signals, particularly in the highest sub-catchments. Winter flows (Figure 



56 
 

6e and 6m) show a positive STNR, which is positively correlated with elevation, as winter 

rainfall will increase at higher altitudes. Spring (MAM) and Summer (JJA) flows, which are 

influenced by snowmelt, show the opposite behavior, with negative STNR values which are 

negatively correlated with elevation. The highest partition for stochastic uncertainty is found in 

the lower reaches of the river networks. 

3.3.3 Uncertainty in future hydrological extremes 

The large simulation ensembles allow investigating changes in the frequency of occurrence of 

extreme hydrological events and analyzing the relative importance of climate model and 

stochastic uncertainties. Figure 3-7 shows the uncertainty of the annual maximum discharge 

for return periods between 2 and 25 years and for both hourly and daily resolutions. From the 

plots, dissimilar trends for both catchments can be observed at different return periods and 

resolutions. In general, the magnitude of uncertainty is high, especially for hourly extreme 

streamflow, and as expected, increases it with higher return periods: for the hourly extremes, 

the uncertainty range changes from -16% to -6% for the 2-year return period to -13% to 4% 

for the 25-year return period in the Kleine Emme and from -8% to +4% for T = 2y to -14% to 

+19% for T = 25y in the Thur. Although it is apparent that climate model uncertainty is relevant, 

as evident from the difference among the medians of the different climate trajectories (shown 

with gray bars), most of the uncertainty is again explained by the stochastic uncertainty. 

According to the multi-model mean, both hourly and daily maxima in the Kleine Emme will 

become slightly smaller, even though with a large uncertainty range. The results for the Thur 

show, conversely, no clear change signal for hourly extremes, and a small decrease in daily 

extremes. 
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Figure 3-7: Annual maximum streamflow for a given return period for present and future 

climate (2060–2089) at the hourly (a, b) and daily (c, d) scales at the Kleine Emme (a, c) and 

Thur (b, d) catchment outlets. The values are normalized by the median of the present climate. 

P refers to the present climate ensemble, numbers 1 to 9 refer to the nine different model 

projections for future climate, and M refers to the multi-model mean of future climate. Central 

lines in the box plots represent the median of the values obtained from fitting the simulated 

ensembles of annual maxima to a GEV distribution, while the boxes represent the interquartile 

range. 
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Figure 3-8: Signal-to-noise ratio (STNR) in the Kleine Emme (a–b) and Thur (c–d) catchment. 

The plots show the STNR (comparing end-of-the-century multi-model mean and present 

climate simulations) of hourly (a, c) and daily (b, d) maximum flows compared to the elevation 

of the sub-catchment’s outlet. The outlined symbol is the outlet of the entire catchment. The 

colors in the markers show the fraction of uncertainty attributed to the internal climate 

variability. 

Extreme streamflow statistics were also computed for every sub-catchment of both river 

basins. Figure 3-8 shows that the STNR for maximum hourly and daily flows has absolute 

values well below one for all sub-catchments, thus highlighting the large uncertainty in the 

projection of hydrological extremes into the future with a slight decrease of daily extreme 

streamflow at high elevations. As before, stochasticity is the dominant source of uncertainty, 

with average values in the Kleine Emme of 76% (81% in the Thur) for hourly maximum, and 

72% (76% in the Thur) for daily maximum. The large relative importance of stochasticity, 

combined with weak change signals, points to a very limited potential for providing more 

accurate projections of hydrological extremes. 

3.4 DISCUSSION 
We have presented a framework that, by combining the use of a weather generator and a 

distributed hydrological model, allowed us to project future climate and hydrological variables 

at high resolution, estimate their signal-to-noise ratio and the contribution of two major 

uncertainty sources: stochastic (internal climate variability) and climate model uncertainty. 

While we explored those two uncertainty sources due to their higher relevance to hydrological 

projections, this framework can easily be extended to quantify the partition of uncertainty due 

to emission scenarios—to which the temperature-driven processes are very sensitive—or to 

other uncertainty sources, such as hydrological model uncertainty, which does not appear to 

contribute considerably to the total uncertainty in the Alpine region (Addor et al., 2014) but can 

be a major factor in catchments located in other climates (e.g., Giuntoli et al., 2018).  

The projections for mean streamflow are characterized by low STNR values and a large 

contribution of stochastic uncertainty (Fig. 4–6). This contrasts with studies on larger domains 

(as well as regional scales), that conclude that GCMs have a larger influence on future 

uncertainty than internal climate variability (e.g., Chawla and Mujumdara, 2018.; Gao and 

Booij, 2020; Giuntoli et al., 2018), but is consistent with the expectation of an increment of the 

importance of stochasticity for smaller spatial scales (Addor et al., 2014; Fatichi et al., 2014, 

2016; Hawkins & Sutton, 2011; Peleg et al., 2019). Furthermore, the large magnitude of 

stochastic uncertainty suggests that high uncertainties in streamflow projections at our study 

sites will persist even if perfect climate models were available.  
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In contrast, the analysis at the level of hydrological components reveals high absolute values 

of STNR for liquid precipitation (rainfall), particularly in the Kleine Emme, as well as for 

snowmelt, indicating robust change signals in the projections because of the influence of rising 

temperature on precipitation form and on snowmelt. The signals for a positive change in ET 

are also generally weaker than the noise, although at low elevations in the Thur catchment 

the temperature rise will drive a significant ET increase. Just as the relative contribution of 

specific hydrological components can be large at the seasonal scale, so is their influence on 

the magnitude and partition of uncertainty in the resulting streamflow. For example, due to the 

high influence of (temperature-dominated) snowmelt, summer, and spring flows (Figure 3-6) 

present a larger share of climate model uncertainties than the annual average flow, especially 

for sub-catchments at high elevations, where the share of climate model uncertainty 

approaches 60%. Consequently, an improvement in climate model predictions with reduced 

spread among models implies a potential for narrowing the uncertainty of snowmelt predictions 

and, thus, of total streamflow during warm seasons and at high elevations. Furthermore, this 

is a clear indication that other catchments in the alpine region should present a similar 

behavior, i.e., the climate model uncertainty is much more important where the influence of 

snowmelt in the total hydrological budget is significant. 

The projections for extreme high flows, summarized in Fig. 7 and 8, reveal an uncertainty 

magnitude much larger than median climate change signal projected towards the end of the 

century. The vast majority of this uncertainty is again attributed to stochasticity rather than to 

climate model signals, in line with the findings of previous studies at different locations (Fatichi 

et al., 2014, 2016; Gao and Booij, 2020), thus suggesting that the improvement of climate 

models may have a rather limited potential (in the range of 10% to 20%) for narrowing the 

uncertainty of the future predictions of flood extremes. Although these results do not allow us 

to make confident claims about the trends in future extremes on these specific catchments, 

our findings point at the need for awareness of the large uncertainty that affects prediction of 

future extremes, highlighting the need for quantifying the uncertainty of hydrological 

projections, and, at the very least, acknowledge the large uncertainty surrounding the 

projections of extremes when only deterministic results are presented. At the same time, as 

pointed out by Fatichi et al. (2014), the lack of significant trends in our projections implies that 

infrastructure correctly designed with present-day variability in mind is likely to perform as 

expected in the future. 

It is worth noting that the temperature-dependent patterns of high-intensity precipitation events 

may also change under warmer conditions. This is not explicitly considered in the models used 

in this study as rainfall and temperature generators are both dependent on cloud cover 

generation, but no physical dependence mimicking the Clausius-Clapeyron (C-C) relationship 

between precipitation intensity and temperature increase is built into the current structure of 

the AWE-GEN-2d model. This represents a limitation of the stochastically downscaled climate 

scenarios, because theory (i.e., the C-C relation) and confirmatory observations indicate that 

a warming climate is expected to often cause a temperature-induced increase in extreme 

rainfall (Berg et al., 2009; Trenberth et al., 2003); among others), as well as modifying other 

spatial characteristics of storms (H. J. Fowler et al., 2021b; Lochbihler et al., 2017, 2019; 

Peleg, Marra, Fatichi, Molnar, et al., 2018; Peleg, Skinner, et al., 2020; Wasko et al., 2016), 

which may have effects on the hydrological response of catchments (Peleg et al., 2021; Peleg, 

Sinclair, et al., 2020).  

Given that our study sites are largely representative of the alpine region; it is likely that the 

results apply to most catchments in the European Alps. Catchments with high regulation of 

flow (for example, with hydropower dams) or with a large variation in land cover (e.g., large 

expanses covered with glaciers) may have different uncertainty compositions (Fatichi et al., 
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2014, 2015; Schirmer et al., 2022). Moreover, the proposed novel framework to partition 

hydrological uncertainties at high space-time resolution is not tailored to a specific case study 

and, thus, it is easily applicable to other regions, particularly when the interest is in 

characterizing either small catchment areas or complex topography in other climates beyond 

the European Alps. As a result, this work contributes to expanding the applicability of climate 

change uncertainty quantification studies. 

3.5 CONCLUSIONS 
This article presents a novel framework for quantifying and partitioning the uncertainty of 

small-scale hydrological processes, based on combining regional climate model outputs, a 

high-resolution weather generator, and a distributed hydrological model. Using two 

mountainous catchments in Switzerland as study sites, ensembles of gridded climate and 

hydrological variables were generated to represent the present and future climate under an 

RCP 8.5 emission scenario and multiple climate model chains, and quantify the stochastic 

uncertainty of the projections. Using a newly introduced signal-to-noise ratio (STNR) metric, it 

is shown that, for the entire simulation period, the change signal for annual streamflow is weak, 

mostly due to high values of stochastic uncertainty. The STNR of specific hydrological 

components such as liquid precipitation or snowmelt were, in contrast, higher and more 

dependent on climate model uncertainty, which suggests that improvements in climate models 

have the potential to narrow down the uncertainty on these variables. As a consequence, the 

largest potential for narrowing the uncertainty of mean streamflow was found during warm 

seasons and at higher elevations, where hydrological processes are more sensitive to 

temperature changes. As for extreme high flows, the results show low absolute values of 

STNR for all elevations explained by the dominant role of stochastic uncertainty, thus 

suggesting a limited potential for projecting flood extremes in the future with precision.  
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4 MODELING TEMPERATURE-DEPENDENT SUB-DAILY 

EXTREME RAINFALL WITH A GRIDDED WEATHER 

GENERATOR 

Chapter based on the unpublished article Moraga, J. S., Peleg, N., & Burlando, P. 

(In review). Modeling temperature-dependent sub-daily extreme rainfall with a 

gridded weather generator. 

ABSTRACT 
Temperature increases are associated with an intensification of heavy sub-daily extreme 

rainfall by approximately 7% per °C, in accordance with the Clausius-Clapeyron (CC) relation. 

As a result of this intensification, there are concerns regarding the increased frequency and 

magnitude of floods in small to medium-sized catchments. The high-resolution two-

dimensional weather generator (WG), AWE-GEN-2d, offers an ideal tool to simulate the 

climate variables required to assess the catchment-scale hydrological response at high 

resolution. However, it lacked an explicit representation of the relationship between 

temperature and precipitation that can mimic the CC relationship. Therefore, we introduce a 

newly revised version of the model, named AWE-GEN-2d-CC, designed to mirror the 

observed CC scaling by conditioning the simulation of precipitation properties (intensity and 

area) on temperature. We demonstrate the model's efficacy in representing future extreme 

rainfall by simulating their potential impact on the hydrological response of a mountainous 

catchment in the Swiss Alps. Based on observations and future climate model projections, 

AWE-GEN-2d-CC was used to generate large ensembles of present and end-of-century 

climate data at hourly and 2-km resolutions, used subsequently as input to Topkapi-ETH, a 

physically-based, distributed hydrological model. The new version of the WG successfully 

mimics the CC scaling of heavy rainfall, leading to an intensification of short-duration heavy 

rainfall in future climates, in contrast with the results obtained using the original model. This 

allows for a more realistic assessment of future rainfall impact on hydrological response, 

which, in the demonstration application, shows a modulated effect even for short durations. 

4.1 INTRODUCTION 
Short, intense rainfall events have the potential to trigger pluvial floods, especially in small to 

medium-sized rural catchments (Wasko et al., 2021), as well as in mountainous (Moraga et 

al., 2021) and urban areas (O’Donnell & Thorne, 2020). The Clausius-Clapeyron (CC) relation, 

a well-established theory, postulates that the water-holding capacity of the atmosphere 

increases by ~7% for each °C increase in temperature (O’Gorman & Schneider, 2009; 

Trenberth et al., 2003). Consistent with this theory, numerous studies have shown that short-

duration (daily to sub-daily) heavy rainfall intensities are indeed scaled with the temperature 

(Berg et al., 2013; Fischer and Knutti, 2016; Fowler et al., 2021; Molnar et al., 2015; Westra 

et al., 2014) While there have been reports of discrepancies, such as cases with no or negative 

scaling (Drobinski et al., 2016), it is now generally accepted that the scaling of short-duration 

rainfall intensity with temperature is indeed close to or above the theoretical CC-scale (Ali, 

Fowler, et al., 2021; Ali, Peleg, et al., 2021). Moreover, temperature appears to influence not 

only the rainfall intensity but also the area and temporal structure of the rainfall (Lochbihler et 

al., 2017, 2019; Peleg et al., 2018, 2022; Wasko et al., 2016). 

General circulation models (GCMs) and regional climate models (RCMs) are frequently 

employed to project atmospheric changes, which result from varying greenhouse gas 
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emission scenarios. However, the spatial resolution of these models, even that of the finer 

RCMs (with over 10 km x 10 km grid cells and daily time steps), is often too coarse to 

effectively resolve convective processes. Consequently, they depend on simplified 

parameterizations, leading to less reliable estimations of sub-daily extremes, and frequently 

missing the observed temperature-scaling evident in real-world observations (Ban et al., 2014; 

Fischer et al., 2015).  

Alternatively, convection-permitting models (CPMs) are designed to explicitly resolve the 

convection at finer spatial resolutions (1–10 km2), which allows for realistic simulations of 

short-duration rainfall (Ban et al., 2021; Lucas-Picher et al., 2021; Pichelli et al., 2021; Prein 

et al., 2015, 2020; Vergara-Temprado et al., 2021). In fact, simulations by CPMs have shown 

that heavy short-duration rainfall, typically associated with events with intensities exceeding 

the 99th percentile (Fowler et al., 2021), often results from convection and that RCMs usually 

underestimate the rate of CC-scaling (Ban et al., 2018, 2021; Pichelli et al., 2021).  

Furthermore, CPM simulations indicate that the rates of temperature-scaling are expected to 

persist under future global warming scenarios (Ban et al., 2018; Kendon et al., 2017; Pichelli 

et al., 2021; Vergara-Temprado et al., 2021). This underlines the importance of CPM 

projections for modeling the effects of climate change on short-duration heavy rainfall. The 

limitation of CPMs, however, lies in their high computational cost, which typically restricts their 

outputs to a single realization of a relatively short future climate simulation (Gutowski et al., 

2020; Schär et al., 2020), limiting the possibility of conducting robust extreme value analysis 

or assessing projection uncertainties, such as those stemming from different emission 

scenarios or climate models (Addor et al., 2014; Fatichi et al., 2016; Moraga et al., 2022).  

One potential solution to this challenge involves downscaling climate projections using 

stochastic weather generators (WG, Bordoy & Burlando, 2014; Fatichi et al., 2011; Fowler et 

al., 2007; Maraun et al., 2010; Peleg et al., 2019; Trzaska & Schnarr, 2014; Wilby, 1999). 

Being relatively inexpensive in computational terms, WG are suitable to generate large 

ensembles of climate variables that are statistically similar to the observations used for 

calibration (Maraun et al., 2010; Wilks & Wilby, 1999). WGs can be re-parameterized using 

information from GCM/RCM to generate an ensemble of the future climate (e.g., Peleg et al., 

2019). Moreover, by incorporating data from several climate models and multiple emission 

scenarios, WG can generate an ensemble that accounts not only for natural climate variability 

but also for the uncertainties emerging from climate models and emission scenarios (Fatichi 

et al., 2016; Moraga et al., 2022).  

Numerous types of WGs exist, ranging from single-site (Fatichi et al., 2011) to multi-site 

(Sparks et al., 2018; Steinschneider et al., 2019; Verdin et al., 2018) to fully two-dimensional 

(Peleg et al., 2017; Singer et al., 2018; Verdin et al. 2019), with the latter being the most 

suitable for characterizing highly heterogeneous climates. The AWE-GEN-2d model (Peleg et 

al., 2017) is a two-dimensional WG that can simulate the climate variables necessary for 

distributed hydrological modeling for both present and future climates at a high space-time 

resolution, as it is capable of simulations at sub-kilometer and sub-hourly scales (Peleg et al., 

2019). Consequently, it has been employed for hydrological climate impact studies in many 

rural, urban, and mountainous catchments (Fatichi et al., 2021; Fischer et al., 2022; Moraga 

et al., 2021; Nyman et al., 2021; Peleg et al., 2020; Ramirez et al., 2022; Schirmer et al., 

2022). However, one limitation of AWE-GEN-2d is its lack of explicit representation of the 

influence of temperature on rainfall fields, especially on heavy (convective) rainfall. This 

omission can lead to unrealistic scaling of storm properties with temperature, with 

disproportionate effects on short-duration rainfall. This limitation is particularly pronounced for 
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future climate simulations, where the model relies on coarse-scale projections, which typically 

underestimate the intensity of convective storms. 

Consequently, we introduce a new CC-scaling-capable version of the AWE-GEN-2d model, 

named AWE-GEN-2d-CC, which improves on the original model by Peleg et al., (2017) by 

explicitly conditioning rainfall properties to the near-surface air temperature at the onset of the 

event. We applied the new model version to a well-studied mountainous catchment in the 

Swiss Alps to demonstrate the effect that the new model has on the estimation of climate 

change impacts on streamflow by comparing the outputs obtained using the new and original 

models. Furthermore, we used the outputs of the WG to feed a physically-based, distributed 

hydrological model, Topkapi-ETH (Fatichi et al., 2015), to assess the response of a 

mountainous catchment to extreme hydrometeorological events within the context of a 

warming climate. 

4.2 THE ORIGINAL AWE-GEN-2D MODEL 
The original AWE-GEN-2d model (Peleg et al., 2017) was designed to downscale coarse or 

sparse observational data into fine two-dimensional arrays of climate variables. It 

accomplishes this by combining physically-based equations with data-driven stochastic 

models which require observations from multiple sources, thus leveraging the capabilities of 

both stochastic and deterministic approaches. A thorough description of the model’s structure 

is provided by Peleg et al. (2017), along with a Technical Reference detailing the equations 

that compose the different components of the model. In this section, we focus on a concise, 

qualitative overview of AWE-GEN-2d’s modules (Figure 4-1a), aiming to facilitate the 

comparisons with our newly proposed model formulation (Figure 4-1b). 

As illustrated in Figure 4-1a, AWE-GEN-2d operates in a sequence of interconnected 

modules. The simulation begins with the so-called storm arrival process, which determines 

the duration of alternating 'wet' (indicating a precipitation event) and 'dry' spells. For each 

precipitation event, the model simulates the joint temporal evolution of its mean areal statistics, 

i.e., the wet area ratio (WAR), the mean precipitation over the domain (IMF), and the cloud 

cover area (CAR) at each time step. Notably, AWE-GEN-2d is built to preserve the auto- and 

cross-correlations among the three variables (Paschalis et al., 2013). For each dry spell, in 

turn, the model computes the evolution of CAR, which is influenced by the simulation of the 

preceding wet spell.  

In parallel to the mean areal statistics module, the wind advection module simulates the 

velocity and direction of geostrophic winds as a stochastic process calibrated independently 

for wet and dry spells. Subsequently, advection drives the movement of storm cells in the 

precipitation fields module. In this module, AWE-GEN-2d generates gridded precipitation that 

follows the temporal evolution of the mean areal statistics, as well as the spatial correlation 

and variability derived from remote sensing observations. Afterward, the model uses the 

precipitation fields to simulate the cloud cover evolution over every cell in the domain. 

The temperature module in AWE-GEN-2d can be divided into two parts: first, the near-surface 

air temperature for a given reference elevation is computed as the sum of a deterministic and 

a stochastic component. The deterministic component depends on the previously simulated 

cloud cover, the incoming solar long-wave radiation at a given time, and the domain location 

and topology, whereas the stochastic component is modeled as an autoregressive process, 

calibrated based on ground observations. The second part of the module consists of 

computing near-surface air-temperature as the sum of the temperature at a reference 

elevation and a stochastic lapse-rate for each grid-cell, which allows the model to generate 

semi-continuous temperature fields over the domain. 
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Furthermore, the model generates the mean areal atmospheric pressure through an 

autoregressive model and then extends the calculations to the entire domain based on the 

simulated air temperature. The temperature is also used to calculate the vapor pressure, 

incoming shortwave radiation, relative humidity, and dew-point temperature; all of which are, 

in turn, dependent on each other and are therefore calculated iteratively. Lastly, the near-

surface wind velocity is simulated based on cloud cover and storm advection.  

Even from this brief description, it is apparent that AWE-GEN-2d is structured to preserve the 

observed cross-correlations between various climate variables. A conspicuous absence, 

however, is the influence of climate variables on the magnitude of precipitation intensities, 

which is our main motivation to develop the new AWE-GEN-2d-CC that is described next. 

 

Figure 4-1. Flowchart describing the components of the two weather generators compared in 
this work. Panel (a) shows the structure of the original AWE-GEN-2d model (Peleg et al., 

2017). Panel (b) shows the structure of the new version of the model here presented, AWE-
GEN-2d-CC. The numbers in brackets indicate the section of this paper describing the 

corresponding procedure. 

 

4.3 THE AWE-GEN-2D-CC MODEL 
Compared to its predecessor, the new formulation of the model presents a revised structure 

to include the dependency of heavy rainfall intensity and area on temperature. Consequently, 

the near-surface air temperature is now simulated before simulating the precipitation (Figure 

4-1b). This generation sequence requires first simulating the cloud cover (i.e., CAR), as the 

temperature depends also on the shortwave radiation, which reaches the Earth is modulated 

by the effect of cloud cover. The CAR is simulated in two steps: first, the dry-spell cloud cover 
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is simulated together with provisional values for the wet-spell cloud cover to simulate the 

temperature values; second, the final wet-spell CAR is simulated as part of a tri-variate 

process jointly with the area affected by precipitation WAR and the areal mean precipitation 

intensity IMF.  

A flowchart illustrating the new model structure of AWE-GEN-2d-CC is shown in Figure 4-1b, 

whereas the description of the different modules is presented in the following sub-sections. 

Only the revised modules are presented and discussed as the rest of the model structure (i.e., 

the simulation of all other climate variables, besides precipitation, cloud cover, and 

temperature) is unchanged with respect to the original AWE-GEN-2d model. As in Peleg et al. 

(2017), the Supplementary Material of this manuscript contains the Technical Reference that 

provides the details about the formulations and equations of the new model. 

4.3.1 Cloud Cover  

The new model structure requires the computation of cloud cover before the simulation of 

storm mean areal statistics, given that these are now dependent on the near-surface air 

temperature simulation and this, in turn, relies on the cloud cover. To reconcile this apparent 

paradox, the cloud cover for dry periods between storms (CARd) and the cloud cover during 

storms (CARw) are simulated by separate modules. 

As in AWE-GEN-2d, CARd is modeled as a stochastic process where its mean value is a 

function of the distance to a storm occurrence and the stochastic component simulated as an 

autoregressive moving average model calibrated from observations. The novelty in the new 

structure is in the inclusion of an initial placeholder value for the cloud during wet events 

(CARw
*), which can take the form of a trivial climatological estimation such as the mean during 

the observed record. The final CARw value replacing the placeholder value is subsequently 

simulated in the module that computes the mean areal statistics as one component of a tri-

variate stochastic process along with the IMF and WAR variables. 

4.3.2 Mean Areal Statistics 

The temporal evolution of a storm is first described by three domain-averaged variables: (i) 

the fraction of the domain covered by clouds or wet-spell cloud area ratio (CARw); (ii) the 

fraction of the domain cells experiencing precipitation denoted as wet area ratio (WAR); and 

(iii) the mean areal intensity (IMF), which is the average of the precipitation (encompassing 

solid and liquid precipitation) over the entire domain at any given time. In AWE-GEN-2d-CC, 

as in its predecessor, the three variables are modeled jointly as part of a tri-variate stochastic 

process to preserve the observed auto- and cross-correlations of each field. The variables are 

simulated in the probability domain as a Gaussian stochastic process with a Whittle-Matérn 

class covariate function (Gneiting et al., 2010), which allows for taking advantage of the highly 

efficient Fast Fourier Transform (FFT) method (Chambers, 1995; Frigo & Johnson, 1998) to 

obtain the correlated probabilities for the three variables. Finally, the probabilities are used to 

compute the real values of each areal statistic as the inverse of their corresponding marginal 

distribution. 

In contrast with the previous model version, where seasonal parameter sets were used, the 

parameters that describe the Matérn covariate function (10 parameters), as well as the tri-

variate Gaussian copula (7 parameters), are calibrated according to the average domain 

temperature at the onset of the precipitation event. Accordingly, as described in detail in 

Section 5.1 of the Technical Reference, the time series of the three variables are transformed 

from the frequency to the real space using temperature-bin-dependent marginal distributions. 

By adapting the calibration and modeling to specific temperature ranges, this approach seeks 

to preserve the correlation of mean areal statistics with temperature as observed in real-world 
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data, without assuming predefined temperature scaling rates of the marginal variables. This 

formulation ensures that the model captures the variable correlation between temperature and 

storm characteristics as empirically observed across different domains, rather than imposing 

a universal CC scaling rate. 

4.3.3 Reparameterization Under Climate Change 

To simulate future climate variables, Moraga et al. (2021, 2022) reparametrized AWE-GEN-

2d following the blueprint laid out by Peleg et al. (2019). The procedure consists of using the 

so-called Factors of Change (FC) approach (see e.g., Bordoy & Burlando, 2014; Burlando & 

Rosso, 1991; Fatichi et al., 2011), which computes FCs from the outputs of present and future 

climate model simulations to alter the model parameters. For instance, the distributions for 

precipitation intensities are adjusted by combining a quantile mapping bias-correction method 

with the FC, thus ensuring that future precipitation simulations reflect the climate change 

signals. 

To take advantage of the features introduced in AWE-GEN-2d-CC, it is key that the 

reparameterization preserves the observed scaling of storm properties with temperature, 

particularly regarding high precipitation extremes. For this reason, we adapted the approach 

presented by Peleg et al. (2019) to find an objective distribution function of the precipitation 

that fulfills two objectives: (i) aligning the location statistics (e.g., mean or median) with the FC, 

and (ii) ensuring that the distribution's right-tail (as represented, e.g., by the variance or by a 

specific high quantile) corresponds to the changes simulated by the mean areal statistics 

module that results from the enforced temperature changes. The reparameterization algorithm 

can be accordingly summarized as follows: 

a. From GCMs/RCMs simulations, compute the FC of the location statistics of 

precipitation and temperature on a monthly or seasonal basis. For example, the FC for 

the mean of precipitation (FC_μPr) is calculated as the ratio of the future (μPr
RCM,fut) and 

present (μPr
RCM,pres) means (Eq. ), whereas the FC of mean temperature (FC_μT) is 

calculated as the difference (Eq. 2):  

FC_μPr = μPr
RCM,fut / μPr

RCM,pres  (1) 

FC_μT = μT
RCM,fut - μT

RCM,pres  (2) 

b. Use the FC to modify the future temperature simulations in AWE-GEN-2d-CC, which 

in turn influences the simulation of future mean areal statistics. 

c. After executing the mean areal statistics module of AWE-GEN-2d-CC, compare the 

outputs of present and future IMF and use them to compute the FC for the precipitation 

right-tail statistics. For instance, the Factor of Change for the 99th quantile, FC_q99
Pr, 

is calculated in Eq. 3: 

FC_q99
Pr = q99

Pr
fut, sim  / q99

Pr
pres,sim  (3) 

d. At each domain grid cell find the parameters (location, shape, and scale) of the future 

precipitation distribution function 𝐹𝑥  so that it most closely follows the observed 

statistics multiplied by the FCs computed in (a) and (c), such that: 

𝐹�̅� ≈ μPr
RCM,pres * FC_μPr, and  (4) 
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𝐹𝑥(q=.99) ≈ q99
Pr

pres,obs * FC_q99
Pr  (5) 

e. Use quantile mapping, as shown by Peleg et al. (2019), to adjust the precipitation 

intensities simulated in the “Precipitation fields” module so that they follow the 

distribution found in (d).  

Through this revised reparameterization approach, the model maintains the observed auto- 

and cross-correlations inferred under current climate conditions while, at the same time, it 

accommodates adjustments to climate-model-derived coarse-scale seasonal statistics.  

4.4 MODEL DEMONSTRATION ON A CASE STUDY  

4.4.1 Experiment Structure 

The three objectives of the proposed demonstration experiment are: (i) to compare 

precipitation simulations between the original and new versions of the model and demonstrate 

that the new model structure reliably reproduces the observed climate while improving the 

simulation of extremes; (ii) to evaluate the performance of AWE-GEN-2d-CC in reproducing 

the temperature dependence of storm properties in present and future climate simulations; 

and (iii) to assess the effect of more realistic characterization of future precipitation extremes 

on the hydrological response of an exemplary mountainous catchment.  

To accomplish the first two objectives, the numerical experiment was structured to generate a 

large number of simulations that allow for a robust analysis of extreme values. Concretely, a 

present-climate ensemble consisting of 900 years of simulations was generated based on the 

observed climate statistics representative of the 1976–2005 period. Likewise, we used the 

model to generate an ensemble of 900 years of future climate simulations following climate 

model projections for the end of the 21st century (period 2080–2089). 

To address the third objective and measure the hydrological response under present and 

future climates, the 900 years of stochastic simulations generated for each climate scenario 

(present and future) were divided into 36 subsets of 25 years each. Each subset was used as 

input to the physically based, distributed hydrological Topkapi-ETH model (Fatichi et al., 

2015), which is designed to reproduce a comprehensive set of hydrological processes, 

including the partition of liquid and solid precipitation, snow accumulation, redistribution, and 

melting, superficial runoff and channelized flow, evapotranspiration, infiltration and percolation 

of flow through lower soil layers, as well as soil and groundwater fluxes, among others. The 

resulting simulations, which characterize the present and end-of-century response of the 

catchment, enabled the analysis of the effects of climate change on hydrological statistics and 

their comparison with the results of a similar experiment carried out by Moraga et al. (2021, 

2022), who used ensembles generated with the original AWE-GEN-2d model as inputs to 

Topkapi-ETH. 

4.4.2 Study Area  

The Kleine Emme is a mesoscale (478 km2) mountainous catchment located on the northern 

side of the central Swiss Alps. It has a complex topography, characterized by a relatively wide 

elevation range (from 438 to 2330 m.a.s.l.) The mean annual precipitation over the catchment 

is around 1650 mm and features heavy (convective) rainfall events during the warm season 

from May to September (Molnar et al., 2015). It has an average temperature of 7.6°C with 

January being the coldest month with an average of -1.1°C and July being the warmest month 

with an average of 16.2°C. The mean discharge at its outlet is 15.5 m3 s-1 (1024 mm y-1) with 

a maximum instantaneous observed peak of 650 m3 s-1 recorded in August 2005. In general, 
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there are no major stream regulations, diversion, or abstractions, and most of the land cover 

is either natural pasture or crops, with little presence of urbanized areas. The location, 

elevation map, and elevation distribution are shown in Figure C-1. 

4.4.3 Data 

The data used in this experiment was retrieved from multiple publicly available data sources 

including geographical information, weather stations, remote sensing, and reanalysis 

datasets. To set up the two versions of the WG model (the same data was used for both 

versions), the domain’s topography was described by a high-resolution digital elevation model 

(DEM, Swisstopo, 2002). Weather radar observations were used to extract information 

regarding the storm-arrival process as well as the spatiotemporal structure of storms. This was 

complemented by ground temperature measurements used to determine the temperature at 

the onset of events and model the temperature lapse rate over the domain. Cloud cover data 

and advection velocities were modeled to follow the MERRA-2 reanalysis dataset (Rienecker 

et al., 2011). Finally, the gridded, hourly precipitation reanalysis dataset CombiPrecip (Sideris 

et al., 2014), produced by the Swiss meteorological office MeteoSwiss, is used as a reference 

to correct the bias in simulated AWE-GEN-2d-CC outputs.  

The domain for the Topkapi-ETH simulations was characterized using the aforementioned 

DEM, as well as soil types and land cover maps (see Table 4-1) to assign hydraulic soil 

properties, soil depth, evapotranspiration parameters, and surface roughness values to each 

grid cell. The streamflow data to perform the calibration of the model, described in Moraga et 

al. (2021), was obtained from hourly records at the outlet of the catchment located in the 

locality of Emmen, Lucerne, provided by the Swiss Federal Office for the Environment. A 

summary of the data used in this study is provided in Table 4-1.  

Table 4-1. Data sources used to characterize the Kleine Emme catchment 

Data Source Resolution 

Digital elevation model Swiss Federal Office of Topography (SwissTopo, 
2002) 

100 m x 100 m grid 

Ground weather stations SwissMetNet by MeteoSwiss (Table C-1) 10-minutes 

Weather radar C-Band weather radar by MeteoSwiss (Germann et 
al., 2006) 

2 km x 2 km grid, 5-
minute 

Cloud cover MERRA-2 reanalysis dataset (Rienecker et al., 2011) Hourly 

Gridded precipitation CombiPrecip by MeteoSwiss (Sideris et al, 2014) 2 km x 2 km grid, 
daily 

Geostrophic wind velocity 
(500 hPa) 

MERRA-2 reanalysis dataset (Rienecker et al., 2011) Hourly 

Soil properties Swiss Federal Office for Agriculture FOAG 
(Bundesamt für Statistik (BFS), 2020) 

100 m x 100 m grid 

Land cover types Corine dataset (Corine Land Cover (CLC) Map 2012, 
2014) 

100 m x 100 m grid 
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Data Source Resolution 

Streamflow (Kleine Emme 
at Emmen) 

Swiss Federal Office for the Environment (FOEN) Hourly 

 

4.4.4 Extreme Value Analysis 

The frequency and magnitude of extreme hydrometeorological events were quantified using 

the Generalized Extreme Values distribution (GEV, Jenkinson, 1955). First, the simulations of 

climate and hydrological data were divided into 36 realizations of 25-year durations. For each 

realization, the yearly block maxima were fitted to the GEV distribution, from which the return 

periods of each considered variable were extracted. Lastly, the interquartile ranges (IQR) of 

the return periods of the (36) realizations were calculated to quantify the variability of the 

outputs.  

4.4.5 Calibration 

The calibration procedure of AWE-GEN-2d for the Kleine Emme catchment is presented in 

detail by Moraga et al. (2021) and will not be addressed in this text. Instead, this section will 

focus on the calibration aspects relevant to the changes introduced with the new model 

structure of AWE-GEN-2d-CC, i.e. the cloud cover and storm properties simulations (see 

Sections 4.3.1 and 4.3.2). A detailed account of the calibration methodology, encompassing 

the equations underpinning all the modules of AWE-GEN-2d-CC, can be found in the 

Technical Reference included in the Supporting Information. 

The hourly time series of CAR reanalysis data was divided into months and into wet and dry 

spells based on weather radar observations of precipitation used to determine the occurrence 

of wet or dry spells. The calibration of the dry-spell cloud cover, CARd was split into a 

deterministic and a stochastic component: First, the mean of its deterministic component was 

assumed to follow a two-term exponential function of the distance from the closest wet period, 

whereas the standard deviation is modeled simply as the average of all observations (Table 

C-3). Subsequently, the stochastic component was modeled as an autoregressive moving-

average process of the CARd time series (Table C-4), previously normalized by fitting them to 

a Johnson-SB distribution as shown in Error! Reference source not found.. In turn, the 

placeholder wet-spell cloud cover CARw
* values were obtained as a constant monthly value 

equal to the average cloud cover during wet events (Table C-5). 

Unlike the monthly-calibrated dry-spell cloud cover, the statistics of cloud and precipitation 

during storms are calibrated based on the temperature during a wet spell. To this effect, we 

split the record of event-averaged CARw, WAR, and IMF into temperature bins based on the 

domain-averaged temperature at the onset of a wet period (similar concept as presented by 

Ali et al., 2021). We defined a total of 8 temperature bins with a width of 3°C for the six 

intermediate ones and an infinite width for the extremes (Figure C-3). This configuration 

allowed us to balance a sufficient number of samples in each bin with a smooth transition of 

the temperatures in the 5–25 °C range where, as shown in Figure C-4, we observe a strong 

correlation between extreme precipitation and temperature.  

For each temperature bin, we normalized the subset of event-averaged CARw, WAR, and IMF 

and computed their auto- and cross-correlation coefficients (Table C-6Error! Reference 

source not found.), which are used as parameters to the Whittle-Matérn function used to 

model the covariate of the tri-variate probabilities. Subsequently, we used the mean and 
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standard deviations of the normalized CARw, WAR, and IMF sequence to fit the seven-

dimensional copula of the Gaussian process that describes their joint temporal evolution. 

To simulate future climate statistics as outlined in Section 4.3.3, we obtained FC_μPr and 

FC_μT (Table C-7Error! Reference source not found.) from the outputs of nine GCM-RCM 

model chains (Table C-2Error! Reference source not found.) developed under the EURO-

CORDEX initiative (Jacob et al., 2014; Kotlarski et al., 2014) and later post-processed by 

MeteoSwiss (CH2018, 2019). The model's simulated temperature was adjusted by adding the 

monthly FC_μT to the simulated time series. Subsequently, after simulating the future 

precipitation (conditioned by future temperatures) we computed the 99th quantiles of hourly 

precipitation for the present and future simulations to obtain FC_q99
Pr (Error! Reference source 

not found.). We parameterized the distributions of present-climate precipitation by fitting the 

hourly time series of each grid cell to either a Generalized Pareto (GP) or Gamma distributions 

based on a typical goodness of fit criterion. Then, the GP or Gamma distributions of future 

precipitation were obtained by optimizing the fit to the objective monthly means (Eq. 4) and 

99th quantiles (Eq. 5) and were used to correct the future precipitation intensities using quantile 

mapping. 

As for the hydrological model employed in this experiment, we made no changes to the 

configuration of Topkapi-ETH used to model the response of the Kleine Emme in the previous 

work of Moraga et al. (2021), where the authors describe the calibration and validation 

procedures. 

4.4.6 Validation 

We tested AWE-GEN-2d-CC’s capacity to reproduce plausible climate variables by comparing 

the statistics of the simulated ensembles with those of observed datasets that were not directly 

used in the calibration, as well as with the outputs of AWE-GEN-2d simulations. Here, we 

focus on the validation of the novel aspects of AWE-GEN-2d-CC relative to its predecessor, 

namely, the change in the modeling of cloud cover, the effect that it has on temperature, 

especially during wet periods, and the new temperature-dependent simulation of areal storm 

properties. As for the remaining modules, their calibration and validation have been presented 

in a previous work (Moraga et al., 2021, 2022) and remain unaffected by the new model 

formulation. Conversely, although the calibration of the Topkapi-ETH hydrological model for 

Kleine Emme has also been addressed in the cited experiments, the newly generated climate 

data prompts us to revisit how the catchment responds to present-climate inputs, which we do 

in Section 4.4.6.4. 

4.4.6.1 Cloud Cover 

Although the simulation of cloud cover is executed by the same procedure as that used in 

AWE-GEN-2d, the new structure of AWE-GEN-2d-CC simulating the dry-period CARd before 

the wet-period CARw, implies that it is not possible to ensure smooth transitions between wet 

and dry periods in the CAR time series, as illustrated, for instance, in Figure C-5. However, 

this effect is relatively minor and does not impact the overall CAR distribution. Figure C-6 

compares the observed and simulated CAR monthly distributions for the dry periods using 

both model versions. We find that AWE-GEN-2d-CC simulations underestimate the frequency 

of very low (<0.1) and very high (> 0.9) cloud cover values at similar rates to AWE-GEN-2d 

(e.g., the proportion of very high values is 1.8% less than in the observations). Nonetheless, 

this new way of calculating the CAR allows for a satisfactory computation of the near-surface 

air temperature, as is shown in Section 4.4.6.2. 
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4.4.6.2 Temperature 

The calibration and simulation of temperature in AWE-GEN-2d-CC are performed as in its 

predecessor and therefore exhibit a good performance in resembling the observed 

seasonality, daily cycle, and spatial distribution, as shown in Figure 4-2. For instance, the root 

mean squared error of the monthly areal averages is 0.7°C (0.77°C when using AWE-GEN-

2d) and 0.29°C (0.40°C) for the average hourly daily cycle. A remaining concern has to do 

with the effect of using a placeholder value of cloud cover, CARw
*, in the modeling of 

temperature. As shown in Figure C-7: , which depicts the monthly distributions of temperature 

during wet events, the new model formulation behaves similarly to the previous model, hence 

we conclude that the use of the placeholder CARw
* does not have a noticeable impact on the 

temperature simulations. 

 

Figure 4-2. The two panels show the seasonal (a) and daily (b) cycles of near-surface air 
temperature as computed from the observations (solid black line), the AWE-GEN-2d 

simulations (dotted green line) and the new AWE-GEN-2d-CC simulations (solid blue line). 
The shaded areas depict the 5th–95th quantile range of the simulation ensembles. 

 

4.4.6.3 Precipitation 

The main novelty of AWE-GEN-2d-CC is the temperature-dependent parameterization of 

storm properties, which aims to preserve the observed temperature scaling of intense 

precipitation. Consequently, we verify that change in the model structure does not affect the 

model performance in reproducing the storm properties under present climate conditions, and 

that these are as well characterized as by the previous model version. Indeed, as the boxplots 

plots of the event-averaged IMF and WAR in Figure 4-3 show, the statistics coming from the 

new AWE-GEN-2d-CC (e.g. WAR median of 0.34, IMF median of 0.43 mm h-1) match those 

coming from the CombiPrecip (0.30 and 0.40 mm h-1, respectively) reanalysis even better than 

the previous model version (0.57 and 0.32 mm h-1). Furthermore, the monthly distribution of 

the simulated hourly IMF time series, shown in Figure C-8: , matches the results using the 

previous model version. A closer look at the extreme IMF values is shown in the q-q plots of 

Figure C-9: , where it is evident that the weather generator underestimates the highest IMF 
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quantiles, especially during the colder months (e.g., 24% in February, 21% in November). 

Moreover, the model successfully reproduces the seasonality of precipitation, as shown in 

Figure 4-4, with minor underestimations of up to 9% (January), well within the IQR of simulated 

outcomes. When compared against the three long-standing weather stations in the domain 

(Figure C-10), the model matches satisfactorily the monthly precipitation for the Luzern station 

located in the valley but struggles to match the statistics of the stations Napf and Pilatus, which 

are located in mountain tops. This is likely due to discrepancies between the CombiPrecip 

interpolated dataset, which has been used for the WG calibration and validation, and the 

ground observations. In turn, the spatial distribution of precipitation shows an excellent 

agreement with errors below 3% of annual precipitation, as shown in Figure 4-5. 

  

Figure 4-3. Boxplots of event-averaged wet-area ratio (WAR,a) and intensity mean field 
(IMF, b) as obtained from hourly records of CombiPrecip (black, middle) and simulations 

using AWE-GEN-2d (green, left), and the new AWE-GEN-2d-CC (blue, right). Note that we 
only considered events with WAR over 0.1.  
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Figure 4-4. Comparison of the simulated and observed mean monthly precipitation using the 
AWE-GEN-2d model (left panel) and the new AWE-GEN-2d-CC model (right panel), with the 
interquartile range of the simulated outputs shown as shaded area. Each model is compared 
against respective precipitation dataset used for correcting the bias of the simulated outputs: 
CombiPrecip (CPC, Sideris et al. 2014) for AWE-GEN-2D-CC and RHiResD (MeteoSwiss, 

2016) for AWE-GEN-2d in the study by Moraga et al. (2021; 2022). 

 

  

Figure 4-5. Mean annual precipitation (in mm) over the Kleine Emme domain according to 
CombiPrecip reanalysis data (a), present-climate AWE-GEN-2d-CC simulations (b), and 

mean absolute percentual error (MAPE) of the simulations (c). The coordinates are shown in 
meters using the UTM 32N projection. 

 



79 
 

4.4.6.4 Hydrological Response 

To assess the influence of accounting for CC-scaling in future climate as simulated by the new 

model on the catchment response, the generated data was used as input to Topkapi-ETH, for 

which we used the same parameterization adopted by Moraga et al. (2021). As shown in 

Figure 4-6, the flow duration curve corresponding to this experiment matches the shape of 

that corresponding to the use of AWE-GEN-2d but has a lower magnitude across the entire 

domain of exceedance probabilities. The average underestimation is on average 12% and is 

more pronounced for lower exceedance probabilities. While this variation falls within the 

uncertainty range of model simulations (depicted as dashed lines in the figure), it is primarily 

attributable to the overall lower rainfall amounts simulated by the new weather generator 

compared to its predecessor. Regardless of the differences between the two experiments, the 

statistics of low exceedance streamflow (representing higher flows) align in both cases closely 

with the observations, while lower flows tend to be overestimated. 

 

Figure 4-6. Duration curves for the observed streamflow record (black dashed line) and the 
ensembles of present-climate simulations using Topkapi-ETH. Input data was generated 
with AWE-GEN-2d (green) and AWE-GEN-2d-CC (blue). The solid lines represent the 

median across realizations and the dashed lines indicate the interquartile range for each 
exceedance probability. 

 

4.4.7 Results 

4.4.7.1 Impacts on Precipitation 

As shown in Figure 4-7a, the monthly mean areal precipitation follows the overall signal of the 

GCM-RCM climate trajectories projecting a slight average decrease in precipitation (-3.9%), 

which is concentrated in the summer months. The changes are spatially heterogeneous, with 

projected increases in the northeast part of the catchment of up to 14% and decreases in other 

areas of up to -11% (Figure 4-7b).  

The newly formulated AWE-GEN-2d-CC model successfully emulates the scaling relationship 

between high precipitation intensities (above the 99th percentile) and temperature for the 

historical climate. Consequently, this capability is effective also in future climate simulations, 

as can be noted by the quantile regressions shown in Figure 4-8. Although the scaling slope 

is less pronounced compared to that computed from the observed data (e.g., slopes of 5.4% 
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and 5.5% for the .99 quantile regression compared to an observed 6.0%, as shown in Figure 

C-4Figure C-4: ), the impact of accounting for temperature-precipitation dependence is 

discernible when calculating return periods for extreme precipitation events (Figure 4-9) 

following the methodology detailed in Section 4.4.4.  

Consequently, we project a significant increase in hourly precipitation extremes by the end of 

the century, with the mean change lying within a range of 5–11% for a broad range of return 

periods. Conversely, daily precipitation extremes are projected to decrease for lower return 

periods, with a median value of 9% lower than in the present climate for the 2-year extremes. 

However, the intensity of less frequent events (e.g., the 200-year return period) is not expected 

to exhibit any change at the daily scale (a median decrease of 4.1% with IQRs in the order of 

16%). These findings contrast glaringly with those derived from the simulations obtained using 

the previous model. As shown in Moraga et al. (2021), the AWE-GEN-2d simulations projected 

only minor, statistically insignificant changes to precipitation extremes in the Kleine Emme 

region for all return periods. This highlights the importance of accounting for the temperature-

precipitation dependence and, thus, the influence that the new AWE-GEN-2d-CC formulation 

has on producing a plausible quantification of climate change impacts on precipitation 

extremes. 

 

Figure 4-7. Panel (a) shows the mean monthly areal precipitation over the Kleine Emme 
domain according to the present (blue) and future (red) climate simulations. The shaded 

areas represent the interquartile range of the means across 900 realizations. The change in 
total precipitation by the end of the century for each grid cell in the domain is shown in panel 

(b). 
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Figure 4-8. Heat maps for the present (left) and future (right) simulated 5-minute intensity 
mean field (IMF) vs. temperature. The colors represent the number of points within each 

pixel. The quantile regressions for the 98th, 99th, 99.5th, and 99.9th percentiles are 
superposed as dotted lines. The coefficient α, included in the labels, denotes the slope of the 

logarithmic regression for each quantile. 

 

 

Figure 4-9. Return periods of the 5-minute (a), hourly (b), and daily (c) precipitation in 
present (blue) and future (red) climate conditions. The shaded areas represent the 

interquartile range.  

 

4.4.7.2 Catchment Response 

The increase of hourly precipitation extremes due to accounting for the CC dependence exerts 

a mild but noticeable influence on streamflow extremes, particularly for rare events. Figure 

10a shows this by depicting no change for relatively common hourly peak flows, such as those 

corresponding to 2 or 5-year return periods, and a manifest increase for rarer events, 

exemplified, for instance, by a 15% rise in the median 50-year return period hourly peak.  

Given the distributed nature of the basin response simulation, we can also show how the 

temperature-precipitation dependence, more pronounced for small-scale convective storm 

events, is reflected by the magnitude of the peak-flow increase, which looks more pronounced 

for small-scale basins. This is evident from Figure 10c, where the maximum hourly streamflow 

exhibits the most dramatic increases for higher elevation and smaller catchments. The 

improvements due to using the new AWE-GEN-2d-CC model become evident when 

contrasting the results of these numerical experiments with those obtained using the previous 

model version. In some instances, the new model chain predicts an over 50% increase for 

peak flows that exhibited a small decrease in Moraga et al. (2021). Concerning daily extremes, 

the experiment predicts a decrease ranging from 12 to 15% across return periods, as shown 

in Figure 10b. This mirrors the projections made using the original AWE-GEN-2d and is 

explained by the decrease in the intensities of future longer-duration precipitations (Figure 

4-9c) and the increased air temperature that drives drier antecedent conditions for floods 

(Moraga et al., 2021). In this, our results coincide with other studies showing weak or negative 

trends in floods over central Europe despite increases in rainfall peaks (Wasko, Nathan, et al., 

2021; Wasko, Westra, et al., 2021). Moreover, we explored the impact of climate change on 

the timing of floods, as illustrated in Figure C-11: , The analysis reveals only a minor shift 
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towards earlier occurrence of events, aligning with the weak trends observed for this region 

by Blöschl et al. (2017). 

 

Figure 4-10. The present (blue) and future (red) return periods of maximum hourly and daily 
streamflow at the outlet of the catchment are shown as boxplots in panels (a) and (b), 

respectively. Panels (c) and (d) show a comparison of the projected change in the median 
annual maximum hourly and daily streamflow over the Kleine Emme sub-catchments using 
the current AWE-GEN-2d-CC model (green squares) and the previous version AWE-GEN-

2d (magenta circles). 

 

4.5 DISCUSSION  
AWE-GEN-2d-CC marks a step forward in modeling small-scale climate features, particularly 

over complex terrains. It improves upon AWE-GEN-2d by modeling the characteristics of 

storms as a temperature-dependent process, therefore implicitly allowing it to reproduce the 

statistics of high-intensity events that are associated with convective storms. AWE-GEN-2d-

CC performs as well or better than its predecessor in reproducing the seasonality, spatial 

distribution, and marginal distribution of precipitation and temperature, as shown in Section 

4.4.6. Furthermore, AWE-GEN-2d-CC maintains the same level of model parsimony as it 

requires the same type of data for calibration and does not increase the number of fitted 

parameters, and AWE-GEN-2d-CC requires the same—rather modest—amount of 

computational resources as AWE-GEN-2d. For example, a year of simulation for the Kleine 

Emme domain takes in the order of 15 min using a typical commercial processor.  
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In our model setup, we consider the temperature-precipitation relationship to be the same for 

all precipitation events (as shown by Molnar et al (2015) for this region) instead of an explicit 

representation of different storm types (e.g., stratiform and convective), mainly because the 

latter requires identifying storm types from observational records (Gaál et al., 2014; Jergensen 

et al., 2020), which, depending on the local climate characteristics, is not straightforward and 

would add further complexity to the calibration of the weather generator. As shown in Figure 

4-8, AWE-GEN-2d-CC successfully mimics the observed temperature-precipitation scaling of 

extreme hourly precipitations. This demonstrates the robustness of the approach to 

parameterization of the T-P dependence, which, through temperature-bin-dependent 

calibration, captures the behavior of precipitation extremes in response to temperature 

variations. It is important to emphasize that the success of the model in emulating the CC 

scaling relationship arises not from directly imposing of this relationship in the calibration 

process but from the ability of the model to reproduce observed data patterns. This ensures 

that the climate projections are grounded in empirically observed relationships, offering a 

plausible, site-specific and flexible framework for anticipating future climate scenarios.  

As demonstrated trough the Kleine Emme case study, the temperature scaling feature of the 

model translates into a predicted intensification in future hourly extremes due to rising 

temperature (Figure 4-9). This contrasts with the negligible changes to intensities projected 

with the previous model formulation (Moraga et al., 2021), and thus demonstrates the value 

of the new model version. Moreover, studies relying on CPM simulations for central Europe 

(e.g., Ban et al., 2018; Lenderink et al., 2021) are consistent with the AWE-GEN-2d-CC 

projections for extreme precipitation. While CPM simulations remain the gold-standard 

approach to assess small-scale climate change impacts, we argue that comparatively low-

cost weather generators that can simulate ensembles of credible future climate statistics play 

a significant role in understanding and adapting to climate change. As such, AWE-GEN-2d-

CC offers a versatile alternative suitable for a myriad of applications in water resource 

management, agricultural planning, and preparing for natural catastrophes. 

It is worth noting that we have limited the scope of this research to the simulation of cloud 

cover, temperature, and precipitation. However, the satisfactory performance of AWE-GEN-

2d-CC in simulating those variables ensures that it can perform as well as AWE-GEN-2d in 

simulating the remaining climate variables such as relative humidity, atmospheric pressure, 

incoming short-wave radiation, dew-point temperature, vapor pressure, and near-surface wind 

speed (Peleg et al., 2017). 

Our results also cast light on the future hydrology of the Kleine Emme catchment and how it 

responds to intensifying extreme precipitations. By the end of the century, rare extreme hourly 

flows, particularly at higher-elevation sub-catchments, will experience a significant increase 

(Figure 4-10). Notably, this is in stark contrast with the results obtained using the previous 

model, which did not account for temperature scaling in the input precipitation data. For daily 

extreme flows, however, we project a significant decrease in magnitude explained by the 

decrease in longer-duration precipitation extremes (Figure 4-9), and drier antecedent soil 

conditions (Moraga et al., 2021). In this, our results contradict similar studies carried out for 

nearby catchments (Brunner, Farinotti, et al., 2019; Molnar et al., 2020; Ruiz-Villanueva & 

Molnar, 2020). We speculate the main sources of discrepancy are related to the treatment of 

snow-related processes of the respective hydrological models, and the diversity in size and 

geomorphological properties of the study catchments. In this regard, only replicating this study 

for a significant number of cases may provide further insight. 
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4.6 CONCLUSIONS 
We introduced the AWE-GEN-2d-CC model, a new version of a two-dimensional stochastic 

weather generator AWE-GEN-2d-CC (Peleg et al., 2017), which improves upon its 

predecessor by incorporating the relationship between storm properties and temperature. The 

improved model was shown to maintain the ability to generate high-resolution gridded climate 

variables that accurately preserve the auto- and cross-correlations found in the observed 

records for the Kleine Emme, an exemplary catchment in the Swiss Alps. In particular, the 

model's performance was evaluated by examining projected climate change impacts on the 

hydrometeorology of the catchment. AWE-GEN-2d-CC was calibrated using multiple 

observational and reanalysis datasets, generating a large ensemble (900 years) of present-

climate time series. Subsequently, it was re-parameterized to generate downscaled scenarios 

from nine different GCM-RCM model chains and obtain an equally large ensemble of end-of-

the-century climate data.  

The ensembles simulated using AWE-GEN-2d-CC successfully replicated the observed 

temperature scaling of the largest intensities within the 5–25°C temperature range, albeit 

displaying slightly lower scaling rates. In turn, the simulations yielded an increase in hourly 

precipitation extremes in the order of 5–11% by the end of the century, but a decrease in daily 

precipitation extremes of around 9%. The hydrological response of the Kleine Emme to the 

changes in precipitation extreme was then examined. It was found that while the high 

frequency (<5 y return period) hourly high flows remain at the same level, an increase in the 

magnitude of hourly high flow rare events (>50 y return period) was found. Moreover, we found 

a significant reduction in future daily streamflow extremes.  

Our results underscore how the temperature-scaling of storm properties will affect short-

duration extreme rainfall events under climate change projections and how it impacts 

hydrological responses. Consequently, this research highlights the need for a fine-resolution 

gridded model that accurately simulates the precipitation-temperature relationship, as the 

AWE-GEN-2d-CC model presented here does. We note that it is essential to model future 

hydrological extremes utilizing an accurate representation of temperature-induced rainfall 

intensification, which may extend beyond Alpine catchments, as the one presented here, but 

may also apply to any fast-responding catchment prone to high-intensity convective storms in 

general. 

Data and Software Availability 

The AWE-GEN-2d-CC model code, as well as an example of the case study presented, is 

available as a Zenodo repository (Moraga and Peleg, 2023) under a CC BY-NC 4.0 license. 
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5 DISCUSSION AND CONCLUSIONS 

5.1 SUMMARY 
Throughout this thesis I show how newly developed methods and tools were used to quantify 

the impacts of climate change on hydrological systems, with a special focus on complex 

mountainous terrains. Using regional climate model outputs alongside advanced weather 

generators, initially AWE-GEN-2d and later the refined AWE-GEN-2d-CC, I introduce a 

methodology to simulate large ensembles of high-resolution climate data. These ensembles 

were used to explore the impacts of climate change on the climate statistics over two Alpine 

catchments, the Thur and the Kleine Emme. Furthermore, the impacts over the catchments’ 

response were quantified by feeding detailed climate inputs to the Topkapi-ETH hydrological 

model. This modelling framework served as the basis for this research as it allowed for an 

unprecedented level of detail in hydrological projections. 

Remarkably, the hydrological simulations shed light on the role of hydrological processes in 

determining the small-scale response of mountain catchments in a future climate, thus 

answering the Research Question 1 (RQ1) posed in Chapter 1. In Chapter 2 I show how these 

responses are elevation-dependent and reveal, for instance, how a substantial decline in 

snowmelt will significantly alter streamflow patterns, especially for higher-elevation 

catchments. Conversely, for lower river reaches, changes in streamflow are primarily dictated 

by shifts in precipitation patterns, which generally lead to reduced flows. Furthermore, extreme 

hydrological events are significantly influenced by these changing precipitation patterns and 

antecedent conditions, causing changes to flood patterns, i.e. their magnitude and timing, will 

vary significantly within the study catchments. 

In Chapter 3 I detail how the large simulation ensembles made possible by stochastic 

downscaled climate scenarios are exploited to quantify uncertainties in climate projections. It 

introduces a methodology that allows to quantify and partition stochastic and model-related 

uncertainties. As an answer to RQ2, the results indicate that uncertainties related to annual 

streamflow are high throughout the catchments. These are mostly driven by stochastic 

uncertainty, which implies a limited potential for narrowing the overall uncertainty in 

hydrological projections. However, there is room for narrowing the uncertainty of specific 

hydrological components, such as snowmelt.  

Finally, in Chapter 4 I introduce AWE-GEN-2d-CC, a novel weather generator designed 

specifically to better assess changes to sub-daily extreme rainfall by implementing physics-

based dependencies on changes in air temperatures. The model successfully reproduces the 

observed Clausius-Clapeyron relation and can thus realistically simulate the effect of warming 

future temperatures on the intensification of extreme precipitation events. RQ3 is answered 

by applying the new WG to the Kleine Emme catchment. The results show that while rising 

global temperatures are poised to amplify rainfall extremes, this intensification will not lead to 

higher streamflow extremes over small sub-catchments due to the complex interplay between 

non-linear rainfall-runoff transformation and dryer antecedent conditions of catchments and 

streams. 

5.2 DISCUSSION 
In this section, I discuss the unique contributions of this thesis to the broader understanding 

of future hydrological scenarios in Switzerland, and how it fills the research gaps identified in 

section Error! Reference source not found. by enhancing the resolution of climate data, 
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quantifying uncertainties in climate projections, and elucidating the role of temperature in 

shaping future extreme hydrological events. 

5.2.1 Updating Swiss hydrological scenarios 

This thesis offers a detailed analysis of the effects of climate change on future Swiss hydrology 

at the seldom-studied sub-catchment and sub-daily scales. In Chapters 2 and 4, I focus 

particularly on the expected changes in the occurrence and magnitude of sub-daily to daily 

extreme events and delve into the implications of climate change on streamflow in Swiss 

mountainous catchments, using the Thur and Kleine Emme catchments as case studies.  

The emphasis on small-scale, distributed impacts of climate change contrasts with other 

studies, which often provide coarser, simpler catchment characterizations, but in turn, 

consider a much larger number of study sites. Such is the case of other studies developed in 

the context of the Hydro-CH2018 initiative (Brunner, et al., 2019; Molnar et al., 2020; Muelchi 

et al., 2020, 2021; Ruiz-Villanueva & Molnar, 2020). In them, researchers from three academic 

groups in Switzerland have modelled the catchment response of hundredths of mesoscale 

catchments throughout the Swiss Alps using two different semi-distributed hydrological 

models: HBV-light (Seibert & Vis, 2012) and PREVAH (Viviroli et al., 2009). Like my research, 

they base their projections of future responses on the change signals revealed by the CH2018 

RCM ensemble (CH2018, 2019). 

Despite the considerable diversity of the study catchments and modelling approaches, the 

cited studies find several points of agreement. For instance, the mean annual streamflow over 

the Swiss catchments is projected to decrease by 7-8% by the end of this century, in line with 

the Topkapi-ETH simulations presented in Chapter 2.4. Similarly, our studies agree that the 

seasonality of catchments all over Switzerland will be affected, with diminished streamflow in 

summer and increases in winter accompanied driven by a decrease and temporal shift in snow 

water equivalent (SWE) particularly at higher elevations. Likewise, a rise in temperature is 

expected to boost evapotranspiration across the studied catchments, albeit with considerable 

variability depending on the specific catchment and elevation. Concerning future floods, 

although the HBV and PREVAH models differ on the magnitude of the changes, they generally 

agree that floods will become weaker at lower-elevation catchments while intensifying at 

higher-elevation ones—except for glaciered catchments, which I did not consider in this work.  

Beyond these points of consensus, the novel modelling framework offers a more 

comprehensive perspective through which to study mountainous catchments. For instance, 

by examining elevation-dependent changes at sub-catchment scales, I find that the Swiss-

wide projections of decreasing (mean and maximum) flows at higher elevations and decrease 

for lower elevations are also present over much smaller domains. This type of analysis can 

reveal information crucial to stakeholders that would be otherwise obscured. For instance, I 

show how high flows at the lower reaches of basins may increase because of climate change, 

even when the statistics at the outlet indicate no impact. Moreover, I delve into the components 

of streamflow production and show how they will be dissimilarly affected by climate change, 

with important consequences for water resources management. For example, the simulations 

project a change in the hydrological regime of the study catchments, with decreasing spring 

and summer flows due to a diminishing snowmelt volume and an increase in winter flows 

driven by higher liquid precipitation. Lastly, the quantification of uncertainty due to natural 

climate variability presented in Chapter 3 (and discussed in more detail in the following), adds 

another frequently missing piece to the puzzle of Swiss hydrological scenarios. As such, this 

thesis represents, at a minimum, an asset in the quest to improve the understanding of 

hydrology over the Alps as well as any highly heterogeneous basin. As part of the Hydro-

CH2018 initiative to update future hydrological scenarios, it is my hope that this work aids 
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adaption and mitigation measures by public and private stakeholders in anticipation of a future 

of change and uncertainty. 

While acknowledging the scope of this study focused on only two catchments, this approach 

has facilitated an in-depth understanding and precise model calibration. Although the Thur 

and Kleine Emme catchments do not encompass the full diversity of Swiss terrain, they offer 

valuable insights into sub-daily to daily hydrological extremes that are representative of similar 

mountainous catchments. his study provides a detailed snapshot that, while not exhaustive, 

contributes significantly to our understanding of hydrological responses influenced by 

variations in elevation and climate change. 

To build on the strengths of this study and further enhance its robustness, it would be advisable 

to expand the spatial coverage of the model. By including a wider variety of catchment types—

ranging from small, lowland basins to extensive, alpine systems—we can broaden the 

applicability of our findings and deepen the understanding of hydrological changes across 

Switzerland. Such expansion would also allow us to refine our projections for future 

hydrological scenarios and improve the precision of flood predictions, thus providing valuable 

information for both mitigation and adaptation strategies in diverse hydrological settings.  

5.2.2 Generating high-resolution climate ensembles  

A critical research gap is the need for high-resolution climate data to effectively study complex 

landscapes, including mountainous terrains, in the context of climate change. This thesis 

bridges this gap by employing sophisticated WGs capable of i) generating large ensembles 

efficiently, as illustrated by the simulation of a year of climate for the Kleine Emme catchment 

within just 10 to 15 minutes using a standard consumer-level computer; ii) achieving high-

resolution data, with a granularity in precipitation simulations of 5-minute intervals and 2-km 

spatial resolution, as well as hourly ensembles of temperature and other climate variables at 

100-m resolution; and iii) basing projections on physical relations instead of merely relying on 

observed statistical correlations; thus enabling realistic modelling of the behaviour of climate 

variables under future conditions.  

To highlight the value of high-resolution datasets, one option is to directly contrast the results 

obtained using coarse and fine resolution inputs in a sensitivity analysis fashion. A good 

example of this is presented by Kay (2022), who compared high-resolution Convection 

Permitting Models (CPMs) with lower-resolution GCM/RCMs and demonstrated that the 

resolution of the input climate data affects not only the magnitude of present-day floods, but 

also influences the impact under future climate conditions. In this work, I instead sought to 

quantify the impacts of climate change over small sub-catchments, which cannot be 

characterized through coarse datasets. Using the Topkapi-ETH hydrological model, this study 

highlights how high-resolution data can reveal nuanced, elevation-dependent hydrological 

processes at the sub-catchment scale, a pattern, which has been noted by other studies 

operating at different scales and sometimes using (e.g., Daly et al., 2017; He et al., 2019; Xu 

& Di Vittorio, 2021; Zhu et al., 2023), also altering the characteristics of modelled flood 

responses (Constabile et al., 2023). Consequently, the outcomes of this study can serve as 

valuable inputs for managing water resources and disaster preparedness, particularly over 

complex terrains.  

Beyond detailed simulation of temperature and precipitation dynamics, the tools developed in 

this thesis can simulate a broad spectrum of near-surface climate variables that significantly 

influence hydrological and ecological processes. Variables such as wind speed, solar 

radiation, humidity, and atmospheric pressure also play crucial roles in determining the 

microclimates of mountainous terrains and consequently affect water balance and ecosystem 

dynamics. The high-resolution simulation of these variables offered by advanced weather 
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generators presents an opportunity to explore their interdependencies and their combined 

effects on mountainous ecosystems and water cycles. The present work thus offers the 

potential to expand the small-scale analysis to impacts beyond hydrological extremes. 

Moreover, the modelling framework presented in this thesis challenges the reliance on costly 

dynamical models to generate physically-sound, high-resolution climate projections, with the 

added benefit of inexpensively generating large ensembles that allow a robust estimation of 

extreme events—a feat that cannot (yet) be realistically matched by dynamical models at the 

granularity required by impact assessment studies (e.g., Coppola et al., 2018; Gebrechorkos 

et al., 2023; Pichelli et al., 2021; Ban et al., 2021). Furthermore, the framework not only 

enriches the toolkit of climate scientists seeking to generate detailed and comprehensive 

climate projections but contributes another dimension by allowing a rigorous assessment of 

the uncertainties introduced throughout the modelling chain.  

5.2.3 Uncertainty in climate projections 

Communicating the uncertainty inherent in climate projections presents significant challenges. 

Despite various efforts to refine these communications, such as the guidelines by the IPCC 

for communicating uncertainty and risk (Budescu et al., 2012), finding the right balance 

between clarity and comprehensiveness remains elusive (Kause et al., 2021). This balance is 

crucial because it impacts how stakeholders perceive and utilize the information. Often, the 

complexity of conveying uncertain results can lead to its underrepresentation in climate impact 

studies, perhaps by causing reluctance among scientists and practitioners as stakeholders 

may perceive the information as less credible or actionable. In other words, as Pappenberger 

and Beven (2006) warned, for some, ignorance is bliss, and this oversight that can negatively 

affect decision-making. 

Addressing the full scope of communicating uncertainty is beyond the ambit of this thesis. 

However, I propose that one step in the right direction involves clearly distinguishing and 

partitioning the sources of uncertainty. In this thesis I sought to do just that and dedicate 

Chapter 3 to dissecting the different drivers of uncertainty—whether they stem from natural 

climate variability or from limitations inherent in modelling techniques—thus providing a 

clearer picture of what underlies the projections and forecasts presented in climate science. 

But perhaps the main contribution of this thesis lies in tackling a technical barrier to studying 

uncertainty sources: the lack of robust methods to accurately quantify them, particularly 

concerning stochastic uncertainty. This work provides a practical framework for quantifying 

stochastic uncertainty, assessing its importance relative to other uncertainty sources (i.e. 

climate models), and, especially, understanding its influence throughout the modelling chain. 

Furthermore, it does so at the in a distributed fashion, thus offering a level of granularity that 

has not been reached by other studies.  

By leveraging weather generators to produce large ensembles of climate data, I inspected 

both the climate model and stochastic components of uncertainty. For example, in the two 

catchments studied in Chapter 3, the stochastic uncertainty in precipitation—the natural 

climate variability—is high throughout the domain, whereas the climate model uncertainty 

exhibits a positive correlation with elevation, which is largely in agreement with other recent 

works researching how uncertainty propagates into the projections of hydrological variables 

using a variety of data, models and methods (e.g., Chawla & Mujumdar, 2018; Chen et al., 

2017; Clark et al., 2016; Das et al., 2018; Feng & Beighley, 2020; Gao & Booij, 2020; Meresa 

et al., 2021; Vetter et al., 2017). Additionally, the uncertainty of climate projections further 

propagates into the hydrological response of the catchment, as demonstrated by the weak 

signal-to-noise ratios (STNR) observed for the statistics of high-streamflow which is credited 

mostly to the irreducible stochastic uncertainty. The results suggest, however, that there is 
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some potential to narrow down the uncertainty of specific hydrological components such as 

rainfall or snowmelt at higher elevations and during warm seasons, when the impacts are 

driven mostly by temperature changes. 

This thesis has focused on understanding and quantifying two major sources of uncertainty in 

climate impact studies on hydrology: internal climate variability and climate model uncertainty. 

These two aspects are critical as they have shown to introduce the largest variability in the 

subsequent hydrological projections, particularly regarding hydrological extremes (Addor et 

al., 2014; Fatichi et al., 2014, 2016). The decision to focus on internal climate variability and 

climate model uncertainty stemmed primarily from the specific aims of this study to isolate and 

understand the effects of these uncertainty sources on Swiss hydrology at a highly granular 

level. This focus allowed for a more detailed exploration of how different climate models and 

inherent climatic changes impact hydrological extremes at the sub-catchment scale, providing 

valuable insights into the robustness of hydrological projections.  

Nevertheless, it's crucial to recognize that other sources of uncertainty also influence these 

projections. The uncertainty stemming from greenhouse gas emissions scenario, for example, 

was not analysed in this work. Naturally, this framework can easily be expanded to assess the 

influence of emission scenarios by re-calculating the factors of change based on additional 

climate projections and subsequently re-parametrizing the weather generator to account for 

the climate change signal according to the selected climate projections. Considering the 

findings detailed in Chapter 3, it is to be expected that emission scenario uncertainty will drive 

the variability of temperature-dependent hydrological processes, as is the case of snow and 

ice melt, which should result in higher uncertainty over catchments with mixed precipitation 

regimes as is the case of most mid-elevation Alpine catchments.  

Another uncertainty source worth consideration is the hydrological model used to quantify the 

catchment response to climate inputs. Partly, its omission from this thesis is justified by its low 

contribution to Swiss Alpine projections according to Addor et al. (2014). Notwithstanding, the 

incorporation of hydrological model uncertainty into this framework would enhance our 

understanding of the overall variability in catchment response, which may vary significantly 

across different catchment types as demonstrated, for example, by Giuntoli et al. (2018) in 

their study over a vast number of US catchments.  

Beyond these specific results, this framework lends itself for application to diverse cases 

including different geographies, model chains, and uncertainty sources. It is my hope that the 

methodology used to create large simulation ensembles can be adopted to inform the 

decisions of water resource managers and disaster risk reduction practitioners. An example 

of this is the conclusion that a focus on adapting to uncertainty may be more effective than 

attempting to increase the accuracy in the estimation of extremes for Alpine domains. 

Furthermore, this research underscores the critical importance of considering multiple forms 

of uncertainty in hydrological projections to inform more effective adaptation and mitigation 

strategies, especially concerning rare but impactful hydrological events. 

5.2.4 Temperature and extreme events 

Convective events, responsible for extreme precipitation in large swathes of the globe, often 

result in costly natural catastrophes (Taszarek et al., 2021). Multiple studies demonstrate that 

these types of events—characterised by high temperatures and bursts of intense rainfall—will 

become more frequent and/or more intense under future climate conditions. Reproducing the 

temperature dependence of intense rainfall (the so-called Clausius-Clapeyron relation) is 

therefore essential to any attempt to understand future extreme events and their 

consequences.  
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This poses a significant challenge as most dynamical climate models (e.g., GCMs or RCMs), 

on which we base climate and hydrological projections, are not capable of characterizing this 

phenomenon (Prein et al., 2015, Ban et al., 2021; Lucas-Picher et al., 2021; Pichelli et al., 

2021). The new AWE-GEN-2d-CC weather generator is developed precisely to tackle this 

issue. by conditioning the simulation of precipitation intensities on the air temperature at the 

onset of storm events, thus moving past the implicit assumption of no correlation between 

temperature and precipitation statistics. Instead, the new model utilizes an empirical 

relationship derived from observational records, enabling the model to reproduce the physical 

influence of temperature on storm characteristics which results in a satisfactory representation 

of observed temperature-dependent storm characteristics.  

Moreover, the AWE-GEN-2d-CC model makes two further assumptions regarding the 

spatiotemporal characteristics of storms—such as duration, size, and spatial variability of the 

precipitation fields. The first is that these characteristics can be modelled as if they were part 

of one population, albeit conditioned on the temperature of the event. This is a simplification 

which avoids explicitly modelling different event types (e.g. convective and stratiform storms) 

as separate processes. The second assumption is the distribution of these storm 

characteristics will remain constant under changing climate conditions. Emerging evidence 

suggests that, beyond the expected intensification of storms, extreme events may also 

become longer, thereby dampening the intensification of peaks below what is explained by 

the Clausius-Clapeyron temperature scaling (Ban et al, 2021; Pichelli et al., 2021). This implies 

that simulations assuming stationarity of spatiotemporal characteristics of storms may slightly 

overestimate peak rainfall amounts, highlighting an area for future research and model 

adjustment.  

Despite these caveats, re-parameterizing AWE-GEN-2d-CC to reflect changes in large-scale 

temperature and precipitation patterns, as projected by climate models, allows it to more 

realistically simulate future precipitation intensification at high temporal and spatial resolutions. 

As such, it represents not only an improvement upon its predecessor AWE-GEN-2d—up to 

now one of the most sophisticated WGs available in scientific literature—but also serves as a 

blueprint to advance the development of new models looking to characterize future climate 

conditions. 

In addition to improving upon an already state-of-the-art WG, this thesis offers the 

methodological framework to project future hydrological extremes. As I demonstrate with the 

case study of the Kleine Emme presented in Chapter 4, AWE-GEN-2d-CC reproduces the 

significant influence that the temperature-scaling of storm properties has on the magnitude of 

short-duration (hourly) rainfall extremes. The hydrological simulations portray a surge in rare 

extreme events—those with return periods exceeding 50 years—in stark contrast with the 

results using AWE-GEN-2d. Daily rainfall events, in turn, are not projected to increase which, 

compounded by drier antecedent conditions over the catchment, results in an expected 

decrease of daily high flows, albeit with a large uncertainty range. 

Overall, these results underscore the importance of considering the temperature dependence 

of rainfall in our models. With this relatively simple improvement to an already advanced 

weather generator, I expect AWE-GEN-2d-CC to become a valuable tool to model intense 

precipitation wherever convective storms play a substantial role. Given the vast presence of 

convective events in other geographies, and the preponderance they have in the records of 

highest precipitations, I expect the model will find appeal far beyond the Swiss mountains. 
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5.3 OUTLOOK 

5.3.1 Further developments to advanced weather generators 

The AWE-GEN-2d-CC model has effectively reproduced the observed temperature-

precipitation relationship in present and future climate simulations. To enhance its predictive 

capabilities for future extreme event characteristics, an alternative development avenue could 

be to transcend the use of static spatiotemporal storm characteristics. This can be achieved 

without reformulating the model structure by recalibrating the parameters of storm duration, 

wet-area ratio, and mean intensity field based on change signals from dynamical climate 

models. An obvious source for the detailed data required for this recalibration could be the 

outputs of Convection Permitting Models (CPMs), which offer high-resolution insights into 

climate dynamics. These models provide a rich dataset that can be analysed to establish 

relationships between changing climate signals and storm parameters, thereby refining the 

weather generator's ability to simulate future conditions accurately. Future work could help 

quantify the added value of this approach by establishing whether the increase in data 

requirements and calibration efforts has any significant effect on future simulations. 

Moving forward, an additional enhancement would involve explicitly modelling different storm 

types within the AWE-GEN-2d-CC framework. By distinguishing among storm types—such as 

convective and stratiform—this approach would allow to improve the accuracy of precipitation 

simulations significantly. Most intense weather events, depending on the local climate, stem 

from specific types of storms. Accurately modelling these events thus requires developing 

probabilistic models that predict the emergence of different storm types based on observed 

climatic conditions. This requires access to extensive, high-resolution observational datasets, 

enabling the weather generator to mimic the unique characteristics of each storm type more 

precisely. Such an enhancement would not only improve the model's realism but also its utility 

in predicting the hydrological impacts of climate change, particularly in regions prone to 

extreme weather events, as well as other types of hazards resulting from strong convective 

storms. 

5.3.2 New applications of AWE-GEN-2d-CC 

The versatility of AWE-GEN-2d-CC extends to its potential applications in climate studies 

beyond the effects of climate on river-network response. The model inherits the remarkable 

capabilities of AWE-GEN-2d in simulating realistic time series of relative humidity, incoming 

short-wave radiation, dew-point temperature, and wind fields, as demonstrated by Peleg et al. 

(2017). In the agricultural sector, AWE-GEN-2d-CC can be instrumental in simulating 

microclimatic conditions that affect crop growth and yield. By providing detailed weather data 

at a granular level, the model enables researchers and farmers to simulate potential future 

climate scenarios and their direct impact on crop productivity. This can guide more informed 

decisions about crop selection, irrigation needs, and harvesting times, optimizing agricultural 

practices to better withstand the unpredictability of climate change. For energy production, 

AWE-GEN-2d-CC's ability to model wind fields and radiation can be particularly beneficial to 

plan the production and storage operations of renewable energy projects. In terms of natural 

disaster risk assessment, the model's high-resolution simulations of extreme weather events 

make it an invaluable asset for disaster preparedness and mitigation strategies. By assessing 

the frequency and magnitude of potential extreme weather, such as heavy rainfall, heatwaves, 

or high winds, emergency management agencies can better plan evacuation routes, prepare 

response strategies, and design infrastructure to be more resilient against these natural 

threats. Moreover, the capability of AWE-GEN-2d-CC to simulate a large number of stochastic 

weather scenarios is particularly valuable for conducting robust economic analyses. Financial 

institutions, insurance companies, and governmental bodies can utilize these simulations to 
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develop loss curves and other risk assessment models. These tools help in quantifying 

potential economic impacts under different climate scenarios, enabling more informed 

decision-making regarding financial investments, insurance policies, and climate adaptation 

strategies. 

Although this work offers a highly detailed analysis of the hydrological response of 

mountainous catchments, the resolution of hydrological simulations still falls short of 

capabilities of the WGs’ employed. Exploiting the 5-minute precipitation simulations, for 

example, offers a readily accessible path to evaluate hydrological responses at sub-hourly 

scales. While this approach has not been pursued in the current work due to time and resource 

constraints, it represents a great opportunity to enhance our understanding of rapid 

hydrological changes, such as those observed during flash floods. Likewise, the advanced 

weather generators are perfectly capable of reproducing the statistics of temperature, 

radiation, and other non-precipitation variables at the sub-kilometre scale, as demonstrated 

by Peleg et al. (2017). While there is a trade-off between temporal and spatial granularity and 

the computational feasibility of long-term simulations, the bigger challenge lies in ensuring that 

the physical characteristics of the study catchment are accurately represented, as the 

reliability of physically based hydrological models hinges on the quality of the domain 

representation just as it does on the characterization of external inputs. If these challenges 

are addressed, leveraging tools like Topkapi-ETH alongside reliable streamflow observations 

for validation could substantially advance our capability to model and predict sub-hourly 

hydrological dynamics.  

5.3.3 Expanding the domain of distributed WGs 

Another intriguing direction for research involves using the distributed climate simulations 

generated by AWE-GEN-2d-CC as inputs to multiple (semi-)distributed hydrological models. 

A comprehensive comparison between these models could offer valuable insights into the 

propagation of uncertainty across different hydrological frameworks, revealing critical insights 

into their relative performance and reliability. This comparative analysis is particularly valuable 

for identifying the strengths and limitations of each model, especially in handling extreme and 

rapid weather events. The combination of AWE-GEN-2d-CC with physically based 

hydrological models offers modelers an ideal toolkit for comparing the efficacy of hydrological 

models and for unravelling the complex sub-hourly hydrological dynamics within fast-

responding catchments. This approach not only enhances our understanding of hydrological 

processes but also improves our preparedness for managing water resources in the face of 

increasingly unpredictable climate patterns.  

Climate studies in regions with complex topographical features are ideal settings to test the 

features of AWE-GEN-2d-CC. Mountainous regions, particularly in mid-latitudes, will benefit 

from a weather generator designed to handle the complexity of steep slopes and high-

elevation gradients. With careful consideration for regional climate specificities, the model 

should prove robust across varying landscapes. Furthermore, the computational efficiency of 

AWE-GEN-2d-CC also suggests that applications over larger domains (e.g., Peleg, et al., 

2020) or over multiple mesoscale domains are technically feasible without incurring in 

prohibitive computational costs. Extending the model’s geographic coverage would serve as 

both a validation exercise and an opportunity to identify local nuances that may not be 

captured in the current study. As it stands, the main challenge to applying the model over a 

large number of catchments is the manual calibration for each individual domain. Developing 

an automatic calibration algorithm to readily take advantage of large remote-sensing 

observation and reanalysis data would allow the generation of high-resolution weather time 

series across multiple sites. Combined with distributed, physically based modelling of the 

catchments’ responses, such an effort could shed light on the impacts of climate change over 
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complex catchments within large regions (e.g., different impacts among Alpine catchments) 

or in vastly different contexts. 

In contrast with modelling many relatively small domains, expanding the application of AWE-

GEN-2d and AWE-GEN-2d-CC to model large domains beyond the mesoscale is, in any case, 

not straightforward. One of the main limitations in this regard is that the simulation of storms 

requires an explicit definition of the event interarrival sequence, which simply loses its meaning 

as domains grow large enough to host simultaneous yet independent events. Similarly, 

another cornerstone of the model is the definition of mean areal statistics, which assume that 

spatiotemporal characteristics of storms can be characterized with domain-wide parameters. 

Overcoming these limitations would require moving past the paradigms of the powerful 

STREAP model (Paschalis et al., 2013) for the continuous simulation of precipitation fields, 

which is at the heart of AWE-GEN-2d and AWE-GEN-2d-CC. Instead, modelling high 

resolution climate data at regional or even global scales may be better achieved through 

alternative, top-down approaches that seek to refine large but coarse data, rather than 

aggregating high-resolution simulations from the bottom up. 

5.3.4 High resolution ensembles over large scales 

In the years since I began this thesis project, Single Model Initial-Condition Large Ensembles 

(SMILEs) have emerged as another powerful tool in the arsenal of climate and environmental 

scientists (Deser et al., 2020; Lehner et al., 2020; Maher et al., 2021; Milinski et al., 2020; 

Wyser et al., 2021). The operating principle behind SMILEs is deceptively simple: by making 

minuscule alterations to initial conditions, sometimes reaching back several hundredths of 

years, these dynamical models generate an array of distinct, but equally plausible climate time 

series despite identical external conditions. Thanks to advances in computational capacity and 

numerical modelling techniques climate modelers have simulated tens, and even hundreds, 

of climate realizations under a single emissions scenario. Although SMILEs promise to 

encapsulate internal climate variability, thus offering robust global uncertainty estimation, they 

are not without shortcomings and their broader utility is constrained by their typically coarse 

resolution. This limits their direct applicability for local-scale impact assessments and 

necessitates further downscaling and bias correction to align their outputs with observed 

climate data. 

Parallel to this, Convection Permitting Models (CPMs) have grown in number and coverage 

(Lucas-Picher et al., 2021). CPMs are regarded as the most accurate tools available for 

simulating future climates at fine scales, as they can simulate convection and cloud formation 

processes which are essential to characterize small-scale extreme weather events. These 

models, however, are severely limited by their intensive computational requirements, which 

limits their use over regional domains to typically just one climate realization of relatively short 

simulations. While it is expected that computational costs will become relatively lower over 

time, it is not realistic to expect large ensembles of CPM simulations in the short or mid-term. 

To quantify the small-scale impacts of climate change over large regions, we must find a way 

to generate large ensembles of physically sound, high-resolution climate simulations. Moving 

forward, I envision at least two promising paths to bridge the gap between SMILEs and CPMs 

and this ideal outcome through statistical models. The first is through statistical downscaling 

and bias correction of SMILEs: This involves applying statistical techniques to correct biases 

in SMILE outputs and to downscale them to higher resolutions suitable for impact 

assessments. By integrating advanced statistical methods, it’s possible to transform SMILEs 

into large ensembles of high-resolution, unbiased climate datasets that reflect the dynamic 

climate signals of the original ensemble members. A challenge to be addressed with this 

approach is, however, ensuring that the statistical relations built within the models are robust 
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enough to handle prediction data which, due to the changing nature of climate, are not within 

the scope of the training dataset. Should that be sorted, it will be possible to generate datasets 

that are not only fine-grained but also encompass the inherent variability and changing 

dynamics of future climates. 

An intriguing second path forward involves the so-called emulation of CPMs. This approach 

entails developing statistical models which can link the fine outputs of CPMs with the coarse 

outputs of their driving global climate models. By doing so, the emulators replicate the results 

of the costly dynamical downscaling model using a mere fraction of the computational 

resources. The key advantage of this method is its ability to utilize the underlying physical 

relationships modelled by CPMs to extend downscaling across longer time periods and across 

various climate models and emission scenarios. Essentially, this makes it feasible to generate 

high-resolution climate data that retains the fidelity of CPM outputs but is produced much more 

efficiently. This approach holds the promise of expanding the accessibility and applicability of 

high-quality, fine-resolution climate projections, crucial for detailed local-scale climate impact 

assessments. 

As we continue to explore these statistical methods, the recent strides in the field of machine 

learning (ML) present a compelling alternative to traditional statistical models. ML models, 

particularly those predicated on deep learning architectures, have shown great promise in 

fields requiring pattern recognition and predictive analytics, such as computer vision and 

image super-resolution. Over the last few years, these models have been repurposed for use 

in climate sciences, with some notable breakthroughs as in the case of weather forecasting 

(e.g., Lam et al., 2023). Although empirical evidence to support their efficacy in tasks 

downscaling tasks and emulation of climate models remains limited, some results appear 

promising (Addison et al., 2022; Hobeichi et al., 2023; Wang et al., 2021) and further 

developments could potentially combine computational efficiency with rich a characterization 

of spatiotemporal climate patterns. As observational data continues to improve, and dynamical 

models evolve further, I remain hopeful that ML models will eventually meet, if not exceed the 

expectations set for them. 

In summary, the landscape of climate change simulation methodologies continues to evolve, 

and while no single approach is without its limitations, the potential for synergy between 

diverse models offers a multi-faceted lens through which to understand the complexities of our 

planet's changing climate. 
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A SUPPORTING INFORMATION FOR CHAPTER 2 

 

 

Figure A-1: Location, elevation distribution, and digital elevation models (DEM) of the Thur 
and Kleine Emme catchments. Coordinates are in Swiss projection (CH-1903) in m. 

 

Figure A-2: Spatial distribution of 97 sub-catchments in the Kleine Emme river network (a) 
and 140 of the Thur river network (b). River reaches are drawn according to their Strahler 

Thur 
Kleine 
Emme 
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order and markers are coloured based on their average specific annual discharge in the 
present climate. 

 

Catchment Station name Abbreviation Elevation (m) East (m) North (m) 

Thur 

Ebnat-Kappel EBK 623 726,346 237,176 

Säntis SAE 2,502 744,200 234,920 

St. Gallen STG 775 747,865 254,588 

Aadorf / Tänikon TAE 539 710,514 259,821 

Kleine Emme 

Luzern LUZ 454 665,540 209,848 

Napf NAP 1,404 638,132 206,078 

Pilatus PIL 2,106 661,910 203,410 

Table S-1: List of ground weather stations managed by MeteoSwiss used as data sources. 
Coordinates based on Swiss projection (CH-1903). 

 

ID Driving GCM RCM 

1 ICHEC-EC-EARTH CLMcom-CCLM4-8-17 

2 ICHEC-EC-EARTH DMI-HIRHAM5 

3 ICHEC-EC-EARTH SMHI-RCA4 

4 MOHC-HadGEM2-ES CLMcom-CCLM4-8-17 

5 MOHC-HadGEM2-ES SMHI-RCA4 

6 IPSL-IPSL-CM5A-MR SMHI-RCA4 

7 MPI-M-MPI-ESM-LR CLMcom-CCLM4-8-17 

8 MPI-M-MPI-ESM-LR MPI-CSC-REMO2009 

9 MPI-M-MPI-ESM-LR SMHI-RCA4 

Table S-2: List of Euro-Cordex global circulation models (GCM) and regional climate models 
(RCM) chains used in the future climate simulations. 
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Figure A-3: Mean near-surface air temperature for the period 1982–2015 as obtained from 
the TabsY product (observed) in comparison with the mean ensemble generated by AWE-

GEN-2d (simulated). 

 

 

Figure A-4: Comparison between observed and simulated monthly temperatures at ground 
stations in Kleine Emme (top row) and Thur (bottom row). The black and red dashed lines 

represent the observed and simulated median values (respectively) and the bounded areas 
represent the observed and simulated 5–95th percentile ranges. The observed period covers 
34 years of data (1982–2015), while simulations represent the mean of 30 realizations of 30 

years each. 
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Figure A-5: Comparison between the observed and simulated daily cycle of temperatures at 
ground stations in Kleine Emme (top row) and Thur (bottom row). The black and red dashed 
lines represent the observed and simulated median values (respectively) and the bounded 
area represents the simulated 5–95th percentile ranges. The observed period covers 34 
years of data (1982–2015), while simulations represent the mean of 30 realizations of 30 

years each. 
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Figure A-6: Mean precipitation for the period 1982–2015 as obtained from the RhiresD 
product (observed) in comparison with the mean ensemble generated by AWE-GEN-2d 

(simulated). 

 

 

 

Figure A-7: A comparison between observed and simulated precipitation for each month. 
The black and red dashed lines represent the observed and simulated median values 

(respectively) and the bounded red area represents the 5–95th percentile range of 
simulations. The observed period covers 34 years of data (1982–2015), while simulations 

represent the mean of 30 realizations of 30 years each. 
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Figure A-8: Validation of annual maximum precipitation intensity at the hourly scale for 
different return periods in Kleine Emme (top row) and Thur (bottom row) weather stations. 

The continuous lines represent the observed (blue) and simulated (red) precipitation 
intensity computed by fitting GEV distribution to the recorded data, whereas the dashed red 

lines show the 5th–95th quantiles range of the simulations.  

 

 

Figure A-9: Comparison between observed (blue) and Topkapi-ETH simulated (red) 
streamflow at the outlet of Kleine Emme catchment for the discharge peak of the validation 

period (2000–2009).  
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Figure A-10: Comparison between observed and simulated peaks over the threshold at the 
hourly scale for different return periods in Kleine Emme (left) Thur (right) catchments. The 

solid lines represent the observed (blue) and simulated (red) streamflow computed by fitting 
a Generalized Pareto distribution to the recorded data for the 2000–2009 period. The plotting 
positions were calculated using Gringorten’s equation and the return periods are calculated 

via the reduced variate method. 

 

 

Figure A-11: Comparison between observed and simulated mean monthly streamflow for the 
2000–2009 period in Kleine Emme (a) and Thur (b). 
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Figure A-12: Monthly snowmelt fraction of the total streamflow for the present (blue) and 
future multi-model mean at the end of the century (green) in Kleine Emme (a) and Thur (b). 

The dotted lines represent the mean and the bounded areas show the 5th–95th quantile 
range. 

 

 Precipitation Streamflow 

 Kleine Emme Thur Kleine Emme Thur 

T (yr) hourly daily hourly daily hourly daily hourly daily 

2 0.650 0.794 0.815 0.377 0.000 0.000 0.745 0.139 

5 0.894 0.513 0.724 0.413 0.001 0.001 0.953 0.054 

10 0.519 0.192 0.299 0.106 0.012 0.004 0.787 0.080 

25 0.372 0.047 0.303 0.054 0.072 0.025 0.873 0.068 
Table S-3: P-values according to the Mann-Whitney-Wilcoxon test for the null hypothesis 

that the present and future simulations have the same median value. Values below 5% are 
in bold and suggest there is a significant change in the median. 

 

Figure A-13: Antecedent conditions to annual maximum hourly streamflow events at the 
outlet of the Kleine Emme (left column) and Thur (right) rivers. The panels show the average 

streamflow (a, b) and effective soil water volume (c, d) for present and end of the century 
conditions, as well as a comparison of their change (future-present; e, f). 
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 ELEVATION 

(MASL) 

SIZE 

(KM2) 

CLASS 

1 623 2.5 Low, Small 

2 925 62.6 Low, Big 

3 1036 2.8 Middle, Small 

4 1001 64.0 Middle, Big 

5 1565 8.1 High, Small 

6 1466 76.0 High, Big 
 

 

Figure A-14: Identification, location and main properties of six selected sub-catchments 
belonging to the Kleine Emme river network. 

 

 

Figure A-15: First (a–d) and second (e–h) most important components contributing to the 
seasonal flow in the Thur river network under present (circles) and future (triangles) climate 
conditions. Mean seasonal specific flow is plotted as a function of sub-catchment elevation 
and coloured by the components ET (evapotranspiration), Rain, Snowmelt, ∆Soil Volume 

(change in soil water volume). 

2 

1 

4 

5 

3 

6 



114 
 

 

 

Figure A-16: Ratio of future (2080–2089) to present monthly snowfall at the Kleine Emme (a) 
and Thur (b) averaged over different elevation ranges 

 

  

Figure A-17: Mean annual evapotranspiration (a, b) and effective saturation (c, d) anomalies 
comparing the end of the century multi-model mean with the present climate simulations in 
Kleine Emme (left) and Thur (right). The black points represent the value for each grid cell, 

while the solid lines and shaded areas show the mean and 5th–95th quantile range for every 
100-meter elevation bin, respectively 
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B SUPPORTING INFORMATION FOR CHAPTER 3 

 

Figure B-1: Location, elevation distribution, and digital elevation models (DEM) of the Thur 
and Kleine Emme catchments. Coordinates are in Swiss projection (CH-1903) in m. The plot 

is based on Moraga et al. (2021). 

 

Table B-1: List of Euro-Cordex global circulation models (GCM) and regional climate models 
(RCM) chains used in the future climate simulations. 

ID Driving GCM RCM 

1 ICHEC-EC-EARTH CLMcom-CCLM4-8-17 

2 ICHEC-EC-EARTH DMI-HIRHAM5 

3 ICHEC-EC-EARTH SMHI-RCA4 

4 MOHC-HadGEM2-ES CLMcom-CCLM4-8-17 

5 MOHC-HadGEM2-ES SMHI-RCA4 

6 IPSL-IPSL-CM5A-MR SMHI-RCA4 

7 MPI-M-MPI-ESM-LR CLMcom-CCLM4-8-17 

8 MPI-M-MPI-ESM-LR MPI-CSC-REMO2009 

Thur 

Kleine 
Emme 
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ID Driving GCM RCM 

9 MPI-M-MPI-ESM-LR SMHI-RCA4 
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Figure B-2: Differences in annual temperature (a, b) and precipitation ratio (c, d) between the 
present period (1976–2005) and future periods averaged over the entire Kleine Emme and 
Thur catchments. Numbers 1 to 9 refer to the different climate models (seeTable B-1) and 
MMM refers to the multi-model mean. Central lines in the box plots show the median of the 

annual means, while the boxes represent the interquartile range of the data. 
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Figure C-1: Digital elevation model (DEM) of Switzerland (a), and the Kleine Emme 
catchment (b), along with its distribution of elevations (c). Coordinates are in Swiss 

projection (CH-1903) in m. 

 

Table C-1: List of ground weather stations used in the calibration. Coordinates based on 
Swiss projection (CH-1903) 

Location Abbreviation Elevation (masl) East (m) North (m) 

Luzern LUZ 454 665,540 209,848 

Napf NAP 1404 638,132 206,078 

Pilatus PIL 2106 661,910 203,410 

 

Table C-2: Model chains of global circulation models (GCM) and regional climate models 
(RCM) used to compute the factors of change (FC) used in future climate simulations. 

ID Driving GCM RCM 

1 ICHEC-EC-EARTH CLMcom-CCLM4-8-17 

2 ICHEC-EC-EARTH DMI-HIRHAM5 
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ID Driving GCM RCM 

3 ICHEC-EC-EARTH SMHI-RCA4 

4 MOHC-HadGEM2-ES CLMcom-CCLM4-8-17 

5 MOHC-HadGEM2-ES SMHI-RCA4 

6 IPSL-IPSL-CM5A-MR SMHI-RCA4 

7 MPI-M-MPI-ESM-LR CLMcom-CCLM4-8-17 

8 MPI-M-MPI-ESM-LR MPI-CSC-REMO2009 

9 MPI-M-MPI-ESM-LR SMHI-RCA4 

 

Table C-3: Parameters for the two-term exponential function used to describe the values of 
the mean cloud area ratio (μCAR) as a function of the distance to a wet spell (tin) as well as 

the standard deviation σCAR during the inter-storm periods.  

 μCAR(tin)  = a*exp(b*tin) + c*exp(d* tin) 
σCAR 

 

Month a b c d  

Jan 1.76E-01 1.66E-04 6.13E-01 -1.48E-03 0.430  

Feb -6.40E-02 1.81E-04 6.80E-01 -3.49E-04 0.263  

Mar 6.42E-01 -6.33E-04 -3.49E-07 3.07E-03 0.286  

Apr 2.58E-01 -1.58E-05 3.40E-01 -8.57E-04 0.368  

Mai -9.92E-03 5.26E-04 6.87E-01 -7.18E-04 0.288  

Jun 4.78E-01 -4.71E-04 1.31E-01 -9.83E-03 0.318  

Jul 4.20E-02 5.57E-04 5.04E-01 -2.45E-03 0.278  

Aug 6.36E-02 3.92E-04 4.68E-01 -1.91E-03 0.330  

Sep -4.16E-08 4.84E-03 3.11E-01 -3.88E-05 0.358  

Oct 1.52E-03 1.44E-03 5.57E-01 -3.42E-04 0.392  

Nov 1.23E-05 3.28E-03 6.83E-01 -4.78E-04 0.388  

Dec 5.14E-01 -4.86E-04 2.30E-01 -4.36E-03 0.300  

 

Table C-4: Parameters for the autoregressive moving-average model ARMA(4,2) used to 
describe the stochastic component of the dry-spell cloud cover. 

Month 
yt = c + ϕ1*yt-1 + … ϕp*yt-p + ϵt + θ1*ϵt-1 + … θq*ϵt-q 

ϕ1 ϕ2 ϕ3 ϕ4 θ1 θ2 

Jan 1.24 -0.05 0.03 -0.22 -0.03 -0.04 

Feb 1.31 -0.07 -0.13 -0.12 -0.12 -0.15 

Mar 1.32 -0.10 -0.10 -0.13 -0.14 -0.12 
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Month 
yt = c + ϕ1*yt-1 + … ϕp*yt-p + ϵt + θ1*ϵt-1 + … θq*ϵt-q 

ϕ1 ϕ2 ϕ3 ϕ4 θ1 θ2 

Apr 1.18 0.06 -0.03 -0.22 0.03 -0.09 

May 1.30 -0.05 -0.13 -0.13 -0.14 -0.14 

Jun 1.32 -0.09 -0.10 -0.14 -0.16 -0.13 

Jul 1.26 0.01 -0.17 -0.11 -0.10 -0.18 

Aug 1.36 -0.15 -0.12 -0.10 -0.24 -0.13 

Sep 1.27 -0.06 -0.01 -0.20 -0.09 -0.07 

Oct 1.32 -0.15 -0.01 -0.18 -0.11 -0.03 

Nov 1.26 -0.07 -0.02 -0.19 -0.06 -0.06 

Dec 1.20 0.06 -0.06 -0.20 0.00 -0.11 

 

 

Figure C-2: Fit of the Johnson distribution to observations of dry-period cloud cover for each 
month.  

 

Table C-5: Monthly mean of the observed wet-period cloud area ratio (CAR) 

Month 
Mean 
CARw 

Jan 0.80 

Feb 0.80 

Mar 0.78 

Apr 0.78 

Mai 0.79 

Jun 0.73 
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Jul 0.65 

Aug 0.71 

Sep 0.74 

Oct 0.77 

Nov 0.76 

Dec 0.81 

 

 

Figure C-3: Number of observed wet events for each bin of temperatures at the onset. Note 
that the bins in the extremes are semi-infinite ([-inf–2 °C] and [20°C–+inf], respectively) 

 

 

 

Figure C-4: Relation between temperature and mean areal intensity (IMF) in the observed 
record for the Kleine Emme catchment. Panel (a) on the left shows a scatterplot of IMF v/s 

temperature. Panel (b) on the top right shows the scaling of the highest intensities with 
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temperature using the temperature binning (dotted lines) and the quantile regression 
methods (solid lines) for quantiles from q = .90 to q = .999. Panel (c) on the bottom right 

shows the CC rate as obtained from the slope given by quantile regression method for each 
chosen quantile.  

 

Table C-6: Parameters for the covariance matrix of the Whittle-Matérn function. 

 α νW νI νC νWI νWC νCI ρWI ρWC ρCI 

Bin#1 0.96 0.89 1.11 0.08 102.10 101.08 97.30 0.21 0.18 0.11 

Bin#2 1.04 0.62 1.05 0.09 94.63 104.50 96.97 0.13 0.07 0.03 

Bin#3 1.08 1.28 0.96 0.22 93.79 117.71 95.96 0.14 0.04 0.07 

Bin#4 0.62 0.39 0.85 0.07 94.77 100.73 88.20 0.11 0.06 0.01 

Bin#5 0.85 0.30 0.85 0.07 78.93 93.85 100.90 0.13 0.05 0.02 

Bin#6 0.66 0.47 2.00 0.18 1.09 4.41 1.03 0.51 0.18 0.12 

Bin#7 1.30 0.92 2.00 0.35 3.78 37.58 79.34 0.43 0.15 0.07 

Bin#8 0.14 0.17 0.33 0.04 0.14 0.20 0.31 0.81 0.27 0.10 

 

 

 

Figure C-5: Cloud area ratio (CAR) of a random simulation. The modification of the CAR 
module in AWE-GEN-2d-CC generates some discontinuity in the CAR time series at the 

beginning of the wet events. 
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Figure C-6: Monthly distributions of the wet-period cloud area ratio (CARd) for the 
observations (gray bars) simulations using the new AWE-GEN-2d-CC (blue circles), and 

simulations using the previous AWE-GEN-2d model (green x’s)  

 

 

Figure C-7: Comparison of the cumulative distribution function (CDF) of the areal mean 
hourly temperature observed (black, solid line), simulated with AWE-GEN-2d-CC (blue, 
dashed line), and simulated with AWE-GEN-2d (green, dotted line) during wet events. 
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Figure C-8: Monthly cumulative distribution functions (CDF) of the observed (black line) and 
simulated (blue dashed line) hourly IMF. The shaded red area represents the IQR of the 

CDF across 900 simulations. Only non-zero values of IMF are considered. 

 

 

 

Figure C-9: Monthly q-q plots comparing the observed and simulated hourly IMF values up 
to the .99 quantile. The shaded blue area represents the IQR of the quantiles across 900 

simulations. Only non-zero values of IMF are considered. 

 

Table C-7:. Area and RCM-averaged monthly absolute change for mean temperature ΔT, 
relative change for mean precipitation ΔPr, and relative change for the hourly 99th quantile 

Δq99 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 
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ΔT [K] 3.93 3.88 3.85 3.88 3.90 4.67 4.73 4.65 4.14 4.17 4.17 3.93 
ΔPr 1.023 1.003 1.003 0.997 0.993 0.898 0.897 0.917 0.982 0.999 1.009 1.053 
Δq99 1.104 1.157 1.244 1.157 1.264 1.061 1.089 1.079 1.198 1.211 1.244 1.031 

 

 

 

Figure C-10: Comparison of the simulated mean monthly precipitation using the AWE-GEN-
2d-CC model (blue) and the corresponding observed statistics extracted from three ground 

weather stations of the MeteoSwiss network (Table S-1). 
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Figure C-11: Timing (angular axis) and magnitude (radial axis) of the maximum hourly 
streamflow at the outlet of the catchment for each of the 900 present (a, blue, top) and future 
(b, red, middle) hydrological simulations. The circular mean and standard deviation range of 
the timings are plotted as solid and dashed lines, respectively. Panel (c) shows the circular 

mean of the 900 timing values for each of the 97 sub-catchments of the Kleine Emme, 
plotted against their median elevation, the mean and the standard deviation range are 

shown by a solid line and dashed lines, respectively. 

 


