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1Université Paris–Saclay
2ETH Zurich

April 23, 2024

Abstract

Let F,G ∈ Z[X,Y ] be binary forms of degree ≥ 3, non-zero discriminant and with
automorphism group isomorphic to D4. If F (Z2) = G(Z2), we show that F and G are
GL(2,Z)–equivalent.

1 Introduction

This paper is the continuation of [1] and deals with the following question:

Question 1.1. Let d ≥ 3 and let F (X,Y ) and G(X,Y ) two binary forms of Bin(d,Q) (the
set of binary forms with degree d, with rational coefficients and with discriminant different

from zero) such that F (Z2) = G(Z2). Does there exist γ :=

(

a b
c d

)

∈ GL(2,Z) such that

F (aX + bY, cX + dY ) = G(X,Y )? (1.1)

If there exists no such matrix γ, the pair (F,G) is called an extraordinary pair and the form
F is called extraordinary.

In order to answer this question, the article [1] shows the crucial importance of the group
of automorphisms of F defined as

Aut(F,Q) := {γ ∈ GL(2,Q) : F ◦ γ = F} ,

where F ◦γ denotes the action of γ by linear change of variables (see (1.1)). It is known that,
for any F ∈ Bin(d,Q), the group Aut(F,Q) is GL(2,Q)–conjugate to one element among the
set K of ten subgroups of GL(2,Z) defined by

K = {C1,C2,C3,C4,C6,D1,D2,D3,D4,D6}, (1.2)

where the letters Ck and Dℓ respectively correspond to cyclic and dihedral subgroups with
cardinality k and 2ℓ. For the definition of these subgroups, we refer the reader to [1, Lemma
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5.1]. In [1], we treated the cases of C1,C2,C3,C4,C6,D1,D2, where we prove that an
affirmative answer to Question 1.1 depends on the existence, in the group of automorphisms,
of elements of order 3 with special type. The cases of D3 and D6 will be treated in [2],
bringing to light a similar characterization but in a more intricate context.

In the present paper, we are concerned with the case of D4, which is the dihedral subgroup
of GL(2,Z) generated by the two matrices

(

0 1
1 0

)

and

(

0 1
−1 0

)

.

This subgroup has order 8 and every element has order 1, 2 or 4. Write

G(X,Y ) = adX
d + ad−1X

d−1Y + · · ·+ a1XY d−1 + a0Y
d.

Let G ∈ Bin(d,Q). It is not difficult to show that D4 ⊆ Aut(G,Q) if and only if one has the
equalities

ak = 0 if k ≡ 1 mod 2 and ak = ad−k for 0 ≤ k ≤ d. (1.3)

In particular, d is even so d ≥ 4. Furthermore, we have Aut(G,Q) = D4, since, in the list
K (see (1.2)) there is no group with cardinality strictly divisible by 8. Finally, every form F
satisfying Aut(F,Q) = λ−1D4λ, with λ ∈ GL(2,Q), has the shape

F = G ◦ λ,

where G satisfies (1.3). This follows from the general conjugation formula Aut(F ◦ λ,Q) =
λ−1Aut(F,Q)λ.

Our central result is

Theorem 1.2. Let d ≥ 4. Then there is no extraordinary form F such that

Aut(F,Q) ≃GL(2,Q) D4.

This theorem was already announced in [1, Theorem A]. One simple consequence is

Corollary 1.3. Let F ∈ Bin(4,Q) such that

F (Z2) = {m : m = t4 + u4 for some (t, u) ∈ Z2}.

Then there exists (a, b, c, d) ∈ Z4, with ad− bc = ±1, such that

F (X,Y ) = (aX + cY )4 + (bX + dY )4.

The corollary follows upon combing Theorem 1.2 with [3, Lemma 3.3], which asserts that
Aut(X4 + Y 4,Q) = D4.
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2 From extraordinary forms to coverings

2.1 Some definitions

By a lattice, we mean an additive subgroup of Z2 with rank 2. This lattice is proper when
it is different from Z2. If Λ is a lattice generated by ~u,~v ∈ Z2, the index of Λ is the positive
integer

[Z2 : Λ] = |Z2/Λ| = |det(~u,~v)|. (2.1)

Definition 2.1. Let γ ∈ GL(2,Q). By definition the lattice associated to γ is the subset L(γ)
of Z2 defined by

L(γ) :=

{

(x, y) ∈ Z2 : γ

(

x
y

)

∈ Z2

}

.

We will use the obvious remarks

L(γ) = L(−γ) (2.2)

and

L(γ) = Z2 ⇐⇒ γ has integer coefficients. (2.3)

We recall the following property, which is proved by a direct calculation (see [1, Lemma 6.9]).

Lemma 2.2. Let γ ∈ GL(2,Q). Then [Z2 : L(γ)] is an integer multiple of |det γ|−1.

Several times we will use the next easy lemma, where v2(n) is the 2–adic valuation of the
integer n with the convention v2(0) = +∞.

Lemma 2.3. Let α, β, γ ∈ Z with γ 6= 0. Suppose that v2(α) < v2(β) and v2(α) < v2(γ).
Then the lattice defined by the equation

αx1 + βx2 ≡ 0 mod γ

is included in the lattice

{(x1, x2) : x1 ≡ 0 mod 2}.

Definition 2.4. Let F1 and F2 be two forms in Bin(d,Q). By definition, an isomorphism
from F1 to F2 is an element φ ∈ GL(2,Q) such that F1 ◦ φ = F2. The set of all such
isomorphisms is denoted by Isom(F1 → F2,Q). Suppose Isom(F1 → F2,Q) is not empty and
let ρ be one of its elements. Then we have the equalities

Isom(F1 → F2,Q) = ρ ·Aut(F2,Q) = Aut(F1,Q) · ρ

Isom(F2 → F1,Q) = ρ−1 · Aut(F1,Q) = Aut(F2,Q) · ρ
−1.

We extract from [1] the following key proposition

Proposition 2.5. Let d ≥ 3 and let (F1, F2) be a pair of extraordinary forms. Then there
exists ρ ∈ GL(2,Q), a pair of extraordinary forms (G1, G2) and a pair (D, ν) of positive
integers such that

1. we have F1 = F2 ◦ ρ,

3



2. we have
(

G1 ∼GL(2,Z) F1 and G2 ∼GL(2,Z) F2

)

or
(

G1 ∼GL(2,Z) F2 and G2 ∼GL(2,Z) F1

)

,

3. we have
D, ν ≥ 1,Dν > 1,D | ν and 1 ≤ ν ≤ D2. (2.4)

The matrix

γ :=

(

D 0
0 D/ν

)

(2.5)

satisfies G1 = G2 ◦ γ,

4. we have

[Z2 : L(γ)] = min
{

[Z2 : L(τ)] : τ ∈ Isom(G1 → G2,Q) ∪ Isom(G2 → G1,Q)
}

, (2.6)

5. and finally, we have the two coverings

Z2 =
⋃

τ∈Isom(G1→G2,Q)

L(τ) =
⋃

τ∈Isom(G2→G1,Q)

L(τ).

This proposition essentially gathers the following contents of [1]: Lemma 2.4, §7.1, §7.2
(particularly the relations (7.7), (7.8), (7.9)) and Proposition 9.1.

Comments 2.6. 1. This proposition is quite general, since it requires no assumption con-
cerning the automorphism groups of F1 or F2.

2. Item 1. will not be used in the sequel of the proof of Theorem 1.2. It recalls the starting
point of the construction of γ and it implies that both Aut(F1,Q) and Aut(F2,Q) are
GL(2,Q)–conjugate by the formula (4.1).

3. The pair (G1, G2) is extraordinary with automorphism groups GL(2,Z)–conjugate with
the automorphism groups of F1 and F2.

4. The initial problem is symmetrical in (F1, F2). We eventually break this symmetry in
item 4. to ensure the minimality of the index in (2.6). Note that [Z2 : L(γ)] = νD−1.

5. Since γ belongs to Isom(G2 → G1,Q), we can explicitly write the isomorphisms appear-
ing in item 5. in terms of γ and Aut(G1,Q) or Aut(G2,Q) (see Definition 2.4).

6. In fact, we will only use the first equality written in item 5. The second one will be used
in [2].

3 About coverings

3.1 General notions

Let a, b, c and d be four integers. To shorten notations, we write

Z

(

a
b

)

+ Z

(

c
d

)

=:

[

a c
b d

]

for the subgroup of Z2 generated by (a, b)T and (c, d)T . Recall that if ad − bc 6= 0, this
subgroup is a lattice. Furthermore, if |ad− bc| ≥ 2, this is a proper lattice.

4



Definition 3.1. Let k ≥ 1 be an integer and let (Λi)1≤i≤k be k lattices. We say that

C = {Λ1, . . . ,Λk}

is a covering of Z2 (or a covering) if and only if

⋃

1≤i≤k

Λi = Z
2.

Definition 3.2 (Minimal covering). Let k ≥ 1, let Λi be lattices and let C = {Λ1, . . . ,Λk} be
a covering. We say that C is a minimal covering of length k if and only if replacing any Λi

by some proper sublattice Λ′
i  Λi, the set

{Λ1, . . . ,Λi−1,Λ
′
i,Λi+1, . . . ,Λk}

is not a covering.

If C is a minimal covering and if 1 ≤ i 6= j ≤ k, we never have Λi ⊆ Λj . In particular, for
k ≥ 2, every Λi is a proper lattice. The following lemma asserts that from any covering one
can extract a minimal covering

Lemma 3.3. Let k ≥ 1 and let
C := {Λ1, . . . ,Λk}

be a covering. Then there exists an integer 1 ≤ k′ ≤ k, an injection φ : {1, . . . , k′} →
{1, . . . , k}, and lattices Λ′

j (1 ≤ j ≤ k′), such that

C′ := {Λ′
1, . . . ,Λ

′
k′}

is a minimal covering, and for all 1 ≤ j ≤ k′ one has Λ′
j ⊆ Λφ(j).

Proof. By reordering and suppressing some Λi if necessary, we suppose that

⋃

1≤i≤s

Λi = Z
2 and

⋃

1≤i≤s
i 6=j

Λi 6= Z
2 for all 1 ≤ j ≤ s (3.1)

for some 1 ≤ s ≤ k. The case where s = 1 is trivial, so we suppose s ≥ 2. Let

Ls := {Ms lattice : Ms ⊆ Λs, Λ1 ∪ Λ2 ∪ · · · ∪ Λs−1 ∪Ms = Z
2}.

We then have the equality
Z2 = Λ1 ∪ · · · ∪ Λs−1 ∪ Λ′

s, (3.2)

with Λ′
s :=

⋂

Ms∈Ls

Ms. The set Λ′
s is a subgroup of Z2. Its rank can not be 0 or 1, because

we would have the equality ∪1≤i≤s−1Λi = Z
2, which contradicts (3.1). So Λ′

s is a lattice and,
by construction, it is the smallest lattice included in Λs and satisfying (3.2). We continue the
same process for the covering

{Λ1,Λ2, . . . ,Λs−1,Λ
′
s}

to replace Λs−1 by a smaller lattice Λ′
s−1. By iterating this process, we prove the existence

of lattices (Λ′
1, . . . ,Λ

′
s) with the following three properties

1. (inclusion) Λ′
i ⊆ Λi for 1 ≤ i ≤ s,

5



2. (covering)
⋃

1≤i≤s Λ
′
i = Z

2,

3. (partial minimality) let 1 ≤ k ≤ s and let Mk be a lattice such that Mk ⊆ Λ′
k and such

that
Λ1 ∪ · · · ∪ Λk−1 ∪Mk ∪ Λ′

k+1 ∪ · · · ∪ Λ′
s = Z

2, (3.3)

then Mk = Λ′
k.

We now prove that (Λ′
1, . . . ,Λ

′
s) is a minimal covering associated with {Λ1, . . . ,Λs}. So

we consider lattices Mi such that Mi ⊆ Λ′
i and such that

Z2 = M1 ∪ · · · ∪Ms. (3.4)

Our aim is to show that Mi = Λ′
i. The equality (3.4) implies

Z2 = Λ1 ∪ · · · ∪ Λs−1 ∪Ms.

Therefore we deduce from the partial minimality property (see (3.3)) that Ms = Λ′
s. We now

have the equality
Z2 = M1 ∪M2 ∪ · · · ∪Ms−1 ∪ Λ′

s,

which implies
Z2 = Λ1 ∪ Λ2 ∪ · · · ∪ Λs−2 ∪Ms−1 ∪ Λ′

s.

From the partial minimality property (see (3.3)) we obtain the equality Ms−1 = Λ′
s−1. The

end of the proof is by induction.

3.2 Minimal coverings with length at most 4

We now list all the minimal coverings with length bounded by 4.

Theorem 3.4. The following is a complete list (up to permutation) of the minimal coverings
of Z2 of length at most four

{[

1 0
0 1

]}

(3.5)

{[

1 0
0 2

]

,

[

2 0
0 1

]

,

[

1 0
1 2

]}

(3.6)

{[

1 0
0 2

]

,

[

4 0
0 1

]

,

[

1 0
1 2

]

,

[

2 0
1 2

]}

(3.7)

{[

1 0
0 4

]

,

[

2 0
0 1

]

,

[

1 0
1 2

]

,

[

1 0
2 4

]}

(3.8)

{[

1 0
0 2

]

,

[

2 0
0 1

]

,

[

1 0
1 4

]

,

[

1 0
3 4

]}

(3.9)

{[

1 0
0 3

]

,

[

3 0
0 1

]

,

[

1 0
1 3

]

,

[

1 0
2 3

]}

. (3.10)
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Proof. By [1, Lemma 6.6 & 6.7], there is no minimal covering with length two and only one
with length three. So we are left with finding all the minimal coverings with length four.

• Checking that the sets of lattices (3.7), (3.8), (3.9) and (3.10) are coverings. One way to
prove this is to give explicit equations of these lattices. Let us focus on (3.9) since the other
cases are similar. The equations of the four corresponding lattices are respectively

y ≡ 0 mod 2, x ≡ 0 mod 2, 3x+ y ≡ 0 mod 4, x+ y ≡ 0 mod 4.

It remains to check that any pair (a, b) of congruence classes modulo 4 satisfies at least one
of the four equations above.

• Construction of the minimal coverings. Let L1, . . . , L4 be such that

L1 ∪ L2 ∪ L3 ∪ L4 = Z
2.

Ruling out the trivial covering (3.5), we may assume that L1, L2, L3 and L4 are all proper
subgroups of Z2. The argument will proceed by repeatedly looking at points outside of
L1∪L2∪L3∪L4 and then analyzing in which possible Li such a point can be. For convenience,
these points will be chosen with small coordinates.

By permuting the Li if necessary, we may assume without loss of generality that

(

1
0

)

∈ L1.

Since L1 6= Z2, we see that

(

0
1

)

6∈ L1. By permuting the Li again if necessary, we may

assume without loss of generality that

(

0
1

)

∈ L2.

Finally, a similar argument shows that we may assume without loss of generality that

(

1
1

)

∈ L3.

Summarizing, we have so far

(

1
0

)

∈ L1,

(

0
1

)

∈ L2,

(

1
1

)

∈ L3.

We will now consider the vector (1,−1)T , and the proof naturally splits into two cases (case
1 and case 2). Note that we must have (1,−1)T ∈ L3 (case 1) or (1,−1)T ∈ L4 (case 2).

Case 1

Let us assume that (1,−1)T ∈ L3. Then we have

(

1
0

)

∈ L1,

(

0
1

)

∈ L2, L3 =

[

1 1
1 −1

]

.
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Note that equality must indeed hold for L3, since the subgroup

[

1 1
1 −1

]

has prime index in Z2 and L3 6= Z2 by assumption. For the rest of the proof, we will often
use the above observation implicitly. Looking at the vector (2, 1)T , we get two further cases,
namely (2, 1)T ∈ L2 (case 1.1) or (2, 1)T ∈ L4 (case 1.2), since the cases (2, 1)T ∈ L1 or
(2, 1)T ∈ L3 are impossible (because this forces L1 = Z

2 respectively L3 = Z
2).

Case 1.1

In this case we have (2, 1)T ∈ L2 and therefore

(

1
0

)

∈ L1, L2 =

[

0 2
1 1

]

, L3 =

[

1 1
1 −1

]

.

Considering the vector (1, 2)T yields two subcases: (1, 2)T ∈ L1 (case 1.1.1) or (1, 2)T ∈ L4

(case 1.1.2).

Case 1.1.1

We have

L1 =

[

1 1
0 2

]

, L2 =

[

0 2
1 1

]

, L3 =

[

1 1
1 −1

]

,

which corresponds to the covering (3.6).

Case 1.1.2

Currently, we know that

(

1
0

)

∈ L1, L2 =

[

0 2
1 1

]

, L3 =

[

1 1
1 −1

]

,

(

1
2

)

∈ L4.

We analyze the possibilities for the vector (1,−2)T . If we add this vector to L1, then the re-
sulting covering is not minimal, as L4 may be removed to obtain the covering (3.6). Therefore
we arrive at the covering

(

1
0

)

∈ L1, L2 =

[

0 2
1 1

]

, L3 =

[

1 1
1 −1

]

,

[

1 1
2 −2

]

⊆ L4.

To finish the argument for this case, we consider the vector (1, 4)T . If we add it to L4, then
the corresponding covering is not minimal, as L1 may be removed to get the covering (3.6).
Thus we obtain

L1 =

[

1 1
0 4

]

, L2 =

[

0 2
1 1

]

, L3 =

[

1 1
1 −1

]

, L4 =

[

1 1
2 −2

]

,

which is the covering (3.8).
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Case 1.2

At this point we have

(

1
0

)

∈ L1,

(

0
1

)

∈ L2, L3 =

[

1 1
1 −1

]

,

(

2
1

)

∈ L4.

We have that (−2, 1)T ∈ L2 (case 1.2.1) or (−2, 1)T ∈ L4 (case 1.2.2).

Case 1.2.1

The following information is available to us

(

1
0

)

∈ L1, L2 =

[

0 −2
1 1

]

L3 =

[

1 1
1 −1

]

,

(

2
1

)

∈ L4.

Since the vectors (2, 1)T , (1,−2)T , (1, 2)T together generate Z2, at least one of (1,−2)T or
(1, 2)T must be in L1. Thus we get the covering (3.6) after removing L4.

Case 1.2.2

We obtain that

(

1
0

)

∈ L1,

(

0
1

)

∈ L2, L3 =

[

1 1
1 −1

]

,

[

2 −2
1 1

]

⊆ L4.

We must have that (1,−2)T ∈ L1. We will now consider the vector (4, 1)T . We either have
(4, 1)T ∈ L2, in which case we have the covering (3.7), or (4, 1) ∈ L4, in which case we get
the covering (3.6) after removing L2.

Case 2

We will now assume that (1,−1)T ∈ L4. Then we are in the situation

(

1
0

)

∈ L1,

(

0
1

)

∈ L2,

(

1
1

)

∈ L3,

(

1
−1

)

∈ L4.

Inspecting the possibilities for the point (2, 1)T , we come to the conclusion that (2, 1)T ∈ L2

(case 2.1) or (2, 1)T ∈ L4 (case 2.2).

Case 2.1

We have arrived at the following configuration

(

1
0

)

∈ L1, L2 =

[

0 2
1 1

]

,

(

1
1

)

∈ L3,

(

1
−1

)

∈ L4.

Considering the vector (1, 2)T , we will split into the cases (1, 2)T ∈ L1 (case 2.1.1) or (1, 2)
T ∈

L4 (case 2.1.2).
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Case 2.1.1

Gathering the information so far, we have

L1 =

[

1 1
0 2

]

, L2 =

[

0 2
1 1

]

,

(

1
1

)

∈ L3,

(

1
−1

)

∈ L4.

We inspect the different locations for the vector (3, 1)T . If (3, 1)T ∈ L3, we obtain the cover
(3.6) after dropping the lattice L4. Suppose instead that (3, 1)T ∈ L4. Then we have

L1 =

[

1 1
0 2

]

, L2 =

[

0 2
1 1

]

,

(

1
1

)

∈ L3,

[

1 3
−1 1

]

⊆ L4.

At last we consider the vector (3,−1)T . If (3,−1)T ∈ L3, we get

L1 =

[

1 1
0 2

]

, L2 =

[

0 2
1 1

]

, L3 =

[

1 3
1 −1

]

, L4 =

[

1 3
−1 1

]

,

which corresponds to the covering (3.9). If instead (3,−1)T ∈ L4, we get the covering (3.6)
upon removing L3.

Case 2.1.2

At this stage we may write
(

1
0

)

∈ L1, L2 =

[

0 2
1 1

]

,

(

1
1

)

∈ L3,

[

1 1
−1 2

]

∈ L4.

Looking at (3, 1)T , we obtain (3, 1)T ∈ L3. Then looking at (3, 2)T , we conclude that (3, 2)T ∈
L1. Once we discard L4, we get the covering (3.6).

Case 2.2

We know that
(

1
0

)

∈ L1,

(

0
1

)

∈ L2,

(

1
1

)

∈ L3, L4 =

[

1 2
−1 1

]

.

Considering the vector (3, 1)T , the argument splits in two cases, namely (3, 1)T ∈ L2 (case
2.2.1) and (3, 1)T ∈ L3 (case 2.2.2).

Case 2.2.1

We have arrived at
(

1
0

)

∈ L1, L2 =

[

0 3
1 1

]

,

(

1
1

)

∈ L3, L4 =

[

1 2
−1 1

]

.

This forces (4, 1)T ∈ L3 and then (1, 3)T ∈ L1, thus giving

L1 =

[

1 1
0 3

]

, L2 =

[

0 3
1 1

]

, L3 =

[

1 4
1 1

]

, L4 =

[

1 2
−1 1

]

.

This is precisely the covering (3.10).
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Case 2.2.2

Finally, we have to consider the configuration

(

1
0

)

∈ L1,

(

0
1

)

∈ L2, L3 =

[

1 3
1 1

]

, L4 =

[

1 2
−1 1

]

.

Considering the vectors (2, 3)T and (3, 2)T simultaneously, this gives two cases

L1 =

[

1 3
0 2

]

, L2 =

[

0 2
1 3

]

, L3 =

[

1 3
1 1

]

, L4 =

[

1 2
−1 1

]

and

L1 =

[

1 2
0 3

]

, L2 =

[

0 3
1 2

]

, L3 =

[

1 3
1 1

]

, L4 =

[

1 2
−1 1

]

.

In the first case, the lattice L4 is redundant, and we get the covering (3.6) upon discarding
L4. The last case does not correspond to any non-trivial minimal covering. Indeed, all the
Li have prime index, but their union does not contain the point (1, 4)T .

Theoretically speaking, the method employed above leads to the complete list of minimal
coverings with length ≤ k, where k is a given integer. The case k ≤ 6 is vital for our work [2],
which handles the case where the automorphism group is conjugate to D3 or D6. However,
when k = 5 and k = 6, the number of cases is huge and the method is no longer feasible to
execute by hand. This is the reason why we have written algorithms to produce the list of
9 minimal coverings with length equal to 5, and the list of 49 minimal coverings with length
equal to 6. To make this paper independent of computer calculations, we have decided to
prove Theorem 3.4 by hand, but the results of Theorem 3.4 are rapidly reproduced by our
algorithms that will be published in [2].

4 Proof of Theorem 1.2

4.1 Preparation of the covering

The proof of this theorem is accomplished by contradiction by exploiting Proposition 2.5.
We start from a pair of extraordinary forms (F1, F2) such that Aut(F1,Q) ≃GL(2,Q) D4. By
Comment 2 of 2.6 we also have Aut(F2,Q) ≃GL(2,Q) D4. By item 2. of Proposition 2.5, we
also have

Aut(G1,Q), Aut(G2,Q) ≃GL(2,Q) D4

thanks to the conjugation formula

Aut(F ◦ λ,Q) = λ−1Aut(F,Q)λ, for all λ ∈ GL(2,Q) and for all F ∈ Bin(d,Q). (4.1)

Recall that

G1 ◦ γ
−1 = G2,

where γ is defined in (2.5). We write D4 explicitly as

D4 = {id, A1, A2, A3,−id,−A1,−A2,−A3},
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with

A1 =

(

0 1
−1 0

)

, A2 =

(

0 1
1 0

)

, and A3 =

(

1 0
0 −1

)

.

So we have the equality

Aut(G2,Q) = T−1
2 D4T2,

where T2 is some matrix of GL(2,Q) that we write as

T2 =

(

t1 t2
t3 t4

)

,

where the ti are coprime integers. An important integer is

d2 := |detT2| = |t1t4 − t2t3|. (4.2)

Thus we split Aut(G2,Q) into two disjoint sets

Aut(G2,Q) = S ∪ (−S),

with

S := {id, T−1
2 A1T2, T

−1
2 A2T2, T

−1
2 A3T2}.

Furthermore, we have Isom(G1 → G2,Q) = γ−1Aut(G2,Q), by Definition 2.4 and we put

Λ(σ) := {x ∈ Z2 : γ−1σ(x) ∈ Z2} = L(γ−1σ), (4.3)

see Definition 2.1. The equality Λ(−σ) = Λ(σ) follows from (2.2). Combining these remarks
with the first equality of item 5. of Proposition 2.5, we have the covering of Z2

Z2 =
⋃

σ∈S

Λ(σ) (4.4)

by at most four lattices. We will require the explicit equations defining the Λ(σ). By a direct
computation we have

Lemma 4.1. For σ ∈ S, the lattice Λ(σ) is the set of (x1, x2) ∈ Z
2 such that

Λ(id) :

{

x1 ≡ 0 mod D

νx2 ≡ 0 mod D
(4.5)

Λ(T−1
2 A1T2) :

{

(t1t2 + t3t4)x1 + (t22 + t24)x2 ≡ 0 mod d2D

ν((t21 + t23)x1 + (t1t2 + t3t4)x2) ≡ 0 mod d2D
(4.6)

Λ(T−1
2 A2T2) :

{

(t3t4 − t1t2)x1 + (t24 − t22)x2 ≡ 0 mod d2D

ν((t21 − t23)x1 + (t1t2 − t3t4)x2) ≡ 0 mod d2D
(4.7)

Λ(T−1
2 A3T2) :

{

(t2t3 + t1t4)x1 + (2t2t4)x2 ≡ 0 mod d2D

ν((2t1t3)x1 + (t2t3 + t1t4)x2) ≡ 0 mod d2D.
(4.8)
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By (2.4), the second equation of (4.5) is redundant and thus we have the equality

[Z2 : Λ(id)] = D. (4.9)

Several times we will use the following important lemma.

Lemma 4.2. We adopt the hypotheses of Proposition 2.5 and the notations above. Then the
covering (4.4) satisfies

Λ(σ) 6= Z2 for all σ ∈ S. (4.10)

Proof. For the sake of contradiction, suppose that Λ(σ) = Z2 for some σ ∈ S. By the
definition (4.3) and the remark (2.3), the matrix associated with γ−1σ (with σ ∈ Aut(G2,Q))
has integer coefficients. This means that there exists a matrix M1 with integer coefficients
such that

G1 ◦M1 = G2. (4.11)

We use the minimality of the index of L(γ) (see item 4. of Proposition 2.5) to write

1 = [Z2 : Λ(σ)] = [Z2 : L(γ−1σ)] ≥ [Z2 : L(γ)] ≥ 1.

Again by the remark (2.3) we deduce that the matrix M2 associated with γ (see (2.5)), has
integer coefficients. So we have the equality

G2 ◦M2 = G1.

Combining with (4.11), we obtain

G1 ◦ (M1 ·M2) = G2 ◦M2 = G1,

which implies that |det(M1 · M2)| = 1, hence |detM1| = |detM2| = 1. So the matrices
M1 and M2 belong to GL(2,Z). Therefore the equality (4.11) shows that G1 and G2 are
GL(2,Z)–equivalent, which is contrary to the hypothesis that (G1, G2) is an extraordinary
pair (see Comment 3 of 2.6).

We now initiate the proof of Theorem 1.2 by successively restricting the values of D.

4.2 The integer D satisfies 2 ≤ D ≤ 4

We want to prove the inequality

2 ≤ D ≤ 4. (4.12)

We separate our discussion into two subcases based on the value of the union of the lattices
Λ(σ) with σ 6= id.

4.2.1 If the last three lattices do not cover Z2

We suppose that

Z2 6=
⋃

σ∈S−{id}

Λ(σ). (4.13)
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This condition means that Λ(id) is essential to obtain the covering (4.4). By Lemma 4.2 we
know that none of the lattices appearing in this covering are trivial. By the existence of a
minimal covering (see Lemma 3.3), there exist four subgroups Λ′

i (0 ≤ i ≤ 3) such that























Λ′
i is either {0} or a proper lattice,

Λ′
0 ⊆ Λ(id) and Λ′

i ⊆ Λ(T−1
2 AiT2) (1 ≤ i ≤ 3),

∪0≤i≤3Λ
′
i = Z

2,

C := {Λ′
i : Λ

′
i 6= {0}} is a minimal covering of Z2.

In particular, by (4.4) and by (4.13), we deduce that Λ′
0 6= {0}. Thus the covering C con-

tains three or four lattices and C appears as one of the minimal coverings (3.6), . . . , (3.10)
of Theorem 3.4. Thus the lattice Λ′

0 is necessarily one of the lattices of these five minimal
coverings. By (2.1), all these lattices have an index equal to 2, 3 or 4. In particular, we have
[Z2 : Λ′

0] ∈ {2, 3, 4}. Finally, [Z2 : Λ(id)] is a divisor (different from 1) of [Z2 : Λ′
0]. By (4.9),

we deduce the inequality 2 ≤ D ≤ 4, and (4.12) is proved.

4.2.2 If the last three lattices cover Z2

We now suppose that

Z2 =
⋃

σ∈S−{id}

Λ(σ). (4.14)

By (4.10), the equality (4.14) exhibits a non-trivial covering of Z2 by three lattices. By
Theorem 3.4 and by Lemma 3.3 we have the equality

{Λ(T−1
2 A1T2),Λ(T

−1
2 A2T2),Λ(T

−1
2 A3T2)} = {Λ0,Λ1,Λ2}, (4.15)

where the covering (3.6) is written as {Λ0,Λ1,Λ2} respectively.

4.2.2.1 If (4.14) holds, then the integer D is not divisible by an odd prime p

For the sake of contradiction, suppose that D is divisible by some p ≥ 3. We will show that
there exists at least one σ ∈ S− {id} such that

p | [Z2 : Λ(σ)]. (4.16)

Such a divisibility is impossible since, on the right–hand side of (4.15), all the lattices have
an index equal to 2. To prove (4.16), we will argue by contradiction. So we suppose that

p ∤ [Z2 : Λ(σ)] for all σ 6= id. (4.17)

By keeping only the first equation of the systems defining the lattices modulo p, we see
that the lattices Λ(T−1

2 A1T2), Λ(T
−1
2 A2T2) and Λ(T−1

2 A3T2) (see (4.6), (4.7) and (4.8)) are
respectively included in the following lattices Lp

Lp(T
−1
2 A1T2) : (t1t2 + t3t4)x1 + (t22 + t24)x2 ≡ 0 mod p, (4.18)

Lp(T
−1
2 A2T2) : (t3t4 − t1t2)x1 + (t24 − t22)x2 ≡ 0 mod p, (4.19)

Lp(T
−1
2 A3T2) : (t2t3 + t1t4)x1 + (2t2t4)x2 ≡ 0 mod p. (4.20)
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The index of these three lattices is 1 or p. It can not be equal to p, otherwise we would
have (4.16) for some σ. So the index is always equal to 1, which means that p divides all the
coefficients

(t1t2 + t3t4), (t22 + t24), (t3t4 − t1t2), (t24 − t22), (t2t3 + t1t4) and (2t2t4). (4.21)

This implies that p divides t2 and t4. Let g := gcd(t2, t4, p
∞) ≥ p, t̃2 = t2/g, t̃4 = t4/g. We

observe that g divides d2, by its definition (4.2). We return to the original system of equations
(4.6), (4.7) and (4.8), where we keep the first equation of each system. After division by g, we
observe that the lattices Λ(T−1

2 A1T2), Λ(T
−1
2 A2T2) and Λ(T−1

2 A3T2) are respectively included
in the following lattices

L̃p(T
−1
2 A1T2) : (t1t̃2 + t3t̃4)x1 ≡ 0 mod p, (4.22)

L̃p(T
−1
2 A2T2) : (t3t̃4 − t1t̃2)x1 ≡ 0 mod p, (4.23)

L̃p(T
−1
2 A3T2) : (t̃2t3 + t1t̃4)x1 ≡ 0 mod p. (4.24)

We observe that gcd(t1, t3, p) = 1 (otherwise the integers ti would not be coprime altogether),
and that gcd(t̃2, t̃4, p) = 1.

– Suppose that p does not divide (t1t̃2 + t3t̃4), then the lattice L̃p(T
−1
2 A1T2) has its index

equal to p, and since this lattice contains Λ(T−1
2 A1T2), we obtain a contradiction with (4.17).

– Same type of reasoning when p does not divide (t3t̃4 − t1t̃2).
– Now suppose that p divides (t1t̃2 + t3t̃4) and (t3t̃4 − t1t̃2), then p divides t1t̃2 and t3t̃4.

The above coprimality conditions imply that p does not divide the coefficient of x1 in (4.24),
contradicting (4.17).

So D has no odd prime divisor when (4.14) holds.

4.2.2.2 If (4.14) holds, then the integer D is not divisible by 8

The strategy is the same as in §4.2.2.1. We suppose that D is divisible by 8. We will prove
that there is a σ ∈ S− {id} such that

4 | [Z2 : Λ(σ)]. (4.25)

Such a divisibility contradicts the equality (4.15), since all the lattices Λi (1 ≤ i ≤ 3) have
index equal to 2. To prove (4.25), we will argue by contradiction. So we suppose that

4 ∤ [Z2 : Λ(σ)] for all σ 6= id. (4.26)

The lattices Λ(T−1
2 A1T2), Λ(T

−1
2 A2T2) and Λ(T−1

2 A3T2) are respectively included in the fol-
lowing lattices

L8(T
−1
2 A1T2) : (t1t2 + t3t4)x1 + (t22 + t24)x2 ≡ 0 mod 8,

L8(T
−1
2 A2T2) : (t3t4 − t1t2)x1 + (t24 − t22)x2 ≡ 0 mod 8,

L8(T
−1
2 A3T2) : (t2t3 + t1t4)x1 + (2t2t4)x2 ≡ 0 mod 8.

These lattices have an index equal to 1, 2, 4 or 8. It can not be divisible by 4 (otherwise, we
would contradict (4.26)). So these indexes are equal to 1 or 2, which means that 4 divides all
the coefficients listed in (4.21). This implies that 2 divides t2 and t4. Let g = (t2, t4, 2

∞) ≥ 2,
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t̃2 = t2/g, t̃4 = t4/g. We return to the initial definitions of the lattices (4.6), (4.7) and
(4.8), where we only keep the first equation. Since g divides d2, we observe that the lattices
Λ(T−1

2 A1T2), Λ(T
−1
2 A2T2) and Λ(T−1

2 A3T2) are respectively included in the following lattices

L̃8(T
−1
2 A1T2) : (t1t̃2 + t3t̃4)x1 + g(t̃22 + t̃24)x2 ≡ 0 mod 8, (4.27)

L̃8(T
−1
2 A2T2) : (t3t̃4 − t1t̃2)x1 + g(t̃24 − t̃22)x2 ≡ 0 mod 8, (4.28)

L̃8(T
−1
2 A3T2) : (t̃2t3 + t1t̃4)x1 + g(2t̃2 t̃4)x2 ≡ 0 mod 8. (4.29)

We exploit the coprimality gcd(t1, t3, 2) = 1 (otherwise, the integers ti would not be coprime
altogether) and the coprimality gcd(t̃2, t̃4, 2) = 1 to deduce that at least one of the three
coefficients attached to x1 in (4.27), (4.28) and (4.29) is not divisible by 4. This implies that
the corresponding lattice L̃8(σ) has index equal to 4 or 8. Hence the associated lattice Λ(σ)
(contained in L̃8(σ)) has index divisible by 4. This contradicts our assumption (4.26).

We have considered all the possible cases. The proof of (4.12) is complete.

4.3 The integer D is different from 3

Our task is to prove that

D 6= 3. (4.30)

We will now assume that D = 3 to derive a contradiction. We already know that [Z2 :
Λ(id)] = D = 3 by (4.9) and Λ(σ) 6= Z2 for all σ ∈ S by Lemma 4.2. Reasoning as before,
when we obtained (4.16), there exists σ ∈ S− {id} such that

3 | [Z2 : Λ(σ)].

Then the minimal covering contained in the covering {Λ(σ) : σ ∈ S} (see (4.4)), which
exists by Lemma 3.3, can only be the covering (3.10) by Theorem 3.4. Then the covering
{Λ(σ) : σ ∈ S} from (4.4) must coincide with (3.10).

Write g = gcd(t2, t4, 3
∞), t̃2 = t2/g and t̃4 = t4/g. We now split our discussion according

to the classes modulo 3 of the numbers g, t2 and t4.

4.3.1 If 3 | g

We follow the arguments that led to equation (4.16). In particular, consider the three lattices
L̃p defined by (4.22), (4.23) and (4.24) with p = 3. At least, one of the coefficients of x1 is
non-zero modulo 3. Thus we get the existence of some σ ∈ S− {id}, such that

Λ(σ) ⊆ {(x1, x2) : x1 ≡ 0 mod 3}.

But Λ(id) = {(x1, x2) : x1 ≡ 0 mod 3} (see (4.5) and (2.4)). So the covering (4.4) can never
be equal to (3.10), which is the desired contradiction.

4.3.2 If 3 ∤ g, 3 ∤ t2, 3 ∤ t4 and t2 ≡ t4 mod 3

Under these assumptions, we have the congruences

t22 + t24 ≡ 2 mod 3, 2t2t4 ≡ 2 mod 3
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and

t1t2 + t3t4 ≡ t2t3 + t1t4 mod 3.

By (4.18) and (4.20), we see that the lattices L3(T
−1
2 A1T2) and L3(T

−1
2 A3T2) coincide. Both

have index 3. This implies that the two lattices Λ(T−1
2 A1T2) and Λ(T−1

2 A3T2) sit inside the
same lattice with index 3. We obtain the same contradiction as in §4.3.1.

4.3.3 If 3 ∤ g, 3 ∤ t2, 3 ∤ t4 and t2 6≡ t4 mod 3

In this situation, we obtain

t22 + t24 ≡ 2 mod 3, 2t2t4 ≡ 1 mod 3

and

t1t2 + t3t4 ≡ (2t2t4)(t1t2 + t3t4) ≡ 2(t1t4 + t2t3) mod 3.

Up to a factor 2 the equations (4.18) and (4.20) coincide. Once again, this implies that two
of the lattices appearing in the covering (4.4) are sublattices of the same lattice with index
3. We obtain the same contradiction as above.

4.3.4 If 3 ∤ g and if either 3 | t2 or 3 | t4

Consider the lattices L3(T
−1
2 A1T2) and L3(T

−1
2 A2T2) defined by (4.18) and (4.19). Their

equations reduce to ±(ax1 + x2) ≡ 0 mod 3 (for some integer a). So these two lattices
coincide, and Λ(T−1

2 A1T2) and Λ(T−1
2 A2T2) are both included in the same lattice with index

3. Therefore we obtain a contradiction with the covering (4.4) in this case as well.

The proof of (4.30) is complete. Combining (4.12) and (4.30), we have reduced our
theorem to the following situation.

4.4 Study when D ∈ {2, 4}

Our first task is to circumscribe the possible values of ν. Recall the conditions (2.4). They
lead to the following possibilities for (D, ν): (2, 2), (2, 4), (4, 4), (4, 8), (4, 12) and (4, 16). We
will restrict this list to

(D, ν) ∈ {(2, 2), (2, 4), (4, 4), (4, 8)}. (4.31)

To prove (4.31), we start from the covering (4.4) with the condition (4.10). Two possibilities
occur

• If for some σ† ∈ S, one has ∪σ∈S−{σ†}Λ(σ) = Z
2. This is a covering by three lattices.

By Theorem 3.4, these three lattices have index 2. So we have

[Z2 : Λ(σ0)] = 2 for some σ0 6= id. (4.32)

• If such a σ† does not exist. The covering (4.4) corresponds to one of the coverings (3.7),
(3.8), (3.9) or (3.10) of Theorem 3.4. Since Λ(id) has index equal to 2 or 4, we can
eliminate the covering (3.10) (because the lattices comprising this covering all have an
index equal to 3). Now, in the coverings (3.7), (3.8) and (3.9), there are exactly two
lattices with index 2. So (4.32) is also true in that case.
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We now exploit the relation (2.6), with the choice τ = σ0, and the relation [Z2 : L(γ)] = ν/D
by Comment 4 of 2.6 to obtain

νD−1 ≤ 2,

which leads to the divisibility
ν | 2D,

since νD−1 is an integer. This gives the condition (4.31).
We can further restrict the set of possible values for the pair (D, ν) as follows. By (4.3),

we have Λ(σ0) = L(γ−1σ0), where σ0 satisfies (4.32). But |det(γ−1σ0)| =
ν
D2 . By Lemma

2.2, we deduce that 2 is a multiple of D2/ν. This gives the inequality D2 ≤ 2ν. So we know
that the set defined in (4.31) is restricted to

(D, ν) ∈ {(2, 2), (2, 4), (4, 8)}. (4.33)

4.5 Possible values for d2

We now investigate the possible values for d2.

4.5.1 The integer d2 has no odd prime divisor

We will prove that
d2 ∈ {1, 2, 4, 8, 16, . . . }. (4.34)

Suppose that d2 is divisible by some odd prime p. We recall that ν ∈ {2, 4, 8} (see (4.33))
and we return to the definitions (4.6), (4.7) and (4.8) to deduce that the lattices Λ(T−1

2 A1T2),
Λ(T−1

2 A2T2) and Λ(T−1
2 A3T2) are respectively included in the following lattices

M1,p :

{

(t1t2 + t3t4)x1 + (t22 + t24)x2 ≡ 0 mod p,

(t21 + t23)x1 + (t1t2 + t3t4)x2 ≡ 0 mod p,

M2,p :

{

(t3t4 − t1t2)x1 + (t24 − t22)x2 ≡ 0 mod p,

(t21 − t23)x1 + (t1t2 − t3t4)x2 ≡ 0 mod p,

M3,p :

{

(t2t3 + t1t4)x1 + (2t2t4)x2 ≡ 0 mod p,

(2t1t3)x1 + (t2t3 + t1t4)x2 ≡ 0 mod p.

We use a combinatorial lemma dealing with the antidiagonal coefficients in the above system
of equations.

Lemma 4.3. Let p be an odd prime. Let (t1, t2, t3, t4) ∈ Z
4 be such that p ∤ gcd(t1, t2, t3, t4).

Consider the following three 2–sets of quadratic forms

S1 := {t22 + t24, t
2
1 + t23}, S2 := {t24 − t22, t

2
1 − t23}, S3 := {2t2t4, 2t1t3}.

Then for all pairs (i, j) with 1 ≤ i < j ≤ 3, there exists P ∈ Si ∪ Sj such that p ∤ P .

Proof. Omitted.

Lemma 4.3 implies that there exist i and j such that Mi,p and Mj,p have index divisible
by p. Hence the indices of the corresponding lattices Λ(T−1

2 AiT2) ⊆ Mi,p and Λ(T−1
2 AjT2) ⊆

Mj,p are divisible by p. This is incompatible with the covering (4.4) and Theorem 3.4, since
the index of Λ(id) is 2 or 4. The proof of (4.34) is complete.
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4.5.2 The case d2 = 1 is impossible

Recall that D ∈ {2, 4}. By keeping only the first equation in the systems (4.5), (4.6), (4.7)
and (4.8) and by replacing d2D by 2, we deduce that the four lattices Λ(σ) (σ ∈ S) are
respectively included in the four lattices defined by the equations

L2(id) : x1 ≡ 0 mod 2,

L2(T
−1
2 A1T2) : (t1t2 + t3t4)x1 + (t22 + t24)x2 ≡ 0 mod 2,

L2(T
−1
2 A2T2) : (t3t4 − t1t2)x1 + (t24 − t22)x2 ≡ 0 mod 2,

L2(T
−1
2 A3T2) : (t2t3 + t1t4)x1 ≡ 0 mod 2.

The assumption d2 = 1 implies t1t4 + t2t3 ≡ 1 mod 2, from which we deduce the equality

L2(id) = L2(T
−1
2 A3T2).

Considerations of parities also lead to the equality

L2(T
−1
2 A1T2) = L2(T

−1
2 A2T2).

Again playing with the parities of the ti and using 1 = d2 ≡ t1t4 + t2t3 mod 2, we see that
we never have t1t2 + t3t4 ≡ t22 + t24 ≡ 0 mod 2, which means that L2(T

−1
2 A1T2) 6= Z

2. These
considerations show that the covering (4.4) leads to the non-trivial covering

Z2 = L2(id) ∪ L2(T
−1
2 A1T2),

which is in contradiction with Theorem 3.4.

4.5.3 The case d2 = 2 is impossible

The strategy is the same as in the section above, but more intricate since we will distinguish
cases based on the parity of t2 and t4. We suppose that d2 = 2 and we will arrive at a
contradiction. Since 4 | d2D, the four lattices Λ(σ) (σ ∈ S) are respectively included in the
four lattices defined by the equations

L2(id) : x1 ≡ 0 mod 2,

L4(T
−1
2 A1T2) : (t1t2 + t3t4)x1 + (t22 + t24)x2 ≡ 0 mod 4,

L4(T
−1
2 A2T2) : (t3t4 − t1t2)x1 + (t24 − t22)x2 ≡ 0 mod 4,

L4(T
−1
2 A3T2) : (t2t3 + t1t4)x1 + (2t2t4)x2 ≡ 0 mod 4.

Recall the equality |t1t4 − t2t3| = d2 = 2.

4.5.3.1 If t2 and t4 have different parities

We then have the equalities

gcd(t22 + t24, 4) = gcd(t24 − t22, 4) = 1,

which implies
[Z2 : L4(T

−1
2 A1T2)] = [Z2 : L4(T

−1
2 A2T2)] = 4
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by a direct study of the equations defining these lattices. Furthermore, the coefficient of x1
in the equation defining L4(T

−1
2 A3T2) satisfies one of the following two relations

t2t3 + t1t4 =

{

d2 + 2t2t3 ≡ 2 mod 4

d2 + 2t1t4 ≡ 2 mod 4.
(4.35)

This implies the equality between lattices

L2(id) = L4(T
−1
2 A3T2).

The covering (4.4) leads to the covering

Z2 = L2(id) ∪ L4(T
−1
2 A1T2) ∪ L4(T

−1
2 A2T2),

which is nonsense, since the index of these three lattices are 2, 4 and 4 respectively. Therefore
this covering does not correspond to a minimal covering in Theorem 3.4.

4.5.3.2 If t2 and t4 are both even

Under this assumption, we have the following similarities between the coefficients of the
lattices L4(T

−1
2 A1T2) and L4(T

−1
2 A2T2) defined in §4.5.3:

t22 + t24 ≡ t24 − t22 ≡ 0 mod 4,

and
t1t2 + t3t4 ≡ t3t4 − t1t2 ≡ 0 mod 2.

We now discuss on the class t1t2 + t3t4 ≡ t3t4 − t1t2 mod 4.

4.5.3.2.1 If t2 and t4 are both even and if t1t2 + t3t4 ≡ t3t4 − t1t2 ≡ 2 mod 4. We
return to the definitions of the lattices to deduce the equalities between lattices

L2(id) = L4(T
−1
2 A1T2) = L4(T

−1
2 A2T2),

which certainly can not lead to a covering.

4.5.3.2.2 If t2 and t4 are both even and if t1t2 + t3t4 ≡ t3t4 − t1t2 ≡ 0 mod 4. In
(4.35), we have already seen that

t2t3 + t1t4 ≡ 2 mod 4. (4.36)

We split our discussion according to the value of D (see (4.33)).

⋄ Case 1: D = 4. In that case, we have ν = 8 and d2D = 8, so the second equations of
(4.6), (4.7) and (4.8) are automatically satisfied. We observe that

Λ(id) = {(x1, x2) : x1 ≡ 0 mod 4}.

By (4.36), we have the inclusion

Λ(T−1
2 A3T2) ⊆ Λ(id).
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The covering (4.4) is simplified to the covering

Z2 = Λ(id) ∪ Λ(T−1
2 A1T2) ∪ Λ(T−1

2 A2T2),

where the first lattice has index 4 and where the last two lattices have an index ≥ 2. This
covering with three lattices does not resonate with Theorem 3.4.

⋄ Case 2: D = 2. We then have

d2 = D = 2, ν ∈ {2, 4}, t2 ≡ t4 ≡ 0 mod 2 and t1t2 + t3t4 ≡ 0 mod 4.

Actually, the case ν = 4 can never happen. Indeed, by the formula given in Lemma 4.1, with
the values d2 = D = 2, ν = 4 and the constraints of the congruence modulo 4 of the ti, we
see that Λ(T−1

2 A1T2) = Z
2. This is forbidden by Lemma 4.2.

So we restrict to ν = 2. The equations of the lattices Λ(σ) (σ ∈ S) given in Lemma 4.1
are equivalent to a single equation























Λ(id) : x1 ≡ 0 mod 2,

Λ(T−1
2 A1T2) : (t21 + t23)x1 ≡ 0 mod 2,

Λ(T−1
2 A2T2) : (t21 − t23)x1 ≡ 0 mod 2,

Λ(T−1
2 A3T2) : x1 ≡ 0 mod 2.

Since Λ(σ) 6= Z2 by Lemma 4.2, this implies that the coefficients of x1 in the second and the
third equations are odd. We deduce that these four equations show the equality

Λ(σ) = {(x1, x2) : x1 ≡ 0 mod 2} for all σ ∈ S.

This contradicts the covering (4.4).

4.5.3.3 If t2 and t4 are both odd

The equality t1t4 − t2t3 = ±2 implies that t1 and t3 have the same parity. We now split the
argument according to this parity.

4.5.3.3.1 If t2 and t4 are both odd and if t1 ≡ t3 ≡ 0 mod 2. Since d2 = 2, these
conditions imply that (t1, t3) ≡ (0, 2) or (2, 0) modulo 4. Therefore we have

t1t2 + t3t4 ≡ t3t4 − t1t2 ≡ t2t3 + t1t4 ≡ 2 mod 4.

We implement these congruences into the first equations of (4.6), (4.7) and (4.8) to deduce
the inclusions

Λ(T−1
2 A1T2), Λ(T

−1
2 A3T2) ⊆ {(x1, x2) : x1 + x2 ≡ 0 mod 2},

and
Λ(T−1

2 A2T2) ⊆ {(x1, x2) : x1 ≡ 0 mod 2}.

Recalling the inclusion
Λ(id) ⊆ {(x1, x2) : x1 ≡ 0 mod 2}, (4.37)

and returning to the covering (4.4), we obtain a covering of Z2 by two lattices with index 2.
This contradicts Theorem 3.4.
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4.5.3.3.2 If t2 and t4 are both odd and if t1 ≡ t3 ≡ 1 mod 2. Since d2 = 2, the
following congruences hold

t1t2 + t3t4 ≡ t2t3 + t1t4 ≡ 0 mod 4 and t3t4 − t1t2 ≡ 2 mod 4.

We insert these congruences and the condition 4 | d2D into the first equations of the systems
(4.6), (4.7) and (4.8) to obtain the inclusions

Λ(T−1
2 A1T2),Λ(T

−1
2 A3T2) ⊆ {(x1, x2) : x2 ≡ 0 mod 2},

and
Λ(T−1

2 A2T2) ⊆ {(x1, x2) : x1 ≡ 0 mod 2}.

These inclusions and the inclusion (4.37) contradict (4.4), since we would once more obtain
a covering of Z2 by two lattices with index 2.

Gathering all these cases, we proved that d2 6= 2.

4.5.4 The case 4 | d2 is impossible

We will suppose that 4 | d2 to arrive at a contradiction. This implies that 8 | d2D thanks to
(4.33). We divide our proof according to the parity of t2 and t4.

4.5.4.1 If t2 and t4 have different parities

In that case, we have gcd(t22 ± t24, 8) = 1 and the first equations of (4.6) and (4.7) give the
divisibility

8 | [Z2 : Λ(T−1
2 AiT2)] for i ∈ {1, 2}.

The covering (4.4) can not hold: we would obtain a covering with four proper lattices, with
at least two with index divisible by 8. This does not exist by Theorem 3.4.

4.5.4.2 If t2 and t4 have the same parity

Our first step is to show that we necessarily have

t1 ≡ t3 mod 2. (4.38)

Suppose that this does not hold. We always have

t21 + t23 ≡ t21 − t23 mod 2.

We argue as follows:

• If t1 6≡ t3 mod 2 and t2 ≡ t4 ≡ 0 mod 2. By (4.33), we know that 2 | d2D/ν. By the
first equation of (4.5) and the second equation of (4.6) and (4.7), we deduce the inclusions

Λ(σ) ⊆ {(x1, x2) : x1 ≡ 0 mod 2} for σ ∈ S− {T−1
2 A3T2}.

By (4.4), we would obtain a covering by two proper lattices, and this contradicts Theorem 3.4.

• If t1 6≡ t3 mod 2 and t2 ≡ t4 ≡ 1 mod 2. We only study the first equations of (4.6), (4.7)
and (4.8). We use the congruences

t1t2 + t3t4 ≡ t3t4 − t1t2 ≡ t2t3 + t1t4 ≡ 1 mod 2 and 8 | d2D
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to deduce that
8 | [Z2 : Λ(T−1

2 AiT2)] for 1 ≤ i ≤ 3.

The covering (4.4) then would be incompatible with Theorem 3.4. So (4.38) is proved.
To summarize, we necessarily have the congruence conditions

t2 ≡ t4 mod 2 and t1 ≡ t3 mod 2.

Recall that the ti are coprime altogether, so modulo 2, the quadruplet (t1, t2, t3, t4) belongs
to the following set Ω with three elements

Ω := {(1, 0, 1, 0), (0, 1, 0, 1), (1, 1, 1, 1)}.

These possibilities will be the basis of our discussion below.

4.5.4.2.1 If (t1, t2, t3, t4) ≡ (0, 1, 0, 1) or (1, 1, 1, 1) mod 2. We then have the congruences
t22 + t24 ≡ 2 mod 8 and 2t2t4 ≡ ±2 mod 8. By considering the first equations in the systems
(4.6) and (4.8), we obtain the inequality

v2([Z
2 : Λ(T−1

2 AiT2)]) ≥ 2 for i ∈ {1, 3}.

Furthermore, for this to be an equality, we must have d2D = 8, which means d2 = 4 and
D = 2.

When (D, d2) 6= (2, 4) (which is equivalent to 16 | d2D), the lattices Λ(T−1
2 AiT2) for

i ∈ {1, 3} have index divisible by 8. The covering (4.4) is therefore impossible thanks to
Theorem 3.4.

When (D, d2) = (2, 4), the congruences

±d2 = t1t4 − t2t3 ≡ 4 mod 8,

and t2 ≡ t4 ≡ 1 mod 2 imply

4 ≡ t1t4 − t2t3 ≡ t2t4(t1t4 − t2t3) ≡ t1t2 − t3t4 mod 8.

Since we also have t24 − t22 ≡ 0 mod 8, we conclude that

Λ(T−1
2 A2T2) ⊆ {(x1, x2) : x1 ≡ 0 mod 2}

by (4.7) and by Lemma 2.3. Since Λ(id) satisfies the same inclusion (see (4.37)) we obtain a
contradiction with (4.4), since we would obtain a covering of Z2 by three lattices with index
2, 4 and 4.

4.5.4.2.2 If (t1, t2, t3, t4) ≡ (1, 0, 1, 0) mod 2. This case is more delicate. We handle this
case by splitting the proof in three cases.

⋄ Case 1: v2(t2) 6= v2(t4) (≥ 1). We have the sequence of relations

2 ≤ v2(d2) = min(v2(t2), v2(t4)) = v2(t1t2 + t3t4) = v2(t3t4 − t1t2) = v2(t2t3 + t1t4),

and the inequalities (recall that D ∈ {2, 4})

2min(v2(t2), v2(t4)) = v2(t
2
2 + t24) = v2(t

2
4 − t22) ≥ v2(d2D) and v2(2t2t4) ≥ v2(d2D).
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With these remarks, we consider the first equations of the systems (4.5), (4.6), (4.7) and (4.8)
to deduce the inclusions

Λ(σ) ⊆ {(x1, x2) : x1 ≡ 0 mod 2} for all σ ∈ S.

These relations obviously contradict the covering (4.4).
Now we suppose that v2(t2) = v2(t4) (≥ 1). Since, by hypothesis, the integers t1 and

t3 are both odd, we have v2(d2) > v2(t2) = v2(t4). So we split our forthcoming discussion
according to the difference between v2(d2) and v2(t2) = v2(t4).

⋄ Case 2: v2(t2) = v2(t4) ≥ 1 and v2(d2) = v2(t2) + 1. Under these hypotheses, we have

v2(t1t2 + t3t4) > v2(d2) and v2(t
2
2 + t24) > v2(d2). (4.39)

For the first equality of (4.39), we use that

t1t2 + t3t4 ≡ t1t4 + t2t3 ≡ ±d2 + 2t2t3 ≡ 0 mod 2d2.

For the second equation, we use the equality v2(t
2
2 + t24) = 1 + 2v2(t2). By (4.33), we have

three possibilities

(d2,D, ν) = (4, 2, 4), v2(d2D/ν) > 1 or D = 4. (4.40)

• The first possibility is impossible because, with the above values of d2, D and ν and with
the conditions on the 2-adic valuations of the ti, the two equations defining Λ(T−1

2 A1T2) (see
(4.6)) are congruences modulo 8, and all the coefficients of x1 and x2 are ≡ 0 mod 8. So we
would have Λ(T−1

2 A1T2) = Z
2, which is contrary to Lemma 4.2.

• The second possibility of (4.40) can not hold for the following reason: consider the second
equations of the systems (4.6) and (4.8). We benefit from the congruences

t21 + t23 ≡ 2t1t3 ≡ 2 mod 4

to deduce the two inclusions

Λ(T−1
2 AiT2) ⊆ {(x1, x2) : x1 ≡ 0 mod 2} for i ∈ {1, 3}.

Since the same inclusion holds for Λ(id) and since Λ(T−1
2 A2T2) 6= Z2, the covering (4.4) is

impossible by Theorem 3.4.

• We now prove that the third possibility of (4.40) can not hold. Indeed, suppose that D = 4
and, as usual, let g := gcd(t2, t4), t̃2 := t2/g and t̃4 := t4/g. Since g | d2, g is necessarily a
power of 2 and we have v2(g) = v2(t2) = v2(t4) = v2(d2)− 1 (≥ 1) and the integers t̃2 and t̃4
are odd. We then have

2 ≡ t1t̃4 − t̃2t3 ≡ (t1t3)(t1t̃4 − t̃2t3) ≡ t3t̃4 − t1t̃2 mod 4,

and therefore
v2(t3t4 − t1t2) = v2(d2). (4.41)

Since v2(t2) ≥ 1, it follows that

t24 − t22 ≡ 0 mod d2D. (4.42)
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To prove (4.42), write t2 = 2ta2, t4 = 2ta4 with odd a2 and a4 and t ≥ 1. Then t24 − t22 =
22t(a24 − a22) ≡ 0 mod 22t+2. Furthermore, d2D = 2t+1 · 4 = 2t+3. We obtain the desired
congruence (4.42), since 2t+ 2 ≥ t+ 3 for t ≥ 1.

By the first equations of (4.5) and (4.7), by (4.41) and (4.42) and by the hypothesisD = 4,
we obtain the inclusions

Λ(id), Λ(T−1
2 A2T2) ⊆ {(x1, x2) : x1 ≡ 0 mod 4}.

These inclusions are not compatible with the covering (4.4), since we would obtain a covering
of Z2 by three lattices containing one lattice with index 4 (see Theorem 3.4). Hence the case
D = 4 does not happen.

⋄ Case 3: v2(t2) = v2(t4) ≥ 1 and v2(d2) > v2(t2) + 1. We will first prove the two
equalities

v2(t1t2 + t3t4) = v2(t2) + 1 and v2(t2t3 + t1t4) = v2(t2) + 1. (4.43)

• To prove the first equality, we write

v2(t1t2 + t3t4) = v2(t1t2t3 + t23t4) = v2(t1(t1t4 ± d2) + t23t4) = v2((t
2
1 + t23)t4 ± t1d2).

We now observe that
v2(±t1d2) = v2(d2)

and
v2((t

2
1 + t23)t4) = v2(t

2
1 + t23) + v2(t4) = v2(t2) + 1,

because t1 and t3 are both odd. Therefore we conclude that

v2(t1t2 + t3t4) = v2((t
2
1 + t23)t4 ± t1d2) = v2(t2) + 1,

since v2(t2) + 1 < v2(d2) by assumption.
• To prove the second equality of (4.43), we write

v2(t2t3 + t1t4) = v2(2t2t3 + t1t4 − t2t3) = v2(2t2t3 ± d2) = v2(2t2t3) = v2(2t2) = v2(t2) + 1.

The proof of (4.43) is complete.
We now use (4.43) to deduce from the first equations of (4.6) and (4.8) the two inclusions

Λ(T−1
2 AiT2) ⊆ {(x1, x2) : x1 ≡ 0 mod 2} for i ∈ {1, 3}. (4.44)

• Proof of (4.44) for i = 1. The coefficient of x1 in the first equation of (4.6) satisfies
v2(t1t2 + t3t4) = v2(t2) + 1 < v2(d2) < v2(d2D). Furthermore, the coefficient of x2 satisfies
v2(t

2
2 + t24) = 1 + 2v2(t2) > v2(t2) + 1 = v2(t1t2 + t3t4). Lemma 2.3 gives the inclusion (4.44)

when i = 1.

• Proof of (4.44) for i = 3. The coefficient of x1 in the first equation of (4.8) satisfies
v2(t2t3 + t1t4) = v2(t2) + 1 < v2(d2) < v2(d2D). Furthermore, the coefficient of x2 satisfies
v2(2t2t4) = 2v2(t2) + 1 > v2(t2) + 1 = v2(t2t3 + t1t4). Lemma 2.3 gives the inclusion (4.44)
when i = 3.

The proof of (4.44) is complete. Combining the inclusions (4.44) with the inclusion Λ(id) ⊆
{(x1, x2) : x1 ≡ 0 mod 2} and with the covering (4.4), we arrive at a covering of Z2 by two
proper lattices, which does not exist by Theorem 3.4.

We investigated all the cases to assert that 4 ∤ d2. Gathering the properties of d2 proved
in §4.5.1, §4.5.2, §4.5.3 and §4.5.4, we see that d2 does not exist.

The proof of Theorem 1.2 is complete.
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