ETH zürich

Author Correction: The shaky foundations of simulating singlecell RNA sequencing data

Other Journal Item

Author(s): Crowell, Helena L.; Morillo Leonardo, Sarah X.; Soneson, Charlotte; Robinson, Mark D.

Publication date: 2024-07-05

Permanent link: https://doi.org/10.3929/ethz-b-000683988


Rights / license: Creative Commons Attribution 4.0 International

Originally published in: Genome Biology 25(1), <u>https://doi.org/10.1186/s13059-024-03329-0</u>

AUTHOR CORRECTION

Open Access

Author Correction: The shaky foundations of simulating single-cell RNA sequencing data

The original article can be found online at https://doi.org/10.1186/ s13059-023-02904-1.

*Correspondence: mark.robinson@imls.uzh.ch

 ¹ Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
² SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
³ ETH Zurich, Zwirch, Switzerland
⁴ Present address: Friedrich Miescher Institute for Biomedical Research and SIB Swiss Institute of Bioinformatics, Basel, Switzerland Correction: Genome Biol 24, 62 (2023) https://doi.org/10.1186/s13059-023-02904-1

Following publication of the original article [1], it was pointed out that the legend to Table 1 did not match the content of the table.

© The Author(s) 2024. **Open Access** This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/public cdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

The incorrect Table 1 is as follows:

Table 1 Overview of scRNA-seq simulators compared in this study. Methods are ordered alphabetically and annotated according to their (in)ability to accommodate multiple batches and/ or clusters, support for parallelization (parameter estimation and data simulation, respectively), software availability, and publication year. The right-most column catalogues neutral benchmark studies where each simulator was used. (\checkmark = yes, \bigstar = no, (\checkmark) = yes, but based on user input parameters, i.e., no support for parameter estimation, *requires random splitting of cells into two groups, \dagger/\ddagger = internal/prior resampling from empirical parameter distribution, •= no separate estimation step)

	Batches	Clusters	Type(s)	Cell #	Parallelization	Availability	Year	Model
BASICS [<u>37]</u>	1	×	b	×	√ ×	<u>R/Bioc</u>	2015	NB
ESCO [<u>38</u>]	1	1	n,b,k	1	\checkmark	<u>R/GitHub</u>	2020	Gamma-Poisson
hierarchicell [<u>39]</u>	1	×	n,b	1	**	<u>R/GitHub</u>	2021	NB
muscat [<u>40]</u>	1	1	n,b,k	(√)†	**	<u>R/Bioc</u>	2020	NB
POWSC [<u>41</u>]	×	1	n,k	(✔)†	**	<u>R/Bioc</u>	2020	zero-inflated, log- normal Poisson mixture
powsimR [<u>42]</u>	×	(√)	n*	(✔)†	<i>」</i>	<u>R/GitHub</u>	2017	NB
scDD [<u>43</u>]	×	×	n*	1	11	<u>R/Bioc</u>	2016	Bayesian NB mixture model
scDesign [<u>44</u>]	×	(✓)	n	1	•√	<u>R/GitHub</u>	2019	Gamma-Normal mixture model
scDesign2 [<u>45</u>]	×	1	n,k	1	√ <i>¥</i>	<u>R/GitHub</u>	2020	(zero-inflated) Poisson or NB + Gaussian copula for gene- gene correlations
SCRIP [<u>46</u>]	1	1	n,b,k	1	**	<u>R/GitHub</u>	2020	(Beta-)Gamma- Poisson
SPARSim [<u>47]</u>	1	×	n,b	(✔)‡	**	<u>R/GitLab</u>	2020	Gamma-multivar- iate hypergeo- metric
splatter [<u>15]</u> (Splat model)	(✓)	(✓)	n	1	**	<u>R/Bioc</u>	2017	Gamma-Poisson
SPsimSeq [<u>16</u>]	1	×	n,b	1	•¥	<u>R/Bioc</u>	2020	log-linear model-based density estima- tion + Gaussian copula for gene- gene correlations
SymSim [<u>48</u>]	1	×	n,b	1	**	<u>R/GitHub</u>	2019	kinetic model using MCMC
ZINB-WaVE [49]	1	1	n,b,k	×	**	<u>R/Bioc</u>	2018	zero-inflated NB
zingeR [<u>50</u>]	×	×	n	(✔)†‡	**	<u>R/GitHub</u>	2017	zero-inflated NB

Table 1 Overview of scRNA-seq simulators compared in this study. Methods are ordered alphabetically and annotated according to their (in)ability to accommodate multiple batches and/or clusters, support for parallelization (parameter estimation and data simulation, respectively), software availability, and publication year. Type(s)'column specifies which type of simulations can be produced (n: "singular" references: single batch or cluster; b: multiple batches; k: multiple clusters). 'Cell #' refers to whether the number of cells can be varied. Symbols: $\checkmark =$ yes, $\bigstar =$ no, (\checkmark) = yes, but based on user input parameters, i.e., no support for parameter estimation, *requires random splitting of cells into two groups, $\dagger/\ddagger =$ internal/prior resampling from empirical parameter distribution, $\bullet =$ no separate estimation step)

	Batches	Clusters	Type(s)	Cell #	Parallelization	Availability	Year	Model
BASiCS [<u>37]</u>	1	*	b	×	\ X	<u>R/Bioc</u>	2015	NB
ESCO [<u>38</u>]	1	1	n,b,k	1	<i>√√</i>	<u>R/GitHub</u>	2020	Gamma-Poisson
hierarchicell [<u>39]</u>	1	×	n,b	1	**	<u>R/GitHub</u>	2021	NB
muscat [<u>40]</u>	1	1	n,b,k	(√)†	**	<u>R/Bioc</u>	2020	NB
POWSC [<u>41</u>]	×	1	n,k	(✔)†	**	<u>R/Bioc</u>	2020	zero-inflated, log- normal Poisson mixture
powsimR [<u>42]</u>	×	(√)	n*	(✔)†	<i>」</i>	<u>R/GitHub</u>	2017	NB
scDD [<u>43</u>]	×	×	n*	1	11	<u>R/Bioc</u>	2016	Bayesian NB mixture model
scDesign [<u>44</u>]	×	(✔)	n	1	∘√	<u>R/GitHub</u>	2019	Gamma-Normal mixture model
scDesign2 [<u>45]</u>	×	1	n,k	1	√ <i>¥</i>	<u>R/GitHub</u>	2020	(zero-inflated) Poisson or NB + Gaussian copula for gene- gene correlations
SCRIP [46]	1	1	n,b,k	1	**	<u>R/GitHub</u>	2020	(Beta-)Gamma- Poisson
SPARSim [<u>47]</u>	1	×	n,b	(✔)‡	**	<u>R/GitLab</u>	2020	Gamma-multivar- iate hypergeo- metric
splatter [<u>15]</u> (Splat model)	(√)	(✓)	n	1	**	<u>R/Bioc</u>	2017	Gamma-Poisson
SPsimSeq [<u>16</u>]	1	*	n,b	1	•¥	<u>R/Bioc</u>	2020	log-linear model-based density estima- tion + Gaussian copula for gene- gene correlations
SymSim [<u>48</u>]	1	×	n,b	1	**	<u>R/GitHub</u>	2019	kinetic model using MCMC
ZINB-WaVE [49]	1	1	n,b,k	×	**	<u>R/Bioc</u>	2018	zero-inflated NB
zingeR [<u>50</u>]	×	×	n	(√)†‡	**	<u>R/GitHub</u>	2017	zero-inflated NB

The linked citations and the hyperlinks to the availability of data (in table 1) can be found in the original article. The original article [1] has been corrected.

Published online: 05 July 2024

Reference

1. Crowell HL, Morillo Leonardo SX, Soneson C, et al. The shaky foundations of simulating single-cell RNA sequencing data. Genome Biol. 2023;24:62. https://doi.org/10.1186/s13059-023-02904-1.