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Subsurface applications such as geothermal heat extraction or CO2 se-
questration are vital for solving today’s energy and climate challenges.
Their reservoir rock typically consists of fractured porous media, whose
fractures can greatly affect flow, transport, and mechanics. Accurate and
efficient modelling of the relevant physical processes and characterising
the related parameters are crucial for performance estimation and risk as-
sessment. This simulation-based thesis aims to enhance these aspects.

Time-dependent hyperbolic partial differential equations (PDEs) are com-
monly used for modelling transport phenomena and seismic activity.
Adaptive time stepping methods, like the adaptive conservative time in-
tegration (ACTI) scheme, improve the efficiency of explicit time integration
by allowing variable local time steps. We extend ACTI to tracer transport
in fractured porous media, achieving accurate results while reducing com-
putational costs by orders of magnitude compared to global time stepping.

Limited observability of subsurface reservoirs and substantial uncertain-
ties, particularly concerning fractures and their apertures, pose chal-
lenges to accurate modelling. Ensemble-based data assimilation (DA)
methods, like the ensemble smoother with multiple data assimilation (ES-
MDA), are established tools for reducing uncertainty in model parameters
and improving simulation results. We demonstrate the significant impact
of measurement strategies and matrix permeability on DA results, high-
lighting the utility of intermediate measurements during reservoir stimula-
tion and the influence of matrix permeability on fracture parameter esti-
mation.

Constructing a prior ensemble that accurately reflects available knowl-
edge is crucial for ensemble-based DA methods. We introduce the far-
field stress approximation (FFSA), a proxy model which projects the far-
field stresses onto the fracture planes and approximates shear displace-
ment with linear elastic theory. The FFSA efficiently generates reason-
able prior realisations of fracture apertures in a realistic two-dimensional
fracture network. The resulting posterior ensemble matches the flow and
transport behaviour of the synthetic reference at measurement locations.
It improves the estimation of the fracture apertures, markedly outperform-
ing results from prior ensembles based on naïve stochastic approaches.

In conclusion, this thesis contributes to a more efficient and accurate sim-
ulation of fractured porous media, paving the way for improved reservoir
management and decision-making in various subsurface applications.
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Abstract

Subsurface applications such as geothermal heat extraction or CO2 sequestration
are vital for solving today’s energy and climate challenges. Their reservoir rock
typically consists of fractured porous media, whose fractures can greatly affect
flow, transport, and mechanics. Accurate and efficient modelling of the relevant
physical processes and characterising the related parameters are crucial for per-
formance estimation and risk assessment. This simulation-based thesis aims to
enhance these aspects.
Time-dependent hyperbolic partial differential equations (PDEs) are commonly

used for modelling transport phenomena and seismic activity. Adaptive time step-
ping methods, like the adaptive conservative time integration (ACTI) scheme,
improve the efficiency of explicit time integration by allowing variable local time
steps. We extend ACTI to tracer transport in fractured porous media, achiev-
ing accurate results while reducing computational costs by orders of magnitude
compared to global time stepping.
Limited observability of subsurface reservoirs and substantial uncertainties, par-

ticularly concerning fractures and their apertures, pose challenges to accurate
modelling. Ensemble-based data assimilation (DA) methods, like the ensemble
smoother with multiple data assimilation (ESMDA), are established tools for re-
ducing uncertainty in model parameters and improving simulation results. We
demonstrate the significant impact of measurement strategies and matrix per-
meability on DA results, highlighting the utility of intermediate measurements
during reservoir stimulation and the influence of matrix permeability on fracture
parameter estimation.
Constructing a prior ensemble that accurately reflects available knowledge is

crucial for ensemble-based DA methods. We introduce the far-field stress ap-
proximation (FFSA), a proxy model which projects the far-field stresses onto the
fracture planes and approximates shear displacement with linear elastic theory.
The FFSA efficiently generates reasonable prior realisations of fracture apertures
in a realistic two-dimensional fracture network. The resulting posterior ensemble
matches the flow and transport behaviour of the synthetic reference at measure-
ment locations. It improves the estimation of the fracture apertures, markedly
outperforming results from prior ensembles based on naïve stochastic approaches.
In conclusion, this thesis contributes to a more efficient and accurate simulation

of fractured porous media, paving the way for improved reservoir management and
decision-making in various subsurface applications.
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Zusammenfassung

Unterirdische Verfahren wie die Entnahme geothermischer Wärme oder CO2 Spei-
cherung spielen eine entscheidende Rolle bei der Bewältigung aktueller Herausfor-
derungen in den Bereichen Energiegewinnung und Klimaschutz. Diesen Verfahren
nutzen Reservoirgesteine, welche üblicherweise aus von Brüchen durchzogenen po-
rösen Medien bestehen. Die Brüche in diesen Gesteinen können dabei einen er-
heblichen Einfluss auf Strömungsverhalten, Transportprozesse und mechanischen
Eigenschaften haben. Daher ist eine präzise und effiziente Modellierung der rele-
vanten physikalischen Prozesse und Charakterisierung der zugehörigen Parameter
äusserst wichtig, um Leistungsfähigkeit und Risikopotenzial der Verfahren ab-
schätzen zu können. Die vorliegende simulationsbasierte Dissertation zielt darauf
ab, diese Aspekte zu verbessern.

Zeit-abhängige hyperbolische partielle Differenzialgleichungen sind ein weitver-
breitetes Werkzeug zur Modellierung von Transportverhalten und seismische Akti-
vitäten. Adaptive Zeitschrittverfahren, wie das Adaptive Conservative Time Integ-
tration (ACTI) Schema, steigern die Effizienz expliziter Zeitintegration, indem sie
variable lokale Zeitschritte erlauben. Diese Arbeit erweitert das ACTI-Verfahren
und wendet es auf Tracer-Transport in geklüftet-porösen Medien an. Dabei erzie-
len wir präzise Resultate, während die Rechenkosten im Vergleich zur globalen
Zeitintegration um Grössenordnungen reduziert werden.

Die limitierte Einsehbarkeit unterirdischen Reservoire und erheblichen Unsi-
cherheiten, insbesondere bezüglich der Bruchstrukturen und deren Öffnungen,
stellen grosse Herausforderungen an ein korrektes Modellieren dar. Ensemble-
basierte Datenassimilierungsmethoden, wie der Ensemble Smoother for Multiple
Data Assimilation (ESMDA), sind etablierte Werkzeuge, um Unsicherheiten in
den Modellparametern zu verringern und Genauigkeit von Simulationsergebnis-
sen zu steigern. Unsere Untersuchungen zeigen einen wesentlichen Einfluss von
Messstrategien und Matrixpermeabilität auf die ESMDA Resultate. Im Besonde-
ren wird die Bedeutung von Messungen während der Reservoir-Stimulierung und
der Effekt der Matrixpermeabilität auf die präzise Bestimmung der Bruchpara-
metern hervorgehoben.

Wesentlich für ensemble-basierte Datenassimilierungsmethoden sind zudem ein
Prior-Ensemble, welches das verfügbare Wissen über das System umfassend wider-
spiegelt. In diesem Zusammenhang stellen wir die Far-Field Stress Approximation
(FFSA) vor, ein Proxy-Modell, das den Fernfeldstress auf die Bruchebenen pro-
jiziert und Scherverschiebungen mit linearer Elastizität approximiert. Die FFSA
ermöglicht es, auf effiziente Weise plausible Realisierungen der Bruchöffnungen in
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einem realistischen zwei-dimensionalen Bruchnetzwerk zu erzeugen. Das daraus
resultierende Posterior-Ensemble reproduziert das Strömungsverhalten der syn-
thetischen Referenz an den Messpunkten und verbessert die Abschätzung der
Spaltöffnungen. Es übertrifft dabei die Resultate aus zwei naiven stochastischen
Ansätzen deutlich.
Zusammenfassend leistet diese Dissertation einen Beitrag zu einem effizienteren

und genaueren Simulieren von geklüftet-porösen Medien. Sie ebnet dabei den Weg
für ein verbessertes Reservoirmanagement und unterstützt Entscheidungsprozesse
in verschiedenen unterirdischen Anwendungen.
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1 Introduction

Ensuring access to affordable, reliable, sustainable and modern energy for all is a
key challenge of our time and one of the 17 sustainable development goals of the
United Nations (United Nations, 2023, see also sdgs.un.org). While the amount of
renewable energy obtained from water, wind and sun is increasing, we still largely
depend on energy obtained from the subsurface, particularly oil, coal and natural
gas (Energy Institute, 2023). The transition towards renewable energy sources
does not lessen the importance of the subsurface. It remains crucial as a provider
of energy and minerals and as a repository for long-term storage of waste products
unwanted on Earth’s surface or in the atmosphere. In the following, we have a
closer look at some subsurface applications.
Petroleum engineering has historically been at the forefront of subsurface re-

search. Oil and natural gas currently account for approximately 55% of the world’s
primary energy consumption (Energy Institute, 2023). Nevertheless, these re-
sources are finite, and their utilisation contributes significantly to CO2 emissions.
One of the challenges in petroleum engineering is maximising resource extraction
(enhanced oil recovery techniques, exploration of unconventional reserves such as
shale gas) while minimising their environmental impact.
Harnessing geothermal energy in proximity to tectonic plate boundaries of-

fers a renewable and sustainable energy source, as production roughly balances
recharge dominated by the convection of magma and hot water (Stefansson, 2000;
O’Sullivan et al., 2010). Countries such as Kenya, Iceland and New Zealand are
successfully generating a significant portion of their energy from such convective
geothermal systems. Away from tectonic plate boundaries, accessing geothermal
heat suitable for electricity generation often requires drilling into dry and imper-
meable rocks at several kilometres depth. Enhanced geothermal systems (EGS)
have emerged as a solution to this challenge, aiming to enhance the rock perme-
ability through reservoir stimulation (Jia et al., 2022). While EGS is not strictly
renewable due to the slow conductive thermal recharge in hot dry rocks compared
to the production rate, it has the potential to bridge the gap until fully renewable
clean energy is available in sufficient quantities.
In Switzerland, EGS projects in Basel and St. Gallen were stopped after causing

earthquakes that were clearly felt by the population and resulted in minor non-
structural damage (Häring et al., 2008; Deichmann & Giardini, 2009; Edwards
et al., 2015). Nevertheless, Switzerland plans to produce 4.4 TWh of geothermal
electricity annually by 2050, with new EGS projects currently in the planning and
exploration phases (Driesner et al., 2021). Ongoing research at the Grimsel Test
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1 Introduction

Site and Bedretto Lab, two underground research laboratories, provides valuable
insights, particularly into the physics of induced earthquakes during hydraulic
stimulation (Amann et al., 2018; Gischig et al., 2020). An additional challenge
lies in gaining a deeper understanding of the Swiss subsurface, which is crucial for
identifying potential EGS sites and mitigating their seismic risks.
Carbon capture and storage (CCS) is a potential key instrument to mitigate

climate change (e.g. Metz et al., 2005; Bui et al., 2018). Capturing CO2 is most
efficient at locations with high concentrations, e.g. at fossil fuel and waste-based
power plants or in cement production. Subsequently, the CO2 is compressed into
supercritical form, transported, and stored in a suitable location. Subsurface
reservoirs have the potential to store CO2 permanently through physical and
geochemical trapping (e.g. Lu et al., 2013). The former includes confining layers
(caprocks) and capillary trapping, and the latter encompasses dissolution into
formation fluids and mineralisation. Several (pilot) CCS projects are in operation
or planning (e.g. Gunnarsson et al., 2018; Yang et al., 2023). One challenge in
CCS is the accurate prediction and monitoring of CO2 migration over extensive
time periods, which is essential for ensuring storage sites’ long-term effectiveness
and safety (e.g. Shao et al., 2021; Flemisch et al., 2024).
Radioactive waste from nuclear power plants, as well as from medicine, indus-

try and research, needs to be stored safely. Switzerland anticipates more than
40 000 m3 of accumulated radioactive waste by the mid-21st century, including
1500 m3 of high-level waste (Churakov et al., 2020). Geological disposal is gen-
erally considered the safest long-term solution, and the first sites are already in
operation. In Switzerland, experiments in the Mont Terri rock laboratory provide
valuable insights (Bossart et al., 2018). The incredibly long time scales involved
in radioactive waste storage pose great challenges for experiments and numerical
simulations (Tsang et al., 2015).

1.1 Scope of this work

These subsurface applications have in common that a thorough understanding of
the reservoirs is crucial for predicting performance and assessing risks. This task
includes the understanding and modelling of the relevant physical processes and
the characterisation of related parameters. We thereby identify two specific needs
that this thesis is addressing:

1. Improve the efficiency of transport algorithms in fractured porous media,
starting with hyperbolic scalar tracer transport.

2. Improve the characterisation of uncertain fracture properties, especially
their apertures.
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1.1 Scope of this work

The most significant scientific contributions of this thesis are as follows:

• Decreasing the computational costs of explicit time integration by orders of
magnitude with the adaptive conservative time integration (ACTI) scheme
compared to global time stepping, leading to efficient and accurate simula-
tion results for tracer transport in fractured porous media (Chapter 3).

• Demonstrating the significant influence of measurement strategies and ma-
trix permeability on estimating fracture properties (Chapter 5).

• Underlining the importance of accurate prior modelling in ensemble-based
data assimilation by introducing the far-field stress approximation (FFSA),
a proxy model for aperture calculation in shear-dominated regimes (Chap-
ter 6).

In addition, this thesis summarises the fundamental theory and reviews the latest
advancements: Chapter 2 introduces flow, transport and mechanics in fractured
porous media and summarises existing simulation techniques. Chapter 4 provides
an overview of data assimilation techniques, focussing on ensemble-based methods
and their application to fractured porous media. Finally, Chapter 7 concludes the
work and offers possible future directions.
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2 Fractured Porous Media

2.1 Porous media

A porous medium comprises a solid matrix forming the material’s skeleton and a
void space (or pore space) which is typically filled with one or more fluids (e.g.
water, air, CO2, or oil). For a detailed definition, see e.g. Bear (1988). The ratio
of pore volume Vpores over total volume Vtotal, i.e.

φ =
Vpores
Vtotal

, (2.1)

is called the porosity. Various materials, including rocks, bones, wood, cement,
or ceramics, can be regarded as porous media. In modelling porous media, a
distinction is made between microscopic behaviour at the pore scale and macro-
scopic behaviour at the representative elementary volume (REV) scale. An REV
is defined as the domain size above which an averaged quantity becomes approxi-
mately constant (Bear, 1988). This concept allows for the modelling of quantities
that vary continuously in space. This work exclusively focuses on porous media
at the macroscopic scale.

2.1.1 Flow in porous media

Fluids can move through porous media when their pores are interconnected. In
1856, Henry Darcy laid the foundation for understanding fluid flow in porous
media by formulating what is now known as Darcy’s law (Darcy, 1856; Brown,
2002). In his experiments with sand filters, he observed that the flow rate Q of
water through a vertical column of sand is proportional to the cross-sectional area
A of the column, proportional to the difference in the hydraulic head h1−h2, and
inversely proportional to the length of the column L, i.e.,

Q = κA
h1 − h2

L
. (2.2)

The hydraulic (or piezometric) head is defined as

h = z +
p

ρg
(2.3)

and describes the energy per unit weight (ρg) of the fluid. Here, z is the elevation,
p is the pressure, ρ is the density of the fluid, and g is the gravitational acceleration.
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2 Fractured Porous Media

The velocity head is omitted here because the typically low fluid velocity in porous
media means its contribution is usually negligible. The subscripts 1 and 2 refer
to the location up- and downstream of the sand column, respectively. Darcy
observed that the proportionality constant κ depends on the permeability of the
sand. Later, this constant was named hydraulic conductivity and identified as

κ =
kρg

µ
, (2.4)

with the intrinsic permeability k of the porous medium and dynamic viscosity µ
of the fluid.
Permeability describes the ability of a porous medium to allow fluid flow through

it, making it a crucial parameter in various subsurface applications. The SI unit
of permeability is m2, often measured in millidarcies (md), where 1 d ≈ 10−12 m2.
Typical permeability values span many orders of magnitude, starting from 10−7 m2

for clean gravel up to 10−20 m2 for fresh granite (Bear, 1988).
The specific discharge, also known as Darcy velocity or volumetric flux density,

is defined as
q =

Q

A
. (2.5)

It describes the flow rate per unit cross-sectional area of the porous medium.
While q has the units of velocity, it differs from the average effective flow velocity
(or pore velocity), given by

a =
Q

Apores
' q

φ
. (2.6)

Note that q and a are macroscopic quantities that are continuous in space and
thus rely on the REV concept. The actual local flow field at the pore scale can
be very complex.
In three dimensions, Darcy’s law in differential form reads

q = −K

µ
(∇p− ρg) , (2.7)

where K is the potentially anisotropic permeability tensor. This equation can be
derived from the Stokes equation assuming a viscous resisting force that is linear
with the velocity; for a rigorous derivation see e.g. Neuman (1977).
Darcy’s law as presented in Eq. (2.7) is applicable to the steady-state laminar

(i.e. low Reynolds number) flow of a single-phase, incompressible Newtonian fluid
through a saturated, homogeneous porous medium. Thermal and chemical effects
must be negligible. Several extensions to Darcy’s law have been developed to
relax one or more of these restrictions. For instance, the Forchheimer term is
introduced for flows with high Reynolds numbers, accounting for inertial effects.
The Brinkman term accounts for viscous effects that become significant for very
small pore sizes. Multiphase flow in porous media can be modelled with the
concept of relative permeability.
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2.1 Porous media

Elliptic pressure equation

Mass conservation of the fluid phase in a porous medium is described by the
continuity equation

∂(φρ)

∂t
+∇ · (ρq) = S , (2.8)

where the source term S represents the generation of fluid mass per unit volume
per unit time. Assuming both the fluid and matrix of the porous medium are
incompressible, this equation reduces to ∇ · q = q̇Source. In the absence of gravi-
tational forces (i.e., only horizontal flow), we obtain the elliptic pressure equation

∇ ·
(
K

µ
∇p
)

+ q̇Source = 0 . (2.9)

The source term q̇Source = S/ρ describes the volumetric flow rate ensuing from a
source or sink per unit volume, where q̇Source > 0 corresponds to fluid injection
and q̇Source < 0 to fluid extraction.

Pressure diffusion equation

For slightly compressible fluid and pores, i.e. ρ = ρ(p) and φ = φ(p), we obtain

φρct
∂p

∂t
− kρ

µ

(
∇2p+ cf (∇p)2) = S (2.10)

from Eqs. (2.7) and (2.8) (see e.g. Zimmerman, 2017), where we assume a homo-
geneous isotropic medium (i.e., K = kI). The total compressibility

ct =
1

φρ

∂(φρ)

∂p
=

1

φ

∂φ

∂p
+

1

ρ

∂ρ

∂p
= cφ + cf (2.11)

is a combination of the pore compressibility cφ and the compressibility of the fluid
cf . The term cf (∇p)2 is negligible for liquids, and we can rearrange Eq. (2.10)
to the pressure diffusion equation

∂p

∂t
=

k

µφct
∇2p . (2.12)

Note that we neglect the source term here. The hydraulic diffusivity DH = k
µφct

describes the rate at which fluid pressure diffuses through a porous medium. A
pressure disturbance travels approximately a distance of R =

√
4DHt per time t.
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2 Fractured Porous Media

2.1.2 Transport in porous media

Transport phenomena play a crucial role in numerous applications involving porous
media. Fluid tracers, for example, are used for characterising subsurface reser-
voirs and mapping groundwater flow paths. Heat transport is a critical factor in
enhanced geothermal systems (EGS). Moreover, understanding the migration of
CO2 is essential for its safe and permanent underground storage. In this work,
our focus is specifically on tracer transport.
We can calculate the transport of a scalar concentration c in a porous medium

with the advection-diffusion equation

∂(φc)

∂t
+∇ · (φcv)−∇ · (D∇(φc))−R = 0 , (2.13)

where v is the advection speed, D is the diffusion coefficient, and R is the source
term. Here, we assume that the density of the tracer substance is constant. There-
fore, the conserved quantity is the tracer volume per unit volume, i.e., the product
of porosity and scalar concentration φc. The advection speed corresponds to the
average pore velocity (i.e., v = a = q/φ).
Neglecting diffusion (D → 0), we can rewrite Eq. (2.13) as the hyperbolic

advection equation

φ
∂c

∂t
+ q · ∇c− q̇SourcecSource = 0 , (2.14)

where we assume both the fluid and the matrix of the porous medium are incom-
pressible. Note that Eq. (2.14) is not written in the conservation form.

2.1.3 Mechanics of porous media

Mechanical processes are omnipresent in the subsurface, where reservoir rocks
are constantly subjected to tectonic stresses (Heidbach et al., 2018) and overbur-
den pressure. Additional forces can arise from pressurised fluids, thermal vari-
ations and chemical reactions. Understanding these interactions and predicting
the stability and evolution of subsurface structures is crucial in any subsurface
application.
The static force balance in a solid material in the absence of volume forces is

∇ · σ = 0 , (2.15)

where σ is the stress tensor. Assuming linear elasticity of the porous medium,
the stress tensor is related to the displacement vector u by

σ = λ (∇ · u) I +G
(
∇u +∇uT

)
, (2.16)

where I is the identity matrix. Lamé’s first parameter is given by

λ =
Eν

(1− 2ν)(1 + ν)
(2.17)
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2.2 Fractures

and the shear modulus G (also called Lamé’s second parameter) is calculated as

G =
E

2(1 + ν)
(2.18)

using Young’s modulus E and Poisson’s ratio ν.
Using the Cauchy stress tensor, the normal stress acting on a virtual plane in

the intact material is given by

σn = −n̂ · (σ · n̂) , (2.19)

where n̂ is the unit normal vector of the virtual plane. By this definition, σn is
positive for compressive stress and negative for tensile stress. The shear stress in
the direction of a unit tangent vector t̂ is expressed as

σs = t̂ ·
(
I− n̂ · n̂T

)
· (σ · n̂) . (2.20)

2.2 Fractures

Fractures represent displacement discontinuities within a material body. They
are three-dimensional structures consisting of two opposing surfaces along which
material cohesion is lost, thereby separating the material body into two or more
parts (Pollard & Aydin, 1988; Hargitai et al., 2021). Fractures exist in most rocks
(see Fig. 2.1 for some examples) and can significantly impact flow and transport
(Long & Witherspoon, 1985; Matthäi & Belayneh, 2004; Geiger et al., 2004; John-
ston et al., 2005; Geiger et al., 2010). They range from micro-cracks at the length
scale of grains to several metre-long joints and can form tectonic rifts and faults
(e.g., Rhine Graben, San Andreas Fault, East African Rift) extending up to a few
thousand kilometres. The following sections discuss the creation of fractures due
to rock failure and the most important fracture parameters.

2.2.1 Rock failure

Fractures form when the local stress concentration (typically around flaws or at
crack tips) exceeds the material’s strength (Griffith, 1921; Westergaard, 1939;
Irwin, 1957). The majority of fractures result from tensile failure, shear failure,
or a combination of both. The following section is based on the work of Zoback
(2007).

Tensile failure requires a negative effective normal stress on the fracture plane

σeff = σn − pf , (2.21)

where σn is the normal stress on the fracture plane, and pf is the fluid pressure
within the fracture. Due to the low tensile strength of rocks, even a small amount
of excess pressure is sufficient to initiate the growth of fractures that are longer
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2 Fractured Porous Media

(a) (b) (c)

(d) (e)

Figure 2.1: Examples of fractured rock: Old Red Sandstone of the Hornelen Basin
in Western Norway (a-c), Tschingelhörner with the prominent Glarus
thrust (d) and south slopes of Rigidalstock and Spitzmann in Engel-
berg (e). Photos taken by the author.

than a few decimetres. The resulting fractures, commonly referred to as joints
(opening-mode fractures, Mode I), form perpendicular to the maximum tensile (or
minimum compressive) principal stress. The relative displacement of the two sides
manifests as tensile opening with no significant parallel component. Mechanisms
that can lead to tensile failure include unloading (decompression), increased fluid
pressure in the fracture, or shrinkage of the rock due to cooling or desiccation
(i.e., reduction of water content). Tensile failure typically occurs within a few
kilometres from the Earth’s surface or through hydraulic fracturing, as the in situ
stresses are always compressive at depths greater than a few tens of metres. For
a detailed discussion of joints, see e.g. Pollard & Aydin (1988).
A brittle material under compressive stress, when subjected to sufficiently high

confining stress, can fail through shearing (Szwedzicki, 2007; Jaeger et al., 2007).
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2.2 Fractures

This type of failure is often described by the Mohr-Coulomb criterion, a linearised
approximation of the true Mohr failure envelope. According to this criterion,
shear failure occurs when

|σs| > τ = C + σeff tanφi , (2.22)

where τ is the shear strength, C is the cohesion, and φi is the angle of internal
friction. The resulting shear planes are oriented roughly at an angle of 30° from
the maximum principal stress and run parallel to the intermediate principal stress.
These features, commonly referred to as faults, experience a displacement that is
predominantly parallel to their plane. The direction of shearing can be perpen-
dicular to the fracture tip (in-plane shearing, Mode II) or parallel to the fracture
tip (out-of-plane shearing, Mode III). Additionally, shearing can lead to secondary
tensile fractures known as wing cracks (e.g. Horii & Nemat-Nasser, 1986; Baud
et al., 1996).
According to Anderson’s fault theory, one of the principal stresses is vertical,

as the Earth’s free surface is stress-free (Anderson, 1905, 1951). Consequently,
the other two principal stresses are horizontal. Different fault regimes emerge
depending on the magnitude of the vertical stress σv compared to the magnitude
of the maximum and minimum horizontal principal stress, σH and σh, respectively.
When σv > σH , the hanging wall moves downward relative to the footwall (i.e.
normal faulting). Conversely, when σh > σv, the hanging wall moves upward
relative to the footwall (i.e. reverse faulting). Strike-slip faulting of nearly vertical
faults occurs when σH > σv > σh.
Compared to the shearing of an intact rock mass described in Eq. (2.22), the

shearing of pre-existing fractures is cohesionless and thus occurs at lower shear
stresses. A pre-existing fracture begins to slip when the shear stress σs acting on
it exceeds the (static) frictional sliding strength τmax of the fracture plane, i.e.,

|σs| > τmax . (2.23)

This cohesionless frictional sliding strength can be modelled by the Coulomb fric-
tion law

τmax =

{
σeff tanφ′, σeff > 0

0, otherwise ,
(2.24)

where σeff denotes the effective normal stress at the fracture, and φ′ is the friction
angle. Note that the frictional sliding strength is zero for negative effective normal
stresses. As the fracture slips, the shear stress relaxes until the arrest criterium

|σs| ≤ τmax (2.25)

is satisfied. In practice, the friction angle varies with shear displacement, and
dynamic effects play a role.
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2 Fractured Porous Media

2.2.2 Fracture parameters

Understanding fractures in geological formations involves examining various pa-
rameters that define their characteristics. Some of these are illustrated in Fig. 2.2
for idealised fractures in a 2D domain. This section discusses the most important
fracture parameters for flow, transport and mechanics by building upon Singhal
& Gupta (2010).

(a) Location (b) Orientation (c) Length (d) Aperture

(e) Set (f) Density (g) Spacing (h) Connectivity

Figure 2.2: Fracture parameters of idealised fracture lines in a 2D domain.

A single fracture is foremost determined by the extent of its surface charac-
terised by location, orientation, size and shape. Furthermore, the fracture aper-
ture describes the opening of the fracture, i.e., the distance between the two
opposing fracture surfaces. This vital parameter for flow and transport in frac-
tured porous media is discussed in more detail in the following section. In fracture
mechanics, the friction angle of the fracture surface is essential. It depends on the
rock material (described e.g. by the basic friction angle) and on the roughness
of the fracture surface (described e.g. by the joint roughness coefficient). Differ-
ent models exist for determining the friction angle; one is the empirical model of
Barton and Bandis described in detail in Appendix A.
Fractures of similar orientation and formed under comparable conditions are

grouped into a set. They tend to be of similar age and exhibit coherent orientation
and length statistics. A rock mass can contain fractures from multiple sets. Pre-
existing ones often influence the formation of newer fractures. Newer fractures
can, for example, terminate at existing fractures and thus show different length
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2.2 Fractures

statistics (Rawnsley et al., 1998). A fracture set is characterised by its spacing
(i.e. the perpendicular distance between individual fractures) and the fracture
density. Fracture density refers to the fracture surface area per unit rock volume
in 3D (P32) or fracture length per unit area in 2D (P21). Those properties
are intrinsically linked to the volumetric fracture count, which is the number of
fractures per unit rock volume.
Fractures can form highly conductive flow paths. Those preferential flow paths

rely on a network of interconnected open fractures, especially in low-permeable
rocks. In contrast, open but isolated and interconnected but closed fractures
typically contribute only little to the overall flow and transport behaviour. The
degree of connectivity can be described with percolation theory (e.g. Adler et al.,
2012). While the fractures can be responsible for most of the flow through a
porous medium, the total volume of all fractures is typically small compared to
the total pore volume of the rock mass. As a result, the matrix serves as the
primary storage for fluids in most cases.

2.2.3 Fracture aperture

The aperture of fractures plays a significant role in governing fluid flow and trans-
port within fractured porous media. While open fractures generally enhance the
flow through a rock mass, those filled with minerals can create barriers. The aper-
ture particularly depends on the fracture’s orientation relative to the prevailing
stress field. Studies have shown that critically stressed fractures, i.e. those with
a high ratio of shear to normal stress, tend to be hydraulic conductive, whereas
others are likely to be closed (Barton et al., 1995; Townend & Zoback, 2000). In
this section, we discuss various mechanisms that can lead to the opening or closing
of fractures and introduce the concept of equivalent aperture. Fracture apertures
exist at various scales; in this work, we consider apertures larger than the average
pore diameter in sandstone.

Mechanisms influencing fracture aperture

Ordinarily, opposing fracture surfaces are not exactly identical, which leaves a
small gap under stress-free conditions (Fig. 2.3a). In the empirical joint consti-
tutive model of Barton and Bandis (Appendix A), this gap is called the initial
fracture aperture and is modelled with Eq. (A.2). It sets the baseline for respond-
ing to subsequent stress changes. Under compressive stress, the fracture aperture
is reduced following Eq. (A.3) for normal closure.
When a fracture experiences shearing, the mismatch between the opposing frac-

ture surfaces typically increases (Fig. 2.3b). Thus, shearing leads to an increase
in fracture aperture, referred to as shear dilation. The dilation angle φd relates
an increment in shear displacement dδs to an increment in shear dilation dδd, i.e.,

dδd = dδs tan (φd) . (2.26)
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It is a complex function influenced by fracture and rock parameters and varies
throughout the shearing process. Many joint constitutive models, including that
of Barton and Bandis (Eq. (A.5)), consider a dilation angle that changes with shear
displacement (Lei, 2022). Accordingly, to calculate the total shear dilation, δd,
one must integrate the tangent of the dilation angle over the shear displacement,
δs, as follows:

δd =

δs∫
0

tan (φd) dδs . (2.27)

Other models assume a constant dilation angle, which simplifies the calculation
of shear dilation to

δd = δs tan (φd) . (2.28)

While shearing under low compressive stresses typically increases the aperture
(Vilarrasa et al., 2011), shearing under high compressive stress can crush and
grind asperities and subsequently decrease the aperture (Karami & Stead, 2008;
Asadi et al., 2012; Zhao et al., 2018). In addition, the fragments of the crushed and
ground asperities can fill the remaining opening and effectively close the fracture.

(a)

(b)

Figure 2.3: Small gap under stress-free conditions as the two opposing fracture
surfaces are not exactly identical (a). Shear dilation describes the
aperture increase through shearing (b). The grey lines indicate the
arithmetic mean of the local apertures.
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Tensile (i.e. negative compressive) stress represents another mechanism that
can increase a fracture’s aperture. In subsurface environments, where far-field
stresses are typically compressive, tensile openings are most commonly created
by shearing or hydraulic fracturing. Examples of the latter are wing cracks and
dilational jogs formed by shearing of segmented or en echelon fractures (e.g. Segall
& Pollard, 1980; Sibson, 1985; Horii & Nemat-Nasser, 1986; Baud et al., 1996).
In order to ensure that fractures created by hydraulic fracturing stay open after
the pressure is released, a proppant such as sand is injected.
Chemical processes can also play a significant role in altering fracture aperture

(e.g. Elsworth & Yasuhara, 2010). For instance, rock dissolution, prominently
occurring in karst formations, can increase fracture aperture. Conversely, miner-
alisation can narrow or completely seal a fracture. This process often results in
the formation of mineral veins, which can act as barriers to fluid flow.
Given the mechanisms described above, fracture apertures can vary markedly

from one fracture to another (Barton et al., 1995; Baghbanan & Jing, 2008; Barton
& Quadros, 2015; Zhang et al., 2021b). Therefore, numerical models need to
account for this variability. Relying on a single, uniform aperture value for all
fractures, on the other hand, can lead to inaccurate representations of flow and
transport behaviour in fractured porous media.

Equivalent aperture and fracture permeability

The aperture is rarely constant within a single fracture, but fluctuates considerably
across the fracture’s extent due to the roughness of the opposing fracture surfaces.
Part of these fluctuations can be effectively modelled as a spatially correlated
random field (Adler et al., 2012).
In many situations, resolving these local aperture fluctuations is impractical

and dispensable. In this case, an equivalent aperture is employed in simulations.
A common approach is using the arithmetic mean of the local aperture values,
which is referred to as the mechanical or void aperture. The equations presented
earlier in this section and Appendix A apply to this definition of aperture.
The hydraulic (or cubic law) aperture, on the other hand, is relevant for flow and

transport simulations. This term describes the aperture of a hypothetical smooth-
walled parallel plate channel that yields flow rates equivalent to those through the
actual rough-walled fracture under the same pressure difference. Assuming a plane
Poiseuille flow between the two smooth walls, the flow rate per unit width W is
given by

Q̇/W = − D
3

12µ
∇p , (2.29)

where D is the distance of the two plates (i.e. the channel height). This relation
is referred to as the cubic law; for a detailed derivation, see Adler et al. (2012).
When modelling the fracture as a porous medium with aperture af and applying
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Eq. (2.7), the flow rate per unit width can be expressed as

Q̇/W = −af kf
µ
∇p . (2.30)

By comparing this equation with the Poiseuille flow formula Eq. (2.29), we obtain
the fracture permeability

kf =
a2
f

12
. (2.31)

Here, af refers to the hydraulic fracture aperture.
A comprehensive discussion on different equivalent apertures and their interrela-

tionships can be found in Tsang (1992), Renshaw (1995) and Taylor et al. (1999).
Although mechanical and hydraulic apertures generally differ in this work, we
assume they are equivalent for simplicity.

2.3 Measuring subsurface fractures

While fractures influence the flow, transport and mechanics of a subsurface rock
mass, detecting them and measuring their properties is challenging. Adapted from
Liem et al. (2023b, Preprint), this section provides a brief overview of this topic.
Several established techniques exist that detect and characterise fractures in the

vicinity of boreholes, such as image logging, core analysis or spinner logs (Genter
et al., 1997; Prensky, 1999; Al-Dhafeeri & Nasr-El-Din, 2007; Ali et al., 2021).
However, boreholes are typically sparse, and borehole imaging methods do not
cover the space between them. On the other hand, measuring seismic anisotropy
provides statistical or average information about fractures in a whole reservoir.
However, only the fracture orientation, density, and, to some extent, length dis-
tribution can be deduced, while the apertures and exact geometry of fractures
remain unknown (Liu & Martinez, 2012). Outcrops show concrete realisations of
the fracture geometry, albeit only at the earth’s surface. They serve as analogues
from which statistical information about the fracture geometry in the subsurface
reservoir can be inferred (Casini et al., 2016; Gutmanis et al., 2018). Geostatisti-
cal tools such as variograms and (co)kriging analyse and predict distributions of
spatially correlated subsurface properties (Chilès & Delfiner, 2012).
Consequently, fracture parameters, particularly fracture aperture, are subject

to high levels of uncertainty.

2.4 Modelling of fractured porous media

Fractured porous media pose many challenges for modelling. The size of fracture
apertures is typically in the order of millimetres, while the domain of interest
can extend over several kilometres. The wide range of scales involved makes a
fully resolved equidimensional mesh impractical. Additionally, the frequency of
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fractures typically increases with decreasing fracture length. While usually, only a
handful of long fractures exist that potentially even extend throughout the whole
reservoir, there are countless small fractures and micro-cracks present in the host
rock. Resolving fractures at all length scales is impossible, so we typically upscale
fractures below a certain length into the matrix properties. Various methods have
been developed to discretise and model fractured porous media, some representing
the fractures explicitly while others treat them only implicitly. This section briefly
overviews some popular methods based on Berre et al. (2018). However, this
overview is not exhaustive, and numerous methods exist that are not covered
here.

2.4.1 Explicit fracture representation

When fractures are represented explicitly, their geometrical and topological in-
formation is partially preserved, leading to accurate but complex meshes. We
can categorise different modelling approaches based on how they treat the matrix
domain.

Discrete fracture matrix (DFM) models represent the matrix with a conform-
ing mesh (e.g. Geiger et al., 2004; Karimi-Fard et al., 2004; Dietrich et al., 2005;
Reichenberger et al., 2006; Matthäi et al., 2007; Paluszny et al., 2007; Hægland
et al., 2009; Stefansson et al., 2021). DFM models require an unstructured mesh
unless the fracture geometry is highly regular. Creating such a mesh is challeng-
ing, especially when fractures intersect at small angles or almost coincide. A large
number of grid cells and grid cells with large aspect ratios can result, hampering
the efficiency and accuracy of simulations. However, once the mesh has been gen-
erated, modelling of the relevant physics is relatively straightforward. Typically,
DFM models treat the fractures as lower-dimensional features (mixed-dimensional
models), but equidimensional approaches also exist.

On the other hand, embedded discrete fracture matrix (EDFM) models repre-
sent the matrix domain with a non-conforming mesh (Li & Lee, 2008; Hajibeygi
et al., 2011; Moinfar et al., 2013). The fractures are modelled as lower-dimensional
features embedded in the matrix. EDFM models enable simple, regular meshes,
which are much easier to generate than the unstructured ones for DFM models.
However, it is more challenging to model the relevant physics, particularly the
interactions between fracture and matrix. Examples of EDFM are the extended
finite element method (XFEM) (Huang et al., 2011; D’Angelo & Scotti, 2012;
Schwenck et al., 2015) and the extended finite volume method (XFVM) (Deb &
Jenny, 2017a,b; Conti et al., 2023, 2024). Flemisch et al. (2018) compare several
DFM and EDFM methods in a benchmark study.

Finally, discrete fracture network (DFN) models ignore the matrix domain and
only consider the fracture domain (e.g. Jing & Stephansson, 2007). DFN models
are appropriate in, for example, densely-fractured low-permeability rocks.
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2.4.2 Implicit fracture representation

Continuum models represent the fractures only implicitly, losing the geometrical
and topological information of the fractures to a large extent. We distinguish
between single- and multi-continuum models.
Single-continuum models aim to capture the influence of the fractures by adapt-

ing the matrix properties, in particular the matrix permeability. Various tech-
niques exist for this upscaling process; Section 2.4.3 discusses one of them. Single-
continuum models are relatively simple, and one can effortlessly reuse existing
frameworks for non-fractured porous media. While they can accurately model
steady-state single-phase flows, they are rarely appropriate for more complex
transport calculations as they over-simplify the system.
Multi-continuum models treat fractures as one or several superimposed media

on top of the matrix domain (Dietrich et al., 2005). These models consolidate the
impact of the fractures within parameters such as permeability and porosity of
the corresponding fracture continuum. All continua have their own conservation
equations and constitutive laws, and source terms model the transfer between the
different continua. The key challenge in multi-continuum modelling lies in accu-
rately defining these source terms. Popular multi-continuum models include the
dual-porosity (DP) model (Barenblatt et al., 1960; Warren & Root, 1963; Kazemi
et al., 1976) and the dual-porosity, dual-permeability (DPDP) model (Blaskovich
et al., 1983; Hill & Thomas, 1985; Uleberg & Kleppe, 1996).

2.4.3 Upscaling of permeability and porosity

As discussed above, the practical implementation of fracture models requires up-
scaling of all or at least the smallest fractures. Upscaling aims to find equivalent
values of model parameters, particularly permeability and porosity, that combine
the influence of fractures and matrix into a single medium. The equivalent per-
meability of a fractured porous medium thereby depends on the geometry of the
fractures and the surrounding mechanical and hydraulical environment, in partic-
ular on fracture length and aperture distributions, surface roughness, number of
intersections and dead ends in the fracture network, hydraulic gradient, bound-
ary stress, anisotropy and scale. Liu et al. (2016) review the influence of those
parameters on the equivalent permeability and discuss corresponding upscaling
techniques. A popular choice for well-interconnected fracture networks is the up-
scaling method presented by Oda (1985).
In Chapters 3 and 5 of this work, we consider fractured porous media with

relatively few fractures. Notwithstanding, fully resolving the fractures with a
Cartesian grid is too expensive due to the huge number of required grid cells. In-
stead, we use a coarser grid whose grid cell heights are several magnitudes larger
than the fracture aperture but small enough that no more than two fractures in-
tersect with a single grid cell. We can then calculate the upscaled permeability
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from the isotropic fracture and matrix permeabilities using the analytical equa-
tions from Kasap & Lake (1990). The resulting upscaled permeability is typically
anisotropic. Those equations assume straight streamlines in all homogeneous re-
gions within a grid cell. When this is not the case, we obtain only approximate
values; however, the errors are expected to be negligible for a reasonably fine grid.
In the following, we explain this upscaling process in more detail.

For a single fracture oriented in x-direction and passing through a two-dimen-
sional grid cell with dimensions hx × hy, the upscaled permeability tensor and its
components are

K̃ =

[
k̃xx k̃xy
k̃xy k̃yy

]
, (2.32)

k̃xx =
hy − af
hy

km +
af
hy
kf , (2.33)

1

k̃yy
=
hy − af
hy

1

km
+
af
hy

1

kf
and (2.34)

k̃xy = 0 . (2.35)

When a grid cell contains more than one fracture or a fracture ends in the interior
of a grid cell, we divide this particular grid cell into axillary regions and calculate
their upscaled permeability values using Eqs. (2.32) to (2.35) (Fig. 2.4). Subse-
quently, we obtain the upscaled permeability of the entire grid cell from the values
of the regions using the same equations. This procedure is only approximative as
we obtain lower or upper limits of the equivalent permeability depending on the
choice of the axillary regions.

km km

km

kf1

kf2

(a)

km

kf1

K̃1

(b)

K̃3K̃2 K̃2

(c)

K̃

(d)

Figure 2.4: Upscaling process of Kasap & Lake (1990) for grid cells containing two
fractures (a), where the choice of auxiliary regions, i.e., either (b) or
(c), influences the resulting upscaled permeability K̃ of the cell (d).
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Further, we obtain the upscaled porosity φ̃ through volume averaging, i.e.,

φ̃ =
V − Vf
V

φm +
Vf
V
φf . (2.36)

Consequently, the upscaled porosity is a function of the ratio of fracture volume
Vf to grid cell volume V . Fig. 2.5 shows the upscaled porosity and permeability
fields obtained from Eqs. (2.32) to (2.36) for a simple geometry consisting of two
fractures and a Cartesian grid.

(a) Grid (b) φ

(c) log10(kxx) (d) log10(kyy)

Figure 2.5: Simple fracture geometry with two fractures (af = 1 mm, φf = 1)
and Cartesian grid (hx = hy = 0.5 m) (a), the corresponding upscaled
porosity (b) and logarithm of the upscaled horizontal and vertical per-
meability components (c,d). Note that the off-diagonal components
of the upscaled permeability tensor are assumed to be zero. Figure
adapted from Liem et al. (2022a).

The upscaling approach presented here is accurate for steady-state single-phase
flow. The upscaled permeability and porosity fields generate flow patterns that
closely resemble those derived from the original fully resolved permeability and
porosity fields. However, the results might deviate for more complex problems,
such as tracer breakthrough or multiphase flow. Notably, the coarse upscaled
grid assumes perfect mixing within the grid cells, introducing numerical diffu-
sion. Therefore, a mixed-dimensional DFM or EDFM approach might be more
appropriate to address such transport scenarios.
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3 Adaptive Conservative Time Integration for
Transport in Fractured Porous Media

This chapter is adapted from the article “Adaptive conservative time integration
for transport in fractured porous media” (Liem et al., 2022a).

3.1 Introduction

Time-dependent hyperbolic partial differential equations (PDEs) play an essential
role in many areas of science and engineering, including fluid dynamics, acoustics,
and the propagation of waves in elastic media. In subsurface contexts, they are
instrumental in modelling transport phenomena (see Section 2.1.2) and seismic
activity.
When solving time-dependent hyperbolic PDEs with a finite volume method

(FVM), time is traditionally advanced with a global time step, i.e., in spatially
uniform time intervals. The time integration technique is either explicit if the
unknown variables of the current time step only depend on quantities already
calculated previously, or implicit if the unknown variables also depend on quanti-
ties still to be calculated at the current time step. For both schemes, the size of
the integration time step is bounded. The Courant-Friedrichs-Lewy (CFL) crite-
rion restricts the integration time step for explicit schemes to guarantee stability
(Courant et al., 1928). Implicit schemes generally allow larger integration time
steps. There even exist unconditionally stable implicit schemes for PDEs with
S-shaped flux functions (Jenny et al., 2009); however, the integration time step is
limited by the desired accuracy.
When grid cell size or wave speed (e.g. advection speed of a tracer) vary signif-

icantly throughout the domain, the optimal time step of each grid cell can vary
over several orders of magnitudes. As a result, a small number of grid cells dictate
the global time step, while many grid cells are advanced in time with an integra-
tion step much smaller than necessary. One example of such a system is flow
through fractured porous media, where the permeability and subsequently also
the flow velocity can be several orders of magnitude higher in the fractures than
in the rock matrix (Matthäi & Belayneh, 2004; Geiger et al., 2004). Transport of
tracers, contaminants, and other dissolved chemicals in water-saturated fractured
porous media is often anomalous (Edery et al., 2016). Good spatial resolution in
the vicinity of highly conductive fractures is required to accurately capture flow
and transport in these areas and calculate detailed breakthrough curves. With
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3 Adaptive Conservative Time Integration for Transport in Fractured Porous Media

global time stepping it is extremely costly to solve transport in such systems,
especially when considering a reasonable domain size. Therefore, more efficient
time integration schemes are needed.
Various local time stepping methods have been developed to improve the effi-

ciency of time integration and to reduce the computational cost for such systems
and applications. Those methods allow individual time steps for each grid cell
under the constraint of a local CFL criterion.
Osher & Sanders (1983) presented one of the first local time stepping methods.

Their method relies on a conservative predictor-corrector scheme, and they proved
convergence for one-dimensional non-linear scalar conservation laws. Dawson &
Kirby (2001) extended the method to a higher-order time stepping scheme. Berger
& Oliger (1984) introduced a conservative interface equation to pass information
between coarse and refined grids that are overlain in regions where a more accurate
solution is required. Their method automatically takes smaller time steps in
those refined regions and integrates the grids independently, allowing higher-order
time integration. Zhang et al. (1994) applies local time stepping only to the flux
calculation. Dawson (1995) introduced a local time stepping method that enforces
flux continuity across the cell interfaces.
Pervaiz & Baron (1989), Kleb et al. (1992) and Jenny (2020) use local time steps

which relate to each other by factors of powers of two. However, the time variable
that determines the sequence in which the cells are integrated is different. Kleb
et al. (1992) integrate the cells with the lowest current time first, while Pervaiz
& Baron (1989) advance cells according to their current time plus half of their
local time step. Jenny (2020) updates those cells first whose next time (i.e. their
current time plus one local time step) is lowest, with the additional constraint
that cells with a larger time step are never ahead of ones with a smaller time step.
Similar to Dawson (1995), this method accumulates the flux through the interface
between two cells with different local time steps when it is calculated for the cell
with the smaller time step. The accumulated flux is used later for updating the
cell with the larger time step; therefore, this method is conservative by design.
Kulka & Jenny (2022) extended the method to unsteady compressible flow.
Related approaches include discrete event simulation (DES), which is a totally

asynchronous time stepping method (Nutaro et al., 2003; Shao et al., 2019), and
multirate methods which integrate each component of the system using a different
time step (Constantinescu & Sandu, 2007; Delpopolo Carciopolo et al., 2019,
2020).
This work extends the method of Jenny (2020), called adaptive conservative

time integration (ACTI), to tracer transport in fractured porous media and applies
it to two-dimensional models where we compare the accuracy and computational
cost of ACTI with those of global time stepping. Furthermore, we empirically
investigate the stability of several flux discretisation schemes when they are com-
bined with ACTI.
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3.2 Method

This chapter of the thesis is organised as follows: Section 3.2 introduces our
solver for hyperbolic scalar transport equations including different schemes for
numerical flux discretisation and discusses the adaptive time stepping method.
In Section 3.3, we present the results of the two-dimensional test cases. We
demonstrate a considerable reduction of computational cost when using ACTI
as compared to global time stepping.

3.2 Method

In this section, we first describe our transport solver and then introduce the adap-
tive conservative time integration (ACTI) scheme.

3.2.1 Transport

We consider the hyperbolic scalar transport equation for porous media as pre-
sented in Section 2.1.2,

φ
∂c

∂t
+ q · ∇c− q̇SourcecSource = 0 , (3.1)

where c denotes the concentration of the scalar tracer, q the volumetric flux
density (also called Darcy velocity) and φ the porosity. Here, the advection speed
is approximated as the pore velocity a = q/φ. Note that Eq. (3.1) is not in its
conservative form, and we neglect diffusion. We discretise Eq. (3.1) with a cell-
centred FVM using a Cartesian grid, and obtain concentration values at the time
tn+1 = tn + ∆t for a two dimensional case with

cn+1
i,j = cni,j+

∆t

φi,j

Fn→n+1

i− 1
2
,j
− Fn→n+1

i+ 1
2
,j

hxi,j
+
Fn→n+1

i,j− 1
2

− Fn→n+1

i,j+ 1
2

hyi,j
+ q̇SourcecSource

 ,

(3.2)

where the subscripts i and j denote the cell indices in the first and second direction
respectively and the superscript n the time index. hx and hy are the size of the
grid cell in x and y direction, respectively. The fluxes Fn→n+1 can be discretised
with a wide variety of numerical schemes. In this work, we explore four different
explicit schemes, one of which is of first spatial order and the other three of higher-
order. In the following, we focus on the flux through the right interface Ωi,j , that
is,

Fn→n+1

i+ 1
2
,j

= qi+ 1
2
,jc

n→n+1

i+ 1
2
,j

; (3.3)

all other fluxes are obtained analogously. The concentration at the right interface
is approximated as
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cn→n+1

i+ 1
2
,j

=



cni,j + β1σ1i,j

hxi,j
2

− β2σ1i,j

qi+ 1
2
,j

φi+ 1
2
,j

∆t

2
− β3σ2i,j

q2i,j
φi,j

∆t

2

if qi+ 1
2
,j > 0

cni+1,j − β1σ1i+1,j

hxi+1,j

2
− β2σ1i+1,j

qi+ 1
2
,j

φi+ 1
2
,j

∆t

2
− β3σ2i+1,j

q2i+1,j

φi+1,j

∆t

2

otherwise,
(3.4)

where the parameters β1, β2 and β3 determine the flux scheme. For β1 = β2 =
β3 = 0, Eq. (3.4) reduces to the first-order explicit upwind scheme. β1 = 1 gives
a higher-order scheme, where β2 = β3 = 0 corresponds to a MUSCL upwind
scheme without slope advection, β2 = 1 and β3 = 0 to a MUSCL with slope
advection (LeVeque, 2002) and β2 = β3 = 1 to a MUSCL scheme with advection
of inclined reconstruction (MUSCL-AIR) (Jenny, 2020). In Section 3.3.1, we show
the superiority of MUSCL-AIR over the other two MUSCL schemes. Therefore,
we use MUSCL-AIR along with the 1st order scheme for the most part of this
work.
In Eq. (3.4), σ1 and σ2 are the slope components normal and parallel to the

interface, respectively. For the former, we use the Koren limiter (Koren, 1993)
which is defined as

σ1 = σ1(s1, s2) = s2 max

(
min

(
min

(
s2 + 2s1

3s2
, 2

)
,

2s1

s2

)
, 0

)
, (3.5)

where for qi+ 1
2
,j > 0

s1i,j = 2
ci+1,j − ci,j
hxi+1,j + hxi,j

and s2i,j = 2
ci,j − ci−1,j

hxi,j + hxi−1,j

. (3.6)

The slope component parallel to the interface for qi+ 1
2
,j > 0 is calculated as

σ2i,j =

2
ci,j−ci,j−1

hyi,j+hyi,j−1
if q2i,j = 1

2

(
qi,j− 1

2
+ qi,j+ 1

2

)
> 0

2
ci,j+1−ci,j

hyi,j+1
+hyi,j

otherwise.
(3.7)

All other slopes are obtained analogously.
For explicit schemes the size of the integration time step ∆t is limited by the

CFL criterion (Courant et al., 1928). In this work, we use the formula for Donor-
Cell Upwind ∣∣∣∣a1∆t

h1

∣∣∣∣+

∣∣∣∣a2∆t

h2

∣∣∣∣ ≤ CFLmax (3.8)

proposed by LeVeque (2002).
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3.2 Method

3.2.2 Adaptive Conservative Time Integration (ACTI)

The adaptive conservative time integration (ACTI) algorithm proposed by Jenny
(2020) uses local time steps of size

∆tI =
∆tmax

2LI
, (3.9)

equal to the maximum desired time step size divided by powers of two. Grid cells
are synchronised after each maximum step. The integer variable LI ≥ 0 denotes
the time refinement level of a particular grid cell, where a high level corresponds
to a small local time step. For every grid cell I we choose the lowest possible level
LI that still satisfies the local CFL criterion, i.e.,

∆tI =
∆tmax

2LI
≤ ∆tCFLI = CFLmax

(∣∣∣∣a1I

h1I

∣∣∣∣+

∣∣∣∣a2I

h2I

∣∣∣∣)−1

<
∆tmax

2LI−1
. (3.10)

The sequence in which the grid cells are advanced in time is such that the time
difference between cells is minimal and a cell with a larger local time step is never
ahead of a cell with a smaller time step. When a cell I is advanced further in time
than its neighbour J (which implies ∆tI ≤ ∆tJ), the corresponding flux between
them is stored and recalled later when the neighbouring cell catches up, that is,

∆tJF
t→t+∆tJ
I→J = −∆tI

∆tJ/∆tI∑
m=1

F
t+(m−1)∆tI→t+m∆tI
J→I . (3.11)

Therefore, strict conservation at the global time resolution is guaranteed.
When we calculate the flux with a MUSCL scheme, we need to account for

the potential time difference between cells where the characteristic line originates
from the adjacent cell. We therefore replace ∆t

2
in the second line of Eq. (3.4) with

∆ti,j
2

+ ti,j − ti+1,j . As this does not deal with potential time differences between
cells that are used for the calculation of the slope components σ1 and σ2 (Fig. 3.1),
the slopes might be estimated imprecisely near the interface between different
levels. This might lead to a loss of accuracy in the higher-order schemes. This
issue does not occur with the 1st order scheme, since there only the concentration
value from the upwind cell determines the concentration at the cell interface. It
will be shown that related inaccuracies are only local and do not affect overall
simulation results.

In this work, we only consider 2D test cases. Since dimensional splitting is used
in the discretisation of Eq. (3.1) it is straight forward to extend the framework to
3D Cartesian grids. In essence, an additional term for the third dimension would
appear in the CFL criterion (Eq. (3.8)) and a second slope component parallel
to the interface is required in MUSCL-AIR. A pseudo code representation of the
ACTI algorithm is presented in Appendix B. The ACTI scheme as presented in
Algorithm 5 does not make any assumptions on the dimensionality of the problem.
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Figure 3.1: 1D domain with 5 grid cells where ∆t1 = 2∆t2 = 4∆t3,4,5. Cells used
for flux calculation with a MUSCL scheme can be on the same time
level (a) or on different time levels (b).

3.2.3 Test cases

In this study, we only consider single-phase flow in a horizontal layer of a fractured
porous medium where we can neglect the influence of gravity. We obtain the
steady-state volumetric flux density q from Darcy’s law where we assume that
the fluid and the porous material are incompressible (see Section 2.1.1). We
discretise the elliptic pressure equation (Eq. (2.9)) with the FVM and use a direct
solver. We then inject a tracer which follows the flow perfectly and does not alter
the pressure field. We compare the concentration fields obtained with ACTI to
the ones obtained from global time stepping.
We study three test cases, one without any fractures, one with a synthetic frac-

ture network and one with a single fracture and local grid refinement (Table 3.1).
All fractures are straight, grid aligned, and embedded in a porous matrix with
constant and isotropic permeability km and porosity φm. For the latter two cases,
we assume that the hydraulic aperture af is constant over the length of a frac-
ture and we calculate fracture permeability from plane Poiseuille flow between
parallel plates (Eq. (2.31)). In all test cases, we use volume flow boundary con-
ditions at the inlet and pressure boundary conditions at the outlets. Initially, the
concentration field is zero everywhere. At t = 0 we start injecting a tracer with
concentration c = 1 through the inlet. Table 3.2 lists the parameter values used
in all simulations of this study.

Test Case Number of Fractures Local Grid Refinement

1 Uniform Matrix 0 No
2 Fracture Network 22 No
3 Single Fracture 1 Yes

Table 3.1: Test cases used in this study.
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Fluid viscosity µ = 1× 10−3 Pa s
Matrix permeability km = 1× 10−14 m2

Matrix porosity φm = 0.15
Fracture aperture af = 1× 10−3 m
Fracture permeability kf = a2

f/12 = 8.333× 10−8 m2

Fracture porosity φf = 1.0
Pressure at outlets pout = 1 Pa

Table 3.2: General simulation parameters.

3.3 Results

3.3.1 Test case 1: uniform matrix (without any fractures)

First, we study the stability of the four flux schemes presented in Section 3.2.1 for a
relatively small test case with uniform permeability and porosity. In this test case,
the fluid enters the domain through the left boundary with q̇left = 1× 10−5 m/s
and leaves the domain at the top-right corner through a sink of size 0.1× 0.1 m2

(Fig. 3.2). Tracer is injected at three boundary segments of length 0.1 m on the left
boundary and tracked over time. The transport is calculated for three different
CFL values, CFLmax ∈ {0.3, 0.5, 0.9}.

Figure 3.2: Logarithm of the magnitude of the normalised steady-state volumetric
flux density, log10(|q|/|qmax|). The flow accelerates towards the sink
in the top-right corner. Flow paths are illustrated by streamlines.

For the 1st order scheme, the concentration fields calculated with ACTI agree
very well with the ones obtained by global time stepping, see Fig. 3.3. Concen-
tration fields are shown only for CFLmax = 0.9, as the results are very similar for
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all CFLmax values. As expected, the concentration front gets much sharper with
the MUSCL schemes than with the 1st order scheme (Fig. 3.4). For global time
stepping all three MUSCL schemes produce very similar results independent of
the choice of CFLmax. For ACTI, on the other hand, spurious oscillations arise
in the concentration fields if MUSCL without slope advection is employed. Those
oscillations are less pronounced if MUSCL with slope advection is used, and they
generally grow with increasing CFLmax. Yet, MUSCL-AIR with ACTI produces
stable results that are practically identical to the ones obtained with global time
stepping for all three CFLmax values.

(a) Without ACTI (b) With ACTI

Figure 3.3: Concentration field after 22 h for global time stepping (a) and ACTI
(b) for the 1st order scheme and CFLmax = 0.9. The contour lines
mark concentration values of 0.1 and 0.9.

As expected, global time stepping is stable for all four flux schemes because
local CFL is tiny in a large portion of the domain (Fig. 3.5a). Only the cells
near the point sink have a local CFL number close to CFLmax. Therefore, global
time stepping provides a certain margin for error in the time discretisation scheme.
With ACTI, on the other hand, all cells have a local CFL number higher than half
of CFLmax (Fig. 3.5b). Hence ACTI is less forgiving than global time stepping,
and we need to pay special attention to the discretisation scheme.
With this test case, we demonstrate that the 1st order scheme is suitable for

combination with ACTI. Of the three higher-order flux reconstruction schemes,
only MUSCL-AIR performs well in combination with ACTI. MUSCL without
and with slope advection, on the other hand, become unstable when combined
with ACTI and CFLmax close to one. We presume that the instabilities seen
for MUSCL without slope advection arise because it estimates the concentration
values at the cell interfaces inaccurately. For a piecewise linear reconstruction,
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Figure 3.4: Concentration field after 22 h for three different MUSCL schemes. The
first three rows show the results for ACTI for three choices of CFLmax.
The last row shows the results for global time stepping and CFLmax =
0.9 (results with CFLmax = 0.3 and 0.5 look almost identical). The
white contour lines mark concentration values of 0.1 and 0.9. The pink
contour lines depict the boundaries of the level LI of ACTI.
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(a) (b)

Figure 3.5: Local CFL numbers without (a) and with ACTI (b) for CFLmax = 0.9.
The plots for CFLmax = 0.3 and 0.5 are qualitatively similar. Note
that the discontinuities in the local CFL number in the case with
ACTI stem from level jumps where the local time step is modified by
a factor of two to ensure that the local CFL number is always greater
than CFLmax/2 but less than or equal to CFLmax.

the exact solution of the interface value averaged over a time step is equal to the
interface value at half of the time step (see reconstruct–evolve–average (REA)
algorithm in e.g. LeVeque (2002)). However, MUSCL without slope advection
uses the value at the beginning of the time step. MUSCL with slope advection
estimates the concentration values at the cell interfaces correctly, but it does not
account for diagonal flow. Consequently, the scheme is stable in regions where the
flow is approximately parallel to the grid lines, but unstable in regions where the
flow is not aligned. It is possible to stabilise these schemes at a lower CFLmax

or by using a more diffusive limiter (see Appendix C for an example with the
minmod limiter).

Some of the instabilities shown in Fig. 3.4 coincide with contour lines of the
levels. However, level jumps are unlikely to be a dominant factor causing these
instabilities because they remain at the same location when the contour lines are
shifted by increasing or decreasing CFLmax.

In the remaining part of this analysis we use only the 1st order scheme and
MUSCL-AIR and set CFLmax = 0.5. This value is chosen empirically because a
rigorous stability analysis for adaptive time stepping in two-dimensional models
with variable porosity and/or grid spacing is beyond the scope of this work.
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3.3.2 Test case 2: fracture network

Our second test case is a synthetic two-dimensional fracture network (Fig. 3.6a)
consisting of 9 horizontal and 13 vertical fractures with a hydraulic aperture of
1 mm. This fracture network which was also used in a previous publication (Liem
& Jenny, 2020) is chosen purely for demonstration purposes and represents a sim-
plified model of large-scale fractures. We discretised the domain with a equidistant
Cartesian grid, where the grid spacing in horizontal and vertical directions is 500
times larger than the hydraulic aperture of the fractures (Fig. 3.6b). The effect
of the fractures is accounted for by upscaling. For grid cells which intersect with
fractures we calculate upscaled permeability values using the analytical equations
derived by Kasap & Lake (1990) and upscaled porosity values by volume averag-
ing (Fig. 3.6c–e). This upscaling process is described in detail in Section 2.4.3 and
in Liem & Jenny (2020). Table 3.3 lists the resulting upscaled values alongside
other parameter values applied to the fracture model. In this test case, we use a
point source at the lower left corner and sinks at all other corners. The source
and sinks have a size of 2.5× 2.5 m2 and consist of 25 grid cells each.

(a)

(b) Grid (c) φ

(d) log10(kxx) (e) log10(kyy)

Figure 3.6: Geometry of fracture network (a), zoom-in on a fracture intersection
(b) marked by the pink rectangle in (a), the corresponding upscaled
porosity (c) and logarithm of the upscaled horizontal and vertical per-
meability components (d,e). Note that the off-diagonal components of
the upscaled permeability tensor are assumed to be zero.

The resulting flow field is visualised in Fig. 3.7a as the logarithm of the mag-
nitude of the normalised steady-state volumetric flux density, log10(|q|/|qmax|),
along with streamlines. In the following, we use the term velocity instead of the
volumetric flux density. As expected, the highest velocities occur within the frac-
tures and near the source and sinks. We observe several stagnation points in the
matrix which lie either next to fractures or at the domain boundary. Fig. 3.7b
shows the corresponding histogram. Most cells have a velocity which is around
three orders of magnitude smaller than the maximum velocity and only a few cells
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Size of domain 300× 200× 1 m3

Number of grid cells 600× 400× 1 = 240000
Size of grid cells 0.5× 0.5× 1 m3

Maximal time step for ACTI ∆tmax = 10 d
CFL criterion CFLmax = 0.5

Flow rate through inlet Q̇in = 2× 10−4 m3/s

Upscaled values for cells which contain a fracture
Permeability in direction of fracture k̃‖ = 1.667× 10−10 m2

Permeability perpendicular to fracture k̃⊥ = 1.002× 10−14 m2

Porosity φ̃ = 0.1517

Table 3.3: Simulation parameters of fracture network.

experience a high velocity. We expect that ACTI gives considerable speed benefits
in a setup with such a velocity distribution.

(a) (b)

Figure 3.7: Logarithm of the magnitude of the normalised steady-state volumetric
flux density, log10(|q|/|qmax|), together with some streamlines (a) and
the corresponding histogram (b).

ACTI partitions the grid cells into 13 levels (0 ≤ LI ≤ 12) (Fig. 3.8a), which
means that the smallest time step is ∆tmax/2

12 = 3.52 min. If we use global time
integration, the global time step obtained from the CFL criterion is 4.04 min.
Note that this value is slightly larger than the minimum local time step in the
case with ACTI, since there the local time steps are restricted to the maximal
time step divided by powers of two. With ACTI, most grid cells have a local CFL
number between 0.25 and 0.5 (Fig. 3.8b). Grid cells with a local CFL number
below 0.25 are coloured in red and could be integrated with double the maximal
time step or even more. However, we would not gain much because there are only
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a few of those cells. The local CFL number for global time stepping is tiny for
most of the domain (Fig. 3.8c).

(a) (b)

(c)

Figure 3.8: Levels (a) and local CFL numbers (b) with ACTI as well as local CFL
numbers for global time stepping (c).

The resulting concentration fields calculated with ACTI and with global time
stepping agree very well (Fig. 3.9). Most importantly, the concentration front
is exact at the same location. For the 1st order scheme, we even obtain slightly
sharper concentration fronts with ACTI than with global time stepping since
higher local CFL numbers are beneficial for explicit schemes (note that they are
limited to 0.5 in this test case). With MUSCL-AIR, there are a few locations
where the concentration field differs. All of them lie in regions where the fluid flow
crosses a fracture. MUSCL-AIR shows more pronounced numerical errors in these
specific areas, if the local CFL number is large. However, these differences are
only local and do not grow over time. For both flux schemes ACTI and global time
stepping produce almost identical arrival curves at the three sinks. Fig. 3.10 shows
the arrival curve at the sink in the bottom-right corner. The largest differences
occur for the 1st order scheme and are due to the sharper concentration front with
ACTI.
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(a) 1st order scheme (without ACTI) (b) MUSCL-AIR (without ACTI)

(c) 1st order scheme (with ACTI) (d) MUSCL-AIR (with ACTI)

(e) Difference with 1st order scheme: (c)−(a) (f) Difference with MUSCL-AIR: (d)−(b)

Figure 3.9: Concentration field after 300 days for global time stepping (a,b) and
ACTI (c,d) as well as the difference between those fields (e,f) with the
1st order scheme (left) and MUSCL-AIR (right).
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(a) (b)

Figure 3.10: Arrival curves at the sink in the bottom-right corner (a) and the
difference in the arrival curves obtained with ACTI and global time
stepping (b).

If we use ACTI instead of global time stepping for this test case, 59 times
fewer flux calculations and 75 times fewer cell updates are needed. Those values
are directly related to the time refinement levels (Fig. 3.8a). The computational
time is reduced likewise by a factor of 61 for the 1st order scheme and 59 for
MUSCL-AIR (Fig. 3.11). Here, we ran 600 separate simulations, each of which
calculated tracer transport for a time period of ∆tmax once with ACTI and once
with global time stepping, to obtain mean and standard deviation of the ratio of
computational time. The computational time scales roughly with the number of
flux calculations, since this is the most expensive part of the simulation.

Figure 3.11: Ratio [ . ]withoutACTI/[ . ]withACTI for number of flux calculations, num-
ber of cell updates and computational time. Mean and standard
deviation of the ratio of computational time are obtained from 600
separate simulations.
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3.3.3 Test case 3: single fracture with local grid refinement

Our third test case consists of a single horizontal fracture (Fig. 3.12a). In this
case, we discretise the domain with a Cartesian grid with gradual refinement
perpendicular to the fracture, such that the fracture contains 50 grid cells across
(Fig. 3.12b). The height of the smallest grid cells is 1250 times smaller than the
one of the largest ones. In this test case, inflow occurs through the left and outflow
through the right boundary. Table 3.4 lists the parameter values of this test case.

(a) (b)

Figure 3.12: Geometry of the test case with a single horizontal fracture (a) and
refinement hy in and around the fracture (since the grid is symmetric,
only the part of y > 0 is shown here) (b).

Size of domain 3× 2.025× 1 m3

Number of grid cells 300× 372× 1 = 111600
Size of largest grid cell 0.01× 0.025× 1 m3

Size of smallest grid cell 0.01× 0.00002× 1 m3

Length of fracture lf = 1 m
Maximal time step for ACTI ∆tmax = 600 s
CFL criterion CFLmax = 0.5

Flow rate through left boundary Q̇left = 1× 10−5 m3/s

Table 3.4: Simulation parameters for the single fracture test case.

Fig. 3.13a shows the resulting flow field. Here, the highest velocities occur
within the fracture and close to its tips. The lowest velocities are obtained at the
stagnation points in the matrix just next to the midpoint of the fracture. The
corresponding histogram (Fig. 3.13b) reveals that most cells have a velocity which
is around three orders of magnitude smaller than the maximum velocity. This
narrow peak in the histogram is due to the far field. Again, we expect that ACTI
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performs well for such a broad velocity spectrum. Since the highest velocities
coincide with regions where the grid is refined, we expect a huge performance
increase with ACTI for this setup.

ACTI divides the grid cells into 15 levels (Fig. 3.14a), and the smallest local time
step is ∆tmax/2

14 = 0.0366 s. As expected, cells with a high level (i.e. small local
time step) are located in the high-permeable fracture where the grid resolution
is maximal. For global time integration, the time step obtained from the CFL
criterion is 0.0391 s. With ACTI, the local CFL number is between 0.25 and 0.5
in all cells (Fig. 3.14b), whereas it is tiny in most of the domain for global time
stepping (Fig. 3.14c).

(a) (b)

Figure 3.13: Logarithm of the magnitude of the normalised steady-state volumet-
ric flux density, log10(|q|/|qmax|), together with some streamlines (a)
and the corresponding histogram (b).

The concentration fields calculated with ACTI and with global time stepping
are very similar (Fig. 3.15). Like in the previous test case, the concentration front
is exactly at the same location. For the 1st order scheme, the concentration front
is again slightly sharper with ACTI than for global time stepping. This is also
visible in the arrival curves (Fig. 3.16). In addition, this test case nicely illustrates
that the concentration front is much sharper with MUSCL-AIR as compared to
the 1st order scheme. The computation time with ACTI is around 80 times less
than with global time stepping (Fig. 3.17). The numbers of flux calculations and
cell updates are reduced by a similar factor. This speed-up allows us to obtain
the concentration fields shown in Fig. 3.15 after only 1.5 hours instead of 5 days
as in the case with global time stepping.

3.4 Discussion and conclusions

In this study, we have extended the adaptive conservative time integration (ACTI)
scheme to transport of a scalar tracer concentration in fractured porous media and
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(a) (b)

(c)

Figure 3.14: Levels (a) and local CFL numbers (b) with ACTI as well as local
CFL numbers for global time stepping (c).

showed empirically that it produces accurate results at a much lower computa-
tional cost. In our test cases, we obtained impressive speed-up factors up to
around 80 as compared to global time stepping. These speed-up factors stem
from a comparable reduction in the number of flux calculations and cell updates.
Although we only used two idealised continuum models of fractured permeable

rock in this study, one with a simplified synthetic fracture network and one with
a single fracture and local grid refinement, we expect that our findings also apply
to more realistic cases. Since the fractures are represented as heterogeneities in
the matrix, either by upscaling or resolving them, the framework can be applied
to any porous media where such permeability and porosity fields are available.
Essentially, ACTI performs particularly well, if only a few cells require a very
small time step, while most cells can be integrated with a much larger time step.
Such huge differences in the local time step requirement can arise from channelling
along nested preferential flow paths as well as from variable grid refinement.
The ACTI scheme is easy to implement and can be used with any explicit

transport scheme. It works very well in combination with the first-order upwind
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(a) 1st order scheme (without ACTI) (b) MUSCL-AIR (without ACTI)

(c) 1st order scheme (with ACTI) (d) MUSCL-AIR (with ACTI)

(e) Difference with 1st order scheme: (c)−(a) (f) Difference with MUSCL-AIR: (d)−(b)

Figure 3.15: Concentration field after 15 h for global time stepping (a,b) and ACTI
(c,d) as well as the difference between those fields (e,f) with the 1st

order scheme (left) and MUSCL-AIR (right).

scheme that is still widely used in many applications. If we combine ACTI with
a higher-order flux scheme to get sharper concentration fronts, we need to pay
special attention to the stability of this scheme. A flux scheme that is stable for
global time stepping is not necessarily stable in combination with ACTI due to
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(a) (b)

Figure 3.16: Arrival curves at the location (x = 3, y = 0) (a) and the difference in
the arrival curves obtained with ACTI and global time stepping (b).

Figure 3.17: Ratio [ . ]withoutACTI/[ . ]withACTI for number of flux calculations, num-
ber of cell updates and computational time. Mean and standard
deviation of the ratio of computational time are obtained from 600
separate simulations.

the higher local CFL numbers. In this study, we empirically showed that the
MUSCL scheme with advection of inclined reconstruction (MUSCL-AIR) fulfils
this requirement. Future work is required to analytically investigate the stability
of higher-order schemes in combination with ACTI.
In practice, the lower computational cost of ACTI compared to conventional

global time stepping means that for given computational resources, ACTI allows
for more accurate solutions as can be achieved by using a higher-order flux scheme
and/or a finer spatial grid resolution. This is essential when sharp concentration
fronts are present and numerical dispersion must be kept to a minimum. One
example, indicated by a very high Péclet number, is advection-dominated trans-
port at the reservoir scale. Another example is non-diffusive, non-reactive tracer
transport in a viscous fluid as characterised by a high Schmidt number. Almost
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no mixing would occur within a fracture if the flow was laminar and creeping, as
famously demonstrated by the Taylor-Couette flow reversibility. This effect can
only be captured if the grid is sufficiently refined within the fracture. Test case 3
somewhat resembles such a situation where we obtain a sharp concentration front
at the exit of the fracture by using 50 grid cells across the fracture aperture and
a higher-order flux scheme, albeit without resolving velocity variations across the
fracture using the Stokes equation. However, the precipitation of minerals by
fluid mixing within fractures is one of the reasons why one finds high-grade ore
mineralisation within them (e.g. Phillips, 1990). In test case 2, we represent the
fractures with a single pixel row which corresponds to the case of perfect mixing
across the fracture aperture. Consequently, the concentration front at the exit of
fractures is less sharp.

With adaptive time stepping methods such as ACTI, explicit time integration
schemes become more attractive as an alternative to the widely used (usually first-
order) implicit schemes. Therefore, future work should contrast and compare the
accuracy and computational costs of explicit schemes using ACTI with implicit
schemes, and related implementation dependencies of the two methods.

Thus far, we only considered 2D test cases with Cartesian grids, however, it is
straightforward to extend the ACTI scheme to 3D and unstructured grids where
ACTI might have even greater benefits, especially when using spatially adap-
tive grid refinement. ACTI is therefore a promising tool to efficiently calculate
transport in various sub-surface applications such as geothermal or hydrocarbon
reservoirs, carbon dioxide sequestration, wastewater injection and groundwater
flow. Here, we considered idealised test cases targeting tracer transport in frac-
tured porous media, but ACTI should also be applicable to multi-phase flow or
sequentially coupled flow and transport problems.
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4.1 Introduction

Accurate modelling of flow and transport is essential in understanding and predict-
ing the behaviour of subsurface reservoirs. For this, precise knowledge of the state
(e.g. pressure and concentration fields) and parameters (e.g. matrix permeabil-
ity, porosity, and fracture properties) is required. However, the available data is
usually sparse or incomplete, associated with uncertainty, and often consists only
of statistical information or indirect measurements (as discussed in Section 2.3).
Consequently, the estimates of the state and parameters of a subsurface reservoir
are also associated with uncertainties.

Data assimilation (DA) or history matching is a standard tool for reducing un-
certainties in state and parameters. DA combines the current (i.e. prior) knowl-
edge of a system with whatever uncertain measurement data is available for an
improved (i.e. posterior) prediction of the system performing some form of opti-
misation. The optimisation process can be classified into classical, statistical, and
hybrid versions. In classical optimisation, we seek the minimum of a cost function
describing the discrepancy between the model and measurements. On the other
hand, statistical optimisation minimises the uncertainty of the model error based
on statistical estimation theory (Asch et al., 2016). DA is closely related to inverse
modelling and uncertainty quantification.

DA has its origins in numerical weather predictions (Lorenc, 1986; Houtekamer
& Mitchell, 1998; Houtekamer & Zhang, 2016; Bannister, 2017) but has be-
come increasingly popular in many other fields, ranging from subsurface applica-
tions (Lorentzen et al., 2001; Hendricks Franssen & Kinzelbach, 2008; Aanonsen
et al., 2009; Vogt et al., 2012; Evensen & Eikrem, 2018), oceanography (Ghil &
Malanotte-Rizzoli, 1991; Bertino et al., 2003; Béal et al., 2010), computational
fluid dynamics and turbulence modelling (Kato et al., 2015; Li et al., 2017; Bren-
ner et al., 2022; Piroozmand et al., 2023), to biology and medicine (Quaife et al.,
2008; Epp et al., 2020; Evensen et al., 2021; Lim et al., 2023).

This chapter provides an overview of popular DA methods with a focus on sta-
tistical approaches and reviews the application of DA in fractured porous media.
For a thorough discussion of the topic, see e.g. Asch et al. (2016), Bannister
(2017), Carrassi et al. (2018) and Evensen et al. (2022).
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4.2 Problem formulation

This section presents the formulation for describing the dynamics of a stochastic
time-varying system and its inherent uncertainty. Further, it introduces statistical
methods that form the foundation for estimating these uncertain model compo-
nents.

4.2.1 Forward and observation model

A noisy, non-linear, discrete time-varying system can describe or approximate
many physical processes. The evolution of such a system is given by

xk+1 =M(xk, uk, θ) + υk , (4.1)

where the non-linear functionM( . ) relates the state vector xk ∈ Rn and control
(or input) vector uk ∈ Rl at time step k as well as the time-independent model
parameters θ ∈ Rp to the state at time step k + 1. We thereby assume that
M( . ) is a deterministic function and that the model error υk ∈ Rn is additive.
We further assume here that the system can be modelled as a 1storder Markov
process where the future does not depend on the past if the present is known.
In some instances, we obtain the discrete system of Eq. (4.1) by discretising a

noisy, non-linear, continuous time-varying system

ẋ(t) = Q (x(t), u(t), υ(t), θ) (4.2)

in time. Here, Q( . ) is a continuous non-linear function describing the system,
and υ(t) is a continuous random variable expressing the model noise.
A measurement of the system y ∈ Rm is obtained by

yk = H(xk) + ωk , (4.3)

whereH( . ) is the observation model, a potentially non-linear function that relates
the state vector to the measurement. Again, we assume here that the measurement
noise ωk ∈ Rm is additive. We thereby distinguish between actual measurements
d observed in reality serving as reference measurements in the DA framework and
predicted measurements from simulations. Note that we use the terms measure-
ment and observation interchangeably.
In some cases, the model is linear, or we approximate it as such. By linearising

Eqs. (4.1) and (4.3), we obtain

xk+1 = Akxk +Buk + υk and (4.4)
yk = Hkxk + ωk , (4.5)

where A ∈ Rn×n is the state matrix, B ∈ Rn×l is a matrix describing the effect
of the control vector, and Hk ∈ Rm×n is the observation matrix. Those matrices
generally depend on model parameters.
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A popular example in control theory is a vehicle with position and velocity
as state variables. The throttle acts as control input, relevant model parameters
might include the wheel diameter, and slip between the wheels and the road can be
responsible for model noise. For such a vehicle, we can obtain a noisy measurement
of its location from a GPS signal.

4.2.2 Uncertain model variables

In the systems described above, all variables can generally be associated with
uncertainty. Such random variables are described by a probability density function
(PDF) and can be expressed with expected value ( .̄ ) and fluctuations ( . )′, i.e.,

x0 = x̄0 + x′0 (4.6)
θ = θ̄ + θ′ (4.7)
uk = ūk + u′k (4.8)
υk = 0 + υ′k (4.9)
ωk = 0 + ω′k (4.10)
xk = x̄k + x′k (4.11)
yk = ȳk + y′k . (4.12)

The system’s initial state x0, the model parameters θ, control inputs uk, model
errors υk and measurement errors ωk are generally considered mutually indepen-
dent. On the other hand, the state and measurements of the system, xk and yk
respectively, are dependent random variables. The PDFs describing the random
variables in Eqs. (4.6) to (4.12) can generally have arbitrary shapes; however,
many DA methods require them to be Gaussian.

The state vector z of the DA problem contains all the uncertain quantities we
want to estimate. In its full form, the DA state vector reads

z =
[
xT0 , θ

T , uT1 , ..., u
T
K , υ

T
1 , ..., υ

T
K

]T
or (4.13)

z =
[
xT0 , x

T
1 , ..., x

T
K , θ

T , uT1 , ..., u
T
K

]T
, (4.14)

depending on the formulation of the DA problem (Evensen et al., 2022). Thus,
we can reformulate Eq. (4.3) as

yk = H (M(z)) + ωk = G(z) + ωk . (4.15)

In some DA problems, we might consider one or several of the variables as known
and model them as deterministic variables. This work assumes that the control in-
put (e.g. boundary condition of flow and transport simulations) is known exactly.
Consequently, the DA state vector reduces to

z =
[
xT0 , x

T
1 , ..., x

T
K , θ

T
]T

. (4.16)
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In Chapters 5 and 6, we consider pure parameter estimation, i.e., z = θ, and
assume that any model error can be included in the measurement errors, such
that Eq. (4.15) reduces to yk = G(θ) + ωk.

4.2.3 Inverse problem

The forward problem described in Section 4.2.1 predicts the behaviour of a system
given its initial state, control inputs and model parameters. It is usually well-posed
and relatively straightforward to solve, even though it might be computationally
expensive for large and complex systems.
We are often interested in calculating a system’s model parameters or state

from a set of measurements. Calculating the cause from the effect is described by
the corresponding inverse problem (Asch et al., 2016). Contrary to the forward
problem, the inverse problem is often ill-posed and can either have many possible
solutions or none, depending on whether it is under- or over-determined. Further,
it can be highly non-linear with many local minima. This makes solving the inverse
problem very challenging. The following sections present tools and methods useful
for describing and solving inverse problems.

4.2.4 Bayes’ theorem

Bayes’ theorem, named after the English statistician Thomas Bayes, can be viewed
as the basis of most DA methods (e.g. Evensen et al., 2022). The theorem provides
a formula for the probability distribution of the quantity of interest, here the DA
state vector z, given the noisy measurement of a related quantity d. The resulting
conditional distribution

fZ|D(z|d) =
fD|Z(d|z)fZ(z)

fD(d)
=

fD|Z(d|z)fZ(z)∫∞
−∞ fD|Z(d|z)fZ(z) dz

(4.17)

is called the posterior PDF of z. The prior fZ(z) is the probability distribution
of z before any additional information (i.e. measurements of d) is available. The
likelihood fD|Z(d|z) is the probability distribution of the observed quantity d given
a particular value of z and can be obtained from Eq. (4.3). The denominator
fD(d), sometimes called marginal or evidence, serves as a normalisation constant
and can be calculated by integrating the product of likelihood and prior over z.
In subsequent sections, we drop the subscripts of f for convenience and brevity.

4.2.5 Estimators

Estimators are statistical methods used to make predictions or estimates about
unknown quantities or parameters based on observed data or prior information.
There is a wide variety of estimators available, each serving different purposes.
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When dealing with DA problems, particularly in estimating the posterior distri-
bution, we often encounter two fundamental objectives. One approach seeks to
estimate the most probable value of an unknown parameter. The other approach
aims to find an unbiased estimator that minimises variance or, in other words, is
the most precise and accurate. This section provides a concise overview of these
two fundamental concepts.

Maximum a posteriori estimate

Calculating the most probable posterior DA state corresponds to finding the max-
imum a posteriori (MAP) estimate

zMAP = arg max
z

f(z|d) . (4.18)

When the posterior PDF is a smooth function, we can represent it in the form

f(z|d) ∝ exp (−J (z)) , (4.19)

as demonstrated, for instance, by Evensen et al. (2022). This form is derived based
on the fact that a PDF is always non-negative. Maximising f(z|d) in Eq. (4.18)
is then equivalent to minimising the cost function J (z), leading to the MAP
estimate

zMAP = arg min
z
J (z) . (4.20)

In scenarios where both the prior and the likelihood follow Gaussian distributions,
characterised by the prior state covariance matrix P0 and the measurement errors
covariance matrix R, respectively, the cost function takes the form

J (z) =
1

2
(z − z0)T P−1

0 (z − z0) +
1

2
(G(z)− d)T R−1 (G(z)− d) , (4.21)

where z0 denotes the prior state estimate.
While obtaining the most probable state can be highly valuable, it is important

to note that the MAP estimate focuses solely on this point estimate and does
not provide information about the full posterior distribution or the associated
uncertainty.

Minimum mean squared error estimate

The second approach involves finding an estimator that is both unbiased and
precise. Unbiased means that the expected value of an estimator ẑ equals the
true value z, expressed as

E[ẑ] = z . (4.22)
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On the other hand, Precision is characterised by the estimator’s variance. Finding
the most precise estimator given some observation data d corresponds to obtaining
the minimum variance estimate

zMV = arg min
ẑ

Var [ẑ|d] = arg min
ẑ

E
[
(ẑ − E[ẑ])T (ẑ − E[ẑ])

∣∣∣d] . (4.23)

When an MV estimator is also unbiased, it results in the minimum mean squared
error (MMSE) estimate

zMMSE = arg min
ẑ

E
[
(ẑ − z)T (ẑ − z)|d

]
= E [z|d] =

∫
zf(z|d) dz , (4.24)

corresponding to the mean of the true posterior distribution.
The best linear unbiased estimator (BLUE) is a specific type of estimator that

is both linear and unbiased and achieves the minimum variance among all linear
unbiased estimators. Therefore, BLUE represents a particular implementation of
the MMSE estimate in the context of linear estimators.
While the MMSE estimate provides a precise and accurate estimate, it does not

guarantee that the estimate is actually likely. In the case of a bimodal distribu-
tion, the MMSE estimate may return a value with a low probability of occurrence.
However, all these estimators yield the same result for linear forward and obser-
vation models with Gaussian error statistics.

4.3 Variational data assimilation

Variational DA, also called classical DA, seeks the most probable posterior state
for Gaussian distributions of the prior and the likelihood by minimising the cost
function presented in Eq. (4.21). Minimising the cost function can be achieved by
setting its gradient,

∇zJ (z) = P−1
0 (z − z0) +∇zG(z)R−1 (G(z)− d) = 0 , (4.25)

to zero, where the model sensitivity ∇zG(z) is the gradient of the predicted mea-
surements to the state vector. This approach is however rarely used as it is costly
in high-dimensional problems and G(z) is often a non-linear function.
Another approach is finding the minimum of the cost function iteratively, i.e.,

zi+1 = zi − γiBi∇zJ (zi) , (4.26)

where the positive scalar γ is the step size, and B is a matrix (e.g. Evensen et al.,
2022). Those two parameters distinguish different minimisation methods. We
obtain a gradient descent method for Bi = I. Choosing γi = 1 and B as the
inverse of the Hessian

∇z∇zJ (z) = P−1
o +∇zG(z)R−1 (∇zG(z))T +∇z∇zG(z)R−1 (G(z)− d) (4.27)
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results in the Newton method. The Gauss-Newton method approximates the
Hessian by omitting the last term in Eq. (4.27).

Even with gradient descent, the simplest method of solving Eq. (4.26), we still
need to evaluate the gradient of the cost function. The adjoint method (e.g.
Asch et al., 2016) provides an elegant and efficient solution, roughly at the cost
of solving the forward problem once. Continuous and discrete adjoint-based data
assimilation exist; the latter can be combined, e.g., with finite differences or au-
tomatic differentiation. Applying variational DA to stationary problems is called
3D-Var, while 4D-Var tackles time-dependent problems.

A thorough discussion of variational DA methods can be found, e.g. in Asch
et al. (2016) and Evensen et al. (2022).

4.4 Statistical data assimilation

While variational DA methods often aim to find the MAP estimate, many statis-
tical DA techniques rely on the MMSE estimate. In this section, we provide an
overview of several prominent statistical DA techniques, with particular emphasis
on ensemble-based methods.

4.4.1 Simple example

Let’s demonstrate the principal functionality of statistical DA on a straightforward
system described by a single time-independent state variable. Suppose we have
prior knowledge of this model variable associated with uncertainty, expressed with
a Gaussian distribution with mean xb and variance σ2

b . We obtain a measurement
xm of the model variable where the variance σ2

m describes the measurement error.
Combining the prior knowledge and the measurement, we obtain an updated,
posterior estimate of the model variable by applying Bayes’ theorem (Eq. (4.17)).
Essentially, we multiply the PDFs of prior and measurement, which results here in
a posterior PDF f(x|y) that is again Gaussian. The mean (here coinciding with
the MAP estimate) and variance of the posterior distribution is

xa = xb +
1

1 + α
(xm − xb) and (4.28)

σ2
a =

(
1

σ2
m

+
1

σ2
b

)−1

, (4.29)

which is the best linear unbiased estimator (BLUE) for this problem. Depend-
ing on the variance of measurement and prior knowledge, described by the ratio
α = σ2

m/σ
2
b , BLUE puts more weight on one or the other (Fig. 4.1).
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(a) σb < σm (b) σb = σm (c) σb > σm

Figure 4.1: Posterior PDF for different prior and measurement PDFs. The arrows
indicate the standard deviations σ.

4.4.2 Kalman filter

We now extend the approach from the previous section to the noisy linear discrete-
time dynamic system given in Eqs. (4.4) and (4.5), where we assume Gaussian
error statistics. For such a system, several statistical methods can lead to the
BLUE of the state given the previous state estimate and the measurement up
to that point. One of them is the Kalman filter (KF) introduced by Kalman
(1960), a recursive process that iteratively performs a prediction/forecast step
and a correction/update/analysis step (e.g. Humpherys et al., 2012; Asch et al.,
2016). For simplicity, we consider only pure-state estimation in this section and
assume that all model parameters and control inputs are known exactly.
The KF is initialised as

x0|0 = E[x0] (4.30)
P0|0 = Cov[x0] (4.31)

where x and P describe the state estimate and its covariance, respectively. x0

represents the initial prior knowledge of the model states. The subscript [ . ]b|a
denotes the value of a quantity at time step b given information up to time step a.
This section highlights prior quantities in purple and posterior quantities in green
for better readability. Note that the initialised values of Eqs. (4.30) and (4.31)
are treated as posterior quantities in the here presented algorithm.
In the prediction step, the state vector and its covariance are propagated forward

in time until new measurements become available. While the states propagate
according to the deterministic part of Eq. (4.4), the covariance is affected by
the model error υ. The resulting prior estimate at time step k (i.e. before any
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measurement data from that time step is incorporated) is

xk|k−1 = Ak−1xk−1|k−1 +Bk−1uk−1 (4.32)

Pk|k−1 = Ak−1Pk−1|k−1A
T
k−1 +Qk−1 , (4.33)

where Qk = Cov[υk] is the covariance of the model error.
In the update step, we compare the reference measurements dk to the predicted

measurements ȳk = Hkxk|k−1 and adjust the estimates for x and P accordingly.
Note that the reference measurements observed in reality are affected by the mea-
surement noise characterised by the covariance Rk, while the predicted measure-
ments represent expected values. The resulting posterior estimate at time step k
(i.e. after the measurement data from that time step is incorporated) is

xk|k = xk|k−1 +Kk

(
dk −Hkxk|k−1

)
(4.34)

Pk|k = (In −KkHk)Pk|k−1 , (4.35)

where
Kk = Pk|k−1H

T
k

(
HkPk|k−1H

T
k +Rk

)−1

(4.36)

is the Kalman gain ∈ Rn×m and In is the n× n identity matrix.
The application of the KF is restricted to dynamic systems that can be de-

scribed by linear model and measurement operators. For non-linear systems, such
as Eqs. (4.1) and (4.3), one can apply the extended Kalman filter (EKF), which
linearises the system about the current state estimate (e.g. Evensen, 1992; Asch
et al., 2016). The EKF is however a sub-optimal scheme that provides only ap-
proximations of the true conditional mean and variance.

Both the KF and the EKF become computationally prohibitive for states con-
taining a large number of variables. The limiting factor is propagating and storing
the n×n covariance matrix P . In addition, linearising the system in EKF is costly
as well. In the following, we present methods better suited for common DA prob-
lems in subsurface applications or numerical weather prediction.

4.4.3 Ensemble Kalman filter

The ensemble Kalman filter (EnKF), introduced by Evensen (1994), is an ensemble
approximation of the original Kalman filter (Section 4.4.2) and does not require
linearised or adjoint versions of the model or the observation operator. The EnKF
is optimal only for linear models and Gaussian errors but works approximately
also for (weakly) non-linear models. Again, we consider pure-state estimation
with known model parameters and control inputs, but the EnKF can easily be
extended to more general DA problems. There exists a wide variety of EnKF
versions; for a review, see e.g. Houtekamer & Zhang (2016), Keller et al. (2018),
or Evensen et al. (2022). This section presents one of them, the stochastic EnKF.
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We initialise the EnKF by sampling an ensemble of N realisations

X0|0 =
[
x

(1)

0|0, x
(2)

0|0, ... , x
(N)

0|0

]
(4.37)

from the prior distribution. In the prediction step, every realisation is propagated
independently according to the forward model described in Eq. (4.1), i.e.

x
(i)

k|k−1 =M
(
x

(i)

k−1|k−1, uk−1, θ
)

+ υ
(i)
k−1 . (4.38)

The corresponding predicted measurements for a particular ensemble realisation
are given by the expected value of the observation model Eq. (4.3), i.e.,

ȳ
(i)

k|k−1 = E
[
y

(i)

k|k−1

]
= H

(
x

(i)

k|k−1

)
. (4.39)

Thus, the prediction step of EnKF can be parallelised efficiently and easily.
The update step, on the other hand, is less straightforward and differs from

version to version. The stochastic EnKF perturbs the difference between the
reference measurements dk and the predicted measurements ȳ(i)

k|k−1 with measure-

ment noise ω(i)
k ∼ N (0, Rk). These perturbations ensure that the variance of the

posterior ensemble is correctly predicted. Following van Leeuwen (2020), we ap-
ply the perturbations ωi to the predicted ensemble measurements, whereas other
implementations (e.g. Asch et al., 2016; Evensen et al., 2022) apply them to the
reference measurements. The posterior realisations are

x
(i)

k|k = x
(i)

k|k−1 +Kk

(
dk −

(
ȳ

(i)

k|k−1 + ω
(i)
k

))
, (4.40)

where the sets of all x(i)

k|k−1 and x
(i)

k|k are called prior and posterior ensembles,
respectively. Following Asch et al. (2016), we approximate the Kalman gain

Kk = Pk|k−1H
T
k

(
HkPk|k−1H

T
k +Rk

)−1

' Xk|k−1

(
Yk|k−1

)T [
Yk|k−1

(
Yk|k−1

)T ]−1
(4.41)

with the normalised anomalies

[
Xk|k−1

]
i

=
1√
N − 1

(
x

(i)

k|k−1 −
1

N

N∑
j=1

x
(j)

k|k−1

)
and (4.42)

[
Yk|k−1

]
i

=
1√
N − 1

((
ȳ

(i)

k|k−1 + ω
(i)
k

)
− 1

N

N∑
j=1

(
ȳ

(j)

k|k−1 + ω
(j)
k

))
. (4.43)

Here, Pk|k−1 = Xk|k−1(Xk|k−1)T is the ensemble approximation of the forecast
error covariance matrix of the DA state vector, and Hk is the linearised version
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of the observation operator H(.). Note that [ . ]i denotes the i-th column of the
corresponding matrix.

Algorithm 1 presents the pseudo-code of a stochastic EnKF update step. Note
that various implementations of the update step exist that slightly differ from each
other (e.g. Evensen et al., 2022). The EnKF routine, which consists of alternate
prediction and update steps, is shown in Algorithm 2.

Algorithm 1 Stochastic EnKF update based on Evensen (1994), Asch et al.
(2016) and van Leeuwen (2020).
1: Input variables
2: Z ∈ Rn×N . Ensemble of prior DA state vectors
3: Y ∈ Rm×N . Ensemble of predicted measurements
4: d ∈ Rm×1 . Reference measurements
5: R ∈ Rm×m . Measurement error covariance matrix

6: function EnKF_Update(Z, Y, d, R)
7: for i = 1, ..., N do
8: [Ω]i ∼ N (0, R) . Draw perturbations
9: end for
10: Π = (I − 1

N 11T )/
√
N − 1 . Identity matrix I ∈ RN×N , vector of ones 1 ∈ RN×1

11: X = ZΠ . Eq. (4.42)
12: Y = (Y + Ω)Π . Eq. (4.43)
13: K = XY T (Y Y T )−1 . Kalman gain Eq. (4.41)
14: Z = Z +K(d1T − Y + Ω) . Update DA state vectors Eq. (4.40)
15: return Z
16: end function

4.4.4 Ensemble smoother

Filtering estimates the current state of a system given past and present measure-
ments. The classical EnKF described in the previous section updates the sys-
tem’s state whenever new measurements are available. The system’s current state
thereby depends on past measurements through previous EnKF updates. Smooth-
ing, on the other hand, considers past, present and possibly future measurements
for estimating the system’s current state, which is equivalent to updating past
and present states with current measurements (Asch et al., 2016).
Various formulations of ensemble smoothers exist (Evensen, 2009; Evensen et al.,

2022), some of which are described below. The original formulation of the ensem-
ble smoother (ES) was introduced by van Leeuwen & Evensen (1996). The ES
collects all measurements in space and time over a certain time period called the
assimilation window. At the end of the assimilation window, it updates all model
states within the current window before moving on to the next one. The ensemble
Kalman smoother (EnKS) (Evensen & van Leeuwen, 2000) additionally also up-
dates the model states within previous assimilation windows. The asynchronous
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Algorithm 2 DA routine using the ensemble Kalman filter (EnKF) (Evensen,
1994). Here, we assume no error in the forward model and known controls.
1: Input variables
2: M( . ) . Forward model
3: H( . ) . Observation model
4: Z0 ∈ Rn×N . Ensemble of initial DA state vectors
5: dk ∈ Rmk×1 . Reference measurements at time steps k
6: Rk ∈ Rmk×mk . Measurement error covariance matrix at time step k

7: for k = 1, ..., K do . Loop over time steps
8: for i = 1, ..., N do . Loop over ensemble members
9: [Zk]i =M( [Zk−1]i ) . Prediction step Eq. (4.38)
10: [Yk]i = H( [Zk]i ) . Predicted measurements Eq. (4.39)
11: end for
12: Zk = ENKF_Update(Zk,Yk, dk, Rk) . Update step (Algorithm 1)
13: end for

EnKF (AEnKF) (Sakov et al., 2010) uses measurements that are distributed over
the assimilation window in an EnKF update, and as such it is essentially a combi-
nation of EnKF and EnKS. Skjervheim et al. (2011) consider the whole simulation
period as one assimilation window in their ES framework (see Algorithm 3). This
greatly simplifies the implementation as the forward simulation (i.e. the reservoir
simulator in subsurface applications) does not need to be interrupted. Note that
the term ensemble smoother is used in literature for the original version of van
Leeuwen & Evensen (1996) and the simplified ES of Skjervheim et al. (2011).

Algorithm 3 DA routine using the ensemble smoother (ES) with only one as-
similation window (Skjervheim et al., 2011).
1: Input variables
2: M( . ) . Forward model
3: H( . ) . Observation model
4: Z0 ∈ Rn×N . Ensemble of initial DA state vectors
5: d ∈ Rm×1 . Reference measurements at all time steps
6: R ∈ Rm×m . Measurement error covariance matrix including all time steps

7: for i = 1, ..., N do . Loop over ensemble members
8: z0 = [Z0]i
9: for k = 1, ..., K do . Loop over time steps
10: zi =M(zk−1) . Prediction step Eq. (4.38)
11: ȳk = H( zk ) . Predicted measurements Eq. (4.39)
12: end for
13: [Z]i = [ zT0 , z

T
1 , ... , z

T
K ]T

14: [Y]i = [ ȳT1 , ȳ
T
2 , ... , ȳ

T
K ]T

15: end for
16: Z = ENKF_Update(Z,Y, d, R) . Update step (Algorithm 1)
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Smoothers are generally more flexible regarding the incorporation of measure-
ments compared to filters. This is particularly true for the ES of Skjervheim et al.
(2011), which uses only one assimilation window. It can effortlessly incorporate
completely asynchronous measurements whose time stamps differ from realisation
to realisation, for example, measurements of the time when water breakthrough
occurs at a well or when a tracer concentration reaches a certain threshold, and
deal with correlations between measurements obtained at different times.
For linear forward and observation models and Gaussian error statistics, results

from ensemble smoothers and EnKF are equivalent (Evensen, 2004). Skjervheim
et al. (2011) also obtained very similar results with ES and EnKF for the two reser-
voir history-matching problems considered in their study. For non-linear models
however, the single update with ES is insufficient and inferior to the sequential
updates of the EnKF (van Leeuwen & Evensen, 1996; Evensen & van Leeuwen,
2000; Chen & Oliver, 2012). Iterative versions of the ES, such as the ensemble
randomised maximum likelihood method (EnRML) (Chen & Oliver, 2012, 2013)
or the ensemble smoother with multiple data assimilation (ESMDA) (Emerick &
Reynolds, 2013), were developed for weakly to modestly non-linear systems and
have gained popularity in recent years. The ESMDA is described in more detail
in the next section.

4.4.5 Ensemble smoother with multiple data assimilation

The ensemble smoother with multiple data assimilation (ESMDA), proposed by
Emerick & Reynolds (2013), is an iterative method widely used for non-linear DA
problems. As an ensemble smoother, the ESMDA collects all measurements in
time and space during the forward simulation and performs an update step at the
end of the assimilation window. It then alternately reruns the forward simulation
from the beginning of the assimilation window with the updated DA states and
performs update steps with the same reference measurements.
A repeated assimilation of the same reference measurement puts however more

and more weight on them compared to the prior knowledge of the DA state vector.
In order to compensate for this effect and guarantee a correct posterior distribution
in a linear model with Gaussian error statistics and infinite ensemble size, the
ESMDA inflates the measurement error covariance matrix

R̃j = αjR such that
J∑
j=1

1

αj
= 1 , (4.44)

where J is the number of ESMDA iterations. While there is no proof of conver-
gence in non-linear DA problems (Evensen & Eikrem, 2018), the ESMDA works
fine in many (weakly) non-linear cases (e.g. Emerick, 2016; Evensen et al., 2021;
Todaro et al., 2021).

Typically, a constant inflation factor αj = J ∀j is used for simplicity. However,
Rafiee & Reynolds (2017) showed that varying inflation factors can be beneficial.
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The number of ESMDA iterations has to be defined beforehand, and a convergence
study is often required to determine this number. To that end, Le et al. (2016)
proposed automatic procedures to adaptively determine the number of iterations
and inflation factors during runtime at additional costs.
Algorithm 4 presents the ESMDA routine. It is comparably easy to understand

and implement and has therefore gained popularity. In this work, we consider
an assimilation window that includes the whole reservoir simulation, thus avoid-
ing interrupting the forward simulation. Further, we use the ESMDA for pure
parameter optimisation, further simplifying the implementation.

Algorithm 4 DA routine using the ensemble smoother with multiple data assim-
ilation (ESMDA) based on Emerick & Reynolds (2013) with only one assimilation
window.
1: Input variables
2: M( . ) . Forward model
3: H( . ) . Observation model
4: Z0 ∈ Rn×N . Ensemble of initial DA state vectors
5: d ∈ Rm×1 . Reference measurements at all time steps
6: R ∈ Rm×m . Measurement error covariance matrix including all time steps
7: αj . Inflation factors

8: for j = 1, ..., J do . Loop over ESMDA iterations
9: R̃ = αjR . Inflate measurement error covariance Eq. (4.44)
10: for i = 1, ..., N do . Loop over ensemble members
11: z0 = [Z0]i
12: for k = 1, ..., K do . Loop over time steps
13: zi =M(zk−1) . Prediction step Eq. (4.38)
14: ȳk = H( zk ) . Predicted measurements Eq. (4.39)
15: end for
16: [Z]i = [ zT0 , z

T
1 , ... , z

T
K ]T

17: [Y]i = [ ȳT1 , ȳ
T
2 , ... , ȳ

T
K ]T

18: end for
19: Z = ENKF_Update(Z,Y, d, R̃) . Update step (Algorithm 1)
20: end for

4.4.6 Particle filter

Similar to EnKFs, the particle filter (PF) represents the probability distribution
of our knowledge about a system by an ensemble of realisations called particles.
However, the PF is designed for fully non-linear data assimilation. Moreover, it
does not make any assumptions on prior or likelihood and can therefore handle
non-Gaussian distributions. They achieve this by adapting the weights of the
particles instead of moving them like in the EnKF.
The standard or bootstrap PF was introduced by Gordon et al. (1993). The

initial prior knowledge of the system (i.e. at time k = 0) is modelled with an
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empirical distribution

f(x0) ≈
N∑
n=1

1

N
δ(x0 − xn0 ) (4.45)

with N particles {xn0 }n=1:N , where δ are Dirac functions centred around the par-
ticles. In this section, we consider pure state estimation, and consequently, the
particles represent the states of the system. However, the method can easily be
extended to include model parameters, uncertainty and control inputs.

Generally, the prior knowledge at some time k, possibly depending on reference
measurements from previous times dk−1:1 = {dk−1, dk−2, ..., d1}, is given as

f(xk|dk−1:1) ≈
N∑
n=1

wnk−1δ(xk − xnk ) . (4.46)

The particle weights wn are then updated in the analysis step. Suppose we have
a reference measurement dk available; the posterior knowledge of the system at
time k following Bayes’ theorem is

f(xk|dk:1) =
f(dk|xk)

f(dk)
f(xk|dk−1:1)

≈
N∑
n=1

wnk−1
f(dk|xnk )

f(dk)
δ(xk − xnk ) =

N∑
n=1

wnk δ(xk − xnk ) .
(4.47)

As the definition of a PDF requires
∑N
n=1 w

n
k = 1, the weights can be calculated

as

wnk =
wnk−1f(dk|xnk )∑
j w

j
k−1f(dk|xjk)

. (4.48)

Simply spoken, more weight is put on those particles for which the measurement
is likely. Note that by comparing Eq. (4.47) to Eq. (4.45), all particles have the
same weight initially, i.e. wn0 = 1/N ∀n. In the forward step, the particles are
then propagated to the time k + 1 when new measurement data is available

xk+1 =M(xk) + υk+1 , (4.49)

where we assume here thatM( . ) is a deterministic function and the model noise
υk is additive (Eq. (4.1)). We thereby obtain

f(xk+1|dk:1) ≈
N∑
n=1

wnk δ(xk+1 − xnk+1) , (4.50)

which is identical to Eq. (4.46), and we can continue the next iteration of the DA
process from there.
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While the standard particle filter can handle non-linear systems with non-
Gaussian error statistics in theory, its application in practice is limited as it suffers
degeneracy problems. With every DA step, the variation of the weights increases
until eventually, one particle has a weight much bigger than the others. To avoid
this, a prohibitively large number of particles is required in real-world applications.
Several methods have been developed to mitigate the degeneracy problem, such as
the sequential importance resampling (SIR) particle filter, localisation techniques
and combinations of particle filters with EnKF or variational DA methods; for
further information, see e.g. Carrassi et al. (2018) or van Leeuwen et al. (2019).

4.4.7 Localisation and inflation

Ensemble-based methods usually perform very well in small and moderately sized
DA problems. However, real-world DA problems often involve estimating a huge
number of uncertain states and parameters. Computational resources usually
limit the ensemble size; therefore, the prior distribution is likely undersampled.
A limited ensemble size restricts the solution space as the posterior ensemble is
a linear combination of the prior ensemble (Evensen, 2003). Further, undersam-
pling typically leads to spurious correlations between states and measurements,
resulting in unphysical updates and underestimated posterior variance of states
far from measurements. In addition, when the number of measurements is much
larger than the ensemble size, some information in the measurements cannot be
represented by the ensemble and is lost in the update step.

A common strategy is to apply localisation and inflation methods in the update
step (for a review, see e.g. Sakov & Bertino, 2011; Chen & Oliver, 2017; Evensen
et al., 2022). Localisation dampens the spurious correlations between the states
and measurements by element-wise multiplication of a covariance matrix with a
damping function (Hamill et al., 2001; Houtekamer & Mitchell, 2001; Chen &
Oliver, 2010; Emerick & Reynolds, 2011). It can be applied in state, observation
or ensemble space, and the damping function is typically distance-based. Simulta-
neously, localisation also enables posterior realisations outside the space spanned
by the initial ensemble. Local analysis, a related method, divides the states into
subsets and updates them independently (Haugen & Evensen, 2002; Evensen,
2003). For each subset, we can individually select which measurements to include
in the update step. While covariance localisation and local analysis are typically
distance-based, adaptive localisation can be used when long-ranging correlations
exist naturally in a system (Luo & Bhakta, 2020). Inflation, on the other hand,
restores the correct ensemble spread by multiplying the ensemble approximation
of the state covariance with a scalar (Anderson & Anderson, 1999). It is often
necessary to avoid filter divergence when only a small ensemble size can be used.
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4.5 DA in fractured porous media

A vast number of studies exist that apply ensemble-based DA to porous media.
Many studies consider pure parameter estimation where, most typically, the ma-
trix permeability is estimated, while other studies also include flow and transport
fields in the DA state vector (e.g. Nævdal et al., 2005; Chen & Zhang, 2006;
Skjervheim et al., 2007; Hendricks Franssen & Kinzelbach, 2008; Li et al., 2012;
Vogt et al., 2012). Some studies have developed specific methods for character-
ising channelised reservoirs (Jafarpour & McLaughlin, 2008; Chang et al., 2010;
Zhou et al., 2011).

Several studies have applied various forms of ensemble-based DA to fractured
porous media, targeting different objectives and aspects of fracture modelling.
The following review, which is based on the introductions in Liem & Jenny (2020)
and Liem et al. (2023b, Preprint), focuses thereby on studies that directly update
fracture properties such as location, orientation, aperture, permeability or porosity
as opposed to upscaled or averaged fields.

Fracture aperture and the related permeability are essential parameters for flow
and transport and are usually associated with considerable uncertainty. Thus,
estimating fracture aperture is an important objective. As apertures vary con-
siderably among fractures (Barton et al., 1995; Baghbanan & Jing, 2008; Barton
& Quadros, 2015; Zhang et al., 2021b), estimating an individual aperture value
for each fracture is desirable. Some studies have used relatively simple, uncon-
ditional distributions to model the apertures (Zhe et al., 2016; Liem & Jenny,
2020; Liu et al., 2022). Others set the apertures proportional to the fracture
length (Zhang et al., 2021a). However, these models may not accurately represent
the complex relationship between aperture values and stress state, displacement
history and fracture parameters such as orientation, length, and surface rough-
ness (Section 2.2.3). Seabra et al. (2023) include those complex relations, albeit
without considering shear displacement. They calculate fracture apertures as a
function of effective normal stress obtained from a geomechanical simulation and
subsequently reduce the uncertainty in the global model parameters with DA. In
Wu et al. (2021), the authors follow an altogether different approach and model
aperture variations within the fracture plane of a single fracture.

The studies above assume a known fracture geometry, significantly simplifying
the DA problem. Considering uncertainty in the fracture geometry is challeng-
ing for several reasons. Obtaining physically meaningful prior realisations that
include geomechanical knowledge, such as stress states or rock properties, is not
trivial. Often, studies use prior ensembles based on relatively simple distributions
that incorporate only little geomechanical knowledge, if any. Even if the prior
geometry is physically meaningful, there is no guarantee that the updated poste-
rior geometry is also. Generally, arbitrary small distances or angles between two
fractures can arise in the update step. Further, the updated fracture geometry
needs to be meshed automatically, where using a non-conforming mesh, such as
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in EDFM, is beneficial. Additional challenges arise when the fracture number is
also considered as an uncertain parameter.
Several studies treat fracture location as an uncertain parameter. Liu et al.

(2018) directly update fracture coordinates with EnKF. When the number of
fractures is unknown, the fractures can be parametrised with a representing node
system where a level set function indicates whether a fracture is present at the
corresponding node (Ping & Zhang, 2013; Ping et al., 2017; Chai et al., 2018).
A similar approach parametrises the fractures with the Hough transform, where
each local maximum in the Hough field corresponds to a fracture (Lu & Zhang,
2015; Yao et al., 2018, 2019). In addition to fracture length, these studies often
consider fracture orientation and length as uncertain parameters.
In the majority of the studies referenced above, the analysis is limited to a

relatively small number of fractures, typically involving ten or fewer, and con-
ducted in 2D. Extending these findings to more complex fracture networks and
the transition to comprehensive 3D models remains an area for further exploration.
Except for Zhe et al. (2016), these studies consider scenarios where all fractures
are present from the beginning of the reservoir simulation, and their properties
do not change over time. Including dynamic fracture formation and changes in
fracture properties with, for example, fluid pressure presents an interesting area
of research.
In the following chapters, we focus on the fracture apertures as the only un-

certain model parameter. Further, we assume that we know the initial state of
the reservoir (i.e. pressure and concentration fields) exactly and that the forward
simulation is error-free.
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5 Influence of Measurement Strategies and
Matrix Permeability on Fracture Estimation

Some parts of this chapter are loosely based on the conference proceedings “Two-
Stage Ensemble Kalman Filter Approach for Data Assimilation Applied to Flow
in Fractured Media” (Liem & Jenny, 2020). However, the results presented here
include improved and extended scenarios and stem from an enhanced DA frame-
work. All data, figures, and text in this chapter are newly created, and no content
has been copied from Liem & Jenny (2020) unless stated otherwise.

5.1 Introduction

Reservoir stimulation aims to enhance reservoir permeability and heat exchange
in enhanced geothermal systems (EGS) (Jia et al., 2022). Various stimulation
techniques, including hydraulic, chemical and thermal approaches are available,
with hydraulic stimulation being the most commonly employed. In this process,
new fractures are created (hydraulic fracturing), and pre-existing natural ones
are reactivated (hydro-shearing). Hydraulic reservoir stimulation continues for an
extended period, as illustrated by Häring et al. (2008) for Basel 1.
In this conceptual study, we consider fractured porous media where the indi-

vidual fractures appear one after the other. Based on flow and transport data,
we estimate fracture aperture and length with ESMDA. In this work, we first
study how intermediate measurements during the reservoir stimulation process
affect the estimation of the fracture apertures. Secondly, we demonstrate that
matrix permeability has a huge effect on these results, as the sensitivity of the
apertures on the measurements decreases for high and low matrix permeability
values. Lastly, we repeat those studies and estimate fracture length instead of
aperture.

5.2 Method

5.2.1 Fracture geometry

In this study, we use the relatively simple synthetic two-dimensional fracture net-
work presented in Section 3.3.2 and taken from Liem & Jenny (2020). The frac-
ture network consists of two sets; the first set contains 9 fractures oriented in
x-direction, and the second set contains 13 fractures oriented in y-direction. We
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assume that the fractures appear one after the other, where Fig. 5.1 indicates the
sequence of appearance.

Figure 5.1: Fracture network with 22 fractures taken from Liem & Jenny (2020).
The numbers indicate the sequence in which the fractures appear. The
green star marks the position of the injector well, and the red circles
mark the position of the producers.

This study consists of three parts. In the first two parts, we assume that
the location, orientation, and length of each fracture are known a priori. The
hydraulic fracture apertures, which are assumed to be constant over the length
of each fracture, are the only uncertain parameters in those parts. In the third
part, the fracture lengths, instead of the apertures, are considered uncertain. We
thereby assume fixed and known midpoints of the fractures.

We sample the prior ensemble from a beta distribution that approximates a
normal distribution with mean µ = 0.5 and standard deviation σ = 1/6 (Fig. 5.2a).
These two distributions share the same mean and standard deviation. However,
the beta distribution is bounded and, as such, does not produce outliers that might
reach unphysical levels. We scale the beta distribution and sample the logarithm
of the apertures (Fig. 5.2b) and relative fracture length (Fig. 5.2c). We thereby
sample each fracture parameter in each realisation independently. The resulting
PDF for the fracture apertures is shown in Fig. 5.2d. For the synthetic reference
realisation, we set the apertures of all fractures to 1× 10−3 m and use the original
length of the fractures as depicted in Fig. 5.1.
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(a) (b)

(c) (d)

Figure 5.2: Probability density functions (PDFs) for sampling fracture parame-
ters. We approximate a normal distribution with a beta distribution
(a) and scale it to obtain PDFs for log-aperture (b) and relative frac-
ture length (c). The resulting PDF of the apertures is shown in (d).
The dashed blue lines in (b–d) indicate the ensemble mean, and the
solid black line represents the reference value.

5.2.2 Forward simulation

We consider single-phase flow in a thin layer of fractured porous medium embed-
ded between two impermeable layers, allowing for a two-dimensional analysis. We
assume the fractured layer is horizontal, hence neglecting gravitational effects.
The matrix possesses a uniform and isotropic permeability km and a uniform
porosity φm, and we derive the fracture permeability assuming plane Poiseuille
flow between two parallel plates, as expressed in Eq. (2.31). Table 5.1 lists the
parameters of the forward simulation.
We discretise the domain with a Cartesian grid whose grid cells are much larger

than the apertures, thus requiring upscaling of the fractures. We follow the upscal-
ing process outlined in Section 2.4.3 and determine the anisotropic upscaled per-
meability tensor using the analytical equations derived by Kasap & Lake (1990).
Additionally, we compute the upscaled porosity through volume averaging.
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Physical parameters
Matrix permeability km = 1× 10−14 m2

Matrix porosity φm = 0.15
Fracture permeability kf = a2

f/12
Fracture porosity φf = 1.0
Fluid viscosity µ = 1× 10−3 Pa s

Boundary & initial conditions
Pressure at producers pout = 1× 107 Pa

Volume flow rate at injector Q̇in = 5× 10−3 m3/s
Tracer concentration at injector cin = 1.0 for t > 0
Initial tracer concentration cinit(t = 0) = 0 everywhere

Spatial discretisation
Size of domain 300× 200× 1 m3

Number of grid cells 600× 400× 1 = 240000
Size of grid cells 0.5× 0.5× 1 m3

Temporal discretisation with ACTI (see Section 3.2.2)
Maximal time step for ACTI ∆tmax = 3 h
CFL criterion CFLmax = 0.5
Flux reconstruction scheme MUSCL-AIR
Slope limiter Koren

Table 5.1: Simulation parameters

Fluid is injected into the domain through the lower left corner and produced
from all other corners. Whenever a new fracture appears, we calculate the steady-
state pressure field using the elliptic pressure equation (Eq. (2.9)), which we dis-
cretise with a finite volume method (FVM) and solve directly. The injector and
the producers are represented as point sources with a specified injection rate and
outlet pressure, respectively, while no-flow conditions are enforced at the domain
boundary. We monitor the pressure at the injector and the flow rates at the three
producers.
In addition, we perform two tracer tests, one after the nine fractures from the

first set have appeared and one at the very end with all 22 fractures. Initially, the
tracer concentration is zero everywhere. At time t0, we begin injecting a tracer
with concentration cin = 1 into the inlet well. The tracer moves through the
domain according to the scalar advection equation (Eq. (2.14)), thus neglecting
diffusion. We solve this transport problem using ACTI with the MUSCL-AIR
scheme introduced in Section 3.2.2. We monitor the tracer breakthrough curves
at the producers and measure the time it takes for the tracer concentration to
reach 0.1 and 0.9.
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5.2.3 Measurement scenarios

As part of this study, we investigate how measurement data affect the outcome of
a DA framework. We thereby compare five measurement scenarios (Table 5.2). In
scenario 1, we use flow and transport measurements obtained once all 22 fractures
have appeared. In scenario 2, we additionally use flow and transport measure-
ments after all nine fractures of the first set have appeared. Scenario 3 uses only
flow measurements but obtains them after each fracture appears. In contrast,
Scenario 4 uses only transport measurements from the tracer tests after 9 and 22
fractures have appeared. Finally, scenario 5 uses all available measurements.

Scenario F 1–8 F 9 T 9 F 10–21 F 22 T 22 Total

1 x x 10

2 x x x x 20

3 x x x x 88

4 x x 12

5 x x x x x x 100

Table 5.2: Measurement scenarios: Flow (F) and transport (T) measurements
with the accompanied number indicating after which fracture appear-
ance the corresponding measurement is obtained. Flow measurements
contain inlet pressure and flow rates at the three producers. Trans-
port measurements include the times when the concentration reaches
0.1 and 0.9 at each producer. The last column summarises the total
number of measurements used in each scenario.

5.2.4 Data assimilation

In this study, we estimate fracture parameters, namely their aperture and length,
using the ensemble smoother with multiple data assimilation (ESMDA) as pre-
sented in Section 4.4.5. The DA state vector in the first two parts of this study
contains the logarithm of all 22 fracture apertures

zj =
[

log10(aj1) , log10(aj2) , ... , log10(aj22)
]T

, (5.1)

and in the third part the fracture length

zj =
[
lj1 , l

j
2 , ... , l

j
22

]T
. (5.2)

Here, j denotes the j-th realisation of an ensemble or the reference realisation.
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We run a separate simulation without any fractures and use it to scale the
measurements as

p̃ =
p

p0
, ˜̇Q(i) =

Q̇(i)

Q̇
(i)
0

, and t̃(i) =
t(i)

t
(i)
0

. (5.3)

Here, the subscript 0 denotes the measurement without any fractures and the
superscript (i) the measurement location. We then collect the scaled measure-
ments in the measurement vector y according to the scenarios listed in Table 5.2.
Further, we assume uncorrelated measurement errors and use a diagonal measure-
ment error covariance matrix. The entries corresponding to pressure and flow rate
measurements are set to 1× 10−6, and the ones for the arrival time measurements
to 1× 10−4.
In this work, we use an ensemble size of 500 realisations. The relatively large

ensemble size compared to the low number of estimated parameters is required
due to the number of measurements in scenario 5. A smaller ensemble size cannot
represent the information of all 100 measurements (see also Section 4.4.7). Fur-
ther, we found that 4 ESMDA iterations are sufficient for this study. We run our
DA framework with several prior ensembles sampled with different seeds.
We evaluate the performance of the DA framework with the root-mean-square

mean error (RMS-ME) and the mean of the root-mean-square errors (M-RMSE),
i.e.,

RMS-MEξ =
1

Nξ

Nξ∑
i=1

√√√√√[( 1

NE

NE∑
j=1

ξ
(j)
i

)
− ξ(ref)

i

]2

, and (5.4)

M-RMSEξ =
1

Nξ

Nξ∑
i=1

√√√√ 1

NE

NE∑
j=1

(
ξ

(j)
i − ξ

(ref)
i

)2

. (5.5)

In these equations, ξ can represent either the DA state vector z, the measurement
vector y, or a subset thereof. Here, ξ(j)

i denotes the i-th entry in the corresponding
vector of the j-th realisation, and Nξ refers to the length of that vector. Note
that the RMS-ME is the root-mean-square error of the ensemble mean. While the
RMS-ME purely assesses the accuracy of an ensemble prediction, the M-RMSE
reflects a combination of both accuracy and precision.
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5.3 Results

5.3.1 Reference realisation and prior ensemble

We first present the flow and transport behaviour of the synthetic reference real-
isation. Fig. 5.3 shows the steady-state pressure and flow fields of the reference
realisation after the 9 fractures from set one and all 22 fractures have appeared.
The pressure around the injector is extremely high due to the point source, and
the fractures greatly influence the streamlines. Fig. 5.4 shows the evolution of the
tracer concentration through these steady-state flow fields. The fractures advance
the tracer much faster than the matrix due to the focused flow. This results in flat-
ter breakthrough curves, as low concentrations of the tracer reach the producers
earlier while high concentrations arrive later.

(a) (b)

(c) (d)

Figure 5.3: Pressure field and fractures (a, b) and logarithm of volumetric flux
density with streamlines (c, d) after 9 fractures (left) and 22 fractures
(right) for the reference realisation. The line thickness of the fractures
in (a, b) indicates their apertures, exaggerated by a factor of 1× 103.
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(a) 5 days (b) 5 days

(c) 20 days (d) 20 days

(e) (f)

Figure 5.4: Tracer concentration after 5 days (a, b) and 20 days (c, d) and break-
through curves at the three producers (e, f) after 9 fractures (left) and
22 fractures (right) for the reference realisation.

We sample 500 realisations of the fracture apertures for the prior ensemble as
described in Fig. 5.2. Fig. 5.5 presents the fracture apertures of the first three
realisations and corresponding pressure and tracer concentration fields. While
the variation in the fracture apertures is clearly visible, it is less apparent in the
pressure and concentration fields.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.5: Pressure field and fractures (left) and tracer concentration after 20
days (right) after all 22 fractures have appeared for the first three
realisations of the prior ensemble. The line thickness of the fractures
indicates their apertures, exaggerated by a factor of 1× 103.

69



5 Influence of Measurement Strategies and Matrix Permeability on Fracture Estimation

5.3.2 Measurement scenarios

We now compare the posterior ensembles from the different measurement sce-
narios. Fig. 5.6 shows the RMS-ME and the M-RMSE for the DA state vector
containing the logarithm of the fracture apertures. Overall, scenarios 3 and 5
achieve the biggest error reduction. Both of them incorporate flow data obtained
after the creation of every fracture. The additional transport data in scenario 5
provides only a minor improvement in the M-RMSE and even a slightly worse
ensemble mean. Comparing scenarios 1 to 3, we see that both errors are steadily
reduced with an increasing number of flow measurements. Scenario 4, which relies
only on transport data, has the largest errors.

(a) Root-mean-square error of ensemble mean (b) Mean root-mean-square error

Figure 5.6: RMS-ME (a) and M-RMSE (b) of the DA state vector consisting of log-
apertures for the prior ensemble and different measurement scenarios.
The horizontal black lines indicate the mean over 5 simulation runs
with different prior ensembles.

The measurement scenarios incorporate different types and numbers of measure-
ments, rendering direct comparison of the measurement vector errors impractical.
Instead, we assess the M-RMSE of the individual quantities, i.e. the inlet pressure
and outlet flow rates after each fracture appearance and the arrival time measure-
ment for the two tracer tests, regardless of whether these quantities are included
in the measurement vector for a given scenario (Fig. 5.7). Overall, the quanti-
ties show similar trends, mirroring the results observed for the DA state vector
(Fig. 5.6). The figures for the RMS-ME are qualitatively the same and are thus
omitted here. An interesting finding is that scenario 4 achieves better matching
of arrival times compared to scenario 1, yet scenario 3 outperforms both despite
not incorporating any arrival time measurements in the ESMDA updates.
Next, we analyse the results from measurement scenario 5 in more detail.

Fig. 5.8 illustrates the fracture apertures of the first three posterior realisations
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(a) Pressure Measurements (b) Flow Rate Measurements

(c) Arrival Time Measurements

Figure 5.7: Mean root-mean-square error of the scaled measurements for the prior
ensemble and different measurement scenarios. The horizontal black
lines indicate the mean over 5 simulation runs with different prior
ensembles.

alongside corresponding pressure and tracer concentration fields. A comparison
with Figs. 5.3 to 5.5 reveals a clear improvement in the fracture apertures, par-
ticularly noticeable for longer fractures such as fracture 4, the longest one in the
x-direction. However, some shorter fractures, like fracture 21 in the top right
corner, show no improvement.
While the improvements in the apertures are readily visible, the ones in the

pressure and concentration fields are less apparent. To investigate this further,
we present the pressure at the injector during fracture creation and the tracer
breakthrough curves from the upper left producer with all 22 fractures present
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(a) (b)

(c) (d)

(e) (f)

Figure 5.8: Pressure field and fractures (left) and tracer concentration after 20
days (right) after all 22 fractures have appeared for the first three re-
alisations of the posterior ensemble with measurement scenario 5. The
line thickness of the fractures indicates their apertures, exaggerated
by a factor of 1× 103.

for both the prior and posterior ensemble in Fig. 5.9. The prior ensemble over-
estimates the pressure at the injector due to the underestimation of the fracture
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apertures (see Fig. 5.2). The posterior ensemble resembles the reference values
much better, although it still shows a bias towards higher pressures. The posterior
ensemble also shows good improvement in the breakthrough curves, especially for
concentrations 0.1 and 0.9, which are used in the ESMDA updates. However, some
distinct features of the reference breakthrough curve between those measurements
are not fully captured.

(a) (b)

Figure 5.9: Pressure at the injector over the fracture creation (a) and the tracer
breakthrough curve from the upper left producer after all 22 fractures
have appeared (b). The reference is shown in red, the prior ensemble
in black, and the posterior ensemble with measurement scenario 5 in
blue. The white and cyan lines mark prior and posterior ensemble
means, respectively.

5.3.3 Matrix permeability

Further, we investigate the influence of matrix permeability on the DA results,
focussing on measurement scenario 5 for this analysis. When matrix permeability
is exceptionally low, the flow field is primarily dictated by the fracture connectivity
and distances between fractures and wells. Conversely, when matrix permeability
is very high, fractures have a minimal influence on the flow field as much of the flow
occurs within the matrix. As a result, we expect the sensitivity of measurements
on the fracture apertures to vary based on matrix permeability.
This expectation is verified in Fig. 5.10, which shows the inlet pressure and

the flow rates at one producer for different aperture values of fracture 1, the only
fracture present in this instance. For a matrix permeability of 1× 10−14 m2 (as
used in the previous section), pressure and flow data become stagnant for apertures
exceeding 1 mm. On the other hand, with a matrix permeability of 1× 10−11 m2,
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apertures below 1 mm have only negligible influence. Extreme matrix permeability
values show very low sensitivity across the entire aperture range considered here.

(a) (b)

Figure 5.10: Scaled inlet pressure (a) and flow rate at top left corner producer (b)
after the first fracture has appeared as a function of its aperture.

As a result, the accuracy of the DA state vector and measurements is influenced
by the matrix permeability (Fig. 5.11). We obtain the best aperture estimations
with a matrix permeability of 1× 10−12 m2. For extreme matrix permeabilities,
the errors in the apertures are only slightly reduced compared to the prior and
even increased for the RMS-ME in the case with km = 1× 10−10 m2. For in-
termediate matrix permeabilities, measurements are highly sensitive to aperture
values, leading to substantial prior measurement errors. In the corresponding pos-
terior ensembles, these errors are notably reduced. Conversely, cases with extreme
matrix permeabilities have low measurement errors in the prior and posterior.

5.3.4 Estimating fracture length

We now repeat the study for uncertain fracture lengths. Overall, the performance
of the five measurement scenarios is similar to that of the fracture aperture es-
timation presented above. The ensemble mean of scenarios 3 and 5 matches the
reference very well, whereas the other three measurement scenarios show moder-
ate error reductions (Fig. 5.12). Corresponding results for the measurements are
depicted in Fig. 5.13. In the prior realisations, fractures are less interconnected
due to the intentional underestimation of the fracture length, resulting in substan-
tial errors in pressure measurements. The posterior ensemble effectively retrieves
these connections, thus drastically reducing the errors. Notably, while the pos-
terior of scenario 4 provides a good match of the arrival time measurements, it
exhibits significant errors in flow rate measurements.
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(a) RMS-ME of DA State Vector (b) M-RMSE of DA State Vector

(c) RMS-ME of Measurement Vector (d) M-RMSE of Measurement Vector

Figure 5.11: RMS-ME (left) and M-RMSE (right) of the DA state vector consist-
ing of log-apertures (a, b) and measurement vector (c, d) for differ-
ent matrix permeabilities. Note that the prior DA state vector is
the same for all matrix permeabilities while the prior measurement
vector differs. The horizontal black lines indicate the mean over 5
simulation runs with different prior ensembles. Results are presented
for measurement scenario 5.

The effect of matrix permeability on length estimation differs from its impact
on aperture estimation. For matrix permeabilities of 1× 10−13 m2 and lower, we
obtain a good estimation of fracture length and achieve a considerable reduction
of the measurement errors (Fig. 5.14). The results show minimal improvements
for high matrix permeabilities, both in state and measurement vector.
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(a) Root-mean-square error of ensemble mean (b) Mean root-mean-square error

Figure 5.12: Errors of the DA state vector consisting of fracture lengths for the
prior ensemble and different measurement scenarios. The horizontal
black lines indicate the mean over 5 simulation runs with different
prior ensembles.

5.4 Discussion

In this work, we study the influence of measurement strategies and matrix per-
meabilities on the estimation of fracture properties, specifically fracture aperture
and length. Incorporating intermediate measurements during fracture creation in
reservoir stimulation proves beneficial for both of these properties, a result that
aligns with the general principle that more data leads to better estimations.
It is noteworthy that arrival time measurements exhibit only a small impact

compared to pressure and flow rate measurements. One possible explanation
could be attributed to the chosen boundary conditions. By imposing a fixed
injection rate, the influence of the apertures on the breakthrough curves is dimin-
ished. We anticipate that arrival time measurements may have a much higher
impact when pressure boundary conditions are applied at both inlet and outlets.
Additionally, mixing of the tracer within the fracture cells potentially leads to
some loss of information about fractures. In Section 3.3.3, we avoid mixing by
resolving the aperture of a single fracture with an extremely fine mesh. How-
ever, such a fine mesh is impractical in the presented network, let alone in larger
networks, and some degree of mixing occurs in situ regardless. Moreover, the ref-
erence breakthrough curve in Fig. 5.9 shows distinct features not matched by the
posterior ensemble, suggesting that the breakthrough curves contain additional in-
formation that could be harnessed by collecting more than two measurements per
curve. Finally, we arbitrarily choose the values in this study’s measurement error
covariance matrix. We expect lower entries for the arrival time measurements to
increase their relative importance compared to flow measurements.
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(a) Pressure Measurements (b) Flow Rate Measurements

(c) Arrival Time Measurements

Figure 5.13: M-RMSE of the scaled measurements for the prior ensemble and
different measurement scenarios when estimating fracture lengths.
The horizontal black lines indicate the mean over 5 simulation runs
with different prior ensembles.

The matrix permeability has a decisive influence on the estimation of fracture
properties. In instances where the ratio of fracture to matrix permeability is low
(i.e., for very high matrix permeabilities), most flow occurs within the matrix,
and the fractures play a negligible role. Consequently, both aperture and length
estimations perform poorly under such conditions. Conversely, high fracture-to-
matrix permeability ratios (i.e., very low matrix permeabilities) lead to flow be-
ing dictated by fracture interconnectivity and their proximity to the wells. This
condition resembles an infinite transmissivity fracture, where the flow through a
fracture is no longer sensitive to aperture variations (Phillips, 1991). Therefore,
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(a) DA State Vector
(b) Measurement Vector

Figure 5.14: M-RMSE of the DA state vector consisting of fracture length (a) and
measurement vector (b) for different matrix permeabilities. Note that
the prior DA state vector is the same for all matrix permeabilities
while the prior measurement vector differs. The horizontal black
lines indicate the mean over 5 simulation runs with different prior
ensembles. Results are presented for measurement scenario 5. The
results for the RMS-ME are qualitatively similar.

length estimation performs well for low matrix permeabilities, whereas aperture
estimation struggles. In an intermediate matrix permeability range of 1× 10−14

to 1× 10−13 m2, the condition resembles that of finite conductivity fractures, re-
sulting in satisfactory aperture and length estimates in our study.
We plan to expand our scope in future studies by incorporating additional

aspects of fracture properties estimation. A natural progression from this work
involves combining both aperture and length estimation. Moreover, our current
analysis focuses on small uncertainties in fracture length, thereby simplifying the
DA problem. Future investigations should consider larger uncertainties in fracture
length within the prior ensemble. Additionally, we intend to explore uncertainties
associated with midpoints and orientation of fractures, albeit this requires a more
versatile reservoir simulator capable of handling inclined fractures.
Our current study uses a simple synthetic fracture geometry with a limited

number of fractures. Future research should move towards realistic fracture ge-
ometries with a greater number of fractures. We expect the main findings about
measurement strategies and matrix permeability to still hold true in more complex
and realistic fracture patterns.
In this study, we model reservoir stimulation as a sequential process where

fractures appear one after another, and once a fracture is created, they remain
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unchanged throughout the stimulation period. However, in reality, reservoir stim-
ulation is a dynamic process where fractures can grow over time. It is crucial to
incorporate this dynamic aspect into the framework. In this work, we estimate the
current state of the reservoir. Ultimately, the goal is to predict future reservoir
behaviour using past and present data.
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6 Prior with Far-Field Stress Approximation for
Ensemble-Based Data Assimilation in
Naturally Fractured Reservoirs

This chapter is adapted from the manuscript “Prior with far-field stress approx-
imation for ensemble-based data assimilation in naturally fractured reservoirs”
(Liem et al., 2023b, Preprint). Preliminary work of this study has been presented
in the conference paper “Estimation of fracture aperture in naturally fractured
reservoirs using an ensemble smoother with multiple data assimilation” (Liem
et al., 2022b), some of which is recreated in Section 6.5.3.

6.1 Introduction

Many rocks involved in subsurface applications contain complex fracture geome-
tries with large numbers of fractures. Therefore, it is essential that DA approaches
capable of dealing with such scenarios are developed. As discussed in Section 4.5,
many studies that estimate fracture aperture using ensemble-based DA, includ-
ing the one presented in Chapter 5, use a small number of fractures. Addition-
ally, aperture typically depends only on a few underlying uncertain parameters in
studies considering a moderate number of fractures. Ensemble-based DA usually
performs well under such conditions; however, it becomes more challenging when
considering a large number of fractures, each with an individual aperture.
The performance of ensemble-based DA strongly depends on the quality of the

prior ensemble. Computational resources usually limit the ensemble size, and
therefore, the prior distribution is likely undersampled. This restricts the solution
space as posterior realisations are weighted combinations of the prior realisations
(Evensen, 2003), and undersampling can lead to spurious correlations. Those
issues are by no means unique to DA applied to fractured reservoirs but arise
in any other application where a huge number of parameters is represented by
a limited ensemble size, such as in meteorology, oceanography, or groundwater
flows. A common strategy is to apply localisation and inflation methods in the
update step, as discussed in Section 4.4.7.
In this work, we pursue a different (and possibly complementary) approach to

improving the prior ensemble by incorporating additional physical knowledge.
This approach is rarely used in studies that estimate fracture aperture using
ensemble-based DA as they typically ignore the complex relationship between
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aperture values and stress state, displacement history and fracture parameters. A
notable exception is the work of Seabra et al. (2023), which includes those complex
relations, albeit without shear displacement.
We consider a situation where the fracture apertures are predominantly created

by shearing driven by the tectonic far-field stresses. Toolkits with geomechanical
capabilities such as ABAQUS (Smith, 2009; Agheshlui et al., 2018), COMSOL
(Multiphysics, 2013), DARTS (Wang et al., 2020; Boersma et al., 2021), ICGT
(Thomas et al., 2020; Paluszny et al., 2020), MRST (Ucar et al., 2018; Lie &
Møyner, 2021), OpenCSMP (Pezzulli et al., 2022a,b), or XFVM (Deb & Jenny,
2017a,b) can been used to calculate shear displacement and fracture apertures
for this scenario. However, it would be computationally expensive to generate a
whole ensemble of geomechanical realisations that are needed as priors for a DA
framework, especially when considering a statistically representative number of
fractures. A purely stochastic approach on the other hand is unlikely to include
all available physical knowledge and cannot represent the complex relationship
between apertures and other modal parameters.
We therefore look for a method that produces physically meaningful prior real-

isations at a reduced computational cost. For this, we build upon existing proxy
models (Milliotte et al., 2018; Agheshlui et al., 2019; Wang et al., 2023) and pro-
pose a method based on far-field stress approximation (FFSA). FFSA projects
the tectonic far-field stresses onto the fracture planes and estimates the shear
displacements based on linear elastic theory. Thus, we do not need to solve differ-
ential equations, which makes the method computationally attractive. We account
for the errors introduced by those approximations by additional uncertainty in a
model parameter. We combine the FFSA with the constitutive relations of Barton
and Bandis (Barton & Choubey, 1977; Barton, 1982; Bandis et al., 1983; Barton
et al., 1985; Lei & Barton, 2022) and integrate it into our ESMDA framework. We
use flow and transport data to improve the estimation of the fracture apertures.
Compared to a preliminary version of this approach (Liem et al., 2022b), this

work refines and extends the method and presents more extensive and practically
relevant results. In particular, we obtain the synthetic reference flow and transport
data from a realisation generated with a geomechanical reservoir simulator, and
we compare the performance of our DA framework when using prior ensembles
generated with the FFSA to two stochastically generated prior ensembles.
This chapter of the thesis is organised as follows: Section 6.2 introduces our

data assimilation framework including the FFSA for generating prior ensembles.
In Section 6.3, we discuss the fracture geometry, and in Section 6.4, the model
parameters, some of which are assumed to be uncertain. The results of this study,
which are presented in Section 6.5 and discussed in depth in Section 6.6, show
that reasonable prior ensemble realisations can be obtained with FFSA. Ensembles
generated with FFSA outperform the ones from two naïve stochastic approaches
in our DA framework.
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6.2 Method

In this work, we consider a geological scenario that consists of two stages. In
Stage 1, the fracture apertures are generated. We study a thin layer of frac-
tured rock embedded between two impermeable and rigid layers. All fractures are
present from the beginning, and we do not consider any fracture propagation. The
fractures are initially closed and there is no history of tectonic faulting, uplift, or
cooling. We apply a tectonic far-field stress and steadily increase the fluid pressure
within the fractures. As the effective fracture normal stress decreases, some frac-
tures begin to slip and consequently dilate due to asperity-sliding on the fracture
surface. As a result, the apertures vary considerably from fracture to fracture.
Due to numerous sources of uncertainty, e.g. in the stress state, rock properties or
fracture roughness, the fracture apertures cannot be calculated deterministically
but are also associated with some uncertainty. In Stage 2, we perform a tracer
test to characterise the reservoir, while we assume that the fluid injection does
not affect fracture aperture. We use an iterative ensemble-based data assimilation
(DA) framework (Fig. 6.1) to history match fracture aperture and obtain a poste-
rior aperture estimate with reduced uncertainty. In the following, the individual
building blocks of the DA framework are explained in detail.

6.2.1 Prior ensemble of apertures with far-field stress approximation
(FFSA)

Here, we present a simple and fast method for estimating fracture apertures that
can be used to generate a reasonable prior ensemble with little computational
cost. We approximate the stress state of each fracture from the far-field stress
using Cauchy’s equations (Eqs. (2.19) and (2.20)). In 2D, the equations read

σn = σH cos2 θ + σh sin2 θ and (6.1)
σs = (σh − σH) sin θ cos θ , (6.2)

where σH and σh are the maximum and minimum principal horizontal stresses and
θ is the angle between σH and the fracture normal (Fig. 6.2). Those equations are
only valid for a virtual plane in an intact material, as is the case when all fractures
are closed and shear stress is fully transmitted by the fractures. This ignores any
mechanical fracture interactions and hence only provides an approximate solution
if shear displacement or tensile opening occurs in other fractures.
A fracture begins to slip when the shear stress acting on it exceeds frictional

sliding strength, i.e. when |σs| > τmax. We model the frictional sliding strength
with Coulomb’s friction law (Eq. (2.24)), which considers the effective normal
stress and the friction angle. As the fracture slips, the shear stress relaxes until the
arrest criterium |σs| ≤ τmax presented in Eq. (2.25) is satisfied. We approximate
the decrease ∆σs in shear stress for an increment ∆δs of shear displacement with
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Geomechanical Reference

Reference Measurements

Reservoir Simulator

Prior Ensemble of Apertures

Reservoir Simulator

Measurements

Data Assimilation

Posterior Ensemble of

FFSA (Section 6.2.1) or
XFVM (Section 6.2.2)

OpenCSMP (Section 6.2.3) OpenCSMP (Section 6.2.3)

ES-MDA (Section 6.2.4)

Iterate

Stage 1: Generation of Fracture Apertures

Stage 2: Reservoir Characterisation

Stochastically (Section 6.5.1)

Synthetic Flow & Transport Computed Flow & Transport

Apertures

Realisation of Apertures

(Section 6.4.2) (Section 6.4.2)

Figure 6.1: Iterative data assimilation framework used in this work

σH

σh

σnσs
θ

Figure 6.2: Projection of principal horizontal far-field stresses, σH and σh, onto a
fracture
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linear elastic theory (Eshelby & Peierls, 1957; Chinnery, 1969; Willis-Richards
et al., 1996; Rahman et al., 2002), i.e., we assume

∆σs
G

= Cg
∆δs
L

, (6.3)

where G is the shear modulus of the surrounding material, L the fracture length
and Cg a proportionality factor. This then allows us to calculate the total shear
displacement δs of a fracture. The amount of shear dilation δd is then obtained
by integrating the tangent of the dilation angle φd over the shear displacement,
i.e.,

dδd = dδs tan (φd) → δd =

δs∫
0

tan (φd) dδs . (6.4)

In this work, we use the constitutive model of Barton and Bandis (Barton &
Choubey, 1977; Barton, 1982; Bandis et al., 1983; Barton et al., 1985; Lei & Bar-
ton, 2022) to calculate friction and dilation angles (Appendix A). In this empirical
model, these angles are algebraic functions of the shear displacement. They reach
a peak value for a certain shear displacement and then decrease for larger displace-
ments. Thus, Eqs. (2.24), (2.25) and (6.3) form a non-linear system of equations.
The fracture aperture

a = a0 − δn + δd (6.5)

is a combination of an initial fracture aperture a0, closure due to normal stress δn
and shear dilation δd. We do not consider tensile opening and set the hydraulic
aperture equal to the mechanical aperture.

6.2.2 Geomechanical reference realisation of apertures with XFVM

To generate an accurate reference of the aperture field, we need a proper geome-
chanical simulator. To this end, we employ an implementation of the extended
finite volume method (XFVM), an embedded discrete fracture method that in-
cludes lower-dimensional fracture manifolds into Cartesian grids (Deb & Jenny,
2017a,b). In 2D, each fracture is divided into line segments, where each seg-
ment has one degree of freedom for shear slip, resulting in piecewise constant
displacements along the fractures. Linear elasticity of the rock is assumed, the
force balance is solved in an integral manner, and we use Coulomb’s friction law
(Eq. (2.24)) as a slip criterion. The displacement field is approximated by con-
tinuous basis functions at the grid points and discontinuous basis functions to
represent fracture manifolds. These special discontinuous basis functions ensure
that the displacement gradient is continuous across fracture manifolds, allowing
the calculation of shear stress on fractures without additional constraints. We
then solve the system of linear equations for the displacement at each grid point
and the shear slip of the segments. As in our FFSA modelling, we calculate
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shear dilation with the constitutive model of Barton and Bandis described in Ap-
pendix A. To this end, we adjust the dilation angle φd at each time step to account
for changes in roughness while the shear dilation is coupled to the stresses and
hence accounted for in the force balance, as is described in Conti et al. (2023).
The fracture aperture of each segment is obtained from Eq. (6.5), where the initial
aperture and normal closure are added in a post-processing step.

6.2.3 Flow and transport computation based on OpenCSMP

As a reservoir simulator, we use the Complex Systems Modelling Platform (OpenC-
SMP) (Matthäi et al., 2001; Geiger et al., 2004; Matthäi et al., 2007), a finite
element – finite volume framework. It offers a wide range of functionality to cal-
culate flow and transport processes with a focus on fractured porous media. In
this work, we consider tracer transport by a steady-state velocity field (see Sec-
tions 2.1.1 and 2.1.2). We calculate the flow field of a single-phase fluid through
a porous medium with Darcy’s law (Eq. (2.7)) and the elliptic pressure equation
(Eq. (2.9)). At time t0, we start injecting a passive tracer which follows the flow
field perfectly. The tracer does not alter the flow field and we neglect diffusion. We
calculate the evolution of this tracer with the hyperbolic scalar transport equation
(Eq. (2.13)). We solve tracer transport with a first-order version of discrete event
simulation (DES) (Shao et al., 2019), a totally asynchronous local time stepping
scheme.

6.2.4 Data assimilation with ESMDA

In this work, we use the ensemble smoother with multiple data assimilation (ES-
MDA) proposed by Emerick & Reynolds (2013) and presented in Section 4.4.5. As
an ensemble smoother, the ESMDA collects all measurements in time and space
in one vector and performs a Kalman update once the reservoir simulation is com-
pleted. The ESMDA alternately performs update steps with the same reference
measurements and reruns the reservoir simulator with the updated parameters
(Fig. 6.1). Those iterations are necessary due to the non-linear nature of the
reservoir simulator.
We create a prior ensemble zprior1:NE

ofNE realisations and one reference realisation
zref. In this work, the parameter vector of a certain realisation i,

zi =
[

log10(ai1) , log10(ai2) , ... , log10(aiNfrac)
]T

, (6.6)

contains the logarithms of the aperture values of all Nfrac fractures. The reservoir
simulator developed on the basis of OpenCSMP is applied to each realisation to
obtain the corresponding measurement vector yi, which consists of pressure values,
volume flow rates and tracer arrival times.
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In this work, we generate the synthetic reference realisation from XFVM and the
prior ensemble from FFSA. Ideally, we would compare the FFSA prior to a prior
ensemble generated from XFVM. However, generating such a prior with XFVM
is computationally too expensive. We therefore compare it to prior ensembles
from two naïve stochastic approaches which both sample from the unconditional
probability density function (PDF) of the FFSA prior. In addition, we explore
the implications of using a realisation from FFSA as the reference.

6.3 Fracture geometry

This study uses a realistic fracture geometry with Nfrac = 4051 individual frac-
tures (Fig. 6.3a) identical to the one in Liem et al. (2022b), except for minor
changes in the classification of segments into individual fractures. The geome-
try was mapped by Odling (1997) from aerial photography of the Hornelen basin
in western Norway. The mapped region extends over an area of 720 × 720 m,
with aerial photos taken from a height of 370 m. The smallest observable features
were 30 cm wide depressions filled with soil, grass or water. More fractures be-
came visible at smaller observation heights; thus, the geometry shown in Fig. 6.3a
represents merely a subset of the total fractures present.

The fracture pattern exhibits an approximately a log-normal distribution of
fracture length (Fig. 6.3b) and a bi-modal distribution of fracture orientation
with the most prominent peak at around 40° (Fig. 6.3c). The Hornelen basin
is filled with Devonian-age Old Red Sandstone (e.g. Torsvik et al., 1988) with
a very low permeability. The fracture apertures observed at the surface are not
necessarily representative of the ones at reservoir depth, as stress conditions are
markedly different. Therefore, we rely on the geomechanical simulator to calculate
the reference apertures.

6.4 Simulation setup

The thin horizontal layer of fractured rock is embedded between two rigid and
impermeable layers with fractures perpendicular to bedding. These assumptions
enable us to approximate the model as 2D. We approximate the fractures by
straight lines for the mechanical simulations (i.e. XFVM and FFSA). For the
XFVM reference, we use a grid spacing of 2 m, resulting in roughly 46 000 fracture
segments.

6.4.1 Uncertain model parameters

While we assume that we know the fracture geometry exactly, other geomechani-
cal model parameters of Stage 1 are associated with some uncertainty (Table 6.1).
We distinguish parameters that are equal for all fractures within one realisation

87



6 Prior with Far-Field Stress Approximation for Ensemble-Based DA in NFR

(a) (b) (c)

Figure 6.3: Fracture trace map of Hornelen basin outcrop (a) and histogram of
logarithm of fracture length (b) and fracture orientation (c). The line
in (b) shows a log-normal distribution with same mean and standard
deviation. The fracture geometry was mapped by Odling (1997) and
digitalised and discretised by Azizmohammadi & Matthäi (2017). Fig-
ure adapted from Liem et al. (2022b).

and sampled therefore only once per realisation (indicated with target ’R’) and
parameters that are different for each fracture within each realisation (target ’F’).
Consequently, the total number of sampled model parameters per realisation is
8 + 5Nfrac = 20 263. In the following, we discuss the parameters and their uncer-
tainty in more detail.

We model a burial depth of the fractured reservoir of 1500 m, corresponding to
an overburden stress σv of approximately 32 MPa based on an average rock density
of around 2.2 g/cm3. We assume a normal faulting regime (i.e. σv > σH > σh)
and set the minimal principal horizontal stress to σh ≈ 0.7σv. The orientation β of
the maximum principal horizontal stress σH is described in Heidbach et al. (2018);
here, we roughly align it to the x-axis of our coordinate system. We assume a
constant fluid pressure pf across the entire field. We choose a fluid pressure close to
σh to get a reasonable amount of shearing but ensure that it remains smaller than
σh to prevent tensile opening. Although the material properties of the rock (here
Young’s modulus E, Poisson’s ratio ν, shear modulus G = E

2(1+ν)
, unconfined

compressive strength σc, and residual friction angle φr) are rarely uniform in a
reservoir, we approximate them as such. The chosen values are loosely inspired
by Ojo & Brook (1990) and Hawkins & McConnell (1991).
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Table 6.1: Uncertain geomechanical model parameters. We use scaled beta dis-
tributions defined by mean µ, standard deviation σ and [upper bound,
lower bound]. For generating the prior ensemble with FFSA, we sample
parameters with target ’R’ only once per realisation and those with tar-
get ’F’ for every fracture individually. The last column lists the input
parameters for the reference simulation with XFVM.

Symbol Unit µ σ Bounds Target Ref

β degree 0 5 [-15, 15] R 0

σH MPa 30 0.6 [28, 32] R 29.7

σh MPa 23 0.3 [22, 24] R 23.3

pf MPa 21.5 0.15 [21, 22] R 21.8

φr degree 25 1 [22, 28] R 25

σc MPa 70 3 [61, 79] R 70

E MPa 5000 500 [3500, 6500] R 5000

ν – 0.25 0.0075 [0.2275, 0.2725] R 0.25

JRCsmall – 6 1 [2, 10] F sampled

JRClarge – 2 0.6 [0, 4] F sampled

Kni
MPa
mm 20 5 [10, 30] F sampled

vrelm – 0.5 0.125 [0.25, 0.75] F sampled

Cg – 1 0.1 [0.7, 1.3] F –

The friction of the fracture planes plays a crucial role and represents a significant
source of uncertainty. Two parameters describe friction in our constitutive model
(Appendix A). The residual friction angle φr is a material property and describes
friction of a planar rock surface. The joint roughness coefficient JRC, on the other
hand, describes the increase of friction due to surface roughness which differs
from fracture to fracture. In this work, we consider surface roughness at two
different length scales: small-scale roughness at the level of the asperities (e.g.
Pollard & Aydin, 1988) as described by the original Barton and Bandis model
and modelled here with JRCsmall, and an additional roughness compensating for
idealising fractures as straight lines in our model. We calculate the combined joint
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roughness coefficient as

JRC = JRCsmall + JRClarge · log10(L) , (6.7)

where the fracture length L is in meters.
Additional fracture parameters in the Barton and Bandis model (Appendix A)

include the initial normal stiffness Kni and the maximum possible closure vm =
vrelm a0. While the FFSA provides accurate results for a single fracture, it does not
account for interactions between fractures (Appendix D). To address this limita-
tion, we introduce additional uncertainty through the proportionality coefficient
Cg that relates shear stress to shear displacement.
The amount of shear displacement and consequently also fracture aperture ob-

tained from FFSA corresponds to the maximum value along the fracture length.
In the frictionless case, shear displacement follows an elliptic profile (Eshelby &
Peierls, 1957). Due to the non-linear constitutive model of Barton and Bandis,
the profiles of shear displacement and aperture are only approximately elliptic.
Those profiles can have in general arbitrary shapes in the XFVM. For simplicity,
however, we assume a constant aperture over the length of a fracture and assign
it to the maximum aperture value.

6.4.2 Parameters for flow and transport simulation and ESMDA
updates

In Stage 2 of the geological scenario, we alternately perform tracer tests and
update the fracture apertures with ESMDA. For the tracer test, we inject fluid
through a single fracture named ’well fracture’, which is located at the centre
of the domain, and apply a constant pressure at all four boundaries (Fig. 6.4a).
Starting at time t0 = 0, a scalar tracer with concentration c = 1 is introduced
into the injected fluid. We compute the steady-state velocity field and tracer
transport using OpenCSMP (Section 6.2.3). The matrix domain is discretised
with an unstructured triangular mesh, and the fractures are represented as lower-
dimensional line elements (e.g., Azizmohammadi & Matthäi, 2017). In this work,
we decouple flow and transport from the fracture mechanics, assuming that fluid
injection does not affect fracture aperture. While this assumption can be invalid
in real-world scenarios, it is necessary in our framework due to computational
limitations. The relevant parameters for the flow and transport simulations are
provided in Table 6.2. Note that we calculate fracture permeability from the
aperture assuming plane Poiseuille flow between two parallel plates.
In this work, we assume that measurements along the domain boundary and in

the well fracture are available (Fig. 6.4b). Concretely, we measure the maximum
value of the steady-state pressure pin along the well fracture and the volume
flow rate Q̇out through 20 model-boundray segments. Further, we monitor the
evolution of the tracer concentration at certain locations on the boundary and
either use the concentration value after 320 days, c320, or the time it takes to
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Table 6.2: Parameters for flow and transport simulation with OpenCSMP
(adopted from Liem et al., 2022b)

Fluid viscosity µ 1× 10−3 Pa s
Matrix permeability km 3× 10−13 m2

Matrix porosity φm 0.15
Fracture permeability kf a2

f/12
Fracture porosity φf 1.0
Pressure at all 4 boundaries pout 9 MPa

Inlet volume flow Q̇in/lw 2× 10−3 m2/s
Length of well fracture lw 56.48 m
CFL multiplier for DES 0.4

reach a concentration of 0.5, t0.5, as measurements. The number of measurements
and their locations are arbitrary choices. To evaluate the performance of the DA
framework, we set 12 measurements (indicated in yellow in Fig. 6.4b) aside and
use the remaining 60 measurements for the ESMDA updates. We call them test
and training measurements, respectively. We scale the measurements as

p̃in =
pin − pout

pout
, ˜̇Q

(i)
out =

Q̇
(i)
out

Q̇in/20
, t̃

(i)
0.5 =

t
(i)
0.5

640 days
, c̃

(i)
320 = c

(i)
320 (6.8)

and collect them in the training and test measurement vectors

y =
[
p̃in ,

˜̇Q
(1)
out , ... ,

˜̇Q
(16)
out , t̃

(1)
0.5 , ... , t̃

(19)
0.5 , c̃

(1)
320 , ... , c̃

(24)
320

]T
and (6.9)

y̆ =
[

˜̇Q
(17)
out , ... ,

˜̇Q
(20)
out , t̃

(20)
0.5 , ... , t̃

(25)
0.5 , c̃

(25)
320 , ... , c̃

(26)
320

]T
, (6.10)

respectively. Here, the superscript (i) denotes individual measurements of a cer-
tain quantity.
After obtaining those measurements for every realisation, we update the pa-

rameter vectors containing the logarithm of all 4051 fracture aperture values us-
ing ESMDA. For the scaled dimensionless measurements we assume a diagonal
error covariance matrix R with each element of the diagonal set to 1× 10−5. In
this work, we do not apply any covariance localisation or inflation. We study the
influence of ensemble size NE and the number of ESMDA iterations Niter on the
results of the DA framework. For a quantitative evaluation, we utilise the mean
root-mean-square error defined as

M-RMSEξ =
1

Nξ

Nξ∑
i=1

√√√√ 1

NE

NE∑
j=1

(
ξ

(j)
i − ξ

(ref)
i

)2

, (6.11)
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(a) (b)

Figure 6.4: Boundary conditions for the flow and transport simulations (a) and
location of measurements for ESMDA updates (b). The boundary is
divided into 20 segments, through which the flow rate is measured.
Circles denote measurements of the time until the tracer concentra-
tion reaches 0.5, and squares denote tracer concentration measure-
ments after 320 days. Measurements in blue are used in the ESMDA
updates, while measurements marked in are test data used to evaluate
the framework’s performance. The labels M1-2 and T1-2 mark specific
training and test locations, respectively.

where ξ can represent either the log-apertures x, training measurements y, or test
measurement y̆. Here, ξ(j)

i denotes the i-th entry in the corresponding vector of
the j-th realisation, and Nξ refers to the length of that vector.

6.5 Results

In this section, we first analyse the prior ensemble obtained from FFSA by com-
paring it to the reference realisation from XFVM as well as to two prior ensembles
from the naïve stochastic approaches. Subsequently, we show that the prior en-
semble from FFSA outperforms the stochastic approaches in our DA framework.
Finally, we present results using the FFSA reference realisation.

6.5.1 Prior ensemble

We first compare the maximum aperture value of each fracture. The reference
realisation obtained with XFVM is shown in Fig. 6.5 and realisations 1 to 6 of the
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prior ensemble generated with FFSA are depicted in Figs. 6.6a–f, each obtained
from a different set of sampled model parameter values. The realisations of the
FFSA prior have a notable variability which reflects the uncertainty in the model
parameters as defined in Table 6.1. Although none of the 6 prior realisations are
particularly close to the reference, they nevertheless capture trends and features
of it.

Figure 6.5: Reference realisation with XFVM. Line thickness corresponds to aper-
ture width and line colour to log10 of the fracture permeability.

From the prior ensemble with FFSA, we extract the unconditional PDF of the
apertures and related quantities from all fractures in all realisations (black curves
in Fig. 6.7). The corresponding PDF from the reference simulation is shown in
blue. Overall the two curves in Fig. 6.7 agree very well, although there are distinct
differences. Firstly and most notably, the FFSA prior underestimates the num-
ber of fractures with moderate fracture permeability in the range of 10−8 m2 to
10−7 m2 (Fig. 6.7f). We attribute this to the slightly smaller mean shear displace-
ment (Fig. 6.7c) which we believe is a consequence of neglecting fracture interac-
tions. Secondly, the maximum values of shear displacement and subsequently also
aperture are significantly higher in the FFSA prior than in the XFVM reference
(Fig. 6.7c). This occurs when very small friction and Cg values are sampled for
long and favourably oriented fractures in the FFSA prior. Such extreme values
are not present in the parameter set of the reference. Lastly, fracture interaction
can modify the local stress field, resulting in situations where the effective nor-
mal stress can become small or even negative. Therefore, some fractures in the
XFVM reference experience little to no normal closure (Fig. 6.7b). In contrast,
all fractures in the FFSA prior have positive effective normal stress and conse-
quently some amount of normal closure, as fracture interaction is neglected there.
Even with these differences, we expect the ensemble generated with FFSA to be
a suitable prior for our DA framework.
We aim to compare the FFSA prior to two prior ensembles from naïve stochas-

tic approaches. For the first approach, named here Stochastic Single Value prior,
we sample one value per realisation from the unconditional PDF of the FFSA
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(a) Realisation 1 (FFSA) (b) Realisation 2 (FFSA) (c) Realisation 3 (FFSA)

(d) Realisation 4 (FFSA) (e) Realisation 5 (FFSA) (f) Realisation 6 (FFSA)

(g) Realisation 1 (Stochastic Single
Value)

(h) Realisation 4 (Stochastic Single
Value)

(i) Realisation 3024 (Stochastic Single
Value)

(j) Realisation 1 (Stochastic Varying) (k) Realisation 2 (Stochastic Varying) (l) Realisation 3 (Stochastic Varying)

Figure 6.6: Realisations of the prior ensemble with FFSA (a–f), Stochastic Single
Value (g–i) and Stochastic Varying (j–l). Line thickness corresponds
to aperture width and line colour to log10 of the fracture permeability.
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(a) Initial aperture (b) Normal closure (c) Shear displacement

(d) Shear dilation (e) Fracture aperture (f) Fracture permeability

Figure 6.7: Combined histogram of the values of all 4051 fractures in 5000 reali-
sations with FFSA (black) and the reference simulation with XFVM
(blue)

prior (i.e. black curve in Fig. 6.7e) and set all apertures in that realisation to
this value. For the second approach, named Stochastic Varying prior, we inde-
pendently sample aperture values for every fracture in every realisation from the
same PDF. Figs. 6.6g–l show realisations of those two prior ensembles. Visually,
the FFSA prior is much closer to the reference than the stochastic ones, even
though all three prior ensembles follow the same unconditional PDF.

6.5.2 Posterior ensemble

Now we want to investigate how the three different prior ensembles perform in
our DA framework. We first analyse the measurements and then the apertures of
the posterior ensembles.
We monitor the evolution of the tracer concentration over time at specific lo-

cations on the boundary of the domain (Fig. 6.4b). Fig. 6.8 shows the resulting
breakthrough curves at two training and two test locations for three prior ensem-
bles of different sizes generated with FFSA and corresponding posterior ensembles.
At the training locations, either a concentration or arrival time measurement is
taken for the ESMDA update, whereas at test locations, the breakthrough curve
measurement is solely used for evaluating the performance of ESMDA but not in
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the update itself. The largest ensemble contains 5000 realisations, of which the
smaller ensembles are subsets that consist of the first 500 and 2000 realisations,
respectively.
The breakthrough curves of the prior ensembles have a considerable spread at all

four locations as a result of the uncertain fracture apertures. At training locations,
the posterior ensembles closely match the reference realisation from XFVM. We
obtain a good match of the entire breakthrough curves even though only a single
concentration or arrival time measurement per location is used. In test locations,
the level of uncertainty is only slightly reduced, and a considerable spread remains
in the posterior ensembles. With the FFSA prior we get essentially converged
results already for an ensemble size of 500, as the results remain consistent for
larger ensemble sizes.
The same breakthrough curves for the Stochastic Varying prior are shown in

Fig. 6.9. Here, the posterior of the smallest ensemble size (i.e., with NE = 500)
collapsed and converged to a wrong solution. Results with larger ensemble sizes
are generally fine; however, test location T1 indicates that NE = 2000 is not large
enough for full convergence regarding ensemble size. Compared to the FFSA prior,
the ensemble spread is larger for the Stochastic Varying prior, both in the prior
ensembles and consequently also in the posterior ensembles.
We quantify the performance of the FFSA and Stochastic Varying priors with

the mean root-mean-square error of the training and test measurements, as de-
fined in Eq. (6.11), for different ensemble sizes and numbers of ESMDA iterations
(Fig. 6.10). Comparing the FFSA posterior to its prior, we see that the error
in the training measurements is drastically reduced, while the error in the test
measurements is only slightly smaller. An ensemble size of 500 and 4 ESMDA
iterations is sufficient to achieve satisfactory results for the FFSA prior. For the
Stochastic Varying prior however, a combination of ensemble size and number
of ESMDA iterations beyond our computational capabilities is required for con-
verged results. Compared to FFSA, the training and test errors of the Stochastic
Varying prior are 1.8 and 3.0 times larger, respectively. For the combination with
the smallest errors (i.e., with NE = 5000 and Niter = 4), the corresponding ratios
in the posterior are 3.9 and 2.1. In short, the results from the FFSA prior match
the measurements better than the ones from the Stochastic Varying prior, but the
latter also produces a posterior with substantially reduced measurement errors,
given a sufficiently large ensemble size.
A significant difference exists between the updated fracture apertures obtained

with the two methods. Fig. 6.11 shows some realisations of the posterior en-
sembles obtained from the FFSA and Stochastic Varying priors for NE = 5000
and Niter = 4. Generally, the posterior realisations of FFSA (Fig. 6.11a–f) are
more similar to the reference than the corresponding realisations from the prior
ensemble (Fig. 6.6a–f), and the variability of the realisations in the ensemble is
reduced. For example, realisations 5 and 6 show overall increased apertures, and
the apertures of the prominent long fractures are slightly reduced in realisation 1.
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Figure 6.8: Breakthrough curves of the FFSA prior. The prior ensemble is in
black, the posterior ensemble in blue and the XFVM reference in red.
The locations of two training and two test locations are indicated in
Fig. 6.4. The columns correspond to different ensemble sizes and the
dashed lines indicate the measurements.

However, the posterior realisations are not an exact match to the reference, as the
apertures of long and optimally oriented fractures are still overestimated, while the
ones of many short fractures are underestimated. These qualitative observations
are supported by Fig. 6.12a, which shows a slight improvement in the uncondi-
tional PDF of the FFSA posterior compared to the prior. Conversely, the posterior
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NE = 500 NE = 2000 NE = 5000

T
ra
in
in
g
lo
ca
ti
o
n
M
1

T
ra
in
in
g
lo
ca
ti
o
n
M
2

T
es
t
lo
ca
ti
on

T
1

T
es
t
lo
ca
ti
on

T
2

Figure 6.9: Breakthrough curves of the Stochastic Varying prior. The prior ensem-
ble is in black, the posterior ensemble in blue and the XFVM reference
in red. The locations of two training and two test locations are indi-
cated in Fig. 6.4. The columns correspond to different ensemble sizes
and the dashed lines indicate the measurements.

realisations of the Stochastic Varying priors (Fig. 6.11g–i) appear to be almost
identical to the corresponding prior realisations (Fig. 6.6j–l), and only fractures
near measurement locations are visibly improved. The corresponding uncondi-
tional PDF shows extreme minimum and maximum permeability values which
reach unphysical levels. The mean root-mean-square errors of the log-apertures
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(a) (b)

(c) (d)

Figure 6.10: Mean root-mean-square error (M-RMSE) of training (a, b) and test
(c, d) measurements calculated with Eq. (6.11). Figures (a, c) show
results for Niter = 4 and (b, d) for NE = 500.

(Fig. 6.12b–c) show a marginal improvement for FFSA but no improvement for
the Stochastic Varying prior. The drastic increase in the posterior errors for the
Stochastic Varying prior arises from an ensemble collapse to a wrong solution.

The Stochastic Single Value prior fails to produce satisfactory results in the
DA framework, leading to ensemble collapse regardless of the ensemble size and
number of ESMDA iterations. In light of this, we calculate the root-mean-square
error of the training measurements for each prior realisation as

RMSE(j)
y =

√√√√ 1

Ny

Ny∑
i=1

(
y

(j)
i − y

(ref)
i

)2

(6.12)

and find the one with the smallest error (Fig. 6.13a). The best realisation has an
aperture of 0.16 mm and is shown in Fig. 6.6i. Although some breakthrough curves
obtained from this realisation show somewhat acceptable agreement with the ref-
erence (Fig. 6.13c), others display substantial errors (Fig. 6.13b). As expected, it
is therefore not possible to match the complex flow and transport behaviour of
the reference when using only a single value for all fracture apertures.
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(a) Realisation 1 (FFSA) (b) Realisation 2 (FFSA) (c) Realisation 3 (FFSA)

(d) Realisation 4 (FFSA) (e) Realisation 5 (FFSA) (f) Realisation 6 (FFSA)

(g) Realisation 1 (Stochastic Varying) (h) Realisation 2 (Stochastic Varying) (i) Realisation 3 (Stochastic Varying)

Figure 6.11: Realisations of the posterior ensemble obtained from the FFSA prior
(a–f) and the Stochastic Varying prior (g–i) for NE = 5000 and
Niter = 4. Line thickness corresponds to aperture width and line
colour to log10 of the fracture permeability.
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(a)

(b) (c)

Figure 6.12: Combined histogram of fracture permeability values of all 4051 frac-
tures for NE = 5000 and Niter = 4 (a) and mean root-mean-
square error (M-RMSE) of log-apertures calculated with Eq. (6.11)
for Niter = 4 (b) and NE = 500 (c)

(a) RMSE of training data (b) Training location M1 (c) Training location M2

Figure 6.13: Root-mean-square error (RMSE) of the training data for the Stochas-
tic Single Value prior shows that the realisation with a fracture aper-
ture of 0.16 mm has the smallest error (a). Breakthrough curves at
two locations as indicated in Fig. 6.4 for this best realisation in blue
and the XFVM reference in red (b, c).
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6.5.3 Reference realisation with FFSA

The results presented in the previous section are obtained using the reference
realisation generated with XFVM. In this section, we repeat this study using a
reference realisation from FFSA (Fig. 6.14). We obtain this FFSA reference by
sampling the underlying model parameters from the distributions presented in
Table 6.1, the same way as for realisations of the prior ensemble, just with a
different random seed.

Figure 6.14: Reference realisation with FFSA. Line thickness corresponds to aper-
ture width and line colour to log10 of the fracture permeability.

We use the same prior ensemble generated with FFSA as in the previous section;
Figs. 6.6a–f depict the first few prior realisations. Here, we use prior ensembles
of 100, 500 and 2000 realisations. Fig. 6.15 shows the breakthrough curves of the
FFSA reference realisation, the FFSA prior ensemble and the corresponding pos-
terior ensemble. For the larger two ensemble sizes, the posterior ensembles match
the reference well in the two locations where training measurements are available
while the spread is only slightly reduced in the two test locations. Overall, these
results look similar to the corresponding ones obtained with the XFVM reference
realisation (Fig. 6.8). For the DA problem at hand, an ensemble of only 100
realisations is not large enough and leads to a collapse of the posterior ensemble.
These findings are confirmed in Fig. 6.16, which compares mean root-mean-

square errors of the prior and posterior ensembles when using the FFSA or XFVM
reference realisation for different ensemble sizes and numbers of ESMDA itera-
tions. The posterior ensembles drastically reduce the errors of the training mea-
surements, while there is only a moderate reduction in the errors of the test
measurements. Those results are pretty similar to the ones obtained with the
XFVM reference. Note also that the measurement errors of the prior ensembles
are almost identical for the two references. The results for the FFSA reference
are essentially converged for an ensemble size of 500 and 2 ESMDA iterations, al-
though minor improvements in the apertures can be obtained with more ESMDA
iterations.
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Figure 6.15: Breakthrough curves of the FFSA prior using the FFSA reference.
The prior ensemble is in black, the posterior ensemble in blue and the
FFSA reference in red. The locations of two training and two test lo-
cations are indicated in Fig. 6.4. The columns correspond to different
ensemble sizes and the dashed lines indicate the measurements.

While the measurement errors for the two references are nearly identical, the
errors in the logarithm of the apertures differ significantly (Figs. 6.16e–f). The
prior ensemble is much closer to the FFSA reference than the XFVM reference,
evident in a 30% lower mean RMSE. Moreover, the DA framework almost halves
the mean RMSE for the FFSA reference, while the posterior error for the XFVM
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(a) (b)

(c) (d)

(e) (f)

Figure 6.16: Mean root-mean-square error (M-RMSE) of training (a, b) and
test (c, d) measurements and log-apertures (e, f) calculated with
Eq. (6.11). The blue lines show results using the FFSA reference
whereas the black lines are obtained with the XFVM reference, both
using the same FFSA prior ensemble. Figures (a, c, e) show results
for Niter = 4 and (b, d, f) for NE = 500.

reference is only around 20% smaller than its prior error. Consequently, the
posterior ensemble for the FFSA reference has a much smaller error than the
posterior ensemble for the XFVM reference. Accordingly, the posterior realisations
closely resemble the FFSA reference. Fig. 6.17 shows the fracture apertures of
six realisations of the posterior ensemble for NE = 2000 and Niter = 4. They
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demonstrate a much closer alignment with their reference realisation compared to
the case with the XFVM reference depicted in Figs. 6.11a–f.

(a) Realisation 1 (FFSA) (b) Realisation 2 (FFSA) (c) Realisation 3 (FFSA)

(d) Realisation 4 (FFSA) (e) Realisation 5 (FFSA) (f) Realisation 6 (FFSA)

Figure 6.17: Realisations of the posterior ensemble obtained from the FFSA prior
using the FFSA reference for NE = 2000 and Niter = 4. Line thick-
ness corresponds to aperture width and line colour to log10 of the
fracture permeability.

6.6 Discussion

The FFSA provides reasonable approximations of the fracture apertures in a
scenario dominated by shear dilation. With negligible computational effort, it
is thereby substantially faster than a geomechanical simulator like XFVM. The
FFSA takes less than a minute for the presented fracture model, while the XFVM
runs for several days. However, neither code is fully optimised for speed, and
there is potential to significantly improve the computational efficiency of XFVM.
The speed of FFSA makes it an attractive option for generating prior ensembles
for DA purposes, as typically a large number of realisations is required. In con-
trast, using geomechanical simulators for this task might become computationally
prohibitive.
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The FFSA is only exact for a single isolated fracture with constant friction
angle, and it neglects fracture interactions. This leads to modelling errors (see
Appendix D for a direct comparison to XFVM), particularly as shearing of a frac-
ture will change the local stress field considerably. To compensate for those errors,
we introduce additional uncertainty through the parameter Cg, a proportional-
ity factor between shear stress and shear displacement. While this approach gives
overall satisfactory results, moderate fracture permeabilities are under-represented
in the PDF of the FFSA prior ensemble compared to the one of the reference re-
alisation obtained with XFVM (Fig. 6.7f), indicating that the chosen approach
is not yet optimal. With the current approach, the fracture length has a much
larger influence on the shear displacement than the parameter Cg because the
chosen uncertainty in Cg is much smaller than the variation of the fracture length
in our model (Eq. (6.3)). Increasing the uncertainty in Cg would however lead to
more extreme values for long fractures. Therefore, an improved approach should
increase the probability of moderate apertures for short fractures without gener-
ating extremely high apertures for long fractures. For example, we could model
the uncertainty of Cg as a function of fracture length or introduce an additive
uncertainty directly to the fracture aperture in Eq. (6.5). Another approach is
adding additional uncertainty to the stress state, thereby modelling the change
in the local stress state at one fracture due to the shearing of other fractures.
Further, we could improve the FFSA itself by incorporating knowledge of the sur-
rounding fracture geometry or using a hierarchical approach, i.e., first estimating
shear displacement and apertures of the large fractures, and then deriving the
local stress field at the smaller ones.
Even without these improvements, the FFSA produces prior realisations that

are much closer to the reference than the two naïve stochastic approaches. Sub-
sequently, the FFSA prior also leads to a better posterior ensemble than the
stochastic approaches. At least for the chosen setting, a better prior leads to
a better posterior and it is therefore crucial to model the prior in a physically
realistic way.
In this work, we confirm that it is not possible to retrieve the complex flow and

transport behaviour of the reference when using only a single value for all fracture
apertures. Even when the optimal single aperture is used, the resulting realisation
still has a considerable error in the measurements, leading to completely wrong
estimates of some breakthrough curves (Fig. 6.13). The Stochastic Single Value
prior led to an ensemble collapse in our DA framework irrespective of the ensem-
ble size. We believe this collapse results from a combination of factors. Firstly,
the relations between the single aperture value and certain measurements become
constant above or below specific thresholds, resulting in a loss of ensemble vari-
ation for those measurements and, in extreme cases, an identical measurement
value for all realisations. Secondly, some of those relations exhibit non-monotonic
behaviour such that realisations can be attracted by non-optimal local minima.
Thirdly, the Stochastic Single Value prior generates realisations confined to a lim-
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ited subset with highly correlated measurements, leading to numerical issues when
calculating the Kalman gain (Eq. (4.41) in Section 4.4.3). Lastly, one reference
measurement lies entirely outside of the range of the prior ensemble. Due to the
resulting ensemble collapse, we were unable to obtain any DA results for this prior.
While the Stochastic Single Value prior is too restrictive, the Stochastic Varying

prior bears too much uncertainty. It does not incorporate all available knowledge,
such as correlations of fracture aperture with length and orientation. As a conse-
quence, a large ensemble size is required to avoid undersampling. In this study,
undersized ensembles collapsed and converged to wrong solutions. Results suggest
that a smaller ensemble size might be possible with more ESMDA iterations, but
the required combination of ensemble size and number of ESMDA iterations is be-
yond our current computational capabilities, and thus, our results with this prior
are not fully converged. Nevertheless, we expect that results with a much larger
ensemble size are similar to the ones from our best combination (NE = 5000,
Niter = 4). With this combination, we obtain a posterior ensemble that matches
the training measurements, i.e., measurements that are used for the ESMDA up-
date, quite well. The improvement in the test measurements, which are solely
used for evaluating the outcome of the DA framework, is smaller and a consider-
able amount of uncertainty remains. The apertures of the posterior realisations
differ however significantly from the reference realisation, with updates predom-
inantly occurring near measurement locations. This emphasises the importance
of considering more than just the (training) measurements when evaluating the
effectiveness of a DA framework.
With the FFSA prior, we obtain posterior realisations with an improved es-

timation of the apertures compared to the ones from the prior ensemble, even
though a considerable difference to the reference realisation remains. The pos-
terior ensemble matches the training measurements of the reference realisation
very well, while the test measurements are only marginally improved, indicating
that the improvements in flow and transport are mostly limited to the vicinity of
training measurements. More measurements, especially also from the interior of
the domain, are needed to further improve the estimation of aperture as well as
the flow and transport. However, the number of measurement locations already
exceeds what one can expect in field studies and a complete observation of flow
and transport is only possible in lab experiments such as in Flemisch et al. (2024).
While there is room for improvement, the posterior from the FFSA prior gives
good estimates of the fracture aperture suitable for performance estimation and
risk assessment in subsurface applications. Concrete examples involve optimal
placement of boreholes for injection or extraction, expected heat extraction in a
geothermal reservoir, or preventing potential contamination of nearby aquifers.
Further, we compare results for two reference realisations: one obtained from

XFVM and the other from FFSA. As anticipated, generating the reference re-
alisation and the prior ensemble with the same method gives a better match,
both in the prior and posterior, than using two different methods. This part of
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our study yields two key conclusions. First, it emphasises the importance of ac-
curately modelling the prior ensemble. Second, it demonstrates the significance
of employing a reference realisation from a different method when evaluating a
DA framework with a synthetic reference, as otherwise, the DA problem becomes
artificially simplified.
Our results, especially the ones with the Stochastic Varying prior, suggest that

most apertures only have a negligible influence on the measurements at the bound-
aries. While this is expected to some degree, we also identify three constraints
in our study setup that artificially limit the influence of the fractures. Firstly,
we use a first-order transport scheme which leads to a considerable amount of
numerical diffusion. If smears out the concentration front and thus dampens the
effects of the fractures. We could avoid this by using a higher-order scheme and
only include a controlled amount of physical diffusion. Secondly, the sensitivity
of the fracture apertures on the flow and transport measurements is highly de-
pendent on the ratio of matrix to fracture permeability (Phillips, 1991; Matthäi
& Belayneh, 2004, see also Chapter 5). In cases with very low matrix permeabil-
ity, the flow is therefore governed by the fracture geometry, favouring flow paths
with minimal matrix distances. In this regime, fracture aperture influences flow
only when equivalent flow paths exist. Conversely, in cases with very high matrix
permeability, flow predominantly occurs within the matrix, largely independent
of fracture parameters. Only in an intermediate range of matrix permeabilities
do the fracture apertures significantly influence flow and transport. Note that the
fracture permeability is always greater than the matrix permeability for open frac-
tures. We have not optimised the matrix permeability for maximum sensitivity
to aperture, as it is not a tuning parameter in practical scenarios. Lastly, bound-
ary conditions might contribute to these limitations as well. By imposing a fixed
pressure on the domain’s boundary, we disregard that the fractured rock typically
extends beyond the region of interest. Flow and transport near the boundary
are strongly influenced by the boundary condition. Alternative approaches, such
as implementing infinite boundary conditions or using measurements only in the
interior of the domain, might decrease the influence of the boundary conditions
on the measurements and represent real-world conditions more accurately.
Nevertheless, the posterior from the FFSA prior also shows slightly improved

apertures in the interior of the domain. In such priors, apertures of fractures
with similar length and orientation are correlated. Hence, fractures in the interior
of the domain are correlated to measurements through similar fractures near the
measurement locations and therefore also updated by ESMDA. In reality, aper-
tures are correlated with length and orientation (Barton et al., 1995; Baghbanan
& Jing, 2008; Barton & Quadros, 2015; Zhang et al., 2021b), and such indirect
updates are desired to some extent. However, the current implementation of the
FFSA prior overestimates these correlations, leading to a posterior with deficient
variability. We expect that these issues can be resolved by the above-mentioned
improvements of FFSA.
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In this study, we used a geological scenario in which the generation of the
fracture apertures occurs before the reservoir characterisation with the tracer test.
However, injecting fluid into the reservoir during the tracer test may significantly
alter the effective normal stresses acting on the fractures and consequently change
the fracture apertures, which in turn may affect the flow field. In future works,
it is therefore desirable to couple flow and mechanics and consider poroelasticity.
A further step towards a more realistic setting is the extension to 3D, which is
straightforward for FFSA (Milliotte et al., 2018). The far-field stresses can be
projected onto the fracture planes with a 3D version of Eqs. (6.1) and (6.2), and
the process of approximating the maximum shear displacement is similar to that
in 2D. For that purpose, Chinnery (1969) lists values of the proportionality factor
Cg for various fracture shapes. Special attention must be given to the definition of
fracture length, however. In future work, we could also consider additional model
parameters as uncertain, such as matrix permeability and porosity, and allow for
uncertainties in the boundary conditions of the tracer test. Here, we consider
rock properties as spatially homogeneous, but we could also model them with e.g.
Gaussian random fields as in Liem et al. (2022b).

Arguably the biggest assumption in this work is that we know the fracture
geometry (i.e., location, orientation and length of each fracture) a priori and
exactly. In reality, the fracture geometry is usually associated with substantial
uncertainty, as only sparse borehole data and statistical information are available.
Nevertheless, valuable insight is obtained from the current study, as discussed
above. We therefore see it as a necessary intermediate step towards a more realistic
setup that eventually also includes uncertain fracture geometry. Several existing
tools can be used or built upon to generate physically meaningful realisations of
a fracture geometry, as demonstrated by Hyman et al. (2015), Lei et al. (2017),
Gläser et al. (2020), and Paluszny et al. (2020). It should then be straightforward
to update input parameters of the fracture generator (such as statistics of e.g.
fracture length or density). It is however very challenging to update the actual
fracture geometry itself. Parametrising the generated fracture geometry efficiently
and effectively for this purpose is complex as the number of fractures can vary
between realisations, and a fracture from one realisation generally does not have
a bijectively related fracture in other realisations. Existing approaches based on
level set function or Hough transform (Ping et al., 2017; Chai et al., 2018; Yao
et al., 2018), to our knowledge, have not been applied to complex large fracture
geometries yet. The task becomes even more challenging if the parameterisation
should also reflect relations between fractures, including fractures terminating
against other fractures and formation history. Additionally, automatic remeshing
of the updated fracture geometry might be challenging as arbitrary small distances
or angles may occur.
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6.7 Conclusion

In this work, we suggest using the far-field stress approximation (FFSA), a proxy
model designed to estimate fracture apertures in shear-dominated scenarios, to
generate prior ensembles for data assimilation (DA). The FFSA captures the gen-
eral trends effectively, albeit with some inherent errors due to neglecting fracture
interactions. We use FFSA to generate realistic and computationally efficient
prior ensembles for ensemble-based data assimilation. To compensate for mod-
elling errors, we introduce supplementary uncertainty in one model parameter.
Comparing FFSA priors to those from two naïve stochastic approaches reveals
notable differences. While all methods share the same underlying unconditional
PDF, FFSA-derived realisations are much closer to the reference realisation from
a geomechanical simulator.
Employing ESMDA, we update fracture apertures with flow and transport data.

The posterior ensemble obtained from the FFSA prior matches the flow and trans-
port behaviour as well as the apertures, although some differences remain. In
contrast, a posterior ensemble obtained by unconditional sampling of aperture
(i.e., a Stochastic Varying prior) yields apertures that substantially deviate from
the reference despite matching training measurements. In addition, a significantly
larger ensemble size is required than for the FFSA prior, increasing overall compu-
tational cost. The third prior, which uses a single value for all fracture apertures
in a realisation, cannot match the complex flow and transport behaviour of our
synthetic reference. Our results show a correlation between the prior and pos-
terior uncertainties, highlighting the importance of a good estimate of the prior
ensemble. We expect that those results also apply to other ensemble-based DA
methods, such as particle filters.
While the current form of FFSA already produces reasonable results, opportu-

nities for improvement, particularly in addressing modelling errors through addi-
tional uncertainties, remain. To achieve this, we plan to conduct a more detailed
study with the FFSA in a separate work. Further potential improvements for the
ESMDA framework include constructing a prior ensemble that combines realisa-
tions from different methods and the use of adaptive localisation. Moreover, we
aim to make the framework more realistic by coupling flow and transport with
mechanics, incorporating additional physics like heat transport, and eventually
accounting for uncertainty in fracture geometry.

Open research section
MATLAB scripts of the far-field stress approximation (FFSA), the ANSYS mesh of the fracture
geometry, input and output files of the reference simulation with extended finite volume method
(XFVM), and prior and posterior ensembles of the data assimilation framework based on the
ensemble smoother with multiple data assimilation (ESMDA) are available at ETH Zurich via
https://doi.org/10.3929/ethz-b-000632502 (Liem et al., 2023a).
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7 Conclusion and Outlook

7.1 Conclusion

This thesis addresses two key challenges in modelling fractured porous media:
enhancing the efficiency of transport simulations and refining the characterisation
of uncertain fracture properties.

In the first part of the thesis, we extend the adaptive conservative time integra-
tion (ACTI) scheme – an adaptive time stepping technique – to fractured porous
media (Chapter 3). Initially introduced by Jenny (2020), ACTI can drastically
reduce the computational costs in simulations with highly heterogeneous porous
media compared to conventional global time stepping. However, it poses more
restrictive stability requirements for higher-order flux schemes, given that nearly
all grid cells have CFL numbers exceeding half the maximal allowed CFL number.
We study different versions of the monotonic upstream-centred scheme for conser-
vation laws (MUSCL) and empirically demonstrate that MUSCL with advection
of inclined reconstruction (MUSCL-AIR) fulfils these stability requirements.
ACTI proves particularly efficient when only a few cells demand very small time

steps, while the majority can be integrated using much larger time steps. This
phenomenon is present in transport within fractured porous media, where highly
permeable fractures can form preferential flow paths characterised by substantial
velocity contrasts. Moreover, adaptive grid refinement can amplify this effect.
We apply ACTI in combination with MUSCL-AIR to model tracer transport in
fractured porous media and obtain accurate and sharp concentration fronts. No-
tably, we achieve impressive speed-up factors up to approximately 80 compared
to conventional global time stepping. These speed-up factors stem from a compa-
rable reduction in the number of flux calculations and cell updates. We anticipate
that these gains will increase in more complex models. In practice, the reduced
computational cost of ACTI relative to conventional global time stepping enables
more accurate solutions within given computational constraints.

In the second part of this thesis, we study how measurement strategy and matrix
permeability affect the estimation of fracture parameters using ensemble-based
data assimilation (DA) (Chapter 5). Our findings confirm that incorporating
more measurement data generally improves posterior estimation. In our fracture
model, we observe that pressure and flow rates at wells have a more significant
impact on the accuracy of the posterior than arrival time measurements. However,
this observation may be biased by factors such as the tracer mixing in fracture
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cells, boundary conditions, and measurement error covariance matrix. Further
investigation is required to explore this effect thoroughly.
Moreover, our study demonstrates a pronounced influence of the matrix perme-

ability on the fracture aperture and length estimates. When the ratio of fracture
to matrix permeability is low (i.e., for high matrix permeabilities), fractures have
minimal impact on the flow field, making their estimation challenging based on
flow and transport data alone. Flow in fractured porous media is sensitive to aper-
ture variation only within an intermediate range of matrix permeability. In this
study, this range is found to be around 1× 10−14 to 1× 10−12 m2. Conversely,
fracture length influences flow even under high fracture-to-matrix permeability
ratios (i.e., very low matrix permeabilities), resulting in accurate estimates for
matrix permeabilities of approximately 1× 10−13 m2 and lower in our study. We
anticipate that these ranges are specific to each problem and may vary depending
on the particular fracture geometry involved.

In the third part of this work, we demonstrate the importance of accurate prior
modelling in ensemble-based DA (Chapter 6). Typically, studies – including the
one presented in Chapter 5 – use simplistic distributions to sample prior fracture
properties. Such simple distributions fail to incorporate all available knowledge,
especially that derived from geomechanical processes. However, creating an entire
ensemble of prior realisations of fractures with a geomechanical reservoir simula-
tor might become computationally prohibitive, especially for large ensemble sizes.
Hence, we introduce a proxy model, the far-field stress approximation (FFSA), de-
signed to efficiently calculate fracture apertures in shear-dominated environments.
The FFSA projects the tectonic far-field stresses onto fracture planes and approx-
imates shear displacement using linear elastic theory. Thus, the FFSA achieves
efficiency by neglecting local variations in the stress field caused by factors such
as fracture interactions.
We employ the FFSA to generate prior aperture realisations for a two-dimen-

sional fracture pattern mapped from the air, comprising approximately 4000 indi-
vidual fractures. The FFSA effectively captures the general trends of the apertures
in this realistic fracture geometry. The resulting posterior ensemble obtained from
our ensemble-based DA framework matches the flow and transport behaviour of
the synthetic reference at measurement locations. It improves the estimation of
fracture aperture, although some differences remain. In contrast, an unconditional
sampling of the apertures from a simple distribution yields posterior aperture re-
alisations that substantially deviate from the reference despite matching training
measurements. Moreover, a significantly larger ensemble size is required than for
the FFSA prior, thereby increasing their overall computational cost.

In conclusion, this thesis provides tools for a more efficient and accurate simula-
tion of fractured porous media. Those tools can contribute to improved reservoir
management and decision-making in various subsurface applications, which are
crucial for solving today’s energy and climate challenges.
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7.2 Outlook

This thesis focuses on two-dimensional fracture networks and, except for Chap-
ter 6, a low number of fractures. While small and understandable models are
valuable for developing new methods and obtaining basic knowledge, their ulti-
mate goal is their application in real-world scenarios. Subsurface reservoirs are
inherently three-dimensional, extend over large distances, and possess countless
fractures of varying shapes and sizes. Therefore, future research should address
adapting the methods presented here to such complex scenarios. While the tech-
niques presented in this thesis, in particular ACTI with MUSCL-AIR and FFSA,
can theoretically be extended to three dimensions, their practical implementation
in 3D requires careful consideration.
Further, subsurface reservoirs are subject to dynamic changes. Processes such

as reservoir stimulation, heat extraction, and CO2 or tracer injection alter the
local stress field. Such stress alterations potentially lead to the creation of new
fractures or the modification of existing ones through fracture growth, shearing, or
tensile opening. A natural progression is extending the ACTI scheme, which has
previously been applied to compressible flows (Kulka & Jenny, 2022), to multi-
phase flow and integrate it with a geomechanical simulator. Furthermore, our DA
framework must account for those dynamic processes by employing appropriate
forward models and accommodating time-dependent fractures. Moving forward,
applying these enhanced tools to real-world reservoirs using field data is crucial.
This work primarily focuses on estimating fracture apertures under the as-

sumption of a known fracture geometry. While this approach has produced valu-
able insights, real-world scenarios involve uncertain fracture geometries with an
unknown number of fractures, presenting severe challenges for data assimilation
methods. Effectively addressing these challenges requires the development of effi-
cient parametrisation methods for fracture geometry, ensuring that the resulting
posterior geometry remains physically meaningful. Additionally, the DA frame-
work must be capable of accommodating a variable number of fractures. To the
best of our knowledge, no existing method fulfils these requirements.
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A Fracture Aperture Model of Barton and
Bandis

This chapter introduces the constitutive model for fracture aperture of Barton
and Bandis (Barton & Choubey, 1977; Barton, 1982; Bandis et al., 1983; Barton
et al., 1985) and largely follows the corresponding section in the appendix of Liem
et al. (2023b, Preprint).

In the model of Barton and Bandis, the (void) aperture of a fracture,

a = a0 − δn + δd , (A.1)

is a combination of the initial aperture a0, closure due to normal stress δn and
dilation due to shearing δd.

A.1 Initial fracture aperture

The initial aperture

a0 =
JRC

5

(
0.2

σc
JCS

− 0.1
)

(A.2)

corresponds to the fracture aperture under stress-free conditions. It is a function
of the (peak) joint roughness coefficient JRC and the amount of joint alteration
described by the ratio of unconfined compressive strength of the rock σc and joint
wall compression strength JCS.

A.2 Normal closure

Assuming a positive effective normal stress σeff > 0, the amount of closure is

δn =
σeffvm

Knivm + σeff
, (A.3)

where vm and Kni are the maximum possible closure and the initial normal stiff-
ness, respectively. Under increasing normal stress, more and more asperities are
in contact and consequently, the normal stiffness of the fracture increases.
The model of Barton and Bandis is not applicable if fluid pressure exceeds nor-

mal stress (i.e. for negative σeff) and tensile opening occurs. In those situations,
the amount of tensile opening can be directly obtained from the geomechanical
simulation or analytical models (e.g. Pollard & Segall, 1987).

117



A Fracture Aperture Model of Barton and Bandis

A.3 Friction and dilation angle

The amount of shear displacement δs of a fracture is determined by the stress
state at the fracture and the friction angle (Eqs. (2.24) and (2.25)). The friction
angle depends thereby on the roughness of the fracture surface and on the rock
material. The model of Barton and Bandis represents the influence of latter
with the residual friction angle φr which can be obtained from the basic friction
angle φb using the Schmidt hammer test (Barton & Choubey, 1977). The basic
friction angle describes the friction of a smooth unweathered rock surface, while
the residual friction angle φr ≤ φb is used for weathered surfaces. A key feature
of the model of Barton and Bandis is that the friction angle

φ′ = JRCmob log10

(
JCS

σeff

)
+ φr (A.4)

and dilation angle

φd =
1

M
(φ′ − φr) =

1

M
JRCmob log10

(
JCS

σeff

)
(A.5)

are not constant but vary with the amount of shear displacement. This depen-
dency is modelled with the mobilised joint roughness coefficient JRCmob (Fig. A.1).
The peak shear displacement δpeak corresponds to the amount of shearing when
peak shear strength is reached. Several models for peak shear strength exist, in
this work we use

δpeak = 0.0077L0.45
( σeff
JCS

)0.34

cos

(
JRC · log10

(
JCS

σeff

))
, (A.6)

as proposed by Asadollahi & Tonon (2010), where L is the fracture length in
metre. For pre-peak shearing (δs < δpeak), the degradation of the few asperities
that are in contact increases the interlocking between the two fracture surfaces
and consequently increases the friction. For post-peak shearing (δs > δ]peak) on
the other hand, roughness is getting destroyed and smoothed out. Subsequently,
shear strength and dilation angle are steadily reduced. For an infinite amount of
shearing, the friction angle is equal to the residual friction angle and the dilation
angle approaches zero.
For the damage coefficient M in Eq. (A.5) we use the formula proposed by

Barton & Choubey (1977)

M = 0.7 + JRC

/[
12 log10

(
JCS

σeff

)]
. (A.7)
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Figure A.1: Mobilised joint roughness coefficient JRCmob as a function of shear
displacement δs. Figure reproduced from Liem et al. (2022b), original
figure from Barton (1982) and Barton et al. (1985).

A.4 Simplifications applied in Chapter 6

In Chapter 6, we assume that the fractures are unaltered and unweathered, i.e.
JCS = σc. Therefore, the initial aperture simplifies to a0 = JRC/50 and depends
on the surface roughness only, and the residual friction angle is equal to the basic
friction angle, i.e. φr = φb.
Further, we neglect the decrease in aperture for small shear displacements, and

therefore, integrate only over positive dilation angles in Eq. (6.4). The model of
Barton and Bandis has been developed for fractures with a constant fluid pressure
and thus, a relatively constant effective normal stress. In our simulation, however,
the fluid pressure steadily increases, and the effective normal stress might become
very small in some fractures or even locally negative for some segments in the
reference simulation with XFVM. We therefore approximate σeff in Eqs. (A.4)
to (A.7) as

σeff ≈ σn − 1

2

( |σs|
tanφr

+ pendf

)
, (A.8)

where we calculate σn and σs with Cauchy’s equations (Eqs. (6.1) to (6.2)) and
pendf is the target fluid pressure.
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B ACTI Algorithm

This chapter is part of the appendix published in Liem et al. (2022a).
Algorithm 5 delineates the adaptive conservative time integration (ACTI) scheme

as introduced by Jenny (2020) and described in Chapter 3. In this work, we con-
sider transport only in steady-state velocity fields; hence, we need to calculate the
local time steps only once at the beginning.

Algorithm 5 ACTI scheme for scalar tracer transport Jenny (2020)
define grid with N cells ΩI ; ∀I ∈ {1, ..., N}
define A(I) as the set of neighbours of cell I
t← 0
choose ∆tmax such that mod(tend,∆tmax) = 0
for I = 1, ..., N do

cI ← initialize
tI ← 0
∀J ∈ A(I) : FJ→I ← 0

end for

while (t < tend) do
t← t+ ∆tmax
for I = 1, ..., N do

compute ∆tCFLI

LI ← max( ceil[ln(∆tCFLI /∆tmax)/ ln(1/2)] , 0 )

∆tI ← ∆tmax/2
LI

end for
while (min(tI) < t) do

tnext,min ← minI∈{1,...,N}(tI + ∆tI)
S ← (I ∈ 1, ..., N | tI + ∆tI = tnext,min ∧ ∀i < j ≤ size(S)⇒ LSi ≥ LSj )

for I ∈ S do
tI ← tI + ∆tI
for J ∈ A(I) do

if (tJ < tI) then
FJ→I ← inflow from ΩJ into ΩI during time t′ ∈ [tI −∆tI , tI ]
FI→J ← FI→J − FJ→I

end if
end for

end for
for I ∈ S do

cI ← cI + |ΩI |−1 ∑
J∈A(I) FJ→I

∀J ∈ A(I) : FJ→I ← 0
end for

end while
end while
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C Influence of Slope Limiter

This chapter is part of the appendix published in Liem et al. (2022a).
Chapter 3 studies different versions of the monotonic upstream-centered scheme

for conservation laws (MUSCL) (Eq. (3.4)). We demonstrate that MUSCL with-
out slope advection (β1 = 1, β2 = β3 = 0) and MUSCL with slope advection
(β1 = β2 = 1, β3 = 0) show spurious oscillations in the tracer concentration when
combined with ACTI. However, stability of these flux schemes can be attained
by choosing a more diffusive limiter. Fig. C.1 shows concentration fields obtained
with the minmod limiter. Compared to the fields obtained with the Koren limiter
and the same CFLmax values (Fig. 3.4), the spurious oscillations are substantially
reduced albeit at the cost of slightly more diffusive concentration fronts.
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C Influence of Slope Limiter

(a) MUSCL without slope advection (CFLmax = 0.5) (b) MUSCL without slope advection (CFLmax = 0.9)

(c) MUSCL with slope advection (CFLmax = 0.5) (d) MUSCL with slope advection (CFLmax = 0.9)

Figure C.1: Concentration field after 22 h for adaptive time stepping with ACTI
using the minmod limiter. The white contour lines mark concentra-
tion values of 0.1 and 0.9. The pink contour lines depict the levels LI
of ACTI.
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D Comparison of XFVM and FFSA

This chapter is part of the appendix published in Liem et al. (2023b, Preprint).
Here, we compare the fracture apertures obtained with the extended finite vol-

ume method (XFVM) and the far-field stress approximation (FFSA), both meth-
ods are discussed in Chapter 6. Fig. D.1 shows the results of XFVM and FFSA for
the exact same underlying model parameters (i.e. the values from the last column
of Table 6.1) and Cg = 1. The FFSA captures the general trends and some aper-
tures agree quite well. However, there are also quite large differences for many
fractures. Most notably, the apertures of long, optimally oriented fractures are
overestimated while the apertures of some short fractures are underestimated. We
intend to compare those two methods thoroughly in a separate publication.

(a) (b)

Figure D.1: Results with XFVM (a) and FFSA (b) for the same underlying model
parameters. Line thickness corresponds to aperture width and line
colour to log10 of the fracture permeability.
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Subsurface applications such as geothermal heat extraction or CO2 se-
questration are vital for solving today’s energy and climate challenges.
Their reservoir rock typically consists of fractured porous media, whose
fractures can greatly affect flow, transport, and mechanics. Accurate and
efficient modelling of the relevant physical processes and characterising
the related parameters are crucial for performance estimation and risk as-
sessment. This simulation-based thesis aims to enhance these aspects.

Time-dependent hyperbolic partial differential equations (PDEs) are com-
monly used for modelling transport phenomena and seismic activity.
Adaptive time stepping methods, like the adaptive conservative time in-
tegration (ACTI) scheme, improve the efficiency of explicit time integration
by allowing variable local time steps. We extend ACTI to tracer transport
in fractured porous media, achieving accurate results while reducing com-
putational costs by orders of magnitude compared to global time stepping.

Limited observability of subsurface reservoirs and substantial uncertain-
ties, particularly concerning fractures and their apertures, pose chal-
lenges to accurate modelling. Ensemble-based data assimilation (DA)
methods, like the ensemble smoother with multiple data assimilation (ES-
MDA), are established tools for reducing uncertainty in model parameters
and improving simulation results. We demonstrate the significant impact
of measurement strategies and matrix permeability on DA results, high-
lighting the utility of intermediate measurements during reservoir stimula-
tion and the influence of matrix permeability on fracture parameter esti-
mation.

Constructing a prior ensemble that accurately reflects available knowl-
edge is crucial for ensemble-based DA methods. We introduce the far-
field stress approximation (FFSA), a proxy model which projects the far-
field stresses onto the fracture planes and approximates shear displace-
ment with linear elastic theory. The FFSA efficiently generates reason-
able prior realisations of fracture apertures in a realistic two-dimensional
fracture network. The resulting posterior ensemble matches the flow and
transport behaviour of the synthetic reference at measurement locations.
It improves the estimation of the fracture apertures, markedly outperform-
ing results from prior ensembles based on naïve stochastic approaches.

In conclusion, this thesis contributes to a more efficient and accurate sim-
ulation of fractured porous media, paving the way for improved reservoir
management and decision-making in various subsurface applications.
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