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ABSTRACT 
Computer-aided molecular and process design (CAMPD) tries to find the best molecules together 
with their optimal process. If the optimization problem considers two or more components as de-
grees of freedom, the resulting mixture design is challenging for optimization. The quality of the 
solution strongly depends on the accuracy of the thermodynamic model used to predict the ther-
mophysical properties required to determine the objective function and process constraints. To-
day, most molecular design methods employ thermodynamic models based on group counts, re-
sulting in a loss of structural information of the molecule during the optimization. Here, we unlock 
CAMPD based on property prediction methods beyond first-order group-contribution methods by 
using molecule superstructures, a graph-based molecular representation of chemical families that 
preserves the full adjacency graph. Disjunctive programming is applied to optimize molecules from 
different chemical families simultaneously. The description of mixtures is enhanced with a recent 
parametrization of binary group/group interaction parameters. The design method is applied to 
determine the optimal working fluid mixture for an Organic Rankine cycle. 

Keywords: Molecular Design, Energy Conversion, Process Design, Optimization, Exergy Efficiency 

INTRODUCTION 
Computer-aided molecular and process design 

(CAMPD) [1] determines optimal molecules jointly with 
their optimal process. Evaluating molecules for their per-
formance in a process enables a comprehensive assess-
ment. The influence of different molecular characteristics 
is combined in a process-level target function that can 
quantify the thermodynamic, economic, or environmental 
performance of the process. 

Molecules occur as degrees of freedom for various 
energy conversion processes like heat pumps [2] and or-
ganic Rankine cycles (ORC) [3-5] or separation pro-
cesses like CO2 capture [6]. The design space of mole-
cules is vast but can even be extended exponentially by 
considering blends of multiple molecular species [7,8]. 

To optimize a molecule, its structure must be fea-
turized, i.e., expressed in a machine-readable way [9]. 
Common features used in molecular design are group 
counts that indicate the number of occurrences of pre-
defined groups in a molecule. The group counts can be 
used as degrees of freedom in an optimization algorithm. 

Additional molecular constraints can ensure that the op-
timization only generates valid molecules. 

The group counts are used in group-contribution 
methods to determine the thermophysical properties re-
quired for the process model [10]. A disadvantage of us-
ing group counts as features is that some of the structural 
information of the molecule is lost in the featurization. 
Therefore, the optimization does not necessarily allow 
the identification of an optimal molecule but rather a set 
of optimal isomers that share the same group counts. 

The limitation of group counts is alleviated by main-
taining structural information during the optimization. 
This can be achieved by optimizing the coefficients of an 
adjacency matrix [11]. However, the number of degrees 
of freedom becomes large, which is a limiting factor in the 
presence of expensive model evaluations that occur in an 
integrated molecular and process design. As an alterna-
tive, we recently introduced molecule superstructures 
[12]. The superstructures can encode all molecules of a 
particular chemical family using a significantly reduced 
number of binary variables. 

The molecular design space superstructures offer is 
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smaller than first-order group-contribution methods. 
However, the molecular representation should not only 
be picked for computational convenience but also based 
on the expected accuracy of property prediction meth-
ods. Often, extrapolating a group contribution method to 
molecules significantly different from the molecules used 
for parameter adjustment (e.g., polyfunctional molecules) 
leads to low accuracies that undermine the results of a 
molecular design. 

Evaluating a process model requires an equation of 
state or an equivalent model. For mixture design, the 
model should predict a wide range of fluids and their mix-
tures. Molecular equations of state like those based on 
statistical associating fluid theory (SAFT) [13] leverage 
molecular insights to describe mixtures accurately based 
on pure-component parameters. If a higher accuracy is 
required, binary interaction parameters can further en-
hance the description of mixtures. 

In a recent study, the authors and co-workers [14] 
extended the group contribution method for PCP-SAFT 
[15,16] by Sauer et al. [17] to mixtures by accounting for 
hydrogen bonding between polar molecules (aldehydes, 
ketones, ethers, formates, and esters) and self-associat-
ing molecules (alcohols and amines), and by parametriz-
ing a group contribution method for binary interaction pa-
rameters. The study compares a homosegmented and a 
heterosegmented group-contribution method. The ho-
mosegmented approach determines PCP-SAFT parame-
ters from group counts and group-specific parameters. In 
the heterosegmented approach, segments replace mol-
ecules as species in the equation of state. The heter-
osegmented approach was determined to be more accu-
rate for pure components [17] and for mixtures [14], but 
to parametrize the model, the number of bonds between 
different groups is required in addition to the group 
counts. The molecule superstructures [12] can be used 
to infer both group counts and bond information.  

In this work, the more accurate heterosegmented 
group-contribution method for PCP-SAFT is unlocked for 
application in an integrated molecular and process de-
sign using molecule superstructures. We demonstrate 
the approach in a case study determining the optimal 
working fluid mixture for an organic Rankine cycle (ORC). 
Due to the combinatorial complexity of possible working 
fluid mixtures, a molecular design is necessary to deter-
mine the optimal working fluid systematically. 

MOLECULE SUPERSTRUCTURES 
To optimize molecules in a computer-aided molec-

ular and process design, the structure of the molecule 
needs to be represented in a format that is accessible to 
the optimization algorithm. Molecule superstructures are 
a graph-based representation of a molecular family [12]. 
Fig. 1 shows an example of a small molecule structure. It 

consists of a graph with four nodes and three edges. 
Every node corresponds to an atom type and a binary 
structure variable. Structural constraints are introduced 
to ensure that only valid molecules are generated (in this 
case water, methanol, ethanol, or dimethyl ether). The 
structure variables are converted to group and bond 
counts that are required to parametrize the equation of 
state. The structural constraints and group/bond counts 
can be derived generically for arbitrarily large super-
structures. We refer to the original publication [12] for the 
detailed expressions. 

 
Figure 1: Example for an ether/alcohol superstructure 
including the corresponding structural constraints and 
resulting group and bond counts. 

Previously, optimal molecules were determined for 
every chemical family individually [12]. For mixtures, the 
number of possible combinations of chemical families be-
comes large. Therefore, we extend the superstructure 
approach to optimize any number of chemical families 
simultaneously using methods from disjunctive program-
ming [18]. 

 The superstructure converts binary structure varia-
bles 𝑦𝑦𝑘𝑘 into molecular features used in the property pre-
diction method. Linear inequality constraints are required 
to ensure that only valid molecules are found. The spe-
cific constraints are elucidated in the original publication 
[12]. In general, the constraints can be expressed as 

∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑘𝑘𝑦𝑦𝑘𝑘 ≤ 𝑏𝑏𝑖𝑖𝑖𝑖𝑘𝑘     (1) 

Here, 𝑖𝑖 enumerates the chemical families and their 
respective molecule superstructures, 𝑗𝑗 indicates different 
constraints, and 𝑘𝑘 enumerates the structure variables 𝑦𝑦𝑘𝑘. 
The number of constraints 𝑁𝑁𝑐𝑐,𝑖𝑖 and structure variables 𝑁𝑁𝑦𝑦,𝑖𝑖  
depends on the considered molecule superstructures.  

To combine the different chemical families in one 
structure, a common set of structure variables is defined 
by using 𝑁𝑁𝑦𝑦 = max

𝑖𝑖
𝑁𝑁𝑦𝑦,𝑖𝑖 binary variables and adding addi-

tional constraints that force the unused variables to 0. 

∑ 𝑦𝑦𝑘𝑘
𝑁𝑁𝑦𝑦
𝑘𝑘=𝑁𝑁𝑦𝑦,𝑖𝑖+1

≤ 0    (2) 

The constraints associated with each molecule su-
perstructure can then be formally expressed as disjunc-
tions in the optimization problem. 
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∨𝑖𝑖 �∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑘𝑘𝑦𝑦𝑘𝑘𝑘𝑘 ≤ 𝑏𝑏𝑖𝑖𝑖𝑖�    (3) 

The Big-M method and convex hulls have been es-
tablished as standard methods to convert disjunctive 
programs into MILPs or MINLPs [18]. The convex hull has 
a tighter feasible region than the Big-M formulation but 
requires more additional variables. Therefore, the Big-M 
formulation is better suited for the integrated process de-
sign task with expensive target function evaluations. Ap-
plying the Big-M method introduces additional binary 
variables 𝑐𝑐𝑖𝑖, one for each disjunction and hence chemical 
family. Only one disjunction can be active at the same 
time, leading to the additional constraint: 

∑ 𝑐𝑐𝑖𝑖𝑖𝑖 = 1     (4) 

The constraints for every molecule superstructure 
are rewritten by introducing the parameter 𝑀𝑀𝑖𝑖𝑖𝑖. 

∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑘𝑘𝑦𝑦𝑘𝑘𝑘𝑘 + 𝑀𝑀𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖 ≤ 𝑏𝑏𝑖𝑖𝑖𝑖 + 𝑀𝑀𝑖𝑖𝑖𝑖   (5) 

In general, 𝑀𝑀𝑖𝑖𝑖𝑖 must be large enough to ensure that 
the constraint is turned off if 𝑐𝑐𝑖𝑖 = 0, but as small as pos-
sible to ensure tight relaxation bounds. For the binary 
variables 𝑦𝑦𝑘𝑘, the optimal value for 𝑀𝑀𝑖𝑖𝑖𝑖 can be derived ge-
nerically, as 

𝑀𝑀𝑖𝑖𝑖𝑖 = ∑ max�𝑎𝑎𝑖𝑖𝑖𝑖𝑘𝑘, 0�𝑘𝑘 − 𝑏𝑏𝑖𝑖𝑖𝑖   (6) 

The original publication on molecule superstructures 
[12] describes a generic method to infer the group and 
bond counts from the structure variables. The same 
method is used for every individual superstructure. The 
resulting group counts 𝑛𝑛𝑖𝑖,𝛼𝛼 and bond counts 𝑏𝑏𝑖𝑖,𝛼𝛼𝛼𝛼 are then 
weighted with the chemical family indicator 𝑐𝑐𝑖𝑖 of every 
superstructure to give the total group and bond counts. 

𝑛𝑛𝛼𝛼 = ∑ 𝑐𝑐𝑖𝑖𝑛𝑛𝑖𝑖,𝛼𝛼𝑖𝑖 , 𝑏𝑏𝛼𝛼𝛼𝛼 = ∑ 𝑐𝑐𝑖𝑖𝑏𝑏𝑖𝑖,𝛼𝛼𝛼𝛼𝑖𝑖   (8) 

The group and bond counts are used to parametrize 
the heterosegmented group-contribution method for 
PCP-SAFT [17], which is used to determine phase equi-
libria and residual properties. To calculate caloric proper-
ties, the group counts are also used in the group-contri-
bution method for the ideal gas heat capacity by Joback 
and Reid [19]. The resulting MINLP is solved using the 
branch-and-bound implementation in Artelys Knitro [20]. 

CASE STUDY: ORGANIC RANKINE CYCLE 
We apply the molecular design method using mole-

cule superstructures to the integrated design of an or-
ganic Rankine cycle (ORC) and its working fluid. ORCs 
can convert waste heat into power, reducing energy 
losses and increasing the exergetic efficiency of pro-
cesses. The process flowsheet of the standard ORC used 
in this case study is shown in Fig. 2. Analogous to a reg-
ular Rankine cycle, the working fluid of the ORC is evap-
orated and potentially superheated to be then fed into a 

turbine that extracts power from the working fluid. Part 
of the power is used to pump the working fluid that leaves 
the condenser back to the pressure level of the evapora-
tor. 

 
Figure 2: Flowsheet and key specifications for the ORC. 

Using an organic working fluid rather than water en-
ables the operation above atmospheric pressures, even 
for low-temperature heat sources. This work optimizes 
the working fluid mixture to maximize the power output 
of the ORC. The design of an actual waste heat valoriza-
tion unit needs to consider additional aspects regarding 
safety, stability, and costs that are outside the scope of 
this study. 

ORC processes are promising targets for mixture 
design since replacing pure working fluids with zeotropic 
mixtures leads to non-isothermal evaporation and con-
densation. The resulting temperature glide in the con-
denser and evaporator can be tuned to the respective 
temperature glides in the heat source and cooling medi-
ums. A more homogeneous temperature difference 
across the heat exchangers reduces the exergy loss dur-
ing heat transfer and, in conclusion, increases the net 
power output of the process. 

The case study is based on the analysis of Chys et 
al. [21] and the design study by Schilling et al. [8]. The 
most important specifications are shown in Fig. 2: The 
heat source has an inlet temperature of 175 °C and a heat 
capacity rate of 65 kW/K. The cooling medium is heated 
from 25 °C to 40 °C. The outlet temperature of the heat 
source medium is only indirectly constrained via the 
pinch condition. The heat exchangers are modeled as 
isobaric. The full specification of the process is given in 
Tab. 1. This thermodynamic optimization aims to maxim-
ize the net power 𝑃𝑃net of the cycle. 
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Table 1: ORC case study specifications from [8,21] 

Component Parameter Value 

Heat source 
Inlet temperature  °C 
Heat capacity rate  kW/K 
Min approach temp  K 

Turbine Isentropic efficiency  
Min vapor quality (outlet)  

Pump Isentropic efficiency  

Condenser Min absolute pressure  bar 
Min relative pressure e- 

Evaporator Max absolute pressure  bar 
Max relative pressure  

Cooling 
Inlet temperature  °C 
Outlet temperature  °C 
Min approach temp  K 

 

RESULTS 
As a reference, the molecule superstructures with 

disjunctions are first used to determine the optimal pure 
working fluid for the ORC. A ranking of the ten molecules 
that yield the highest net power output is shown in 
Tab. 2. The ranking consists of alkanes, alkenes, and 
propyne.  

Table 2: Ranking of the best pure component working flu-
ids based on the net power output of the ORC. 

# SMILES Name Net power 
[kW] 

 CCC propane  
 C=CC propene  
 C#CC propyne  
 CC(C)C isobutane  
 CC(C)(C)C neopentane  
 CCCC butane  
 C=C(C)C isobutene  
 C=CCC butene  
 C=CC(C)(C)C neohexene  

 CCC(C)C isopentane  
 

The molecular design space also contains polar (al-
dehydes, ketones, ethers, formates, and esters) and self-
associating molecules (alcohols and amines). However, 
these molecular families are unsuitable for the application 
due to their lower vapor pressures and higher critical 
temperature. The ranking is topped by the C3 hydrocar-
bons propane, propane, and propyne, with the highest 
achievable net power output being 472.25 kW using pro-
pane as the working fluid. 

Higher net power outputs can be achieved by con-
sidering mixed working fluids. To obtain a ranking of 
working fluid candidates, we use the molecule 

superstructure concept to find optimal additives for each 
of the ten best-performing pure components. The rank-
ing is shown in Tab. 3. The ten best mixtures all consist 
of mainly propane or propene with traces of larger, 
mostly non-polar molecules. The mixtures containing one 
of the other well-performing fluids from the pure-compo-
nent case consistently lead to lower power outputs than 
those based on propane or propene. This observation 
strongly implies that optimizing additives can determine 
the optimal mixture for this case study. However, both 
molecules must be optimized in a single optimization 
problem for a more comprehensive result. Schilling et al. 
[8] demonstrate how the approach can significantly re-
duce the number of function evaluations compared to a 
screening of mixtures using a CAMD method based on 
group counts. The design setup in our study allows the 
simultaneous optimization of both constituent molecules, 
but the prevalence of local optima impedes an efficient 
direct determination of optimal working fluid mixtures. 
Therefore, it was not possible yet to determine a ranking 
comparable to Tab. 3 by optimizing both fluids rather 
than an additive in a reasonable timeframe. An MINLP so-
lution algorithm better suited for the specificity of inte-
grated molecular and process design is required to im-
prove the solution times and generate more robust can-
didate mixtures [22]. The non-convexity of the MINLP 
also suggests using global optimization [23], however, 
the expensive function evaluations that include multiple 
phase equilibrium calculations with the heterosegmented 
group-contribution method for PCP-SAFT are a limiting 
factor. 

Fig. 3 compares the process for the optimal pure 
working fluid (propane) with the best mixed working fluid 
candidate. In the pure-component case, the temperature 
of the working fluid is constant during evaporation and 
condensation. Therefore, the optimization mainly deter-
mines process conditions in which the temperature glide 
of the heat source medium aligns well with the tempera-
ture during the preheating step in the evaporator. The 
mixed working fluid shows a temperature glide in the 
condenser. The resulting process conditions find a com-
promise between the exergy loss in the evaporator and 
the condenser. Consequently, the net power output of 
the ORC is increased by 11% compared to propane as the 
working fluid. This increase is partly driven by the tem-
perature glide in the cooling medium, which is fixed to 15 
K in this case study. For other process conditions, the 
benefit of using mixed working fluids can be small [24], 
and a reduced heat transfer during condensation and 
evaporation must be considered for an economic assess-
ment of the process [25,8].  

Choosing the correct composition of the mixture is 
essential for the performance of the ORC. Fig. 4 shows 
the optimized net power output of the ORC using the four 
best mixtures from Tab. 3 over the entire composition 
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range. The solutions from the mixture design align well 
with the maxima in the discretized curves. In all cases, 
adding the longer hydrocarbon to pure propane initially 
increases the net power due to the establishment of the 
temperature glide. Further increasing the amount of ad-
ditive reduces the performance, with the curves showing 
local minima that, in one case, are even below the net 
power output of the pure additive. 

The net power output is strongly related to the ratio 
of the temperature glides in the condenser and the cool-
ing medium [8]. Changing the composition of the mix-
tures affects the glide in the condenser, with the largest 
glide occurring in the middle of the composition range. 
The glide also explains the shape of the maxima in the 
net power: A jump of the pinch from the condenser outlet 
to the inlet leads to a kink in the net power (cf. Fig. 4). If 
the temperature profile in the condenser is shaped in a 

way that the pinch is located between the inlet and the 
outlet, the maximum in the net power is smooth. 

A strong sensitivity to variations in the composition 
of the working fluid can be problematic in an actual ORC 
process when leakage is non-negligible, and the compo-
sition can change due to the constituents' different rela-
tive volatilities. With the abundance of near-optimal mix-
tures in the solution space of the molecular design, the 
robustness with respect to composition changes can be 
incorporated as an additional constraint in the optimiza-
tion problem.  

Table 3: Ranking of the best working fluid mixtures found in the integrated design. 

# 
Component  Component  Molar Net power 

SMILES Name SMILES Name composition [kW] 
 CCC propane C#CC(C)C -methyl--butyne % / %  
 CCC propane CC(C)(C)C neopentane % /   %  
 CCC propane C#CCC -butyne % / %  
 CCC propane CCC(C)C isopentane % /   %  
 C=CC propene CCCC butane % / %  
 C=CC propene CCC(C)C Isopentane % /   %  
 CCC propane C=C(C)CC -methyl--butene % /   %  
 CCC propane CCCCC pentane % /   %  
 CCC propane CCCOC -methoxypropane % /   %  

 CCC propane COC(C)C -methoxypropane % /   %  

 
Figure 3: Ts-diagram for the ORC using propane (left) and the best mixture (right) as working fluid. The phase 
change of the working fluid (green) is isothermal for pure components but exhibits a temperature glide for 
mixtures. In the optimization the temperature glide is adjusted to the tempearture profiles in the heat source 
medium (red) and the cooling water (blue). 



 

Rehner et al. / LAPSE:2024.1620 Syst Control Trans 3:876-882 (2024) 881 

 
Figure 4: Optimized net power output of the ORC using a 
propane + X mixture with the specified composition. The 
marks represent the optimal composition found in the 
molecular design. 

CONCLUSION 
Molecule superstructures are used to determine the 

optimal working fluid mixture for an ORC. Multiple chem-
ical families represented by their own superstructure are 
optimized simultaneously using disjunctive programming. 
Due to the full structural information available during the 
molecular design, the accurate heterosegmented group-
contribution method for PCP-SAFT can be used as a 
property prediction method. The model accuracy is fur-
ther enhanced by a recent parametrization of binary 
group/group interaction parameters [14]. 

The optimization determines mixtures of propane or 
propene with larger hydrocarbons as optimal working flu-
ids. The top-ranked mixtures deliver comparable perfor-
mances. This observation suggests that additional mate-
rial properties should be considered within the optimiza-
tion to reduce the molecular design space. Amongst the 
mixtures with the best thermodynamic properties are two 
that contain alkynes, components that are unsuited for 
long-term application as working fluids due to their low 
chemical stability. If predictive models are available, add-
ing constraints for the working fluid’s safety, stability, and 
environmental impact avoids a posteriori filtering of the 
results and provides a more efficient design method. Fi-
nally, economic considerations were circumvented by 
empirical pinch constraints instead of a direct considera-
tion by using more detailed, rate-based process models 
[8]. Also, in this case, the more detailed representation 
by molecule superstructures could enable advanced 
thermodynamic models, e.g., for the required transport 
properties. 
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