
diss . eth no. 30245

SOFTWARE - INSP IRED TECHNIQUES

FOR DIGITAL HARDWARE SECURITY

A thesis submitted to attain the degree of

DOCTOR OF SC IENCES
(Dr. sc. ETH Zurich)

presented by

FLAV IEN SOLT

Ingénieur diplômé de l’École polytechnique
MSc ETH ITET, ETH Zürich

born on May 16th, 1997

accepted on the recommendation of

Prof. Dr. Kaveh Razavi (Advisor)
Prof. Dr. Mathias Payer

Prof. Dr. Marco Guarnieri
Prof. Dr. Luca Benini

2024

Flavien Solt: Software-inspired techniques for digital hardware security, © 2024

Diss. ETH No. 30245
TIK-Schriftenreihe-Nr. 211

ABSTRACT

We entered an era where new hardware ourishes at an unprecedented
pace and with unseen diversity. We are also living in an era where security
and safety are paramount, and where the potential impact of a single bug
can be catastrophic. Hence, we urgently need foundations to detect as many
hardware bugs as possible before their deployment.

Hardware validation is universally recognized as complex, expensive and
tedious. Despite genuine best efforts, the last decade has shown that the
industry is incapable of producing non-trivial bug-free hardware. What
will then happen with the rise of open-source hardware? Without effective
and easy-to-adopt solutions for validation, it is hard to believe that the
open-source hardware community will be able to produce safe and secure
hardware, despite its best intentions.

Interestingly, the exact same situation occurred in the software world
some decades ago. Software was plagued with myriads of bugs and security
issues, after what the software community developed a formidable set of
tools and methodologies to detect bugs and security issues. Could we adapt

some of these tools and methodologies to hardware?

To answer this question, our plan is to rst observe many CPU errata,
deduce the most promising techniques from software security, and adapt
them. To understand contemporary CPU bugs, we build the RemembERR

database based on thousands of errata. We deduce two techniques inspired
by software security that are particularly promising for hardware: dynamic
information ow tracking and fuzzing. We introduce CellIFT, the rst scal-
able hardware dynamic information ow tracking mechanism and showcase
4 new architectural or microarchitectural security applications. We then
introduce Cascade, a black-box CPU fuzzer that found dozens of new bugs
and outperforms other fuzzers’ coverage. We nally demonstrate MiRTL,
a new class of hardware attacks that relies on EDA software bugs, and
propose TransFuzz, a fuzzer that produces complex hardware descriptions
to nd such bugs in popular open-source EDA software.

All these contributions demonstrate that when properly adapted, software
security techniques can provide effective and easy-to-adopt solutions that
will empower safer and more secure hardware.

iii

RÉSUMÉ

Nous entrons dans une ère où le matériel (hardware) prospère à un rythme
sans précédent et avec une diversité inédite. À une époque où la sécurité
est cruciale, la détection précoce des bugs matériels devient impérative.

La validation matérielle est reconnue comme complexe, coûteuse et
fastidieuse. Malgré des efforts sincères, la dernière décennie a révélé
l’incapacité de l’industrie à produire un matériel sans bugs signicatifs.
Face à l’émergence du matériel open source, sans solutions de validation
efcaces et faciles à adopter, il paraît invraisemblable que la communauté
puisse garantir un matériel sûr et sécurisé malgré ses bonnes intentions.

Une situation similaire s’est produite dans le domaine du logiciel il y a
quelques décennies. L’univers logiciel était affecté par de nombreux bugs et
problèmes de sécurité, mais la communauté a développé des outils efcaces
pour les détecter. Pourrait-on adapter ces outils et méthodes au matériel ?

Pour répondre à cette question, notre plan est d’observer de nombreuses
erreurs CPU, déduire les techniques les plus prometteuses provenant de la
sécurité logicielle pour le matériel, et les adapter. Pour comprendre les bugs
CPU actuels, nous introduisons la base de données RemembERR basée sur
des milliers d’erratas. Nous en déduisons deux techniques particulièrement
prometteuses pour le matériel, issues du logiciel: le suivi dynamique de
ux d’informations et le fuzzing. Nous présentons CellIFT, le premier mé-
canisme de suivi dynamique de ux d’informations matériel scalable, avec
4 nouvelles applications de sécurité architecturale ou microarchitecturale.
Ensuite, nous présentons Cascade, un fuzzer de CPU boîte noire qui a permis
de découvrir de nombreux bugs et excède la couverture des autres fuzzers.
Enn, nous présentons MiRTL, une nouvelle classe d’attaques matérielles
basées sur des bugs logiciels EDA permettant de corrompre du hardware
apparemment sain, ainsi que TransFuzz, un fuzzer qui identie ces bugs
dans des logiciels EDA open source populaires.

Toutes ces contributions démontrent que, lorsqu’elles sont correctement
adaptées, les techniques de sécurité logicielle peuvent fournir des solutions
efcaces et faciles à adopter qui renforceront la sécurité du matériel.

v

PUBL ICAT IONS

This dissertation is based on several papers published in conference pro-
ceedings presented hereafter.

RemembERR: Leveraging Microprocessor Errata for Design Testing

and Validation

Flavien Solt, Patrick Jattke, Kaveh Razavi.

IEEE/ACM MICRO, Chicago, IL, USA, 2022.

In this work, I prepared and performed the study and classication,
and the RemembERR database. I wrote most of the paper.

CellIFT: Leveraging Cells for Scalable and Precise Dynamic Infor-

mation Flow Tracking in RTL

Flavien Solt, Ben Gras, Kaveh Razavi.

USENIX Security, Boston, MA, USA, 2022.

In this work, I designed and implemented CellIFT, and performed
most of the evaluation. I wrote most of the paper.

Cascade: CPU Fuzzing via Intricate Program Generation

Flavien Solt, Katharina Ceesay-Seitz, Kaveh Razavi.

USENIX Security, Philadelphia, PA, USA, 2024.

In this work, I designed and implemented Cascade and performed
the whole evaluation. I wrote most of the paper.

Lost in Translation: Confused Deputy Attacks on EDA Software

Flavien Solt, Kaveh Razavi.

Under review.

In this work, I designed and implemented TransFuzz and the MiRTL
gadgets, and performed the evaluation. I wrote most of the paper.

vii

The following publications were part of my PhD research, but they are not
covered in this dissertation.

ProTRR: Principled yet Optimal In-DRAM Target Row Refresh

Michele Marazzi, Patrick Jattke, Flavien Solt, Kaveh Razavi.

IEEE Security & Privacy, San Francisco, CA, USA, 2022.

REGA: Scalable Rowhammer Mitigation with Refresh-Generating

Activations

Michele Marazzi, Flavien Solt, Patrick Jattke, Kubo Takashi, Kaveh
Razavi.

IEEE Security & Privacy, San Francisco, CA, USA, 2023.

ZenHammer: Rowhammer Attacks on AMD Zen-based Platforms

Patrick Jattke, Max Wipi, Flavien Solt, Michele Marazzi, Kaveh
Razavi.

USENIX Security, Philadelphia, PA, USA, 2024.

HiFi-DRAM: Enabling High-delity DRAM Research by Uncover-

ing Sense Ampliers with IC Imaging

Michele Marazzi, Tristan Sachsenweger, Flavien Solt, Peng Zeng, Kubo
Takashi, Maksym Yarema, Kaveh Razavi.

IEEE/ACM ISCA, Buenos Aires, Argentina, 2024.

HybriDIFT: Scalable Memory-Aware Dynamic Information Flow

Tracking for Hardware

Flavien Solt, Kaveh Razavi.

IEEE/ACM ICCAD, Newark, NJ, USA, 2024.

µCFI: Formal Verication of Microarchitectural Control-ow In-

tegrity

Katharina Ceesay-Seitz, Flavien Solt, Kaveh Razavi.

Under Minor Revision for ACM CCS, Salt Lake City, UT, USA, 2024.

viii

ACKNOWLEDGMENTS

This PhD thesis would not have been possible without the support and
encouragement of many individuals, to whom I am deeply grateful.

First and foremost, I would like to express my deepest gratitude to my
advisor, Prof. Razavi. Your unwavering trust, constant feedback, expertise,
curiosity, humor, and encouragement were invaluable throughout this
journey. Your presence and guidance provided a foundation that allowed me
to navigate the complexities of hardware security research with condence
and clarity. Your dedication has been truly inspiring.

I am also immensely grateful to my PhD colleagues, who were an es-
sential part of this journey. Michele, my Italian ofcemate and de facto
psychoanalyst, offered a listening ear and wise counsel during challenging
moments. Patrick, your kindness and patience in enduring my humor have
made the ofce a brighter place. Finn, your engagement with controver-
sial topics sparked many thought-provoking discussions that broadened
my perspective. Katharina, your delicious cakes have been a sweet respite
during this long journey. Johannes, your steady nightly presence and sup-
port have been much appreciated. Raphael, your freedom, optimism and
generosity will remain in the group’s memories. Silvan and Sandro, you
pleasantly challenged my stereotypes and opened my mind. I am also
grateful to all other colleagues: Jiahui, Carmine, Emmet, Jiantao, and Nils,
and to Prof. Josipović for second-advising this PhD, and to Prof. Payer, Prof.
Guarnieri, and Prof. Benini for their useful advice and feedback. Dr. Boris
Köpf, Dr. Oleksii Oleksenko, Dr. Jana Hoffmann, Dr. Stavros Volos, and Dr.
Cédric Fournet, you made the Microsoft Research internship a memorable
experience. Also, a great thanks to the ASVZ team.

A special thanks to Frank K. Gürkaynak, Beat Futterknecht, Susann
Arreghini, and Edoardo Talotti for all the administrative, personal, technical,
and expert support throughout the years. I would like to thank Matej, Tobias,
Quentin, Tristan, Adriel, Stijn, Maximilian, Valentin, and Guillaume who
successfully completed projects under my supervision. Working with you
was pleasant, rewarding and enriching as well as with all my students from
the three years of computer engineering classes.

ix

x

I would also like to extend my heartfelt thanks to my friends who have
supported me in countless ways, providing laughter, spicy food, constant
muscle or foot pain, language struggles, and encouragement.

To my family, words cannot express the depth of my gratitude for your
patience and support. My parents, Carmen and Raphael, my siblings,
Perrine and Virgile, and my grandparents, Antoinette and Wendelin, have
been my rock throughout this journey.

Finally, I dedicate this thesis to all those who encouraged and supported
me throughout this journey.

Thank you.

CONTENTS

1 Introduction 1

2 RemembERR 7

2.1 Introduction . 8

2.2 Background . 10

2.3 Motivation: Learn from the Past 13

2.4 RemembERR . 14

2.5 Classication . 24

2.6 Applications to Design Testing 40

2.7 Discussion . 44

2.8 Related Work . 45

2.9 Conclusion . 47

3 CellIFT 49

3.1 Introduction . 50

3.2 Background . 52

3.3 Dynamic Hardware IFT Using Cells 55

3.4 The Canonical M-replica Architecture 57

3.5 Exploiting the Logical Properties of Cells 59

3.6 Implementation . 71

3.7 Evaluation . 74

3.8 Scenarios . 80

3.9 Discussion . 86

3.10 Related work . 86

3.11 Conclusion . 88

4 Cascade 91

4.1 Introduction . 91

4.2 Background . 94

xi

xii contents

4.3 Motivation and Challenges . 97

4.4 Design . 100

4.5 Ultimate Program Construction 105

4.6 Program Reduction . 108

4.7 Evaluation . 111

4.8 Discussion . 129

4.9 Related Work . 129

4.10 Conclusion . 130

5 Lost in Translation 133

5.1 Introduction . 133

5.2 Background . 136

5.3 Threat Model . 138

5.4 MiRTL Attacks . 139

5.5 Input Design . 141

5.6 Differential Fuzzing for Bug Detection 147

5.7 Evaluation . 153

5.8 Exploitation . 161

5.9 Discussion . 167

5.10 Related Work . 168

5.11 Conclusion . 169

6 Conclusion and outlook 171

Bibliography 177

References . 177

1
INTRODUCT ION

An exciting era has started where hardware diversity is key. Different elec-
tronic products have vastly different contradictory requirements, that one
single product cannot always fulll. Some devices must provide high per-
formance, while others must be energy efcient. Some devices must always
perform the same few types of operations, such as multiply-accumulate,
while others must be versatile enough to adapt to new tasks. Some devices
comply with some standard interface, e.g., some specic instruction set
architecture, while others adopt application-specic interfaces.

New independent phenomena have been further accelerating the drive
for hardware diversity. The rst is the blazingly fast evolution of the typical
workloads. For instance, increasing demand for machine learning inference
will require new hardware as the algorithms evolve, may it be low-level
or high-level evolutions. The second concerns geopolitics, where we are
witnessing phenomena where entities may prevent others from using some
technologies, pushing the latter to develop new ones. Finally, the rise in
open-source hardware is an extremely powerful accelerator for design
diversity as it fosters reuse and modications of hardware. Furthermore,
new hardware construction languages and libraries further ease reuse and
connection of hardware components.

This push in diversity, however, puts hardware design validation to
the test. Actual validation practices are often kept secret, internally, by
hardware vendors, and are already imperfect. In the era of agile diverse
hardware made by smaller entities, the challenge is pressing and opens
safety and security concerns. Furthermore, community developers do not
always have access to commercial software and may not have the incentive
to put an enormous effort into validation, not to mention their potential
lack of knowledge of what can be potential issues and how to nd them.

Yet the rise of open-source hardware is also an inspiring opportunity for
improving validation practices as it provides a formidable, unprecedented
database of designs and of practical errors. Hence, used carefully, it may
allow for the development of a new generation of tools and methodologies
that are more open, more transparent, more efcient and more user-friendly.

1

2 introduction

Another opportunity is provided by the software world. Indeed, software
already started becoming massively diverse and open source some decades
ago. Like open-source hardware now, open-source software was for long
plagued with myriads of bugs and security issues. Regarding these issues,
researchers and the software community in general have developed a
broad set of tools and methodologies to nd and x bugs and security
issues. Hence, it is tempting to believe that these tools and methodologies
could be adapted to hardware. For example, we will argue that dynamic
information ow tracking and fuzzing, originally developed for software
security, have a great adaptation potential to hardware. However, the initial
attempts to bring these software-inspired techniques to hardware have
been inconclusive, specically regarding scalability and effectiveness. We
hypothesize that these few existing adaptations do not take full advantage
of the inherent properties of the target hardware.

Leading Research Question: Can we adapt software security tech-
niques to build effective counterparts in the realm of digital hardware?

To answer this question, we start by exploring the characteristics of
contemporary hardware bugs. We then identify software security techniques
that are particularly relevant for hardware security and adapt them. Because
EDA software conditions the result of the hardware design process, we
also examine its potential security implications. Hence, we structure this
dissertation around the following four intermediate research questions.

To produce well-suited hardware security solutions, we propose to rst
understand what issues affect contemporary hardware.

Research Question 1. What are characteristics of bugs that occur in
contemporary CPUs?

In Chapter 2, we answer this question by introducing the RemembERR

database. While established hardware vendors tend to develop their valida-
tion knowledge in-house, they do share some important aspects through
errata. We exploit this tremendous but disorganized source of information to
bridge the knowledge gap between vendors and the open-source hardware
community. Concretely, we provide a comprehensive classication of thou-
sands of errata of commercial CPUs, based on a novel methodology based
on triggers, contexts and observable effects. Not only does this knowledge
mining adventure provide immediate new insights concerning commercial

introduction 3

CPU bugs but it also provides, for the rst time, machine-readable errata
descriptions for these thousands of CPU errata.

Knowing typical CPU bugs and taking a closer look at specic techniques
that seem particularly promising for hardware, we rst identify dynamic
information ow tracking as a candidate, theoretically, for detecting con-
dentiality and integrity breaches.

Research Question 2. How to adapt dynamic information ow tracking
to complex digital hardware and what are ensuing applications?

In Chapter 3, we present CellIFT, the rst hardware dynamic information
ow mechanism that scales to complex CPUs and SoCs. One main aspect of
dynamic information ow tracking for hardware is that the instrumentation
itself must be expressible as hardware. The state of the art naively proposes
a simple gate-level mechanism [1], not scalable because it requires breaking
all macrocells down into logic gates. CellIFT proposes to implement the
mechanism at the level of macro-cells, which are the building blocks of
hardware description languages, and leverages three mathematical macro-
cell properties (monotonicity, transportability and translatability) in order
to make the mechanism scalable, precise and complete. Given this new
mechanism, we introduce four new applications for dynamic information
ow tracking in hardware. First, nding design subcomponents that are
prone to leak information. Second, detecting known bugs in a SoC that were
reported to be undetectable using standard formal verication properties.
Third, detecting Meltdown-type [2] microarchitectural leakages, where
permission checks are mistakenly bypassed during speculative execution.
Finally, detecting Spectre-type [3] microarchitectural vulnerabilities where
condentiality is breached through speculative execution.

Besides dynamic information ow tracking, fuzzing is another candidate
for adaptation, but with very different challenges.

Research Question 3. How to design an effective CPU fuzzer?

In Chapter 4, we present Cascade, a black-box RISC-V CPU fuzzer that,
applied across several signicant open-source CPUs, discovered 29 new
Common Vulnerabilities and Exposures (CVEs), which is more than all other
existing hardware fuzzers [4–17] combined. Cascade operates by generating
long and complex yet valid programs, in which the data ow and the
control ow are tightly intertwined to exert maximal pressure on the CPU

4 introduction

under test. It can then detect bugs by relying on program non-termination
as a proxy, and automatically reduces buggy programs to a small human-
readable reproducer. Because Cascade does not rely on any instrumentation
or coverage feedback, it is fast and easily portable. Interestingly, it achieves
far more coverage than the existing coverage-guided CPU fuzzers [4, 5],
measured on their own coverage metric. This unambiguously proves that
all past attempts to construct coverage-guided CPU fuzzers have not been
very successful. Cascade is not only an open-source and easy-to-use effective
fuzzer, but also a solid base on which to build future hardware fuzzing
research upon.

Finally, not only the hardware descriptions themselves, but also the
open-source EDA tools that process them may be imperfect.

Research Question 4. How to effectively nd bugs in RTL simulators
and synthesizers, and how could they be exploited?

In Chapter 5, we introduce TransFuzz, a new fuzzer for EDA software that
specically targets translation bugs in RTL simulators and synthesizers, i.e.,
bugs that cause an RTL description to be mistranslated into a wrong design.
Based on observations made on existing translation bugs, TransFuzz gener-
ates RTL designs that feature complex interconnections of diverse operators,
and discovered 25 new CVEs. It employs various avors of differential
fuzzing to detect translation bugs and reduces them to small reproducer
designs. Given the 20 newly detected translation bugs, we demonstrate
a new class of attacks, MiRTL for Mistranslated RTL, where a seemingly
correct RTL design translates into synthesized malicious hardware. We
instantiate a MiRTL attack in the CVA6 RISC-V CPU by injecting malicious
hardware transformations allowing kernel-to-user information leakage us-
ing seemingly benign RTL code, and demonstrate that such attacks can
bypass dynamic information ow tracking based mitigations.

Answering these four intermediate research questions provides us with
an introductory overview of capabilities of software techniques in hardware
security. After gaining awareness of contemporary bugs, we successfully
adapted two software security techniques to hardware that vastly outper-
formed existing hardware security techniques. We further discovered a new
class of attacks and many EDA software bugs on which they may rely,
again through fuzzing. Hence, we can conclude that yes, adaptations of
software security techniques are likely to occupy the hardware security
landscape in the near future. We have shown that these adaptations may be

introduction 5

challenging, yet yield signicant benets. This opens exciting new research
opportunities and is likely to only be a rst step toward a new generation
of hardware security tools and methodologies that are more open, efcient
and user-friendly, contributing to a safer and more secure digital hardware
environment.

2
REMEMBERR : LEVERAG ING MICROPROCESSOR
ERRATA FOR DES IGN TEST ING AND VAL IDAT ION

Microprocessors are constantly increasing in complexity, but to remain
competitive, their design and testing cycles must be kept as short as possible.
This trend inevitably leads to design errors that eventually make their way
into commercial products. Major microprocessor vendors such as Intel and
AMD regularly publish and update errata documents describing these
errata after their microprocessors are launched. The abundance of errata
suggests the presence of signicant gaps in the design testing of modern
microprocessors.

We argue that while a specic erratum provides information about only a
single issue, the aggregated information from the body of existing errata can
shed light on existing design testing gaps. Unfortunately, errata documents
are not systematically structured. We formalize that each erratum describes,
in human language, a set of triggers that, when applied in specic contexts,
cause certain observations that pertain to a particular bug. We present Re-
membERR, the rst large-scale database of microprocessor errata collected
among all Intel Core and AMD microprocessors since 2008, comprising
2,563 individual errata. Each RemembERR entry is annotated with triggers,
contexts, and observations, extracted from the original erratum. To general-
ize these properties, we classify them on multiple levels of abstraction that
describe the underlying causes and effects.

We then leverage RemembERR to study gaps in design testing by making
the key observation that triggers are conjunctive, while observations are
disjunctive: to detect a bug, it is necessary to apply all triggers and sufcient
to observe only a single deviation. Based on this insight, one can rely on
partial information about triggers across the entire corpus to draw consistent
conclusions about the best design testing and validation strategies to cover
the existing gaps. As a concrete example, our study shows that we need
testing tools that exert power level transitions under MSR-determined
congurations while operating custom features.

7

8 rememberr

2.1 introduction

What are the bugs that we could not discover before we sent the microprocessor

design for fabrication? This is probably the most important question that
design test engineers repeatedly ask themselves. The question is not getting
any easier to answer with the ever-increasing complexity of modern micro-
processors [18]. Despite advances in design testing tools and techniques [4,
12, 19–38], we still see plenty of post-production bugs after new micropro-
cessors are released, indicating that there exist gaps in design testing and
validation. In this Chapter, we identify these gaps and propose concrete
actions to cover them by leveraging a new classication based on errata
reported by Intel and AMD.

design testing and validation. Before a microprocessor is shipped
to customers, it goes through a variety of testing and validation steps. In
the early stages, a design simulation using random or human-driven inputs
may reveal bugs [19, 31]. Once the design matures, formal verication
techniques ensure the correctness of selected design parts [32–34, 39, 40].
Finally, many bugs can only be found in post-silicon testing under real-
world conditions [41–46]. These design testing and validation methods,
unfortunately, do not scale to the complexity of today’s microprocessor
designs [31]. In the testing steps, the lingering question is whether the
test cases are providing a sufcient coverage [47–49]. Similarly, expensive
verication efforts should be targeted to those parts of the design where
critical bugs are likely to lurk.

microprocessor errata . In response to the discovery of bugs after
production, microprocessors vendors regularly publish errata documents:
human-readable documents containing a list of errata [30, 50–53]. The goal
of publishing this list of defects is to document known bugs and to provide
system designers with workaround guidance where appropriate. The orga-
nization of errata differs across vendors, but the structure of each erratum
entry remains similar. Each erratum, from both Intel and AMD, includes
a description with information about the conditions under which the bug
occurs and a brief discussion of its implications once triggered. Furthermore,
each entry includes information about the proposed workarounds and
whether or not the bug has been xed. While the individual erratum is
useful for keeping track of a bug and informing users about it, we argue
that grouping them reveals precious information that can guide future
design testing and validation.

2.1 introduction 9

rememberr . To extract the relevant information from the errata, we
created RemembERR, a comprehensive, annotated database of all errata
of Intel Core and AMD microprocessor families since 2008, with a total of
2,563 entries. Creating this database itself presented challenges since the
errata are not machine-readable:

(a) they lack an identical structure between documents,

(b) they contain a signicant number of errors such as duplicate entries
in the same document, reused errata numbers, and erroneous Model
Specic Register (MSR) numbers, and

(c) a lack of classication and consistency in notations.

To facilitate guiding testing and validation, we create a new classication
of errata for RemembERR. We manually annotate each RemembERR entry
with its necessary triggers, the contexts to which the bug applies, and the
observations that can be made once the bug is triggered. We call this level
the concrete level of our classication. Although useful, the concrete level can
sometimes be too erratum-specic to generalize. For example, a particular
offset inside a certain machine-specic register must be written to trigger a
bug. To study causes and effects in an aggregate manner, we further classify
and annotate RemembERR entries at two higher levels of abstraction, which
we call the abstract and class levels.

Equipped with RemembERR, we then study trends to identify design
testing gaps. We make a key observation that in almost every erratum,
trigger conditions are conjunctive, while contexts and observations are
disjunctive. This means that to discover a bug, all triggers must be activated
(e.g., a misaligned load that causes a page fault), in any of the applicable
contexts (e.g., in user mode), and observing any behavior deviating from the
expected behavior (e.g., a machine check exception) is sufcient to detect
the bug. This powerful insight allows us to extract valuable information
from aggregated errata, regardless of how vague each individual erratum
may be on its triggers and/or observations (the contexts are usually clear).
Importantly, this information about triggers, contexts, and observations is
necessary for directing design testing and validation campaigns to discover
bugs that are not currently missed by the existing tools and techniques.

Our study shows that more than 40% of bugs are uncovered only when
two distinct trigger types are combined. Moreover, most triggers do not
interact with each other, while others seem to be closely related and together,
they bring up new bugs. Exploiting these interactions is crucial to boost

10 rememberr

future design testing and validation of microprocessors and to keep up
with their increasing complexity.

contributions . We make the following contributions:
• We propose a new classication of design aws based on necessary

triggers, and sufcient contexts and observations.

• We create RemembERR, a comprehensive database created from 2,563
public errata across all 12 rst generations of Intel Core and 13 current
AMD microprocessor families.

• Using RemembERR, we study trends in post-production micropro-
cessor bugs and develop testing and validation guidelines that relate
triggers, contexts, and observations.

open sourcing . We make the entire RemembERR database, including
our annotations, publicly available1 so that researchers and design test
engineers can draw conclusions specic to their goals and automate their
tools.

2.2 background

This section provides some brief background on existing hardware bug
detection techniques (Section 2.2.1) and errata documents (Section 2.2.2).

2.2.1 Bug detection methods

We provide background on the three commonly used techniques for detect-
ing hardware bugs [31]: simulation, formal methods, and silicon testing.

simulation. Design simulation is a traditional testing technique that
is already used early in the design’s development cycle [31]. During a
simulation, the design is given sequences of inputs. The outputs and the
resulting state of the design are then compared against a golden model [4]
or inspected manually [31, 54]. Modern simulators provide a rich set of
features, such as undened values (i.e., don’t care values), signal injection,
and various coverage metrics [55–57].

Testing with simulation has two major shortcomings. First, simulation-
based testing is extremely slow. Therefore, it can process only a few inputs

1 https://github.com/comsec-group/rememberr

2.2 background 11

in a reasonable time, making it challenging to reach all possible system
states. For example, the open-source CVA-6 64-bit RISC-V core requires
four days to boot Linux in simulation [58]. We expect more complex CPUs,
tailored towards high performance, to be even more complex by several
orders of magnitude. Simulation becomes mostly ineffective for complex
modern microprocessors without limiting the test cases to those effective
in triggering bugs. Second, simulation cannot expose issues related to the
physical design, such as timing violations, data loss after power gating [59],
or interaction with real-world peripherals and memories. Emulation, in
spite of being signicantly faster, suffers from the latter shortcoming as
well.

formal methods . Unlike simulation, which may suffer from limited
input coverage, formal verication methods aim to prove that certain prop-
erties always hold given some allowed inputs. This approach makes it
possible to prove correctness for all expected inputs — achieving com-
pleteness. However, these powerful formal methods have three weaknesses.
First, they typically do not scale to complex designs with many stateful
elements [31, 40, 60, 61]. Therefore, a typical approach is to verify only
selected design parts while modeling the rest [62–64]. Second, properties
may be difcult to express formally, and there can exist many properties for
complex designs [65, 66]. Third, properties related to power management
or other physical effects may be difcult to reason about [59, 67–70]. As
each property is proven exhaustively, quickly rendering verication time
infeasible, the test and validation engineers must carefully decide which
properties to prove.

silicon testing . Complex bugs often escape traditional pre-silicon
testing and validation [41–46, 71]. Therefore, silicon testing remains a
crucial part of design validation, and takes up to 50% of the testing cost for
commercial designs [72]. In contrast to simulation, silicon testing achieves
far higher throughput, but it does not reach the completeness offered by
formal methods. Furthermore, silicon testing makes the design’s internals
inaccessible.

2.2.2 Errata

For each design generation (Intel) or family (AMD) of microprocessors, ven-
dors typically provide a specication update document, also known as errata,
for listing known bugs after a product has been shipped. When a customer

12 rememberr

ID: ADL001

Title: X87 FDP Value May be Saved Incorrectly

Description: Execution of the FSAVE, FNSAVE, FSTENV, or FNSTENV in-
structions in real-address mode or virtual-8086 mode may save an incorrect
value for the x87 FDP (FPU data pointer). This erratum does not apply if
the last non-control x87 instruction had an unmasked exception.

Implications: Software operating in real-address mode or virtual-8086mode
that depends on the FDP value for non-control x87 instructions without
unmasked exceptions may not operate properly. Intel has not observed this
erratum in any commercially available software.

Workaround: None identied. Software should use the FDP value saved by
the listed instructions only when the most recent non-control x87 instruction
incurred an unmasked exception.

Status: For the steppings affected, refer to the Summary Table of Changes.

Table 2.1: An erratum for Intel Core 12th generation.

observes that a microprocessor deviates from its original specication, they
can look through the errata documents to verify whether it is a known bug.
The errata also provide information on how to avoid triggering unwanted
behavior. Notably, the bugs described in errata documents can no longer be
xed and remain for the lifetime of the affected microprocessors.

organization. Following their intended purpose, errata documents
produced by Intel and AMD are human-readable PDF documents listing
the individual bugs. Each erratum has a title, a description, implications,
workarounds, and a status indicating whether a x is available for current
or future releases of the same CPU generation or family. Intel released
separate erratum documents for the Mobile and Desktop version of its
Core microprocessors until generation 5. After that, they released only one
document per generation. AMD uses a single document per CPU family
(i.e., per CPU microarchitecture).

errata examples . We provide two recent errata examples. In Table 2.1,
we show the rst erratum for Intel Core 12th generation CPUs, and in
Table 2.2, the most recent erratum for AMD Zen 3 family CPUs.

2.3 motivation : learn from the past 13

ID: 1361

Title: Processor May Hang When Switching Between Instruction Cache and
Op Cache.

Description: Under a highly specic and detailed set of internal timing
conditions, running a program with a code footprint exceeding 32 KB may
cause the processor to hang while switching between code regions that
consistently miss the instruction cache and code regions contained within
the Op Cache.

Implications: System may hang or reset.

Workaround: System software may contain the workaround for this erra-
tum.

Status: No x planned.

Table 2.2: An erratum for AMD Zen 3 family.

2.3 motivation : learn from the past

The number of published errata has not signicantly decreased over time, as
we show in Section 2.4. Strikingly, we will show that some bugs require years
to be reported, while similar bugs were already found in previous designs.
These trends point to gaps in existing design testing and validation tools
and techniques. A data-driven approach using the information contained in
the errata can shed light on these gaps and provide directions for covering
them.

accessibility Each erratum is specic to one bug in a particular design,
complying with a certain Instruction Set Architecture (ISA). This makes
deriving any valuable insights from a series of individual errata difcult.
Further, it does not incite communities that build and verify other micro-
processors to read and learn from known pitfalls and spots that require
special testing focus. This is becoming increasingly more important as the
complexity of community-driven microprocessors is progressively catching
up with their proprietary and closed-source counterparts [73–75]. By aggre-
gating errata and building an annotated database, we intend to make this
information more accessible than it currently is.

structure The way errata are structured is suitable for reading by an
experienced human but is not optimized for automated data mining. A clear

14 rememberr

specication of what each eld contains or implies is missing. The useful
information is often spread across the title, description, and implication
(and sometimes workaround) elds, with a high degree of redundancy.
This observation calls for creating and maintaining an improved erratum
structure, scheme and tooling support that would be more adapted for data
mining and to rule out redundancy while remaining human-readable.

guiding design testing and validation In complex CPU designs,
all testing and validation methods must be directed. Formal methods
require knowing the bug type to target and prioritizing the parts of the
design that are most susceptible. Furthermore, formal properties must be
local and specic to minimize the impact of state explosions. For dynamic
methods such as simulation and silicon testing, it is crucial to know which
input signals to provide in which context and what effects to expect if a
bug is triggered [54, 76]. In Section 2.6, we provide an in-depth discussion
on how the annotated errata information can enhance existing validation
methodologies.

For example, errata reveal that specic bugs require ongoing PCIe com-
munication. Is connecting a PCIe device enough to discover all PCIe-related
bugs? Looking at all the errata, we observe that some PCIe-related bugs re-
quire triggering a reset signal. Furthermore, how can we efciently observe
whether a bug was triggered? This knowledge of the interaction between
different input types, contexts, and effects is crucial for maximizing a testing
campaign’s efciency and efcacy.

2.4 rememberr

In this section, we introduce RemembERR, an annotated database of 2,563 er-
rata from AMD and Intel microprocessors. In Section 2.4.1, we rst describe
the scope and our methodology. Based on this (yet unannotated) database,
we present essential observations about the current state of microprocessor
errata in Section 4.3.1.

2.4.1 Methodology

Figure 2.1 presents an overview of our methodology. Our approach can
be summarized into four steps: 1a First, we acquired the latest errata
documents from Intel and AMD, and 1b analyzed duplicate errata. This

2.4 rememberr 15

A

B
RemembERR
(annotated)

RemembERR
(non-annotated)

=
?

Classifcation Scheme

1a

1b

2

3

4

Trg_MBR

_cbr

_pbr
...

Trg_MOP
...

Ctx_PRV

_boo

_vmg
...

Ctx_FEA
...

Eff_HNG

_unp

_hng
...

Eff_FLT
...

Figure 2.1: Overview of our methodology.

already allows us to make general observations about errata’s current state
(Section 4.3.1). 2 We then generalized the triggers, contexts, and observable
effects to derive a universal classication scheme for errata (Section 2.5.1).
3 Using automation, we classied a portion of the errata, and for the
rest, we used four-eyes manual classication. The result is the annotated
RemembERR database. 4 Lastly, we leveraged RemembERR to derive
novel insights for lling the gaps in existing design testing and validation
(Section 2.5.2).

examined documents . We comprehensively examined all the errata
documents listed in Table 2.3. Vendors usually withdraw errata documents
once the processor line is not supported anymore, which makes nding
the errata documents not always straightforward. We scraped the web
thoroughly and took the most recent ndable document for each generation
(Intel) or family (AMD). We examined all the errata from the Intel Core
series and all the errata from AMD CPUs since 2008.

errata in errata . Errata documents contain many errors themselves.
Examples are two revisions pretending to have added the same erratum
(affects 8 errata across 3 documents), some errata are never mentioned in
the revision notes (affects 12 errata across 2 documents), the same name
refers to two different errata (affects an erratum named AAJ143), there are
missing or duplicate elds in errata (affects 7 errata across 4 documents), or
there are errors in the MSR numbers (affects 3 errata across 3 documents). In

16 rememberr

Intel AMD

Gen. Reference Fam. Models Reference

1 (D) 320836-037US 10h 00-0F 41322-3.84

1 (M) 322814-024US 11h 00-0F 41788-3.00

2 (D) 324643-037US 12h 00-0F 44739-3.10

2 (M) 324827-034US 14h 00-0F 47534-3.18

3 (D) 326766-022US 15h 00-0F 48063-3.24

3 (M) 326770-022US 15h 10-1F 48931-3.08

4 (D) 328899-039US 15h 30-3F 51603-1.06

4 (M) 328903-038US 15h 70-7F 55370-3.00

5 (D) 332381-023US 16h 00-0F 51810-3.06

5 (M) 330836-031US 17h 00-0F 55449-1.12

6 332689-028US 17h 30-3F 56323-0.78

7/8 334663-013US 19h 00-0F 56683-1.04

8/9 337346-002US

10 615213-010US

11 634808-008US

12 682436-004US

Table 2.3: Inspected errata documents. Left: Intel Core CPUs, right: AMD CPUs.
(M): Mobile, (D): Desktop.

rare cases, errata may be repeated inside the same errata document (affects
11 errata pairs across 6 documents). These errors are a clear indicator
that the writing of errata is a manual process. Humans not only express
errata in a human language, but they also seem to be responsible for non-
systematically (redundantly) distributing information across errata elds.

duplicates . As we will show, it is common that two (or multiple)
designs from the same vendor with different release dates are affected
by the same erratum. RemembERR contains all the duplicates as often as
they appear across documents. This provides useful information about
bugs shared among generations or families. However, to allow ltering for
unique entries, RemembERR features a keying mechanism that assigns a
unique identier to each cluster of identical errata.

AMD identies errata across microprocessor families using a unique
numeric identier: two families are affected by the same erratum if both

2.4 rememberr 17

have an erratum with the same number in their corresponding errata
document. This mechanism protects against intra-document duplicates.
Besides different errata numbers, some cases are indistinguishable given
the limited information in the errata’s elds. For example, errata no. 1327
and no. 1329 only differ in their suggested workaround but may originate
from distinct root causes. In total, we collected 506 errata from AMD, of which

385 are unique.

Intel errata documents do not provide a simple way to identify duplicates
across generations. Instead, we base our duplicate detection on the errata
titles. As a rst step, we marked all errata with the same title as duplicates.
Extensive manual inspection of all the candidate duplicates shows that
when the titles are (nearly) identical, all other elds are identical as well.
Except for minor phrasing variations or slightly different levels of detail.
As a second step, we manually analyzed remaining errata that have not
been marked yet as duplicates, sorted by decreasing title similarity, given
that title similarity is a strong indicator of potential duplicates. We could
manually identify 29 pairs as duplicates. In total, we collected 2,057 errata for

Intel, of which 743 are unique.

Because Intel and AMD use different identiers for their errata, it is
difcult to determine whether a bug is common between products of these
two vendors; at least, we could not nd any occurrence giving strong
evidence. Arguably, Intel and AMD designs are proprietary; hence they
might not share hardware blocks. It is, hence, unlikely for identical bug
instances to occur across vendors.

2.4.2 Observations

The data gathered in RemembERR allows us to make several novel observa-
tions about the current state of errata.

Timeline

We rst analyze the number of reported bugs accumulated over time.
Unfortunately, bug discoveries are not timestamped; hence, we approximate
the timestamp of each erratum by identifying in which revision of the errata
document it rst appeared. We then use the errata document’s release or
update date to approximate the timestamp.

18 rememberr

Figure 2.2: Disclosure dates of Intel Core errata (top) and AMD CPU errata
(bottom). The y-axis represents the cumulative number of disclosed
errata. The data point represents the errata’s release date.

In some cases, the revision summary does not indicate in which revision
a certain erratum was added. Fortunately, errata are sequentially numbered.
Hence, we can approximate the date by assuming that the subsequent
erratum was added simultaneously. In rare cases, we observed contradicting
dates: revision logs falsely pretend that the same erratum was added in
two consecutive revisions. In this case, we consider the date of the earlier
of the two revisions as the correct one.

Figure 2.2 shows the cumulative growth of errata over time, where
duplicate entries are counted individually. We observe that Intel updates
its errata documents signicantly more frequently than AMD. Desktop
and mobile processors released at close dates have very similar curves, for
example, Intel Core 2, 3, and 4 during the year 2013. This may suggest that
the same bugs tend to affect multiple generations. In Section 2.4.2, we study
this bug transmission effect across design generations in more detail.

2.4 rememberr 19

Figure 2.2 further demonstrates that vendors keep introducing new bugs
into their products. While the latest microarchitectures seem to be less
affected, it is likely that many bugs have not yet been discovered or reported.

(O1) Observation. The number of reported errata does not signicantly
decrease over time with new designs.

All cumulative curves tend to be concave. The more time passes, the
fewer bugs are found in a given period. In most older designs, the curve
stagnates towards the end, where only very few new bugs are discovered
after many years from the initial release of the CPU, especially for Intel
Core designs. This observation conrms the intuition that nding new bugs
in a design becomes increasingly more difcult or that older designs are
not as rigorously tested anymore compared to newer designs.

(O2) Observation. The increase in errata for a given design is usually
concave.

Heredity

It is known from well-studied bugs such as Meltdown [2], Foreshadow [77],
RIDL [77] and ZombieLoad [78], that different designs may suffer from
exactly the same bug. One cause for this phenomenon may be the reuse
of microarchitectural blocks across design generations. We study this phe-
nomenon to provide an answer to the questions:

(a) How often are bugs transmitted across generations or families?

(b) Are transmitted bugs rediscovered multiple times?

transmission. By denition, distinct AMD families have distinct mi-
croarchitectures. Our data corroborates that, as we nd fewer shared errata
between AMD families, compared to Intel Core generations. Furthermore,
AMD provides limited chronological information, as depicted in Figure 2.2.
Hence, we focus this part of our study on Intel errata.

Figure 2.3 shows the number of identical errata between pairs of Intel
errata documents. We can observe that Desktop and mobile processors
share the vast majority of bugs, matching our observation of similar curves
in Section 2.4.2. The processors that share a substantial part of their microar-
chitecture are salient in this diagram, such as Intel Core generations 6 to 10.
Note that if a security bug is discovered only after multiple generations, an

20 rememberr

C
or
e
1
(D
)

C
or
e
1
(M
)

C
or
e
2
(D
)

C
or
e
2
(M
)

C
or
e
3
(D
)

C
or
e
3
(M
)

C
or
e
4
(D
)

C
or
e
4
(M
)

C
or
e
5
(D
)

C
or
e
5
(M
)

C
or
e
6

C
or
e
7-
8

C
or
e
8-
9

C
or
e
10

C
or
e
11

C
or
e
12

Core 1 (D)

Core 1 (M)

Core 2 (D)

Core 2 (M)

Core 3 (D)

Core 3 (M)

Core 4 (D)

Core 4 (M)

Core 5 (D)

Core 5 (M)

Core 6

Core 7-8

Core 8-9

Core 10

Core 11

Core 12

165 87 49 43 35 35 17 17 13 14 6 6 6 6 0 0

125 44 37 29 29 18 18 15 15 4 4 4 4 0 0

130 112 75 75 35 35 27 28 11 11 11 11 0 1

112 61 61 20 20 19 19 7 7 7 7 0 1

114 114 36 36 27 27 11 10 10 10 0 1

117 36 37 28 28 12 11 10 10 0 1

167 165 66 65 29 27 22 26 1 0

177 67 67 30 28 22 26 1 0

120 108 34 31 25 29 2 1

134 37 35 29 32 2 1

187 138 117 116 7 5

153 123 126 9 5

133 113 4 4

130 9 5

30 10

32

Figure 2.3: Bug heredity: number of common bugs across Intel microprocessor
generations.

attacker could have exploited it for years without being uncovered. There-
fore, the duration between bug introduction and discovery is not a suitable
proxy for estimating criticality, especially regarding security. In Figure 2.3,
long non-zero horizontal lines indicate long-lasting bugs. 6 bugs stayed from

Core 1 to Core 10, and one erratum from Core 2 was still identied 11 generations

later, more than 10 years after its initial discovery.

(O3) Observation. Bugs are often shared between generations of micro-
processors. Shared bugs may stay for up to 11 generations.

2.4 rememberr 21

2016 2017 2018 2019 2020

Disclosure date

40

60

80

100

N
u
m
.
e
rr
a
ta
(c
u
m
u
l.
)

Core 6

Core 7-8

Core 8-9

Core 10

Figure 2.4: Disclosure dates of Intel Core errata for bugs that are shared by all
Intel Core generations from 6 to 10.

rediscovery. We conducted a further study to answer the question:
from errata shared between microprocessors, which proportion was already
reported in an earlier generation at the time of release?

Figure 2.4 shows the reporting date for the 104 bugs shared by all Intel
Core generations from 6 to 10. This set of bugs corresponds to a salient
region of common bugs in Figure 2.3. The rst data point corresponds
to the release date of each generation. Clearly, most of the shared design
errors were known before the release of the subsequent generation, some
even many years before.

This raises the question of where bugs are rst discovered: in older
designs and then conrmed on more recent ones (forward), or are they
usually rst found on more recent designs and then conrmed on older ones
(backward)? While Figure 2.4 provides a qualitative insight, to answer this
question, we dene a forward-latent erratum as an erratum that was reported
in one design and (strictly) later reported in a later design. Similarly, we
say that an erratum is backward-latent if it was reported in a design (strictly)
before being reported in an earlier design.

Figure 2.5 shows the forward-latent and backward-latent errata for Intel
Core CPUs (again, the AMD errata documents lack sufcient chronological
information for such an analysis). The salient portion of backward-latent
errata around the year 2015 may represent a period at Intel where less
resource was allocated to testing older CPU generations, for example, to
prepare for the release of the Skylake microarchitecture. The increasing
forward-latent numbers typically denote cores sequences with similar mi-
croarchitectures, where a bug has not been xed, although it was known

22 rememberr

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

0

25

50

75

100
N
u
m
b
e
r
o
f
la
te
n
t
e
rr
a
ta

forward-latent

backward-latent

Figure 2.5: Forward-latent and backward-latent errata among Intel Core genera-
tions.

before the ofcial CPU release. The number of forward-latent errata has
always tended to increase, and this trend has accelerated since 2015. Note
that these curves, for the time interval displayed here, may increase in the
future with the rediscovery of more errata in existing or future Intel Core
generations.

These results suggest that either the test and validation cycles are very
long (in order of many years), making it difcult to react to newly discov-
ered bugs during this phase, or these bugs are difcult to mitigate without
fundamentally changing the microarchitecture.

(O4) Observation. Most of the design aws that are shared between
generations were already known before releasing the subsequent gener-
ation.

Observation O4 indicates a correlation between long CPU development
cycles and the difculty of nding complex bugs.

Workarounds

The vendors propose different workaround types, depending on where the
workaround should be applied, i.e., which actor should (not) perform a
specic action to ensure proper functionality. Based on this, we classify
the workarounds into ve categories: BIOS, software, peripherals, absent,
and None. The category absent indicates existing workarounds without
any specic information, such as “Contact [...] for information on a BIOS
update.” Instead of absent, whenever possible, we classify the workaround

2.4 rememberr 23

B
IO
S/
Fi
rm
w
ar
e

So
ftw
ar
e

Pe
rip
he
ra
ls

N
on
e

A
bs
en
t

0

20

40

P
ro
p
o
rt
io
n
o
f
er
ra
ta
(%

)

36.5

23.1

0.8

35.9

0

Intel

B
IO
S/
Fi
rm
w
ar
e

So
ftw
ar
e

Pe
rip
he
ra
ls

N
on
e

A
bs
en
t

0

20

40
31.6

39.8

1.9

28.1

0.8

AMD

Figure 2.6: Suggested workarounds of errata by category.

into a specic category even if the exact information is missing. Vendors use
an additional category documentation xes to describe originally intended
behavior that was wrongly documented. This category is negligible in size
as it represents less than 0.5% of the total number of errata.

We summarize our results in Figure 2.6, where identical errata are merged.
The errata that can be mitigated in the BIOS are arguably the least critical,
as long as the mitigation does not substantially affect performance or
security. Errata requiring conditions in the peripherals or the software are
more challenging to mitigate due to the plethora of legacy hardware and
software. In total, 28.9% (AMD) and 35.9% (Intel) of all unique errata do
not have any suggested workaround at all.

(O5) Observation. A substantial number of errata do not have any
suggested workaround.

As we discuss soon, this is not because bugs were xed but because most
bugs are deeply rooted in the design, limiting possible workarounds.

Fixes

In some cases, the vendors x the root cause of a bug, as indicated explicitly
in dedicated parts of the errata documents (in dedicated tables or in a
status eld). Fixes are distinct from workarounds as the former rules out
the bug from the design completely, while the latter dynamically aims at
preventing the bug from interfering with proper design functionality. Fixes
may require a re-spin of the processor, which is an update of the CPU’s

24 rememberr

C
o
re

1
(D

)
C
o
re

1
(M

)
C
o
re

2
(D

)
C
o
re

2
(M

)
C
o
re

3
(D

)
C
o
re

3
(M

)
C
o
re

4
(D

)
C
o
re

4
(M

)
C
o
re

5
(D

)
C
o
re

5
(M

)
C
o
re

6
C
o
re

7
-8

C
o
re

8
-9

C
o
re

1
0

C
o
re

1
1

C
o
re

1
2

0

50

100

150

200
N
u
m
b
e
r
o
f
e
rr
a
ta

Intel

F
a
m
.
1
0
h

F
a
m
.
1
1
h

F
a
m
.
1
2
h

F
a
m
.
1
4
h

F
a
m
.
1
5
h
-0

F
a
m
.
1
5
h
-1

F
a
m
.
1
5
h
-3

F
a
m
.
1
5
h
-7

F
a
m
.
1
6
h
-0

F
a
m
.
1
6
h
-3

F
a
m
.
1
7
h
-0

F
a
m
.
1
7
h
-3

F
a
m
.
1
9
h

AMD

No x

Fix

Figure 2.7: Proportion of xed vs. unxed bugs.

design masks. We could not nd any requirements driving the decision to
x a bug rather than proposing a workaround. Most likely, the decision is
made based on the bug’s criticality by considering functionality or security
impact, and also the complexity of xing the bug.

Figure 2.7 shows the number of bugs that are xed in different designs.
Clearly, the vast majority of bugs are never xed. For Intel CPUs, there has
been a weak trend over the last few generations toward xing bugs.

(O6) Observation. Bugs are rarely xed.

2.5 classification

This section introduces an errata classication scheme based on triggers,
contexts, and effects. We start by describing the methodology we applied to
design our classication scheme in Section 2.5.1, after which we explain the
classication scheme’s categories. Using the classied data, we present new
insights about bugs based on our classication results in Section 2.5.2.

2.5.1 Categories

A crucial part of our classication is the denition of concrete categories.
We rst made an exploratory pass over the errata documents to determine
appropriate categories for triggers, contexts, and effects. To make the classi-

2.5 classification 25

cation useful for our intended purpose, we require our concrete categories
to be

(a) unambiguous: a category should clearly be distinctive from other cate-
gories to improve our classication’s reliability,

(b) usable: categories should be helpful to guide the design testing process,
(c) and self-explanatory: a one-sentence description should be sufcient to

understand the category.

For instance, requiring a reset signal to observe faulty behavior is an
unambiguous trigger (i.e., unlikely to be misclassied or misunderstood).
It is a usable trigger because it is necessary to trigger observable behavior,
and it is self-explanatory. If reset signals are not needed to nd some bugs
of interest, we should apply more relevant, directed test cases to increase
effectiveness and close design testing gaps.

Classication methodology

In the following, we describe our systematic approach for designing our
errata classication scheme. After that, we explain how we efciently classi-
ed the errata consistently and reliably.

goal . We designed a hierarchical classication scheme that allows us to
seamlessly switch between different levels of abstraction. These abstraction
levels are crucial for making the necessary observations and recommenda-
tions for improving design testing and validation. If the recommendations
are too precise, methods cannot easily generalize the insights when looking
for new bugs. If they are too abstract, however, then limited guidance will
hamper efciency and coverage.

Our classication scheme is composed of three levels: the concrete level,
the abstract level, and the class level. We explain them for the example of
triggers. First, the concrete level represents the exact action that is described
in the erratum. For example, “the core resumes from the C6 power state”
is an action described at the concrete level. Second, the abstract level rep-
resents a slightly higher level of abstraction. As an example, a transition
between core power states is an action described at the abstract layer. The ab-
stract level is crucial since design testing and validation tools must achieve
generality to maximize coverage. In the example before, considering only
transitions from the core C6 power state may not catch unknown bugs
that only manifest when transitioning from other power states. Finally, the

26 rememberr

class level represents the highest level of abstraction; in our example, power
management is the representation of the action at the class level. This last
level of abstraction provides even more generality, contributes to better
readability and allows us to make more general conclusions about the bugs
triggered by a particular trigger class.

methodology. We dene the categories for triggers, contexts, and
observable effects in an iterative way. We process all unique errata to extract
concrete triggers, contexts, and observable effects. For each of them, we
check if we already have a corresponding abstract category. If so, we then
label the erratum with this abstract category; otherwise, we create a new
abstract category, and we check if we have a corresponding class category.
If a corresponding class category exists, we add the new abstract category
to the existing class category; otherwise, we create a new class category
and attach the new abstract category to it. We provide a detailed overview
of class and abstract categories in Table 2.4, Table 2.5, Table 2.6, Table 2.7,
Table 2.8, Table 2.9, Table 2.10, Table 2.11, Table 2.12 and Table 2.13.

RemembERR is a cross-ISA database as typically, only items (i.e., triggers,
contexts, or effects) at the concrete level may be ISA-specic. Therefore,
RemembERR can naturally be extended with errata from designs imple-
menting other ISAs (e.g., POWER, ARM).

four-eyes classification. Some errata contain expressions that are
specic enough to be classied automatically using regular expressions into
some categories, but many errata-category pairs require manual analysis
for classication. Besides being time-consuming, manually extracting and
annotating such an immense database of complex items is error-prone. To
signicantly improve the reliability of our results, two of the researchers in-
volved in this Chapter independently classied the errata. After completing
the classication, they discussed and resolved each mismatch individually.
To improve the classication and clarify our understanding of the categories,
the discussions were made iteratively in seven successive steps for each
design, using the same method but with the next batch of individually
classied errata. Figure 2.8 shows the cumulative number of errata in each
classication step. Figure 2.9 shows the evolution of the agreement of the
decisions of the two humans. Note that, since the AMD errata were classi-
ed after the Intel errata, the data provided in Figure 2.9 is chronological.
There are multiple reasons for mismatches, notably

(i) human errors as classication is a tedious, long, and difcult process;

2.5 classification 27

0 1 2 3 4 5 6

Step

0

200

400

600

800

N
u
m
b
er

o
f
er
ra
ta

Intel

0 1 2 3 4 5 6

Step

0

100

200

300

400

AMD

Figure 2.8: Number of errata per errata classication discussion step.

0 1 2 3 4 5 6

Step

0

20

40

60

80

100

A
g
re
em

en
ts
(%

)

Intel

0 1 2 3 4 5 6

Step

AMD

Figure 2.9: Percentage of human-classied errata-category pairs classied identi-
cally by both humans before the discussion.

(ii) imprecise description of the trigger, contexts, or effects in errata,
leaving room for interpretation; and

(iii) ambiguous classication categories.

We note that the agreement percentage is generally above 80%.

software-assisted classification. The cumulative number of
categories for triggers, contexts, and observable effects is large: in total,
we dened 60 categories. First, we merge identical unique errata in the
decision-making process, resulting in 1,128 remaining errata. This still
amounts to 1128× 60 = 67,680 classication decisions per human, even
without considering the discussions for mismatches yet. We measured a
typical average duration of 30 seconds per classication decision, which

28 rememberr

Trg_MBR a data operation on a...

- _cbr cache line boundary.

- _pbr page boundary.

- _mbr memory map boundary such as canonical.

Table 2.4: Classication of MBR triggers.

Trg_MOP a memory operation involving...

- _mmp an interact. with a memory-mapped element.

- _atp an atomic/transactional memory operation.

- _fen a memory fence or a serializing instruction.

- _seg a condition on segment modes.

- _ptw a core page table walk.

- _nst translation on nested page tables.

- _flc ushing some cache line or TLB.

- _spe a speculative memory operation.

Table 2.5: Classication of MOP triggers.

amounts to more than 560 hours of high-focus work per human merely for
the individual classication part.

Fortunately, some classes can be automatically ltered out as irrelevant for
a given errata, given the text describing it. Some others can be automatically
said to be clearly relevant to an erratum. With conservative ltering based
on regular expressions, we could reduce the number of decisions to 2,064
per human in the individual phase. These remaining decisions are difcult
to make automatically and reliably. For example, if a reset signal is a trigger
or an effect in an erratum based on its description. For guiding the human-
based classication, we designed a syntax highlighting engine with regular
expressions to emphasize parts of the errata descriptions relevant to a given
category. With this tool’s assistance, we could reduce the amount of pure
classication work and discussion to approximately 30 hours per human
in total. We release all code along with the RemembERR database and
envision that such computer-assisted classication tools will encourage
further contributions to errata classication.

2.5 classification 29

Trg_FLT related to exceptions and faults

- _ovf a counter overow.

- _tmr a timer event.

- _mca a machine check exception.

- _ill an illegal instruction.

Table 2.6: Classication of FLT triggers.

Trg_PRV related to privilege transitions

- _ret a resume from System Management or OS mode.

- _vmt a transition between hypervisor and guest.

Table 2.7: Classication of PRV triggers.

Trg_CFG related to dynamic conguration

- _pag a paging mechanism interaction.

- _vmc a virtual machine conguration interaction.

- _wrg a conguration register interaction.

Table 2.8: Classication of CFG triggers.

Trg_POW related to power states

- _pwc a transition between power states.

- _tht a change in thermal or power supply conditions, or
throttling.

Table 2.9: Classication of CFG triggers.

Triggers

Inputs that cause an exceptional observable effect are often not clearly
stated or unspecied. At rst sight, this renders the majority of errata
unusable as they cannot easily be reproduced. However, we tackle this
major challenge by designing a trigger classication scheme based on
conditions that are necessary to cause an observable effect. Effectively, this
means we dene the required conditions under which suitable inputs can
trigger a certain bug. This new classication method comes with several

30 rememberr

Trg_EXT related to external inputs

- _rst a (cold or warm) reset.

- _pci an interaction with PCIe.

- _usb an interaction with USB.

- _ram a specic DRAM conguration.

- _iom an access through the IOMMU.

- _bus system bus (HyperTransport, QPI, etc.).

Table 2.10: Classication of EXT triggers.

Trg_FEA related to features

- _fpu oating-point instructions.

- _dbg debug features such as breakpoints.

- _cid design identication (CPUID reports).

- _mon monitoring (MONITOR and MWAIT).

- _tra tracing features.

- _cus other specic features (SSE, MMX, etc.).

Table 2.11: Classication of FEA triggers.

benets. First, it allows deriving valuable insights even if only a limited
amount of information is available. This makes our scheme especially useful
for newer microprocessors or ISAs where fewer errata are available. Second,
the categories we dened are largely independent and not exclusive, which
allows for a simple estimation of a bug’s complexity: the more necessary
conditions are involved, the more complex the bug is to trigger. Furthermore,
this classication scheme can easily be augmented in the future with new
trigger classes, if needed.

In Table 2.4, Table 2.5, Table 2.6, Table 2.7, Table 2.8, Table 2.9, Table 2.10
and Table 2.11, we show all the categories for trigger that we dened on
the abstract and class levels. We write class descriptors as the concatenation
of two elements:

(i) a prex determining whether it refers to a trigger, context, or effect,
and

(ii) a sufx determining the class, given the prex.

2.5 classification 31

Ctx_PRV related to privileges

- _boo booting or being in the BIOS.

- _vmg being a virtual machine guest.

- _rea operating in real mode.

- _vmh being a hypervisor.

- _smm being in SMM.

Ctx_FEA related to features

- _sec security feature enabled (SGX, SVM, etc.).

- _sgc running in a single-core conguration.

Ctx_PHY non-digital conditions

- _pkg package-specic.

- _tmp temperature-specic.

- _vol voltage-specic.

Table 2.12: Classication of contexts.

For example, the class Trg_EXT consists of all triggers involving external
input (e.g., a PCIe device). We write abstract descriptors as the concatenation
of two elements as well:

(i) a prex determining the class where the abstract category belongs to,
and

(ii) a sufx determining the abstract category, given the prex.

For example, the abstract category Trg_EXT_rst refers to applying cold or
warm resets.

Contexts

Some bugs can only happen in specic settings, for example, in a virtual
machine guest or during BIOS/UEFI initialization. Bugs that can be pro-
voked from user mode represent a particular security risk as unprivileged
user applications are usually executed in this mode. Contrary to triggers,
contexts are disjunctive: there may exist multiple contexts in which the same

bug can be triggered. That said, for a given erratum, it is sufcient to be in

32 rememberr

Eff_HNG related to hangs

- _unp an unpredictable behavior.

- _hng a hang of the processor.

- _crh a crash of the processor.

- _boo a boot failure.

Eff_FLT related to faults

- _mca a machine check exception.

- _unc an uncorrectable error.

- _fsp one or multiple spurious faults.

- _fms one or multiple missing faults.

- _fid a wrong fault identier or order.

Eff_CRP related to corruptions

- _prf a wrong performance counter value.

- _reg a wrong MSR value.

Eff_EXT related to physical outputs

- _pci issues observable on the PCIe side.

- _usb issues observable on the USB side.

- _mmd multimedia issues (e.g., audio, graphics).

- _ram abnormal interaction with DRAM.

- _pow abnormal power consumption.

Table 2.13: Classication of observable effects.

any of its contexts to observe the bug. In Table 2.12, we list all the abstract

and class context categories that we derived from our considered errata.

Observable Effects

The main objective of our effect classication is to nd an answer to the
question: where to look at when testing a design against an erratum with
multiple observable effects?

In Table 2.13, we describe all the abstract and class categories for ob-
servable effects that we derived from the errata under study. Similar to

2.5 classification 33

tr
g
C
F
G

w
rg

tr
g
P
O
W

th
t

tr
g
P
O
W

p
w
c

tr
g
F
E
A

cu
s

tr
g
E
X
T
p
ci

tr
g
F
E
A

d
b
g

tr
g
M
O
P
m
m
p

tr
g
P
R
V

v
m
t

tr
g
F
E
A

tr
a

tr
g
C
F
G

p
ag

tr
g
E
X
T
ra
m

tr
g
F
L
T
m
ca

tr
g
M
O
P
se
g

tr
g
E
X
T
u
sb

tr
g
M
O
P
at
p

tr
g
E
X
T
rs
t

tr
g
F
E
A

fp
u

tr
g
M
O
P
n
st

tr
g
C
F
G

v
m
c

tr
g
F
L
T
o
v
f

tr
g
E
X
T
io
m

tr
g
P
R
V

re
t

tr
g
E
X
T
b
u
s

tr
g
M
B
R

m
b
r

tr
g
F
L
T
tm

r

tr
g
F
E
A

ci
d

tr
g
F
E
A

m
o
n

tr
g
F
L
T
sw

f

tr
g
M
B
R

cb
r

tr
g
M
O
P
sp
e

tr
g
M
B
R

p
b
r

tr
g
M
O
P
fe
n

tr
g
M
O
P

c

tr
g
M
O
P
p
tw

0

5

10

15

A
ff
ec
te
d
er
ra
ta
(%

)

Figure 2.10: Most frequent triggers of all errata.

contexts, an erratum’s observable effects are disjunctive. For example, if a
corrupted conguration register inevitably leads to an unexpected fault, for
instance, because its corruption triggers an exception, then this bug simul-
taneously belongs to two effect categories: wrong MSR value (Eff_CRP_reg)
and spurious faults (Eff_FLT_fsp). There are also cases where an effect is
observable in different ways. To give an example, an operation bringing
the CPU to some incorrect power state can be observed either by reading a
conguration register or by measuring the CPU’s power consumption.

Only a few bugs can be considered non-critical: criticality generally de-
pends on the assumptions made by the software running on the faulty
CPU. Therefore, it is necessary to be conservative in this matter. For ex-
ample, crashes and hangs are evidently critical: systems depending on
the liveliness of the CPU would critically suffer. On the other extreme,
seemingly innocuous wrong values in performance monitors could as well
have critical consequences [79], not only on performance due to incorrect
monitoring but also on security, since several recently proposed security
defenses depend on the integrity of performance counters [80–89]. Wrong
performance counter values open exploitable breaches in these defense
systems.

2.5.2 Insights

In this section, we leverage RemembERR to present new insights about the
most common triggers, contexts, and observations. To avoid any bias in our
analysis, we use RemembERR with deduplicated (unique) errata.

34 rememberr

1 2 3 4 5 6 7

Number of involved triggers

0

10

20

30

40
P
ro
p
o
rt
io
n
o
f
er
ra
ta
(%

)
37.9

31.6
28.4

32.6

14.214.6

3.6 4.7
0.9 1.4 0.5 0.4 0.2 0.4

Intel

AMD

Figure 2.11: Number of errata by the number of triggers.

triggers . Our analysis starts by studying the most frequent triggers for
Intel and AMD designs. We present the results in Figure 2.10. We can see
that the most frequent triggers are either related to specic congurations
set up by writing to model-specic registers (trg_CFG_wrg), power throttling
(trg_POW_tht), or to power state transitions (trg_POW_pwc). More generally,
many bugs require triggers related to power management, virtualization,
external inputs, or features such as debugging or tracing. This suggests
that implementing power management or communicating with other com-
ponents (DRAM, memory-mapped components, peripherals such as PCIe)
seems to be particularly challenging, thus resulting in many bugs. Such
inputs correspond to stimuli that are difcult to supply to simulation or
emulation prototypes that solely rely on the logical operation and that rule
out power or peripheral physical layer considerations. Such bugs seem to
be mostly discoverable by silicon testing. On the contrary, only ve errata
for AMD and one for Intel mention that the bug can only be triggered in
simulation.

(O7) Observation. Most errata require specic MSR interaction or con-
guration combined with throttling, power state transitions, or periph-
eral inputs.

Figure 2.11 shows how many errata have a certain number of triggers.
14.4% of the errata do not specify any clear trigger or refer to trivial
triggers such as usual load and store operations or intense workloads, and
are therefore excluded from the gure. Mixing the errata from the two
vendors, in total 49% of the errata require at least two combined triggers to
cause a faulty behavior. However, we cannot derive whether bugs involving

2.5 classification 35

tr
g
C
F
G

p
ag

tr
g
C
F
G

v
m
c

tr
g
C
F
G

w
rg

tr
g
E
X
T
b
u
s

tr
g
E
X
T
io
m

tr
g
E
X
T
p
ci

tr
g
E
X
T
ra
m

tr
g
E
X
T
rs
t

tr
g
E
X
T
u
sb

tr
g
F
E
A

ci
d

tr
g
F
E
A

cu
s

tr
g
F
E
A

d
b
g

tr
g
F
E
A

fp
u

tr
g
F
E
A

m
o
n

tr
g
F
E
A

tr
a

tr
g
F
L
T
m
ca

tr
g
F
L
T
o
v
f

tr
g
F
L
T
sw

f

tr
g
F
L
T
tm

r

tr
g
M
B
R

cb
r

tr
g
M
B
R

m
b
r

tr
g
M
B
R

p
b
r

tr
g
M
O
P
at
p

tr
g
M
O
P
fe
n

tr
g
M
O
P

c

tr
g
M
O
P
m
m
p

tr
g
M
O
P
n
st

tr
g
M
O
P
p
tw

tr
g
M
O
P
se
g

tr
g
M
O
P
sp
e

tr
g
P
O
W

p
w
c

tr
g
P
O
W

th
t

tr
g
P
R
V

re
t

tr
g
P
R
V

v
m
t

trg CFG pag

trg CFG vmc

trg CFG wrg

trg EXT bus

trg EXT iom

trg EXT pci

trg EXT ram

trg EXT rst

trg EXT usb

trg FEA cid

trg FEA cus

trg FEA dbg

trg FEA fpu

trg FEA mon

trg FEA tra

trg FLT mca

trg FLT ovf

trg FLT swf

trg FLT tmr

trg MBR cbr

trg MBR mbr

trg MBR pbr

trg MOP atp

trg MOP fen

trg MOP c

trg MOP mmp

trg MOP nst

trg MOP ptw

trg MOP seg

trg MOP spe

trg POW pwc

trg POW tht

trg PRV ret

trg PRV vmt

11 11 1 7 1 16 10 2 1 6 1 3 2 2 3 5 1 10 28 4 4 2 2 3 17

5 2 10 6 5 1 1 2 1 1 4 11 2 3 1 5 21

6 6 7 16 9 7 1 21 12 2 2 16 4 9 1 9 2 2 11 4 1 21 7 3 6 3 14 27 5 12

7 2 2 1 1 4 13 2

3 1 1 3 1 2 5 4 1

3 4 7 1 5 1 9 13

2 2 3 1 1 9 19

1 2 2 2 4 2 10 16

2 3 1 1 3 1 3 2 1 2 9 2 2 3 2 2

1 1 1 2

13 8 13 8 3 4 1 11 1 1 8 11 1 12 2 5 2 7 16

3 16 2 4 1 2 2 2 4 2 7 2 17 4 2 10 16

1 2 1 2 3 2 2 3 9 1 1 1

2 1 4 9 3 1

3 3 3 8 3 7 1 5 7 5 4 12

4 1 1 1 1 1 4 1 3

2 2 4 7 3 2 1

2 1 4 1 3

13 7 6

1 1 2 2 1 1 1

1 1 1 1 8 2 3

3 1 1

2 6 2 1 1 2 1 1 1

1 1 1

2 1 1 1 1 1

8 4 2 4 9 6 7

1 3 1 3 13

1 2

1 4 12

49 2 2

8

Figure 2.12: Pairwise cross-correlation between distinct abstract triggers. The
values represent the number of errata documents that require at least

these two triggers.

multiple triggers are rare or have been tested less. 8.7% of Intel and 20.8% of
AMD unique errata mention that a “complex set of conditions” is required
to trigger the bug. We ignored these indications as they are not precise
enough to be exploited reliably.

Figure 2.12 shows pairwise correlations between triggers over all exam-
ined errata from AMD and Intel. This gure provides two specic insights:
the relevant complex triggers and their interaction. Triggers typically in-
teracting with other triggers are visible through highly populated lines.
Regarding concrete interaction, a complex trigger can consist of debug fea-
tures (trg_FEA_dbg) and virtual machine state transitions (trg_PRV_vmt), as
we can see their intersection is salient. This insight is crucial for an efcient

36 rememberr

C
o
re

1
(D

)

C
o
re

1
(M

)

C
o
re

2
(D

)

C
o
re

2
(M

)

C
o
re

3
(D

)

C
o
re

3
(M

)

C
o
re

4
(D

)

C
o
re

4
(M

)

C
o
re

5
(D

)

C
o
re

5
(M

)

C
o
re

6

C
o
re

7
-8

C
o
re

8
-9

C
o
re

1
0

C
o
re

1
1

C
o
re

1
2

0

10

20

30

40

50

60

R
el
at
iv
e
tr
ig
g
er

re
p
re
se
n
ta
ti
o
n
(%

)

trg CFG

trg EXT

trg FEA

trg FLT

trg MBR

trg MOP

trg POW

trg PRV

Figure 2.13: Trigger classes over Intel Core generations.

trg
M
B
R

trg
M
O
P

trg
FL
T

trg
PR
V

trg
C
FG

trg
PO
W

trg
EX
T

trg
FE
A

0

5

10

15

20

T
ri
g
g
er

o
cc
u
rr
en
ce
s
(%

) Intel AMD

Figure 2.14: Relative representation of trigger classes between Intel and AMD.

and thorough testing campaign. For example, many bugs involving DDR
(trg_EXT_vmt) or PCIe (trg_EXT_pci) will never be triggered until power
levels change.

(O8) Observation. Some abstract triggers tend to correlate strongly,
while most do not.

Figure 2.13 shows how the trigger classes evolved over different genera-
tions of Intel Core designs. Notably, errata triggered at memory boundaries
(trg_MBR) are absent in the two latest Intel Core generations. This could be
explained by different reasons: Intel’s testing approach might have become
more rigorous in this direction, or this kind of bug is now more difcult

2.5 classification 37

trg
EX
T
bu
s

trg
EX
T
io
m

trg
EX
T
pc
i

trg
EX
T
ra
m

trg
EX
T
rs
t

trg
EX
T
us
b

0

1

2

3

T
ri
g
g
er

o
cc
u
rr
en
ce
s
(%

)

Intel AMD

Figure 2.15: Relative representation of triggers related to external stimuli between
Intel and AMD.

trg
FE
A
cu
s

trg
FE
A
db
g

trg
FE
A
fp
u

trg
FE
A
m
on

trg
FE
A
tra

trg
FE
A
ci
d

0

1

2

3

4

T
ri
g
g
er

o
cc
u
rr
en
ce
s
(%

)

Intel AMD

Figure 2.16: Relative representation of triggers related to specic features be-
tween Intel and AMD.

to nd, or they have not yet been found and reported. Errata triggered by
specic features or external communication have constantly been dominat-
ing. Without resorting to the former, more than 60% of the known errata
cannot be reproduced in the 10th generation. Errata triggered by privilege
transitions are gaining importance in the last generation. Importantly, all
trigger classes are always necessary to trigger some bugs, except in the
latest two generations. We additionally note that errata increasingly relate
to specic features (trg_FEA), again, except for the latest two generations.
Arguably, the latter generations may be too recent to draw conclusions, as
we expect more errata to be released in the coming months and years.

38 rememberr

(O9) Observation. It is necessary to apply all trigger classes to trigger
all known bugs.

Figure 2.14 shows the relative trigger class representation between Intel
and AMD errata. In this gure, for each vendor, we counted the total
number of triggers for all unique errata and grouped them by the trigger
classes. Overall, the representation of each trigger class is highly similar
between the two vendors, which is interesting given that not only the
designs are different, but also the vendors, testing and validation processes
certainly substantially differ. Only the trigger classes related to external
stimuli and specic features vary signicantly between the two vendors.

(O10) Observation. The representation of trigger classes over the errata
corpora is very similar for Intel and AMD.

Figure 2.15 and Figure 2.16 show a more specic analysis of the two latter
trigger classes and clearly indicate the more specic differences between
Intel and AMD errata. Concerning the triggers related to external stimuli, it
is important to note that some CPUs ofoad certain peripheral functionali-
ties to an external chipset whose errata are not necessarily included in the
documents under study. Concerning the triggers related to specic features,
we observe a clear overrepresentation of triggers related to custom features
and tracing features in Intel compared to AMD.

contexts . In the next step of our study, we want to determine the
context that most of the bugs require. Similar to the triggers, this knowledge
is crucial for efciently testing designs as certain bugs may only occur in
specic contexts.

Figure 2.17 shows the most frequent contexts among Intel and AMD er-
rata. Our data shows that running from within a virtual machine (ctx_PRV_vmg)
is particularly prone to bugs. An explanation for this could be that today’s
hardware virtualization extensions (e.g., Intel’s VT-x or AMD’s SVM) are
complex and deeply rooted in the CPU’s design, making their rigorous
testing more challenging.

(O11) Observation. Most errors occur in the context of hardware sup-
port for virtual machine guests.

effects . Next, we investigated which effects are the most valuable indi-
cators for determining whether a bug was triggered. Figure 2.18 shows the

2.5 classification 39

ct
x
P
R
V

v
m
g

ct
x
F
E
A

se
c

ct
x
P
H
Y

tm
p

ct
x
P
R
V

b
o
o

ct
x
P
R
V

sm
m

ct
x
P
R
V

v
m
h

ct
x
P
H
Y

v
o
l

ct
x
C
F
G

sg
c

ct
x
P
H
Y

p
k
g

0.0

2.5

5.0

7.5

A
ff
ec
te
d
er
ra
ta
(%

)

6.7

4.6

3.5 3.5

1.8 1.7
1.2

0.4 0.3

Figure 2.17: Most frequent contexts of all errata.

ef
f
C
R
P
re
g

ef
f
H
N
G

h
n
g

ef
f
H
N
G

u
n
p

ef
f
C
R
P
p
rf

ef
f
F
L
T
m
ca

ef
f
F
L
T
fs
p

ef
f
E
X
T
p
ci

ef
f
F
L
T
fm

s

ef
f
E
X
T
u
sb

ef
f
E
X
T
ra
m

ef
f
E
X
T
m
m
d

ef
f
F
L
T

d

ef
f
F
L
T
u
n
c

ef
f
H
N
G

b
o
o

ef
f
H
N
G

cr
h

0

10

20

A
ff
ec
te
d
er
ra
ta
(%

) 19.6
17.3

13.7 13.5

8.7 7.9 7.4 6.7
4.5 4.3 4 3.2 2.5

1.2 1.2

Figure 2.18: Most frequent effects for all errata.

most frequent observable effects in Intel and AMD designs. Most bugs man-
ifest themselves as a corrupted register (eff_CRP_reg), a hang (eff_HNG_hng),
or an unpredictable behavior (eff_HNG_unp). While an unpredictable behav-
ior is not clear (vendors do not provide more information in these cases),
the rst two cases can easily be observed and may provide useful indicators
for discovering new bugs.

(O12) Observation. Corrupted registers and hangs are the most com-
mon observable effect on Intel and AMD designs.

model specific registers . Based on our previous observation that
corrupted registers are the most common observable effect, we wanted
to know which registers provide information about unexpected behavior.

40 rememberr

M
C
x
S
T
A
T
U
S

M
C
x
A
D
D
R

IB
S
O
P
D
A
T
A
x

IB
S
F
E
T
C
H

C
T
L

C
P
U
ID

P
W
R

T
H
E
R
M

P
E
R
F
L
E
G
A
C
Y

C
T
L
3

P
E
R
F
L
E
G
A
C
Y

C
T
L
0

IB
S
O
P
C
T
L

B
R

IN
S
T
R
E
T
IR
E
D

R
T
IT

S
T
A
T
U
S

0

2

4

6

A
ff
e
c
te
d
e
rr
a
ta
(%

)

6.9

1.6
1.2 1.2

0.9 0.8 0.8 0.8 0.6 0.6

Intel

M
C
x
S
T
A
T
U
S

M
C
x
A
D
D
R

IB
S
O
P
D
A
T
A
x

IB
S
F
E
T
C
H

C
T
L

P
E
R
F
L
E
G
A
C
Y

C
T
R

IB
S
O
P
C
T
L

H
W
C
R

M
C
x
M
IS
C

P
S
ta
te
D
e
f

M
C
x
C
T
L

4.2

2.9

1.9
1.6

1.3 1.1 1.1 1.1
0.8

0.5

AMD

Figure 2.19: Most frequent MSR containing observable effects for Intel and AMD.

Figure 2.19 shows the most frequent observable effects in Intel and AMD
designs. For both vendors, the machine check status registers (MCx_STATUS
and MCx_ADDR) witness a bug in most cases (7.1% to 8.5% of all unique errata),
followed by Instruction Based Sampling (IBS) registers and performance
counters.

(O13) Observation. Among MSRs, Machine Check Status Registers
most often indicate a bug’s occurrence.

In summary, we designed a new hierarchical errata classication scheme
that helps underlining new insights about reported bugs in complex de-
signs. In Section 2.6, we concretely discuss how these insights may lead to
improvements in design validation methodologies and toolchains.

2.6 applications to design testing

In this section, we answer two questions. First, why do design testing
and validation tools and methodologies, widely used in the industry, fail
at detecting bugs reported in errata? Second, how would they benet
from RemembERR to detect past, present, and future bugs? We focus on
how RemembERR can improve different families of testing and validation

2.6 applications to design testing 41

methodologies rather than focusing on specic tools, given that vendors
often make use of in-house tools [32].

2.6.1 Dynamic methods

Dynamic methods consist of applying inputs to a simulated, emulated,
or physical (manufactured) design and verifying compliance of signals
with a specication or expected values. While simulation [54–57, 90] and
emulation [91, 92] are useful to nd simple bugs early in the design process,
silicon testing is necessary to nd many complex bugs [41–45]. Two major
challenges when looking for bugs with dynamic methods are the immense
input space and the vast observation space, where state observation may
interfere with attempts to trigger bugs. In both cases, RemembERR offers
potential for improvement.

challenge : input space . CPUs usually have many pins and take
sequential inputs over many cycles until a bug is eventually triggered;
therefore, an exhaustive exploration is infeasible. A common response to
this challenge is Constrained Random Verication (CRV) [19]. CRV applies
a series of input signals that comply with a set of constraints, such as
respecting a bus protocol. However, while this method can nd shallow
bugs in common design paths, the probability of triggering complex bugs
is comparatively small.

Today’s fuzzers have not settled on seed input corpora or a way to gener-
ate them. For example, RFUZZ [12] requires that “only some parameters to
the fuzzer, such as the mutation technique and seed inputs to use, need to
be specied by the user.”. While reference [93] pretends to improve over the
state of the art using an empty seed le, some successful experiments were
seeded with some input sequences that stress interesting design features.
DifuzzRTL [5] does not specify how it chooses its initial seed corpus, while
HyperFuzzing [94] only vaguely says that it requires “an initial pool of
inputs for the fuzzer seeded with a few interesting behaviors.” TheHuzz [4]
takes its conguration instructions statically from existing codebases, does
not target specic functionalities, and samples its test instructions uni-
formly. Therefore, the young movement toward fuzzing hardware designs
will seemingly prot from a more carefully selected initial input corpus.

Active research has targeted input generation for the pre-silicon phase [20–
26, 35–38, 95–101], but it does not extend to emulation or silicon testing.
Therefore, input generation for emulation or silicon testing is still an open

42 rememberr

problem. RemembERR provides the best possible solution that does not
require modifying the design in silicon. This is a signicant advantage as
modifying physical design is an enormous effort and ends up not testing the
original design in all aspects. RemembERR precisely indicates which sets of
inputs empirically interact and could trigger bugs, as shown in Figure 2.12.
This knowledge can then be integrated into automatic dynamic testing of an
emulated or manufactured design, taking the best of both worlds: targeted
inputs and high execution speed under real-world conditions.

challenge : observation space . A too frequent and exhaustive
observation can have detrimental effects. RemembERR provides empirical
observation points that indicate CPU malfunctions and correlates them
with the set of input types provided. This enables a much more ne-grained
observation strategy, where the observation footprint is minimal.

In simulation, an excessive observation causes a longer run time. In
emulation and silicon testing, the observation challenge becomes critical
because almost all observations must be performed online, e.g., by reading
performance counters. Excessive observations not only reduce testing per-
formance but also hinder triggering bugs because heavy inspection may
prevent timing-sensitive bugs from happening.

Besides, recent fuzzing work would benet from enhanced observation
heuristics. RFUZZ [12] is incapable of discovering any bug on its own [4]
as it does not compare its state with any reference. Authors of TheHuzz [4]
conrmed that directing observations is one major challenge for a synthe-
sizable porting of their simulator-based testing system. DifuzzRTL [27]
relies on a golden model implemented in software and may benet from
limiting its observation volume as well. Knowledge about which design
parts to observe, in correlation with the supplied inputs, has the potential
to empower such new fuzzer proposals.

runtime detection. Previous work proposes inserting pervasive CPU
modications for online bug detection [29, 30, 51, 52]. They are all data-
driven, and in particular, each work performed an ad-hoc partial and
non-systematic errata study. RemembERR provides all the necessary data
to strengthen these systems and foster future work in this area without
requiring researchers to conduct time-consuming errata studies repetitively.

2.6 applications to design testing 43

2.6.2 Formal methods

Formal methods statically analyze a design along with properties that are
usually specied manually [31]. For instance, Formal Property Verica-
tion (FPV) [32, 33, 39, 102, 103] ensures that a set of assertions is never
violated in a given design. This technique is often used in two design testing
stages [34]:

(a) after thorough CRV to validate corner cases, and

(b) when a silicon bug happens that has not been detected before.

Another instance of a formal method is Secure Path Verication (SPV) [102–
106], which checks for unexpected information ows across designs, there-
fore allowing for design-global policies that are otherwise difcult to express
with classical assertions. Formal methods are subject to state explosion and
require a manual denition of the policies.

challenge : state explosion. A common approach for tackling the
state explosion problem [31, 40, 60, 61] is to treat parts of the design as
a “black box” and replace them by a model [40]. However, this limits the
validation to properties specic to those parts that are not black-boxed [31].
An interesting yet unaddressed challenge is choosing the subset of the
design that can be black-boxed to nd a given class of bugs.

RemembERR provides a large amount of empirical data for identifying
modules that typically interact with each other and could cause bugs.
Our most immediate observation is that power management modules
seem to have been vastly excluded from the parts of the design that are
formally veried. We argue that the input correlation knowledge provided
by RemembERR will substantially help to scope black-boxing more suitably.

challenge : handwritten policies . Policies and assertions are
usually hand-written, for example, as SystemVerilog assertions [107] or in
Property Specication Language [108]. This process is manual and error-
prone, and to the best of our knowledge, no existing work proposed a way
to resolve it.

RemembERR provides the necessary data to foster research in automatic
data-driven policy generation for formal verication.

44 rememberr

2.6.3 Manual inspection

Manual inspection is integral to design validation [31] but is challenging for
complex designs and bugs of interest. Without any knowledge of common
errors, manual inspection is deemed to fail. For example, an engineer
responsible for testing a memory controller will benet from the dozens of
concrete bug instances that happened in the past and in other designs to
ensure that they do not repeat. However, the current state of RemembERR
is limited by the black-box nature of errata as they are published today. A
description of the root cause associated with each erratum would provide
enormous help in empirically distinguishing safe from dangerous hardware
design practices.

2.7 discussion

We discuss selected observations we made while creating and interpreting
RemembERR and provide further information for its future users.

patchable errors . The errata documents do not show all known
errors present in CPUs when they are released. Two classes of bugs are
missing. First, bugs that are patchable by microcode updates. Such updates
are usually not documented but can be reverse-engineered [109]. Second,
bugs that are no longer valid, e.g., because a re-spin has been released and
the older version is no longer ofcially supported. Errata of this type (about
2%) are listed in the summary of errata documents, but details (e.g., the
description) remain hidden.

other microprocessor vendors . Intel and AMD are not the only
major vendors of complex microprocessors that provide errata for their
designs. ARM, for example, does so as well. We focused our work on Intel
and AMD because they produce their design entirely from scratch, without
relying on other vendors of major blocks (e.g., complete cores). Therefore,
we expect these errata to be the most insightful as the vendors control the
whole design process chain. Besides that, Intel and AMD microprocessors
have a long history of designs, which gives us access to valuable long-term
data.

learning from the past. The entire corpus of errata that we analyzed
relies exclusively on bugs that have already been discovered, albeit some
of them more recently. Therefore, our analysis cannot tell much about yet

2.8 related work 45

undiscovered bug classes and trigger-context-effect correlations. However,
in Section 2.4 we showed that bugs are sometimes rediscovered years apart,
suggesting that industrial testing and validation methods can still gain
rigor from our analysis. For example, our ndings may help direct testing
efforts to specic areas (i.e., contexts) that are known to be most affected
by bugs. The efciency of design testing can be improved by focusing on
the most common triggers of these areas and the components where they
typically have an observable effect. In addition, the growing open-source
microprocessor community will learn tremendously from the errors of their
more mature siblings, which will help in preventing similar mistakes.

recommendations for errata formatting . Current errata doc-
uments are formatted for humans, and given the mistakes present in the
documents, it is likely that vendors do not have any form of a systematic
knowledge base for erratum storage and analysis. One vendor has con-
rmed not having such a database, and that their only source of errata
knowledge is the errata documents and the employees’ experience.

We propose a new format for errata descriptions, as exemplied by the
transformation of Table 2.1 into Table 2.14, because the current state of
the art for errata description (composed of a title, a problem description,
implications, workarounds, and a status eld) is unsatisfying for systematic
analysis.

root cause . The root cause information is currently absent from almost
all errata. One CPU vendor conrmed that triggers and effects are inten-
tionally left inaccurate to avoid revealing design details, therefore there is
limited hope for root cause publication but such databases may be main-
tained internally. With information on root causes, an errata database would
go one step further than RemembERR by providing empirical data corre-
lated with triggers, contexts and effects for identifying root causes, which is
known to be a difcult problem [42, 44, 45, 48, 110]. Root cause information
would additionally rst underline which design parts are the most difcult
to implement correctly and what are the most common mistakes.

2.8 related work

Following, we present existing work that examines public CPU bug informa-
tion (Section 2.8.1). Afterward, we introduce previous work that improves
silicon testing (Section 2.8.2).

46 rememberr

ID: [Some unique identier shared with identical errata in other designs]

Title: x87 FDP Value May be Saved Incorrectly

Triggers:

Abstract: Trg_FEA_fpu
Concrete: Execution of FSAVE, FNSAVE, FSTENV, or FNSTENV

Contexts:

Abstract: Ctx_PRV_rea
Concrete: Operating in real-address mode or virtual-8086 mode

Effects:

Abstract: Eff_HNG_unp
Concrete: Incorrect value for the x87 FDP

Comments: This erratum does not apply if the last non-control x87 instruc-
tion had an unmasked exception.

Root cause: [Here, an explanation of the root cause may be provided]

Workaround: None identied.

Status: No x.

Table 2.14: An erratum in the proposed format.

Errata Criteria Goal

[29] 296 (OpenSPARC) Type Programmable module to react to errata online

[111] 280 (students) Type Design a testing ow capable of catching errors

[110] Students & research Type Recommendations for end users

Table 2.15: Summary of work that examined errata in open-source CPUs.

Errata Criteria Goal

RemembERR 2,563 Trg/Ctx/Eff Provide support for data-driven design testing

[30] 301 Severity Monitor hardware security invariants

[53] 37 Location Find internal signals corresponding to bugs

[52] 172 Type, severity Programmable module to react to errata online

[51] 470 Location, severity Programmable module to react to errata online

[50] 535 Location, severity Taxonomy for dependable systems

[112] – – Recommendations for end users

Table 2.16: Summary of work that examined errata in commercial CPUs.

2.8.1 Errata-based

Table 2.15 and Table 2.16 summarize work that studied errata from open-
source and commercial CPUs, respectively. Previous work provides frag-

2.9 conclusion 47

mented information extracted from errata to provide a classication that
justies a specic approach that solves a given problem. Unlike Remem-
bERR, none provides clear insights on representative bug triggers and
effects in modern CPUs. Insights from RemembERR are exploitable for
future research in design testing and validation.

2.8.2 Directed silicon testing

There are two directions aiming to improve inputs and observations for
silicon testing.

eliminating the golden model . Golden models are a bottleneck
for silicon testing. Wagner et al. [47] propose to use complementary pairs
of instruction blocks to ensure that the CPU’s architectural state is left
untouched after execution if no bug has been triggered on the CPU. Foutris
et al. [49] identify equivalences between instructions from different ISAs to
compare executions on largely different CPUs.

bug observability. In some cases, it is difcult to triage a bug. Lin
et al. [48, 113] propose methods to transform an instruction sequence to
accelerate the observability of a triggered bug. Farahmandi et al. [114]
propose an observability measure consisting of test sequences.

RemembERR is complementary to and compatible with these directions
by providing insights for more effective input generation and guidelines
about the elements to observe for efcient testing.

2.9 conclusion

We analyzed 2,563 errata from all Intel Core and AMD CPUs since 2008.
Individually, these errata provide little insight other than a description of a
particular bug, but collectively they provide insightful information about
gaps in current design testing and validation practices. To this end, we built
RemembERR, a large-scale database of annotated errata. We solved the
challenge of unclear triggers by the observation that triggers are almost al-
ways conjunctive. In contrast, contexts and effects are disjunctive: observing
the most convenient location is sufcient. In our analysis using Remem-
bERR, we discovered the most common triggers, contexts, and effects in
errata, which we then correlated to provide concrete guidelines for the next
generation of design testing and validation tools.

48 rememberr

acknowledgments

The authors would like to thank the anonymous reviewers for their valuable
feedback. The work in this chapter was supported by a Microsoft Swiss JRC
grant, the Swiss State Secretariat for Education, Research and Innovation
under contract number MB22.00057 (ERC-StG PROMISE), and the Swiss
National Science Foundation under NCCR Automation, grant agreement
51NF40_180545.

3
CELL I FT: LEVERAG ING CELLS FOR SCALABLE AND
PREC I SE DYNAMIC INFORMAT ION FLOW TRACK ING
IN RTL

Dynamic Information Flow Tracking (dynamic IFT) is a well-known tech-
nique with many security applications such as analyzing the behavior of
a system given an input and detecting security violations. While there are
many widely used open dynamic IFT solutions that scale to large software,
the same level of support is unfortunately lacking for hardware. This gap is
becoming more pronounced with the increasing complexity of open-source
hardware and the plethora of recent hardware attacks.

We introduce CellIFT, a new design point in the space of dynamic IFT for
hardware. CellIFT leverages the logical macrocell abstraction (e.g., an adder)
to achieve scalability, precision and completeness when instrumenting a
given Register Transfer Level (RTL) hardware design. Cell-level dynamic IFT
does not suffer from the scalability problems that are inherent to lower levels
of abstraction such as gates, yet it achieves completeness given the limited
number of cell types. We show the versatility of CellIFT by instrumenting
ve distinct RISC-V designs, one of which is a complete SoC. The only
existing complete solution already fails to instrument two of these designs.
Our extensive evaluation using microbenchmarks and standard RISC-V
benchmarks on the instrumented designs shows that CellIFT is 21× to 61×
faster than the state of the art in terms of simulation runtime without losing
precision. We further show-case concrete applications of CellIFT in four
scenarios by detecting: 1) sources of microarchitectural information leakage,
2) microarchitectural bugs such as Meltdown, 3) speculative vulnerabilities
such as Spectre-BCB, and 4) SoC-wide architectural design aws. We release
CellIFT as open source to enable RTL-level security research for the wider
community.

49

50 cellift

3.1 introduction

Despite substantial design verication efforts, there is a continual discov-
ery of security-critical hardware design aws that are exploitable from
software [2, 3, 77, 78, 115–126]. These vulnerabilities are often difcult to
mitigate post-silicon, leaving systems exposed for long periods of time.
While critical, current tools and techniques are unfortunately incapable
of capturing these issues in large designs. There is hence an urgent need
for empowering Electronic Design Automation (EDA) tools for detecting
security vulnerabilities during hardware design.

dynamic information flow tracking . A promising approach
for analyzing the state of a system given an input and verifying certain
security properties is Information Flow Tracking (IFT). Static IFT either
needs to consider all possible states which does not scale beyond very
simple designs [31, 60, 61] or it over-approximates, leading to precision
problems [127]. In contrast, dynamic IFT only considers changes to the
state made in a single execution, allowing it to potentially scale to larger
hardware designs for checking design-wide security properties. As an
example, many of the recently discovered security aws [2, 3, 77, 117,
123–126] can be formulated as a dynamic IFT constraint. While there are
many popular dynamic IFT tools that scale to large software [128–130], the
same level of support is currently lacking for hardware. With the increasing
popularity of open-source hardware, an open-source dynamic IFT solution
that scales to larger designs has the potential to signicantly improve
security testing and enable new security applications.

cellift. It is possible to instrument a given design at one of the two
extreme abstraction levels for dynamic IFT: either by considering its low-
level gate netlist [1]; or by considering the high-level Hardware Description
Language (HDL) [131]. Unfortunately, both abstraction levels come with
signicant shortcomings: instrumenting the gates has severe scalability

issues while instrumenting the HDL requires managing complex language
constructs, making it challenging to achieve completeness. We make a key
observation that instrumenting the macrocells, which are at a slightly lower
abstraction level than HDL, preserves the benets of both extremes without
their shortcomings. There are a manageable number of cell1 types (e.g.,
adder, shifter, multiplexer, etc.) for which we can create shadow cell types that
precisely track the information ows and scale comfortably to larger designs.

1 We use the terms cell and macrocell interchangeably.

3.1 introduction 51

Unlike gates, these shadow cells map efciently to large units available in
commodity CPUs (e.g., registers or arithmetic and logic units), signicantly
improving the performance of dynamic IFT during simulation. To design
these shadow cells, we introduce a generic precise information ow tracking
logic scheme called m-replica based on cell replication. To make this scheme
scale efciently with increasing cell widths while preserving precision, we
exploit the cells’ mathematical properties of monotonicity, transportability
and Translability that we formally dene and leverage for the rst time.
We then prototype CellIFT, our dynamic IFT solution that instruments a
given Register Transfer Level (RTL) design by leveraging the design of our
shadow cell types.

To show the versatility of CellIFT, we use it to instrument ve RISC-V
cores, one of which integrated in a System on a Chip (SoC) which we also
instrument to show that CellIFT can successfully be applied on various
complex and heterogeneous designs. The only existing (gate-level) solu-
tion that can handle generic designs [1] already fails at instrumenting and
simulating two of these ve designs. Our evaluation shows that compared
to instrumenting gates, CellIFT is more precise, more than 5× faster with
instrumentation and synthesis while requiring 5× less memory, and more
than 21× faster during simulations. We show-case the benets of CellIFT in
four different scenarios using our instrumented designs: rst, we show how
CellIFT can be used to measure changes to the microarchitectural state as a
result of executing an instruction or a memory access. This information can
be used to detect various sources of timing-based information leakage [132–
134]. Second and third, we show how CellIFT can enable the detection
of microarchitectural vulnerabilities such as Meltdown [2] or MDS [77,
78], or speculative execution attacks such as Spectre [3] respectively. Fi-
nally, we use CellIFT to detect design aws that can lead to architectural
security vulnerabilities using various scenarios from a hardware hacking
challenge [31].

In summary, we make the following contributions:

• We present a scalable, precise and complete cell-level dynamic IFT
design.

• We implement CellIFT based on this new design as new passes into
the Yosys open-source synthesizer [135].

• We evaluate CellIFT on ve RISC-V designs: Ibex [136], Ariane [74],
Rocket [137], BOOM [75] and the PULPissimo SoC from the Hack@DAC’18
competition [31].

52 cellift

• We use CellIFT in several scenarios to show the benets of scalable
and precise dynamic IFT support as part of the hardware design
toolchain.

open sourcing . To enable reproducibility and to let researchers and
practitioners benet from CellIFT, we publish the source code of CellIFT,
the experiments and the instrumented designs at this URL:
https://comsec.ethz.ch/cellift.

3.2 background

In this section, we provide a brief background on existing techniques for
detecting architectural vulnerabilities, their (in)effectiveness against recent
microarchitectural vulnerabilities, and discuss how hardware dynamic IFT
mechanisms can provide a better alternative.

3.2.1 Detecting architectural vulnerabilities

Hardware designers employ various methods in an attempt to detect aws
in the RTL representation. These methods are manual or automatic; auto-
matic methods are local or global.

manual inspection. Dessouky et al. [31] recently showed that existing
verication methods do not effectively cover many of the cross-layer bugs
resulting from subtle hardware-software interactions. Hardware designers
often resort to manual inspection of the RTL and simulation of hand-
crafted input to detect these complex cases. Unfortunately, this approach is
cumbersome, error-prone, and incompatible with any form of continuous
integration that can catch subtle vulnerabilities introduced after the initial
hardware design. Errata of recent complex designs such as 12th generation
Intel® Core™ processors contain an overwhelming proportion of such
bugs [138].

local methods . Hardware designers often rely on SystemVerilog as-
sertions (SVA) [139] to ensure correct behavior and capture unintended
behavior that can lead to bugs at all design stages. These assertions express
local properties such as compliance to a given bus protocol, or compliance
of a state machine with some expected properties. Assertion-based veri-
cation formal methods such as Formal Property Verication (FPV) [32, 33]
can provably check whether these assertions can be triggered in a given

3.2 background 53

RTL design and provide examples when they do. These formal methods
unfortunately suffer from state explosion due to their static nature, limiting
their scalability. Therefore, hardware designers and verication engineers
often deploy Constrained Random Verication (CRV) extensively [19]. CRV
tries out a series of signals while respecting some constraints, such as com-
plying with some input bus protocol, to empirically nd out whether local
assertions can be triggered.

global methods . Many security properties are not expressible in the
form of local assertions. For instance, a local assertion cannot infer the
origin or destination of some data transfer and therefore cannot verify
condentiality properties in the general case. Formal methods such as
Security Path Verication (SPV) [140] and Formal Security Verication
(FSV) [102] are designed to statically catch unauthorized information ows.
However, these methods are reported to suffer from the same scalability
issues as local formal methods and typically requires black-boxing parts of
the design [40], hampering their ability to detect information ows across
the entire design.

3.2.2 Microarchitectural vulnerabilities

While architectural security vulnerabilities already pose a challenge for
existing tools and techniques, microarchitectural security vulnerabilities
that do not explicitly collide with architectural specications pose an even
greater challenge. These security vulnerabilities are not only legion [2, 3, 77,
78, 115–126], but industry leaders still struggle to mitigate them, sometimes
requiring multiple generations of attempts before reaching an effective
mitigation as seen in the recent MDS class of vulnerabilities [77, 78, 118,
141]. Such vulnerabilities can lead to condentiality breaches, effectively
enabling arbitrary read primitives. Recent work [142] attempts to detect
microarchitectural vulnerabilities by exploiting the RTL description, but
requires tailoring to a specic design and vulnerability, without providing
exploitability insights. We hence urgently need a design-agnostic solution
that can detect different classes of vulnerabilities with little effort.

54 cellift

3.2.3 Dynamic hardware IFT

Hardware dynamic IFT provides the possibility of following how informa-
tion ows propagate in a design [1, 131]. Condentiality, integrity, isolation,
constant time and design integrity properties are canonical properties cov-
ered by dynamic IFT [143]. As opposed to static methods, dynamic IFT does
not consider the entire set of possible states in a given design, but instead
allows to dynamically prove properties in a specic context. Consequently,
it is immune to the state explosion problem.

Dynamic IFT requires: a mechanism for tracking information ows and
policies expressed on top of this mechanism. According to certain policies,
signals are temporarily or permanently labeled as taint sources or taint

sinks during runtime, and an alarm is triggered when an information ow
from a taint source to a taint sink is detected through the mechanism.
Condentiality policies inspect the data ow from secret data locations
(taint sources) to unauthorized entities (taint sinks). Conversely, integrity
policies inspect data ows from unauthorized entities (taint sources) to
sensitive locations (taint sinks). As an example, Meltdown-type [144] class
of vulnerabilities [2, 77, 78, 117, 118, 123–126] can be expressed as a policy
that disallows memory loads from a different domain.

Two hardware dynamic IFT mechanisms have been proposed so far:
GLIFT [1] and RTLIFT [131]. They add new elements to the design to
support dynamic IFT, but at different levels: GLIFT instruments the design
at the level of elementary logic gates (AND, NOT, OR and multiplexers),
and RTLIFT proposes to instrument the HDL directly. We will show that
GLIFT has critical scalability problems, and (to the best of our knowledge)
a complete RTLIFT has never been implemented due to the tremendous
engineering effort required.

Table 3.1 summarizes all the verication techniques discussed in this sec-
tion. While dynamic IFT is an attractive alternative for detecting hardware
vulnerabilities, existing solutions such as GLIFT [1] and RTLIFT [131] have
severe limitations that hamper their adoption. In the following section, we
analyze these limitations and discuss how our new hardware dynamic IFT
design addresses them.

3.3 dynamic hardware ift using cells 55

Local Global

Static FPV [32, 33] SPV [140], FSV [102]

Dynamic CRV [19] GLIFT [1], RTLIFT [131]

Table 3.1: Classication of design verication methods.

3.3 dynamic hardware ift using cells

There are three properties that are signicant for any hardware dynamic
IFT mechanism to see adoption: rst, it should be able to operate on any
given (valid) digital design (i.e., the completeness property). Second, it should
scale to large designs with high instrumentation performance and usable
simulation overhead (i.e., the scalability property). Finally, it should faithfully
propagate tainted signals while minimizing the taint spilled to additional
signals in the design (i.e., the precision property). Unfortunately, none of the
existing techniques cover all these important properties together.

The most common strategy is instrumenting designs with IFT logic at
the gate level [1, 145–148]. While achieving completeness due to the lim-
ited number of different gates, it suffers from scalability problems: since
IFT logic construction occurs after logic synthesis (i.e., once the design
is expressed as a list of elementary logic gates), it incurs an exponential
worst-case time complexity at instrumentation time [146]. As an example,
instrumenting Ibex [136], a small RISC-V design, requires 72× more el-
ements when instrumenting the design with gates, in comparison with
the non-instrumented design. Perhaps more importantly, the gate-level
approach also incurs high overhead at simulation time, as it forces simu-
lators to simulate the design and the shadow logic gate by gate, while a
signicant speed-up would result from simulating higher-level constructs
such as additions or comparisons.

Another issue with gate-level IFT logic is its precision. While precise IFT
for a given design is an undecidable problem [149], doing so at the (low)
level of gates exacerbates the problem. While there exists precise IFT logic
for individual gates, the interaction of IFT logic from different gates leads
to imprecision (i.e., overtainting).

To improve this situation, it is possible to generate the IFT logic at a higher
level of abstraction. Previous work on elevating the abstraction level uses

56 cellift

Low level High level

Gate level Language levelCell level

Precision

Scalability
Completeness

Precision

Scalability
Completeness

Precision

Scalability
Completeness

Figure 3.1: Different levels of instrumentation and their characteristics.

HDL [131, 150]. They either introduce new language features that require
porting by a human expert at signicant time and backward-compatibility
cost [150], or it is challenging to make them complete given the many
possible language constructs to be supported [131].

ift logic based on macrocells . We argue that to gain the benets
of both strategies, we need to operate at a different level of abstraction than
gates or HDL. This level should be high enough to achieve high performance
and precision, while generic enough to achieve completeness and backward-
compatibility. Macrocells, to which we refer as cells, denote higher-level
intermediate representations of synthesizable hardware primitives (such as
an adder, comparator, etc.). Cells are limited in types but are parametrizable
in widths and in other important properties such as signedness. Whereas
working at gate-level requires breaking these primitives, cells are close to
HDL and often map directly to HDL constructs. Therefore, cells form typical
intermediate representations in hardware tools, explicitly in LLHD [151]
and Yosys [135], and in Verilator which maps similar constructs to the
simulating machine’s ISA [90]. This makes cells an ideal candidate for
generating the IFT logic as shown in Figure 3.1. Because all cells correspond
to HDL constructs, CellIFT’s shadow logic design is also a necessary basis
for any HDL instrumentation that would strive to achieve completeness in
the future.

Designing a scalable and precise IFT logic for general-purpose digital
designs, however, poses certain challenges. First, it is unclear whether we
can follow a generic approach for designing a precise IFT logic for any
given cell, leading us to our rst research question:

3.4 the canonical m-replica architecture 57

RQ1. Is there a generic IFT logic pattern that could precisely instrument
any combinational cell?

Second, while a generic approach will enable us to achieve completeness
as we will soon discuss, it will come at a high cost. To reduce this cost, we
can perhaps make use of the structure of the cells themselves, leading to
our second research question:

RQ2. Do cells have certain logical properties that we can exploit to
scale the resulting IFT logic?

Section 3.4 answers the rst question by introducing a novel m-replica
architecture which can be adapted to implement the IFT logic with per-
fect precision for any given combinational cell. This architecture, however,
scales exponentially with the cell’s width. Section 3.5 answers the second
question by introducing three fundamental logical properties of different
cells, namely monotonicity, transportability, and Translability that can be
leveraged to adapt the m-replica architecture for creating efcient per-cell
IFT logic.

3.4 the canonical m-replica architecture

We introduce a replication-based architecture that can be used to generate
IFT logic for any given cell with perfect precision.

3.4.1 Precise information propagation

Let C be a combinational cell, and Ct its IFT logic. C has some input bits
(Ij)0≤j<Ni

and output bits C(I) := (Yj)0≤j<No
2. We dene (Itj)0≤j<Ni

and

Ct(I, It) := (Yt
j)0≤j<No

to be the taint signals corresponding to C’s input
and outputs, respectively. The terms Ni and No represent the number of
input bits and the number of output bits of the cell. This means that Itj = 1

if the input signal Ij is tainted, and similarly Yt
j = 1 if the output signal Yj

is tainted.

2 We use the := notation when dening new terms.

58 cellift

Because some cells, such as adders, have two inputs A and B of identical
width, we dene Aj := Ij and Bj := I

j+
Ni
2
. We refer to the index j in Aj or

Bj as operand position, as opposed to the position in the aggregated input I.

precise information propagation rule . Information propagates
from the set of tainted input signals {Ij | Itj = 1} to some output signal Yj

if there exists another input vector Ĩ for C, which differs from I only on
tainted input bits, and such that the two input vectors I and Ĩ cause distinct
values for Yj. Equation 3.1 formalizes this rule. ⊕ denotes exclusive or.

Ct(I, It)j = 1 ⇐⇒

∃ Ĩ | (I ⊕ Ĩ) ∧ It = 0 and C(Ĩ)j = C(I)j
(3.1)

Equivalently, for a given input I with taint vector It, and for a given
output bit Yj, Yj is tainted if the value of Yj can be changed by only changing
the value of I at some tainted indices. We use this insight in the design of
IFT logic using cell replication.

3.4.2 Replication-based design

Any digital circuit can be represented as an interconnection of state-holding
cells (ip-ops and latches) and purely combinational (stateless) cells. We
discuss how we can instrument these different cell types using replication.

state-holding cells . A simple replication sufces to instrument
state-holding cells: when a signal is delayed by entering such a cell, the
same delay affects the information carried by this signal, as shown in
Figure 3.2a. This means that for every state-holding cell, we simply need an
additional shadow cell that stores the taint information for that cell.

combinational cells . Combinational blocks should be instrumented
with combinational logic as illustrated in Figure 3.2b. As shown in Fig-
ure 3.2c, dividing combinational blocks results in simulating more elements
individually to generate intermediate signals and limits performance and
precision.

Based on Equation 3.1, precise information ow tracking can be achieved
by trying each possible input Ĩ, ltered by the input taints It. This can be
achieved by replicating 2Ni instances of C. This canonical design can create
precise IFT logic for any cell, given that it uses copies of the cells.

3.5 exploiting the logical properties of cells 59

c)b)

and

IFT

a)

and

IFT

or

IFT

Figure 3.2: Instrumentation of a) a state-holding cell, b) a combinational block
and c) an exclusive-or cell with single input bit at gate level. Signals
generated to feed the gate-level IFT logic but absent at cell level are
drawn in blue. The t exponent indicates taint signals.

Figure 3.3 shows the design of such an IFT logic for a combinational cell
C with 2 inputs and 3 outputs. The four instances C00, C01, C10, C11 are
identical instances of C supplied with distinct inputs depending on the
input taint assignment. Equation 3.2 formalizes these instances as Cv(I, It),
with v in unsigned binary representation. In Equation 3.2, It has the role of
selector in multiplexers between I and v.

Cv := Cv(I, It) := C((I ∧ It) ∨ (v ∧ It)) (3.2)

We call such IFT logic architectures m-replica, where m is the number of
instances of the original cell present in the IFT logic. The canonical m-replica
architecture requires an exponential number of copies of C in the input size
Ni. In the following sections, we specialize this generic structure using cells’
mathematical properties to improve its scalability.

3.5 exploiting the logical properties of cells

We exploit monotonicity (Section 3.5.1), transportability (Section 3.5.2) and
translatability (Section 3.5.3) properties to enhance the performance of
replication-based cell IFT logic by reducing its size without loss of precision.

60 cellift

0 1

0 1

0 1

0 1

0 1

0 1

0 1

0 1

2 6 26

22

Figure 3.3: IFT logic for a cell C with 2 input bits and 3 output bits. The wires
corresponding to the highest order output bit are omitted, and those
of the second output bit are dashed. Stage (1) replaces the tainted
inputs with all possible value combinations. In stage (2), C is repli-
cated 2Ni times to take all input combinations. Stage (3) compares the
outputs of all replicas. Finally, for each output bit index, a taint is set
if two replicas have different output bits at the corresponding index.

3.5.1 Monotonic cells

Prevalent cells such as comparators and some logical reductions (e.g., multi-
bit OR cells) feature a property which we call monotonicity. Monotonicity
allows pruning of the canonical replica-based IFT logic to obtain a constant-
complexity 2-replica IFT logic. We dene three monotonicity properties:

1. bitwise non-decreasing. A cell is bitwise non-decreasing in input offset j
if no output bit of the cell can fall from 1 to 0 when Ij is raised from 0

to 1. For example, an OR cell is bitwise non-decreasing in all its input
bits.

3.5 exploiting the logical properties of cells 61

2. bitwise non-increasing. A cell is bitwise non-increasing in input offset j
if no output bit of the cell can raise from 0 to 1 when Ij is raised from
0 to 1. For example, an inverter cell is bitwise non-increasing in all its
input bits.

3. bitwise monotonic. A cell is monotonic if with respect to each of its
input bits, the cell is non-increasing or non-decreasing.

ift logic for bitwise non-decreasing cells . Let C be bitwise
non-decreasing in all its input bits. We build a 2-replica IFT logic using
polarization as described in Equation 3.3.

Yt = C0...0 ⊕ C1...1 (3.3)

Proof. Let C be a bitwise non-decreasing cell in all its input bits. Let 0 ≤

j < No (No is the output width of the cell), and consider a xed input taint
vector It. If the output bit Yj is zero for some input I, then Yj is also zero

for the input Ĩ0 := I ∧ It given the non-decreasing property. Conversely, if
Yj is one for some input value Ĩ such that I ∧ It = Ĩ ∧ It (i.e., I and Ĩ differ

only on tainted bits), then Yj is also one for the input Ĩ1 := I ∨ It, again
given the non-decreasing property. It follows that all output bits that can
be toggled by applying two inputs I and Ĩ of tainted bits are also toggled
between applying Ĩ0 and Ĩ1. This allows us to reduce m-replica to 2-replica
using polarization: Yt = C(Ĩ0)⊕ C(Ĩ1) = C0...0 ⊕ C1...1.
ift logic for bitwise monotonic cells . We now extend polariza-
tion to all bitwise monotonic cells. If C is non-increasing with respect to an
input bit at index i, then it is non-decreasing in the negation of this input
bit. Because bit inversion does not affect taint propagation, any monotonic
cell can similarly be instrumented according to Equation 3.4, where di := 1
if C is non-decreasing in input bit i, and di := 0 if C is non-increasing in
input bit i.

Yt = CdNi−1...d0 ⊕ CdNi−1...d0 (3.4)

summary. Table 3.2 shows the 2-replicas used to instrument logic re-
ductions and comparisons. Unsigned comparisons, and or-/and-reductions
are bitwise non-decreasing cells in all input bits. Signed comparison cells
are bitwise non-decreasing on all bits except the most signicant bit of the
operands, which is non-increasing.

62 cellift

Cell Replica 1 Replica 2

Reductions C0...0 ⊕ C1...1

Unsigned comparisons C00.0;11.1 ⊕ C11.1;00.0

Signed comparisons C10.0;01.1 ⊕ C01.1;10.0

Table 3.2: 2-replica-based instrumentation of monotonic cells. Logical reductions
represent multi-input OR or AND cells with single output. Compar-
isons represent <, ≤, ≥ and >.

Bitwise

Bitwise

a)

Transportability

support

Polarization

Bitwise

Bitwise

b)

Transportability

support

Polarization

Figure 3.4: 2-replica-based IFTL for a) an adder cell and b) a subtractor cell.

3.5.2 Transportable cells

Abundant arithmetic cells such as addition and subtraction cells can be in-
strumented in constant complexity thanks to their transportability property.
Transportable cells have the same width for each operand, and information
from an operand bit always ows to the corresponding output bit. We
can instrument these cells using polarization (similar to monotonic cells)
complemented with transportability-supporting IFT logic that implements
a conjunction of the input bits.

3.5 exploiting the logical properties of cells 63

Full adderFull adderFull adder

Figure 3.5: Notations for the ripple carry adder.

Adder cells

We design the IFT logic of the adder cell as described by Equation 3.5 and
illustrated in Figure 3.4-a using polarization conjuncted with the transporta-
bility term At ∨ Bt. We prove the correctness and precision of the adder IFT
logic illustrated in Figure 3.4 and equivalently given by Equation 3.5. We
conduct a proof by induction on a ripple carry adder. Because any adder
implementation fullls the same mathematical function, the proof holds for
any adder implementation.

notations . We denote by W := Ni
2 the width of each input A and B.

As illustrated in Figure 3.5 we adopt the following notations: for the jth
full adder inputs: Aj, Bj and cj−1, and outputs Yj and cj, with the carry

bit sequence c := {cW , ..., c0, c−1} where c−1 := 0. We dene Ĩ0 := I ∧ It

(tainted inputs deasserted) and Ĩ1 := I ∨ It (tainted inputs asserted). The
generic notation X represents Y or c.

proof by induction. We consider the following induction property
HXj

, for 0 ≤ j < W, for a xed input I with taints It:

«[∃ Ĩ such that (I ⊕ Ĩ) ∧ It (match_on_nontaint property) and Xj(I) ̸=

Xj(Ĩ) (toggledXj
)]⇐⇒ [Xj(Ĩ

0) ̸= Xj(Ĩ
1) (polarizationXj

) or At
j ∨ Bt

j (transportj)]
»: HXj

.

Intuitively, we want to prove, for each output bit Yj and each carry bit
cj (including the intermediate carry bits), that if I and some other input Ĩ
match on non-tainted bits and this bit Yj or cj is toggled between inputs
I and Ĩ, then polarization and transportability taint the information ow
(correctness), and conversely (precision).

64 cellift

Proof. Let us rst prove Hc0 and HY0 . Because Y0 = A0 ⊕ B0 and c0 =
A0 ∧ B0, then for Y0 or c0 to be tainted, at least one of A0 and B0 must be
tainted, and conversely. Therefore HY0 and Hc0 hold by (transport0).

Let us now prove Hcj and HYj
for a given 1 ≤ j < W, assuming that Hcj−1

holds. We start by showing the implication: ∃ Ĩ such that (match_on_nontaint)
and (toggledXj

) =⇒ (polarizationXj
) or (transportj), corresponding to

correctness.

If At
j or B

t
j , then Hcj and HYj

hold by (transportj). Let us suppose from

now that At
j = Bt

j = 0 and suppose the existence of Ĩ that satises the
conditions (match_on_nontaint) and (toggledcj

). Because Aj and Bj are not

tainted and therefore identical in I and Ĩ by (match_on_nontaint), and
because cj =



Aj + Bj + cj−1 ≥ 2


, it results that cj−1 is toggled when
applying Ĩ instead of I. By Hcj−1 , (a) Either cj−1 is toggled between Ĩ0 and
Ĩ1 (polarizationcj−1

), (b) Or At
j−1 ∨ Bt

j−1 (transportj−1). Hence, in both cases

(a) and (b), cj is also toggled between Ĩ0 and Ĩ1, i.e., (polarizationcj) holds.

Let us now prove: ∃ Ĩ such that (match_on_nontaint) and (toggledXj
) ⇐=

(polarizationXj
) or (transportj), corresponding to precision. If (polarizationXj

),

then Ĩ = Ĩ0 or Ĩ = Ĩ1. If (transportj), then because cj =


Aj + Bj + cj−1 ≥ 2


and Yj is


Aj + Bj + cj−1


mod 2, Ĩ : I ⊕ (1 ≪ j) is a candidate.

Therefore, HYj
and Hcj hold. We have proved correctness and precision

of the IFT logic described by Equation 3.5.

This proof generalizes to any adder implementation, since different
architectures provide the same mathematical function for addition.

Yt =


C0...0 ⊕ C1...1


∨ At ∨ Bt (3.5)

Subtractor cells

Similarly to the adder cell, we base the IFT logic of the subtractor cell on a
2-replica polarized architecture supplemented with transportability logic to
form the IFT logic given in Figure 3.4-b. The rst polarization term takes
operand A with tainted bits set to zero and operand B with tainted bits
set to one, and conversely for the second polarization term. A proof by
induction in all aspects is similar to the proof given for the adder since

3.5 exploiting the logical properties of cells 65

$eq(a)

A =

B =

$eq 0(b)

A =

B =

Figure 3.6: Examples of an equality (a) with tainted output, and (b) without a
tainted output. The equality cells compare the top input bits with the
corresponding bottom input bits.

subtraction can be formulated for this architecture based on the identity
A− B = A+ B+ 1.

Negation cells

We dene I as the data concatenation of the inputs (i.e., {A, B}), and It

as the taint input concatenation (i.e., {At, Bt}) The negation cell dened
by Y = I + 1 exposes the same property as an adder, except that there
is a single operand and no carry bit in the negation cell. Therefore, we
instrument it in constant complexity using the same polarization replicas,
conjuncted with the transparency term It that corresponds to a single
operand.

(In)equality cells

(In)equality cells are transportable under the condition that all non-tainted
bit pairs are equal. More precisely, the output bit of an (in)equality cell is
tainted if and only if the two following conditions are fullled:

1. At least one input bit is tainted.

2. For each operand position where no input bit is tainted, the two input
bits are equal.

Figure 3.6 shows two equality cells. The equality cell (a) has its output
tainted because it fullls the two conditions. However, cell (b) has its output
non-tainted, because the leftmost bits do not match and are not tainted.
Note that the value of tainted input bits never matters. We design the
IFT logic of the equality cell as in Equation 3.6, where TAB := At ∨ Bt

66 cellift

Cell Polarization Junction Transportability

Add C0...0 ⊕ C1...1 ∨ At ∨ Bt

Sub C0.0;1.1 ⊕ C1.1;0.0 ∨ At ∨ Bt

Neg C0...0 ⊕ C1...1 ∨ It

Eq/Neq C(A ∧ TAB; B ∧ TAB) ∧


It

Table 3.3: 2-replica-based instrumentation of transportable (addition, subtraction,
negation) or conditionally transportable (equality, inequality) cells.

represents which bits are neither tainted in A nor in B. The term


It, where
It := {At, Bt}, is one if and only if any of the input bits is tainted.

Yt = C(A ∧ TAB; B ∧ TAB) ∧


It (3.6)

Summary

We summarize the IFT logic of transportable and conditionally transportable
cells in Table 3.3.

3.5.3 Translatable cells

Some cells do not present powerful properties such as monotonicity or
transportability for generating efcient and precise IFT logic. In this section,
we take a different approach to tackle the problem: instead of relying on
the replication mechanism immediately, we consider each output bit, and
examine which input condition results in tainting output bits.

Input decomposition

Examining each output bit of a cell and its relationship with input taints
and values results in complex formulas that are not efcient to implement
for wide-input cells that can be present in real digital designs. It is often
convenient to make simplifying assumptions such as some operand being
non-tainted. For instance, for the left shift operator A ≪ B, if we assume
that Bt = 0, then Yt = At ≪ B. We show that the combination of two

3.5 exploiting the logical properties of cells 67

properties, namely translatability and taint combination surjectivity, allows us
to construct new architectures that support such simplifying assumptions.

translatability. A two-input cell C is said to be right side translatable

(over addition) if it satises Equation 3.7 for all inputs A and B.

C(A, B′ + B′′) = C(C(A, B′), B′′) (3.7)

As an example, a left shift by an unsigned offset provides this property:
A ≪ (B′ + B′′) = (A ≪ B′) ≪ B′′.

Additionally, the following decomposition holds: B = B0 + B ∧ Bt, where
B0 := B ∧ Bt (i.e., B where all the tainted input bits are zeros). This leads
to Equation 3.8, which has two instances of C on the right-hand side: one
instance with a non-tainted second operand B0, and one instance where all
non-tainted bits of the second operand are zero.

C(A, B0 + B ∧ Bt) = C(C(A, B0), B ∧ Bt) (3.8)

taint decomposition surjectivity. Equation 3.7 relies on cell com-
position. However, it is known that in the general case, cell composition
does not preserve precision of the IFT logic [1, 131]. We introduce the taint

decomposition surjectivity property: a cell’s IFT logic L is taint decomposi-
tion surjective if and only if precision is unaffected when performing IFT
through this cell. Assuming k output bits are tainted, if L can generate
the 2k outputs by changing the data at tainted input bits, then L is taint
decomposition surjective.

Let us formalize this property and use it to prove the precision of the IFT
logic for unsigned-offset logical shift cells. Let C be a cell with IFT logic
L := Ct. L is said to be taint combination surjective if for all inputs I and all
taint vectors It, it satises Equation 3.9. Informally, such an IFT logic does
not create any new interdependencies between taint signals, because all
potential outputs Ỹ that match with Y on non-tainted output bits Yt are
obtainable from inputs Ĩ that match with I on non-tainted input bits It.

∀Ỹ∃ Ĩ | Ct((I ∧ It) ∨ (Ĩ ∧ It)) = (Y ∧ Yt) ∨ (Ỹ ∧ Yt) (3.9)

A composition of cells C′(C(I)), each with precise IFT logic L and L′, can
be precisely instrumented with L′ ◦ L if L is taint combination surjective. A
composition of taint combination surjective IFT logics is also taint combi-

68 cellift

AND

AND

OR

Figure 3.7: Multiplexer as the succession of a cell C′ and an OR gate. A = B = 1,
At = Bt = 0 and St = 1, therefore the value of S does not matter for
the IFT logic.

nation surjective: the rst IFT logic allows to generate all the intermediate
combinations for the second by surjectivity.

intuition. We introduce a counterexample, where Ct is not taint com-
bination surjective. The multiplexer is known to be imprecise [1] if it is
instrumented as the composition of one OR gate after two AND gates.
Figure 3.7 shows a multiplexer made of two cells: C′ and an OR gate.
The outputs U and V of C′ are tainted, given the precise taint propaga-
tion rule. C′t is not taint combination surjective, because for A = B = 1,
At = Bt = 0 and St = 1, there is no input Ĩ = {Ã, B̃, S̃} which matches
with I on non-tainted bits (i.e., on A and B), that produces the output
Ỹ := {U = 0,V = 0}.

logical shifts . All logical shift cells with untainted offset are taint
combination surjective. We provide a proof for the left shift. The proof for
the right shift is similar.

Proof. Let B be the untainted offset (i.e., Bt = 0). Let A be the shifted input,
with taints At. Then, Y = A ≪ B and Yt = At ≪ B. Let Ỹ be a vector of
same width as Y, with Y ∧Yt = Ỹ ∧Yt. Then, Ã := Ỹ ≫ B is a preimage of
Ỹ.

Logical unsigned-offset shift cells

We show that logical shifts by an unsigned offset C(A, B) := A ≪ B, or
C(A, B) := A ≫ B can be decomposed in two successive shifts, each in-
strumented separately, without losing precision. We proceed according to
Equation 3.8, which implies decomposing C into two cells copies, instru-
mented separately: the rst cell in the decomposition is C(A, B0), where

3.5 exploiting the logical properties of cells 69

the offset B0 is independent of the tainted value assignments. The IFT logic
for this replica is given by C(At, B0), i.e. At ≪ B0 and At ≫ B0 for logical
left and right shifts respectively.

The second cell in the decomposition is C(A′, B ∧ Bt), where A′ is the
output of the rst cell. Let us discuss a precise bitwise IFT logic for this
second cell.

We compute an IFT logic for the right shift cell by an unsigned offset by
introducing a pivoting technique. This computation relies on the assumption
that the shift offset B and its taint vector Bt verify B ∧ Bt = 0 (i.e., B is zero
at all non-tainted indices). This property is provided in the second shift cell
obtained from the translatability property.

logical shifts . We introduce the notation t
=, which denotes that

two vectors match on non-tainted bits, as dened in Equation 3.10, and

its counterpart
t
̸= in Equation 3.11. The decomposition by translability

guarantees that all the non-tainted bits in the shift offset B ∧ Bt of this cell
are zero, which substantially simplies the IFT logic computation. We prove
that an IFT logic for this second cell can be expressed by Equation 3.12 for
right shifts and by Equation 3.13 for left shifts.

U
t
= V : ⇐⇒ Ut ∨Vt ∨ [U ⊕V] (3.10)

U
t
̸= V : ⇐⇒ Ut ∨Vt ∨ [U ⊕V] (3.11)

Yt
j =

2NB−1


k=0





B
t
= k



∧



Aj

t
̸= Aj+k



(3.12)

Yt
j =

2NB−1


k=0





B
t
= k



∧



Aj

t
̸= Aj−k



(3.13)

Focusing on a logical right shift, the jth output bit Yj is tainted if either
(explicit tainting) the taint results from shifting some tainted bit Ak to the
right to the index j, or (implicit tainting) some offset B̃ that matches with B

on non-tainted bits gives a different value for Yj, than the offset B.

Because we know that the full-zero vector satises the matching condition
of B̃, there is always some pivot B̃0 = 0 that maps Aj to Yj. We iterate with

70 cellift

some integer k through all the 2NB values of B̃, assuming the worst case
where the taint vector Bt is full of ones. We complete A with zeroes beyond
the most signicant bit to simplify the equations without loss of generality.
If there is any integer k in this range such that (implicit tainting) there is a B̃

that can bring Aj+k to Yj, then Yj is tainted if Aj ̸= Aj+k (because there are
two B̃ instances that result in different values for Yj), or (explicit tainting)
if Aj or Aj+k is tainted, because then there is some B̃ that shifts a tainted
value to the output bit Yj, leading to Equation 3.12.

arithmetical right shift. The IFT logic of the second cell in the
translatability decomposition of an arithmetical right shift can be expressed
by Equation 3.14.

Yt
j =

2NB−1


k=0





B
t
= k



∧



Aj

t
̸= Amin(j+k,NA−1)



(3.14)

The only difference with logical right shift tainting relies in the implicit

tainting part. Instead of completing A with zeroes, A must be completed
with values equal to its most signicant bit ANA−1. From there, a calcula-
tion similar to the logical counterpart leads to the IFT logic described in
Equation 3.14.

We now sketch a proof of the precision of the composition of the two IFT
logic instances resulting from the decomposition of the arithmetical right
shift.

The NA − B0 most signicant bits of C(A, B0)’s output benet from the
taint combination surjectivity of the rst cell’s IFT logic, because these bits
are shifted by a non-tainted offset. Therefore, the second cell’s output taints
corresponding to these inputs in step 2 are precise. The only tainted signals
that cannot be surjectively enumerated are the NA − B0 most signicant bits,
which take A’s most signicant bit’s value. However, although a comparison
between these could lead to an erroneous intermediate result, they will be

eventually tainted by the t
= operator.

Therefore, the composition of the two instances is precise. Because logic
unsigned-offset shift cells are taint combination surjective, the sequence of
the two IFT logics is precise.

3.6 implementation 71

Cell Comp. 1 Comp. 2 (bitwise)

≪ C(A, B0) 2NB−1
k=0





B
t
= k



∧



Aj

t

̸= Aj−k



≫ (logic) C(A, B0) 2NB−1
k=0





B
t
= k



∧



Aj

t

̸= Aj+k



≫ (arith) C(A, B0) 2NB−1
k=0





B
t
= k



∧



Aj

t

̸= Amin(j+k,NA−1)



Table 3.4: 1-replica-based instrumentation of translatable cells. The IFT logic
is the sequence of two components. Shift cells in this table have an
unsigned interpretation of B.

Arithmetical unsigned-offset shift cells

The arithmetical unsigned-offset shift cell benets from the same right-
side translatability as the logical shifts. We decompose them in two cells
before instrumentation, similarly to their logical shift counterparts. The
only difference is the propagation of the most signicant bit. The IFT logic
of the rst cell is identical to the logical counterpart.

Summary

In this section, we used the translatability property to decompose some
cells into two identical cells with simplifying assumptions on operands as
summarized in Table 3.4, while preserving perfect precision.

3.6 implementation

In this section, we provide additional details and describe the implementa-
tion of CellIFT.

3.6.1 CellIFT ow implementation

We integrated CellIFT into the Yosys synthesizer as a synthesis pass over
the design’s internal representation. Since Yosys does not have a complete
understanding of all the SystemVerilog constructs, we rst pre-process the
designs using the open-source sv2v tool that converts SystemVerilog (IEEE

72 cellift

1800-2017) to Verilog (IEEE 1364-2005) [152]. We refer to the processing by
Yosys as the instrumentation step.

For simulation, we use the open-source Verilator simulator [90]. For
emulation, we use Xilinx Vivado. We refer to the processing by Verilator to
produce a simulation binary, or the processing by Vivado until the end of
the FPGA implementation, as the synthesis step.

The CellIFT Yosys pass is made of 4575 lines of C++ code. CellIFT
supports a total of 181 Yosys cell types, of which many are variations of
state-holding elements with reset, enable and clear signals. 8 unsupported
cell types are memories and their ports, because they are substituted in
a previous stage and do not reach the CellIFT pass. The 33 remaining
cell types are not supported because they have never been encountered
when experimenting on various heterogeneous designs. Next, we provide
more information on how we support memories in CellIFT and describe
simple techniques for instrumenting the remaining cells other than the ones
described in Section 3.5.

3.6.2 Instrumenting other cells

memory models . In digital designs, memories are typically substituted
with specic components depending on the design’s target: simulation
model (simulation), block RAM (FPGA), or SRAM (ASIC). CellIFT imple-
ments memory models with conservative IFT rules as follows: (a) Taints are
written and read along with the corresponding data. (b) Memory read from
a tainted address also returns a tainted value. (c) Memories are marked fully
tainted as soon as the inputs and their taints authorize a write operation to
a tainted address. We also implemented memory models that only perform
explicit tainting, i.e., when only rule (a) applies. This allows us to learn
which microarchitectural components are dependent on the tainted address
of a load instruction.

lower-level cells . Exclusive ORs propagate taint as soon as at least
one input bit is tainted. Logic gates ((N)ANDs, (N)ORs and inverters) are
parametrizable in width to prot from wider instructions on the simulating
machine. Multiplexers with multiple selector bits are decomposed into a
tree of single-bit selector multiplexers without losing precision. Then, for a
multiplexer of formula Y = S?B : A, we design the IFT logic expressed in
Equation 3.15, where S, S and St are replicated to have the same width as
A and B.

3.6 implementation 73

Yt = (At ∧ S) ∨ (Bt ∧ S) ∨ ([A⊕ B] ∧ St) (3.15)

3.6.3 Imprecise cell instrumentations

imprecise shift cells . As opposed to their unsigned counterpart,
signed-offset shift cells are not right-side translatable. Because a precise
implementation of these shift cells is expensive, CellIFT implements a
replication-based approximate propagation policy: taint Y completely when-
ever B is tainted, else shift the taints of A by B.

Additionally, on all the designs that we considered, we noted that right
shifts are never larger than 10 bits, whereas left shifts are often larger in
ve reference open-source designs. Therefore, for unsigned shift offsets, in
CellIFT we instrument right shifts precisely and left shifts imprecisely.
imprecise multiplier cell . As proposed in [131], we decompose the
multiplier into a sequence of adders before instrumenting it. This results is
an imprecise IFT logic, but this does not affect overall precision much since
multipliers are mostly present only on data paths. For emulation targets,
to decrease the critical paths we used a shadow logic made of a single OR
reduction, without practical decrease in precision.

3.6.4 Summary

CellIFT instruments all the 22 combinational cell types that we encountered
in our diverse experiments. From these 22 cell types, 3 are similar to
GLIFT when they have a single bit per input. Section 3.7 provides the cell
composition of non-instrumented, and instrumented designs3.

3 One year after publication of this article, RTLIFT authors nally shared their code with us. For
comparisons and equality testing, RTLIFT taints whenever one input bit is tainted. It treats
logic operators AND, OR and NOT operators similarly to CellIFT. It instruments AND and OR
reductions using basic gates. It instruments the shift in the same way as CellIFT’s conservative
version. RTLIFT is not able to instrument any of the designs in this study because of the small
number of supported Verilog contructs.

74 cellift

3.7 evaluation

In this section, we evaluate CellIFT in terms of performance, precision and
completeness by instrumenting heterogeneous and complex designs. We
use microbenchmarks to show how CellIFT compares in terms of precision
and scalability with previous work [1, 131] (Section 3.7.1). To show the
scalability of the instrumentation phase, we instrument ve heterogeneous
designs of various complexities (Section 3.7.2). To show the performance
and precision of CellIFT-instrumented designs, we simulate standard RISC-
V benchmarks (Section 3.7.3). Finally, we show FPGA portability of the
CellIFT-instrumented designs (Section 3.7.4).

evaluation setting . The performance results were obtained on a
machine equipped with an AMD EPYC 7H12 processor at 2.6 GHz equipped
with 256 logical cores and 1 TB of DRAM. We used Verilator 4.212 and
g++11.2 with the -O0 compiler ag similar to what is used for certain
OpenTitan designs [153, 154]. Using compiler optimizations causes spurious
segmentation faults in the Verilator simulation binaries.

baselines . To the best of our knowledge, no mature open-source or
transparent-enough commercial implementations of gate-level or language-
level hardware IFT is available. Therefore, we implemented GLIFT as de-
scribed in the original paper [1] for comparison purposes. As the authors of
RTLIFT [131] were reluctant to share their implementation or provide addi-
tional details, we re-implemented the few operators described in [131]. Our
implementation reproduces their operator-level performance and precision
results.

3.7.1 Microbenchmarks

To evaluate the performance and precision of CellIFT, we instrument and
simulate individual combinational cells with various widths to evaluate
scalability. We apply one million random inputs to each cell and randomize
the taint bits. We measure precision by counting the tainted output bits.

Figure 3.8 shows the performance and precision results of cell microbench-
marks: CellIFT provides a massive speedup in simulation over existing
mechanisms. RTLIFT and CellIFT-instrumented adders and multipliers
have the same precision, whereas CellIFT-instrumented cells are faster. By
design, left shifts suffer from poor precision in this benchmark, which

3.7 evaluation 75

Figure 3.8: Cell microbenchmarks: runtime performance (top) and precision
(bottom) depending on the cell input width, measured from 10 par-
allel identical cells to reduce time measurement noise. Reduce cells
are multi-bit input, single-bit output logic cells (e.g., AND). Precision
numbers represent the cumulative number of tainted output bits. The
left shift cell has an 8 bits wide offset operand, which is common
in the designs that we examined. RTLIFT only instruments add and
mul. Solid lines represent performance and dashed lines represent
precision of CellIFT (green), RTLIFT (gray) and GLIFT (orange).

is based on randomly tainting all input bits: we traded off some empiri-
cally superuous precision in this cell for speed. This design point is not
fundamental as we showed a perfectly precise shift implementation in Sec-
tion 3.5. All the other cells are instrumented at least as precisely as GLIFT

76 cellift

192
196

Ibex Rocket PULPissimo Ariane BOOM
0

10

20

30

40

50

60

70

80

90

D
u
ra
ti
o
n
(m

in
u
te
s
)

Original

CellIFT

GLIFT (failed)

GLIFT

220

240

220

240

125

150

125

150

Ibex Rocket PULPissimo Ariane BOOM
0

10

20

30

40

50

Ibex Rocket PULPissimo Ariane BOOM
0

10

20

30

40

50

R
A
M
h
ig
h
w
a
te
rm

a
rk

(G
B
)

Original CellIFT GLIFT

Figure 3.9: Top: duration of Yosys instrumentation and Verilator synthesis.
Hashed rectangles represent synthesis. Bottom: RAM usage of each
mechanism on each design. Left: instrumentation. Right: synthesis.
Note: vertical axes are broken.

and RTLIFT. Comparison cells are more precise with CellIFT compared to
GLIFT. Since these cells can have large taint fanouts, this precision improves
overall taint results signicantly, which is crucial in practical scenarios as
we will show in Section 3.8. Superior scalability of CellIFT is made evident
by its steadily low runtime for any cell width.

3.7.2 Instrumentation

configurations . We built simple SoCs for Ibex [136] (in its default
Small conguration) and Ariane [74] (with 4-way associative 8 kB instruction
and data L1 caches) by adding memory models and protocol adapters at
the design top levels (caches remain untouched), and inserted memory
models in PULPissimo (Hack@DAC’18 version) in place of the L2 SRAM.

3.7 evaluation 77

We used the Rocket chip generator to create a SoC to interface with the
Rocket core [137] and the BOOM core [155] with reduced cache sizes. These
congurations allow us to run standard software on these designs. We
additionally replaced PULPissimo’s technology-dependent oscillator with a
model. Code and data are preloaded into the memory models prior to any
measurement.

performance . We attempt to instrument and synthesize each design
with both CellIFT and GLIFT, and report the wall clock durations and the
resident memory consumption in Figure 3.9. Verilator failed to synthesize
Ariane (out of memory) and BOOM (timeout after 96 hours) instrumented
with GLIFT due to the excessive complexity of the GLIFT instrumentation.
While piecewise instrumentation of Ariane by GLIFT at a greater engineer-
ing cost could lead to an eventually successful gate-level instrumentation,
these results make the limitations of gate-level instrumentation apparent.

3.7.3 Benchmarks

We run a standard series of RISC-V benchmarks [156] on each design to
assess the performance and precision of CellIFT. We run the single-threaded
benchmarks, where we skip the pmp benchmark, which is not supported
by Ibex in its default conguration. We taint some relevant part of each
benchmark: the rst data element in median, mm, multiply, qsort, rsort and
spmv, the rst instruction in dhrystone, and the number of discs in towers.
Because running benchmarks on a simulated RTL takes very long, we
resized the benchmarks’ inputs so that each experiment point nishes
under 30 minutes. This translated to simulating 4M cycles for Ibex, 200k
cycles for PULPissimo, and 40 k cycles for Ariane, Rocket and BOOM. As
we will show in Section 3.8 simulating this number of cycles is enough to
enable many interesting scenarios.

Figure 3.10 provides details on the cell composition of the evaluated de-
signs before instrumentation, and after instrumentation by each mechanism.
For readability, the size of the cells is not indicated.

Figure 3.11 shows the performance results on all designs and the number
of tainted stateful elements (i.e., precision) on Ibex. Since the performance
variation between the benchmarks is small, we only indicated the average
and standard deviation between the benchmarks. CellIFT is signicantly
faster than GLIFT in simulation. Regarding precision, some benchmarks
such as multiply taint the control ow in Ibex, resulting in abundant taint-

78 cellift

Figure 3.10: Cell composition for each design. The r_ prex denotes reduction
cells (logic cells with multiple input bits but a single output bit. Note
that the Y axis is logarithmic.)

3.7 evaluation 79

300

320

340

360

Ibex Rocket PULPissimo Ariane BOOM

0

20

40

60

80

100

120

S
lo
w
d
o
w
n
fa
c
t
o
r

CellIFT GLIFT

dhrystone median mm multiply qsort rsort spmv towers vvadd
0

500

1000

1500

2000

2500

Ta
in
t
b
it
s
(h
ig
h
w
a
te
rm

a
rk
)

CellIFT

GLIFT

Figure 3.11: Top: average wall clock slowdown of the RISC-V benchmarks of
each design compared with the original designs. Bottom: number of
tainted stateful elements on Ibex.

ing [1]. Manual investigation shows that some ALU operations inuence
subsequent branch predictions, which CellIFT legitimately revealed. Cel-
lIFT’s precision allows exploration of different scenarios in Section 3.8
without observing any false positive.

3.7.4 FPGA emulation

While we optimized CellIFT’s shadow logic for simulation, we show-case
its exibility by porting the ve instrumented designs to an FPGA. For the
FPGA ow, we use Vivado-2019-03 on a machine equipped with a Intel
Xeon Gold 6146 CPU with 48 logical cores at 3.20 GHz with 196 GB of
DRAM, for licensing reasons. We target a xcvu440-ga2892-3-e FPGA at
100MHz. We set a time limit of 48 hours for the synthesis.

results . We successfully port the CellIFT-instrumented designs to the
target FPGA. The synthesis of GLIFT-instrumented BOOM requires 27.57
hours and Ariane times out still at an early stage. With CellIFT, it lasts re-
spectively 5.93 and 4.57 hours to synthesize BOOM and Ariane. Figure 3.12

80 cellift

Ibex Rocket PULPissimo Ariane BOOM
0

20

40

60

80

100

F
re
q
u
e
n
c
y
(M

H
z
)

Ibex Rocket PULPissimo Ariane BOOM
0

500

1000

1500

L
o
o
k
u
p
ta
b
le
s
(t
h
o
u
s
a
n
d
s
)

Original

CellIFT

GLIFT

Figure 3.12: FPGA results. Left: Achieved FPGA frequency. Right: 6-input lookup
table usage.

summarizes the achieved frequencies and resource requirements for each
design. CellIFT usually shortens the critical path compared to GLIFT, pro-
viding a frequency increase of up to 39% over the state of the art. Only
PULPissimo shows a slight frequency decrease of less than 5%. We obtain
an FPGA acceleration over simulation of 256.2 k× and 94.1 k× for Ariane
and BOOM respectively. Since CellIFT is the only dynamic IFT mechanism
to instrument Ariane and to port it to an FPGA, and improves frequency
and utilization compared to the state of the art, these results advocate for a
cell-level (or higher) instrumentation for FPGA emulation.

3.7.5 Summary

We showed that CellIFT is at least as precise and signicantly faster than the
state of the art. It can instrument designs that were so far inaccessible to the
existing solutions, without aggressive and imprecise approximations [148].
In the next section, we show some of the new opportunities offered by
CellIFT thanks to its completeness, correctness, performance, and precision.

3.8 scenarios

We now show how CellIFT could be used to enable new applications. While
there are many applications possible with hardware dynamic IFT, here we
focus on detecting different classes of hardware vulnerabilities with CellIFT.

3.8 scenarios 81

RF

Cycle

0 SRAM

1

2

3

4

Ibex

dcache

PTW LSU

Scoreboard

RF

SRAM

Ariane

TL adapt RF

SRAM

LSU

PULPissimo

buffer

RF

SRAM

Rocket

dcache

memory arrays
(aka. mem)

buffer

SRAM

BOOM

dcache
Miss Status

Holding
Registers

line buffer

9 ...

10 PTW RFPTW

dcache mem

dcache iobuf

11

12

dcache respque

Figure 3.13: Affected microcomponents for a load with tainted address or tainted
data. RF: Register File, TL: TileLink, LSU: Load-Store Unit, PTW:
Page Table Walker.

3.8.1 Discovering microarchitectural leakage

Changes made to the microarchitectural state from secret-dependent data
or control paths can be exploited to leak secret data [132–134]. Cache parti-
tioning schemes attempt to mitigate such attacks [157–159], but there are
other components that can leak information, such as Translation Looka-
side Buffers (TLBs) [160] or branch prediction schemes [161] to name a
few. CellIFT can be used to detect microarchitectural components that can
leak information. This information is valuable for both attackers looking
to discover a new source of leakage and for the defenders that want to
protect the components that might leak sensitive information. We execute a
memory load of some tainted data in memory. The taint propagation in the
design gives us a cycle-accurate knowledge of when, and which bits of the
design are tainted.

Figure 3.13 shows a chronological list of the components that become
tainted in designs that we have instrumented with CellIFT. We make several
observations. First, taints make it very easy to see when any buffer in the
design contains sensitive information. Second, taints provide a convenient
way of measuring latencies in a system. We detected that PULPissimo and
Ibex load data in a single cycle, while the other designs require respectively
4, 10 and 10 cycles. Third, privilege level and page misses do not affect

82 cellift

which components are tainted in any of the considered designs. Finally,
CellIFT is precise in this scenario since the control ow was legitimately
never tainted.

3.8.2 Detecting Meltdown-type vulnerabilities

Meltdown-type vulnerabilities have been haunting CPUs since their in-
troduction in 2018 [2, 77, 78, 117–119, 123–126] At the core, this class of
vulnerabilities allows an invalid load to transiently access data from a
different (higher) privilege level. CellIFT can detect such loads by checking
that that they do not access data from a higher privilege.

ariane . Ariane features an MMU and may suffer from Meltdown, Fore-
shadow or MDS [2, 77, 78, 117, 118]. We craft the following test cases to
trigger these three potential issues:

1. An unprivileged load of a supervisor page (triggering Meltdown [2]).

2. An unprivileged load of a supervisor page with the present bit unset
(triggering Foreshadow [117]).

3. A load from an invalid address without the address bits in the page
table entry (triggering MDS [77, 78, 118]).

To see which of these cases trigger the relevant problem, we taint a target
(supervisor) memory page and congure the page table entry according
to one of the above scenarios. Prior to measuring the malicious load, we
access the tainted page to ensure it is in the cache, and possibly in the
microarchitectural buffers that also have been used for it. The results from
these different cases show that in none of the cases signals get tainted as
a result of the malicious access, showing that Ariane does not suffer from
Meltdown-type vulnerabilities in any of these specic cases. We contacted
the authors who conrmed our observations that Ariane indeed does not
suffer from this class of vulnerabilities.

boom . BOOM v2.2.3 was reported to be susceptible to Meltdown-type
vulnerabilities [142]. We instrument the exact same version, and use CellIFT
for detecting Meltdown-type leakages. Contrary to previous work [142],
we do not use any knowledge of the design’s microarchitecture. We run
a simple Meltdown experiment by transiently loading privileged data in
unprivileged mode and using it as an address for a subsequent load. We
ensure that the privileged page table entry is present in the TLB, and we
taint the privileged word. Given that the load address will be tainted, a

3.8 scenarios 83

Figure 3.14: Tainted bits in a BOOM SoC. Top: Meltdown-type leak: (1) Tainted
privileged data is brought into the L1 cache. (2) The user loads the
privileged data into a physical register. (3) The user immediately
attempts to load using the tainted data as an address. This load
is either allowed (orange, realigned) or forbidden (blue). Bottom:
Spectre-type leak (at cycle 700) occurs if the speculation window is
large enough.

load will spread taint to all sets of the L1 cache among other elements.
Conversely, if we see no taint in the cache, we know that the load fails, and
any leakage from this load cannot be observed using a cache covert channel
in a later stage.

In our experiments, we observe that when the user tries to load privileged
data, (a) If the data is not in the L1 data cache, then the data is fetched into
the cache’s load buffer regardless of any privilege mismatch, and (b) If the
data resides in the L1 data cache already, then the data is loaded into the
physical register le. According to [142], these constitute a Meltdown-type
leaks of L and R classes, respectively.

To assess exploitability, we rst establish a benign baseline. We rst do
a legal load of a tainted address (orange curve in Figure 3.14, top). As
predicted, this taints a large number of elements. Next, we repeat this
experiment with a secret-dependent load, using the privileged (tainted)
data as an address. Figure 3.14 summarizes the taint propagation during the
attack, aligned on the load event. We observe that the taint propagation is
blocked when the page table entry shows a privileged page (blue curve), and
the level of tainting is immediately restored as it was before the malicious

84 cellift

load. While exploitability remained an open question in [142], this result
shows that in this specic case (R1 [142]), the leakage is not exploitable
because it does not leave any observable change. We repeated the exact
same experiments on the newest version of BOOM (v3.0), and draw the
exact same conclusions.

3.8.3 Detecting Spectre-type vulnerabilities

To show how CellIFT can detect Spectre in complex designs, we consider a
Spectre-BCB exploit on BOOM where we taint the secret data. Our exploit
consists of two steps, visible in Figure 3.14 (bottom). First, the secret is
brought to the L1 data cache. Second, the data is speculatively loaded into
the physical register le. We run two experiments. In the rst case, the
mispredicted branch relies on a simple condition (solid line in gure). In the
second case, this branch condition is made more complex by adding four
dependent oating-point divisions, as in a reference exploit [162], which
enlarges the period of speculative execution (dashed line). Intuitively, the
rst experiment may not reveal Spectre-type leakage because the specula-
tion window may be too short. We observe that the Spectre-type leakage
only happens in the second experiment, consistent with this intuition. As
opposed to classical techniques such as [162], CellIFT does not require a
cache attack to assess whether data leaks to microarchitectural elements.

3.8.4 Detecting architectural vulnerabilities

We show how simple policies built on top of CellIFT can detect a large num-
ber of bugs in the PULPissimo-based faulty design used in the Hack@DAC’18
contest, some of which are not detectable by common verication ows.
Detailed bug descriptions are provided in the corresponding paper [31].

address space violations . We build two policies that check for
correct behavior in the interfaces of the memory-mapped components:
(a) All components in the address map must comply to the specied
boundaries. (b) No aliasing must occur; may it be in the specication or
because of an implementation bug. To force these policy checks in the
CellIFT-instrumented design, we perform store operations of tainted data
from the CPU to the addresses before and after each address space boundary.

3.8 scenarios 85

These policies reveal bugs 1, 2, 6, 8 and 22 which could not be expressed by
either SPV or FPV [31].

reachability violations . Our reachability policy checks that cer-
tain instructions do not affect certain components by executing a tainted
instruction. Then, after N cycles, all the components that can be affected by
the CPU are tainted. This allows us to check the integrity and reachability
of components against a specication, revealing bugs 4 and 27. We did
not nd bug 24 with this method, although we had expected it. Manual
code inspection and simulation showed that the bug was not present in the
open-source version of the faulty design [163]. Similarly, we discovered that
bug 7 was inserted in a module which is never instantiated in the design.

reset violations . The reset policy checks that the reset signal clears
the state in the design. We check for the violations of this policy by tainting
state holding elements in the design, and then applying a reset signal.
This reveals which registers and buffers are not cleared during reset, and
which ones are accidentally cleared. This reveals bug 5, but not bug 12 (the
corresponding register has been optimized out because it was not used and
not connected to a clock or reset signal) and bug 16, which lacks a clear
specication.

privilege violations . Our privilege policy checks that instructions
execute at the right privilege level according to the specication. We check
for violations by executing a tainted instruction. Because an unprivileged
user requires to trap to supervisor mode to access privileged locations,
these locations will be tainted some cycles after unprivileged locations.
We did not see such an expected timing difference in tainting of the CSRs
(Control and Status Registers), which hinted to the existence of bug 25.

summary. We showed that the ability of CellIFT to instrument a com-
plete design efciently and precisely enables the implementation of novel
techniques to detect bugs; some of these bugs are known to be difcult or
impossible to express in SPV [140] and FPV [32, 33]. For completeness, we
like to mention that hardware dynamic IFT is not suitable for detecting
hardcoded design parameters (e.g., bugs 15 and 19) or checking function-
ality (e.g., bugs 9 and 15). Some bugs such as 11, 13, 14 and 20, 30 or 31
require more advanced policies. We leave the design of systematic methods
to detect such bugs as future research.

86 cellift

3.9 discussion

We discuss some observations we made while developing CellIFT and
provide more information for its future users.

maturity of the open source flow. During the course of the work
on this Chapter, we provided feedback to the developers of Verilator [90]
and sv2v [152]. None of these two tools was originally mature enough for
the dynamic IFT ow to complete for all the designs under study. These
tools have been improved according to our feedback and have reached a
sufcient maturity to instrument the complex designs that we evaluated.

applications . CellIFT aims to provide scalable hardware dynamic IFT.
Alone, this mechanism does not aim at discovering new microachitectural
vulnerabilities: an important additional element is the scenarios running on
top of CellIFT. These scenarios go beyond the verication of handcrafted
information ow policies. As an example, CellIFT can be leveraged to
provide a new coverage metric, enabling the development of new hardware
fuzzers, which are still in their infancy [93]. Another example is enabling
system-wide condentiality and integrity policies for generic processors.
We leave the exploration of these directions to future work.

instrumentation effort. CellIFT can instrument any digital design
without modication, after parsing by the Yosys SystemVerilog parser [135]
into intermediate cells. However, it is common not to synthesize the mem-
ories, and to instead replace them with a model. Typically, the option of
ignoring memories during synthesis is available, as this is common practice
when mapping a design to an FPGA or to an ASIC ow, where memories
are mapped to specic components.

3.10 related work

We briey discuss work related to CellIFT in ve areas.

hardware dynamic ift. GLIFT [1] is the rst hardware-level dynamic
IFT mechanism and operates at gate level. Previous work discusses the
scalability problems of GLIFT [146] and our results indeed show that it
does not scale to the state-of-the-art RISC-V processors. Various techniques
try to address the scalability issues of GLIFT by using dedicated hard-
ware [164], static analysis [165], policy-specic IFT logic [166, 167], and
trading precision with simpler IFT logic [148]. Orthogonally, CellIFT solves

3.10 related work 87

the scalability problems of GLIFT by generating the IFT logic at a higher
level of abstraction. It would be interesting to see how previous techniques
that scale GLIFT, can be used to scale CellIFT even further.

RTLIFT [131] aims to address scalability and precision problems of GLIFT
by instrumenting the HDL code directly. Unfortunately, existing HDLs are
complex, and it is challenging to achieve completeness by instrumenting
in HDL directly. In comparison, CellIFT achieves completeness by choos-
ing a slightly lower-level yet generic cell abstraction, and outperforms
RTLIFT as shown in Section 3.7.1. Because all cells correspond to simple
HDL constructs, CellIFT provides a strong basis for any future HDL-level
instrumentation.

Non-synthesizable hardware fuzzing of simulation binaries was recently
proposed [93]. However, because the simulation binary’s control ow de-
pends on values in the design, software dynamic IFT will lead to critical
overtainting. Another major drawback of this approach is its restriction to
Verilator.

support for software dynamic ift. Previous work proposes to
provide hardware support for software dynamic IFT [168, 169]. These
solutions are more lightweight but are only suited to nd issues in software,
not in hardware.

static analysis of hardware . Static analysis in combination with
model checking or verication of security properties is a common technique
for improving hardware design security [32, 33, 102, 140, 170]. These tech-
niques, however, have scalability issues due to the state explosion problem.
To make static analysis tractable in certain cases, previous work introduces
a new type system to an existing HDL [171] or a new HDL [150] for check-
ing security properties. These techniques are not backward compatible to
existing designs. In comparison, CellIFT provides a scalable alternative for
checking security properties in unmodied RTL designs.

model-based meltdown detection. IntroSpectre [142] also de-
tected Meltdown-type leakages on BOOM. It uses a Gadget Fuzzer to
generate fuzzing rounds, uses known values instead of taints, and aug-
ments BOOM with a Leakage Analyzer, an ad-hoc IFT mechanism. Whereas
this mechanism may have a faster simulation runtime, CellIFT proposes a
trade-off with several advantages. First, CellIFT is not built into a simulator.
It is therefore compatible with any tool ow. Second, CellIFT is design-
agnostic: it does not require the engineering effort and precise knowledge
about the design to be deployed; CellIFT even reveals the relevant microar-

88 cellift

chitectural elements traversed by tainted signals. Third, CellIFT supports
processed secrets (for instance, the result of an addition with a secret) and
taints in the control paths, whereas the Leakage Analyzer in IntroSpectre
only monitors unchanged secret data in the data path. This last feature is
essential in analyzing exploitability: because no taint reached back caches
or control path, we concluded that R1 [142] is not exploitable, whereas it
remained an open question with IntroSpectre.

hardware testing . Test cases are an effective tool used by practition-
ers to combat hardware bugs. To increase the coverage of test cases, random
testing or more guided methods can be used to increase the coverage [5,
19, 93, 172]. CellIFT can complement these approaches by providing a
mechanism to detect when vulnerabilities are triggered.

SPECS [30] dynamically checks security-critical state using policies de-
rived from the ISA to combat post-silicon vulnerabilities. These policies
could be leveraged by CellIFT to check the entire state during pre-silicon
testing. Post-silicon, CellIFT can be used as a low-overhead alternative to
existing hardware dynamic IFT techniques for enforcing security properties
in the entire system [173].

3.11 conclusion

We presented CellIFT, the rst hardware dynamic IFT mechanism that can
scale to complex state-of-the-art open-source RISC-V processors. CellIFT
instruments the RTL using the cell abstraction, which is high-level enough
for high performance and precision, yet generic enough to handle generic
and heterogeneous digital designs without modication. To achieve this,
CellIFT leverages the logical properties of cells such as monotonicity, trans-
portability, and Translability. Our evaluation using ve real RISC-V designs
with various complexities shows the superior scalability, precision and
performance of CellIFT. We further used CellIFT in different scenarios to
show-case its effectiveness in detecting various classes of aws and vulner-
abilities. CellIFT is the rst open-source dynamic IFT solution, enabling
hardware security research for the wider community.

3.11 conclusion 89

acknowledgements

The authors would like to thank the anonymous reviewers for their valuable
feedback. The work in this chapter was supported in part by a Microsoft
Swiss JRC grant and by the Swiss State Secretariat for Education, Research
and Innovation under contract number MB22.00057 (ERC-StG PROMISE).
As to the opinions and positions in this document that the authors express
or to which the authors contributed, they are those of the authors and do
not represent the views of any current or previous employer, including Intel
Corporation or its afliates.

4
CASCADE : CPU FUZZ ING V IA
NTR ICATE PROGRAM GENERAT ION

Generating interesting test cases for CPU fuzzing is akin to generating
programs that exercise unusual states inside the CPU. The performance of
CPU fuzzing is heavily inuenced by the quality of these programs and by
the overhead of bug detection. Our analysis of existing state-of-the-art CPU
fuzzers shows that they generate programs that are either overly simple or
execute a small fraction of their instructions due to invalid control ows.
Combined with expensive instruction-granular bug detection mechanisms,
this leads to inefcient fuzzing campaigns. We present Cascade, a new
approach for generating valid RISC-V programs of arbitrary length with
highly randomized and interdependent control and data ows. Cascade relies
on a new technique called asymmetric ISA pre-simulation for entangling
control ows with data ows when generating programs. This entanglement
results in non-termination when a program triggers a bug in the target
CPU, enabling Cascade to detect a CPU bug at program granularity without
introducing any runtime overhead. Our evaluation shows that long Cascade
programs are more effective in exercising the CPU’s internal design. Cascade
achieves 28.2x to 97x more coverage than the state-of-the-art CPU fuzzers
and uncovers 37 new bugs (28 new CVEs) in 5 RISC-V CPUs with varying
degrees of complexity. The programs that trigger these bugs are long and
intricate, impeding triaging. To address this challenge, Cascade features an
automated pruning method that reduces a program to a minimal number
of instructions that trigger the bug.

4.1 introduction

With the increasing popularity of open-source RISC-V CPUs and the high
cost of formal verication, CPU fuzzing is gaining momentum [4–10]. The
effectiveness of CPU fuzzing strongly depends on the quality of the test
cases and efcient bug detection. State-of-the-art CPU fuzzers fail at both:
they execute only a small fraction of the intended instructions per test case,

91

92 cascade

and rely on incomplete or expensive instruction-granular bug detection
mechanisms at runtime.

This Chapter presents Cascade, a new CPU fuzzer that explicitly gen-
erates valid RISC-V programs of arbitrary length with highly randomized
and interdependent data and control ows. Executing many instructions
per program enables Cascade to efciently trigger bugs. When a bug is trig-
gered, the interdependence of the data and control ows results in program
non-termination, enabling Cascade to detect bugs at program granularity
without any runtime overhead. Our evaluation shows that Cascade achieves
signicantly more coverage than the state-of-the-art fuzzers and discovers a
large number of new bugs in RISC-V CPUs of various complexities.

programs for cpu fuzzing . To investigate properties of the programs
generated by state-of-the-art CPU fuzzers [4, 5, 12], we dened two metrics
measuring 1) completion: the proportion of the instructions in a program
that actually execute, 2) prevalence: the overhead due to non-randomized
initial and nal sequences. We nd that for each generated program, only a
small fraction of the instructions gets a chance to actually execute on the
target CPU and that most executed instructions perform non-randomized
initialization. These ndings hint at low instruction throughput in existing
state-of-the-art CPU fuzzers. Furthermore, detecting a bug triggered by
these programs introduces its own set of challenges.

bug detection. Generally, the most obvious way to check whether
a program triggered a bug is by checking the CPU’s architectural state
(i.e., registers and memory) instruction by instruction against a golden
model [4, 6–9]. Apart from performance implications, this approach has
practical limitations; as an example, the registers are not always easy to
identify in a given CPU’s RTL design. In particular, out-of-order CPUs may
keep multiple versions of the registers at the same time and identifying the
correct ones for monitoring introduces a non-trivial effort when porting a
fuzzer to a new CPU [75]. It is also possible to force termination by handling
uncontrolled exceptions in the programs [5]. While this technique reduces
the problem to only checking the architectural state at the end, it can miss
bugs that happen in the middle of the program. An ideal solution generates
programs that execute to completion without the need for checking the
state during program execution

cascade . We rely on the idea that nding a bug-triggering program in
a CPU is equivalent to nding a program for which the CPU behaves in-
correctly. We propose a new fuzzer called Cascade that constructs complex

4.1 introduction 93

and random RISC-V programs that exert the CPU’s architectural and mi-
croarchitectural features without requiring time-consuming and error-prone
expert effort specic to each CPU. The programs generated by Cascade
mix a highly randomized data ow with the control ow, while steering
the control ow at all times. To efciently predict some necessary register
values, we introduce the novel notion of asymmetric ISA pre-simulation,
where instead of using the Instruction Set Architecture (ISA) simulator to
compare the CPU under test with a golden reference model, we use it to
construct programs with valid and predictable architectural control ows.
Constructing valid programs with highly interdependent control and data
ows provides us with three interesting properties. First, the programs
can be long, which signicantly boost fuzzing performance. Second, with
highly randomized data and control ows, we explore unusual operand
values and control ows. Lastly, the highly entangled data and control
ows enables the non-pervasive detection of bugs amidst long programs
by transforming bug expressions into program non-terminations, enabling
Cascade to detect bugs without any runtime overhead.

The programs generated by Cascade exercise a rich set of functionalities
provided by the RISC-V ISA; they support exceptions without (necessarily)
causing termination, data ow-dependent privilege transitions, complex
FPU (Floating-Point Unit) operations, and operations under randomized
Control and Status Registers (CSRs) exploring different operational states
of the CPU. We evaluate Cascade on 6 real-world RISC-V CPUs of different
complexities and ISA extensions: VexRiscv, PicoRV32, Kronos, CVA6, Rocket
and BOOM. Compared to the state-of-the-art fuzzers such as TheHuzz and
DifuzzRTL, Cascade achieves the same coverage 28.2 and 97 times faster,
respectively. Cascade discovers 37 new bugs (29 new CVEs) in 5 of these 6

designs which is more than all the state-of-the-art CPU fuzzers combined [4,
5, 10, 12, 13]. We additionally found a critical bug in the popular Yosys
synthesizer that results in a wrong netlist.

automated program reduction. Cascade-generated programs that
trigger these new bugs can be long and highly complex, making the analysis
of the non-termination intractable by humans. To tackle this challenge, Cas-
cade relies on a new automated program reduction technique that creates
minor in-place modications to a bug-triggering program. These modica-
tions iteratively reduce the program to a minimal bug-triggering form while
preserving the sufcient bug-triggering CPU state. Using this technique, we
nd that these bugs result in hangs, wrong values and exceptions, decode
issues and quantiable performance counter inaccuracies. Furthermore,

94 cascade

we nd that Cascade’s program reduction is signicantly helpful when
reporting the bugs to the respective CPU maintainers.

contributions . Our contributions are as follows:

• We design and implement Cascade for generating valid RISC-V pro-
grams with highly complex and entangled data and control ows for
nding CPU bugs. Cascade correct-by-construction programs achieve
high fuzzing performance without introducing any overhead for bug
detection.

• We design and implement a new analysis method to efciently reduce
Cascade-generated programs to a minimal form, while preserving the
bug-triggering behavior.

• We evaluate the performance of Cascade in terms of speed and cov-
erage and compare it with state-of-the-art CPU fuzzers [4, 5, 12]. We
report a total of 37 new bugs found in 5 of the 6 considered RISC-V
CPU designs. We further report a bug in the popular open-source
Yosys synthesizer.

open sourcing . For the benet of the research and CPU design and
testing communities, we publish the source code and experiments of Cas-
cade at this URL:
https://comsec.ethz.ch/cascade.

4.2 background

In this section, we provide background on formal verication, fuzzing
software and hardware, and nally on RISC-V.

4.2.1 Formal verication of hardware

Assertion-based formal verication aims to prove that a hardware design
satises certain properties, for all possible input values that it may receive
and for innite depth in time. Usually, formal verication engineers man-
ually write properties that target specic verication goals, often taking
design-specic knowledge into account. Tools for automated property gen-
eration either generate a certain kind of properties, like information ow
properties [174], require a (semi-)formal model of the specication [175,
176], or use novel languages [177]. Furthermore, exhaustively verifying

4.2 background 95

complex properties on real world designs does not always scale and re-
quires semi-manual abstraction techniques such as black-boxing or initial
value abstraction [178, 179]. Given the high computational and manual cost
of formal verication, alternative fuzzing techniques are starting to gain
popularity.

4.2.2 Software fuzzing

Fuzzing consists in applying random inputs to a unit under test and
observing whether the unit behaves as expected and whether the output is
correct. The goal is to nd unknown bugs by covering as much state space
as possible by iteratively mutating the input data. While fuzzing usually
does not provide formal guarantees of correctness, it has been shown to be
a very effective technique to nd bugs [180].

Every fuzzer needs a strategy to generate test cases and to detect bugs when
they happen. Software fuzzers may rely on some form of coverage feed-
back [181–184], static or dynamic taint analysis [185–188] or grammars [189–
194] to incrementally nd test cases that better exercise the software’s func-
tionality. Software fuzzers mainly rely on two techniques to detect when
bugs are triggered: crashes [181] and sanitizers [195]. Sanitziers provide, for
example, address related checks like buffer overows [195], checks for un-
dened behavior such as division by zero [196] or oating-point numerical
issues [197].

4.2.3 Hardware fuzzing

Due to the high cost of formal verication, CPUs are an interesting target
for fuzzing. Hardware fuzzers for CPUs differ from software fuzzers on
both aspects of test-case generation and bug detection. While software
fuzzers often generate random input data streams with little or no input
format considerations, hardware fuzzers need to prioritize generation of
inputs that follow certain protocols, like bus or ISA specications, in order
to be effective [93]. Inspired by software fuzzing, state-of-the-art hardware
fuzzers generate new test cases by generating random instruction sequences
and mutating the test case [4–10, 12, 13]. Every new CPU fuzzer nds new
bugs, but often fewer [4–10].

96 cascade

Since processors hang only in rare cases, crash detection is not suf-
cient for bug detection, and sanitizers are currently limited to handwritten
SystemVerilog assertions [12]. Therefore, hardware fuzzing needs new meth-
ods for bug detection. Most hardware fuzzers apply differential fuzzing by
comparing register values of the CPU under test with the results from a
purely software-based Instruction Set Simulator (ISS) that serves as a golden
model [5]. Comparing the result of every instruction is expensive in terms
of runtime, and only feasible for simple CPUs where a direct mapping from
RTL design signals to registers is possible. Some CPU fuzzers [5] dump the
register values via storage instructions at the end of a test case and compare
the results with the ones from the ISS. Such a comparison is only possible if
a test case completes and intermediate deviations between the ISS and the
CPU under test are propagated through time until the end of the test case.

4.2.4 RISC-V

RISC-V [198] is a free and open ISA, consisting of an unprivileged and
a privileged specication. RISC-V targets a large diversity of CPUs, and
therefore provides a set of options. First, CPUs may comply with the 32-bit
or the 64-bit specication, which share most features. Second, CPUs may
implement ISA extensions. In addition to the base ISA, common extensions
are F (oating-point), D (double-precision support), M (integer multiplica-
tion and division), A (atomic operations), and C (compressed instructions).
Compared with other established ISAs, RISC-V ISA features a small number
of instructions. In particular, RISC-V requires two instructions to load an
immediate 32-bit value into a register (lui followed addi). Furthermore,
the only operations that inuence the program control ow are jal (di-
rect jump), jalr (indirect jump), branches, exceptions and privilege level
changes. Note that in RISC-V, the targets of branches are immediates. In
the case of self-modifying code, the fence.i instruction must be executed
before executing newly-stored instructions.

RISC-V, in its common implementation in open source CPUs, supports
up to three privilege levels which are machine mode (M), supervisor mode
(S) and user mode (U), in decreasing order of privilege. The M mode
is the only mandatory privilege level. Upward privilege transitions are
done through interrupts or exceptions, and downward transitions happen
through specic instructions (mret and sret). Depending on the target
privilege level, the architectural fetch address following an exception is

4.3 motivation and challenges 97

0 10 20 30 40 50 60 70 80 90 100

Fuzzing stage completion (%)

0

25

Te
s
t
c
a
s
e
s
(%

)

Average completion rate (19.3%)

Median completion rate (1.7%)

Figure 4.1: Completion rates of DifuzzRTL executions.

pre-set in the mtvec or stvec Control and Status Registers (CSRs). CSRs are
further used to congure how the CPU should operate in certain conditions,
such as whether exceptions should be delegated to another privilege level,
or if the oating-point unit is enabled. Spike [199] is a widely used open-
source ISS for RISC-V.

4.3 motivation and challenges

In this section, we rst analyze important aspects of the recently-published
CPU fuzzers DifuzzRTL [5] and TheHuzz [4]. From these observations, we
describe challenges which will guide the design of Cascade.

4.3.1 Observations

We collected 500 CPU inputs generated by DifuzzRTL [5] for the Rocket
core to understand key aspects of test cases generated by a state-of-the-art
CPU fuzzer. We also analyze the test cases generated by TheHuzz [4] based
on the description in their paper since TheHuzz is not open source at the
time of this writing.

completion. Figure 4.1 shows the percentage of the fuzzing instruc-
tions that execute at least once in each test case produced by DifuzzRTL.
We measure completion on the ISS, assumed bug-free. We observe that
these programs do not generally complete the execution of their fuzzing
sections, mostly because of the difculty to predict intermediate values
that affect the control ow, such as operands of branch instructions. Simi-

98 cascade

0 5 10 15 20 25 30 35 40

Prevalence of fuzzing instructions (%)

0

25

Te
s
t
c
a
s
e
s
(%

)
Average prevalence (5.8%)

Median prevalence (3.0%)

Figure 4.2: Prevalence of fuzzing instructions in DifuzzRTL.

larly, TheHuzz limits its test cases to 20 instructions, (10 of the rst being
non-control-ow instructions), again, because it is difcult to control the
behavior of control-ow instructions when fuzzing.

Observation 1. Completion: CPU fuzzers struggle with fully executing
their test cases.

prevalence . In the programs generated by DifuzzRTL, we separate the
instructions in two categories: overhead and fuzzing instructions. Overhead

instructions are generic, non-randomized instructions such as setup routines
or hard-coded exception handlers, while fuzzing instructions are the ones
actually randomized. We dene prevalence as the proportion of executed
instructions that are fuzzing instructions. Figure 4.2 shows the prevalence in
the programs generated by DifuzzRTL. Strikingly, only a small proportion
of the executed instructions are fuzzing instructions. Similarly, the very
short fuzzing sequences of TheHuzz are preceded by an overwhelming
amount of conguration (overhead) instructions [4, 156].

Observation 2. Prevalence: most executed instructions correspond to
overhead and are not fuzzing.

conclusion. The existing coverage-guided approaches are insufcient.
They produce malformed non-completing programs dominated by over-
head instructions.

4.3 motivation and challenges 99

4.3.2 Overview of challenges

Our analysis suggests that we might signicantly improve fuzzing results
by constructing programs that address these limitations. We provide an
overview of the challenges based on our previous observations and how
we address them in the rest of this Chapter. The rst challenge concerns
completion and prevalence of the generated programs.

Challenge 1. How to generate programs that complete and have a high
fuzzing prevalence?

Section 4.4 discusses a new design for program construction. Longer
programs have a higher prevalence, but only if they complete. We propose to
build valid programs that are expected to complete, by pre-dening a control
ow ahead of execution. This is in contrast with existing CPU fuzzers that
rely on mutation-based test-case generation strategies. The result of this
step is a set of intermediate programs that have instructions with complex
data ows, but control ows that are not dependent on the (complex) data
ows. Our next challenge is to make the control ows dependent on the
complex data ows while ensuring completion. Entangling data ows into
control ows has two major benets. First, it helps nding bugs related
to (speculative) control ows. Second, it enables transforming a data-ow
bug symptom into a program non-termination, effectively providing a non-
pervasive design-agnostic way of detecting data-ow bugs in arbitrarily
long and complex programs without any runtime overhead.

Challenge 2. How to generate valid programs with a high degree of
dependence between data and control ows?

Section 4.5 proposes a novel method for efciently constructing a complex
data-dependent control ow for test cases, called asymmetric ISA pre-
simulation. Asymmetric ISA pre-simulation mixes a highly randomized
data ow with the control ow of the intermediate programs. This method
is based on the new insight that instead of using an ISS for differential
fuzzing, we can use it for generating a valid program. Repeated usage of the
ISS for the ultimate program generation, however, would introduce a large
performance penalty. We design a new scheme that allows us to reduce the
number of ISS calls to only one per generated program.

100 cascade

Figure 4.3: Overview of Cascade.

Our prototype fuzzer implementation of the ideas presented in Sec-
tions 4.4 and 4.5, called Cascade, generates programs that trigger a large
number of new bugs, more than any CPU fuzzer so far. The programs
leading to these bugs, however, may be long and complex by construction,
to an extent that makes it inconceivable to interpret them manually from
logic waveforms, like it may have been done so far. This leads us to our last
challenge.

Challenge 3. How to extract and interpret the bug from a complex
program?

Section 4.6 discusses a new algorithm for iterative program reduction
to nd a minimal number of instructions inside program triggering CPU
bugs. We successfully applied it for all the bugs found by Cascade, which
signicantly helped us when reporting the issues to the respective CPU
maintainers.

4.4 design

We outline Cascade, before explaining the intermediate program construc-
tion. In Section 4.5, we explain how Cascade uses ISS feedback to entangle
data and control ow.

4.4 design 101

4.4.1 Cascade overview

Figure 5.5 provides an overview of the fuzzing process and its components.
Cascade proceeds in four steps: (1) intermediate program construction, (2)
ultimate program construction, (3) program execution and (4) program
reduction. The program construction (steps 1 and 2) is decoupled from the
other steps, so the same program can be executed on multiple versions of
the same CPU, or on CPUs with compatible extensions.

intermediate program construction. Cascade takes as an input
the supported ISA extensions, addresses for dumping registers and stopping
the RTL simulation, and descriptions of known bugs to circumvent, and
starts with a brief calibration stage (taking less than a second) to evaluate
some CPU parameters, such as supported CSR bits (a). Generating programs
is then a parallel task. Cascade rst generates the intermediate program as a
sequence of basic blocks, where control ow is isolated from the data ow
(b).

ultimate program construction. An ISS then executes the whole
intermediate program once to collect the data-ow dependent values of
registers (c). Cascade uses this information to entangle the data ow with
the control ow, as explained in Section 4.5 to produce the ultimate program
(d). It is dened as a triple (ELF le, descriptor, and the expected nal
register values (optional)), where the descriptor is a short identier that
permits re-generating the same program.

program execution. The program execution is also a parallel task.
Each ultimate program is executed independently on a simulated design
under test. The output (e) is a pair (descriptor, success). The descriptor is
the same as in (d). The success ag is raised if the program terminated
successfully, and optionally if the dumped register values match.

program reduction. The program reduction phase takes as input a
test descriptor that leads to an execution failure and produces a reduced
program that preserves the buggy behavior while reducing the program
complexity as described in Section 4.6. The analysis consists in iteratively
reducing the program (f) and re-running it to check if the bug is still
triggered (g), and to produce a minimal program that is easy to understand
(h), as explained in Section 4.6.

102 cascade

1 xor x3,x4,x9

2 csrrwi x9,mcause,15

3 beq x9,x4,0x8000098e

4 fld f8,(x3)

5 feq.s x4,f9, f8

6 jalr x9,(x7)

Listing 4.1: Example basic block.

4.4.2 Intermediate program construction

We rst explain the structure of the programs generated by Cascade. We
then show how Cascade selects instructions to form basic blocks. We nally
discuss the memory management mechanism for ensuring sound program
construction.

High-level program structure

basic blocks . A program is a sequence of instructions within basic
blocks. Basic blocks are made of zero or more instructions that do not affect
the control ow, followed by a single instruction that affects the control ow.
Accordingly, Cascade constructs programs as sequences of basic blocks,
where the last instruction of a basic block steers to the next basic block.
Each basic block is placed at a random location in memory. The order of
basic blocks’ execution is not necessarily identical with their placement
in memory. The memory outside of basic blocks and of their data is left
uninitialized, defaulting to zeros in simulation.

initial and final basic blocks . All programs start with an initial
basic block that sets up an initial state and random register values before
jumping to the rst fuzzing basic block, which eventually jumps to the next,
and so on. The program ends with a nal basic block that optionally dumps
register values, and sends a signal indicating that the program’s end was
reached. No overhead instruction, as dened in Section 4.3, is executed
between the initial and nal basic blocks.

Basic block generation

4.4 design 103

control-flow behaviors . We call instructions that do not change
the control ow of a given program still instructions, and others hopping
instructions. For example, a branch can be taken (hopping) or non-taken
(still). Similarly, a memory load instruction such as lw can succeed (still)
or raise an exception (hopping). We dene the instructions that may be
still or hopping depending on register values, or that are unconditionally
hopping but whose destination depends on register values, as cf-ambiguous.
For example, beq and lw are cf-ambiguous, but add and illegal instructions
are not. Listing 4.1 shows an example basic block, where cf-ambiguous
instructions are represented in red.

picking instructions . Instructions are grouped in categories. Some
groups of instructions will behave in the same context-dependent way, for
example all oating-point instructions will be conditioned by whether an
FPU is present and activated. Hence, Cascade picks instructions hierar-
chically, by rst choosing a category, and then a specic instruction. Both
are chosen randomly with certain probabilities, which are varied between
programs. When picking a cf-ambiguous instruction, Cascade chooses im-
mediately whether it must be still or hopping. Cascade biases the choice
of operands by granting higher probabilities to registers recently used as
outputs.

In particular, Cascade supports complex FPU operations and CSR interac-
tions. It additionally supports exceptions and privilege switches as simple
hopping instructions, which can only be picked under certain architectural
conditions that are generated by the mechanism explained in Section 4.5.
Ultimately, the complex data ow originates from combining initial static
data with a diverse stream of random instructions.

The instruction categories used in Cascade are the following: REGFSM
(Register lifecycle), FPUFSM (Update the FPU state), ALU (rv32 ALU oper-
ations), ALU64 (rv64 ALU operations), MULDIV (rv32 multiplications and
divisions), MULDIV64 (rv64 multiplications and divisions), AMO (rv32
atomics), AMO64 (rv64 atomics), JAL (Direct jumps), JALR (Indirect jumps),
BRANCH (Branches), MEM (rv32 integer memory operations), MEM64

(rv64 integer memory operations), MEMFPU (rv32 oating memory oper-
ations), FPU (rv32 oating-point operations), FPU64 (rv64 oating-point
operations), MEMFPUD (rv32 double memory operations), FPUD (rv32
double operations), FPUD64 (rv64 double operations), TVECFSM (Up-
date trap vector), PPFSM (Update previous privileges), EPCFSM (Update
trap previous PC), MEDELEG (Update exception delegation), EXCEPTION

104 cascade

(Trigger an exception), RDWRCSR (Read/write some CSRs), DWNPRV
(Transition privileges downward), FENCES (Fences or wfi).

circumventing known bugs . Ideally, discovered bugs should be
xed immediately. In reality, however, this may take time and effort. Due
to limited human resources, some bugs may remain unxed for a long
time, polluting bug reports and potentially restrain test case continuation.
Known bugs may be ignored after triaging the causes of bug reports.
However, known CPU bugs can inuence the control ow of Cascade
programs early, shadowing the rest of the program. Furthermore, triaging
is an expensive operation that must then be repeated many times for the
instances of the same bug. Instead, Cascade allows circumventing known
bugs by constructing programs that will not trigger them. By increasing
the completion rate, Cascade is able to progress and nd more bugs faster.
As an example, in the Rocket core, the retired instruction performance
counter ignores ecall and ebreak instructions (R1) [200]. The circumvention
congures Cascade to avoid that generated programs read this counter after
these instructions until it has been written again, hence it covers exactly the
bug.

Note that Cascade’s approach of circumventing certain bugs may result
in the under-exploration of the components in which the bugs exist. Auto-
matically circumventing bugs via automated RTL patching is an interesting
future direction that can address this issue altogether.

Memory management

To produce sound programs, Cascade imposes some constraints on the
memory layout of the generated programs. In particular, Cascade ensures
that (a) instructions do not overlap, (b) store operations do not overwrite
instructions, and (c) later transformations of the program (discussed in
Sections 4.5 and 4.6) do not have unintended effects. Intuitively, the con-
straint (b) would prevent from detecting some potential bugs related to
self-modifying code. RISC-V requires self-modifying code to use fence.i,
which means that such bugs are limited in scope. We leave the exploration
of such bugs as future work and instead focus on non-self-modifying code.

progressive memory allocation. Cascade allocates memory on the
y for each new instruction. Whenever a hopping instruction is generated,
space is allocated for the rst instruction in the next basic block, at a
reachable random new address that offers enough space for a new basic

4.5 ultimate program construction 105

block. Initially, space is allocated (at random locations) for the initial and
nal basic blocks, which have known upper bounds in length. Additionally,
to anticipate program reduction, Cascade allocates space for a context setter

block used for program reduction and leaves it empty (details are discussed
in Section 4.6).

strong memory allocation. The memory allocator can strongly

allocate memory areas, i.e., forbid loads from there. Reading from a memory
location could entangle its data with the data and control ows. Strong
allocations prevent reading from a memory location that stores very specic
parts of the program where some instructions differ between the intermediate

and ultimate programs as described in Section 4.5.

memory operations . Memory stores, randomized in number and size,
can only target some specic memory areas, allocated at the start of the
program’s creation. Memory loads can target any address, except for the
strong allocations. Heuristically, we bias memory loads to target more often
memory areas that have been recently written, although so far, this specic
heuristic has not been critical in nding bugs.

4.5 ultimate program construction

The fundamental idea behind asymmetric ISA pre-simulation is to execute
an intermediate program on the ISS to collect feedback for constructing the
ultimate program with a control ow that is identical but dependent on the
data ow.

steering the control flow. There are three schemes for generating
an arbitrary, but controlled, control ow. The rst scheme is not to control
the values used by cf-ambiguous instructions such as jalr but to place
the next basic block accordingly. This scheme is not viable because most
addresses are inaccessible or already allocated. The second scheme is not
to involve the random data ow and rely on direct branches or registers
loaded with xed values. This is how the control ow of the intermediate

program is constructed. The third scheme entangles data and control ow
by observing the data ow and applying an offset to a register used by
a cf-ambiguous instruction. We rely on the third scheme to construct the
control ow of the ultimate program.

106 cascade

Figure 4.4: Life cycle of registers regarding offset construction. The instructions
can be separated by other (unrelated) instructions.

4.5.1 Offset construction and register lifecycle

Some cf-ambiguous instructions such as indirect jumps (jalr) require a
specic operand value val that Cascade intends to impose. Following the
principle of dependency preservation, we let val depend on a randomly
picked dependent register rd. Since we do not want to constrain rd’s value, rd
is generated by the random data ow and its value is unknown when we
pick the cf-ambiguous instruction. Hence, to calculate val we propose to
generate an offset register value to be eventually combined with rd’s value.
The combination of rd and roff is performed by an offset applier instruction,
for instance xor, whose output is dened as the applied register rapp and
holds the intended value val.

branches . Because applied registers are a somehow precious resource,
Cascade does not use this method for branches. Instead, it uses the ISS
feedback to obtain the operand values and selects a suitable branch opcode,
depending on whether the branch should be still or hopping.

registers involved. In total, this construction involves two registers
(rd, whose value is randomized by the program’s data ow, and roff to offset
its value). Since there is no reason to specically reuse rd or roff as an output
of the offset applier, a third register could be used as rapp, in accordance
with the principle of maximizing the degrees of freedom.

offset state machines . This scheme implies that 1) rapp must be
available for use when the cf-ambiguous instruction is picked, 2) rapp’s
calculation requires that roff is ready before the offset applier instruction,
and 3) rd must be available when the offset applier instruction is executed.
To comply with these requirements, we maintain a simple state machine
for each architectural integer register. The state machine is composed of
ve states: free, under generation (gen), ready, unreliable (unrel) and applied, as
illustrated in Figure 4.4. All registers initially start in the free state. Cascade

4.5 ultimate program construction 107

can create instruction (a) to move a free register to state gen, or (b) to move
a register from gen to ready. When there is at least one register, roff , in the
ready state, then Cascade can pick an offset applier instruction. If Cascade
chooses to dene rapp = roff , then roff is moved to the applied state (c). Else,
roff is moved to the unrel state (c’) and rapp is moved to the applied state (c”).
Once rapp is used by a cf-ambiguous instruction (d), it returns to the free

state. An unrel register must not be used as an input to any instruction and
may be overwritten by an instruction to become gen (e’), or by an ordinary
instruction to become free (e).

pre-simulation. Cascade relies on an ISS to determine the value of
dependent registers when encountering a cf-ambiguous instruction. So far,
the state of the art [4–10] always submits the same program that is given
to the CPU to the ISS. If we imitated the state of the art, the ISS should be
called every time a cf-ambiguous instruction is encountered because rapp
would be random until the correct roff can be computed from rd. The ISS
could not proceed to the next basic block (or complete a correct memory
operation) without running at least once per cf-ambiguous instruction.

We introduce the asymmetric ISA pre-simulation method to address this
critical performance bottleneck by requiring a single ISS execution. The
fundamental insight is to provide to the ISS not the ultimate program that
the CPU under test will execute, but an intermediate program such that (a)
the values of all dependent registers (in the constructions of applied registers)
are identical between the two programs and (b) the programs’ control
ows are identical and (c) in the intermediate program, no applied register
depends on the randomized data ow.

Concretely, the intermediate program differs from the intended ultimate

program in three aspects. When generating the intermediate program: 1)
we choose the immediates imm1 and imm2 to set the value of roff to val,
2) we substitute of the offset-applying instruction with a mv instruction,
which copies roff into rapp, and 3) we transform non-taken branches into
NOPs, because the value of the operands are not yet known. Given these
transformations, the intermediate program complies with the aforementioned
requirements.

intermediate register states . This scheme for offset construction
guarantees by design that at any point in the program, all free and applied

registers have the same value in the intermediate and ultimate program.
This invariant does not hold for registers in the gen, ready and unrel states.
Therefore, they should never be used as the input for any instruction other

108 cascade

than the next instruction in the offset construction cycle, respectively steps
(b) and (c) in Figure 4.4. Note that state machine transitions are a specic
instruction category in Cascade.

4.5.2 Privilege transitions

Exceptions are a particular case of hopping instructions. They require
some basic bookkeeping in the fuzzer to maintain the privilege state and
delegation ags, which indicate the target privilege level active when some
exception occurs.

We use one to two offset/dependent/applied register triples per excep-
tion. The rst is used to populate the trap vector, either mtvec or stvec,
depending on the current privilege state and whether the exception will
be delegated. The second is used when an exception depends on a register
value, e.g., in a misaligned memory load exception. It is populated similarly
as an indirect jump or a load would be. Note that since basic blocks are
generated on the y, the value to be inserted into the trap vector is only
known when the exception-triggering instruction is generated, which may
be many basic blocks later; while this adds some necessary complexity to
the fuzzer, it does not negatively affect the program’s degrees of freedom
in any way. The implementation of downward privilege transitions is in all
respects comparable with exceptions.

4.6 program reduction

Cascade generates potentially long test cases, and CPU bugs are revealed
by programs not terminating, thanks to the entanglement of the data and
control ows. To understand the underlying CPU bug, it is necessary to
reduce the programs to a minimal form, while preserving the instructions
and states that trigger the CPU bug. We rst show how to nd the last in-
struction (tail) involved in triggering the bug, then the rst (head). Figure 4.5
illustrates the program reduction process.

4.6 program reduction 109

Figure 4.5: (a) Original, (b) tail-reduced and (c) fully reduced program. Black
rectangles and arrows represent basic blocks and control ow. Ctx is
the context setter block.

4.6.1 Identifying the bug’s tail

We propose to reduce the program progressively by transforming some
instructions into direct jumps that skip some of the last basic blocks and
observing whether the bug is still triggered. The result is illustrated in
Figure 4.5 (b).

identifying the tail basic block and instruction. Cascade
nds via a binary search the last basic block which, when omitted along
with its successors, erases the buggy behavior. To remove such a nal
sequence, Cascade replaces its predecessor’s hopping instruction with a
direct jump toward the nal block. Cascade then searches the bug’s tail
instruction in the converse way.

failing control-flow instructions . If the tail instruction is a
hopping instruction, the algorithm above will nd a tail basic block Bn,
but no tail instruction. This is because for skipping the basic block Bn but
not Bn−1, a direct jump instruction toward the nal block will replace the
(bug-triggering) hopping instruction of Bn−1, hence removing Bn erases the
buggy behavior. The tail instruction being a hopping instruction is hence
the necessary and sufcient condition for failing.

110 cascade

4.6.2 Identifying the bug’s head

Most often, a single instruction, provided with the correct architectural
context, is sufcient to trigger the bug reliably. In such cases, nding the tail
instruction is enough to understand the bug. However, some bugs required
a sequence of instructions (up to 2), possibly far apart, to be triggered, such
as the bugs V1-V9 and V14 that we describe in Section 4.7, because they rely
on a specic microarchitectural context. Hence, for these bugs, identifying
the head is necessary. The result of this step is illustrated in Figure 4.5 (c).

maintaining the architectural context. Identifying the tail
instruction can be done by exclusively inserting direct jump instructions
in the right places iteratively, but identifying the head instruction is more
challenging because removing predecessor instructions ahead may inuence
the architectural state. We leverage the following insight to identify the bug’s
head: we nd the head by preserving the architectural state but simplifying
the microarchitectural state. Concretely, only for this step, a context setter

basic block is inserted, by replacing the initial block’s hopping instruction.
Once a candidate head basic block and instruction is chosen, the context
setter uses the ISS to infer the architectural context, including for instance
register values, privilege level and some performance counter values. It
then loads the architectural state of the CPU, using simple instructions
such as wide loads for register values, and basic instruction sequences for
populating CSRs and setting the proper privilege. The detection of the
bug’s head is then performed similarly to the tail, following the converse
algorithm where the head instruction is the rst instruction that, when
omitted, erases the buggy behavior.

sandwich instructions . For all bugs found by Cascade so far, iden-
tifying the tail and head instructions has always been sufcient for under-
standing and reproducing the bugs. However, Cascade includes facilities
to atten the remaining instructions (in black in Figure 4.5 (c)) and re-
moving them iteratively. Such transformations are not guaranteed to work
on a given specic program, for example if the hopping instruction was
an exception and some following instruction checks the exception cause.
In practice, nding another program that reveals the same bug in case of
failure of advanced transformations is sufcient, notably because nding
new programs that trigger the same bug is fast, as we show in Section 4.7.6.

4.7 evaluation 111

4.7 evaluation

In this section, we evaluate Cascade in terms of performance, program
metrics, coverage, and the discovered bugs. We use microbenchmarks to
quantify the performance of program construction and compare it with
previous work (Section 4.7.1). We evaluate the impact of program lengths on
fuzzing throughput (Section 4.7.2). We then evaluate the program metrics
for Cascade (Section 4.7.3) as we did for DifuzzRTL in Section 4.3.1. We
compare the coverage achieved by Cascade according to multiple coverage
metrics and compare it with the state-of-the-art fuzzers that specically
target these metrics (Section 4.7.4). We then show the bug discovery efcacy
of programs of different lengths (Section 4.7.5). We also describe the 37 new
bugs found in 5 of the 6 evaluated RISC-V CPUs and in Yosys, evaluate the
time to detection (Section 4.7.6) . Finally, we evaluate the performance of
program reduction (Section 4.7.7).

evaluation setting . The performance results were obtained on a
machine equipped with two AMD EPYC 7H12 processors at 2.6 GHz
containing 256 logical cores and 1 TB of DRAM. We use Verilator 5.005 to
simulate the CPUs’ RTL. As an ISS, we use spike (version 1.1.1-dev, commit
fcbdbe79). We use a recent version of a widely-used commercial simulator
to collect simulator-based coverage similar to previous work [4]. We use the
most recent versions of each CPU, where bugs are xed or circumvented
by Cascade. Notably, we tested Cascade on a variety of CPU complexities,
from a simple minimal 32-bit integer core (PicoRV32) to an application-class
Linux-capable out-of-order core (BOOM). We implemented Cascade as 6 k
lines of Python code.

Our testbench consists of 6 RISC-V CPUs of varying complexities and
ISA extensions. VexRiscv [201] (e142e12, Linux, AHB-L, FPU, rv32imfd) is
a highly parametrable CPU written in SpinalHDL, supporting Linux. Pi-
coRV32 [202] (f00a88c, Default, rv32im) is a size-optimized CPU written in
Verilog (IEEE 1364-2005). Kronos [203] (13678d4, Default, rv32i) is a CPU op-
timized for FPGA applications, written in SystemVerilog (IEEE 1800-2017).
CVA6 [74] (109f9e9, 4-way 8 kB caches, rv64imafd) is an application-class
CPU with Linux support supported by the OpenHW Group organization,
and written in SystemVerilog (IEEE 1800-2017). Rocket [137] (004297b, Big-
Core, rv64imafd) is a reference application-class CPU with Linux support,
maintained by the Chips Alliance, written in Chisel. BOOM [75] (004297b,
MediumBoom, rv64imafd) is an out-of-order application-class CPU with
Linux support, maintained by the Chips Alliance, written in Chisel.

112 cascade

kronos picorv32 vexriscv rocket cva6 boom
0

20

40

60

80

100
T
im

e
p
e
r
s
te
p
(%

)

78.9% 77.8%

55.2% 54.7%
49.8%

26.5%

Interm. program construc.

Asymmetric ISA pre-sim.

Final ELF writing

Figure 4.6: Performance of program construction. The rest of the time is spent
in the RTL simulation.

baselines . We compare with the existing open-source generic CPU
fuzzers, which are RFUZZ [12] and DifuzzRTL [5]. Despite the claim made
in the original paper [4], TheHuzz is not open source at the time of this
writing, and its authors were reluctant to answer any question or share
their code over a period of a year, hence we rely on the results reported in
their paper [4]. We re-implemented RFUZZ to support Verilog, and relied
on the Docker image provided by DifuzzRTL [204].

4.7.1 Program generation performance

To quantify the performance of program construction, we measure the
amount of time spent in intermediate program construction, asymmetric
ISA pre-simulation and RTL simulation, for each CPU under test, over 24
hours of fuzzing. Figure 4.6 shows the results.

results . While by construction, the duration of the instruction gener-
ation and asymmetric ISA pre-simulation is identical across designs, the
RTL simulation time increases with the complexity of the design, hence the
proportion of time spent generating programs largely decreases with the
complexity of the designs. When generating the programs in real time, the
program generation takes between 26.5% and 78.9% of the total fuzzing
time.

input reuse . To make Cascade’s evaluation as pessimistic as possible,
we systematically dynamically generate new inputs by default. Note that

4.7 evaluation 113

1 10 100 1,000 10,000 100,000

Number of fuzzing instructions per program (program length)

101

103

105

E
x
e
c
.
fu
z
z
.
in
s
tr
s
/s PicoRV32

Kronos

VexRiscv

Rocket

CVA6

BOOM

Figure 4.7: CPU-under-test execution throughput given program length. Note
the logarithmic Y axis.

1 10 100 1,000 10,000 100,000

Number of fuzzing instructions per program (program length)

101

102

A
v
g
.
g
e
n
.
ti
m
e
(s
)

PicoRV32

Kronos

VexRiscv

Rocket

CVA6

BOOM

Figure 4.8: Program generation performance given program length. Note the
logarithmic Y axis.

by construction, Cascade’s inputs are reusable across designs that share
compatible ISA extensions, and across CPU generations. Hence the input
generation is, in fact, a one-time cost that can further be amortized.

runtime overhead. DifuzzRTL reports a runtime overhead of 6.1% to
6.9% for control register coverage, and 97% for multiplexer select coverage.
TheHuzz reports a runtime overhead of 71% These slowdowns do not
include input generation. Cascade incurs no runtime overhead by design.

4.7.2 Throughput of long programs

To understand the throughput boost provided by long programs, we mea-
sure the number of fuzzing instructions executed per second when con-

114 cascade

1 10 100 1,000 10,000 100,000

Number of fuzzing instructions per program (program length)

101

103
F
u
z
z
.
in
s
tr
s
/s

PicoRV32

Kronos

VexRiscv

Rocket

CVA6

BOOM

Figure 4.9: Effective fuzzing throughput given program length. Note the loga-
rithmic Y axis.

trolling the number of instructions per program generated by Cascade,
including program generation time. The experiment was run for 1 core-
hour per bar. Figure 4.7 shows the throughputs of program execution, while
Figure 4.8 details the average duration of a single program generation. Con-
structing very long programs requires managing a wider memory range,
resulting in longer program generation times. Consequently, the overhead
of generating longer programs counteracts the improvements in terms of
fuzzing throughput when programs become too large.

To nd the sweet spot for the length of programs, Figure 4.9 shows that
the effective fuzzing throughput when considering both the raw fuzzing
throughput and the overhead of program generation at the same time.
These results show that programs of 10 k instructions generally provide
the best effective fuzzing throughput, and that the fuzzing throughput is
improved by three orders of magnitude between single-instruction and
10 k-instruction programs.

4.7.3 Program metrics

As part of our initial observations in Section 4.3, we exposed the completion
and prevalence program properties. We evaluate these metrics for Cascade.
We additionally evaluate the length of dependency chains between fuzzing
instructions, which matters for non-termination when a bug is triggered.

prevalence and completion for cascade . Since Cascade always
completes except when nding a CPU bug, we observe the expected comple-
tion rate of 100%. Figure 4.10 shows the prevalence of fuzzing instructions

4.7 evaluation 115

0 10 20 30 40 50 60 70 80 90

Prevalence of fuzzing instructions (%)

0

10

Te
s
t
c
a
s
e
s
(%

)

Average prevalence (90.3%)

Median prevalence (92.5%)

Figure 4.10: Prevalence of fuzzing instructions for Cascade.

0 1 2 3 4 5 6

Length of the dependency chain

0

25

Te
s
t
c
a
s
e
s
(%

)

Average #deps (2.1)

Median #deps (2.0)

Figure 4.11: Length of the dependency chains for DifuzzRTL. Control-ow
instructions are represented in orange.

for Cascade. The high prevalence is because programs are relatively long
and fully randomized except the initial and nal basic blocks.

dependencies . We analyze dependency chains between fuzzing in-
structions. On top of entangling the data ow with the control ow to force
non-termination when a bug is triggered, these dependencies can further
exercise corner cases inside a CPU’s design. For this analysis, we calculate
the length of instruction dependency chains. Each register starts with a
dependency number of -1, which gets reset when it is a destination of a
CSR read or of an instruction that only takes immediates. We calculate
an instruction’s dependency number as the maximum of the dependency
numbers of the source registers, plus one, which also becomes the new
dependency number of the destination register.

Figure 4.11 and Figure 4.12 show the distribution of the length of the
dependency chains for DifuzzRTL and Cascade, respectively. The fuzzing
instructions with zero dependencies here are instructions in the form of
xor rd, rd, rd. The programs generated by DifuzzRTL have very few
interdependencies. Similarly, TheHuzz does not explicitly generate or favor
programs with dependencies [4], hence we expect even lower numbers.

116 cascade

0 50 100

Length of the dependency chain

0

20
Te
s
t
c
a
s
e
s
(%

)
Average dependencies (9.5)

Median dependencies (4.0)

Figure 4.12: Length of the dependency chains for Cascade. Control-ow instruc-
tions are represented in orange. Fuzzing instructions depended on
up to 270 other fuzzing instructions.

In contrast, Cascade generates programs with longer dependency chains,
which could further be improved if needed by lowering the probabilities of
picking dependency-resetting instructions such as CSR reads.

4.7.4 Coverage evaluation

We show that Cascade is faster in increasing coverage compared to the
state-of-the-art fuzzers with their own coverage metrics. We consider the
open-source coverage metrics used for fuzzing (i.e., multiplexer select
and control register coverage). To compare with the results reported by
TheHuzz [4], we additionally consider the coverage metrics provided by
the commercial simulator (branches, conditions, expressions, FSM states
and transitions, statements, and toggles).

Control register coverage (DifuzzRTL)

We rst compare the control register coverage of Cascade with the one
achieved by DifuzzRTL, which explicitly aims at maximizing this coverage.
DifuzzRTL supports legacy versions of Rocket and BOOM. Running Cas-
cade on this BOOM version leads to quasi-systematic timeouts, revealing
old bugs in the obsolete BOOM RTL. Hence, we executed all test cases
on the legacy Rocket core provided in the Docker image [204], which was
already exempt of unexpected bugs.

results . Figure 4.13 shows the control register coverage achieved by
Cascade and DifuzzRTL. Cascade achieves more coverage than DifuzzRTL,
in a shorter time. In particular, Cascade achieves the same coverage in 30

4.7 evaluation 117

0 10 20 30 40 48

Time (h)

0

500,000

1,000,000
C
o
v
e
ra
g
e
p
ts

Cascade (with corpus)

Cascade (live generation)

DifuzzRTL

Figure 4.13: Achieved control register coverage.

minutes (15 minutes when using a pre-generated corpus) as DifuzzRTL in
48 hours, which is a speedup of 97x (respectively 186x).

Multiplexer select coverage (RFUZZ)

We now compare the multiplexer select coverage achieved by Cascade
with the one achieved by RFUZZ. We adapted RFUZZ as a sequence of
Yosys [205] passes to support Verilog, more general than FIRRTL [206],
and ensured that the results match with the original open-source imple-
mentation. We will open-source the instrumentation code to foster further
research. We execute Cascade on the RFUZZ-instrumented versions of the
designs as well. We execute the RFUZZ experiments until completion, i.e.,
as implemented in the original RFUZZ fuzzer, when all input sequences in
the adherence to the corpus cease to increase coverage. We had to exclude
CVA6 because of the Yosys bug found by Cascade.

results . Figure 4.14 shows the multiplexer select coverage achieved
by Cascade and RFUZZ. First, in terms of coverage, for the two simpler
designs, RFUZZ is a bit slower than Cascade (note that in this experiment,
Cascade also suffers from the runtime overhead due to the instrumentation),
but eventually achieves a superior coverage. Since RFUZZ is a lower-level
fuzzer, it is expected to be able to toggle some more multiplexer signals
eventually, for example by fuzzing the bus protocol, whereas an ISA-level
fuzzer like Cascade and many others [4–10] will not explore these state
machines. However, as soon as CPUs become more complex, RFUZZ is
unable to make any progress.

118 cascade

0

50

100
PicoRV32 (172 coverage points)

Cascade

RFUZZ

0

50

100
Kronos (178 coverage points)

Cascade

RFUZZ

0

50

100
VexRiscv (634 coverage points)

Cascade

RFUZZ

0

50

100
Rocket (2265 coverage points)

Cascade

RFUZZ

0 20 40 60 80 100

Time (seconds)

0

50

100
BOOM (7752 coverage points)

Cascade

RFUZZ

C
o
v
e
ra
g
e
p
o
in
ts

(%
)

Figure 4.14: Multiplexer select coverage achieved by Cascade.

Second, regarding delay, the order of magnitude to saturate coverage for
Cascade is approximately 100 seconds, which corresponds to its order of
magnitude for nding bugs as we show later. This suggests that, although
a naive RFUZZ implementation seems inadequate to nding bugs in CPUs,
especially when they are complex, its coverage metric seems relevant to
evaluating the quality of a fuzzing campaign.

Simulator-based coverage (TheHuzz)

We compare the simulator-based coverage achieved by Cascade with the
one reported by TheHuzz. We reproduce the experiment from TheHuzz that
led to their Figure 5 [4]. We compare the simulator coverages of Cascade
and DifuzzRTL, and use DifuzzRTL as a pivot to compare with TheHuzz.
Note that to t the methodology of TheHuzz, both DifuzzRTL and Cascade
rely on pre-generated corpuses in this experiment.

4.7 evaluation 119

0 200k 400k 600k 800k 1,000k

Number of instructions

400k

425k

450k

S
im

u
la
to
r
c
o
v
e
ra
g
e

Cascade

DifuzzRTL

Intersection: 37k instrs

Figure 4.15: Simulator-collected coverage per instruction of Cascade and Difuz-
zRTL. Note that the y-axis starts at 400k.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Median time to discovery (core-hours)

0

10

20

30

38

N
e
w
b
u
g
s
fo
u
n
d

1 fuzz. instr.

10 fuzz. instr.

100 fuzz. instr.

1,000 fuzz. instr.

10,000 fuzz. instr.

Figure 4.16: Time to reveal each bug when fuzzing with xed numbers of
instructions on 64 cores.

results . Figure 4.15 shows a per-instruction speedup of Cascade over
DifuzzRTL of 27x for the simulator-collected coverage, while TheHuzz
reports a speedup of 3.33x. Since TheHuzz reports a runtime slowdown of
71%, Cascade is 28.2x faster than TheHuzz on TheHuzz’s target coverage
metric.

4.7.5 Efcacy of long programs

To better understand the inuence of program length on the efcacy of
nding bugs, we enforce the number of fuzzing instructions per program,

120 cascade

Uarchvals Exceptions Archvals Archflags Hangs Perfcnt

5

10

N
e
w
b
u
g
s 12 11

4 4 3 3

PicoRV32

Kronos

VexRiscv

CVA6

BOOM

Figure 4.17: Discovered CPU bugs. Exceptions: missing or spurious exceptions.
Uarchvals: wrong computations under microarchitectural conditions.
Archvals: systematic wrong computations. Archags: wrong status
ags. Hangs: CPU hangs. Perfcnt: wrong performance counter values

fuzz on 64 cores and report the bug discovery times in Figure 4.16. Even
limited to a single fuzzing instruction, Cascade discovers C8-C9 in a core-
hour, undetected by TheHuzz [4] and HypFuzz [10]. Yet clearly, longer
programs are more efcient at nding bugs. Also note that some bugs are
hard to separate for this measurement, in particular C2-C7 and C10, and
may overlap. The bug found only by the longest programs in 24 core-hours
is K3.

4.7.6 Bug discoveries

Cascade discovered 37 new bugs in 5 CPUs and 1 bug in the Yosys syn-
thesizer. Figure 4.17 classies the new bugs in six categories, and Table 4.1,
Table 4.2 and Table 4.3 the bugs we found, the corresponding CWEs and
CVEs.

We rst analyze the discovered bugs and their security implications, and
then evaluate the bug detection performance of Cascade.

concurrent findings . After a rst bug report campaign, we sub-
mitted some new bug reports that were, in the meanwhile, concurrently
found by the VexRiscv maintainer. These bugs are V10 and V11. From
existing github issues, it cannot be excluded that symptoms of C1 had been
noticed in the past. However, the root cause was clearly not understood,
until Cascade and its analysis facilities allowed us to propose a x, that has
been approved and merged by the maintainers.

4.7 evaluation 121

Design Id Bug Description CWE CVE Sev.

VexRiscv

V1 Non-deterministic conversion from 681 2023-34885 4.9

single-precision oat to int

V2 fmin with one NaN does 193 2023-34885 4.9

not always return the other operand

V3 Conversion from double to oat 681 2023-34885 4.9

may pollute the mantissa

V4 Dependent arithmetic/muldiv FPU 193 2023-34885 4.9

operations may yield incorrect results

V5 Equal registers may be considered 697 2023-34885 4.9

distinct by fle.s and feq.s

V6 flt.s may return 1 697 2023-34885 4.9

when operands are equal

V7 Under some microarchitectural conditions 1339 2023-34885 4.9

square root may be imprecise

V8 Single-precision muldiv followed by 681 2023-34891 4.9

conversion may pollute the mantissa

V9 Dependent arithmetic/muldiv operations 682 2023-34891 4.9

may cause largely wrong output

V10 Operations on oating-point registers 1189 2023-34885 4.9

are authorized when FPU is disabled

V11 Wrong access control to the 1189 2023-34892 4.9

FPU ags leaks information

V12 Hang on speculatively executed 1342 2023-34896 7.7

compressed FPU instructions

V13 Inaccurate instruction count when 684 2023-40063 3.6

minstret is written by software

V14 Some register comparisons are still 697 2023-34885 4.9

incorrect despite a partial x

Table 4.1: Bug Report Table (VexRiscv).

Bug descriptions

exceptions . Cascade discovered 11 exception-related bugs in 4 de-
signs, which we dene as missing or spurious exceptions. For example, in
VexRiscv, interactions with a disabled FPU are wrongly permitted (V10,
V11). In Kronos, writes to a non-existent CSR fail to trigger an exception

122 cascade

Design Id Bug Description CWE CVE Sev.

PicoRV32

P1 Accessing a non-implemented CSR 1281 2023-34898 4.6

causes the CPU to hang

P2 Spurious exceptions when 1281 2023-34897 2.6

reading mandatory CSRs

P3 Performance counters 284 2023-34900 2.6

are not writable

P4 Performance counters can only 284 2023-34914 2.6

be read using some opcodes

P5 Performance counter 684 2023-34913 2.6

addresses are incorrect

P6 Spurious exception when 705 2023-34899 5.0

decoding fence instructions

Kronos

K1 RaWaW double-hazard may cause a 226 2023-34902 6.6

wrong register value to be forwarded 226 2023-34902 6.6

K2 Reading existing CSRs causes the CPU 1281 2023-34901 7.1

to hang in some uarch conditions

K3 In some uarch conditions, no 1281 2023-42310 2.6

exception when writing inexistent CSRs

K4 Inaccurate instruction count 684 2023-40066 3.6

when minstret is written by software

K5 Incorrect decode logic 684 2023-34903 5.0

for fence and fence.i

Table 4.2: Bug Report Table (PicoRV32 and Kronos).

(K3). In PicoRV32, Kronos and CVA6, spurious exceptions may be trig-
gered by some CSR accesses (P2-P5, C8-C9) or incorrectly decoded valid
instructions (P6, K5).

microarchitectural-state-dependent wrong computations .
Cascade discovered 12 bugs that produce wrong computations under certain
microarchitectural conditions (Uarchvals) in Kronos and VexRiscv. In Kronos,
a bug in the hazard detection unit (K1) causes, under some conditions,
wrong register forwarding in a read-after-write-after-write double-hazard,
where it forwards the rst written value instead of the second. In VexRiscv
and CVA6, wrong calculations occur under some microarchitectural FPU
conditions (V1-V9, V14, C10). Such bugs are often hard to x. Indeed, the
VexRiscv maintainers proposed a x, which solved most of the occurrences,

4.7 evaluation 123

Design Id Bug Description CWE CVE Sev.

CVA6

C1 Double-precision multiplications 682 2023-34904 4.4

yield wrong sign when rounding down

C2 Single-precision oating-point 684 2023-34906 5.1

operations may treat NaNs as zeros

C3 Division by NAN incorrectly 684 2023-34905 5.1

sets NX and NV fags

C4 The inexact (NX) ag not set 684 2023-34907 5.1

in case of overow or underow

C5 Division of zero by zero 684 2023-34909 5.1

incorrectly sets the DZ ag

C6 +inf and -inf microarchitectural 1221 2023-34910 4.4

structures are inverted

C7 Innities are not rounded 1339 2023-34911 4.4

properly and stick to innity

C8 Spurious exceptions when reading 684 2023-34911 5.0

some performance counters

C9 Wrong supervisor performance 684 2023-42311 5.0

counter access control

C10 Under some uarch circumstances 682 2023-34908 5.1

wrong NAN conversion

BOOM

B1 Static rounding is ignored 1339 2023-34882 6.5

for fdiv.s and fsqrt.s

B2 Inaccurate instruction count when 684 2023-40065 3.6

minstret is written by software

Yosys Y1 Logic synthesis of CVA6 inserts 682 2023-34884 6.8

a logic bug into the FPU

Table 4.3: Bug Report Table (CVA6, BOOM and Yosys).

but Cascade discovered a way to tamper with the FPU’s microarchitectural
state again with a different approach (V8, V9, V14), which has ultimately
been xed by the maintainers.

systematic wrong computations . Cascade discovered 4 bugs in
BOOM and CVA6 that produce wrong output values regardless of the
microarchitectural state (Archvals). In BOOM, double-precision divisions
and square roots ignore the (immediate) static rounding mode (B1). In

124 cascade

V
1

V
2

V
3

V
4

V
5

V
6

V
7

V
8

V
9

V
1
0 V
1
1V
1
2 V
1
3V
1
4

P
1

P
2

P
3

P
4

P
5

P
6

K
1

K
2

K
3

K
4

K
5

C
1

C
2

C
3

C
4

C
5

C
6

C
7

C
8

C
9 C
1
0B
1

B
2

Y
1

R
1

1

1
0

1
0
0

1
0
0
0

Time to discovery (s)

Figure 4.18: Time to reveal each bug when fuzzing on 64 processes. R1 is the
known instruction counting bug in Rocket. Note the logarithmic
scale. Bugs are labeled as follows: B (BOOM), C (CVA6), K (Kronos),
P (PicoRV32), V (VexRiscv), and Y (Yosys).

4.7 evaluation 125

CVA6, we found two wrong output sign bugs (C1, C6), and one unexpected
innity bug (C7).

systematic wrong flags . Cascade discovered 4 incorrect ag bugs
in CVA6 (Archags) (C2-C5). Since ags are typically used to guide a control
ow, emitting FPU operations that will set ags incorrectly may provide an
illegitimate control ow inuence. Such bugs are difcult to x. The CVA6

maintainers contacted us to test a x, which we found to x some bug (C2),
but preserving another (C3).

hangs . Cascade discovered 3 bugs that cause hangs in Kronos, PicoRV32
and VexRiscv (V12, P1, K2). In PicoRV32, the hang is systematic for access-
ing some CSR addresses. The hang in Kronos, also related to CSR access,
depends on the microarchitectural state. The hang in VexRiscv is achiev-
able when speculatively executing an illegal compressed oating-point
instruction and later executing a legitimate oating-point instruction: mi-
croarchitectural resources are reserved but are never released, which results
in a deadlock. The latter bug is similar to the recently-discovered Zenbleed
bug [207], where an architectural bug leaves traces after speculation.

performance counter inaccuracies . Cascade discovered 3 inac-
curate performance counter bugs (Perfcnts) in Kronos, VexRiscv and BOOM
(K4, V13, B2). They incur an offset in the retired instruction counters when
written by software.

yosys logic synthesizer bug . Yosys [205] is a popular open-source
logic synthesizer, which is typically used for instrumenting a CPU [1, 5,
12, 54]. It may also be used to part of an emulation or ASIC ow. Cascade
found a bug (Y1) that leads to incorrect logic synthesis of CVA6’s FPU.

other findings . Besides discovering new bugs in CPUs and in Yosys,
Cascade found known bugs in CVA6, and the performance counter inac-
curacy in Rocket discovered by DifuzzRTL and reported by TheHuzz and
HypFuzz [4, 5, 10].

Additionally, Cascade found two issues related to X over-propagation
in VexRiscv (shadowing of RTL logical signals by undened values [206,
208]), which may happen under some conditions. First, some uninitialized
instruction cache lines can enter the pipeline and pollute signals. Second,
in case of FPU underow, a hardware table is accessed with a too large
index. HypFuzz [10] discusses the implications of such vulnerabilities when
describing their third vulnerability [10].

126 cascade

Info
lea

kag
e

DF
vio

lati
ons

CF
hija

ck

Spu
r. e

xce
pt.

No
che

ck DoS

Log
ic h

idin
g

0

10

20
N
e
w
b
u
g
s 18

12
9 8

4 3
1

PicoRV32

Kronos

VexRiscv

CVA6

BOOM

Yosys

Figure 4.19: Security implications of discovered bugs. Note that some bugs
belong to more than one category.

Security implications

We classify the security implications of the discovered bugs into six cate-
gories, as presented in Figure 4.19. The same bug may belong to more than
one category.

data-flow integrity. We dene data-ow integrity bugs as allowing
a malicious time-shared user to cause a victim entity to execute computa-
tions with a wrong result. Cascade found 12 such bugs, where preparing
the (micro)architectural state can cause wrong computations (V1-V9, V14,
K1, B1). For example, exploiting the BOOM dynamic rounding bug (B1), an
attacker process can force a victim process to take a different oating-point
rounding mode than expected.

information leakage . Sources of information leakage are many. For
example, data-ow integrity bugs may also enable information leakage
in the opposite direction, from the victim to an attacker running on the
same core. So do bugs that illegally set some ags (C2-C5), and some
unauthorized accesses (V10, V11), creating core-local side channels.

control-flow hijack . Cascade found 9 bugs that let an attacker
process inuence the control ow of a victim process (C1-C7, V5, V6). For
example, CVA6 sets wrong ags in diverse situations (C2-C5) and produces
wrong nitude or sign results (C1, C6, C7), which typically inuence the
control ow. Concretely, we found that the inexact ag is not set in some
cases of underow or overow (C4), preventing some potential security
checks. On VexRiscv, the microarchitecture can be prepared to corrupt

4.7 evaluation 127

comparisons, for example making two equal registers be considered distinct
(V5, V6). This preparation must be done by a process on the same core.

spurious exceptions . Cascade found 8 spurious exception bugs (P2-
P6, K5, C8, C9), which break isolation boundaries from higher privilege
levels, for example, in the context of trusted execution environments. For
example, in PicoRV32, reading some mandatory CSRs causes exceptions
(P2), hence, a malicious machine could give the illusion that they are acces-
sible, but actually the machine solely emulates the interactions, providing
arbitrary values.

missing checks . Cascade found 4 missing checks, with several im-
plications. First, they may permit to bypass security checks (V10, V11),
problematic, for example, if the FPU is time-shared with other cores. Sec-
ond, they can deceive a victim to believe that a feature is supported (K3,
P5). They can additionally be exploited to escape program analysis, where
supposedly dead code is shadowed by an exception.

denial of service . All the hangs that we found (V12, P1, K2) can
happen at any privilege level, leading to DoS attacks.

logic hiding . Using the discovered Yosys bug (Y1), a malicious contrib-
utor can inject bugs into a design while submitting an apparently innocuous
RTL design, by transforming the RTL into an equivalent one that will trigger
Y1 accordingly.

Bug detection performance

We fuzz on 64 processes for 24 hours and summarize the time to discover
each bug in Figure 4.18, where we repeated the discovery 10 times with
different seeds. Note that some bugs are hard to separate for this experi-
ment, in particular C2-C7 and C10, and may overlap. In most runs, bugs
are discovered in less than 18 core-hours (17 minutes). Design and bug
complexities inuence the discovery time.

Considerations of Previous Fuzzing Claims

In TheHuzz [4], it is considered as a bug (B4) that CVA6 does not throw
an exception when executing self-modifying code without fence.i. RISC-V
does not specify any behavior in this case, hence this is a feature request
and not a bug. In HyPFuzz [10], their vulnerability V2 was later denied by
the CVA6 maintainers [209], and V3 is not a bug [210]. Since V3 is not a bug,

128 cascade

PicoRV32 Kronos VexRiscv Rocket CVA6 BOOM

10

20

30
S
e
c
o
n
d
s
/
k
in
s
t

Figure 4.20: Program reduction performance.

we naturally did not count similar occurrences as bugs in the evaluation of
Cascade (see Section 4.7.6). Conclusively, HypFuzz only describes a single
new bug. In the archived version of ProcessorFuzz [211], Bug 10 is not
a bug but a feature request, because the described behavior is explicitly
permitted by the RISC-V specication.

4.7.7 Program reduction performance

We evaluate the performance of Cascade’s program reduction. Since all
designs still have at least one non-xed bug (V14, P6, K4, C9, B2 and R1), we
focus on them for this analysis. We run the fuzzer to collect 100 programs
that trigger the bug in each design. Then, we perform the program reduction
on these programs, and measure the time required to reduce each program
and normalize it by the number of instructions in the program, including
the initial and nal blocks.

results . Some program reductions could fail, e.g., because a load in-
struction would target the hopping instruction of a basic block preceding
a candidate tail block during the reduction phase and its result would
propagate to the control ow. Experimentally, we did not observe such
failures. Figure 4.20 shows the time to reduce each program, normal-
ized by the length of the program. Program lengths varied between 193
and 62, 870 instructions. The timeout upper bound, conservatively set to
30× ninstructions + 1000 cycles, inuences program reduction performance.
In this experiment, the reduction always identied the head and tail instruc-
tions.

4.8 discussion 129

4.8 discussion

We discuss porting Cascade to other ISAs and limitations of coverage
metrics used by the state-of-the-art CPU fuzzers.

adaptations to other isas . While the fundamentals of Cascade’s
approach comply with most widespread ISAs, its current implementation is
RISC-V-specic. Adaptation to RISC ISAs such as ARM and MIPS requires
ISS and instruction generator adaptations. We expect porting Cascade to
CISC ISAs to be more challenging due to more instructions.

coverage metrics . The coverage metrics used by the state-of-the-art
CPU fuzzers such as TheHuzz [4] and DifuzzRTL [5] are dominated by
ineffective terms while introducing runtime overhead. For TheHuzz, toggle
coverage represents around a million points and 89% of the achievable
points on Rocket. Given that TheHuzz considers the sum of all coverage
points of all types, any mutation that would produce such a single new
toggle would be considered as discovering new coverage. Limitations of
such simple metrics are well-known [212], yet the more powerful alternative,
functional coverage, requires signicantly more effort [213]. This explains
why HypFuzz, building on the same metric as TheHuzz, found a single
new bug. DifuzzRTL denes control registers as registers which control a
multiplexer inside the same HDL module. This coverage metric continues
to increase when exploring registers whose fanout multiplexers already
took all values. Ultimately, DifuzzRTL optimizes for exploring an immense
number of combinations of values for registers that are mainly arbitrarily
selected [17].

4.9 related work

In the recent years, hardware fuzzing has ourished. We rst cover generic
hardware fuzzers, then CPU fuzzers.

generic hardware fuzzers . RFUZZ [12] is a generic hardware
fuzzer that relies on multiplexer control signals to generate inputs based on
AFL [181]. DirectFuzz[13] targets RFUZZ toward specic modules. Trippel
et al. [93] proposed to fuzz the hardware simulation binary itself, using soft-
ware fuzzing methods. Ruep et al. [214] proposed a fuzzer for SpinalHDL
designs. Li et al. [28] proposed a new coverage metric for fuzzing. Ragab
et al. [215] proposed a distance-to-target feedback metric to direct fuzzers

130 cascade

towards specic targets. None of these publications reported the discovery
of any bugs.

cpu fuzzers . Many active open-source repositories rely on testing tools,
such as the RISC-V compliance suite [156], which generates basic unit tests,
and RISCV-DV, a UVM-based testing framework based on commercial
simulators [216]. To address their insufciencies, several projects proposed
fuzzing CPUs. DifuzzRTL [5] generates instructions and collects control
register coverage to guide the fuzzing process and discovered 16 new
bugs. Its source code, while relying on obsolete languages, is available
for fuzzing legacy versions of Rocket and BOOM[204]. ProcessorFuzz [17]
is a concurrent work that generates instructions and collects coverage of
control and status registers on the ISS and reported the discovery of 9
new bugs, including 7 on BlackParrot, maintained by certain authors of
ProcessorFuzz. Kabylkas et al. present Dromajo and Logic Fuzzer [9] and
report the discovery of 13 new bugs, including 4 with the help of Logic
Fuzzer. Bruns et al. [8] exploited ISS coverage to nd new VexRiscv bugs.
Similarly, Herdt et al. [7] exploited ISS coverage to nd 10 new bugs in
their own core. N. Bruns et al. [6] generate an innite instruction stream
on the memory channel to nd a bug in their own core. Such an innite
instruction stream is known to cause compatibility issues due to strong
microarchitectural assumptions [8]. Kande et al. [4] proposed TheHuzz,
based on commercial RTL simulator coverage feedback, and fond 7 new
bugs. Chen et al. [10] proposed a technique to speed up the coverage
obtained by TheHuzz and found one new bug. Cascade is the rst fuzzer
to take a constructive approach to tackle the observations and challenges
exposed in Section 4.3.

4.10 conclusion

We presented Cascade, a CPU fuzzer based on the explicit construction of
intricate RISC-V programs. Cascade is effective: it nds 37 new bugs on 5

RISC-V CPUs with varying degrees of complexity and vastly outperforms
the state-of-the-art coverage-guided CPU fuzzers. What sets Cascade apart
from the state of the art is its ability to efciently construct long complex
programs that enable high-throughput CPU fuzzing while terminating
by design. Any non-termination signies the discovery of a bug in the
target CPU. We described how Cascade generates its programs using a
new technique, asymmetric ISA pre-simulation, which enables Cascade to

4.10 conclusion 131

efciently entangle an arbitrarily-complex control ow with an arbitrarily-
complex data ow. Since the bug-triggering programs generated by Cascade
may be long and complex, we introduced a new technique for program
reduction transforming a program to the only few instructions that trigger
the CPU bug.

ethical considerations . We reported all bugs to their respective
maintainers, and proposed xes when our understanding of the language
and design was sufcient.

acknowledgements

The authors would like to thank the anonymous reviewers for their valuable
feedback, Tobias Kovats for his contribution to RFUZZ re-implementation,
and the maintainers of the designs we tested for their support in understand-
ing and xing some of the bugs. The work in this chapter was supported in
part by a Microsoft Swiss JRC grant and by the Swiss State Secretariat for
Education, Research and Innovation under contract number MB22.00057
(ERC-StG PROMISE).

5
LOST IN TRANSLAT ION : CONFUSED DEPUTY ATTACKS
ON EDA SOFTWARE

We introduce MiRTL, a new class of attacks that enables a seemingly correct
RTL design to translate into synthesized malicious hardware. MiRTL is the
result of the confused deputy problem in EDA software such as simulators
or synthesizers that translate RTL designs to lower-level representations.
This paper explores the discovery and exploitation of such vulnerabilities
for realizing MiRTL attacks. Our new fuzzer, called TransFuzz, generates
randomized RTL designs containing many operators with complex intercon-
nections for triggering translation bugs. The expressiveness of RTL, however,
makes the construction of a golden RTL model for detecting deviations due
to translation bugs challenging. To address this challenge, TransFuzz relies
on comparing signal outputs from multiple RTL simulators for detecting
vulnerabilities. TransFuzz uncovers 20 translation vulnerabilities among 31

new bugs (25 new CVEs) in four popular open-source EDA applications.
We show a real-world instantiation of a MiRTL attack by injecting malicious
hardware using seemingly benign RTL code into the CVA6 RISC-V core
using these discovered vulnerabilities.

5.1 introduction

Community-driven open-source hardware development is on the rise [74,
75, 137, 217–224], exposing EDA software used for RTL simulation and
synthesis to hardware designs from many, potentially distrusting, devel-
opers. Similar to standard software, RTL simulators and synthesizers are
subject to standard vulnerabilities such as buffer overows. The unique
nature of hardware development ows, however, exposes EDA software
to a more silent and sinister class of vulnerabilities that we explore in this
Chapter. These vulnerabilities enable a hardware developer or a malicious
intermediate EDA application to turn a seemingly benign piece of hardware
design into synthesized malicious hardware.

133

134 lost in translation

translation bugs . RTL simulators are used in all stages of hardware
development for testing the validity of a design by transforming the RTL,
often expressed in an HDL, into a lower-level model suitable for execution
on the designer’s system. Once the hardware design is nal in the late
stages of hardware development, the HDL representation is transformed
into a gate-level netlist by a synthesizer. The translation of the HDL by
an RTL simulator or a synthesizer to lower-level representations involves
a variety of complex optimizations, e.g., for performance or area. This
complexity can cause the EDA software to mistranslate the given HDL
design. These translation bugs can lead to a class of attacks that we call
MiRTL (Mistranslated RTL). When targeting RTL simulators, MiRTL enables
certain HDL behavior not to register during simulation, but appearing in the
synthesized hardware. When targeting synthesizers, simulators correctly
register all the values correctly, but the malicious behavior is injected by the
synthesizer. To employ MiRTL, attackers need to discover translation bugs
in the target EDA software.

mirtl . Fuzzing is a common technique to nd vulnerabilities in soft-
ware [181–194] and hardware [4, 5, 10, 11, 17, 225] by generating input
against the hardware or software interface. The input to EDA software
instead is an arbitrary RTL design that takes arbitrary inputs. Hence, our
new fuzzer, TransFuzz, generates randomized RTL designs and provides
these designs with randomized inputs under different RTL simulators
and synthesizers. TransFuzz must ensure that the generated RTL designs
are sufciently random to provide ample opportunities for optimizations.
Generating randomized RTL at the HDL-level often results in regular rep-
resentations and interconnections of macrocells after parsing by the EDA
software. Instead, TransFuzz generates randomized RTL designs at the
macrocell-level which provides maximum exibility for randomizing the
number and type of macrocells as well as their interconnection.

TransFuzz-generated designs may trigger translation bugs, yet it is un-
clear how we can detect them. Unlike software fuzzers that can rely on
crashes [182–186, 188–194] or sanitizers [181, 185], and hardware fuzzers
that rely on golden models [5, 10, 11, 17] or the ISA itself [225], there exists
no golden model for HDL and constructing one is challenging due to the
expressiveness of HDLs. Instead, TransFuzz generates randomized designs
in a way that a congurable number of output signals provide a signature
of the design over an arbitrary number of cycles. TransFuzz then compares
these values across different EDA software to detect deviations, similar to
differential fuzzing [226–228]. Given the freedom in the specication of

5.1 introduction 135

HDLs, however, we must slightly constrain the generation of our circuits to
avoid false positives. Namely, TransFuzz avoids race conditions with respect
to signals that control state-saving elements and avoids the generation of X
signals inside the designs.

Our evaluation shows that TransFuzz triggers 31 new bugs (25 CVEs) in
three open-source RTL simulators, namely Verilator, CXXRTL, and Icarus
Verilog, and the open-source Yosys synthesizer. Of these 31 bugs, 20 are
translation bugs, enabling MiRTL attacks on all of these four popular EDA
applications.

exploiting translation bugs . To build exploits using translation
bugs, we introduce the MiRTL gadget, a primitive that produces a certain
value under normal circumstances and the opposite value when triggering
the translation bug. These gadgets serve as a basis for building various
MiRTL attacks. As an example, we have built a MiRTL attack that allows
the synthesis of a malicious version of CVA6 [74] (a RISC-V CPU) to
enable unprivileged software to leak supervisor memory, yet this leakage is
ignored by all three simulators. We also show howMiRTL attacks can bypass
standard hardware-level leakage detection schemes such as information
ow tracking [54, 131, 229].

contributions . The following lists our contributions:

• We explore MiRTL, a new class of confused deputy attacks exploiting
RTL translation bugs on EDA software.

• We design and implement TransFuzz, a new fuzzer that uncovers
translation bugs by generating complex randomized RTL designs and
a differential approach for detecting these vulnerabilities.

• We apply TransFuzz on 4 popular EDA applications to discover 31
new bugs, including 20 translation bugs.

• We instantiate MiRTL attacks by introducing MiRTL gadgets, building
a malicious version of a RISC-V core and evading information ow
tracking using the discovered translation bugs on our target EDA
applications.

responsible disclosure . We have reported all the discovered bugs
to the maintainers of the respective EDA software.

136 lost in translation

Hardware

description (RTL)
Simulator

Testbench

Synthesizer

Hardware

description (HDL) ASIC

FPGA

Low-level

netlist

(a)

(b)

(c)

(d)

(e) (f)

(g)

Figure 5.1: Typical digital hardware ow.

Simulator

SystemVerilog

sources and

testbenches

Simulation

binary sources

Libraries

Environment

Testbench output

Simulation

binary

Elaboration Execution

Figure 5.2: Elaboration and execution phases of RTL.

5.2 background

This section provides the necessary background about the hardware devel-
opment ow, RTL simulation, and fuzzing.

5.2.1 Digital hardware development ow

A typical hardware development ow is illustrated in Figure 5.1. A hard-
ware design is described at the Register-Transfer Level (RTL) (a). Designs at
such a level are usually expressed in VHDL and Verilog. The latter language
has gained signicant traction in the last decade, to the extent that almost
all signicant open-source hardware projects are written in Verilog, or in a
language that is typically compiled to Verilog [214, 230–232]. The hardware
design is then simulated (b) along with some testbench to check that the
design fullls the intended functionality (c). Once validated, the design
is then synthesized (d) to a lower-level netlist (e) that is destined for a
specic FPGA family (f) or ASIC fabrication process (g). Simulation of the
lower-level netlist are often orders of magnitude slower than pre-synthesis

5.2 background 137

simulations [54]. Further steps depend on the target technology and often
include oorplanning, place and route.

5.2.2 RTL simulation

From hardware descriptions and testbenches, RTL simulators are software
applications that can produce outputs in multiple forms, such as binary
pass/fail or a simulation trace. Popular open-source RTL simulators include
Verilator [233], Icarus Verilog [234] and CXXRTL [205]. RTL simulators
generally operate in two stages, illustrated in Figure 5.2. First, they take
a hardware design and produce a simulation model. We call this step
elaboration. Verilator and CXXRTL translate the design into C++ code meant
to be compiled against the testbench to produce a simulation model, while
Icarus produces an intermediate simulation model that is an input to a
static executable (vvp). Second, they take a simulation model and a set
of input values, and run the simulation to produce the expected form of
output. We call this step execution.

To simulate a design efciently, RTL simulators perform a series of
optimizations, such as constant propagation, dead code elimination, and
common subexpression elimination. These optimizations are intended to
preserve the design’s functionality for all synthesizable parts that are not
affected by undetermined "X" or high-impedance "Z" values.

5.2.3 Fuzzing

Fuzzers apply random inputs to a tested (hardware or software) unit and
observe its behavior. They generate inputs following various strategies
often classied as white box, gray box or black box, and depending on
the feedback information they consider [4, 10, 11, 17, 181–194, 225]. Then,
they observe whether a bug was triggered, using strategies such as crash
observation [181, 225], sanitizers [195–197] or comparison with a reference
implementation [5].

discussion. Existing fuzzers are not suitable for discovering deep bugs
in EDA software, particularly translation bugs. The inputs must represent
complex hardware and stimuli. For simulators, this even requires fuzzing
the simulator and the simulation model. Furthermore, output deviations
are not covered by the capabilities of traditional fuzzers.

138 lost in translation

Simulators Synthesizer

Malicious

hardware

Mis-simulate as

valid

Simulators Synthesizer

Malicious

hardware

Legitimately

validate

Crafted corrupted design Crafted functional designa) b)

Figure 5.3: High-level MiRTL attacks exploiting (a) simulator bugs and (b)
synthesizer bugs. Red hardware is malicious.

Figure 5.4: Distribution of recent public bug reports. Exceptions: crashes and
assertion failures. Warn/format: wrong warning or text/trace for-
matting. Syntax: syntax-bound issues. Translation: translation bugs.
Slow/hang: hang or unjustied signicant slowdown.

5.3 threat model

We consider a malicious hardware IP, an EDA software vendor or a con-
tributor whose intention is to discretely alter a hardware design. We do
not assume any property of the victim Verilog design. In the concrete
exploits that we present, the victim uses some of the three popular open-
source simulators Icarus Verilog [234], Verilator [233] or CXXRTL, and the
state-of-practice open-source synthesis tool Yosys [205].

5.4 mirtl attacks 139

5.4 mirtl attacks

While the threat of hardware trojans is well-understood [235–242], we show
that exploiting bugs in EDA software in a confused deputy scenario is
a realistic and practical alternative for inserting vulnerabilities that are
undetectable under normal testing conditions, as we illustrate in Figure 5.3.
A translation bug in an RTL simulator enables a MiRTL attack where an
attacker-crafted behavior in HDL is not detectable by the RTL simulators
and gets synthesized into malicious hardware (a), and a translation bug in
the synthesizer enables a MiRTL attack where the malicious behavior is not
present in the HDL (hence also undetectable by simulators) and injected by
the synthesizer into malicious hardware (b).

We build TransFuzz to nd such translation bugs in designs that are
expressed in synthesizable Verilog, which is nowadays the most popular
RTL language. Interestingly, only a few of such bugs were discovered
in the last years despite the high activity around open-source EDA. In
Figure 5.4, we show the distribution of up to the 100 most recent public
bug reports from four popular open-source EDA applications. We provide
a detailed methodology in Section 5.5.1. In total, only 22 of the 322 reported
bugs are translation bugs, which hints at the difculty of looking for and
discovering such bugs. We provide an overview of challenges in the design
and implementation of TransFuzz and performing MiRTL attacks using the
vulnerabilities that it discovers.

5.4.1 Overview of challenges

The rst challenge in the design of TransFuzz regards the structure and
abstractions of the inputs that we supply to the EDA software.

Challenge 1. Design suitable abstractions and structures for fuzzing
RTL simulators.

In Section 5.5, we start by analyzing the recent bug reports from popular
open-source EDA software to understand the properties of inputs that may
trigger translation bugs. From this analysis, we deduce benecial character-
istics of the inputs that we supply to the EDA software to exert translation
bugs. To comply with these requirements, we propose a new abstraction

140 lost in translation

level: netlists of macro-cells, and expose a concrete way to generate them,
along with random stimuli sequences with suitable dimensions.

The second challenge regards the detection of bugs, both for simula-
tors and synthesizers, as they do not have a golden model or a formal
specication.

Challenge 2. Detect bug occurrences.

In Section 5.6, we propose to use differential fuzzing, using different
simulators or sets of parameters, to account for the absence of a formal
model. Slightly constraining the input space allows TransFuzz to avoid all
undened behaviors that would occur with fully random circuits to enable
sound differential fuzzing. We additionally present the mechanism used
by TransFuzz to reduce the complexity of the test cases. In Section 5.7, we
evaluate the performance of TransFuzz and describe the vulnerabilities that
it uncovers.

The nal challenge regards exploitation.

Challenge 3. Exploit the newly discovered bugs.

To implement practical exploits, Section 5.8 introduces the notion of
MiRTL gadget, a synthesizable primitive that relies on simulator or synthe-
sizer bugs to inject a mistaken value into the hardware design. Using these
MiRTL gadgets as building blocks, we build a concrete kernel information
leakage vulnerability into the Ariane RISC-V CPU [74] using either simula-
tor or synthesizer bugs. We additionally build a shadow gadget that stops
information ow tracking mechanisms from detecting MiRTL attacks.

5.4.2 Overview of MiRTL

Figure 5.5 summarizes the overall design of TransFuzz. TransFuzz operates
in four steps. (1) It generates test case descriptions. (2) From the test case
description, it generates a testbench and a standard Verilog design. (3) It
then performs differential execution. (4) For each test case that triggered a
mismatch, it categorizes and reduces it.

test case generation. TransFuzz rst generates designs as networks
of macrocells with randomized types, attributes and connections, as we will

5.5 input design 141

Figure 5.5: Overview of TransFuzz.

discuss in Section 5.5. It further populates asynchronous signals for state
elements iteratively (a), and adds a stimuli component (b).

hdl generation. TransFuzz then transmits a description (c) of the
hardware component to an HDL generator written as a pass in the Yosys
synthesizer. The output is a standard Verilog description of the nal hard-
ware component (d).

test case execution. TransFuzz submits the test case to several EDA
applications for differential fuzzing and records mismatching instances (e).

characterizaton and reduction. TransFuzz performs simulations
with modied parameters to characterize the bug (f) and may attempt to
reduce it further in the hardware (space) and stimuli (time) dimensions (g).
Eventually, TransFuzz provides the reduced test case to be reported (h).

5.5 input design

We rst analyze existing bug reports to understand the properties of inputs
that may trigger translation vulnerabilities in EDA software. Based on these
observations, we propose a design and implementation of these potentially
bug-triggering low-level inputs which we call subnets.

142 lost in translation

Report reference Title

CXXRTL #4074 bmux does not mask the result

CXXRTL #3820 incorrect result of shl operator

CXXRTL #2780 CXXRTL [...] when routing signal via module

CXXRTL #2746 In CXXRTL edge eval is before calculating value

Verilator #4536 Shift when using streaming operator on 32 bit signal

Verilator #3824 Bit OR tree misoptimization

Verilator #3773 Seemingly incorrect terms in condition in V3Tristate

Verilator #3770 Signal skips ip-op under some circumstances

Verilator #3509 Wire tie-off causing bad logic optimization

Verilator #3470 Wrong expression evaluation results

Verilator #3445 V3Const BitOpTree optimization is incorrect

Verilator #3409 complex assign in always_comb

Verilator #3399 Incorrect tristate enable logic

Yosys #4064 Frontend/AST: signed assign to indexed part-select

Yosys #4010 Synthesis optimization error, inconsistent simulation

Yosys #3879 LEC failed after yosys synthesis

Yosys #3867 Inconsistency Issue [...] opt_expr -ne Pass in Yosys

Yosys #3848 During synthesis [...] errors in register assignment

Yosys #3748 write_smt2: bugs caused by the ’»’ operator

Yosys #3680 Possible initialization issue in Xilinx DSP48E1 cell

Yosys #3431 Wrong smt-lib model behavior since yosys v0.15

Yosys #3360 synth_xilinx [...] output bit is driven ’Z’

Table 5.1: Previous reports of translation bugs.

5.5.1 Analysis of past bug reports

We analyze previously reported bugs in Verilator, Icarus Verilog and
CXXRTL. For each simulator, we iterate through the bug reports, in reverse
chronological order. We study the 100 most recent relevant bug reports for
Verilator, Icarus and Yosys, and all the bug reports of the last three years
for CXXRTL. We lter out the bug reports that have been denied by the
maintainers or that are a duplicate of an earlier bug report.

results . We summarize the translation bugs from Figure 5.4 in Table 5.1.
Verilator and Yosys are the most affected. On the contrary, there has been
no report of a translation bug in Icarus in the past 100 relevant bug reports

5.5 input design 143

(in a period of roughly three years), until TransFuzz’s nding reported in
Section 5.7.5. We make a number of observations about these bugs: rst, a
diverse set of HDL operator types such as shift, bmux and OR are required
to cover these bugs.

Observation 1. Translation bugs are triggered by a diverse set of specic
HDL operator types.

Second, not a single one of these bugs can be triggered with a single-
operator test case. Instead, all of them require some non-trivial interconnec-
tion of multiple HDL operators, and these interconnection patterns vary
from one bug to another.

Observation 2. Translation bugs require non-trivial and diverse inter-
connection patterns.

Third, out of these 22 bugs, up to 21 of them can be triggered with
operators with a width between 2 and 4 bits.

Observation 3. Most translation bugs can be triggered with narrow
cells.

These observations lead us to the following requirements for the design
of TransFuzz.

requirements . The test cases produced for fuzzing a single RTL simu-
lator must satisfy the following requirements:

1. Operational diversity. The test case generator must produce a large
diversity of basic hardware operations.

2. Relational diversity. The test case generator must produce a large diver-
sity of interconnection patterns.

3. Operator size distribution. The distribution of operator sizes must favor
narrower cells, without excluding larger ones completely.

4. Soundness. The hardware that is produced by the test case generator
must comply with the fundamental principles of digital hardware
designs. In particular, being exempt from combinational loops, and
multi-driven nets.

144 lost in translation

C0
C1

in_0

C2 C3
in_1

in_2

out_0

out_1

Figure 5.6: Subnet example.

5. Syntactic correctness. The hardware that is produced by the test case
generator must be syntactically correct.

The last two requirements enable TransFuzz to nd translation bugs in
valid RTL designs.

5.5.2 Test case generation

The usual testing approaches systematically lack one of these requirements.
Fuzzing at the text level, while nding crashes in front-ends, fails at pro-
ducing any non-trivial hardware [243]. Fuzzing at the AST level guarantees
syntactic correctness but hampers relational diversity [244, 245].

network of macrocells . In the light of these requirements, we
propose the network of macrocells as a new abstraction for fuzzing EDA
software. The macrocell abstraction corresponds to simple synthesizable
stateful (e.g., registers with enable and clear signals) or combinational (e.g.,
adders or multiplexers) operators. We propose to construct a network of
interconnected diverse macrocells to produce a sound relationally and
operationally diverse hardware component. We will use the terms cells and
macrocells interchangeably.

Subnet structure

We dene subnets as hardware circuits in which the input of each cell is a
design input or the output of another cell in the subnet. The asynchronous

signals of stateful macrocells in the network, such as reset and clock signals,
are supplied by dedicated inputs or by the output signals of other networks.

5.5 input design 145

Figure 5.6 shows a four-cell subnet with three 32-bit input words and two
32-bit output words. The cells may individually be of any synthesizable
combinational or stateful type.

constructing a sound subnet. To construct a sound subnet, we
must ensure that there are no combinational loops and enforce all wires to
have a single driver. We enforce these rules at no computational cost by en-
forcing two invariants during the construction of the hardware component.
To enforce the single-driver rule, we make sure that a wire only takes one
of the following roles: (a) a design input, (b) the output of a cell or (c) a
design output.

To enforce the loop-free rule, we build subnets as sequences of cells,
in which each cell can only be driven by the subnet input ports or by
the output of a previous cell in the sequence. For maximizing relational
diversity, TransFuzz inserts non-combinational loops through the following
algorithm: for a given cell C, the algorithm colors all cells in its subnet
with white (non-successor), red (combinational successor) or green (non-
combinational successor). All cells start white and only green cells are
eventually eligible for loop insertion. Algorithm 1 provides more detail.

wire concatenations . In accordance with relational diversity, Trans-
Fuzz allows cell inputs to be concatenations of multiple wires. Wire con-
catenation is necessary for connecting a cell’s output to a wider input of
another cell.

Implementation

input selection. Always selecting the subnet’s input words as cell in-
puts would impair relational diversity. So would always selecting the output
of the previously generated cell in the subnet, which would underwhelm
optimizations that exploit parallelism in the circuit. TransFuzz embeds an
algorithm that selects the inputs of a cell as a potential concatenation of
previous cell outputs and favors wires that have not been connected to a
cell input yet. This algorithm is detailed as Algorithm 2.

stimuli specification. Stimuli values are lists of binary words. We
dene stimuli as a (temporal) sequence of pairs (subnet_id, input_values),
where subnet_id identies the subnet or asynchronous wire, and input_values

is a (spatial) list of values to be applied to the inputs to this entity. Stimuli
pairs are applied sequentially to the respective inputs without any explicit

146 lost in translation

Algorithm 1: Non-combinational loop insertion.

Data: An input port of a given cell C
Result: An eligible cell C′ whose output will be connected to C’s

input
1 reds = ∅;
2 redfanout = {C} greens = ∅;
3 greenfanout = ∅;
4 whites = allCells - {C};
5 currcolor = red;
6 while redfanout ̸= ∅ or greenfanout ̸= ∅ do

7 if redfanout ̸= ∅ then

8 D = redfanout.pop();
9 currcolor = red;

10 else

11 D = greenfanout.pop();
12 currcolor = green;

13 whites.remove(D);
14 if stateful(D) or currcolor == green then

15 greens.add(D);
16 greenfanout.addmultiple(D.fanout ∩ whites);

17 else

18 reds.add(D);
19 redfanout.add(D.fanout ∩ whites);

20 return pick(greens) if greens ̸= ∅ else ⊥

form of reset in between, to let the hardware component enter subsequent
states.

cell width selection. Following an earlier requirement on cell
widths, when generating each cell, we select the width of the cell’s in-
puts and outputs following an offsetted geometric law with parameter
p = 1/8: P(W >= x) = (1− p)x−2. This leaves a 2% chance for cells of at
least 32 bits, while two thirds of the widths will be below 10 bits.

verilog backend. EDA software generally operates on Verilog sources,
not on netlists of macrocells. TransFuzz relies on the Yosys Verilog backend,
which is a mature and well-tested implementation of a Verilog netlist
generator. Hence, TransFuzz’s input generator, implemented in Python,

5.6 differential fuzzing for bug detection 147

Algorithm 2: Input selection algorithm sketch. The function pickcell

selects some previous cell in the circuit, with some bias toward the
yet unused output bits.

Data: port_width
Result: Inputs for the next macrocell input port

1 in_offset = 0; remaining_bits = input_bits;
2 while remaining_bits > 0 do

3 C = pickcell(N);
4 out_offset = C.out.width; conn_width = min(remaining_bits,

C.out.width-out_offset);
5 connect(port_width-remaining_bits, out_offset, conn_width);

6 return connections

produces a serialized netlist description. A TransFuzz pass in Yosys, written
in C++, then translates this description into a Yosys’s internal representation.
The Yosys backend eventually produces a Verilog source.

5.6 differential fuzzing for bug detection

EDA software does not generally have a formal specication or a golden
model. Additionally, translation bugs usually do not produce obvious
signals like error messages or crashes.

One could observe all intermediate values produced by a test case in
space and time, e.g., by instrumenting the test case with many probes,
or by enabling tracing. However, this approach has two drawbacks. (a)
Performance: monitoring all values is expensive in terms of time and
memory, while fuzzing is generally performance-sensitive. (b) Intrusiveness:
intermediate acquisitions may prevent some optimizations, hence may
hide bugs. To address this challenge, we propose to employ differential
fuzzing [226–228] to detect bugs in EDA software. Differential fuzzing
requires the selection of variants for fuzzing and a way to compare these
variants.

variant selection. We nd that differential fuzzing (DF) can be
applied in two ways. In internal DF, the test cases are executed differentially
between two parameter settings of the same application, like optimizations
or tracing, while in external DF, two distinct applications are used, as

148 lost in translation

Test case

(HW+SW)

Sim A

Sim B

Testbench A + opt flags

Testbench B + opt flags

=?
Test case

(HW+SW)

Sim A

Sim A

Testbench A + opt flags

Testbench A + no-opt flags

=?

Test case

(HW+SW)

Synth A (opt)

Synth A (no-opt)
Testbench

Sim

Sim

=?

a) b)

c)

Figure 5.7: Differential fuzzing (DF). (a) Simulator (internal). (b) Simulator
(external). (c) Synthesizer (internal).

illustrated in Figure 5.7. TransFuzz uses external DF for the simulators
and internal for the synthesizer. In Section 5.6.2, we further use simulator-
internal DF for characterizing and reducing simulator bugs.

Note that differential fuzzing does not, per se, specify which variant
is incorrect. The most straightforward and classical solution is majority
voting, yet the majority could be wrong, especially when it comes to mis-
interpretations of the Verilog standard. Another approach is to disable all
optimizations and see how the behavior evolves. We could attribute all the
bugs found by TransFuzz (Section 5.7.5) using a combination of these two
methods.

cumulative signature . To provide an effective way to compare vari-
ants, TransFuzz must increase the likelihood that an error triggered by
a translation bug becomes visible by the output from these variants. To
achieve this, TransFuzz relies on a few explicit hardware output signals
that it cumulates over the required number of cycles, resulting in a cumula-

tive signature that can then be compared across variants. For assisting the
propagation of unexpected values, we bias the macrocell input selection
towards macrocell outputs that are not yet used. This avoids trivial cases
where a bug is not observed due to the absence of a path between a buggy
produced value and the output. We provide further details about the section
of explicit output signals in Algorithm 3.

5.6 differential fuzzing for bug detection 149

Algorithm 3: Source cell selection.
Data: An array L of used cell ouptut ids.

P is randomly picked at the test case start.
Result: A source cell C′

1 if random() < P then

2 return pickcell(L)

3 else

4 return pickcell(allCells)

d q
en

a) b)

d q

c)

d qd qd q

Figure 5.8: Examples of race conditions. (a) Incoming data and clock are con-
nected. (b) Enable and clock signals are connected. (c) The input and
clock of the central register change simultaneously.

5.6.1 Ensuring consistency

The Verilog standard offers slack on some aspects, such as the ordering
of some events, or the precision of X propagation. Hence, even when
simulating the same RTL, legitimate divergences between two simulators
may exist. To avoid false positives when comparing variant outputs, we
must slightly constrain test-case generation as discussed next.

avoiding x propagation. Verilator and CXXRTL do not explicitly
support X propagation, yet Icarus does. Additionally, all simulators that
support it may have multiple levels of precision [208, 210, 246–248]. While
Verilog species 4 levels of logic (0, 1, X: "don’t care", Z: "high impedance"),
we use the special bit construct that only supports 2 levels (0, 1). However,
the Verilog standard species divisions and modulo by zero as a special case
where X propagation through bit signals happens, and then propagates
through the design. We therefore enforce that all divisors and modulo
divisors have at least one bit constantly tied to VCC. These measures ensure
the absence of X propagation in the circuit.

150 lost in translation

SN0

SN1

SN2

SN3
SN0

SN1

SN2

SN3

clk0
clk1

rst0 clk3

en0

clk2a) b)
clk0

rst0

Figure 5.9: Examples of (a) valid and (b) invalid (race condition prone) network
of subnets (SN). The input and output words of each subnet are
omitted in the gure.

asynchronous aspects . Asynchronous signals could cause race con-
ditions that would impair cross-EDA software consistency. Figure 5.8 sum-
marizes some examples of race conditions. They have in common that
multiple input ports of some register can simultaneously toggle. In such
cases, like for eventual hardware implementations, the Verilog standard
does not specify the event ordering.

To overcome the race conditions in a generic way, we impose the fol-
lowing safety invariant on the test case hardware: two inputs of a register
will never toggle at the same time. We guarantee this invariant at a sub-
net level, by distinguishing two wire types. Asynchronous wires belong to
the sensitivity list of some stateful cell. The others are called synchronous

wires. We assimilate synchronous wires to data signals produced inside
the same subnet, and asynchronous wires to data signals produced outside
the subnet, as illustrated in Figure 5.9 (a). Concretely, when TransFuzz
generates a subnet, this subnet creates a set of requests for asynchronous
wire connections (e.g., clock, reset or enable signal). Each of these requested
asynchronous values is produced either by another subnet, or by a new
asynchronous input wire.

To safely interconnect subnets, TransFuzz imposes on the hardware side
that the network of subnets, seen as an undirected graph, must be acyclic.
Furthermore, on the stimuli side, at any given point in time, the set of
fanout subnets of the set of toggling asynchronous signals must be disjoint.
These conditions guarantee the strict absence of race conditions. Figure 5.9
(b) illustrates a violation of this constraint.

5.6 differential fuzzing for bug detection 151

5.6.2 Complexity reduction

TransFuzz generates test cases that can be complex on the hardware side,
and long on the stimuli side. Bugs are revealed by divergences in the sum of
output signals. To assist understanding the underlying bug, TransFuzz pro-
vides a bidimensional reduction technique that reduces both the hardware
complexity and the stimuli duration of the test case.

stimuli reduction. The rst step is reducing the stimuli. Given that
the stimuli component of a test case can be long, diminishing the length
of the stimuli one by one would be slow. Additionally, lines necessary for
a bug to occur may be scattered across the stimuli. Hence, we propose an
algorithm inspired from binary exponential backoff to reduce the stimuli
dimension. This algorithm nds a local minimum: the removal of any
additional line from the reduced stimuli leads to bugs not being observed
anymore. Algorithm 4 provides additional details.

Algorithm 4: Binary exponential stimuli reduction. The function
mismatch(A) returns whether the two simulators mismatch for the
current (implicit) hardware for a list A of stimuli lines.

Data: List L of stimuli lines
Result: Lines K to keep

1 K = ∅, currlineid = 0, currslotsize = 1, growing = 1;
2 while L ̸= ∅ do

3 if mismatch(K :: L[currlineid+currslotsize:]) then

4 growing = 1; L = L[currlineid+currslotsize:];
5 currslotsize = min(2*currslotsize, len(L));

6 else if currslotsize == 1 then

7 growing = 1; K.add(L[currlineid]);
8 L = L[currlineid+1:];

9 else

10 growing = 0; currslotsize = currslotsize/2;

11 return K

design reduction. TransFuzz recycles the cell ordering recorded when
building the circuit, and reduces subnets through two binary search phases.
In the rst phase, TransFuzz attempts to remove cells on the output side.
Reducing the cells closest to the output is done as follows. For a candidate

152 lost in translation

Buggy Not buggy
Input Output

Injection

front

Record

Not buggy
Output

Recording

(contains buggy values)

a)

c)

Buggy Not buggy
Input Output

b)

Figure 5.10: Removal of macrocells on the input side, where the bug is in on
the input side. Dashed-line macrocells are attempted to be removed.
The red arrows represent divergent outputs. (a) The original design.
(b) Recording the wire values on the injection front. (c) The output
may still be buggy if the buggy effect is contained in the recorded
values.

number of cells on the output side, TransFuzz attempts to remove them and
checks whether the divergence persists. If it does, the removal was legiti-
mate, and the candidate cells are removed permanently. Else, the removal
was excessive, so TransFuzz restores the candidate cells and reduces the
number of candidate cells for removal. This process continues until no cell
can be removed anymore on the output side.

In the second phase, TransFuzz removes the cells closest to the input, and
must thereby preserve the values supplied to the remaining cells. We call
injection front the set of output wires of the candidate cells to remove on the
input side, that are connected to at least one cell that will be preserved, as
illustrated in Figure 5.10 (b). We enable tracing in the simulator to record
the subsequent valuations of the injection front, so that correct input can be
provided to the macrocells that are connected to the injection front.

When removing the initial cells and replacing the injection front values
with the recorded values, the divergence may either persist or disappear. If
the divergence disappears, then the cell removal was excessive, so TransFuzz
restores the candidate cells and reduces the number of candidate cells for

5.7 evaluation 153

removal. Else (if the divergence persists), it is not yet clear whether the
removal was legitimate. In that case, it is necessary to check whether some
buggy behavior is present in the recorded injection front as illustrated in
Figure 5.10 (c). To determine if such an effect occurred, we leverage external
differential fuzzing to validate the removal. Once the decision is made,
the input-side cell removal process continues until no cell can be removed
anymore.

5.7 evaluation

We evaluate TransFuzz in terms of raw performance (Section 5.7.1) and cell
output coverage (Section 5.7.2). From these measurements, we deduce an
optimal duration for the stimuli after which the circuit must be regener-
ated (Section 5.7.3), and nd circuit sizes for optimal differential fuzzing
performance (Section 5.7.4). We nally describe the 31 new bugs found by
TransFuzz in Verilator, Icarus Verilog, CXXRTL and Yosys and evaluate the
time to nd each one of them (Section 5.7.5).

evaluation setting . We obtain the performance results on a machine
equipped with two AMD EPYC 7H12 processors at 2.6 GHz with 256 logical
cores and 1 TB of DRAM. For measuring performance, we use the following
tool versions: Verilator 5.021 g6b8531f0a, Icarus Verilog g77d7f0b8f and
Yosys/CXXRTL 0.37+21 3d9e44d18 with all optimizations enabled and tracing
disabled by default. TransFuzz is implemented as roughly 5000 lines of
Python and 1000 lines of C++ code.

5.7.1 Raw performance

We evaluate the performance of TransFuzz in terms of generation, elabora-
tion and execution of test cases.

methodology. To evaluate the performance of the test case generation
and build, we generate 1000 test cases for each circuit size and average the
resulting performance. To measure the execution time per stimulus, we
measure the average time to execute 1000 stimuli on each of the 1000 test
cases and obtain an average execution time per stimulus.

results . We summarize the results in Figure 5.11. The generation time is
generally small compared to the build time. Different simulators have vastly
different behaviors. Yosys and Icarus Verilog do not build an executable

154 lost in translation

Figure 5.11: Raw performance evaluation. Generation represents the construc-
tion of the test case by TransFuzz. Build represents the process that
transforms TransFuzz’s test case representation until the simulation
model. Note the logarithmic scale on the execution plot, which rep-
resents a single stimulus execution (averaged over 1000 stimuli).

simulation model (Yosys is a synthesizer and Icarus is an interpreter), hence
yield faster build times. Verilator’s build time is remarkably at over circuit
sizes. Note that this is not a general benchmark of the three simulators, as
the inputs are not typical simulator inputs. We will show how these results
impact the overall performance of TransFuzz in Section 5.7.3.

5.7.2 Cell output toggling

Intuitively, fuzzing the same circuit with more stimuli brings diminishing
returns as increasingly less new cell behaviors will be explored over time.

5.7 evaluation 155

Figure 5.12: Cumulated toggle coverage of cell outputs.

Figure 5.13: Toggle performance for each simulator in function of simulation
length and circuit size.

methodology. We measure the effectiveness of inputs over time by
measuring the bit toggles at the cells’ outputs, which reect the different

156 lost in translation

behaviors of the cells being explored. This measurement is independent of
the target EDA software. We execute 1000 test cases for each circuit size
over 1000 stimuli and measure the average cell output toggle coverage by
analyzing the execution traces over time.

results . We summarize the results in Figure 5.12. The toggle coverage
increases rapidly for the rst tens of stimuli, and then the rate of progress
decreases, in accordance with the intuition of diminishing coverage returns
for increasing stimuli lengths. The increase in coverage past 100 stimuli, not
illustrated in the Figure, is relatively small. From 100 to 1000 stimuli, the
coverage increases by less than 3.3% for all circuit sizes. Toggle coverage
also increases sublinearly with the circuit size. Next, we combine this
coverage with raw performance to converge on the goodput of TransFuzz
over arbitrary stimuli and circuit sizes.

5.7.3 Stimuli’s length

We intend to set the parameters of TransFuzz in a region that will maximize
its efciency. Under the hypothesis that strong toggle coverage increases
indicate effective fuzzing, we want to maximize the number of cell output
toggles per second to maximize the effective performance of the fuzzer.
The rst question that we address is how many stimuli to execute per
circuit. Concretely, given the diminishing returns of the stimuli shown in
Section 5.7.2, we expect that after a certain number of stimuli, it will be
more advantageous to start a new circuit by paying the xed generation
and build costs again, instead of fuzzing the same circuit further.

methodology. For each simulator, we calculate the average number
of cell output toggles achievable per second for circuit size and stimuli
duration. For a xed circuit size, this value is given by Equation 5.1, where
prep_time is the average time to produce a circuit of a given size, i.e.,
generation and build times, and exec_time is the average time to execute
a stimulus for this size, as measured in Section 5.7.1, and cumul_toggles is
illustrated in Figure 5.12. The simulation length (simlen) that maximizes
the toggle performance is the number of stimuli after which to regenerate a
fresh circuit.

toggles/sec(simlen) =
cumul_toggles(simlen)

prep_time+ exec_time · simlen
(5.1)

5.7 evaluation 157

Figure 5.14: Differential toggle performance. Maximizing this abstract metric
maximizes the performance (cell output toggles per second) for
differential fuzzing.

results . We summarize the results in Figure 5.12. Icarus Verilog’s perfor-
mance declines after tens of cells, while the other simulators’ performance
stabilizes at this point to increase by less than 5% to reach peaks for simula-
tion lengths between 124 and 2420 stimuli before decreasing. We make three
observations: rst, always renewing the test case after a single stimulus
would be inefcient. Second, the diversity in the raw performance detailed
in Section 5.7.1 translates into diversity in the toggle performance. Icarus
Verilog, whose execution cost per stimuli is the highest, meets its peak
throughput at 38 (10 cells) to 52 (250 cells) stimuli per circuit, and is the
most efcient to fuzz in absolute numbers. Verilator is the most efcient
when it comes to larger circuits because of its at but high build cost for
small circuits. Finally, after around 20 stimuli, the performance is remark-
ably stable in function of the stimuli duration. We choose a simulation
length of 70, which is in bounds with 95% of the peak performance in all
congurations. With optimal stimuli size per simulator known for different
circuit sizes, we measure the optimal selection of circuit sizes for differential
fuzzing.

5.7.4 Circuit size for differential fuzzing

When differentially fuzzing two simulators, we must choose a circuit size
that maximizes the total performance given the simulators that are involved.

methodology. We aim to maximize the metric m = (Pa · Pb)/(Pa + Pb),
for Pa and Pb the respective simulator toggle performances. We hence

158 lost in translation

measure m for different circuit sizes and a simulation length of 70 stimuli
(as measured in Section 5.7.3).

results . Figure 5.14 shows the performance of differential fuzzing for
each pair of simulators. These results show that we should fuzz Verilator
against Icarus Verilog for circuits of 800 to 1000 cells, Icarus against CXXRTL
for 100 cells or less, and Yosys against Icarus for approximately 200 cells.
Interestingly, this advocates for separate fuzzing circuit sizes for each
differential pair, instead of fuzzing all simulators alike. To the best of our
knowledge, in the domain of differential fuzzing, this is a unique nding.

5.7.5 Discovered bugs

TransFuzz discovered 31 new bugs in 4 popular EDA applications. Table 5.2
and Table 5.3 summarizes the discovered bugs and highlights the 20 dis-
covered translation bugs. We rst analyze the new bugs, then evaluate
TransFuzz’s performance in nding them.

Bug descriptions

translation bugs . TransFuzz found translation bugs in all four EDA
applications. Some occur in particularly complex cases. For example, I2 is
the rst reported translation bug in Icarus for at least 3 years, corresponding
to the last 100 relevant bug reports analyzed in Section 5.5.1. The mistrans-
lation I2 lets some arithmetic operations mistakenly evaluate the output
when supplied with inputs which are specic patterns of concatenations of
specic constant bits and X (unknown) bits. A specic instance is illustrated
in Figure 5.16 (b) of Section 5.8. With the multiple concatenations, this bug
particularly benets from TransFuzz’s netlist-level abstraction, which eases
fractioning and concatenating wires.

Verilator and CXXRTL are notably affected by translation bugs, as they
seem to have more aggressive optimizations. We observe, indeed, their
better runtime execution performance in Section 5.7.1. In total, TransFuzz
found respectively 9 and 6 translation bugs in Verilator and CXXRTL, involv-
ing a large diversity of cell types (operational diversity) and interconnection
patterns (relational diversity). Fixing these bugs has sometimes been chal-
lenging. For example, V10 and V12 are similar in their expression, as they
can both be expressed through power cells. Yet they affect different internal
structures, hence after xing V10, V12 was still detected by TransFuzz,

5.7 evaluation 159

Id Bug Description

I2 Arithmetics deviation in specic circumstances

C1 Shifts consider signed operand in some cases

C2 Bad assignment under specic conditions

C3 Bug with modulo when operands intersect

C4 Both left shifts sometimes overow the output signal

C5 Incorrect division

C6 Clock edges sometimes require 2 evaluations

V6 Wrong not when checking (n)eq under and/or tree

V7 Wrong simulation result with add and xor gates

V8 Optimization error for 5 optimization types

V9 Sometimes wrong conversion to 32-bit integers

V10 Under some conditions, 0 power 0 gives 0

V11 Evasive compilation-sensitive mis-simulation

V12 Power operator supplied with wide constants

V13 Incorrect bit-op-tree not optimization

V14 Bit-op-tree should not touch some subtrees

V15 Incorrect widthMin in replaceShiftOp

V16 Ignore if eq/ne is under shiftr

Y1 opt_muxtree wrong if twice the same mux

Y2 Misoptimization of wide shifts

Table 5.2: Translation bug reports for Icarus Verilog (I), CXXRTL (C), Verilator
(V) and Yosys (Y).

enabling the eventual of x this bug regarding representations of wide
numbers.

The two translation bugs Y1 and Y2 found in Yosys concern uncommon
cell interconnections and internal representations. Y1 arises because of
redundant multiplexers in a specic conguration involving signal concate-
nations ahead. In that case, Y1 mistranslates one of these concatenations
by replacing one input with a constant value, while the input is free to
toggle. Somehow similar to V10, Y2 misrepresents wide constants in shift
operations.

other bugs . TransFuzz found a segmentation fault in Icarus (I1) and 5

in Verilator (V1-V5). It additionally found exceptions in CXXRTL (C8) and

160 lost in translation

Id Bug Description

I1 Segfault when using out-of-scope variable in slices

I3 Performance issue for a design with xor reductions

C7 Performance issue with many concatenations

C8 Elaboration fails for some stateful cells in some cases

V1 Evasive malloc failure in some instances

V2 Segfault during evaluation

V3 Segfault in traceInit

V4 Segfault with many parallel operators

V5 Segfault in Vtop___024root__trace_init_sub__TOP__0

V17 VCD corruption for 5 optimization types

V18 Compiler sees empty input due to le system races

Table 5.3: Non-translation bug reports for Icarus Verilog (I), CXXRTL (C), Verila-
tor (V) and Yosys (Y).

Figure 5.15: Cumulated time to bug. Translation bugs are colored in red.

Verilator (V18), as well an issue that eventually causes tracing issues (V17).
Finally, TransFuzz found two conrmed performance bugs (C7 and I3). The
former is sensitive to circuit depth and would require splitting operations
into smaller pieces for speeding up. The latter happens with concatenations
of many inputs, which, themselves, share bits. The evaluation time was
exponential in the number of shared bits. This bug I3 has been xed by
deferring their evaluation to the end of the evaluation call.

cves . Given the security relevance of the discovered bugs, 25 CVEs were
assigned, as listed in Table 5.4 and Table 5.5.

5.8 exploitation 161

Id CVE Severity

I2 CVE-2024-25471 7.1

C1 CVE-2024-26522 7.1

C2 CVE-2024-28720 7.5

C3 CVE-2024-25472 7.1

C4 - 7.1

C5 CVE-2024-28719 7.1

C6 CVE-2024-25478 7.5

V6 CVE-2024-25493 7.1

V7 CVE-2024-25485 7.1

V8 - -

V9 CVE-2024-25486 7.1

V10 CVE-2024-25488 7.1

V11 CVE-2024-25491 7.1

V12 CVE-2024-25490 7.1

V13 CVE-2024-28721 7.1

V14 CVE-2024-25489 7.1

V15 CVE-2024-25492 7.1

V16 CVE-2024-25495 7.1

Y1 CVE-2024-25479 7.1

Y2 CVE-2024-25477 7.1

Table 5.4: CVEs assigned for EDA software translation bugs found by TransFuzz.

Time to bug discovery

We fuzz each pair Verilator/Icarus Verilog, Icarus Verilog/CXXRTL and
Icarus Verilog/Yosys on 128 processes for 24 hours and summarize the time
to discover each bug in Figure 5.15. We note that generally, translation bugs
require more time to be discovered than other bugs.

5.8 exploitation

To enable the exploitation of translation bugs, we introduce the MiRTL
gadget, a primitive that produces predictable wrong values when processed
by a given EDA application. Based on such gadgets, we build an attack that

162 lost in translation

Id CVE Severity

I1 CVE-2024-25470 7.1

I3 - -

C7 - -

C8 - -

V1 CVE-2024-25481 7.5

V2 CVE-2024-25480 7.5

V3 CVE-2024-25482 7.5

V4 - -

V5 CVE-2024-25484 7.5

V17 CVE-2024-25494 7.5

V18 CVE-2024-25496 7.1

Table 5.5: CVEs assigned for EDA software non-translation bugs found by Trans-
Fuzz.

introduces a kernel data leakage vulnerability in the CVA6 RISC-V CPU,
that exposes supervisor data to user-mode processes. A standard mitigation
for such an attack is information ow tracking which we show that MiRTL
attacks can also bypass.

5.8.1 MiRTL gadgets

We build MiRTL gadgets to produce 1 under normal circumstances, but
produce 0 when exploiting a translation bug. We formulate the following
requirements for such gadgets:

• Non-intrusiveness. A gadget must not alter the functionality of the
design under normal circumstances.

• Low footprint. Minimize area, power and timing.

• Silence. The gadget should not trigger warnings.

individual simulator gadgets . From the bugs discovered by Trans-
Fuzz, we construct a suitable gadget for each simulator illustrated in Fig-
ure 5.16 (a)-(d), respectively building on the translation bugs V6, I2, C1.

compatibility. To build a gadget compatible with all three simulators,
we connect the three gadgets as the three inputs of a new 3-input and. This

5.8 exploitation 163

And
And

And
And

!= Or
A[64]A[43]

A[72]

Cat

Cat

Cat

1'b0

Cat

b

x
clk

x

a
2

2 3

3

x

Sub
3

Xor

w

32'hf f f f f f f 8
32'h40e831aa Or

Cat

Cat

a

b
2

2
c

0

1

0

1

Cat

Cat

a

b
2

2
c

0

1

0

1

1
1

a)

b) c)

d)

e) f)

With A[93:0] = 1 << 43

Figure 5.16: MiRTL gadgets. Cat are concatenations. (a) Verilator gadget (V6).
(b) Icarus Verilog gadget (I2). (c) Primitive for X injection, useful for
the Icarus gadget. (d) CXXRTL gadget (C1). (e) Yosys gadget (Y1).
(f) Yosys gadget once mistranslated.

way, the gadget will produce the mistranslated 0 value if any of the three
simulators is used.

synthesizer gadget. Figure 5.16 shows a gadget for the Yosys syn-
thesizer (e), and how it is mistranslated during the default opt_muxtree

Yosys optimization pass (f). By setting a=c=1’b0, the gadget will mistakenly
produce an output value of 0 in the synthesized version of the design.

head register . The MiRTL gadgets take specic constants as inputs,
however these constants cannot be hardcoded directly in the design, as
gadgets usually require the input constants to be unknown at elaboration or

164 lost in translation

1 daccess_err = en_ld_st_translation_i && ((ld_st_priv_lvl_i == S && !sum_i

&& dtlb_pte_q.u) (ld_st_priv_lvl_i == U && !dtlb_pte_q.u));

Listing 5.1: User-accessible bit check in CVA6’s MMU.

synthesis time. Instead, we nd that inserting a register between the input
constant and the gadget is sufcient to make the gadget work in all cases,
as the EDA software does not see a xed input value. This register takes X
as the initial value by default and uses the design’s global clock signal.

tail register . MiRTL gadgets are followed by some logic. It may
happen that the end of the gadget gets optimized together with this logic
before the MiRTL trait appears, which would disarm the gadget. Another
issue of the following logic is that together with the gadget, it may form a
critical path. Therefore, we terminate the gadget with a ip-op to mitigate
these side effects. This ip-op is also connected to some global clock signal
usually already present in the design.

5.8.2 Kernel memory access exploit

To show the practicality of MiRTL gadgets, we inject a security vulnerability
into the CVA6 RISC-V CPU [74], also known as Ariane, that allows an
attacker in user mode to read the content of kernel memory (CWE-118).

background. In the Sv39 virtual memory system specied by RISC-V
and supported by CVA6, the bottom-most bits of a page table entry are, in
increasing index order, V: valid, R: readable, W: writable, X: executable, U:
user accessible. When virtual memory is enabled, user software attempting
to access a page with U = 0 will trigger an exception.

Strategy

We aim to alter the functionality of CVA6 to allow user software to load
data from a page with attribute U = 1.

gadget insertion location. We rst identify the exact location
where the U bit is checked. We nd that this check is, unsurprisingly,
located in the i_cva6_mmu module instance in the load-store unit. We report

5.8 exploitation 165

Area Power Registers Timing

Scenario 1 +0.06% −0.07% +0.01% +0%

Scenario 2 +0% +0% +0% +0%

Table 5.6: Design metrics deviations caused by gadget insertion.

the exact check operation in Listing 5.1 for data accesses. We propose to and

the gadget output bit together with the !dtlb_pte_q.u signal.

scenario 1 : exploiting simulator translation bugs . In this
scenario, the adversary injects the combined simulator gadget into the
design at the specied location. We propose to insert the gadget by inserting
the following code: && gadget_out after !dtlb_pte_q.u.

scenario 2 : exploiting synthesizer translation bugs . Same
as Scenario 1 except with the synthesizer gadget.

Evaluation

We rst evaluate the functional correctness of the exploit. We then evaluate
its impact in terms of area, power and timing.

functional correctness . To validate the correctness of both scenar-
ios, we design a simple compliance test including a basic operating system
taken from the RISC-V compliance test suite [156], where we integrate an
user application attempting to read from a page with U = 0. Indeed, all
simulators see exceptions. To ascertain that the synthesized design contains
the exploit, we simulate the synthesis output with Verilator with all de-
fault optimizations off, and indeed the user access to kernel data sees no
exception. By successfully executing the RISC-V compliance tests [156], we
ascertain that the overall CPU functionality is unaffected.

area , power and timing . To evaluate the impact of the exploit on
design metrics, we synthesize Yosys’s output in a popular 12nm technology
using Synopsys Design Compiler 2022.03, targeting a 1GHz clock. We
summarize the deviations with the unaffected CVA6 design in Table 5.6. In
particular, any variation in timing would be problematic for the attacker, as
it would make the gadget obvious. We observe that all these MiRTL exploits
negligibly impact all metrics.

166 lost in translation

1

0
Xor

3

0/x10

0

0

3

Figure 5.17: Cell-level shadow logic for the Icarus gadget, for a = 1, b = 0, at =
1, bt = 0. The expected output is Yt = 0b110, but it becomes mis-
translated to Yt = 0b010. We illustrate in red the propagation of the
mistaken value. f is the MiRTL gadget illustrated in Figure 5.16 (b).

stealthiness . It is benecial for gadgets to be discreet in front of code
inspection. Typical gadgets require around 10 lines of Verilog code. While
this is few lines, they can be intertwined into the design sources in a case-
by-case basis to look innocuous. If the design is programmed in a hardware
construction language (HCL) [214, 230–232] (then automatically compiled
into Verilog), a gadget inserted into the Verilog representation, e.g., through
a malicious HCL compiler, is unlikely to be obvious in the complex Verilog
output.

5.8.3 Bypassing information ow tracking

A common countermeasure against such leakage is hardware Dynamic
Information Flow Tracking (DIFT) [54, 131, 143, 249–251]. The state-of-
the-art hardware DIFT mechanism that scales to such a non-trivial CPU
operates at the granularity of macrocells and uses cell replication [54].
Based on MiRTL gadgets, we build shadow gadgets that maliciously corrupt
information ow tracking logic, concealing condentiality breach ags that
could otherwise reveal the MiRTL attack.

The challenge is to generate logic that, when instrumented, will generate a
MiRTL gadget in the shadow logic. This is the converse of usual information
ow tracking construction [54, 131, 229], where from a design, the goal is
to generate efcient shadow logic. To the best of our knowledge, this is the
rst time that this converse direction of the problem is explored.

5.9 discussion 167

We rely on the insight that cell-level information ow tracking is funda-
mentally based on cell replication [54]. Consider the previously described
Icarus gadget illustrated in Figure 5.16 (b). By cell replication, we expect
some shadow logic to share a construct similar to this gadget. For this
gadget, a cell-level shadow logic indeed contains a gadget replica, as we
illustrate in Figure 5.17. We observe that for some taint inputs described
in the gure, the gadget will pull down an information ow signal bit
illegitimately, violating the crucial assumption of absence of false negatives,
concealing condentiality breaches.

5.9 discussion

mitigations . First, the exploitation of individual bugs can be mitigated
by xing them in the affected EDA software. While we encourage further
fuzzing work against EDA software, it is yet unclear how to guarantee bug-
freedom of simulators. Second, we observe that most previously known as
well as current bugs require operational diversity. Hence, one mitigation for
most known and unknown bugs is to simulate the design at the gate level,
although this is known to be signicantly slower than simulating at a higher
level [54, 131], and the translation to this lower level is also error-prone, e.g.,
through the bugs Y1 and Y2 found by TransFuzz. Finally, the exploitation of
synthesizer bugs can be mitigated by dynamically or formally checking the
equivalence of the synthesized design with the original design [252]. This
last mitigation is similar to the known problem of Trojan detection [235–
242].

limitations of mirtl . TransFuzz uses the Yosys Verilog backend to
generate the nal design representation. This backend does not produce
behavioral blocks, and has its own, yet exible, output structure. Hence,
TransFuzz is currently unable to nd some syntax-dependent bugs in
simulators, where a bug is not only dependent on a design, but on the
specic syntactic way of describing it. One future approach to overcome
this limitation would be to design a dedicated backend that also generates
behavioral Verilog and adds even more freedom in the syntax.

commercial vs . open-source eda environment. Due to licensing
reasons, fuzzing and publicizing bugs in commercial EDA software is
generally not accepted. However, open-source EDA software has never been
more popular. For example, on the ASIC fabrication side, Yosys is used,
among others, by qow [253] and the OpenLANE ow [254], whose results

168 lost in translation

are becoming increasingly competitive with commercial ows [255]. On the
FPGA side, Yosys is used by popular ows such as SymbiFlow [256] and
PRGA [257]. On the simulation side, open-source simulators are nowadays
used for complex SoCs [258] and diverse designs such as BLE MAC [259].

future work . TransFuzz is the rst attempt to nd bugs in simulators
beyond submitting stimuli-less language-level hardware designs, and hence
paves the way for more work in this direction.

5.10 related work

We rst cover testing attempts specically built for EDA applications. We
then cover other work that aims at compromising pre-silicon hardware
designs. Finally, we discuss the related direction of compiler fuzzing.

fuzzing synthesizers and simulators . In 2013, Yosys contribu-
tors proposed VlogHammer [244], a tool for testing Verilog synthesizers by
submitting complex handwritten and generated expressions. VeriFuzz [245]
is a more recent proposal that supports behavioral constructs and undened
behaviors, and allows more freedom in source structure. Both approaches
operate at the language level and focus on testing synthesizers by only
submitting hardware designs, and no stimuli. By operating at cell level,
TransFuzz is able to produce more complex valid designs. Reduction is also
made easier as TransFuzz produces smaller valid designs with shorter stim-
uli sequences. While previous work only produced the hardware compo-
nent, TransFuzz produces both hardware and stimuli, which makes testing
simulators signicantly more efcient, as we have shown in Section 5.7.3.

On the other hand, from github issues [243], we noted that there have
been some campaigns to fuzz simulators with traditional approach of
manipulating the contents of the HDL les. While this approach is able
to nd crashes in the simulator frontend, it is unlikely to nd bugs in the
simulator backend where the translation bugs may lurk.

compromising pre-silicon hardware designs . With a similar
threat model, the insertion and detection of hardware Trojans in pre-silicon
hardware designs have been studied in the past [235–242]. While translation
bugs can be combined with hardware Trojans, they are fundamentally
different, as MiRTL attacks are invisible to the affected EDA software.
Additionally, there is no notion of trigger and payload in the exploitation
scenarios we presented in Section 5.8.

5.11 conclusion 169

compiler fuzzing and bugs . Compilers share similarities with syn-
thesizers. The confused deputy problem was initially demonstrated in a
compiler and some backdoors were demonstrated using some of their
bugs [260–263]. Previous work advertises multi-variant execution against
such attacks [264], but we show the limitation of this proposal by com-
promising three simulators at a time in Section 5.8. Compiler fuzzing has
been shown to be effective at nding bugs in compilers [265–270], mostly
by relying on differential fuzzing [226–228]. Yet fuzzing and differential
testing are vastly different in the context of EDA applications. We show
in Section 5.7 that inputs of non-trivial lengths boost performance, while
compiler outputs are generally executed only once [268, 269]. Additionally,
fuzzing with software programs shares no clear similarity with fuzzing
with hardware circuits.

5.11 conclusion

MiRTL is a new class of confused deputy attacks on EDA software that
relies on translation bugs. We presented TransFuzz, the rst fuzzer that
is dedicated to nding such translation bugs in simulators and synthesiz-
ers using pairs of hardware designs and stimuli. By creating netlists of
macrocells, TransFuzz creates particularly complex hardware designs that
are easy to stimulate and reduce. In addition to some new unsafe crashes,
TransFuzz found 20 new translation bugs causing wrong runtime values
in three major open-source RTL simulators and in the Yosys synthesizer,
among the 30 new bugs that it found. We showed concrete MiRTL attacks
that exploit these translation bugs by corrupting the behavior of the CVA6

CPU to leak kernel memory to user mode and bypassing the information
ow tracking mitigation. Facing these newly demonstrated security risks
based on yet undiscovered EDA bugs, we encourage further research in the
direction of discovering and xing bugs in EDA software.

ethical considerations . We reported all bugs to their respective
maintainers and provided support when required.

6
CONCLUS ION AND OUTLOOK

In this dissertation, we looked at the existing CPU bugs and several potential
adaptations of software security techniques to nd and x bugs in hardware.
To perform this work, we benetted from the novel abundance of available
information, be it microprocessor errata, open-source hardware designs,
and open-source EDA software. In particular, we have shown that software
security techniques are extremely promising for nding and xing bugs in hardware,

but they require a careful adaptation to be effective.

Over the chapters, we have explored the adaptability of some relevant soft-
ware security techniques to hardware, and we have conducted adaptations
that vastly outperformed the state of the art. Chapter by chapter, we will
outline the contributions of the work that we conducted and opportunities
for future work.

rememberr . In Chapter 2, by observing thousands of contemporary
CPU errata, we designed an unprecedented classication of CPU bugs
based on triggers, contexts, and observable effects to provide a human-
interpretable overview of the state of the art in terms of CPU bugs that
plague our machines. While the errata have traditionally been expressed in
natural language, we translate all these errata to a machine-readable format
in compliance with this new errata classication. Benetting from this
unprecedented database, we identify some promising research directions.

Research Question for Future Work 1. How do bugs in open-source
hardware compare to bugs in commercial CPUs, and how do the root
causes correlate with triggers, contexts, and observable effects?

This rst new research question is a natural continuation of the work that
we conducted in Chapter 2 and expands the usage scope of the RemembERR

database. While commercial CPUs are often far more complex than cur-
rently available open-source hardware, this gap is expected to progressively
close, with open-source designs becoming increasingly complex, and the
community design and validation practices becoming increasingly mature.
A comparison between bugs present in commercial CPUs and open-source

171

172 conclusion and outlook

hardware would provide an interesting indicator of the maturity of the
open-source hardware community, and hopefully, this database will help
prevent the same errors from being reproduced again in new designs. Find-
ing correlations between the root causes of bugs and their triggers, contexts,
and observable effects has been hard so far because errata do generally
not specify a root cause. Analyzing the root causes of bugs in open-source
hardware would provide a unique opportunity to nd such correlations.

Research Question for Future Work 2. How to use such a database to
detect new CPU bugs?

The recent emergence of machine learning and its well-known applica-
tions in various domains has been relying on the abundance of data to learn
from. Before the constitution of the RemembERR database, such structured
data was not available, hampering research in this direction. Hence, the
RemembERR database opens exciting research directions in bug detection,
for instance by allowing training machine learning models to predict the
presence of a bug in a CPU design or suggest triggers and contexts that are
likely to trigger a bug and propose observing specic effects that would
betray the presence of a bug. This direction is particularly compelling
given that the open-source hardware community, which will soon produce
designs that are as complex as commercial CPUs of the last decade, will
strongly benet from new techniques to nd and x bugs in their designs
that rely on the knowledge of mistakes made in the past.

cellift. In Chapter 3, we presented CellIFT, the rst hardware dynamic
information ow tracking mechanism that scales to complex CPUs and SoCs.
CellIFT relies on the insight that operating at the macro-cell level enables
exploiting mathematical properties that boost scalability and precision at
no cost. We presented new applications for dynamic information ow
tracking in hardware: identication of leakage-prone components, detection
of architectural bugs that are traditionally hard to detect, and detection of
occurrences of Meltdown-type bugs [2] and Spectre-type vulnerabilities [3].
We envision broader applications of CellIFT in the near future.

Research Question for Future Work 3. Can CellIFT be used for formal
analysis of data-independent constant-time execution?

So far, we have been using CellIFT in a dynamic setting. A natural next
step is to use CellIFT in a formal setting. One major property of hardware

conclusion and outlook 173

dynamic information ow tracking is its agnosticism to the wires being
data or control signals. Hence, observing the dependence of control signals
on data signals is a natural extension of the work that we conducted in
Chapter 3. Yet this comes with challenges, especially regarding CPUs,
which are complex and tightly self-looping. Indeed, it is expected that data
can inuence control signals, for example in branches. To make such a
formal analysis feasible, it then appears necessary to tackle this challenge
by ltering out legitimate information ows, while avoiding false negatives.

Research Question for Future Work 4. Can dynamic information ow
tracking be effectively used for guiding CPU fuzzers?

We have observed in the past few years, in software security, usage of
dynamic information ow tracking to guide fuzzers [185, 188]. One major
double-edged sword when applying dynamic information ow tracking on
CPUs is the tight interconnection of CPU components and high sensitivity
to timing variations. Intuitively, any tainted value that could create a timing
variation that will propagate to control signals will taint the CPU almost
entirely in very few cycles. This becomes a challenge when guiding fuzzers,
as tainting slightly too much will, very few cycles later, taint catastrophically
and hence the fuzzer will not be able to explore the program space. There
is hence an immense opportunity, but also a challenge in taming this
overtainting effect.

cascade . In Chapter 4, we presented Cascade, a black-box RISC-V CPU
fuzzer that discovered 28 new CVEs across several signicant open-source
CPUs. Cascade operates by generating long and intricate yet valid programs,
where the data ow and control ow are closely intertwined to exert
maximum pressure on the CPU being tested. It then observes whether the
CPU successfully completes the program, and if not, it identies a bug and
can automatically reduce the program to a minimal reproducer consisting
of a few instructions. Due to its absence of reliance on instrumentation
or coverage information, Cascade achieves fast execution and outperforms
existing coverage-guided CPU fuzzers in terms of coverage, as measured
on their own coverage metric. A natural question is, then, what would be
an effective coverage-guided CPU fuzzer?

Research Question for Future Work 5. How to build a coverage-guided
CPU fuzzer that outperforms a black-box fuzzer?

174 conclusion and outlook

Seeing a black-box fuzzer outperforming the existing coverage-guided
CPU fuzzers questions both the relevance of the existing coverage metrics
and coverage-guided fuzzers that reliy on these metrics. The observation
that we made is that the coverage metrics used so far seem to have too many
coverage points, and these coverage points are not necessarily relevant to
the detection of bugs. The rst step in building a coverage-guided CPU
fuzzer that outperforms a black-box fuzzer would be to identify a new
coverage metric that is more correlated with bug detections, and that is not
satised by continuously running new complex programs in an unguided
way. Cascademay provide a way for analyzing the relevance of such coverage
metrics by correlating the occurrence of some bugs with the prevalence of
some candidate coverage metric. After nding a new candidate metric, one
could see, for the rst time, a coverage-guided CPU fuzzer that outperforms
a black-box fuzzer.

Research Question for Future Work 6. How to build the remaining
RISC-V functionalities into Cascade?

Cascade supports most of the unprivileged RISC-V specication, and a
portion of the privileged specication, for instance privilege levels, excep-
tions and delegation. Yet there are some remaining challenges to make
Cascade more complete. In particular, we would envision supporting com-
pressed instructions as well as memory virtualization and physical memory
protection in a heavily randomized way. Given the construction of Cascade,
memory virtualization would require new abstractions to keep complying
with the Cascade philosophy of constructing long, complex and valid pro-
grams. It is yet unclear, for example, how to make the predictable control
ow of Cascade comply with varying locations in a virtual address space,
and how to architect as complex virtualization operations as possible, while
maintaining the validity and predictability of the generated programs.

lost in translation. In Chapter 5, we presented TransFuzz, a new
fuzzer that generates randomized RTL designs made of complex intercon-
nections of diverse operators to trigger translation bugs in RTL simulators
and synthesizers. We introduced differential fuzzing to detect translation
bugs and reduced the translation bugs to small reproducer designs. Based
on the many translation bugs found by TransFuzz, we introduced the new
concept of MiRTL gadgets that encapsulate a translation bug and showed
how to exploit these gadgets to inject malicious hardware into a seemingly
benign RTL design. TransFuzz pioneered fuzzing using hardware descrip-

conclusion and outlook 175

tions and stimuli for nding bugs in synthesizers and simulators. A myriad
of opportunities for future research arises from this work.

Research Question for Future Work 7. How to co-generate netlists and
stimuli that will maximize the chance of nding translation bugs in
simulators and synthesizers?

So far, TransFuzz is designed to rst generate an RTL netlist, and then a
sequence of random stimuli of a length that is statistically optimal. Probably,
a co-generation of netlists and stimuli could boost the effectiveness of
TransFuzz. This would typically imply trading off some randomness on
the circuit and stimuli to maximize measures such as output bit toggle
coverage. The main challenge in this approach, besides nding properties
for the circuit and stimuli that maximize some measurement, seem to be to
ensure that the reduction in randomness does not exclude constructs that
could be mistranslated.

Research Question for Future Work 8. How to fuzz synthesizers and
simulators in a coverage-based manner?

Taking coverage feedback would be a natural extension of the work
that we conducted with TransFuzz, which is so far a black-box fuzzer. The
setting is challenging as there are two targets being fuzzed one after the
other. The rst target is the synthesizer or simulator, which will create
an output hardware description or simulation model. The second target
is this hardware description or simulation model. There are, hence, two
dimensions in the coverage feedback to take into account. To the best of our
knowledge, this is an unprecedented, exciting challenge.

Research Question for Future Work 9. How to formally protect against
MiRTL attacks?

There seems to be two promising ways to protect against MiRTL attacks.
The rst is to have a formally veried synthesizer or simulator, that is
guaranteed to not mistranslate any input. The second is to have a scalable
way of formally comparing the input and the output of the synthesizer or
simulator. While this may be feasible for synthesizers, there is not yet any
representation of intermediate understanding of the simulation model that
would be amenable to this equivalence check. Some simulators are capable

176 conclusion and outlook

of dumping intermediate abstract trees, which may provide an interesting
starting point for the equivalence check.

Research Question for Future Work 10. How to test more types of
EDA software?

While TransFuzz focused on simulators and synthesizers, many other
kinds of EDA software could benet from automatic testing. We could
envision, for example, testing place-and-route or static timing analysis
software. Such a testing framework could be based on the same principles as
TransFuzz: rst generating a complex design, potentially suited to the known
weak aspects of the software under test, and then observing whether the
software under test produces a correct output by testing it under differential
fuzzing, either between two congurations of the software or between two
different software, or between the original netlist and the software output.
Such automatic approaches are compelling because debugging a test design
will be much easier than debugging an actual design, whose mistranslation
may not be visible until the silicon becomes used on a large scale. Such
potential bugs will certainly enable exploits similar to the MiRTL attacks
that we presented in Chapter 5 and based on similar gadgets.

conclusion. In this dissertation, we rst examined thousands of CPU
bug descriptions and deduced two candidate approaches borrowed from
software security for nding security-relevant bugs in hardware: dynamic
information ow tracking and fuzzing. We created the rst dynamic in-
formation ow tracking mechanism for hardware that scales to complex
designs such as CPUs and SoCs, opening unprecedented capabilities for
nding information leakage, architectural and microarchitectural bugs and
security vulnerabilities. We also created a black-box CPU fuzzer that found
dozens of new security vulnerabilities and reaches more coverage, faster
than coverage-guided fuzzers. Finally, we introduced a new class of attacks
targeting EDA software, and a new fuzzer to nd bugs that permit such
attacks, before malicious actors do. With RemembERR, CellIFT, Cascade, and
TransFuzz, we have been providing ready-to-use and effective security so-
lutions for increasing the security of hardware designs in an era where
hardware ourishes, and we have opened a myriad of opportunities for
future work in this young, exciting yet critical eld.

B IBL IOGRAPHY

[1] M. Tiwari, H. M. G. Wassel, B. Mazloom, S. Mysore, F. T. Chong, and
T. Sherwood. “Complete information ow tracking from the gates
up”. In: ASPLOS. 2009.

[2] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul
Kocher, Daniel Genkin, et al. “Meltdown: Reading kernel memory
from user space”. In: USENIX SEC. 2018.

[3] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M.
Hamburg, M. Lipp, S. Mangard, T. Prescher, et al. “Spectre attacks:
Exploiting speculative execution”. In: IEEE SP. 2019.

[4] R. Kande, A. Crump, G. Persyn, P. Jauernig, A. R. Sadeghi, A. Tyagi,
and J. Rajendran. “{TheHuzz}: Instruction Fuzzing of Processors Us-
ing {Golden-Reference} Models for Finding {Software-Exploitable}
Vulnerabilities”. In: USENIX SEC. 2022.

[5] Jaewon Hur, Suhwan Song, Dongup Kwon, Eunjin Baek, Jangwoo
Kim, and Byoungyoung Lee. “Difuzzrtl: Differential fuzz testing to
nd cpu bugs”. In: IEEE SP. 2021.

[6] N. Bruns, V. Herdt, E. Jentzsch, and R. Drechsler. “Cross-level pro-
cessor verication via endless randomized instruction stream gener-
ation with coverage-guided aging”. In: DATE. 2022.

[7] V. Herdt, D. Große, E. Jentzsch, and R. Drechsler. “Efcient cross-
level testing for processor verication: A RISC-V case-study”. In:
FDL. 2020.

[8] N. Bruns, V. Herdt, D. Große, and R. Drechsler. “Efcient Cross-
Level Processor Verication using Coverage-guided Fuzzing”. In:
VLSI. 2022.

[9] N. Kabylkas, T. Thorn, S. Srinath, P. Xekalakis, and J. Renau. “Effec-
tive processor verication with logic fuzzer enhanced co-simulation”.
In: MICRO. 2021.

[10] C. Chen, R. Kande, N. Nyugen, F. Andersen, A. Tyagi, A. R. Sadeghi,
and J. Rajendran. “HyPFuzz: Formal-Assisted Processor Fuzzing”.
In: arXiv:2304.02485 (2023).

177

178 bibliography

[11] Jinyan Xu, Yiyuan Liu, Sirui He, Haoran Lin, Yajin Zhou, and Cong
Wang. “{MorFuzz}: Fuzzing Processor via Runtime Instruction Mor-
phing enhanced Synchronizable Co-simulation”. In: USENIX SEC.
2023.

[12] Kevin Laeufer, Jack Koenig, Donggyu Kim, Jonathan Bachrach, and
Koushik Sen. “RFUZZ: Coverage-directed fuzz testing of RTL on
FPGAs”. In: ICCAD. 2018.

[13] S. Canakci, L. Delshadtehrani, F. Eris, M. B. Taylor, M. Egele, and A.
Joshi. “Directfuzz: Automated test generation for rtl designs using
directed graybox fuzzing”. In: DAC. 2021.

[14] Muhammad Monir Hossain, Arash Vafaei, Kimia Zamiri Azar,
Fahim Rahman, Farimah Farahmandi, and Mark Tehranipoor. “Soc-
fuzzer: Soc vulnerability detection using cost function enabled fuzz
testing”. In: 2023 Design, Automation & Test in Europe Conference &

Exhibition (DATE). IEEE. 2023, 1.

[15] Vasudev Gohil, Rahul Kande, Chen Chen, Ahmad-Reza Sadeghi, and
Jeyavijayan Rajendran. “MABFuzz: Multi-Armed Bandit Algorithms
for Fuzzing Processors”. In: arXiv preprint arXiv:2311.14594 (2023).

[16] Chen Chen, Vasudev Gohil, Rahul Kande, Ahmad-Reza Sadeghi, and
Jeyavijayan Rajendran. “PSOFuzz: Fuzzing Processors with Particle
Swarm Optimization”. In: 2023 IEEE/ACM International Conference

on Computer Aided Design (ICCAD). IEEE. 2023, 1.

[17] S. Canakci, C. Rajapaksha, L. Delshadtehrani, A. Nataraja, M. B.
Taylor, M. Egele, and A. Joshi. “ProcessorFuzz: Processor Fuzzing
with Control and Status Registers Guidance”. In: HOST. 2023.

[18] Andrew Danowitz, Kyle Kelley, James Mao, John P Stevenson, and
Mark Horowitz. “CPU DB: Recording Microprocessor History: With
this open database, you can mine microprocessor trends over the
past 40 years.” In: Queue 10.4 (2012).

[19] A. B. Mehta. “Constrained Random Verication (CRV)”. In: ASIC/-
SoC Functional Design Verication: A Comprehensive Guide to Technolo-

gies and Methodologies. Springer, 2018.

[20] A. Adir, E. Almog, L. Fournier, E. Marcus, M. Rimon, M. Vinov, and
A. Ziv. “Genesys-Pro: innovations in test program generation for
functional processor verication”. In: IEEE Design & Test of Computers

21.2 (2004).

bibliography 179

[21] A Ahmed and P Mishra. “QUEBS: Qualifying Event Based Search
in Concolic Testing for Validation of RTL Models”. In: 2017 IEEE

International Conference on Computer Design (ICCD). 2017.

[22] Alif Ahmed, Farimah Farahmandi, and Prabhat Mishra. “Directed
test generation using concolic testing on RTL models”. In: 2018
Design, Automation & Test in Europe Conference & Exhibition (DATE).
2018.

[23] Mingsong Chen, Prabhat Mishra, and Dhrubajyoti Kalita. “Auto-
matic RTL test generation from SystemC TLM specications”. In:
ACM Transactions on Embedded Computing Systems (TECS) 11.2 (2012).

[24] Mingsong Chen, Xiaoke Qin, Heon-Mo Koo, and Prabhat Mishra.
System-level validation: high-level modeling and directed test generation

techniques. Springer Science & Business Media, 2012.

[25] Lingyi Liu and Shobha Vasudevan. “Efcient validation input gener-
ation in RTL by hybridized source code analysis”. In: 2011 Design,

Automation & Test in Europe. 2011.

[26] Elaheh Sadredini, Reza Rahimi, Paniz Foroutan, Mahmood Fathy,
and Zainalabedin Navabi. “An improved scheme for pre-computed
patterns in core-based SoC architecture”. In: 2016 IEEE East-West

Design & Test Symposium (EWDTS). 2016.

[27] Shirin Nilizadeh, Yannic Noller, and Corina S Pasareanu. “DifFuzz:
differential fuzzing for side-channel analysis”. In: 2019 IEEE/ACM

41st International Conference on Software Engineering (ICSE). 2019.

[28] Tun Li, Hongji Zou, Dan Luo, and Wanxia Qu. “Symbolic simulation
enhanced coverage-directed fuzz testing of rtl design”. In: 2021 IEEE

International Symposium on Circuits and Systems (ISCAS). 2021.

[29] Kypros Constantinides, Onur Mutlu, and Todd Austin. “Online
design bug detection: RTL analysis, exible mechanisms, and evalu-
ation”. In: 2008 41st IEEE/ACM International Symposium on Microar-

chitecture. 2008.

[30] Matthew Hicks, Cynthia Sturton, Samuel T King, and Jonathan M
Smith. “Specs: A lightweight runtime mechanism for protecting
software from security-critical processor bugs”. In: Proceedings of the
Twentieth International Conference on Architectural Support for Program-

ming Languages and Operating Systems. 2015.

180 bibliography

[31] Ghada Dessouky, David Gens, Patrick Haney, Garrett Persyn, Arun
Kanuparthi, Hareesh Khattri, Jason M Fung, Ahmad-Reza Sadeghi,
and Jeyavijayan Rajendran. “{HardFails}: Insights into {Software-
Exploitable} Hardware Bugs”. In: USENIX SEC. 2019.

[32] Limor Fix. “Fifteen years of formal property verication in Intel”. In:
25 Years of Model Checking (2008).

[33] Limor Fix and Ken McMillan. “Formal Property Verication”. In:
EDA for IC System Design, Verication, and Testing. CRC Press, 2018.

[34] D (STMicroelectronics) Vincenzoni. Formal property verication: A tale

of two methods. https://www.edn.com/formal-property-verification-
a-tale-of-two-methods/. Accessed: 2022-06-21.

[35] Mohammad Rahmani Fadiheh, Joakim Urdahl, Srinivas Shashank
Nuthakki, Subhasish Mitra, Clark Barrett, Dominik Stoffel, and
Wolfgang Kunz. “Symbolic quick error detection using symbolic
initial state for pre-silicon verication”. In: 2018 Design, Automation

& Test in Europe Conference & Exhibition (DATE). 2018.

[36] Eshan Singh, Keerthikumara Devarajegowda, Sebastian Simon, Ralf
Schnieder, Karthik Ganesan, Mohammad Fadiheh, Dominik Stoffel,
Wolfgang Kunz, Clark Barrett, Wolfgang Ecker, et al. “Symbolic
QED pre-silicon verication for automotive microcontroller cores:
Industrial case study”. In: 2019 Design, Automation & Test in Europe

Conference & Exhibition (DATE). 2019.

[37] Karthik Ganesan, Florian Lonsing, Srinivasa Shashank Nuthakki, Es-
han Singh, Mohammad Rahmani Fadiheh, Wolfgang Kunz, Dominik
Stoffel, Clark Barrett, and Subhasish Mitra. “Effective Pre-Silicon
Verication of Processor Cores by Breaking the Bounds of Symbolic
Quick Error Detection”. In: arXiv preprint arXiv:2106.10392 (2021).

[38] Vasudevan Madampu Suryasarman, Santosh Biswas, and Aryabartta
Sahu. “Automation of test program synthesis for processor post-
silicon validation”. In: Journal of Electronic Testing 34.1 (2018).

[39] Cadence. Jasper FPV App. https : / / www . cadence . com / en _ US /

home / tools / system - design - and - verification / formal - and -

static-verification/jasper-gold-verification-platform/formal-

property-verification-app.html. Accessed: 2022-06-21.

[40] Onur Demir, Wenjie Xiong, Faisal Zaghloul, and Jakub Szefer. “Sur-
vey of Approaches for Security Verication of Hardware/Software
Systems.” In: IACR Cryptol. ePrint Arch. 2016 (2016).

bibliography 181

[41] Allon Adir, Maxim Golubev, Shimon Landa, Amir Nahir, Gil Shurek,
Vitali Sokhin, and Avi Ziv. “Threadmill: A post-silicon exerciser for
multi-threaded processors”. In: DAC. 2011.

[42] Ophir Friedler, Wisam Kadry, Arkadiy Morgenshtein, Amir Nahir,
and Vitali Sokhin. “Effective post-silicon failure localization using
dynamic program slicing”. In: 2014 Design, Automation & Test in

Europe Conference & Exhibition (DATE). 2014.

[43] Harry D Foster. “Trends in functional verication: A 2014 industry
study”. In: DAC. 2015.

[44] Jagannath Keshava, Nagib Hakim, and Chinna Prudvi. “Post-silicon
validation challenges: How EDA and academia can help”. In: DAC.
2010.

[45] David Lin, Eshan Singh, Clark Barrett, and Subhasish Mitra. “A
structured approach to post-silicon validation and debug using
symbolic quick error detection”. In: 2015 IEEE International Test

Conference (ITC). 2015.

[46] Doug Josephson. “The good, the bad, and the ugly of silicon debug”.
In: DAC. 2006.

[47] Ilya Wagner and Valeria Bertacco. “Reversi: Post-silicon validation
system for modern microprocessors”. In: 2008 IEEE International

Conference on Computer Design. 2008.

[48] David Lin, Ted Hong, Farzan Fallah, Nagib Hakim, and Subhasish
Mitra. “Quick detection of difcult bugs for effective post-silicon
validation”. In: DAC. 2012.

[49] Nikos Foutris, Dimitris Gizopoulos, Mihalis Psarakis, Xavier Vera,
and Antonio Gonzalez. “Accelerating Microprocessor Silicon Valida-
tion by Exposing ISA Diversity”. In: Proceedings of the 44th Annual

IEEE/ACM International Symposium on Microarchitecture. MICRO-44.
Porto Alegre, Brazil: Association for Computing Machinery, 2011.

[50] A. Avizienis and Yutao He. “Microprocessor entomology: a tax-
onomy of design faults in COTS microprocessors”. In: Dependable

Computing for Critical Applications 7. 1999.

[51] Smruti R Sarangi, Abhishek Tiwari, and Josep Torrellas. “Phoenix:
Detecting and recovering from permanent processor design bugs
with programmable hardware”. In: 2006 39th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO’06). 2006.

182 bibliography

[52] Satish Narayanasamy, Bruce Carneal, and Brad Calder. “Patching
processor design errors”. In: 2006 International Conference on Computer

Design. 2006.

[53] Ilya Wagner, Valeria Bertacco, and Todd Austin. “Using eld-
repairable control logic to correct design errors in microprocessors”.
In: IEEE Transactions on computer-aided design of integrated circuits and

systems 27.2 (2008).

[54] Flavien Solt, Ben Gras, and Kaveh Razavi. “CellIFT: Leveraging Cells
for Scalable and Precise Dynamic Information Flow Tracking in
RTL”. In: USENIX SEC. 2022.

[55] Siemens. Modelsim. https : / / eda . sw . siemens . com / en - US / ic /

modelsim/. Accessed: 2022-06-21.

[56] Synopsys. VCS. https://www.synopsys.com/verification/simulation/
vcs.html. Accessed: 2022-06-21.

[57] Cadence. Xcelium Logic Simulation. https://www.cadence.com/ko_
KR/home/tools/system-design-and-verification/simulation-and-

testbench-verification/xcelium-simulator.html. Accessed: 2022-
06-21.

[58] Jonathan Balkind, Katie Lim, Fei Gao, Jinzheng Tu, David Wentzlaff,
Michael Schaffner, Florian Zaruba, and Luca Benini. “OpenPiton+
Ariane: The rst open-source, SMP Linux-booting RISC-V system
scaling from one to many cores”. In: Workshop on Computer Architec-

ture Research with RISC-V (CARRV). 2019.

[59] Shi-Hao Chen and Jiing-Yuan Lin. “Implementation and verica-
tion practices of DVFS and power gating”. In: 2009 International

Symposium on VLSI Design, Automation and Test. 2009.

[60] Edmund M Clarke, William Klieber, Miloš Nováček, and Paolo
Zuliani. “Model checking and the state explosion problem”. In:
LASER Summer School on Software Engineering. Springer. 2011.

[61] F. Farahmandi, Y. Huang, and P. Mishra. “Formal Approaches to
Hardware Trust Verication”. In: The Hardware Trojan War. Springer,
2018.

[62] Aarti Gupta, MV KiranKumar, and Rajnish Ghughal. “Formally ver-
ifying graphics FPU”. In: International Symposium on Formal Methods.
Springer. 2014.

bibliography 183

[63] Tom Schubert. “High-level formal verication of next-generation
microprocessors”. In: Proceedings 2003. Design Automation Conference

(IEEE Cat. No. 03CH37451). 2003.

[64] Matthew M Wilding, David A Greve, Raymond J Richards, and
David S Hardin. “Formal verication of partition management for
the AAMP7G microprocessor”. In: Design and Verication of Micro-

processor Systems for High-Assurance Applications. Springer, 2010.

[65] Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Alastair
Reid, Kathryn E Gray, Robert Norton-Wright, Prashanth Mundkur,
Mark Wassell, Jon French, Christopher Pulte, et al. “ISA semantics
for ARMv8-a, RISC-v, and CHERI-MIPS”. In: POPL (2019).

[66] Thomas Bourgeat, Ian Clester, Andres Erbsen, Samuel Gruetter,
Andrew Wright, and Adam Chlipala. “A Multipurpose Formal RISC-
V Specication”. In: arXiv preprint arXiv:2104.00762 (2021).

[67] Shlomo Greenberg, Joseph Rabinowicz, and Erez Manor. “Selective
state retention power gating based on formal verication”. In: IEEE
Transactions on Circuits and Systems I: Regular Papers 62.3 (2014).

[68] Amir Masoud Gharehbaghi and Masahiro Fujita. “Specication
and formal verication of power gating in processors”. In: Fifteenth
International Symposium on Quality Electronic Design. 2014.

[69] Hoon Choi, Myung-Kyoon Yim, Jae-Young Lee, Byeong-Whee Yun,
and Yun-Tae Lee. “Formal Verication of an Industrial System-on-a-
chip”. In: Proceedings 2000 International Conference on Computer Design.
2000.

[70] Nagabhushan Reddy, Sankaran Menon, and Prashant D Joshi. “Val-
idation Challenges in Recent Trends of Power Management in Mi-
croprocessors”. In: 2020 IEEE International Symposium on Defect and

Fault Tolerance in VLSI and Nanotechnology Systems (DFT). 2020.

[71] Manoj Dusanapudi, S Fields, Michael S Floyd, Guy L Guthrie, R
Kalla, Shakti Kapoor, LS Leitner, Charles F Marino, JJ McGill, Amir
Nahir, et al. “Debugging post-silicon fails in the IBM POWER8
bring-up lab”. In: IBM Journal of Research and Development 59.1 (2015).

[72] Prabhat Mishra, Ronny Morad, Avi Ziv, and Sandip Ray. “Post-
silicon validation in the SoC era: A tutorial introduction”. In: IEEE
Design & Test 34.3 (2017).

184 bibliography

[73] Daniel Petrisko, Farzam Gilani, Mark Wyse, Dai Cheol Jung, Scott
Davidson, Paul Gao, Chun Zhao, Zahra Azad, Sadullah Canakci,
Bandhav Veluri, et al. “BlackParrot: An agile open-source RISC-V
multicore for accelerator SoCs”. In: IEEE Micro 40.4 (2020).

[74] F. Zaruba and L. Benini. “The Cost of Application-Class Processing:
Energy and Performance Analysis of a Linux-Ready 1.7-GHz 64-Bit
RISC-V Core in 22-nm FDSOI Technology”. In: VLSI. 2019.

[75] Christopher Celio, David A Patterson, and Krste Asanovic. “The
berkeley out-of-order machine (boom): An industry-competitive,
synthesizable, parameterized risc-v processor”. In: EECS Department,

University of California, Berkeley, Tech. Rep. UCB/EECS-2015-167 (2015).

[76] Subhasish Mitra, Sanjit A Seshia, and Nicola Nicolici. “Post-silicon
validation opportunities, challenges and recent advances”. In: DAC.
2010.

[77] Stephan Van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro
Frigo, Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. “RIDL: Rogue in-ight data load”. In: IEEE SP. 2019.

[78] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian
Stecklina, Thomas Prescher, and Daniel Gruss. “ZombieLoad: Cross-
privilege-boundary data sampling”. In: Proceedings of the 2019 ACM

SIGSAC Conference on Computer and Communications Security. 2019.

[79] Alberto Carelli, Alessandro Vallero, and Stefano Di Carlo. “Perfor-
mance Monitor Counters: interplay between safety and security in
complex Cyber-Physical Systems”. In: IEEE Transactions on Device

and Materials Reliability 19.1 (2019).

[80] Tianwei Zhang, Yinqian Zhang, and Ruby B Lee. “Cloudradar: A real-
time side-channel attack detection system in clouds”. In: International
Symposium on Research in Attacks, Intrusions, and Defenses. Springer.
2016.

[81] Marco Chiappetta, Erkay Savas, and Cemal Yilmaz. “Real time de-
tection of cache-based side-channel attacks using hardware perfor-
mance counters”. In: Applied Soft Computing 49 (2016).

[82] Serena Ferracci. “Detecting Cache-based Side Channel Attacks using
Hardware Performance Counters”. PhD thesis. Sapienza, University
of Rome, 2019.

bibliography 185

[83] Manaar Alam, Sarani Bhattacharya, Debdeep Mukhopadhyay, and
Sourangshu Bhattacharya. “Performance counters to rescue: A ma-
chine learning based safeguard against micro-architectural side-
channel-attacks”. In: Cryptology ePrint Archive (2017).

[84] Xueyang Wang, Charalambos Konstantinou, Michail Maniatakos,
and Ramesh Karri. “Conrm: Detecting rmware modications
in embedded systems using hardware performance counters”. In:
ICCAD. 2015.

[85] Xueyang Wang, Charalambos Konstantinou, Michail Maniatakos,
Ramesh Karri, Serena Lee, Patricia Robison, Paul Stergiou, and Steve
Kim. “Malicious rmware detection with hardware performance
counters”. In: IEEE Transactions on Multi-Scale Computing Systems 2.3
(2016).

[86] Rana Elnaggar, Krishnendu Chakrabarty, and Mehdi B Tahoori.
“Run-time hardware trojan detection using performance counters”.
In: 2017 IEEE International Test Conference (ITC). 2017.

[87] Yubin Xia, Yutao Liu, Haibo Chen, and Binyu Zang. “CFIMon:
Detecting violation of control ow integrity using performance
counters”. In: IEEE/IFIP International Conference on Dependable Systems

and Networks (DSN 2012). 2012.

[88] Congmiao Li and Jean-Luc Gaudiot. “Online detection of spectre
attacks using microarchitectural traces from performance counters”.
In: 2018 30th International Symposium on Computer Architecture and

High Performance Computing (SBAC-PAD). 2018.

[89] Hossein Sayadi, Han Wang, Tahereh Miari, Hosein Mohammadi
Makrani, Mehrdad Aliasgari, Setareh Rafatirad, and Houman
Homayoun. “Recent advancements in microarchitectural security:
Review of machine learning countermeasures”. In: 2020 IEEE 63rd

International Midwest Symposium on Circuits and Systems (MWSCAS).
2020.

[90] Veripool. Verilator, the fastest Verilog/SystemVerilog simulator. https:
//veripool.org/verilator/. Accessed: 2022-06-21.

[91] Tom Feist. “Vivado design suite”. In: White Paper 5 (2012).

[92] Ilya K Ganusov, Mahesh A Iyer, Ning Cheng, and Alon Meisler.
“Agilex™ generation of intel® fpgas”. In: 2020 IEEE Hot Chips 32

Symposium (HCS). 2020.

186 bibliography

[93] Timothy Trippel, Kang G. Shin, Alex Chernyakhovsky, Garret Kelly,
Dominic Rizzo, and Matthew Hicks. “Fuzzing Hardware Like Soft-
ware”. In: USENIX SEC. Boston, MA: USENIX Association, 2022.

[94] Sujit Kumar Muduli, Gourav Takhar, and Pramod Subramanyan.
“Hyperfuzzing for soc security validation”. In: Proceedings of the 39th
International Conference on Computer-Aided Design. 2020.

[95] F. Corno, E. Sanchez, M.S. Reorda, and G. Squillero. “Automatic
test program generation: a case study”. In: IEEE Design & Test of

Computers 21.2 (2004).

[96] Giovanni Squillero. “Microgp—an evolutionary assembly program
generator”. In: Genetic programming and evolvable machines 6 (2005).

[97] Fulvio Corno, Ernesto Sánchez, and Giovanni Squillero. “Evolving
assembly programs: how games help microprocessor validation”. In:
IEEE Transactions on Evolutionary Computation 9.6 (2005), 695.

[98] Paolo Bernardi, Edgar Ernesto Sánchez Sánchez, Massimiliano
Schillaci, Giovanni Squillero, and Matteo Sonza Reorda. “An effec-
tive technique for the automatic generation of diagnosis-oriented
programs for processor cores”. In: IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems 27.3 (2008).

[99] Ernesto Sánchez, Matteo Sonza Reorda, and Giovanni Squillero.
“Efcient techniques for automatic verication-oriented test set opti-
mization”. In: International Journal of Parallel Programming 34.1 (2006).

[100] Dimitris Gizopoulos, Mihalis Psarakis, Miltiadis Hatzimihail,
Michail Maniatakos, Antonis Paschalis, Anand Raghunathan, and
Srivaths Ravi. “Systematic software-based self-test for pipelined
processors”. In: VLSI 16.11 (2008).

[101] Ján Hudec and Elena Gramatová. “An efcient functional test gener-
ation method for processors using genetic algorithms”. In: Journal of
Electrical Engineering 66.4 (2015).

[102] Synopsys. VC Formal. https://www.synopsys.com/verification/

static-and-formal-verification/vc-formal.html. Accessed: 2022-
06-21.

[103] Siemens. Questa Formal Verication Apps. https://eda.sw.siemens.
com/en-US/ic/questa/formal-verification/. Accessed: 2022-06-21.

bibliography 187

[104] Gianpiero Cabodi, Paolo Camurati, Sebastiano F Finocchiaro,
Carmelo Loiacono, Francesco Savarese, and Danilo Vendraminetto.
“Secure path verication”. In: 2016 1st IEEE International Verication

and Security Workshop (IVSW). 2016.

[105] Wei Hu, Xinmu Wang, and Dejun Mu. “Security path verication
through joint information ow analysis”. In: 2018 IEEE Asia Pacic

Conference on Circuits and Systems (APCCAS). 2018.

[106] Cadence. Jasper SPV App. https://www.cadence.com/ko_KR/home/
tools / system - design - and - verification / formal - and - static -

verification/jasper-gold-verification-platform/security-path-

verification-app.html. Accessed: 2022-06-21.

[107] Eduard Cerny, Surrendra Dudani, John Havlicek, Dmitry Ko-
rchemny, et al. SVA: the power of assertions in systemVerilog. Springer,
2015.

[108] Roy Armoni, Limor Fix, Alon Flaisher, Rob Gerth, Boris Ginsburg,
Tomer Kanza, Avner Landver, Sela Mador-Haim, Eli Singerman, An-
dreas Tiemeyer, et al. “The ForSpec temporal logic: A new temporal
property-specication language”. In: International Conference on Tools

and Algorithms for the Construction and Analysis of Systems. Springer.
2002.

[109] Philipp Koppe, Benjamin Kollenda, Marc Fyrbiak, Christian Kison,
Robert Gawlik, Christof Paar, and Thorsten Holz. “Reverse engineer-
ing x86 processor microcode”. In: USENIX SEC. 2017.

[110] David Van Campenhout, Trevor Mudge, and John P Hayes. “Collec-
tion and analysis of microprocessor design errors”. In: IEEE Design

& Test of Computers 17.4 (2000).

[111] Miroslav N Velev. “Collection of high-level microprocessor bugs
from formal verication of pipelined and superscalar designs”. In:
International Test Conference, 2003. Proceedings. ITC 2003. 2003.

[112] Brian A Wichmann. “Microprocessor design faults”. In: Microproces-

sors and Microsystems 17.7 (1993).

[113] David Lin, Ted Hong, Yanjing Li, S Eswaran, Sharad Kumar, Farzan
Fallah, Nagib Hakim, Donald S Gardner, and Subhasish Mitra. “Ef-
fective post-silicon validation of system-on-chips using quick error
detection”. In: IEEE Transactions on Computer-Aided Design of Inte-

grated Circuits and Systems 33.10 (2014).

188 bibliography

[114] Farimah Farahmandi and Prabhat Mishra. “Observability-Aware
Post-Silicon Test Generation”. In: Post-Silicon Validation and Debug.
Springer, 2019.

[115] Arm Ltd. Speculative Processor Vulnerability. https : / / developer .

arm . com / Arm % 20Security % 20Center / Speculative % 20Processor %

20Vulnerability. [Online; accessed 16-May-2022]. 2022.

[116] A. Bhattacharyya, A. Sandulescu, M. Neugschwandtner, A. Sorniotti,
B. Falsa, M. Payer, and A. Kurmus. “SMoTherSpectre: exploiting
speculative execution through port contention”. In: ACM SIGSAC.
2019.

[117] Jo Van Bulck, Marina Minkin, Or Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F Wenisch, Yuval
Yarom, and Raoul Strackx. “Foreshadow: Extracting the Keys to the
Intel {SGX} Kingdom with Transient {Out-of-Order} Execution”.
In: USENIX SEC. 2018.

[118] C. Canella, D. Genkin, L. Giner, D. Gruss, M. Lipp, M. Minkin, D.
Moghimi, F. Piessens, M. Schwarz, B. Sunar, et al. “Fallout: Leaking
data on meltdown-resistant cpus”. In: ACM SIGSAC. 2019.

[119] CVE-2018-3639. Available from MITRE, CVE-ID CVE-2018-3639.
2018.

[120] G Maisuradze and Christian Rossow. “ret2spec: Speculative execu-
tion using return stack buffers”. In: ACM SIGSAC. 2018.

[121] M. Schwarz, M. Schwarzl, M. Lipp, J. Masters, and D. Gruss. “Net-
spectre: Read arbitrary memory over network”. In: ESORICS. 2019.

[122] J. Stecklina and T. Prescher. “Lazyfp: Leaking fpu register state using
microarchitectural side-channels”. In: arXiv preprint arXiv:1806.07480

(2018).

[123] H. Ragab, A. Milburn, K. Razavi, H. Bos, and C. Giuffrida.
“Crosstalk: Speculative data leaks across cores are real”. In: IEEE SP.
2021.

[124] Jo Van Bulck, D. Moghimi, M. Schwarz, M. Lipp, M. Minkin, D.
Genkin, Y. Yarom, B. Sunar, D. Gruss, and F. Piessens. “LVI: Hi-
jacking transient execution through microarchitectural load value
injection”. In: IEEE SP. 2020.

[125] S. Van Schaik, M. Minkin, A. Kwong, D. Genkin, and Y. Yarom.
“CacheOut: Leaking data on Intel CPUs via cache evictions”. In:
IEEE SP. 2021.

bibliography 189

[126] H. Ragab, E. Barberis, H. Bos, and C. Giuffrida. “Rage Against the
Machine Clear: A Systematic Analysis of Machine Clears and Their
Implications for Transient Execution Attacks”. In: USENIX SEC.
2021.

[127] J. Taneja, Z. Liu, and J. Regehr. “Testing static analyses for precision
and soundness”. In: CGO. 2020.

[128] L. Team. Dataowsanitizer design document. https://clang.llvm.

org/docs/DataFlowSanitizerDesign.html. [Online; accessed 16-May-
2022]. 2019.

[129] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S.
Wallace, V. J. Reddi, and K. Hazelwood. “Pin: building customized
program analysis tools with dynamic instrumentation”. In: ACM
SIGPLAN (2005).

[130] V. P Kemerlis, G. Portokalidis, K. Jee, and A. D. Keromytis. “libdft:
Practical dynamic data ow tracking for commodity systems”. In:
ACM SIGPLAN/SIGOPS. 2012.

[131] A. Ardeshiricham, W. Hu, J. Marxen, and R. Kastner. “Register trans-
fer level information ow tracking for provably secure hardware
design”. In: DATE. 2017.

[132] Y. Yarom and K. Falkner. “FLUSH+ RELOAD: A high resolution,
low noise, L3 cache side-channel attack”. In: USENIX SEC. 2014.

[133] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B Lee. “Last-level cache
side-channel attacks are practical”. In: IEEE SP. 2015.

[134] D. A. Osvik, A. Shamir, and E. Tromer. “Cache attacks and coun-
termeasures: the case of AES”. In: Cryptographers’ track at the RSA

conference. Springer. 2006.

[135] C. Wolf. Yosys open synthesis suite. 2016.

[136] lowRISC C.I.C. Ibex: An embedded 32 bit RISC-V CPU core. https:

//github.com/lowRISC/ibex. [Online; accessed 16-May-2022].

[137] K. Asanovic, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin, C.
Celio, H. Cook, D. Dabbelt, J. Hauser, A. Izraelevitz, et al. “The
rocket chip generator”. In: Tech. Rep. UCB/EECS-2016-17 (2016).

[138] Intel Corporation. 12th Generation Intel® Core™ Processor, Document

Number: 682436-006.

[139] Ashok B Mehta. SystemVerilog Assertions and Functional Coverage.
Springer, 2020.

190 bibliography

[140] Cadence. JasperGold Security Path Verication App. https : / / www .

cadence.com/en_US/home/tools/system-design-and-verification/

formal - and - static - verification / jasper - gold - verification -

platform/security-path-verification-app.html. [Online; accessed
16-May-2022].

[141] S. Van Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze, K.
Razavi, H. Bos, and C. Giuffrida. Addendum to RIDL: Rogue in-ight

data load. https://mdsattacks.com/files/ridl-addendum.pdf. 2019.

[142] M. Ghaniyoun, K. Barber, Y. Zhang, and R. Teodorescu. “INTRO-
SPECTRE: A Pre-Silicon Framework for Discovery and Analysis of
Transient Execution Vulnerabilities”. In: ACM ISCA. 2021.

[143] Wei Hu, Armaiti Ardeshiricham, and Ryan Kastner. “Hardware
information ow tracking”. In: ACM Computing Surveys (CSUR) 54.4
(2021).

[144] C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. von Berg, P. Ortner,
F. Piessens, D. Evtyushkin, and D. Gruss. “A Systematic Evaluation
of Transient Execution Attacks and Defenses”. In: USENIX SEC.
2019.

[145] W. Hu, J. Oberg, A. Irturk, M. Tiwari, T. Sherwood, D. Mu, and R.
Kastner. “Theoretical fundamentals of gate level information ow
tracking”. In: IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems (2011).

[146] W. Hu, J. Oberg, A. Irturk, M. Tiwari, T. Sherwood, D. Mu, and R.
Kastner. “On the complexity of generating gate level information
ow tracking logic”. In: IEEE Transactions on Information Forensics and

Security (2012).

[147] W. Hu, J. Oberg, A. Irturk, M. Tiwari, T. Sherwood, D. Mu, and R.
Kastner. “An improved encoding technique for gate level informa-
tion ow tracking”. In: IWLS. 2011.

[148] W. Hu, A. Becker, A. Ardeshiricham, Y. Tai, P. Ienne, D. Mu, and
R. Kastner. “Imprecise security: quality and complexity tradeoffs for
hardware information ow tracking”. In: ICCAD. 2016.

[149] D. E. Denning and P. J. Denning. “Certication of Programs for
Secure Information Flow”. In: Communications ACM (1977).

[150] D. Zhang, Y. Wang, G. E. Suh, and A. C. Myers. “A hardware design
language for timing-sensitive information-ow security”. In: Acm
SIGPLAN (2015).

bibliography 191

[151] F. Schuiki, A. Kurth, T. Grosser, and L. Benini. “LLHD: A multi-level
intermediate representation for hardware description languages”.
In: ACM PLDI. 2020.

[152] Zachary Snow. sv2v: SystemVerilog to Verilog. https://github.com/
zachjs/sv2v/. [Online; accessed 16-May-2022].

[153] lowRISC contributors. REQ/ACK Syncronizer Verilator Testbench.
https://github.com/lowRISC/opentitan/tree/master/hw/ip/prim/

pre_dv/prim_sync_reqack. [Online; accessed 16-May-2022].

[154] lowRISC contributors. AES S-Box Verilator Testbench. https://github.
com/lowRISC/opentitan/tree/master/hw/ip/aes/pre_dv/aes_sbox_

tb. [Online; accessed 16-May-2022].

[155] C. Celio, P.-F. Chiu, B. Nikolic, D. A. Patterson, and K. Asanovic.
“BOOMv2: an open-source out-of-order RISC-V core”. In: CARRV.
2017.

[156] RISC-V. Architectural Testing Framework. https://github.com/riscv-
non-isa/riscv-arch-test. [Online; accessed 16-May-2022].

[157] Z. Zhou, M. K. Reiter, and Y. Zhang. “A Software Approach to
Defeating Side Channels in Last-Level Caches”. In: ACM SIGSAC.
2016.

[158] D. Gruss, J. Lettner, F. Schuster, O. Ohrimenko, I. Haller, and M.
Costa. “Strong and Efcient Cache Side-Channel Protection using
Hardware Transactional Memory”. In: USENIX SEC. 2017.

[159] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and R. B. Lee.
“CATalyst: Defeating last-level cache side channel attacks in cloud
computing”. In: IEEE HPCA. 2016.

[160] B. Gras, K. Razavi, H. Bos, and C. Giuffrida. “Translation Leak-aside
Buffer: Defeating Cache Side-channel Protections with TLB Attacks”.
In: USENIX SEC. 2018.

[161] D. Evtyushkin, R. Riley, N. CSE Abu-Ghazaleh, ECE, and D. Pono-
marev. “BranchScope: A New Side-Channel Attack on Directional
Branch Predictor”. In: ASPLOS. 2018.

[162] RISC-V BOOM. BOOM Speculative Attacks. https://github.com/

riscv-boom/boom-attacks. [Online; accessed 16-May-2022].

[163] Hack@DAC. Phase 2 Buggy SoC. https : / / github . com / hackdac /

hackdac_2018_beta. [Online; accessed 16-May-2022]. 2018.

192 bibliography

[164] H. Kannan, M. Dalton, and C. Kozyrakis. “Decoupling Dynamic
Information Flow Tracking with a dedicated coprocessor”. In: DSN.
2009.

[165] S. Banerjee, D. Devecsery, P. M. Chen, and S. Narayanasamy. “Iodine:
fast dynamic taint tracking using rollback-free optimistic hybrid
analysis”. In: IEEE SP. 2019.

[166] Tortuga Logic. Simulation Based Security Verication. https : / /

tortugalogic.com/radix-s/. [Online; accessed 16-May-2022].

[167] Tortuga Logic. Emulation Based Security Verication. https : / /

tortugalogic.com/radix-m/. [Online; accessed 16-May-2022].

[168] C Palmiero, G. Di Guglielmo, L. Lavagno, and L.P. Carloni. “Design
and implementation of a dynamic information ow tracking archi-
tecture to secure a RISC-V core for IoT applications”. In: IEEE HPEC.
2018.

[169] C. Pilato, K. Wu, S. Garg, R. Karri, and F. Regazzoni. “TaintHLS:
High-level synthesis for dynamic information ow tracking”. In:
IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems 38.5 (2018).

[170] M. R. Fadiheh, D. Stoffel, C. Barrett, S. Mitra, and W. Kunz. “Proces-
sor Hardware Security Vulnerabilities and their Detection by Unique
Program Execution Checking”. In: DATE. 2019.

[171] A. Ferraiuolo, R. Xu, D. Zhang, A. C. Myers, and G. E. Suh. “Veri-
cation of a Practical Hardware Security Architecture Through Static
Information Flow Analysis”. In: ASPLOS. 2017.

[172] X. Meng, S. Kundu, A. K. Kanuparthi, and K. Basu. “RTL-ConTest:
Concolic Testing on RTL for Detecting Security Vulnerabilities”. In:
IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems (2021).

[173] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. “Secure program ex-
ecution via dynamic information ow tracking”. In: ACM SIGPLAN

(2004).

[174] C. Deutschbein, A. Meza, F. Restuccia, R. Kastner, and C. Sturton.
“Isadora: Automated Information Flow Property Generation for
Hardware Designs”. In: ASHES. 2021.

[175] K. Devarajegowda, E. Kaja, S. Prebeck, and W. Ecker. “ISA Modeling
with Trace Notation for Context Free Property Generation”. In: DAC.
2021.

bibliography 193

[176] T. Ludwig, J. Urdahl, D. Stoffel, andW. Kunz. “Properties First—Correct-
By-Construction RTL Design in System-Level Design Flows”. In:
IEEE TCAD. 2020.

[177] S. Deng, D. Gümüşoğlu, W. Xiong, S. Sari, Y. S. Gener, C. Lu, O.
Demir, and J. Szefer. “SecChisel Framework for Security Verication
of Secure Processor Architectures”. In: HASP. 2019.

[178] K. Devarajegowda, M. R. Fadiheh, E. Singh, C. Barrett, S. Mitra, W.
Ecker, D. Stoffel, and W. Kunz. “Gap-free Processor Verication by
S2QED and Property Generation”. In: DATE. 2020.

[179] M. R. Fadiheh, J. Müller, R. Brinkmann, S. Mitra, D. Stoffel, and W.
Kunz. “A Formal Approach for Detecting Vulnerabilities to Transient
Execution Attacks in Out-of-Order Processors”. In: DAC. 2020.

[180] Z. Y. Ding and C. Le Goues. “An empirical study of oss-fuzz bugs”.
In: MSR. 2021.

[181] Google. American fuzzy lop. https://github.com/google/AFL. [Online;
accessed 4-June-2023].

[182] H. Chen, Y. Li, B. Chen, Y. Xue, and Y. Liu. “Fot: A versatile, cong-
urable, extensible fuzzing framework”. In: ACM FSE. 2018.

[183] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse. “AFL++ combining
incremental steps of fuzzing research”. In: WOOT. 2020.

[184] P. Wang, X. Zhou, K. Lu, T. Yue, and Y. Liu. “Sok: The progress,
challenges, and perspectives of directed greybox fuzzing”. In:
arXiv:2005.11907 (2020).

[185] S. Österlund, K. Razavi, H. Bos, and C. Giuffrida. “Parmesan:
Sanitizer-guided greybox fuzzing”. In: USENIX SEC. 2020.

[186] V. Ganesh, T. Leek, and M. Rinard. “Taint-based directed whitebox
fuzzing”. In: ICSE. 2009.

[187] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos.
“Vuzzer: Application-aware evolutionary fuzzing.” In: NDSS. Vol. 17.
2017.

[188] P. Chen and H. Chen. “Angora: Efcient fuzzing by principled
search”. In: IEEE SP. 2018.

[189] T. Blazytko, C. Aschermann, M. Schlögel, A. Abbasi, S. Schumilo,
S. Wörner, and T. Holz. “GRIMOIRE: Synthesizing Structure while
Fuzzing.” In: USENIX SEC. 2019.

194 bibliography

[190] S. Sargsyan, S. Kurmangaleev, M. Mehrabyan, M. Mishechkin, T.
Ghukasyan, and S. Asryan. “Grammar-based fuzzing”. In: IVMEM.
2018.

[191] P. Srivastava and M. Payer. “Gramatron: Effective grammar-aware
fuzzing”. In: ISSTA. 2021.

[192] Martin Eberlein, Yannic Noller, Thomas Vogel, and Lars Grunske.
“Evolutionary grammar-based fuzzing”. In: SSBSE. 2020.

[193] J. Wang, B. Chen, L. Wei, and Y. Liu. “Superion: Grammar-aware
greybox fuzzing”. In: ICSE. 2019.

[194] P. Godefroid, A. Kiezun, and M. Y. Levin. “Grammar-based whitebox
fuzzing”. In: ASPLOS. 2008.

[195] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov. Address-
sanitizer: A fast address sanity checker. https://clang.llvm.org/docs/
AddressSanitizer.html. [Online; accessed 4-June-2023].

[196] LLVM Developers. UndenedBehaviorSanitizer. https://clang.llvm.
org/docs/UndefinedBehaviorSanitizer.html. [Online; accessed 4-
June-2023].

[197] C. Courbet. “NSan: a oating-point numerical sanitizer”. In: ACM
SIGPLAN CC. 2021.

[198] A. Waterman and K. Asanovic. The RISC-V Instruction Set Manual.
https://github.com/riscv/riscv- isa- manual. [Online; accessed
4-June-2023].

[199] RISC-V Software. Spike RISC-V ISA Simulator. https://github.com/
riscv-software-src/riscv-isa-sim. [Online; accessed 4-June-2023].

[200] Chips Alliance. Ebreak instruction retires. https : / / github . com /

chipsalliance/rocket-chip/issues/2672. [Online; accessed 4-June-
2023].

[201] SpinalHDL. VexRiscv. https : / / github . com / SpinalHDL / VexRiscv.
[Online; accessed 2-September-2023].

[202] YosysHQ. PicoRV32 - A Size-Optimized RISC-V CPU. https://github.
com/YosysHQ/picorv32. [Online; accessed 2-September-2023].

[203] SonalPinto. Kronos RISC-V. https://github.com/SonalPinto/kronos.
[Online; accessed 2-September-2023].

[204] J. Hur, S. Song, D. Kwon, E. Baek, J. Kim, and B. Lee. DifuzzRTL:

Differential Fuzz Testing to Find CPU Bugs (Docker image). https://
github.com/compsec-snu/difuzz-rtl. [Online; accessed 4-June-2023].

bibliography 195

[205] C. Wolf, J. Glaser, and J. Kepler. “Yosys-a free Verilog synthesis
suite”. In: Austrochip. 2013.

[206] A. Izraelevitz, J. Koenig, P. Li, R. Lin, A. Wang, A. Magyar, D. Kim,
C. Schmidt, C. Markley, J. Lawson, et al. “Reusability is FIRRTL
ground: Hardware construction languages, compiler frameworks,
and transformations”. In: ICCAD. 2017.

[207] T. Ormandy. Zenbleed. https://lock.cmpxchg8b.com/zenbleed.html.
[Online; accessed 2-September-2023].

[208] M. Turpin and P. V. Engineer. “The Dangers of Living with an X
(bugs hidden in your Verilog)”. In: Synopsys Users Group Meeting.
2003.

[209] C. Chen. Miss illegal instruction exception when rd of MULHU is the

same as rs1 or rs2. https://github.com/openhwgroup/cva6/issues/
885/issuecomment-1469547149. [Online; accessed 4-June-2023].

[210] S. Sutherland. “I’m Still in Love with My X!” In: Design and Verica-

tion Conference (DVCon). 2013.

[211] S. Canakci, C. Rajapaksha, L. Delshadtehrani, A. Nataraja, M. B.
Taylor, M. Egele, and A. Joshi. “ProcessorFuzz: Guiding Processor
Fuzzing using Control and Status Registers”. In: arXiv:2209.01789
(2022).

[212] S. Tasiran and K. Keutzer. “Coverage metrics for functional vali-
dation of hardware designs”. In: IEEE Design & Test of Computers.
2001.

[213] T. Bojan, M. A. Arreola, E. Shlomo, and T. Shachar. “Functional
coverage measurements and results in post-Silicon validation of
Core™ 2 duo family”. In: 2007 IEEE HLDVT. 2007.

[214] K. Ruep and D. Große. “SpinalFuzz: Coverage-guided fuzzing for
SpinalHDL designs”. In: IEEE ETS. 2022.

[215] H. Ragab, K. Koning, H. Bos, and C. Giuffrida. “BugsBunny: Hop-
ping to RTL Targets with a Directed Hardware-Design Fuzzer”. In:
SILM. 2022.

[216] Chips Alliance. RISC-V DV. https://github.com/chipsalliance/

riscv-dv. [Online; accessed 4-June-2023].

[217] Fisher Daniel K and Gould Peter J. “Open-source hardware is a
low-cost alternative for scientic instrumentation and research”. In:
Modern instrumentation 2012 (2012).

196 bibliography

[218] Jérémy Bonvoisin, Robert Mies, Jean-François Boujut, and Rainer
Stark. “What is the “source” of open source hardware?” In: Journal
of Open Hardware 1.1 (2017).

[219] Joshua M Pearce. “Building research equipment with free, open-
source hardware”. In: Science 337.6100 (2012).

[220] Joshua M Pearce. “Quantifying the value of open source hardware
development”. In: Modern Economy 6 (2015).

[221] Jérémy Bonvoisin, Jenny Molloy, Martin Häuer, and Tobias Wenzel.
“Standardisation of practices in open source hardware”. In: arXiv
preprint arXiv:2004.07143 (2020).

[222] Shunning Jiang, Peitian Pan, Yanghui Ou, and Christopher Batten.
“PyMTL3: A Python framework for open-source hardware modeling,
generation, simulation, and verication”. In: IEEE Micro 40.4 (2020).

[223] ITS Heikkinen, Hele Savin, Jouni Partanen, Jukka Seppälä, and
Joshua M Pearce. “Towards national policy for open source hardware
research: The case of Finland”. In: Technological Forecasting and Social

Change 155 (2020).

[224] J Piet Hausberg and Sebastian Spaeth. “Why makers make what
they make: motivations to contribute to open source hardware de-
velopment”. In: R&D Management 50.1 (2020).

[225] Flavien Solt, Katharina Ceesay-Seitz, and Kaveh Razavi. “Cascade:
CPU Fuzzing via Intricate Program Generation”. In: USENIX SEC.
2024.

[226] Rong Qu, Jiangang Huang, Long Zhang, Tianlu Qiao, and Jian
Zhang. “Scope-based Compiler Differential Testing”. In: 2023 IEEE

23rd International Conference on Software Quality, Reliability, and Secu-

rity (QRS). 2023.

[227] William M McKeeman. “Differential testing for software”. In: Digital

Technical Journal 10.1 (1998).

[228] Robert B Evans and Alberto Savoia. “Differential testing: a new
approach to change detection”. In: The 6th Joint Meeting on European

software engineering conference and the ACM SIGSOFT Symposium on

the Foundations of Software Engineering: Companion Papers. 2007.

[229] W. Hu, D. Mu, J. Oberg, B. Mao, M. Tiwari, T. Sherwood, and R.
Kastner. “Gate-level information ow tracking for security lattices”.
In: ACM TODAES (2014).

bibliography 197

[230] Clash contributors. Clash: A modern, functional, hardware description

language. https://clash-lang.org/. [Online; accessed 25-Jan-2024].

[231] Xiao-lang Yan, Long-li Yu, and Jie-bing Wang. “A front-end au-
tomation tool supporting design, verication and reuse of SOC”. In:
Journal of Zhejiang University-SCIENCE A 5 (2004).

[232] K. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avizienis,
J Wawrzynek, and K. Asanovic. “Chisel: constructing hardware in a
scala embedded language”. In: DAC. 2012.

[233] Wilson Snyder. “Verilator and systemperl”. In: North American Sys-

temC Users’ Group, Design Automation Conference. 2004.

[234] Stephen Williams and Michael Baxter. “Icarus verilog: open-source
verilog more than a year later”. In: Linux Journal 2002.99 (2002).

[235] Rajat Subhra Chakraborty, Seetharam Narasimhan, and Swarup
Bhunia. “Hardware Trojan: Threats and emerging solutions”. In:
2009 IEEE International high level design validation and test workshop.
2009.

[236] Mohammad Tehranipoor and Farinaz Koushanfar. “A survey of
hardware trojan taxonomy and detection”. In: IEEE design & test of

computers 27.1 (2010).

[237] Swarup Bhunia, Michael S Hsiao, Mainak Banga, and Seetharam
Narasimhan. “Hardware Trojan attacks: Threat analysis and coun-
termeasures”. In: Proceedings of the IEEE 102.8 (2014).

[238] Swarup Bhunia and M Tehranipoor. “The hardware trojan war”. In:
Cham„ Switzerland: Springer (2018).

[239] Shivam Bhasin and Francesco Regazzoni. “A survey on hardware
trojan detection techniques”. In: 2015 IEEE International Symposium

on Circuits and Systems (ISCAS). 2015.

[240] Zhao Huang, Quan Wang, Yin Chen, and Xiaohong Jiang. “A sur-
vey on machine learning against hardware trojan attacks: Recent
advances and challenges”. In: IEEE Access 8 (2020).

[241] He Li, Qiang Liu, and Jiliang Zhang. “A survey of hardware Trojan
threat and defense”. In: Integration 55 (2016).

[242] Hassan Salmani, Mohammad Tehranipoor, and Jim Plusquellic. “A
novel technique for improving hardware trojan detection and reduc-
ing trojan activation time”. In: VLSI 20.1 (2011).

198 bibliography

[243] Verilator contributors. Fuzzer-related Verilator issues. https://github.
com/verilator/verilator/issues?q=Fuzzer. [Online; accessed 30-
January-2024].

[244] YosysHQ. VlogHammer. https://github.com/YosysHQ/VlogHammer.
[Online; accessed 30-January-2024].

[245] Yann Herklotz Grave. Fuzzing Verilog. https://yannherklotz.com/
docs/fpga2020/verismith_thesis.pdf. [Online; accessed 30-January-
2024].

[246] Lisa Piper and Jin Zhang. “Don’t let the X-bugs bite: Conquer elusive
X-propagation issues early! Get them before they get you!” In: 2011
9th IEEE International Conference on ASIC. 2011.

[247] Christian Krieg, Clifford Wolf, Axel Jantsch, and Tanja Zseby. “Tog-
gle MUX: How X-optimism can lead to malicious hardware”. In:
DAC. 2017.

[248] Mike Turpin. “Solving Verilog X-Issues by Sequentially Comparing
a Design with itself. You’ll never trust unix diff again!” In: Boston
Synopsys Users Group (SNUG) (2005).

[249] Wei Hu, Baolei Mao, Jason Oberg, and Ryan Kastner. “Detecting
hardware trojans with gate-level information-ow tracking”. In:
Computer 49.8 (2016).

[250] Wei Hu, Chip-Hong Chang, Anirban Sengupta, Swarup Bhunia,
Ryan Kastner, and Hai Li. “An overview of hardware security and
trust: Threats, countermeasures, and design tools”. In: IEEE Transac-

tions on Computer-Aided Design of Integrated Circuits and Systems 40.6
(2020).

[251] Jason Oberg, Wei Hu, Ali Irturk, Mohit Tiwari, Timothy Sherwood,
and Ryan Kastner. “Information ow isolation in I2C and USB”. In:
DAC. 2011.

[252] eInfochips Priyambada Mishra. Understanding Logic Equivalence

Check (LEC) Flow and Its Challenges and Proposed Solution. https :

//www.design- reuse.com/articles/51622/understanding- logic-

equivalence-check-lec-flow-and-its-challenges-and-proposed-

solution.html. [Online; accessed 8-Feb-2024].

[253] Qow contributors. Qow 1.3: An Open-Source Digital Synthesis

Flow. http : / / opencircuitdesign . com / qflow/. [Online; accessed
30-January-2024].

bibliography 199

[254] Mohamed Shalan and Tim Edwards. “Building OpenLANE: a 130nm
openroad-based tapeout-proven ow”. In: Proceedings of the 39th

International Conference on Computer-Aided Design. 2020.

[255] Sarah Hesham, Mohamed Shalan, M Watheq El-Kharashi, and Mo-
hamed Dessouky. “Digital ASIC Implementation of RISC-V: Open-
Lane and Commercial Approaches in Comparison”. In: 2021 IEEE

International Midwest Symposium on Circuits and Systems (MWSCAS).
2021.

[256] Kevin E Murray, Mohamed A Elgammal, Vaughn Betz, Tim Ansell,
Keith Rothman, and Alessandro Comodi. “SymbiFlow and VPR: An
open-source design ow for commercial and novel FPGAs”. In: IEEE
Micro 40.4 (2020).

[257] Ang Li and David Wentzlaff. “PRGA: An open-source framework
for building and using custom FPGAs”. In: The First Workshop on

Open-Source Design Automation; Florence, Italy. 2019.

[258] Yuan Chi, Xian Lin, and Xin Zheng. “Design of High-performance
SoC Simulation Model Based on Verilator”. In: Proceedings of the 2022
5th International Conference on Algorithms, Computing and Articial

Intelligence. 2022.

[259] Eunkyung Ham, Yujin Jeon, Jaeyun Lim, and Ji-Hoon Kim. “Verilator-
based Fast Verication Methodology for BLE MAC Hardware”. In:
2023 International Conference on Electronics, Information, and Communi-

cation (ICEIC). 2023.

[260] Norm Hardy. “The Confused Deputy: (or why capabilities might
have been invented)”. In: ACM SIGOPS Operating Systems Review

22.4 (1988).

[261] Baptiste David. “How a simple bug in ML compiler could be ex-
ploited for backdoors?” In: arXiv preprint arXiv:1811.10851 (2018).

[262] Scott Bauer, Pascal Cuoq, and John Regehr. Deniable Backdoors Us-

ing Compiler Bugs. https://mcfp.felk.cvut.cz/publicDatasets/

pocorgtfo/contents/articles/08-03.pdf. [Online; accessed 6-Feb-
2024].

[263] Tim Clifford, Ilia Shumailov, Yiren Zhao, Ross Anderson, and Robert
Mullins. “ImpNet: Imperceptible and blackbox-undetectable back-
doors in compiled neural networks”. In: arXiv preprint arXiv:2210.00108
(2022).

bibliography

[264] Cristian Cadar, Luis Pina, and John Regehr. Multi-Version Execution

Defeats a Compiler-Bug-Based Backdoor. https://blog.regehr.org/

archives/1282. [Online; accessed 6-Feb-2024].

[265] Michaël Marcozzi, Qiyi Tang, Alastair F Donaldson, and Cristian
Cadar. “Compiler fuzzing: How much does it matter?” In: Proceed-
ings of the ACM on Programming Languages 3.OOPSLA (2019).

[266] Junjie Chen and Chenyao Suo. “Boosting compiler testing via com-
piler optimization exploration”. In: ACM Transactions on Software

Engineering and Methodology (TOSEM) 31.4 (2022).

[267] Yannic Noller, Corina S Păsăreanu, Marcel Böhme, Youcheng Sun,
Hoang Lam Nguyen, and Lars Grunske. “HyDiff: Hybrid differential
software analysis”. In: Proceedings of the ACM/IEEE 42nd International

Conference on Software Engineering. 2020.

[268] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. “Finding and
understanding bugs in C compilers”. In: Proceedings of the 32nd ACM

SIGPLAN conference on Programming language design and implementa-

tion. 2011.

[269] Vsevolod Livinskii, Dmitry Babokin, and John Regehr. “Random
testing for C and C++ compilers with YARPGen”. In: Proceedings of
the ACM on Programming Languages 4.OOPSLA (2020).

[270] Raphael Isemann, Cristiano Giuffrida, Herbert Bos, Erik van der
Kouwe, and Klaus von Gleissenthall. “Don’t Look UB: Exposing
Sanitizer-Eliding Compiler Optimizations”. In: Proceedings of the

ACM on Programming Languages 7.PLDI (2023).

